Science.gov

Sample records for tandem oxidation coupling

  1. Metal-Free Tandem Oxidative Coupling of Primary Alcohols with Azoles for the Synthesis of Hemiaminal Ethers.

    PubMed

    Sun, Jinwei; Zhang, Yu; Mathan, Sankaran; Wang, Yi; Pan, Yi

    2016-04-15

    A novel metal-free tandem oxidative coupling process for the synthesis of hemiaminal ethers has been developed. This protocol could be applied for the C-N bond formation of electron-deficient trizoles, tetrazoles, carbazoles and indazoles with primary alcohols. PMID:27000768

  2. Development of a reliable method based on ultra-performance liquid chromatography coupled to tandem mass spectrometry to measure thiol-associated oxidative stress in whole blood samples.

    PubMed

    Escobar, Javier; Sánchez-Illana, Ángel; Kuligowski, Julia; Torres-Cuevas, Isabel; Solberg, Rønnaug; Garberg, Håvard T; Huun, Marianne U; Saugstad, Ola D; Vento, Máximo; Cháfer-Pericás, Consuelo

    2016-05-10

    The aminothiols are biological compounds with numerous vital functions. One of the most relevant is their role as antioxidant systems. The reduced to oxidized ratios are extremely useful indicators of oxidative stress and cellular redox status. We have validated an ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) method to determine the levels of glutathione, cysteine, homocysteine, and their respective oxidized compounds in whole blood samples. Results showed excellent linearity for all the analytes with correlation coefficients between 0.990 and 0.997, suitable precision with intra-day coefficient of variation ≤20%, and satisfactory accuracy with recoveries between 75 and 130%. The limits of detection in whole blood samples were 1.16nmolL(-1) for glutathione, 115.8nmolL(-1) for oxidized glutathione, 9.3nmolL(-1) for homocystine, 92.6nmolL(-1) for homocysteine, 347nmolL(-1) for cystine and 0.23nmolL(-1) for cysteine. The suitability of the method was ascertained in whole blood samples (n=80) from a consolidated experimental model of hypoxia-reoxygenation in newborn piglets. PMID:26895495

  3. Online screening of nitric oxide scavengers in natural products using high performance liquid chromatography coupled with tandem diode array and fluorescence detection.

    PubMed

    Li, Dapeng; Wang, Ting; Guo, Yujie; Hu, Yuanjia; Yu, Boyang; Qi, Jin

    2015-12-18

    Nitric oxide (NO) is an important cellular signaling molecule with extensive physiological and pathophysiological effects. NO scavengers have the potential to treat inflammation, septic shock and other related diseases, and numerous examples have been chemically synthesized or isolated from natural products. The chemical diversity of natural products, however, means that a huge effort is necessary to efficiently screen and identify bioactive compounds, especially NO scavengers. In this article, we propose an effective analytical method to screen for NO scavengers in three natural products using an online system that couples high performance liquid chromatography with tandem diode array and fluorescence detection (HPLC-DAD-FLD). Eighteen compounds from radix of Scutellaria baicalensis Georgi and green tea displayed significant NO scavenging activity whereas components of Pueraria lobata (Willd.) Ohwi had no discernable activity. The structures of the active compounds were elucidated using Agilent Accurate-Mass Q-TOF LC/MS system. Preliminary analysis of structure-activity relationships indicated that, in flavonoids, a 2,3-double bond and a 3-H atom or a 3-OH group are essential for activity. In tannins, poly-hydroxyl groups are important for NO scavenging activity. Method validation indicated that the newly developed method is both reliable and repeatable. The online method that we present provides a simple, rapid and effective way to identify and characterize NO scavengers present in natural products. PMID:26607316

  4. Accelerator mass spectrometry with a coupled tandem-linac system

    SciTech Connect

    Kutschera, W.

    1984-01-01

    A coupled system provides higher energies, which allows one to extend AMS to hitherto untouched mass regions. Another important argument is that the complexity, although bothersome for the operation, increases the selectivity of detecting a particular isotope. The higher-energy argument holds for any heavy-ion accelerator which is capable of delivering higher energy than a tandem. The present use of tandem-linac combinations for AMS, rather than cyclotrons, linacs or combinations of these machines, has mainly to do with the fact that this technique was almost exclusively developed around tandem accelerators. Therefore the tandem-linac combination is a natural extension to higher energies. The use of negative ions has some particular advantages in suppressing background from unwanted elements that do not form stable negative ions (e.g., N, Mg, Ar). On the other hand, this limits the detection of isotopes to elements which do form negative ions. For particular problems it may therefore be advantageous to use a positive-ion machine. What really matters most for choosing one or the other machine is to what extent the entire accelerator system can be operated in a truly quantiative way from the ion source to the detection system. 20 references, 4 figures.

  5. Analysis of urinary 8-isoprostane as an oxidative stress biomarker by stable isotope dilution using automated online in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry.

    PubMed

    Mizuno, Keisuke; Kataoka, Hiroyuki

    2015-08-10

    We have developed a simple and sensitive method for the determination of the oxidative stress biomarker 8-isoprostane (8-IP) in human urine by automated online in-tube solid-phase microextraction (SPME) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) using a Zorbax Eclipse XDB-8 column and 0.1% formic acid/methanol (25/75, v/v) as a mobile phase. Electrospray MS/MS for 8-IP was performed on an API 4000 triple quadruple mass spectrometer in negative ion mode. The optimum in-tube SPME conditions were 20 draw/eject cycles with a sample size of 40 ?L using a Carboxen 1006 PLOT capillary column for the extraction. The extracted compounds were easily desorbed from the capillary by passage of the mobile phase, and no carryover was observed. Total analysis time of this method including online extraction and analysis was about 30 min for each sample. The in-tube SPME LC-MS/MS method showed good linearity in the concentration range of 20-1000 pg/mL with a correlation coefficient r = 0.9999 for 8-IP using a stable isotope-labeled internal standard, 8-IP-d4. The detection limit of 8-IP was 3.3 pg/mL and the proposed method showed 42-fold higher sensitivity than the direct injection method. The intra-day and inter-day precisions (relative standard deviations) were below 5.0% and 8.5% (n = 5), respectively. This method was applied successfully to the analysis of urine samples without pretreatment or interference peaks. The recovery rates of 8-IP spiked into urine samples were above 92%. This method is useful for assessing the effects of oxidative stress and antioxidant intake. PMID:25956225

  6. Determination of the oxidative stress biomarker urinary 8-hydroxy-2'-deoxyguanosine by automated on-line in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry.

    PubMed

    Kataoka, Hiroyuki; Mizuno, Keisuke; Oda, Eri; Saito, Akihiro

    2016-04-15

    A simple and sensitive method for the determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage in human urine, was developed using automated on-line in-tube solid-phase microextraction (SPME) coupled with stable isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS). Creatinine was also analyzed simultaneously to normalize urine volume by the in-tube SPME LC-MS/MS method, and 8-OHdG and creatinine were separated within 3min using a Zorbax Eclipse XDB-C8 column. Electrospray MS/MS for these compounds was performed on an API 4000 triple quadruple mass spectrometer in the positive ion mode by multiple reaction monitoring. The optimum in-tube SPME conditions were 20 draw/eject cycles of 40μL of sample at a flow rate of 200μL/min using a Carboxen 1006 PLOT capillary column as an extraction device. The extracted compounds were easily desorbed from the capillary by passage of the mobile phase, and no carryover was observed. The calibration curve for 8-OHdG using its stable isotope-labeled internal standard was linear in the range of 0.05-10ng/mL, and the detection limit was 8.3pg/mL. The intra-day and inter-day precision (relative standard deviations) were below 3.1% and 9.6% (n=5), respectively. This method was applied successfully to the analysis of urine samples without any other pretreatment and interference peaks, with good recovery rates above 91% in spiked urine samples. The limits of quantification of 8-OHdG and creatinine in 0.1mL urine samples were about 0.32 and 0.69ng/mL (S/N=10), respectively. This method was utilized to assess the effects of smoking, green tea drinking and alcohol drinking on the urinary excretion of 8-OHdG. PMID:26349944

  7. Quantification of oxidative DNA lesions in tissues of Long-Evans Cinnamon rats by capillary high-performance liquid chromatography-tandem mass spectrometry coupled with stable isotope-dilution method.

    PubMed

    Wang, Jin; Yuan, Bifeng; Guerrero, Candace; Bahde, Ralf; Gupta, Sanjeev; Wang, Yinsheng

    2011-03-15

    The purpose of our study was to develop suitable methods to quantify oxidative DNA lesions in the setting of transition metal-related diseases. Transition metal-driven Fenton reactions constitute an important endogenous source of reactive oxygen species (ROS). In genetic diseases with accumulation of transition metal ions, excessive ROS production causes pathophysiological changes, including DNA damage. Wilson's disease is an autosomal recessive disorder with copper toxicosis due to deficiency of ATP7B protein needed for excreting copper into bile. The Long-Evans Cinnamon (LEC) rat bears a deletion in Atp7b gene and serves as an excellent model for hepatic Wilson's disease. We used a sensitive capillary liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS/MS) method in conjunction with the stable isotope-dilution technique to quantify several types of oxidative DNA lesions in the liver and brain of LEC rats. These lesions included 5-formyl-2'-deoxyuridine, 5-hydroxymethyl-2'-deoxyuridine, and the 5'R and 5'S diastereomers of 8,5'-cyclo-2'-deoxyguanosine and 8,5'-cyclo-2'-deoxyadenosine. Moreover, the levels of these DNA lesions in the liver and brain increased with age and correlated with age-dependent regulation of the expression of DNA repair genes in LEC rats. These results provide significant new knowledge for better understanding the implications of oxidative DNA lesions in transition metal-induced diseases, such as Wilson's disease, as well as in aging and aging-related pathological conditions. PMID:21323344

  8. Tandem ion mobility spectrometry coupled to laser excitation

    SciTech Connect

    Simon, Anne-Laure; Choi, Chang Min; Clavier, Christian; Barbaire, Marc; Maurelli, Jacques; Dagany, Xavier; MacAleese, Luke; Dugourd, Philippe; Chirot, Fabien

    2015-09-15

    This manuscript describes a new experimental setup that allows to perform tandem ion mobility spectrometry (IMS) measurements and which is coupled to a high resolution time-of-flight mass spectrometer. It consists of two 79 cm long drift tubes connected by a dual ion funnel assembly. The setup was built to permit laser irradiation of the ions in the transfer region between the two drift tubes. This geometry allows selecting ions according to their ion mobility in the first drift tube, to irradiate selected ions, and examine the ion mobility of the product ions in the second drift tube. Activation by collision is possible in the same region (between the two tubes) and between the second tube and the time-of-flight. IMS-IMS experiments on Ubiquitin are reported. We selected a given isomer of charge state +7 and explored its structural rearrangement following collisional activation between the two drift tubes. An example of IMS-laser-IMS experiment is reported on eosin Y, where laser irradiation was used to produce radical ions by electron photodetachment starting from doubly deprotonated species. This allowed measuring the collision cross section of the radical photo-product, which cannot be directly produced with an electrospray source.

  9. Tandem ion mobility spectrometry coupled to laser excitation

    NASA Astrophysics Data System (ADS)

    Simon, Anne-Laure; Chirot, Fabien; Choi, Chang Min; Clavier, Christian; Barbaire, Marc; Maurelli, Jacques; Dagany, Xavier; MacAleese, Luke; Dugourd, Philippe

    2015-09-01

    This manuscript describes a new experimental setup that allows to perform tandem ion mobility spectrometry (IMS) measurements and which is coupled to a high resolution time-of-flight mass spectrometer. It consists of two 79 cm long drift tubes connected by a dual ion funnel assembly. The setup was built to permit laser irradiation of the ions in the transfer region between the two drift tubes. This geometry allows selecting ions according to their ion mobility in the first drift tube, to irradiate selected ions, and examine the ion mobility of the product ions in the second drift tube. Activation by collision is possible in the same region (between the two tubes) and between the second tube and the time-of-flight. IMS-IMS experiments on Ubiquitin are reported. We selected a given isomer of charge state +7 and explored its structural rearrangement following collisional activation between the two drift tubes. An example of IMS-laser-IMS experiment is reported on eosin Y, where laser irradiation was used to produce radical ions by electron photodetachment starting from doubly deprotonated species. This allowed measuring the collision cross section of the radical photo-product, which cannot be directly produced with an electrospray source.

  10. Perovskite catalysts for oxidative coupling

    DOEpatents

    Campbell, K.D.

    1991-06-25

    Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  11. Perovskite catalysts for oxidative coupling

    DOEpatents

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  12. Equivalent circuit analysis of radiative coupling in monolithic tandem solar cells

    SciTech Connect

    Lan, Dongchen E-mail: d.lan@unswalumni.com; Green, Martin A.

    2015-06-29

    As solar cell efficiency improves towards the Shockley-Queisser limit, so does the radiative efficiency of the cell. For tandem stacks of cells where energy conversion efficiency now exceeds 46%, radiative coupling between the cells is becoming increasingly important to consider in cell design, measurement, and performance prediction. We show how an equivalent circuit model can capture the complex radiative interactions between cells in such tandem stacks, allowing more insight into the impact on cell performance. The circuit's use is demonstrated by deriving results relevant to the critical step of eliminating coupling effects from measured cell spectral responses.

  13. Sputtered Metal Oxide Broken Gap Junctions for Tandem Solar Cells

    NASA Astrophysics Data System (ADS)

    Johnson, Forrest

    Broken gap metal oxide junctions have been created for the first time by sputtering using ZnSnO3 for the n-type material and Cu 2O or CuAlO2 for the p-type material. Films were sputtered from either ceramic or metallic targets at room temperature from 10nm to 220nm thick. The band structure of the respective materials have theoretical work functions which line up with the band structure for tandem CIAGS/CIGS solar cell applications. Multiple characterization methods demonstrated consistent ohmic I-V profiles for devices on rough surfaces such as ITO/glass and a CIAGS cell. Devices with total junction specific contact resistance of under 0.001 Ohm-cm2 have been achieved with optical transmission close to 100% using 10nm films. Devices showed excellent stability up to 600°C anneals over 1hr using ZnSnO3 and CuAlO2. These films were also amorphous -a great diffusion barrier during top cell growth at high temperatures. Rapid Thermal Anneal (RTA) demonstrated the ability to shift the band structure of the whole device, allowing for tuning it to align with adjacent solar layers. These results remove a key barrier for mass production of multi-junction thin film solar cells.

  14. Tandem Dehydrogenation/Oxidation/Oxidative Cyclization Approach to Wrightiadione and Its Derivatives.

    PubMed

    Jeong, Yujeong; Moon, Youngtaek; Hong, Sungwoo

    2015-07-01

    Wrightiadione contains a unique tetracyclic isoflavone moiety and has been shown to exhibit a broad range of biological activities. An efficient and straightforward synthetic method for generating the molecular complexity of wrightiadione was developed through three-step tandem dehydrogenation/oxidation/oxidative cyclization reactions with a Pd/Cu catalytic system. This unprecedented one-pot route utilizes a broad range of substrates, providing a convenient and powerful synthetic tool for accessing naturally occurring tetracyclic isoflavone wrightiadione and its nitrogen-containing derivatives. PMID:26090926

  15. Flight and Analytical Methods for Determining the Coupled Vibration Response of Tandem Helicopters

    NASA Technical Reports Server (NTRS)

    Yeates, John E , Jr; Brooks, George W; Houbolt, John C

    1957-01-01

    Chapter one presents a discussion of flight-test and analysis methods for some selected helicopter vibration studies. The use of a mechanical shaker in flight to determine the structural response is reported. A method for the analytical determination of the natural coupled frequencies and mode shapes of vibrations in the vertical plane of tandem helicopters is presented in Chapter two. The coupled mode shapes and frequencies are then used to calculate the response of the helicopter to applied oscillating forces.

  16. MEASUREMENT OF OXIDATIVE STRESS PARAMETERS USING LIQUID CHROMATOGRAPHY - TANDEM MASS SPECTROSCOPY (LC-MS/MS)

    EPA Science Inventory

    What is the study?
    An invited review article. Measurement of oxidative stress parameters using liquid chromatography-tandem mass spectroscopy (LC-MS/MS)
    Why was it done?
    Although oxidative stress is frequently cited as a cause of various adverse biological eff...

  17. Aryl Ketone Synthesis via Tandem Orthoplatinated Triarylphosphite-Catalyzed Addition Reactions of Arylboronic Acids with Aldehydes Followed by Oxidation

    PubMed Central

    Liao, Yuan-Xi; Hu, Qiao-Sheng

    2010-01-01

    Tandem orthoplatinated triarylphosphite-catalyzed addition reactions of arylboronic acids with aldehydes followed by oxidation to yield aryl ketones is described. 3-Pentanone was identified as a suitable oxidant for the tandem aryl ketone formation reaction. By using microwave energy, aryl ketones were obtained in high yields with the catalyst loading as low as 0.01%. PMID:20849092

  18. Coupled operation of the Oak Ridge isochronous cyclotron and the 25 MV tandem

    SciTech Connect

    Lord, R.S.; Ball, J.B.; Beckers, R.M.; Cleary, T.P.; Hudson, E.D.; Ludemann, C.A.; Martin, J.A.; Milner, W.T.; Mosko, S.W.; Ziegler, N.F.

    1981-01-01

    Coupled operation of the 25 MV tandem and the Oak Ridge Isochronous Cyclotron (ORIC) was achieved on January 27, 1981. A beam of 38 MeV /sup 16/O/sup 2 +/ was injected into ORIC, stripped to 8/sup +/ and accelerated to 324 MeV. Shortly afterwards, the energy was increased to the maximum design value of 25 MeV/amu (400 MeV). A spectrum taken of the scattering of this beam from a thin /sup 208/Pb target in the broad range spectrograh exhibited a resolution of 115 keV (FWHM). Performance of the system was in close agreement with that predicted from calculations.

  19. Indium Zinc Oxide Mediated Wafer Bonding for III-V/Si Tandem Solar Cells

    SciTech Connect

    Tamboli, Adele C.; Essig, Stephanie; Horowitz, Kelsey A. W.; Woodhouse, Michael; van Hest, Maikel F. A. M.; Norman, Andrew G.; Steiner, Myles A.; Stradins, Paul

    2015-06-14

    Silicon-based tandem solar cells are desirable as a high efficiency, economically viable approach to one sun or low concentration photovoltaics. We present an approach to wafer bonded III-V/Si solar cells using amorphous indium zinc oxide (IZO) as an interlayer. We investigate the impact of a heavily doped III-V contact layer on the electrical and optical properties of bonded test samples, including the predicted impact on tandem cell performance. We present economic modeling which indicates that the path to commercial viability for bonded cells includes developing low-cost III-V growth and reducing constraints on material smoothness. If these challenges can be surmounted, bonded tandems on Si can be cost-competitive with incumbent PV technologies, especially in low concentration, single axis tracking systems.

  20. Tandem organic light-emitting diode with a molybdenum tri-oxide thin film interconnector layer

    NASA Astrophysics Data System (ADS)

    Lu, Fei-Ping; Wang, Qian; Zhou, Xiang

    2013-03-01

    A 10-nm-thick molybdenum tri-oxide (MoO3) thin film was used as the interconnector layer in tandem organic light-emitting devices (OLEDs). The tandem OLEDs with two identical emissive units consisting of N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB)/tris(8-hydroxyquinoline) aluminum (Alq3) exhibited current efficiency-current density characteristics superior to the conventional single-unit devices. At 20 mA/cm2, the current efficiency of the tandem OLEDs using the interconnector layers of MoO3 thin film was about 4.0 cd/A, which is about twice that of the corresponding conventional single-unit device (1.8 cd/A). The tandem OLED showed a higher power efficiency than the conventional single-unit device for luminance over 1200 cd/m2. The experimental results demonstrated that a MoO3 thin film with a proper thickness can be used as an effective interconnector layer in tandem OLEDs. Such an interconnector layer can be easily fabricated by simple thermal evaporation, greatly simplifying the device processing and fabrication processes required by previously reported interconnector layers. A possible explanation was proposed for the carrier generation of the MoO3 interconnector layer.

  1. Scandium analysis in silicon-containing minerals by inductively coupled plasma tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Whitty-Léveillé, Laurence; Drouin, Elisabeth; Constantin, Marc; Bazin, Claude; Larivière, Dominic

    2016-04-01

    This article reports on the development of a new method for the accurate and precise determination of the amount of scandium, Sc, in silicon-containing minerals, based on the use of tandem quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS). The tandem quadrupole instrument enables new mass filtering configurations, which can reduce polyatomic interferences during the determination of Sc in mineral matrices. He and O2 were used and compared as collision and reaction gases for the removal of interferences at m/z 45 and 61. Using helium gas was ineffective to overcome all of the spectral interferences observed at m/z 45 and particularly for Si-based interferences. However, conversion of Sc+ ions into ScO+ ions (after bombardment with O2 in the octopole reaction system coupled with the use of the instrument in MS/MS mass-shift mode) provided interference-free conditions and sufficiently low limits of detection, down to 3 ng L- 1, to accurately detect Sc. The accuracy of the proposed methodology was assessed by analyzing five different reference materials (BX-N, OKA-2, NIM-L, SY-3 and GH).

  2. Direct oxidative coupling of amidine hydrochlorides and methylarenes: TBHP-mediated synthesis of substituted 1,3,5-triazines under metal-free conditions.

    PubMed

    Guo, Wei

    2015-11-01

    Various 2,4,6-trisubstituted 1,3,5-triazines were smoothly formed via TBHP-mediated direct oxidative coupling of amidine and methylarenes. This tandem oxidation-imination-cyclization transformation exhibits a straightforward protocol to prepare 1,3,5-triazines from easily available starting materials and green oxidants under metal-free conditions. PMID:26411699

  3. Magnetostructural coupling in spinel oxides

    NASA Astrophysics Data System (ADS)

    Kemei, Moureen

    2015-03-01

    Spinels oxides are of great interest functionally as multiferroic, battery, and magnetic materials as well as fundamentally because they exhibit novel spin, structural, and orbital ground states. Competing interactions are at the heart of novel functional behavior in spinels. Here, we explore the intricate landscape of spin, lattice, and orbital interactions in magnetic spinels by employing variable-temperature high-resolution synchrotron x-ray powder diffraction, total neutron scattering, magnetic susceptibility, dielectric, and heat capacity measurements. We show that the onset of long-range magnetic interactions often gives rise to lattice distortions. Our work illustrates that the spinels NiCr2O4, CuCr2O4,andMn3O4, which are tetragonal at room temperature due to Jahn-Teller ordering, undergo further spin-driven structural distortions at the onset of long-range ferrimagnetic order. We have also studied the complete structural description of the ground states of several spinels including the geometrically frustrated spinels ZnCr2O4andMgCr2O4. The detailed spin-lattice studies of spinel oxides presented here illustrate the prevalence of structural phase coexistence when magnetostructural changes occur below 50 K. The new understanding of structural ground states in spinel oxides will guide the design of structure-property relationships in these materials. Broadly, this work highlights the importance of variable-temperature high-resolution synchrotron x-ray diffraction in understanding phase transitions in functional materials. Schlumberger Foundation Faculty for the Future fellowship, MRL Facilities funded by the NSF under Award No. DMR 1121053, and the Advanced Photon Source supported by the DOE, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  4. CFD-CAA Coupled Calculations of a Tandem Cylinder Configuration to Assess Facility Installation Effects

    NASA Technical Reports Server (NTRS)

    Redonnet, Stephane; Lockard, David P.; Khorrami, Mehdi R.; Choudhari, Meelan M.

    2011-01-01

    This paper presents a numerical assessment of acoustic installation effects in the tandem cylinder (TC) experiments conducted in the NASA Langley Quiet Flow Facility (QFF), an open-jet, anechoic wind tunnel. Calculations that couple the Computational Fluid Dynamics (CFD) and Computational Aeroacoustics (CAA) of the TC configuration within the QFF are conducted using the CFD simulation results previously obtained at NASA LaRC. The coupled simulations enable the assessment of installation effects associated with several specific features in the QFF facility that may have impacted the measured acoustic signature during the experiment. The CFD-CAA coupling is based on CFD data along a suitably chosen surface, and employs a technique that was recently improved to account for installed configurations involving acoustic backscatter into the CFD domain. First, a CFD-CAA calculation is conducted for an isolated TC configuration to assess the coupling approach, as well as to generate a reference solution for subsequent assessments of QFF installation effects. Direct comparisons between the CFD-CAA calculations associated with the various installed configurations allow the assessment of the effects of each component (nozzle, collector, etc.) or feature (confined vs. free jet flow, etc.) characterizing the NASA LaRC QFF facility.

  5. Iron Catalyzed Dual-Oxidative Dehydrogenative (DOD) Tandem Annulation of Glycine Derivatives with Tetrahydrofurans.

    PubMed

    Huo, Congde; Chen, Fengjuan; Yuan, Yong; Xie, Haisheng; Wang, Yajun

    2015-10-16

    A novel iron-catalyzed dual-oxidative dehydrogenative (DOD) tandem annulation of glycine derivatives with tetrahydrofurans (THFs) for the synthesis of high value quinoline fused lactones has been developed. The reactions were performed under mild reaction conditions. And the use of cheap substrates (glycine derivatives and THF) and an even cheaper simple inorganic iron salt as the catalyst makes this protocol very attractive for potential synthetic applications. PMID:26430718

  6. Controllable Tuning Plasmonic Coupling with Nanoscale Oxidation

    PubMed Central

    2015-01-01

    The nanoparticle on mirror (NPoM) construct is ideal for the strong coupling of localized plasmons because of its simple fabrication and the nanometer-scale gaps it offers. Both of these are much harder to control in nanoparticle dimers. Even so, realizing controllable gap sizes in a NPoM remains difficult and continuous tunability is limited. Here, we use reactive metals as the mirror so that the spacing layer of resulting metal oxide can be easily and controllably created with specific thicknesses resulting in continuous tuning of the plasmonic coupling. Using Al as a case study, we contrast different approaches for oxidation including electrochemical oxidation, thermal annealing, oxygen plasma treatments, and photo-oxidation by laser irradiation. The thickness of the oxidation layer is calibrated with depth-mode X-ray photoemission spectroscopy (XPS). These all consistently show that increasing the thickness of the oxidation layer blue-shifts the plasmonic resonance peak while the transverse mode remains constant, which is well matched by simulations. Our approach provides a facile and reproducible method for scalable, local and controllable fabrication of NPoMs with tailored plasmonic coupling, suited for many applications of sensing, photochemistry, photoemission, and photovoltaics. PMID:25978297

  7. Controllable Tuning Plasmonic Coupling with Nanoscale Oxidation.

    PubMed

    Ding, Tao; Sigle, Daniel; Zhang, Liwu; Mertens, Jan; de Nijs, Bart; Baumberg, Jeremy

    2015-06-23

    The nanoparticle on mirror (NPoM) construct is ideal for the strong coupling of localized plasmons because of its simple fabrication and the nanometer-scale gaps it offers. Both of these are much harder to control in nanoparticle dimers. Even so, realizing controllable gap sizes in a NPoM remains difficult and continuous tunability is limited. Here, we use reactive metals as the mirror so that the spacing layer of resulting metal oxide can be easily and controllably created with specific thicknesses resulting in continuous tuning of the plasmonic coupling. Using Al as a case study, we contrast different approaches for oxidation including electrochemical oxidation, thermal annealing, oxygen plasma treatments, and photo-oxidation by laser irradiation. The thickness of the oxidation layer is calibrated with depth-mode X-ray photoemission spectroscopy (XPS). These all consistently show that increasing the thickness of the oxidation layer blue-shifts the plasmonic resonance peak while the transverse mode remains constant, which is well matched by simulations. Our approach provides a facile and reproducible method for scalable, local and controllable fabrication of NPoMs with tailored plasmonic coupling, suited for many applications of sensing, photochemistry, photoemission, and photovoltaics. PMID:25978297

  8. Determination of malachite green residues in rainbow trout muscle with liquid chromatography and liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Halme, K; Lindfors, E; Peltonen, K

    2004-07-01

    A method for the determination of malachite green and its major metabolite leucomalachite green in rainbow trout muscle is reported with limits of detection of 0.8 and 0.6 microg kg(-1), respectively. Residues were extracted with an acetonitrile-acetate buffer mixture and partitioned into methylene chloride. Clean-up of the extracts was performed on alumina and propylsulfonic acid solid-phase extraction columns using the automated solid-phase extraction system. The chromatographic separation of malachite green and leucomalachite green was achieved on a Chromspher 5B column using an acetonitrile-acetate buffer mobile phase. Leucomalachite green was converted to malachite green by post-column oxidation before spectrophotometric detection at 600 nm. The mean recoveries of malachite green and leucomalachite green from control rainbow trout muscle spiked at 2-50 microg kg(-1) were 65% (range 63.4-65.9%, relative standard deviation 3.9-16.1%) and 74% (range 58.3-82.6%, relative standard deviation 3.3-11.4%), respectively. Qualitative confirmation of the determined residues was performed with liquid chromatography coupled with tandem mass spectrometry detection with limits of detection of 2.5 and 1 microg kg(-1) for malachite green and leucomalachite green, respectively. PMID:15370837

  9. Oligonucleotide covalent modifications by estrogen quinones evidenced by use of liquid chromatography coupled to negative electrospray ionization tandem mass spectrometry.

    PubMed

    Debrauwer, L; Rathahao, E; Couve, C; Poulain, S; Pouyet, C; Jouanin, I; Paris, A

    2002-11-01

    Liquid chromatography coupled to tandem mass spectrometry has been used for the detection and the structural characterization of T-rich model oligonucleotides covalently modified by estradiol-2,3-quinone. After separation by gradient elution, adducts were analyzed by negative electrospray mass spectrometry, enabling to evidence and localize the modifications in the oligonucleotide sequence. Modifications by one molecule of estrogen were evidenced on purines (A, G) whereas no reaction was observed on pyrimidic bases (T). Isomeric adducts were differentiated using tandem mass spectrometry, and energy resolved mass spectrometry allowed to underline differences in the behavior of the adducts towards collisional excitation into an ion trap device. PMID:12462603

  10. Copper-catalyzed tandem phosphination-decarboxylation-oxidation of alkynyl acids with H-phosphine oxides: a facile synthesis of β-ketophosphine oxides.

    PubMed

    Zhang, Pengbo; Zhang, Liangliang; Gao, Yuzhen; Xu, Jian; Fang, Hua; Tang, Guo; Zhao, Yufen

    2015-05-01

    The general method for the tandem phosphination-decarboxylation-oxidation of alkynyl acids under aerobic conditions has been developed. In the presence of CuSO4·5H2O and TBHP, the reactions provide a novel access to β-ketophosphine oxides in good to excellent yields. This transformation allows the direct formation of a P-C bond and the construction of a keto group in one reaction. PMID:25855268

  11. Benzene oxidation coupled to sulfate reduction

    USGS Publications Warehouse

    Lovley, D.R.; Coates, J.D.; Woodward, J.C.; Phillips, E.J.P.

    1995-01-01

    Highly reduced sediments from San Diego Bay, Calif., that were incubated under strictly anaerobic conditions metabolized benzene within 55 days when they were exposed initially to I ??M benzene. The rate of benzene metabolism increased as benzene was added back to the benzene-adapted sediments. When a [14C]benzene tracer was included with the benzene added to benzene-adapted sediments, 92% of the added radioactivity was recovered as 14CO2. Molybdate, an inhibitor of sulfate reduction, inhibited benzene uptake and production of 14CO2 from [14C]benzene. Benzene metabolism stopped when the sediments became sulfate depleted, and benzene uptake resumed when sulfate was added again. The stoichiometry of benzene uptake and sulfate reduction was consistent with the hypothesis that sulfate was the principal electron acceptor for benzene oxidation. Isotope trapping experiments performed with [14C]benzene revealed that there was no production of such potential extracellular intermediates of benzene oxidation as phenol, benzoate, p-hydroxybenzoate, cyclohexane, catechol, and acetate. The results demonstrate that benzene can be oxidized in the absence of O2, with sulfate serving as the electron acceptor, and suggest that some sulfate reducers are capable of completely oxidizing benzene to carbon dioxide without the production of extracellular intermediates. Although anaerobic benzene oxidation coupled to chelated Fe(III) has been documented previously, the study reported here provides the first example of a natural sediment compound that can serve as an electron acceptor for anaerobic benzene oxidation.

  12. Quantitation of Zoledronic Acid in Murine Bone by Liquid Chromatography Coupled with Tandem Mass Spectrometry

    PubMed Central

    Raccor, Brianne S.; Sun, Jianxun; Lawrence, Ross F.; Li, Lei; Zhang, Hai; Somerman, Martha J.; Totah, Rheem A.

    2013-01-01

    An in vitro method for extraction and quantification of zoledronic acid (ZA) from murine bone was developed. Whole mouse bones were incubated in ZA solutions with predetermined concentrations and bound ZA was subsequently extracted from bone with phosphoric acid and derivatized using trimethylsilyl diazomethane (TMS-DAM). ZA tetra-methyl phosphonate was quantified by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). This resulted in a sensitive, accurate, and precise method that was linear over three orders of magnitude (0.0250–50.0 µg/mL ZA). For quality control (QC) samples, intra-and inter-day coefficients of variance were calculated and were less than 10%. This method was then applied to an in vivo model to quantitate ZA from the femur and mandible of three mice treated with ZA for two weeks. The mean ZA extracted from the mandible was four fold higher than that extracted from the femur (3.06 ± 0.52 vs. 0.76 ± 0.09 ng/mg respectively) indicating that ZA did not distribute equally in the skeleton and had a preference to the mandible. In conclusion, a highly sensitive method to measure ZA from mouse skeleton was developed, which can be easily adapted to multiple mammalian models including humans receiving ZA treatment. PMID:23954589

  13. Determination of sulfonamides in beeswax by liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Mitrowska, Kamila; Antczak, Maja

    2015-12-01

    The manuscript presents the development of a new method for the quantification of 16 sulfonamides in beeswax. Different sample preparation techniques were tested and modified to maximise the recovery of the target analytes and minimise the amount of coeluted impurities under conditions that provide reproducible results. The proposed method consisted of melting and dilution of beeswax in a mixture of n-hexane and isopropanol followed by extraction with 2% acetic acid. The extract was cleaned up by solid-phase extraction using strong cation exchange phase. Determination of the sulfonamides was achieved by liquid chromatography coupled to tandem mass spectrometry with the use of a pentafluorophenyl analytical column and applying a gradient elution with acetonitrile and 0.01% acetic acid as mobile phases. The limits of detection and limits of quantification ranged from 1 to 2μg/kg and from 2 to 5μg/kg, respectively. The recoveries varied between 65.2% and 117.8% while coefficient of variation of the method was less than 24.2% under intermediate precision conditions. Finally, the method was applied to the analysis of real samples of beeswax from beekeepers and commercial foundations manufacturers. PMID:26554312

  14. Ignition delay of a pulsed inductively coupled plasma (ICP) in tandem with an auxiliary ICP

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Sridhar, Shyam; Donnelly, Vincent M.; Economou, Demetre J.

    2015-12-01

    Plasma ignition delays were observed in a ‘main’ inductively coupled plasma (ICP), in tandem with an ‘auxiliary’ ICP. The Faraday-shielded ICPs were separated by a grounded metal grid. Power (13.56 MHz) to the main ICP was pulsed with a frequency of 1 kHz, while the auxiliary ICP was operated in continuous wave (cw) mode. In chlorine plasmas, ignition delay was observed for duty cycles greater than 60% and, in contrast to expectation, the delay was longer with increasing duty cycle up to ~99.5%. The ignition delay could be varied by changing the auxiliary and/or main ICP power. Langmuir probe measurements provided the temporal evolution of electron temperature, and electron and positive ion densities. These measurements revealed that the plasma was ignited shortly after the decaying positive ion density (n +), in the afterglow of the main ICP, reached the density ({{n}+},\\text{aux} ) prevailing when only the auxiliary ICP was powered. At that time, production of electrons began to dominate their loss in the main ICP, due to hot electron injection from the auxiliary ICP. As a result, {{n}\\text{e}} increased from a value below {{n}\\text{e,\\text{aux}}} , improving inductive power coupling efficiency, further increasing plasma density leading to plasma ignition. Plasma ignition delay occurred when the afterglow of the pulsed plasma was not long enough for the ion density to reach {{n}+},\\text{aux} during the afterglow. Besides Cl2, plasma ignition delays were also observed in other electronegative gases (SF6, CF4/O2 and O2) but not in an electropositive gas (Ar).

  15. Benzene oxidation coupled to sulfate reduction.

    PubMed

    Lovley, D R; Coates, J D; Woodward, J C; Phillips, E

    1995-03-01

    Highly reduced sediments from San Diego Bay, Calif., that were incubated under strictly anaerobic conditions metabolized benzene within 55 days when they were exposed initially to 1 (mu)M benzene. The rate of benzene metabolism increased as benzene was added back to the benzene-adapted sediments. When a [(sup14)C]benzene tracer was included with the benzene added to benzene-adapted sediments, 92% of the added radioactivity was recovered as (sup14)CO(inf2). Molybdate, an inhibitor of sulfate reduction, inhibited benzene uptake and production of (sup14)CO(inf2) from [(sup14)C]benzene. Benzene metabolism stopped when the sediments became sulfate depleted, and benzene uptake resumed when sulfate was added again. The stoichiometry of benzene uptake and sulfate reduction was consistent with the hypothesis that sulfate was the principal electron acceptor for benzene oxidation. Isotope trapping experiments performed with [(sup14)C]benzene revealed that there was no production of such potential extracellular intermediates of benzene oxidation as phenol, benzoate, p-hydroxybenzoate, cyclohexane, catechol, and acetate. The results demonstrate that benzene can be oxidized in the absence of O(inf2), with sulfate serving as the electron acceptor, and suggest that some sulfate reducers are capable of completely oxidizing benzene to carbon dioxide without the production of extracellular intermediates. Although anaerobic benzene oxidation coupled to chelated Fe(III) has been documented previously, the study reported here provides the first example of a natural sediment compound that can serve as an electron acceptor for anaerobic benzene oxidation. PMID:16534979

  16. Coupled tandem cavities based electro-absorption modulator with asymmetric tandem quantum well for high modulation performance at low driving voltage.

    PubMed

    Na, Byung Hoon; Ju, Gun Wu; Choi, Hee Ju; Lee, Soo Kyung; Ravindran, Sooraj; Cho, Yong Chul; Park, Yong Hwa; Park, Chang Young; Lee, Yong Tak

    2013-11-18

    We propose and demonstrate a new electro-absorption modulator (EAM) based on coupled tandem cavities (CTC) having asymmetric tandem quantum well (ATQW) structure with separated electrode configuration to achieve large transmittance change over a broad spectral range at low driving voltage for high definition (HD) 3D imaging applications. Our theoretical calculations show that CTC with ATQW structure can provide large transmittance change over a wide spectral range at low driving voltage. By introducing separated electrode configuration, the fabricated EAM having CTC with ATQW structure shows a large transmittance change over 50%, almost three times larger spectral bandwidth compared to that of EAM having single cavity with a single thickness quantum well without significantly increasing the applied voltage. In addition, the CTC with ATQW structure also shows high speed modulation up to 28 MHz for the device having a large area of 2 mm x 0.5 mm. This high transmittance change, large spectral bandwidth and low voltage operation over a large device area for the EAM having CTC with ATQW demonstrates their huge potential as an optical image modulator for HD 3D imaging applications. PMID:24514307

  17. Oxidative coupling of methane over sodium promoted praseodymium oxide

    SciTech Connect

    Gaffney, A.M.; Jones, C.A.; Leonard, J.J.; Sofranko, J.A. )

    1988-12-01

    Unpromoted and alkali-promoted lanthanide oxides were evaluated in the oxidative coupling of methane to higher hydrocarbons. Methane conversion was carried out catalytically and in a redox mode by cycling methane and air independently over the lanthanide oxides. The sodium-promoted nonstoichiometric oxide, 4% Na on Pr{sub 6}O{sub 11}, was most active and selective, giving in the redox mode 21% methane conversion and 76% C{sub 2}{sup +} selectivity at 800 C and 1.4. WHSV (weight hourly space velocity, g CH{sub 4}/g cat. hr). At comparable conversion catalytic methane conversion had a C{sub 2}{sup +} selectivity of 64%. This selectivity deficit with respect to redox is attributed to an additional destructive route of the methyl radical, namely the reaction with molecular oxygen to yield a methylperoxy intermediate. Process variable studies support a mechanism whereby methane is activated at the metal oxide surface to form a methyl radical and in the gas phase C{sub 2}{sup +} hydrocarbon building occurs.

  18. Tandem Suzuki-Miyaura coupling/acid-catalyzed cyclization between vinyl ether boronates and vinyl halides: a concise approach to polysubstituted furans.

    PubMed

    Butkevich, Alexey N; Meerpoel, Lieven; Stansfield, Ian; Angibaud, Patrick; Corbu, Andrei; Cossy, Janine

    2013-08-01

    Polysubstituted 2-(ω-hydroxyalkyl)furans were prepared by tandem Suzuki-Miyaura coupling/acid-catalyzed cyclization starting from appropriately substituted 3-haloallylic alcohols and dihydrofuran-, dihydropyran- or glycal-derived pinacol boronates. PMID:23855589

  19. Measurement of oxidative stress parameters using liquid chromatography-tandem mass spectroscopy (LC-MS/MS)

    SciTech Connect

    Winnik, Witold M. Kitchin, Kirk T.

    2008-11-15

    There is increasingly intense scientific and clinical interest in oxidative stress and the many parameters used to quantify the degree of oxidative stress. However, there remain many analytical limitations to currently available assays for oxidative stress markers. Recent improvements in software, hardware, and instrumentation design have made liquid chromatography and tandem mass spectroscopy (LC-MS/MS) methods optimal choices for the determination of many oxidative stress markers. In particular, LC-MS/MS often provides the advantages of higher specificity, higher sensitivity, and the capacity to determine multiple analytes (e.g. 4-11 oxidative stress markers per LC run) when compared to other available methods, such as gas chromatography-MS, immunoassays, spectrophotometric or flourometric assays. LC-MS/MS methods are also compatible with cleanup and sample preparation methods including prior solid phase extraction or automated two dimensional LC/LC chromatography followed by MS/MS. LC-MS/MS provides three analytical filtering functions: (1) the LC column provides initial separation as each analyte elutes from the column. (2) The first MS dimension isolates ions of a particular mass-to-charge (m/z) ratio. (3) The selected precursor ion is fragmented into product ions that provide structural information about the precursor ion. Quantitation is achieved based on the abundances of the product ions. The sensitivity limits for LC-MS/MS usually lie within the range of fg-pg of analyte per LC on-column injection. In this article, the present capabilities of LC-MS/MS are briefly presented and some specific examples of the strengths of these LC-MS/MS assays are discussed. The selected examples include methods for isoprostanes, oxidized proteins and amino acids, and DNA biomarkers of oxidative stress.

  20. Oxidative Dehydrogenative Couplings of Pyrazol-5-amines Selectively Forming Azopyrroles

    PubMed Central

    2015-01-01

    New oxidative dehydrogenative couplings of pyrazol-5-amines for the selective synthesis of azopyrrole derivatives have been described. The former reaction simultaneously installs C–I and N–N bonds through iodination and oxidation, whereas the latter involved a copper-catalyzed oxidative coupling process. The resulting iodo-substituted azopyrroles were employed by treatment with various terminal alkynes through Sonogashira cross-coupling leading to new azo compounds. PMID:24731223

  1. Methane coupling over magnesium oxide: how doping can work.

    PubMed

    Schwach, Pierre; Willinger, Marc Georg; Trunschke, Annette; Schlögl, Robert

    2013-10-18

    Electronic doping of magnesium oxide catalysts has an effect on the oxidative coupling of methane. Highly active sites can be created by co-modification of MgO with iron and gold in ppm quantities. PMID:24106011

  2. [Research progress in microbial methane oxidation coupled to denitrification].

    PubMed

    Zhu, Jing; Yuan, Meng-Dong; Liu, Jing-Jing; Huang, Xiao-Xiao; Wu, Wei-Xiang

    2013-12-01

    Methane oxidation coupled to denitrification is an essential bond to connect carbon- and nitrogen cycling. To deeply research this process will improve our understanding on the biochemical cycling of global carbon and nitrogen. As an exogenous gaseous carbon source of denitrification, methane can both regulate the balance of atmospheric methane to effectively mitigate the greenhouse effect caused by methane, and reduce the cost of exogenous carbon source input in traditional wastewater denitrification treatment process. As a result, great attention has being paid to the mechanical study of the process. This paper mainly discussed the two types of methane oxidation coupled to denitrification, i. e., aerobic methane oxidation coupled to denitrification (AME-D) and anaerobic methane oxidation coupled to denitrification (ANME-D), with the focus on the microbiological coupling mechanisms and related affecting factors. The existing problems in the engineering application of methane oxidation coupled to denitrification were pointed out, and the application prospects were approached. PMID:24697087

  3. Exciton-Plasmon Coupling Enhancement via Metal Oxidation.

    PubMed

    Todisco, Francesco; D'Agostino, Stefania; Esposito, Marco; Fernández-Domínguez, Antonio I; De Giorgi, Milena; Ballarini, Dario; Dominici, Lorenzo; Tarantini, Iolena; Cuscuná, Massimo; Della Sala, Fabio; Gigli, Giuseppe; Sanvitto, Daniele

    2015-10-27

    In this paper, we report on the effect of metal oxidation on strong coupling interactions between silver nanostructures and a J-aggregated cyanine dye. We show that metal oxidation can sensibly affect the plexcitonic system, inducing a change in the coupling strength. In particular, we demonstrate that the presence of oxide prevents the appearance of Rabi splitting in the extinction spectra for thick spacers. In contrast, below a threshold percentage, the oxide layer results in an higher coupling strength between the plasmon and the Frenkel exciton. Contrary to common belief, a thin oxide layer seems thus to act, under certain conditions, as a coupling mediator between an emitter and a localized surface plasmon excited in a metallic nanostructure. This suggests that metal oxidation can be exploited as a means to enhance light-matter interactions in strong coupling applications. PMID:26378956

  4. Static Longitudinal Stability of a Tandem-Coupled Bomber-Fighter Airplane Configuration Proposed by All American Airways, Inc.

    NASA Technical Reports Server (NTRS)

    Hewes, Donald E.

    1950-01-01

    At the request of the Air Materiel Command an investigation was made in the Langley free-flight tunnel to determine the static longitudinal stability and control characteristics of models coupled together in a tandem configuration proposed by All American Airways, Inc. Force tests were made using 1/20-scale models of B-29 end F-80 airplanes to determine the effects of coupling the fighter to the tail of the bomber. The results of the investigation showed that for the bomber alone the aerodynamic center was 0.21 mean aerodynamic chord behind the center of gravity (stable) but that for the tandem configuration the aerodynamic center was 0.09 mean aerodynamic chord forward of the center of gravity, of the combination (unstable). The elevator effectiveness of the bomber was reduced approximately 50 percent by addition of the fighter. Some recent flight tests made in the free-flight tunnel with models simulating the proposed configuration indicate that the reduction in stability may be minimized by incorporating a hinged coupling permitting freedom in pitch.

  5. Titanium oxidation by rf inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Valencia-Alvarado, R.; de la Piedad-Beneitez, A.; López-Callejas, R.; Barocio, S. R.; Mercado-Cabrera, A.; Peña-Eguiluz, R.; Muñoz-Castro, A. E.; Rodríguez-Méndez, B. G.; de la Rosa-Vázquez, J. M.

    2014-05-01

    The development of titanium dioxide (TiO2) films in the rutile and anatase phases is reported. The films have been obtained from an implantation/diffusion and sputtering process of commercially pure titanium targets, carried out in up to 500 W plasmas. The experimental outcome is of particular interest, in the case of anatase, for atmospheric pollution degradation by photocatalysis and, as to the rutile phase, for the production of biomaterials required by prosthesis and implants. The reactor employed consists in a cylindrical pyrex-like glass vessel inductively coupled to a 13.56 MHz RF source. The process takes place at a 5×10-2 mbar pressure with the target samples being biased from 0 to -3000 V DC. The anatase phase films were obtained from sputtering the titanium targets over glass and silicon electrically floated substrates placed 2 cm away from the target. The rutile phase was obtained by implantation/diffusion on targets at about 700 °C. The plasma was developed from a 4:1 argon/oxygen mixture for ~5 hour processing periods. The target temperature was controlled by means of the bias voltage and the plasma source power. The obtained anatase phases did not require annealing after the plasma oxidation process. The characterization of the film samples was conducted by means of x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy and Raman spectroscopy.

  6. Materials considerations for the coupling of thermochemical hydrogen cycles to tandem mirror reactors

    SciTech Connect

    Krikorian, O.H.

    1980-10-10

    Candidate materials are discussed and initial choices made for the critical elements in a liquid Li-Na Cauldron Tandem Mirror blanket and the General Atomic Sulfur-Iodine Cycle for thermochemical hydrogen production. V and Ti alloys provide low neutron activation, good radiation damage resistance, and good chemical compatibility for the Cauldron design. Aluminide coated In-800H and siliconized SiC are materials choices for heat exchanger components in the thermochemical cycle interface.

  7. Online Monitoring Oxidative Products and Metabolites of Nicotine by Free Radicals Generation with Fenton Reaction in Tandem Mass Spectrometry

    PubMed Central

    Liang, Shih-Shin; Shiue, Yow-Ling; Kuo, Chao-Jen; Liao, Wei-Ting; Tsai, Eing-Mei

    2013-01-01

    In general, over 70% absorbed nicotine is metabolized to cotinine and trans-3′-hydroxycotinine by cytochrome oxidase P450, and nicotine is also a major addictive and the psychoactive component in cigarettes. As a xenobiotic metabolism, hydrophobic compounds are usually converted into more hydrophilic products through enzyme systems such as cytochrome oxidase P450, sulfotransferases, and UDP-glucuronosyltransferases to deliver drug metabolites out of the cell during the drug metabolic process. In this study, an electrodeless electrochemical oxidation (EEO) reaction via Fenton reaction by producing free radical to react with nicotine to immediately monitor the oxidative products and metabolic derivatives of nicotine by tandem mass spectrometer (MS) is done. Fenton reaction generates free radicals via ferrous ion (Fe2+) and hydrogen peroxide (H2O2) to oxidize DNA and to degrade proteins in cells. In the EEO method, the oxidative products of nicotine including cotinine, cotinine-N-oxide, trans-3′-hydroxycotinine, nornicotine, norcotinine, 4-oxo-4-(3-pyridyl)-butanoic acid, 4-hydroxy-4-(3-pyridyl)-butanoic acid, and nicotine-N′-oxide were detected by tandem mass spectrometer to simulate the changes of nicotine and its derivatives in a time-dependent manner. PMID:23983622

  8. Determination of Oxidized Phosphatidylcholines by Hydrophilic Interaction Liquid Chromatography Coupled to Fourier Transform Mass Spectrometry

    PubMed Central

    Sala, Pia; Pötz, Sandra; Brunner, Martina; Trötzmüller, Martin; Fauland, Alexander; Triebl, Alexander; Hartler, Jürgen; Lankmayr, Ernst; Köfeler, Harald C.

    2015-01-01

    A novel liquid chromatography-mass spectrometry (LC-MS) approach for analysis of oxidized phosphatidylcholines by an Orbitrap Fourier Transform mass spectrometer in positive electrospray ionization (ESI) coupled to hydrophilic interaction liquid chromatography (HILIC) was developed. This method depends on three selectivity criteria for separation and identification: retention time, exact mass at a resolution of 100,000 and collision induced dissociation (CID) fragment spectra in a linear ion trap. The process of chromatography development showed the best separation properties with a silica-based Kinetex column. This type of chromatography was able to separate all major lipid classes expected in mammalian samples, yielding increased sensitivity of oxidized phosphatidylcholines over reversed phase chromatography. Identification of molecular species was achieved by exact mass on intact molecular ions and CID tandem mass spectra containing characteristic fragments. Due to a lack of commercially available standards, method development was performed with copper induced oxidation products of palmitoyl-arachidonoyl-phosphatidylcholine, which resulted in a plethora of lipid species oxidized at the arachidonoyl moiety. Validation of the method was done with copper oxidized human low-density lipoprotein (LDL) prepared by ultracentrifugation. In these LDL samples we could identify 46 oxidized molecular phosphatidylcholine species out of 99 possible candidates. PMID:25874761

  9. Determination of azithromycin residue in pork using a molecularly imprinted monolithic microcolumn coupled to liquid chromatography with tandem mass spectrometry.

    PubMed

    Zhou, Tong; Yang, Haicui; Jin, Zhen; Liu, Qingying; Song, Xuqin; He, Limin; Fang, Binghu; Meng, Chenying

    2016-04-01

    Using spiramycin as a dummy template, a molecularly imprinted polymer monolithic micro-column with high selection to azithromycin was prepared in a micropipette tip. The imprinting factor of the monolithic micro-column prepared was approximately 2.67 and the morphological structure of the polymers was characterized by scanning electron microscopy. A simple, sensitive, and reproducible method based on the imprinted monolithic micro-column coupled to liquid chromatography with tandem mass spectrometry was developed for determining the residues of azithromycin in pork. Pork samples were extracted with acetonitrile, cleaned up under the optimal monolithic micro-column conditions, and analyzed using liquid chromatography with tandem mass spectrometry in the multiple reaction monitoring mode. The assay exhibited a linear dynamic range of 0.50-50 μg/L with the correlation coefficient (r(2) ) above 0.99. In the three spiking levels of 0.50, 1.0, and 10 μg/kg, the average recoveries of azithromycin from pork samples were between 85.8 and 96.5% with a relative standard deviation below 10%. The limit of detection and limit of quantitation were 0.03 and 0.1 μg/kg, respectively. PMID:26854282

  10. Identification of methylene diphenyl diisocyanate thermal degradation products in a generation chamber by liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Gagne, Sébastien; Cloutier, Yves

    2016-01-01

    Isocyanate thermal degradation characterization by liquid chromatography coupled with electrospray tandem mass spectrometry has been performed to elucidate the methylene diphenyl diisocyanate (MDI) thermal degradation structure emitted in a generation chamber using a temperature between 50°C and 180°C to produce MDI vapors. [M+H](+) ions containing an isocyanate functional group were studied by tandem mass spectrometry. The [M+H](+) ion analyses based on the combination of full scans and precursor ion scans were useful for identifying all structures. The compounds emitted were identified and validated as a mixture of compounds containing amine and isocyanate functions. Residual MDI, methylene diphenyl amino-isocyanate, and methylene diphenyl diamine were identified. Polymerized forms of these structures were also observed because amine and isocyanate chemical functions react rapidly to polymerize. These results must be used with special care by scientists establishing sensitization diagnostics and developing sampling devices using generation chambers as they must be related to MDI behavior in workplaces. Even if pure MDI is introduced in the generation chamber, several different compounds are generated when the MDI is heated at a high temperature. This can result in some misleading interpretations for non-specific isocyanate sampling device development and sensitization diagnostics as MDI is present in the chamber with other compounds with known adverse effects. PMID:26337647

  11. IMPACT OF OXYGEN MEDIATED OXIDATIVE COUPLING ON ADSORPTION KINETICS

    EPA Science Inventory

    The presence of molecular oxygen in the test environment promotes oxidative coupling (polymer formation) of phenolic compounds on the surface of granular activated carbon (GAC). Both adsorption equilibria and adsorption kinetics are affected by these chemical reactions. Lack of...

  12. Formation of oligomeric alkenylperoxides during the oxidation of unsaturated fatty acids: an electrospray ionization tandem mass spectrometry study.

    PubMed

    Villaverde, Juan José; Santos, Sónia A O; Maciel, Elisabete; Simões, Mário M Q; Pascoal Neto, Carlos; Domingues, M Rosário M; Silvestre, Armando J D

    2012-02-01

    This study reports the identification of oligomeric alkenylperoxides by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS(2)), during the oxidation of oleic, linoleic and linolenic acids with Fenton's (Fe(2+)/H(2)O(2)) and Fe(2+)/O(2) systems. The reactions were followed by ferrous oxidation-xylenol orange method together with GC-MS and GC-FID, allowing to observe that both oxidation systems are different in terms of hydroperoxide evolution, probably due to the presence of different intermediate reactive species: perferryl ion and OH(·) radical responsible for the decomposition of lipid hydroperoxides and formation of new compounds. The analysis of ESI-MS in the negative mode, obtained after oxidation of each fatty acid, confirmed the presence of the monomeric oxidation products together with other compounds at high mass region above m/z 550. These new ions were attributed to oligomeric structures, identified by the fragmentation pathways observed in the tandem mass spectra. PMID:22359325

  13. Hydrophilic interaction liquid chromatography-electrospray ionization-tandem mass spectrometry of a complex mixture of native and oxidized phospholipids.

    PubMed

    Losito, I; Facchini, L; Diomede, S; Conte, E; Megli, F M; Cataldi, T R I; Palmisano, F

    2015-11-27

    A mixture of native and oxidized phospholipids (PLs), generated by the soybean lipoxygenase type V-catalyzed partial oxidation of a lipid extract obtained from human platelets, was analyzed by Hydrophilic Interaction Liquid Chromatography-ElectroSpray Ionization-Tandem Mass Spectrometry (HILIC-ESI-MS/MS). The complexity of the resulting mixture was remarkable, considering that the starting lipid extract, containing (as demonstrated in a previous study) about 130 native PLs, was enriched with enzymatically generated hydroperoxylated derivatives and chemically generated hydroxylated forms of PLs bearing polyunsaturated side chains. Nonetheless, the described analytical approach proved to be very powerful; indeed, focusing on phosphatidylcolines (PCs), the most abundant PL class in human platelets, about fifty different native/oxidized species could be identified in a single HILIC-ESI-MS/MS run. Low-energy collision induced dissociation tandem MS (CID-MS/MS) experiments on chromatographically separated species showed single neutral losses of H2O2 and H2O to be typical fragmentation pathways of hydroperoxylated PCs, whereas a single H2O loss was observed for hydroxylated ones. Moreover, diagnostic losses of n-hexanal or n-pentanol were exploited to recognize PCs hydroperoxylated on the last but five carbon atom of a ?-6 polyunsaturated side chain. Despite the low resolution of the 3D ion trap mass analyzer used, the described HILIC-ESI-MS/MS approach appears very promising for the identification of oxidized lipids in oxidatively stressed complex biological systems. PMID:26508677

  14. Multiclass determination of phytochemicals in vegetables and fruits by ultra high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Alarcón-Flores, María Isabel; Romero-González, Roberto; Vidal, José Luis Martínez; Frenich, Antonia Garrido

    2013-11-15

    In this study a simultaneous determination of several classes of phytochemicals (isoflavones, glucosinolates, flavones, flavonols and phenolic acids) in tomato, broccoli, carrot, eggplant and grape has been carried out by ultra high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Solid-liquid extraction assisted by rotary agitator was utilised, using a mixture of methanol:water (80:20, v/v) as solvent. The analytical procedure was validated in all the matrices, obtaining recoveries ranging from 60% to 120% with repeatability values (expressed as relative standard deviations, RSDs) lower than 25%. Limits of quantification (LOQs) were always equal or lower than 50μg/kg, except for some glucosinolates (125μg/kg). Finally the method was applied to different matrices such as tomato, broccoli, carrot, grape and eggplant, observing that chlorogenic acid was detected in most of the samples at higher concentrations in relation to the other compounds. PMID:23790894

  15. Validation of antibiotics in catfish by on-line solid phase extraction coupled to liquid chromatography tandem mass spectrometry.

    PubMed

    Hurtado de Mendoza, Jorge; Maggi, Luana; Bonetto, Liliana; Rodríguez Carmena, Beatriz; Lezana, Alicia; Mocholí, Francisco A; Carmona, Manuel

    2012-09-15

    For the first time automated on-line solid phase extraction coupled to liquid chromatography tandem mass spectrometry was developed for the simultaneous determination of 13 antibiotics (sulfonamides and tetracyclines) in catfish. The method proposed was validated according to Commission Decision 2002/657/EC, showing good linearity between 2 and 350 μg kg(-1), high recovery (80-99%) and reproducibility (13-20%) values, lower detection limits than 0.1 μg kg(-1), and quantification limits under 2.4 μg kg(-1) (between 39 and 84 times lower than the MRL fixed by the EU). Moreover, the proposed method was also used to determine sulfonamides and tetracyclines in 16 out of 107 samples, all previously analysed by microbiological screening that gave positive results. Five out of 13 antibiotics were found, having tetracycline the higher occurrence (10 samples); in all cases the concentrations were lower than the MRL established. PMID:23107742

  16. Qualitative analysis of phenolic compounds in apple pomace using liquid chromatography coupled to mass spectrometry in tandem mode.

    PubMed

    Sánchez-Rabaneda, Ferran; Jáuregui, Olga; Lamuela-Raventós, Rosa Maria; Viladomat, Francesc; Bastida, Jaume; Codina, Carles

    2004-01-01

    The occurrence of phenolic compounds in apple residues resulting from the juice industry was investigated to provide an alternative use for this raw material. For the identification of these compounds, liquid chromatography coupled to ionspray mass spectrometry in tandem mode (LC/MS/MS) with negative ion detection was used. The residues were first extracted and then chromatographed on Sephadex LH-20 to yield 13 fractions. Positive identification of the compounds was based on their retention times and mass spectra in full scan mode (MS), and in different MS/MS modes (product ion scan, precursor ion scan and neutral loss scan). In this way, 60 compounds, including cinnamic and benzoic acid derivatives and flavonoids, were identified, some of them not previously reported in apple waste. PMID:14978800

  17. Tandem mobile robot system

    DOEpatents

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  18. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, Richard B.; Warren, Barbara K.

    1991-01-01

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  19. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, R.B.; Warren, B.K.

    1991-12-17

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  20. Tandem C–H oxidation/cyclization/rearrangement and its application to asymmetric syntheses of (−)-brussonol and (−)-przewalskine E

    PubMed Central

    Jiao, Zhi-Wei; Tu, Yong-Qiang; Zhang, Qing; Liu, Wen-Xing; Zhang, Shu-Yu; Wang, Shao-Hua; Zhang, Fu-Min; Jiang, Sen

    2015-01-01

    Natural products are a vital source of lead compounds in drug discovery. Development of efficient tandem reactions to build useful compounds and apply them to the synthesis of natural products is not only a significant challenge but also an important goal for chemists. Here we describe a tandem C–H oxidation/cyclization/rearrangement of isochroman-derived allylic silylethers, promoted by DDQ and InCl3. This method allows the efficient construction of tricyclic benzoxa[3.2.1]octanes with a wide substrate scope. We employ this tandem reaction to achieve the asymmetric total syntheses of (−)-brussonol and (−)-przewalskine E. PMID:26081438

  1. Coupling Oxidative Signals to Protein Phosphorylation via Methionine Oxidation in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms involved in sensing oxidative signaling molecules such as H2O2 in plant and animal cells are not completely understood. In the present study, we tested the postulate that oxidation of methionine (Met) to Met sulfoxide (MetSO) can couple oxidative signals to changes in protein phosphor...

  2. Fast quantification of endogenous carbohydrates in plasma using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Zhu, Bangjie; Liu, Feng; Li, Xituo; Wang, Yan; Gu, Xue; Dai, Jieyu; Wang, Guiming; Cheng, Yu; Yan, Chao

    2015-01-01

    Endogenous carbohydrates in biosamples are frequently highlighted as the most differential metabolites in many metabolomics studies. A simple, fast, simultaneous quantitative method for 16 endogenous carbohydrates in plasma has been developed using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. In order to quantify 16 endogenous carbohydrates in plasma, various conditions, including columns, chromatographic conditions, mass spectrometry conditions, and plasma preparation methods, were investigated. Different conditions in this quantified analysis were performed and optimized. The reproducibility, precision, recovery, matrix effect, and stability of the method were verified. The results indicated that a methanol/acetonitrile (50:50, v/v) mixture could effectively and reproducibly precipitate rat plasma proteins. Cold organic solvents coupled with vortex for 1 min and incubated at -20°C for 20 min were the most optimal conditions for protein precipitation and extraction. The results, according to the linearity, recovery, precision, matrix effect, and stability, showed that the method was satisfactory in the quantification of endogenous carbohydrates in rat plasma. The quantified analysis of endogenous carbohydrates in rat plasma performed excellently in terms of sensitivity, high throughput, and simple sample preparation, which met the requirement of quantification in specific expanded metabolomic studies after the global metabolic profiling research. PMID:25359182

  3. Asymmetric synthesis of the main core of kaurane family members triggered by an oxidative polycyclization-pinacol tandem process.

    PubMed

    Desjardins, Samuel; Maertens, Gaëtan; Canesi, Sylvain

    2014-09-19

    Polycyclization processes represent expeditious routes used in both nature and the laboratory to produce complex polycyclic molecules. A new stereoselective oxidative variant of such a polycyclization has been developed in which the cascade is triggered by a phenol dearomatization and is concluded by a pinacol transposition. This unprecedented avenue combines the synthetic power of a polycyclization and a transposition in tandem and enables the rapid formation of the tetracyclic main core of kaurane diterpenes containing several asymmetric and quaternary carbon centers in a single step from a simple phenol derivative. PMID:25191786

  4. Tandem aldehyde-alkyne-amine coupling/cycloisomerization: A new synthesis of coumarins.

    PubMed

    Reddy, Maddi Sridhar; Thirupathi, Nuligonda; Haribabu, Madala

    2013-01-01

    Cu-catalyzed A(3) coupling of ethoxyacetylene, pyrrolidine and salicylaldehydes led to a concomitant cycloisomerization followed by hydrolysis of the resultant vinyl ether to afford coumarins in a cascade process. The reaction proceeded through exclusive 6-endo-dig cyclization and is compatible with halo and keto groups giving coumarins in good to moderate yields. PMID:23400373

  5. Increasing Magnetic Coupling through Oxidation of a Ferrocene Bridge.

    PubMed

    Shil, Suranjan; Herrmann, Carmen

    2015-12-21

    Ferrocene is an interesting coupler for designing magnetic molecules because of its rich chemistry and controllable oxidation state. In this work we have calculated the exchange spin coupling of a ferrocene-coupled nitronyl nitroxide diradical in its neutral and oxidized state (in which an additional spin center is introduced on the metallocene subunit). We do so by carrying out spin-unrestricted Kohn-Sham density functional theory (KS-DFT) calculations with different approximate exchange-correlation functionals and basis sets. We find that the neutral complex is weakly ferromagnetically coupled (in contrast to experimental results on single crystals), whereas the spin centers in the cationic complex are strongly antiferromagnetically coupled, resulting in an overall ferrimagnetic arrangement of the spins. Our calculations suggest that the magnetic exchange occurs through a spin alternation mechanism and that the lowest unoccupied molecular orbital (LUMO) plays an important role. The ferromagnetic behavior of the neutral complex is very sensitive to rotating one Cp ring versus the other. In the case of the cationic complex, the magnetic coupling is nearly independent of such structural changes. Thus, oxidation allows for switching between a weakly coupled and a strongly coupled, robust overall ferrimagnetic spin arrangement. PMID:26687379

  6. Quantification of neurotransmitters in mouse brain tissue by using liquid chromatography coupled electrospray tandem mass spectrometry.

    PubMed

    Kim, Tae-Hyun; Choi, Juhee; Kim, Hyung-Gun; Kim, Hak Rim

    2014-01-01

    A simple and rapid liquid chromatography tandem mass spectrometry method has been developed for the determination of BH4, DA, 5-HT, NE, EP, Glu, and GABA in mouse brain using epsilon-acetamidocaproic acid and isotopically labeled neurotransmitters as internal standards. Proteins in the samples were precipitated by adding acetonitrile, and then the supernatants were separated by a Sepax Polar-Imidazole (2.1 mm × 100 mm, i.d., 3 μm) column by adding a mixture of 10 mM ammonium formate in acetonitrile/water (75 : 25, v/v, 300 μl/min) for BH4 and DA. To assay 5-HT, NE, EP, Glu, and GABA; a Luna 3 μ C18 (3.0 mm × 150 mm, i.d., 3 μm) column was used by adding a mixture of 1% formic acid in acetonitrile/water (20 : 80, v/v, 350 μl/min). The total chromatographic run time was 5.5 min. The method was validated for the analysis of samples. The calibration curve was linear between 10 and 2000 ng/g for BH4 (r(2) = 0.995) , 10 and 5000 ng/g for DA (r(2) = 0.997) , 20 and 10000 ng/g for 5-HT (r(2) = 0.994) , NE (r(2) = 0.993) , and EP (r(2) = 0.993) , and 0.2 and 200 μg/g for Glu (r(2) = 0.996) and GABA (r(2) = 0.999) in the mouse brain tissues. As stated above, LC-MS/MS results were obtained and established to be a useful tool for the quantitative analysis of BH4, DA, 5-HT, NE, EP, Glu, and GABA in the experimental rodent brain. PMID:25258696

  7. Combined application of high resolution and tandem mass spectrometers to characterize methionine oxidation in a parathyroid hormone formulation.

    PubMed

    Pan, Changkang; Valente, Joseph J; LoBrutto, Rosario; Pickett, Jennifer S; Motto, Michael

    2010-03-01

    Identification and monitoring of degradation products is a critical aspect of drug product stability programs. This process can present unique challenges when working with complex biopharmaceutical formulations that do not readily lend themselves to straightforward HPLC analysis. The therapeutic 34 amino acid parathyroid hormone fragment (PTH1-34) contains methionine (Met) residues at positions 8 and 18. Oxidation of these Met residues results in reduced biological activity and thus efficacy of the potential drug product. Here, we present an effective approach for the identification of PTH1-34 oxidation products in a drug product formulation in which the stability indicating method used non-MS compatible HPLC conditions to separate excipients, drug substance and degradation products. High resolution and tandem mass spectrometers were used in conjunction with cyanogen bromide (CNBr) mediated digestion to accurately identify the oxidation products observed in an alternative MS compatible HPLC method used for drug substance analysis. All anticipated CNBr digested peptide fragments, including both oxidized and nonoxidized peptide fragments, were positively identified using TOF MS without the need for additional enzymatic digestion. Once identified, the oxidation products generated were injected onto the original non-MS compatible HPLC drug product stability indicating method and the respective retention times were confirmed. This allowed the oxidative stability of different formulations to be effectively monitored during the solid state stability program and during variant selection. PMID:19711445

  8. Olefins from biomass feedstocks: catalytic ester decarbonylation and tandem Heck-type coupling.

    PubMed

    John, Alex; Hogan, Levi T; Hillmyer, Marc A; Tolman, William B

    2015-02-14

    With the goal of avoiding the need for anhydride additives, the catalytic decarbonylation of p-nitrophenylesters of aliphatic carboxylic acids to their corresponding olefins, including commodity monomers like styrene and acrylates, has been developed. The reaction is catalyzed by palladium complexes in the absence of added ligands and is promoted by alkali/alkaline-earth metal halides. Combination of catalytic decarbonylation and Heck-type coupling with aryl esters in a single pot process demonstrates the viability of employing a carboxylic acid as a "masked olefin" in synthetic processes. PMID:25579879

  9. Determination of Niacin and Its Metabolites Using Supercritical Fluid Chromatography Coupled to Tandem Mass Spectrometry

    PubMed Central

    Taguchi, Kaori; Fukusaki, Eiichiro; Bamba, Takeshi

    2014-01-01

    Niacin, a water-soluble vitamin belonging to the vitamin B group, has been known to cause various problems in the human body when deficient. The vitamin is derived from the diet and afterwards, niacin and its metabolites are secreted in blood or urine. It can be analyzed using liquid chromatography (LC) coupled to mass spectrometry, but niacin and its metabolites are very polar compounds. Recently, supercritical fluid chromatography (SFC) is gaining attention for polar compound analysis. To our best knowledge, the report on the analysis of endogenous-very hydrophilic metabolites in biofluids by SFC has not been found. In this study, we investigated whether the separation of hydrophilic metabolites in biofluids is achievable by SFC. In addition, we also examined the applicability of SFC coupled to MS in extrapolating unknown metabolites by means of spectra information. As a result, an analysis method to quantify the target compounds using SFC/MS/MS was constructed for niacin and its metabolites. Additional putative metabolites from niacin were also identified using the MS fragmentation spectra in plasma and urine. Consequently, the method using SFC/MS/MS allowed for the analysis of polar compounds with low log P ranging from −3.7 to 0.29. This study is the first report of the separation of niacin and its seven metabolites in human urine and these results showed that SFC-MS/MS can be an alternative technique for hydrophilic metabolite analysis. PMID:25386386

  10. Analysis of anabolic androgenic steroids as sulfate conjugates using high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Rzeppa, S; Heinrich, G; Hemmersbach, P

    2015-01-01

    Improvements in doping analysis can be effected by speeding up analysis time and extending the detection time. Therefore, direct detection of phase II conjugates of doping agents, especially anabolic androgenic steroids (AAS), is proposed. Besides direct detection of conjugates with glucuronic acid, the analysis of sulfate conjugates, which are usually not part of the routine doping control analysis, can be of high interest. Sulfate conjugates of methandienone and methyltestosterone metabolites have already been identified as long-term metabolites. This study presents the synthesis of sulfate conjugates of six commonly used AAS and their metabolites: trenbolone, nandrolone, boldenone, methenolone, mesterolone, and drostanolone. In the following these sulfate conjugates were used for development of a fast and easy analysis method based on sample preparation using solid phase extraction with a mixed-mode sorbent and detection by high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Validation demonstrated the suitability of the method with regard to the criteria given by the technical documents of the World Anti-Doping Agency (WADA). In addition, suitability has been proven by successful detection of the synthesized sulfate conjugates in excretion urines and routine doping control samples. PMID:26472592

  11. Improvement of Mitochondria Extract from Saccharomyces cerevisiae Characterization in Shotgun Proteomics Using Sheathless Capillary Electrophoresis Coupled to Tandem Mass Spectrometry.

    PubMed

    Ibrahim, Marianne; Gahoual, Rabah; Enkler, Ludovic; Becker, Hubert Dominique; Chicher, Johana; Hammann, Philippe; François, Yannis-Nicolas; Kuhn, Lauriane; Leize-Wagner, Emmanuelle

    2016-04-01

    In this work, we describe the characterization of a quantity-limited sample (100 ng) of yeast mitochondria by shotgun bottom-up proteomics. Sample characterization was carried out by sheathless capillary electrophoresis, equipped with a high sensitivity porous tip and coupled to tandem mass spectrometry (CESI-MS-MS) and concomitantly with a state-of-art nano flow liquid chromatography coupled to a similar mass spectrometry (MS) system (nanoLC-MS-MS). With single injections, both nanoLC-MS-MS and CESI-MS-MS 60 min-long separation experiments allowed us to identify 271 proteins (976 unique peptides) and 300 proteins (1,765 unique peptides) respectively, demonstrating a significant specificity and complementarity in identification depending on the physicochemical separation employed. Such complementary, maximizing the number of analytes detected, presents a powerful tool to deepen a biological sample's proteomic characterization. A comprehensive study of the specificity provided by each separating technique was also performed using the different properties of the identified peptides: molecular weight, mass-to-charge ratio (m/z), isoelectric point (pI), sequence coverage or MS-MS spectral quality enabled to determine the contribution of each separation. For example, CESI-MS-MS enables to identify larger peptides and eases the detection of those having extreme pI without impairing spectral quality. The addition of peptides, and therefore proteins identified by both techniques allowed us to increase significantly the sequence coverages and then the confidence of characterization. In this study, we also demonstrated that the two yeast enolase isoenzymes were both characterized in the CESI-MS-MS data set. The observation of discriminant proteotypic peptides is facilitated when a high number of precursors with high-quality MS-MS spectra are generated. PMID:26860395

  12. Quantification of endogenous brassinosteroids in sub-gram plant tissues by in-line matrix solid-phase dispersion-tandem solid phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Lu; Duan, Chunfeng; Wu, Dapeng; Guan, Yafeng

    2014-09-12

    A matrix solid-phase dispersion (MSPD)-tandem mixed mode anion exchange (MAX)-mixed mode cation exchange (MCX) solid phase extraction-high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) method was developed for quantification of six endogenous brassinosteroids (BRs) (24-epibrassinolide, 24-epicastasterone, 6-deoxo-24-epicastasterone, dolichosterone, teasterone and typhasterol) in rice plant tissues. Non-polar interferences were removed effectively by C8 dispersant used in MSPD, while the following tandem MAX-MCX process facilitated the elimination of polar and ionizable compounds. The weak reversed-phase retention feature of MAX-MCX leaded to good compatibility of the elution solvents in the in-line coupled MSPD-MAX-MCX system. This system was optimized for extraction and purification of BRs in plant samples. The effects of the type of solid phase, the elution solvent, the extraction temperature and the clean-up material were studied. Before HPLC separation, BRs purified were derivatized by m-aminophenylboronic acid to enhance the sensitivity of MS/MS to BRs. Compared with traditional liquid-liquid extraction and solid phase extraction (LLE-SPE), the proposed MSPD-MAX-MCX method showed higher extraction efficiency, lower matrix effect, and advantages of easy manipulation and time-saving. The in-line MSPD-MAX-MCX coupled with HPLC-MS/MS method provided a linear response over two orders of magnitude of BRs concentration with correlation coefficients above 0.9982, limits of detection between 0.008 and 0.04ngmL(-1), relative standard deviations (RSDs) below 29.4%, and recoveries above 77.8%. The proposed method has been successfully applied to analysis of endogenous BRs in rice plant at booting stage and maturity stage. PMID:25092597

  13. Copper-catalyzed, C-C coupling-based one-pot tandem reactions for the synthesis of benzofurans using o-iodophenols, acyl chlorides, and phosphorus ylides.

    PubMed

    Liu, Yunyun; Wang, Hang; Wan, Jie-Ping

    2014-11-01

    One-pot reactions involving acyl chlorides, phosphorus ylides, and o-iodophenols with copper catalysis have been established for the rapid synthesis of functionalized benzofurans. With all of these easily available and stable reactants, the construction of the target products has been accomplished via tandem transformations involving a key C-C coupling, leading to the formation of one C(sp(2))-C bond, one C(sp(2))-O bond, and one C ═ C bond. PMID:25279735

  14. One-Pot Synthesis of Pyrrolo[3,2,1-kl]phenothiazines through Copper-Catalyzed Tandem Coupling/Double Cyclization Reaction.

    PubMed

    Tang, Jiaming; Xu, Bingqing; Mao, Xi; Yang, Hongyan; Wang, Xiaoxia; Lv, Xin

    2015-11-01

    A novel and efficient synthesis of pyrrolo[3,2,1-kl]phenothiazines has been developed through a Cu(I)-catalyzed tandem C-S coupling/double cyclization process. Using 2-alkynyl-6-iodoanilines and o-bromobenzenethiols as the starting materials, a wide range of pyrrolo[3,2,1-kl]phenothiazine derivatives were facilely and efficiently generated in one pot under Cu(I) catalysis. PMID:26430717

  15. Online deuterium hydrogen exchange and protein digestion coupled with ion mobility spectrometry and tandem mass spectrometry.

    PubMed

    Donohoe, Gregory C; Arndt, James R; Valentine, Stephen J

    2015-05-19

    Online deuterium hydrogen exchange (DHX) and pepsin digestion (PD) is demonstrated using drift tube ion mobility spectrometry (DTIMS) coupled with linear ion trap (LTQ) mass spectrometry (MS) with electron transfer dissociation (ETD) capabilities. DHX of deuterated ubiquitin, followed by subsequent quenching and digestion, is performed within ∼60 s, yielding 100% peptide sequence coverage. The high reproducibility of the IMS separation allows spectral feature matching between two-dimensional IMS-MS datasets (undeuterated and deuterated) without the need for dataset alignment. Extracted ion drift time distributions (XIDTDs) of deuterated peptic peptides are mobility-matched to corresponding XIDTDs of undeuterated peptic peptides that were identified using collision-induced dissociation (CID). Matching XIDTDs allows a straightforward identification and deuterium retention evaluation for labeled peptides. Aside from the mobility separation, the ion trapping capabilities of the LTQ, combined with ETD, are demonstrated to provide single-residue resolution. Deuterium retention for the c- series ions across residues M(1)-L(15) and N(25)-R(42) are in good agreement with the known secondary structural elements within ubiquitin. PMID:25893550

  16. Quantification of paroxetine in human plasma by liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    PubMed

    Shah, Hiten J; Kundlik, Mohan L; Kakad, Abhijit; Patel, Nitesh K; Pandya, Ankit; Khatri, Vanita; Prajapati, Shivkumat; Subbaiah, Gunta; Patel, Chhagan N

    2010-01-01

    A rapid LC coupled with electrospray ionization (ESI) MS/MS method was developed and validated for the quantification of paroxetine in heparinized human plasma. The plasma samples were prepared by the solid-phase extraction method without drying or reconstitution. Elution was done with 0.5 mL 0.2% (v/v) formic acid in methanol-acetonitrile (65 + 35, v/v). The analyte and the internal standard (IS; imipramine hydrochloride) were chromatographed on a BDS Hypersil C18 column. The analyte was analyzed by LC/MS/MS with only 1.7 min run time. An ESI interface was chosen for ionization of the analyte from the sample matrix. Selected reaction monitoring mode for detection of paroxetine and the IS were achieved by using m/z 330.17/192.10 and 281.13/86.14, respectively. The LC retention times for paroxetine and imipramine were 0.94 and 1.05 min, respectively. The method was linear in the concentration range of 0.5-80.0 ng/mL with r > or = 0.9995. Recovery of paroxetine and imipramine ranged from 90 to 95%. The assay has been successfully applied to bioequivalence study samples for estimation of paroxetine in healthy human subjects. PMID:20334176

  17. Oxidation of aromatic contaminants coupled to microbial iron reduction

    USGS Publications Warehouse

    Lovley, D.R.; Baedecker, M.J.; Lonergan, D.J.; Cozzarelli, I.M.; Phillips, E.J.P.; Siegel, D.I.

    1989-01-01

    THE contamination of sub-surface water supplies with aromatic compounds is a significant environmental concern1,2. As these contaminated sub-surface environments are generally anaerobic, the microbial oxidation of aromatic compounds coupled to nitrate reduction, sulphate reduction and methane production has been studied intensively1-7. In addition, geochemical evidence suggests that Fe(III) can be an important electron acceptor for the oxidation of aromatic compounds in anaerobic groundwater. Until now, only abiological mechanisms for the oxidation of aromatic compounds with Fe(III) have been reported8-12. Here we show that in aquatic sediments, microbial activity is necessary for the oxidation of model aromatic compounds coupled to Fe(III) reduction. Furthermore, a pure culture of the Fe(III)-reducing bacterium GS-15 can obtain energy for growth by oxidizing benzoate, toluene, phenol or p-cresol with Fe(III) as the sole electron acceptor. These results extend the known physiological capabilities of Fe(III)-reducing organisms and provide the first example of an organism of any type which can oxidize an aromatic hydrocarbon anaerobically. ?? 1989 Nature Publishing Group.

  18. Coupling of oxidative dehydrogenation and aromatization reactions of butane

    SciTech Connect

    Xu, Wen-Qing; Suib, S.L. )

    1994-01-01

    Coupling of oxidative dehydrogenation and aromatization of butane by using a dual function catalyst has led to a significant enhancement of the yields (from 25 to 40%) and selectivities to aromatics (from 39 to 64%). Butane is converted to aromatics by using either zinc-promoted [Ga]-ZSM-5 or zinc and gallium copromoted [Fe]-ZSM-5 zeolite as a catalyst. However, the formation of aromatics is severely limited by hydrocracking of butane to methane, ethane, and propane due to the hydrogen formed during aromatization reactions. On the other hand, the oxidative dehydrogenation of butane to butene over molybdate catalysts is found to be accompanied by a concurrent undesirable reaction, i.e., total oxidation. When two of these reactions (oxidative dehydrogenation and aromatization of butane) are coupled by using a dual function catalyst they have shown to complement each other. It is believed that the rate-limiting step for aromatization (butane to butene) is increased by adding an oxidative dehydrogenation catalyst (Ga-Zn-Mg-Mo-O). The formation of methane, ethane, and propane was suppressed due to the removal of hydrogen initially formed as water. Studies of ammonia TPD show that the acidities of [Fe]-ZSM-5 are greatly affected by the existence of metal oxides such as Ga[sub 2]O[sub 3], MgO, ZnO, and MoO[sub 3]. 40 refs., 9 figs., 1 tab.

  19. Combining novel device architecture and NIR dye towards the fabrication of transparent conductive oxide-less tandem dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Baranwal, Ajay Kumar; Fujikawa, Naotaka; Hayat, Azwar; Ogomi, Yuhei; Pandey, Shyam S.; Ma, Tingli; Hayase, Shuzi

    2015-10-01

    Tandem solar cells with different device architectures utilizing a back contact transparent conductive oxide-less bottom electrode (TCO-less tandem DSSC) that has better control of the optical transmission losses incurred by intermediate TCO layers with flexible Pt/tin-doped indium oxide (ITO)-polyethylene terephthalate film as an intermediate layer are reported. The proposed device architecture suppresses the optical loss to a greater extent (around 30%). Sensitizers were ruthenium-based N719 dye in the top electrode, while the newly synthesized phthalocyanine dye (PC25) corresponding to photon harvesting in the near infrared (NIR) region (up to 900 nm) was used in the TCO-less bottom cell. Open circuit voltage (Voc) ≥ 1.18 V (sum of top cell and bottom cell Voc) justifies the TCO-less tandem DSSC formation.

  20. Simultaneous determination of 24 polycyclic aromatic hydrocarbons in edible oil by tandem solid-phase extraction and gas chromatography coupled/tandem mass spectrometry.

    PubMed

    Xu, Ting; Tang, Hua; Chen, Dazhou; Dong, Haifeng; Li, Lei

    2015-01-01

    An efficient and fast tandem SPE method followed by GC/MS/MS has been developed for the determination and the quantification of 24 polycyclic aromatic hydrocarbons (PAHs) in edible oil. This method includes the monitoring of 15 + 1 PAHs designated as a priority by the European Union in their 2005/108/EC recommendation and 16 PAHs listed by the U. S. Environmental Protection Agency. The sample preparation procedures were based on SPE in which PAH-dedicated cartridges with molecularly imprinted polymers and graphitized carbon black were used in series. The novel tandem SPE combination of selective extraction and purification of light and heavy PAHs provided highly purified analytes. Identification and quantification of 24 target PAHs were performed using GC/MS/MS with the isotope dilution approaches using D-labeled and (13)C-labeled PAHs. The advantages of GC/MS/MS as compared to other detection methods include high sensitivity, selectivity, and interpretation ability. The method showed satisfactory linearity (R(2) > 0.998) over the range assayed (0.5-200 μg/kg); the LODs ranged from 0.03 to 0.6 μg/kg, and LOQs from 0.1 to 2.0 μg/kg. The recoveries using this method at three spiked concentration levels (2, 10, and 50 μg/kg) ranged from 56.8 to 117.7%. The RSD was lower than 12.7% in all cases. The proposed analytical method has been successfully applied for the analysis of the 24 PAHs in edible oil. PMID:25905761

  1. Enantiomeric analysis of drugs of abuse in wastewater by chiral liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Kasprzyk-Hordern, Barbara; Kondakal, Vishnu V R; Baker, David R

    2010-07-01

    The manuscript concerns the development and validation of a method for enantiomeric analysis of structurally related amphetamines (amphetamine, methamphetamine, 4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxy-N-ethylamphetamine (MDEA)), ephedrines (ephedrine, pseudoephedrine and norephedrine) and venlafaxine in wastewater by means of chiral chromatography coupled with tandem mass spectrometry. Solid-phase extraction on Oasis HLB sorbent used for sample clean-up and concentration of analytes resulted in very good recoveries accounting for >70%. Signal suppression during MS analysis was negligible for most studied analytes. Resolution of enantiomers of chiral drugs was found to be higher than 1. Preliminary assay validation was undertaken. The mean correlation coefficients of the calibration curves, which were on average higher than 0.997 for all studied analytes, showed good linearity of the method in the studied range. Intra- and inter-day repeatabilities were on average less than 5%. The method quantification limits in wastewater were at low ppt levels and varied from 2.25 to 11.75ng/L. The method was successfully applied for the analysis of raw and treated wastewater samples collected from four wastewater treatment plants. A common occurrence of 1R,2S (-)-ephedrine, 1S,2S (+)-pseudoephedrine and venlafaxine in both raw and treated wastewater samples was observed. Amphetamine, methamphetamine, MDMA and MDEA were also detected in several wastewater samples. The study of enantiomeric fractions of these chiral drugs proved their variable non-racemic composition. The influence of wastewater treatment processes on the enantiomeric composition of chiral drugs was also noted and might indicate enantioselective processes occurring during treatment, although more comprehensive research has to be undertaken to support this hypothesis. PMID:20537654

  2. Enantioselective determination of acylamino acid fungicides in vegetables and fruits by chiral liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Zhang, Hu; Wang, Xinquan; Jin, Lixia; Qian, Mingrong; Wang, Xiangyun; Xu, Hao; Qi, Peipei; Wang, Qiang; Wang, Minghua

    2012-08-01

    An efficient and sensitive enantioselective method for simultaneous determination of three acylamino acid fungicides in vegetables and fruits was presented by high-performance liquid chromatography (HPLC) coupled with tandem mass spectrometry. The three fungicides (benalaxyl, furalaxyl, and metalaxyl) residues in samples were extracted with acetonitrile containing 1% acetic acid and an aliquot was cleaned up with Si-(CH(2))(3)-NH-(CH(2))(2)-NH(2) and C(18) sorbent. Complete enantioseparation of three acylamino acid fungicides enantiomers was obtained under reversed-phase conditions on a cellulose tris (4-chloro-3-methylphenylcarbamate) column at 25°C using acetonitrile-0.1% formic acid solution (45:55, v/v) as a mobile phase. The elution orders of the eluted enantiomers were determined by a circular dichroism (CD) detector. The linearity, matrix effect, recovery, and precision were evaluated. Good linearity was obtained over the concentration range of 0.5-250 μg/L for each enantiomer in the standard solution and sample matrix calibration curves. There was no significant matrix effect for three fungicides determination based on the method. The inter-day mean recoveries, intra-day repeatability, and inter-day reproducibility varied from 81.3 to 95.7%, 2.2 to 9.4%, and 2.3 to 9.6%, respectively. The method provided high selectivity and sensitivity, and limits of quantification for enantiomers of three fungicides in vegetables and fruits were both 1 μg/kg. PMID:22753298

  3. Identification of isoflavonoids in several kudzu samples by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    PubMed

    Fang, Congbing; Wan, Xiaochun; Tan, Huarong; Jiang, Changjun

    2006-02-01

    Pueraria lobata is a rich source of isoflavonoids. The detection and identification of isoflavonoid components from Pueraria radix (RP), callus and cell cultures, is very important for the safest and most effective use of kudzu as a medicinal plant, and for the studies on quantitative analysis and secondary metabolism of isoflavonoids in vitro cultures. Liquid chromatography is coupled with negative and positive electrospray ionization (ESI) tandem mass spectrometry (MS-MS), and photodiode array detection is used to characterize and detect isoflavonoids in root, callus, and cell samples of P. lobata. Characteristic product ions of aglycones, O-glucosides, and C-glucosides were obtained from the full-scan ESI-MS chromatography of the major peaks and the MS-MS spectra of the protonated ions. Five major components of puerarin, daidzin-6"-O-acetylester, genistin-6"-O-malonylester, biochanin A-7-O-glucoside-6"-O-malonylester, and daidzein are detected and identified from the methanolic extract of P. lobata callus cultures. The major isoflavonoid components of P. lobata cell suspension cultures are identified as puerarin, daidzin, daidzin-6"-O-acetylester, genistin-6"-O-malonylester, biochanin A-7-O-glucoside-6"-O-malonylester, genistein-8-C-glucoside-6"-O-malonylester, and daidzein, on the basis of ESI-MS and MS-MS spectra analysis. Likewise, puerarin, daidzin, genistein-6"-O-malonylester, 3'-methoxypuerarin, and daidzein are detected and identified from RP. Of those isoflavonoid components detected, daidzin-6"-O-acetylester is a new isoflavonoid glucoside and is for the first time detected from P. lobata cultures in vitro. PMID:16620495

  4. Determination of fungicides in wine by mixed-mode solid phase extraction and liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Carpinteiro, I; Ramil, M; Rodríguez, I; Cela, R

    2010-11-26

    A novel procedure for the determination of nine selected fungicides (metalaxyl-M, azoxystrobin, myclobutanil, flusilazole, penconazole, tebuconazole, propiconazole, diniconazole and difenoconazole) in wine samples is presented. Sample enrichment and purification is simultaneously performed using mixed-mode, anion exchange and reversed-phase, OASIS MAX solid-phase extraction (SPE) cartridges. Analytes were determined by liquid chromatography coupled to tandem mass spectrometry using atmospheric pressure electrospray ionization (LC-ESI-MS/MS). Parameters affecting the chromatographic determination and the extraction-purification processes were thoroughly investigated. Under optimized conditions, 10 mL of wine were firstly diluted 1:1 with ultrapure water and then passed through the mixed-mode SPE cartridge at a flow of ca. 5 mLmin(-1). After a washing step with 5 mL of an aqueous NH(4)OH solution (5%, w:v), analytes were recovered with just 1 mL of methanol and injected in the LC-MS/MS system without any additional purification. The selective extraction process avoided significant changes in the ionization efficiency for red and white wine extracts in comparison with pure standards in methanol. Performance of the method was good in terms of precision (RSDs<11%) and accuracy (absolute recoveries>72%, determined against pure standards in methanol) reporting method LOQs in the range of 0.01-0.79 ngmL(-1) for target compounds, which are far below the EU maxima residue levels (MRLs) for fungicides in vinification grapes and wine. Several commercial wines from different geographic areas in Spain were analyzed. In most samples, metalaxyl-M and azoxystrobin were found at concentrations up to several ngmL(-1). PMID:20971470

  5. Enhanced separation and characterization of deamidated peptides with RP-ERLIC-based multidimensional chromatography coupled with tandem mass spectrometry.

    PubMed

    Hao, Piliang; Qian, Jingru; Dutta, Bamaprasad; Cheow, Esther Sok Hwee; Sim, Kae Hwan; Meng, Wei; Adav, Sunil S; Alpert, Andrew; Sze, Siu Kwan

    2012-03-01

    Deamidation of asparaginyl residues in proteins produces a mixture of asparaginyl, n-aspartyl, and isoaspartyl residues, which affects the proteins' structure, function, and stability. Thus, it is important to identify and quantify the products to evaluate the effects in biological systems. It is still a challenging task to distinguish between the n-Asp and isoAsp deamidation products in a proteome-wide analysis because of their similar physicochemical properties. The quantification of the isomeric deamidated peptides is also rather difficult because of their coelution/poor separation in reverse-phase liquid chromatography (RPLC). We here propose a RP-ERLIC-MS/MS approach for separating and quantifying on a proteome-wide scale the three products related to deamidation of the same peptide. The key to the method is the use of RPLC in the first dimensional separation and ERLIC (electrostatic repulsion-hydrophilic interaction chromatography) in the second, with direct online coupling to tandem MS. The coelution of the three deamidation-related peptides in RPLC is then an asset, as they are collected in the same fraction. They are then separated and identified in the second dimension with ERLIC, which separates peptides on the basis of both pI and GRAVY values. The coelution of the three products in RPLC and their efficient separation in ERLIC were validated using synthetic peptides, and the performance of ERLIC-MS/MS was tested using peptide mixtures from two proteins. Applying this sequence to rat liver tissue, we identified 302 unique N-deamidated peptides, of which 20 were identified via all three deamidation-related products and 70 of which were identified via two of them. PMID:22239700

  6. Hydrogen sulfide oxidation is coupled to oxidative phosphorylation in mitochondria of Solemya reidi

    SciTech Connect

    Powell, M.A.; Somero, G.N.

    1986-08-01

    Solemya reidi, a gutless clam found in sulfide-rich habitats, contains within its gills bacterial symbionts thought to oxidize sulfur compounds and provide a reduced carbon food source to the clam. However, the initial step or steps in sulfide oxidation occur in the animal tissue, and mitochondria isolated from both gill and symbiont-free foot tissue of the clam coupled the oxidation of sulfide to oxidative phosphorylation (adenosine triphosphate (ATP) synthesis). The ability of Solemya reidi to exploit directly the energy in sulfide for ATP synthesis is unprecedented, and suggests that sulfide-habitat animals that lack bacterial symbionts may also use sulfide as an inorganic energy source.

  7. Study on chemical profiles and metabolites of Allii Macrostemonis Bulbus as well as its representative steroidal saponins in rats by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Qin, Zi-Fei; Dai, Yi; Yao, Zhi-Hong; He, Liang-Liang; Wang, Qi-Yi; Geng, Jian-Liang; Chen, Hai-Feng; Yao, Xin-Sheng

    2016-02-01

    Allii Macrostemonis Bulbus (AMB) is increasingly becoming popular as an edible vegetable or traditional folk medicine in East Asia due to its great health and medicinal properties. However, due to a lack of available research, the effective material of AMB still remains unknown. In this study, we applied a strategy utilising ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS) to investigate chemical profiles of AMB. In addition, metabolite profiles of five representative single steroidal saponins as well as AMB were investigated. Moreover, the metabolic features of saponins in AMB were summarised. After oral administration, the saponins underwent massive phase I and phase II metabolism. Sequential deglycosylation metabolism in rat intestine was the main metabolic pathway of the steroidal saponins, while oxidation, dehydrogenation, glucuronic acid reactions in liver also take part in further modification. These results expand our knowledge about the metabolism of AMB. PMID:26304378

  8. Copper/Manganese Cocatalyzed Oxidative Coupling of Vinylarenes with Ketones.

    PubMed

    Lan, Xing-Wang; Wang, Nai-Xing; Zhang, Wei; Wen, Jia-Long; Bai, Cui-Bing; Xing, Yalan; Li, Yi-He

    2015-09-18

    A novel copper/manganese cocatalyzed direct oxidative coupling of terminal vinylarenes with ketones via C(sp(3))-H bond functionalization following C-C bond formation has been developed using tert-butyl hydroperoxide as the radical initiator. Various ketones underwent a free-radical addition of terminal vinylarenes to give the corresponding 1,4-dicarbonyl products with excellent regioselectivity and efficiency through one step. A possible reaction mechanism has been proposed. PMID:26348870

  9. A microbial consortium couples anaerobic methane oxidation to denitrification.

    PubMed

    Raghoebarsing, Ashna A; Pol, Arjan; van de Pas-Schoonen, Katinka T; Smolders, Alfons J P; Ettwig, Katharina F; Rijpstra, W Irene C; Schouten, Stefan; Damsté, Jaap S Sinninghe; Op den Camp, Huub J M; Jetten, Mike S M; Strous, Marc

    2006-04-13

    Modern agriculture has accelerated biological methane and nitrogen cycling on a global scale. Freshwater sediments often receive increased downward fluxes of nitrate from agricultural runoff and upward fluxes of methane generated by anaerobic decomposition. In theory, prokaryotes should be capable of using nitrate to oxidize methane anaerobically, but such organisms have neither been observed in nature nor isolated in the laboratory. Microbial oxidation of methane is thus believed to proceed only with oxygen or sulphate. Here we show that the direct, anaerobic oxidation of methane coupled to denitrification of nitrate is possible. A microbial consortium, enriched from anoxic sediments, oxidized methane to carbon dioxide coupled to denitrification in the complete absence of oxygen. This consortium consisted of two microorganisms, a bacterium representing a phylum without any cultured species and an archaeon distantly related to marine methanotrophic Archaea. The detection of relatives of these prokaryotes in different freshwater ecosystems worldwide indicates that the reaction presented here may make a substantial contribution to biological methane and nitrogen cycles. PMID:16612380

  10. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    SciTech Connect

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  11. Simultaneous analysis of mono-, di-, and tri-ethanolamine in cosmetic products using liquid chromatography coupled tandem mass spectrometry.

    PubMed

    Shin, Kyong-Oh; Lee, Yong-Moon

    2016-01-01

    Alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA) are used as wetting agents in shampoos, lotions, creams, and other cosmetics. DEA is widely used to provide lather in shampoos and maintain a favorable consistency in lotions and creams. Although DEA is not harmful, it may react with other ingredients in the cosmetic formula after extended storage periods to form an extremely potent carcinogen called nitrosodiethanolamine (NDEA), which is readily absorbed through the skin and has been linked to the development of stomach, esophagus, liver, and bladder cancers. The purpose of this study was to develop a simultaneous quantification method for measurement of MEA, DEA, and TEA in cosmetic products. Liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) was performed using a hydrophilic interaction liquid chromatography (HILIC) column with isocratic elution containing acetonitrile and 5 mM ammonium formate in water (88:12, v/v). Identification and quantification of alkanolamines were performed using MS/MS monitoring to assess the transition from precursor to product ion of MEA (m/z, 61.1 → 44.0), DEA (m/z, 106.1 → 88.0), TEA (m/z, 150.1 → 130.0), and the internal standard triethylamine (m/z, 102.2 → 58.0). Alkanolamines extractions were simplified using a single extraction with acetonitrile in the cosmetic matrix. Performance of the method was evaluated with quality parameters such as specificity, carry-over, linearity and calibration, correlation of determination (R(2)), detection limit, precision, accuracy, and recovery. Calibration curves of MEA (2.9-1000 ppb), DEA (1-1000 ppb), and TEA (1-1000 ppb) were constructed by plotting concentration versus peak-area ratio (analyte/internal standard with a correlation coefficient greater than 0.99). The intra- and inter-assay accuracy ranged from 92.92 to 101.15 % for all analytes. The intra- and inter-assay precision for MEA, DEA, and TEA showed all coefficients of variance were less than 9.38 % for QC samples. Limits of detection and limits of quantification were 2.00 and 15.63 ppb for MEA, 0.49 and 1.96 ppb for DEA, and 0.49 and 1.96 ppb for TEA, respectively. This novel quantification method simplified sample preparation and allowed accurate and reproducible quantification of alkanolamines in the ng/g cosmetic weight (ppb) range for several cosmetic products. PMID:26578210

  12. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters.

    PubMed

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel M M; Schubert, Carsten J

    2015-09-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  13. -3000 V dc bias Ti oxidation by inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Valencia-Alvarado, R.; de la Piedad-Beneitez, A.; de la Rosa-Vázquez, J.; López-Callejas, R.; Barocio, S. R.; Mercado-Cabrera, A.; Peña-Eguiluz, R.; Muñoz-Castro, A. E.

    2008-12-01

    Broadening the outer oxidized layer of titanium by means of plasmas commands considerable interest in the biomedical research area due to its potential in human biocompatibility enhancement. Some early results of titanium substrate superficial oxidation experiments which have been conducted in a cylindrical vessel inductively coupled to a 13.56 MHz RF generator with a 500 W output are presented. The oxidation process was carried out in a 20 % oxygen and 80 % argon mixture at work pressures in the 5×10-3-1 mbar range, while the samples were dc biased down to -3000 V. The substrate temperature appears to be directly dependent on this voltage, reaching 685 °C at the maximum bias when a diffusive oxidation process gives rise to the TiO2 and α-TiO rutile phases. These were characterized by means of x-ray diffraction and scanning electron microscopy revealing atomic percentage concentrations of oxygen, with respect to those of titanium, between 68 and 13 at.%. The optimum modified layer depth reached 5 μm at a 5×10-2 mbar work pressure.

  14. A novel method for the simultaneous analysis of seven biothiols in rice (Oryza sativa L.) using hydrophilic interaction chromatography coupled with electrospray tandem mass spectrometry.

    PubMed

    Cao, Zhao-Yun; Sun, Li-Hua; Mou, Ren-Xiang; Zhou, Rong; Zhu, Zhi-Wei; Chen, Ming-Xue

    2015-01-22

    Analysis of biothiols is still problematic, due to their high polarity, oxidation sensitivity and time-consuming sample preparation. In this paper, a direct, rapid and sensitive method was developed for simultaneous quantification of unbound cysteine (Cys), glutathione (GSH) and phytochelatins (PCs) in rice leaf, stem and root samples by hydrophilic interaction chromatography coupled with electrospray tandem mass spectrometry (HILIC-MS/MS). Homogenized samples were extracted with water containing 50mM dithiothreitol, without derivatization and further clean-up, and the extracts were injected directly onto an Xbridge Amide-HILIC column (3.5μm, 150mm×2.1mm i.d.). The best chromatographic separation and MS sensitivity was achieved using a linear gradient elution with 10mM aqueous ammonium formate and acetonitrile as the mobile phase. In MS/MS mode the detection limit (S/N≥3) of seven biothiols was 3-105nM. Good linearities were observed (r>0.995) with linear dynamic range at least over three orders of magnitude. Recoveries for most analytes were within the range of 77-128%, with relative standard deviations less than 18.2%. The intra-day precision (n=7) was 6.1-11.7%, and the inter-day precision over 15 d (n=15) was 8.5-16.3% for all biothiols. The optimized HILIC-MS/MS method was applied to study the influence of different cadmium (Cd) concentrations (0, 1 and 50μM) on contents of Cys, GSH and PC2-6 in rice tissue. With increasing Cd concentrations in nutrient solutions, contents of PC2-4 in rice roots increased but contents of Cys and GSH decreased. Contents of PC2-4 in both rice leafs and stems increased markedly at high dose Cd (50μM) treatment compared with controls, compared with low Cd concentrations (1μM). However, both PC5 and PC6 were not detected throughout the stress experiment. PMID:25436484

  15. Exploiting the oxidative coupling reaction of MBTH for indapamide determination.

    PubMed

    Ribeiro, David S M; Prior, João A V; Santos, João L M; Lopes, João A; Lima, José L F C

    2009-09-15

    The oxidative coupling reaction between aromatic amines and 3-methylbenzothiazolin-2-one hydrazone (MBTH) in the presence of cerium(IV) has been extensively used with quantitative analytical purposes. Nevertheless, a literature survey reveals that different wavelengths (visible range) can be used to monitor the reaction products when using MBTH and Ce(IV) as colour developing reagents. In the present work, the oxidative coupling reaction of indapamide (an oral antihypertensive diuretic drug) with MBTH in the presence of cerium(IV) was evaluated using distinct reaction approaches and was implemented in an automated multipumping flow system. The developed methodology was applied in the spectrophotometric control of the drug in pharmaceutical formulations. The optimization of the proposed multipumping flow system was performed by using an experimental design approach, namely by exploiting a Plackett-Burman factorial design and a central cubic faces design. This work revealed the formation of products with different reaction kinetics, chemical stabilities and absorbance spectra, depending on the sequence of addition of the reagents. By exploiting a specific sequence in the addition of reagents, the proposed automatic system allowed the rapid quantification of indapamide in pharmaceutical formulations, with a determination rate of about 25 h(-1), and a relative deviation under 2.1% when comparing with the reference procedure. Detection limit was approximately 1 mg L(-1). PMID:19615526

  16. Microfluidic chip based nano liquid chromatography coupled to tandem mass spectrometry for the determination of abused drugs and metabolites in human hair.

    PubMed

    Zhu, Kevin Y; Leung, K Wing; Ting, Annie K L; Wong, Zack C F; Ng, Winki Y Y; Choi, Roy C Y; Dong, Tina T X; Wang, Tiejie; Lau, David T W; Tsim, Karl W K

    2012-03-01

    A microfluidic chip based nano-HPLC coupled to tandem mass spectrometry (nano-HPLC-Chip-MS/MS) has been developed for simultaneous measurement of abused drugs and metabolites: cocaine, benzoylecgonine, cocaethylene, norcocaine, morphine, codeine, 6-acetylmorphine, phencyclidine, amphetamine, methamphetamine, MDMA, MDA, MDEA, and methadone in the hair of drug abusers. The microfluidic chip was fabricated by laminating polyimide films and it integrated an enrichment column, an analytical column and a nanospray tip. Drugs were extracted from hairs by sonication, and the chromatographic separation was achieved in 15 min. The drug identification and quantification criteria were fulfilled by the triple quardropule tandem mass spectrometry. The linear regression analysis was calibrated by deuterated internal standards with all of the R(2) at least over 0.993. The limit of detection (LOD) and the limit of quantification (LOQ) were from 0.1 to 0.75 and 0.2 to 1.25 pg/mg, respectively. The validation parameters including selectivity, accuracy, precision, stability, and matrix effect were also evaluated here. In conclusion, the developed sample preparation method coupled with the nano-HPLC-Chip-MS/MS method was able to reveal the presence of drugs in hairs from the drug abusers, with the enhanced sensitivity, compared with the conventional HPLC-MS/MS. PMID:22281681

  17. Tandem oxidation/halogenation of aryl allylic alcohols under Moffatt-Swern conditions.

    PubMed

    Yin, Jiandong; Gallis, Christina E; Chisholm, John D

    2007-08-31

    Aryl allylic alcohols are converted to halogenated unsaturated ketones or allylic halides using excess Moffatt-Swern reagent. Electron-poor aromatic rings favor formation of the halogenated ketone, while electron-donating substituents in the ortho or para positions favor formation of the allylic halide. The oxidation/halogenation reaction performs well with both oxalyl chloride and oxalyl bromide, providing access to the corresponding chlorides or bromides, respectively. PMID:17685577

  18. Catalytic aerobic oxidation and tandem enantioselective cycloaddition in cascade multicomponent synthesis.

    PubMed

    Potowski, Marco; Merten, Christian; Antonchick, Andrey P; Waldmann, Herbert

    2015-03-23

    An efficient multicomponent cascade transformation for the highly diastereo- and enantioselective synthesis of complex natural product inspired polycyclic products from simple starting materials is described. The cascade is initiated by copper-catalyzed aerobic CH oxidation of cyclopentadiene to cyclopentadienone followed by double catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides. The cascade synthesis efficiently yields structurally complex 5,5,5-tricyclic products with eight stereocenters with good yields and excellent diastereo- and enantiocontrol using one catalyst. PMID:25676025

  19. Forensic analysis of printing inks using tandem Laser Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Subedi, Kiran; Trejos, Tatiana; Almirall, José

    2015-01-01

    Elemental analysis, using either LA-ICP-MS or LIBS, can be used for the chemical characterization of materials of forensic interest to discriminate between source materials originating from different sources and also for the association of materials known to originate from the same source. In this study, a tandem LIBS/LA-ICP-MS system that combines the benefits of both LIBS and LA-ICP-MS was evaluated for the characterization of samples of printing inks (toners, inkjets, intaglio and offset.). The performance of both laser sampling methods is presented. A subset of 9 black laser toners, 10 colored (CMYK) inkjet samples, 12 colored (CMYK) offset samples and 12 intaglio inks originating from different manufacturing sources were analyzed to evaluate the discrimination capability of the tandem method. These samples were selected because they presented a very similar elemental profile by LA-ICP-MS. Although typical discrimination between different ink sources is found to be > 99% for a variety of inks when only LA-ICP-MS was used for the analysis, additional discrimination was achieved by combining the elemental results from the LIBS analysis to the LA-ICP-MS analysis in the tandem technique, enhancing the overall discrimination capability of the individual laser ablation methods. The LIBS measurements of the Ca, Fe, K and Si signals, in particular, improved the discrimination for this specific set of different ink samples previously shown to exhibit very similar LA-ICP-MS elemental profiles. The combination of these two techniques in a single setup resulted in better discrimination of the printing inks with two distinct fingerprint spectra, providing information from atomic/ionic emissions and isotopic composition (m/z) for each ink sample.

  20. Calculation of the Lateral Stability of a Directly Coupled Tandem-Towed Fighter Airplane and Correlation with Experimental Data

    NASA Technical Reports Server (NTRS)

    Shanks, Robert E.

    1958-01-01

    A theoretical method is presented for predicting the dynamic lateral stability characteristics of an airplane towed in tandem by a much larger airplane. Values of period and time to damp to one-half amplitude and rolling motions calculated by an analog computer have been correlated with results of two experimental investigations conducted in the Langley free-flight tunnel which were part of a U.S. Air Force program (Project FICON) to develop a satisfactory arrangement by which a bomber could tow a parasite fighter. In general, the theoretical results agree with the experimental results.

  1. Coupling Oxygen Consumption with Hydrocarbon Oxidation in Bacterial Multicomponent Monooxygenases.

    PubMed

    Wang, Weixue; Liang, Alexandria D; Lippard, Stephen J

    2015-09-15

    A fundamental goal in catalysis is the coupling of multiple reactions to yield a desired product. Enzymes have evolved elegant approaches to address this grand challenge. A salient example is the biological conversion of methane to methanol catalyzed by soluble methane monooxygenase (sMMO), a member of the bacterial multicomponent monooxygenase (BMM) superfamily. sMMO is a dynamic protein complex of three components: a hydroxylase, a reductase, and a regulatory protein. The active site, a carboxylate-rich non-heme diiron center, is buried inside the 251 kDa hydroxylase component. The enzyme processes four substrates: O2, protons, electrons, and methane. To couple O2 activation to methane oxidation, timely control of substrate access to the active site is critical. Recent studies of sMMO, as well as its homologues in the BMM superfamily, have begun to unravel the mechanism. The emerging and unifying picture reveals that each substrate gains access to the active site along a specific pathway through the hydroxylase. Electrons and protons are delivered via a three-amino-acid pore located adjacent to the diiron center; O2 migrates via a series of hydrophobic cavities; and hydrocarbon substrates reach the active site through a channel or linked set of cavities. The gating of these pathways mediates entry of each substrate to the diiron active site in a timed sequence and is coordinated by dynamic interactions with the other component proteins. The result is coupling of dioxygen consumption with hydrocarbon oxidation, avoiding unproductive oxidation of the reductant rather than the desired hydrocarbon. To initiate catalysis, the reductase delivers two electrons to the diiron(III) center by binding over the pore of the hydroxylase. The regulatory component then displaces the reductase, docking onto the same surface of the hydroxylase. Formation of the hydroxylase-regulatory component complex (i) induces conformational changes of pore residues that may bring protons to the active site; (ii) connects hydrophobic cavities in the hydroxylase leading from the exterior to the diiron active site, providing a pathway for O2 and methane, in the case of sMMO, to the reduced diiron center for O2 activation and substrate hydroxylation; (iii) closes the pore, as well as a channel in the case of four-component BMM enzymes, restricting proton access to the diiron center during formation of "Fe2O2" intermediates required for hydrocarbon oxidation; and (iv) inhibits undesired electron transfer to the Fe2O2 intermediates by blocking reductase binding during O2 activation. This mechanism is quite different from that adopted by cytochromes P450, a large class of heme-containing monooxygenases that catalyze reactions very similar to those catalyzed by the BMM enzymes. Understanding the timed enzyme control of substrate access has implications for designing artificial catalysts. To achieve multiple turnovers and tight coupling, synthetic models must also control substrate access, a major challenge considering that nature requires large, multimeric, dynamic protein complexes to accomplish this feat. PMID:26293615

  2. Quantitative determination of apigenin and its metabolism in rat plasma after intravenous bolus administration by HPLC coupled with tandem mass spectrometry.

    PubMed

    Wan, Lili; Guo, Cheng; Yu, Qi; Li, Yan; Wang, Xiangwei; Wang, Xiaolin; Chen, Chunlin

    2007-08-15

    Apigenin is a flavone and is being developed for treatment of cardiovascular disease. A sensitive and accurate quantitative detection method using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) for the measurement of apigenin and luteolin levels in rat plasma is described. Analytes were separated on a separation by a Luna C(18) (5 microm, 100 mm x 2.0 mm) column with acetonitrile:methanol:water (35:40:60, v/v/v) as a mobile phase. The eluted compounds were detected by tandem mass spectrometry. Good linearity (R(2)>0.9997) was observed for both analytes over the range of 2.5-5000 ng/mL in 0.1mL of rat plasma. The overall accuracy of this method was 93-105% for apigenin and 95-112% for luteolin in rat plasma. Intra-assay and inter-assay variabilities were less than 11% in plasma. The lowest quantitation limit for both apigenin and luteolin was 2.5 ng/mL in 0.1 mL of rat plasma. Practical utility of this new LC/MS/MS method was demonstrated in a pilot pharmacokinetic study in rats following intravenous administration of apigenin. Metabolism of apigenin to luteolin in vivo was established. PMID:17561454

  3. [Determination of chlorpyrifos' main metabolite 3,5,6-trichloro-2-pyridinol in human urine by ultra performance liquid chromatography coupled with tandem mass spectrometry].

    PubMed

    Wang, Na; Sun, Juan; Shi, Lili; Ji, Guixiang; Chen, Guosong

    2013-09-01

    A method for the determination of 3,5,6-trichloro-2-pyridinol (3,5,6-TCP) in human urine, which is the main metabolite of chlorpyrifos, has been established employing ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/ MS). The urine samples were prepared by liquid-liquid extraction with dichloromethane-ethyl acetate (20: 80, v/v) solution followed by the separation with the gradient elution of acetonitrile-water on an ACQUITY UPLC BEH C18 column. The analyte was detected by tandem mass spectrometry under the negative ion mode with the electrospray ionization (ESI) source and the selective ion recording (SIR) mode. Under the optimized conditions, the calibration curve was linear in the range of 0.005 -0.4 mg/L. The limit of detection was 0.41 microg/L. The average recovery was 97.9%. The intra- and inter-day precisions calculated with RSDs were all within 15% at each quality control (QC) level. The developed method is simple, sensitive, accurate and repeatable, which has been successfully applied to determine the exposure level of 3,5,6-TCP in the real samples of human urine. The results show that this method is supportive for the exposure assessment in human health risk analysis and monitoring the biological burden of chlorpyrifos. PMID:24392630

  4. Determination of acrylamide in food by solid-phase microextraction coupled to gas chromatography-positive chemical ionization tandem mass spectrometry.

    PubMed

    Lee, Maw-Rong; Chang, Li-Yo; Dou, Jianpeng

    2007-01-16

    A method has been developed to determine acrylamide in aqueous matrices by using direct immersion solid-phase microextraction (SPME) coupled to gas chromatography-positive chemical ionization tandem mass spectrometry (GC-PCI-MS-MS) in the selected reaction monitoring (SRM) mode. The optimized SPME experimental procedures to extract acrylamide in water solutions were: use of a carbowax/divinylbenzene (CW/DVB)-coated fiber at pH 7, extraction time of 20 min and analyte desorption at 210 degrees C for 3 min. A detection limit of 0.1 microg L(-1) was obtained. The linear range was 1-1000 microg L(-1). The relative standard deviation was 10.64% (n=7). The proposed analytical method was successfully used for the quantification of trace acrylamide in foodstuffs such as French fries (1.2 microg g(-1)) and potato crisps (2.2 microg g(-1)). PMID:17386469

  5. Analysis of chloramphenicol residues in the macroalgae Ulva lactuca through ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS).

    PubMed

    Leston, Sara; Freitas, Andreia; Nunes, Margarida; Barbosa, Jorge; Pardal, Miguel Ângelo; Ramos, Fernando

    2015-02-15

    Antibiotic use is a well-described practice to promote animal health whether for prevention or treatment. Nonetheless, it can also cause a number of potentially harmful effects that dictate the need to implement regulation to assure a reduction of hazards to the consumers and the environment. Chloramphenicol (CAP) is a broad-spectrum antibacterial excluded from use in animal food production but despite this, reports of illegal use still persist. More recently, awareness has risen that the surrounding natural ecosystems can potentially be contaminated by pharmaceuticals and the extent of their effects in non-target organisms is already under the scope of researchers. To face the demanding new challenges a methodology for the determination of CAP in the green macroalgae Ulva lactuca by ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was developed, optimized and fully validated following the guidelines of the EC Decision 2002/657. PMID:25579630

  6. Comparison of Electrospray Ionization and Atmospheric Chemical Ionization Coupled with the Liquid Chromatography-Tandem Mass Spectrometry for the Analysis of Cholesteryl Esters

    PubMed Central

    Lee, Hae-Rim; Kochhar, Sunil; Shim, Soon-Mi

    2015-01-01

    The approach of two different ionization techniques including electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was tested for the analysis of cholesteryl esters (CEs). The retention time (RT), signal intensity, protonated ion, and product ion of CEs were compared between ESI and APCI. RT of CEs from both ionizations decreased with increasing double bonds, while it increased with longer carbon chain length. The ESI process generated strong signal intensity of precursor ions corresponding to [M+Na]+ and [M+NH4]+ regardless of the number of carbon chains and double bonds in CEs. On the other hand, the APCI process produced a protonated ion of CEs [M+H]+ with a weak signal intensity, and it is selectively sensitive to detect precursor ions of CEs with unsaturated fatty acids. The ESI technique proved to be effective in ionizing more kinds of CEs than the APCI technique. PMID:25873970

  7. Elucidating collision induced dissociation products and reaction mechanisms of protonated uracil by coupling chemical dynamics simulations with tandem mass spectrometry experiments.

    PubMed

    Molina, Estefanía Rossich; Ortiz, Daniel; Salpin, Jean-Yves; Spezia, Riccardo

    2015-12-01

    In this study we have coupled mixed quantum-classical (quantum mechanics/molecular mechanics) direct chemical dynamics simulations with electrospray ionization/tandem mass spectrometry experiments in order to achieve a deeper understanding of the fragmentation mechanisms occurring during the collision induced dissociation of gaseous protonated uracil. Using this approach, we were able to successfully characterize the fragmentation pathways corresponding to ammonia loss (m/z 96), water loss (m/z 95) and cyanic or isocyanic acid loss (m/z 70). Furthermore, we also performed experiments with isotopic labeling completing the fragmentation picture. Remarkably, fragmentation mechanisms obtained from chemical dynamics simulations are consistent with those deduced from isotopic labeling. PMID:26634967

  8. Photoassisted oxidation of ruthenium(ii)-photocatalysts Ru(bpy)3(2+) and Ru(bpz)3(2+) to RuO4: orthogonal tandem photoredox and oxidation catalysis.

    PubMed

    Alpers, Dirk; Gallhof, Malte; Stark, Christian B W; Brasholz, Malte

    2016-01-01

    Common photoredox catalysts Ru(bpy)3(2+) and Ru(bpz)3(2+) are rapidly converted into Ruthenium(viii)-oxide through continuous visible light irradiation in the presence of NaIO4 or H5IO6. This hitherto unreported photoassisted catalyst oxidation was utilized in the development of tandem catalytic protocols which combine a photoredox reaction with a subsequent RuO4-mediated oxidation. The new concept was demonstrated through one-pot radical cation Diels-Alder (RCDA)/1,5-diene cyclisation sequences. PMID:26592543

  9. Tandem tracking

    Biologist Sabrina Davenport tandem tracks the Lower Missouri River during high water on June 2, 2011.  Two boats (note boat out window) tracking in tandem can detect fish effectively across a wider river and can turn to search behind wing dikes and sandbars where sturgeon can hide during h...

  10. Iron-catalysed tandem cross-dehydrogenative coupling (CDC) of terminal allylic C(sp3) to C(sp2) of styrene and benzoannulation in the synthesis of polysubstituted naphthalenes.

    PubMed

    Liu, Hua; Cao, Li; Sun, Jia; Fossey, John S; Deng, Wei-Ping

    2012-03-11

    A novel iron-catalysed tandem cross-dehydrogenative coupling and benzoannulation process was developed for the synthesis of biologically and synthetically important polysubstituted naphthalene derivatives from simple 1,2-aryl-propenes and styrenes in moderate to good yields. PMID:22307234

  11. A direct temperature-resolved tandem mass spectrometry study of cholesterol oxidation products in light-aged egg tempera paints with examples from works of art

    NASA Astrophysics Data System (ADS)

    van den Brink, Oscar F.; Ferreira, Ester S. B.; van der Horst, Jerre; Boon, Jaap J.

    2009-07-01

    Cholesterol (1) constitutes approximately 5% of the lipid fraction of eggs. The compound is therefore abundant in fresh egg tempera paints. The fate of cholesterol upon light ageing of egg tempera paint binding medium was investigated by direct temperature resolved mass spectrometry (DTMS) and tandem mass spectrometry (DTMSMS). Cholesterol oxidation products (COPs) such as 5,6-epoxycholestan-3-ol (2) and 3-hydroxycholest-5-en-7-one (3) were positively identified in light-aged egg binding medium. Given the fast rate of oxidation of cholesterol, the corresponding oxidation products are better markers for egg tempera than the cholesterol molecule itself. Cholesterol and COPs were discovered in paints on German baroque altar pieces from the 16th and 18th C and in a 20th C glaze on a Mark Rothko Seagram Mural painting at Tate by DTMS fingerprinting analysis of paint microsamples.

  12. The role of nitric oxide in neurovascular coupling.

    PubMed

    Dormanns, K; Brown, R G; David, T

    2016-04-01

    Nitric oxide (NO) is a neurotransmitter known to act as a potent cerebral vasodilator. Its role in neurovascular coupling (NVC) is discussed controversially and one of the main unanswered questions is which cell type provides the governing source of NO for the regulation of vasodynamics. Mathematical modelling can be an appropriate tool to investigate the contribution of NO towards the key components of NVC and analyse underlying mechanisms. The lumped parameter model of a neurovascular unit, including neurons (NE), astrocytes (AC), smooth muscle cells (SMC) and endothelial cells (EC), was extended to model the NO signalling pathway. Results show that NO leads to a general shift of the resting regional blood flow by dilating the arteriolar radius. Furthermore, dilation during neuronal activation is enhanced. Simulations show that potassium release is responsible for the fast onset of vascular response, whereas NO-modulated mechanisms maintain dilation. Wall shear stress-activated NO release from the EC leads to a delayed return to the basal state of the arteriolar radius. The governing source of vasodilating NO that diffuses into the SMC, which determine the arteriolar radius, depends on neuronal activation. In the resting state the EC provides the major contribution towards vasorelaxation, whereas during neuronal stimulation NO produced by the NE dominates. PMID:26796228

  13. Determination of abacavir, tenofovir, darunavir, and raltegravir in human plasma and saliva using liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Yamada, Eiko; Takagi, Ritsuo; Sudo, Koji; Kato, Shingo

    2015-10-10

    A liquid chromatography-tandem mass spectrometry assay for the determination of abacavir (ABC), tenofovir (TFV), darunavir (DRV), and raltegravir (RAL) in human plasma and saliva was developed and validated to investigate the applicability of saliva as an appropriate specimen for therapeutic drug monitoring. As internal standards, TFV was chosen for ABC, ABC was chosen for TFV, RAL for DRV, and DRV for RAL. Sample preparation involved protein precipitation with acetonitrile, evaporation of solvent using a centrifugal evaporator, and reconstitution by dissolving the residue in mobile phase. Liquid chromatography was performed on a C18 reverse phase column (1.5 × 50 mm, 5 μm) isocratically at a flow rate of 0.2 mL/min using 5mM formic acid-3% (v/v) acetonitrile as the mobile phase for ABC and TFV and 5mM formic acid-35% (v/v) acetonitrile as the mobile phase for DRV and RAL. The run time was 6 min, and the retention time was approximately 2.0 min for TFV, 2.5 min for RAL, and 4-4.5 min for ABC and DRV. Analytes were detected using tandem mass spectrometry in positive electrospray ionization mode. The precursor/product ion transitions (m/z) were 287.3/191.2 for ABC, 288.5/176.2 for TFV, 548.3/392.3 for DRV, and 445.3/109.5 for RAL, and were monitored on a triple-quadrupole mass spectrometer operated in the multiple reaction monitoring mode. The linearity of the assay was assessed in the range 1-10,000 ng/mL for all four drugs. Within-run and between-run mean accuracy, precision, and the extraction recovery for all drugs were -14.5-18.1%, 1.2-13.1%, and 86.0-111.1%, respectively. The proposed assay is sufficiently sensitive and accurate to quantify these drugs in plasma and saliva, and is suitable for investigating the relationship between drug concentrations in plasma and saliva. PMID:26112927

  14. [Determination of glufosinate residue in tea by liquid chromatography-tandem mass spectrometry coupled with precolumn derivatization].

    PubMed

    Lin, Yonghui; Liu, Zhengcai; Yang, Fang; Qiu, Yuanjin; Liu, Suzhen; Su, Zhijiao; Zhang, Qiong; Xue, Zhimin; Fang, Yu

    2012-12-01

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was established for the determination of glufosinate (GLUF) residue in tea. The GLUF was extracted with water for 30 min under ultrasonication, and cleaned-up using a C18 solid phase extraction cartridge, then derived using fluorenylmethylchloroformate (FMOC-Cl) in borate buffer for 2 h. The separation was performed on a Kinetex C18 column with the mobile phases of acetonitrile and 5 mmol/L ammonium acetate aqueous solution (containing 0.2% (v/v) formic acid) in a gradient elution mode. The identification and quantification of the GLUF were carried out by MS/MS in negative electrospray ionization (ESI(-)) and multiple reaction monitoring (MRM) mode, the quantification analysis was performed by external standard method. The calibration curve showed good linearity in the range of 2.5 - 50.0 microg/L with the correlation coefficient r2 > 0.999. The limit of quantification (LOQ) was 0.10 mg/kg. The average recoveries of GLUF spiked at 0.10, 0.50 and 1.00 mg/kg levels in tea were between 61.6% and 81.4%, and the relative standard deviations (RSDs) were between 3.2% and 8.4%. The method is simple, rapid, sensitive, accurate and suitable for the confirmation and quantification of GLUF in tea. PMID:23593883

  15. Determination of norcantharidin in mouse tissues by liquid chromatography coupled to tandem mass spectrometry and its tissue distribution study.

    PubMed

    Zhang, R; Wang, J; Yuan, G; Wei, C; Liu, X; Wang, B; Gao, H; Guo, R

    2012-06-01

    The purpose of this study is to determine the concentrations of norcantharidin (CAS NO: 5442-12-6) in mouse tissues and investigate its tissue distribution after intragastric administration of disodium norcantharidate solution. A highly sensitive and specific liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated, using ribavirin (CAS NO: 36791-04-5) as the internal standard (IS). Norcantharidin and IS were extracted from 0.3 mL tissue homogenates using protein precipitation with acetone under acid condition. The analyte was separated on a C18 reverse phase column and analyzed by MS/MS in the multiple reaction monitoring (MRM) mode using ESI with positive ionization, m/z 169?123 for norcantharidin and m/z 267?135 for IS. The developed method was validated over a linear range of concentrations 0.01~5 ?gmL - 1 in liver, lung, kidney, stomach, small intestine, uterus and testis, 0.005~0.5 ?gmL - 1 in heart, spleen and brain, the correlation coefficients (r2) were between 0.9918 and 0.9976. The tissue distribution study result was as follows: The AUC0-t of norcantharidin in tissues was in the order as follows: small intestine, stomach, uterus, kidney, testis, liver, lung, spleen, heart, brain. PMID:22473525

  16. Chromatographic behavior of 12 polar pteridines in hydrophilic interaction chromatography using five different HILIC columns coupled with tandem mass spectrometry.

    PubMed

    Xiong, Xin; Liu, Yanmeng

    2016-04-01

    Retention characteristic of 5 hydrophilic interaction chromatography (HILIC) columns, containing neutral and possibly negatively charged support (silica, diol and amide), cationic phase (triazole) and zwitterionic phase (sulfobetaine), that are commercially available were studied for the separation of a group of 12 polar pteridines. The main factors influencing the retention and selectivity of pteridines for these different HILIC systems have been studied in liquid chromatography-tandem mass spectrometry (LC-MS/MS) conditions: mobile phase composition, buffer type, pH and concentration and the separation mechanism was also investigated. Results of the effects of organic modifier, buffer pH and ion strength indicate that the retention mechanism is a mixed-mode of adsorption and ion exchange, and optimization of HILIC analyses depends on the ionization state of the analytes. For silica, diol, amide and sulfobetaine phases, hydrophilic partitioning mainly contributes to the retention, while electrostatic interactions and hydrogen-bonding should be considered to understand the elution orders for triazole phase. An zwitterionic phase (ZIC-HILIC) provided the stronger retention for all pteridines than other tested columns. PMID:26838435

  17. Determination of polycyclic aromatic hydrocarbons in soy isoflavone nutraceutical products by gas chromatography coupled to triple quadrupole tandem mass spectrometry.

    PubMed

    Ruiz-Delgado, Ana; Martínez-Domínguez, Gerardo; Romero-González, Roberto; López-Ruiz, Rosalía; Frenich, Antonia Garrido

    2016-02-01

    Thirteen polycyclic aromatic hydrocarbons have been determined in soy-based nutraceutical products. First, an optimization of extraction procedure was performed, and a solid-liquid extraction assisted by sonication and a dilute and shoot procedure were compared, selecting the dilute and shoot approach for the extraction of target compounds, utilizing a mixture of acetone/n-hexane (1:1 v/v) as extractant solvent. After this, a clean-up step was needed bearing in mind the complexity of these matrices. Dispersive solid-phase extraction, using a mixture of C18 and Zr-Sep+ (25 mg/mL each) was used. The separation was achieved by gas chromatography and detection with triple quadrupole tandem mass spectrometry. For quantification purposes, matrix-matched calibration was used. The validation was applied at three concentration levels (20, 100 and 250 μg/kg), obtaining recoveries between 70 and 120% and precision values equal to or lower than 23%. Limits of detection and quantification were below 8 and 20 μg/kg, respectively. The method was applied in 11 samples, detecting five polycyclic aromatic hydrocarbons at concentrations ranging from 4.1 to 18.5 μg/kg. PMID:26603686

  18. [Determination of 7 nipagin ester preservatives in leather by ultra performance liquid chromatography-tandem mass spectrometry coupled with gel permeation chromatographic clean-up].

    PubMed

    Wu, Gang; Zhao, Shanhong; Wu, Jianjian; Dong, Suozhuai; Guo, Fanglong; Wang, Lijun; Ye, Qingfu

    2011-06-01

    A novel method has been developed for the rapid separation and determination of 7 nipagin ester preservatives in leather by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) coupled with gel permeation chromatographic (GPC) clean-up. Nipagin ester preservatives in leather were extracted by ultrasonic extraction with methanol. The extract was dried by a rotavapor and purified by GPC, then redissolved in the solvent of methanol-water (1 : 1, v/v). The chromatographic analysis was performed on an Acquity UPLC BEH C18 column (50 mm x 2.1 mm, 1.7 microm) with a gradient elution of methanol and water as the mobile phases. The analytes were detected by electrospray ionization (ESI) tandem mass spectrometry with multiple reaction monitoring (MRM) in negative ion mode. Good linearity (r > 0.99) was observed between 0.1 and 1.0 mg/L for all the analytes. The recoveries and relative standard deviations (RSDs) were checked by spiking samples with the 7 nipagin ester preservatives at the three levels of 0.5, 1.0 and 3.0 mg/kg. The average recoveries of the 7 nipagin ester preservatives were from (79.44 +/- 5.67)% to (98.07 +/- 9.50)%. The precision values expressed as RSD ranged from 4.24% to 14.00% (n = 6). The limits of detection were 4 -12 microg/kg and the limits of quantification were 13.2 - 39.6 microg/kg for the analytes. The method is simple, rapid, sensitive and accurate, and suitable for the quantitative determination and confirmation of 7 nipagin ester preservatives in leather. PMID:22032160

  19. [Determination of eight defoliant residues in cotton by accelerated solvent extraction coupled with ultra performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Wu, Gang; Dong, Suozhuai; Pan, Lulu; Zhao, Shanhong; Wang, Lijun; Guo, Fanglong; Li, Dan

    2013-07-01

    A novel method has been developed for the rapid extraction and determination of eight defoliants including thidiazuron, butiphos, methabenzthiazuron, abscisic acid, carfentra-zone-ethyl, diuron, paraquat, and pyrithiobac-sodium in cotton by accelerated solvent extraction (ASE) coupled with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The defoliants in cotton were extracted by ASE and the extracts were dried by a rotavapor, then redissolved in the solvents of acetonitrile and water (1:9, v/v). The chromatographic analysis was performed on an Acquity UPLC HSS T3 column (50 mmx 2. 1 mm, 1. 8 microm) by a gradient elution employing of acetonitrile and 0.05% (v/v) formic acid as mobile phases. The analytes were detected by electrospray ionization (ESI) tandem mass spectrometry with multiple reaction monitoring (MRM) in positive ion mode. Good linearities (r >0.99) were observed between 0. 01 and 0. 3 mg/L for all the compounds. The recoveries and relative standard deviations (RSDs) were obtained by spiking untreated samples with the eight defoliants at 0. 1, 0. 5 and 1.0 mg/kg. The average recoveries of the eight defoliants were from (84. 18 +/- 8.04)% to (95.99 +/- 6.76)%. The precision values expressed as RSDs were from 7. 04% to 10. 60% (n = 6). The limits of detection were 0. 8 - 29 microg/kg and the limits of quantification were 2.5 - 96 1/4g/kg for the analytes. The results ahowed that the method is simple, rapid, sensitive and accurate, and is suitable for the quantitative determination and confirmation of the eight defoliants in cotton. PMID:24164041

  20. Polyamines in biological samples: Rapid and robust quantification by solid-phase extraction online-coupled to liquid chromatography–tandem mass spectrometry

    PubMed Central

    Magnes, Christoph; Fauland, Alexander; Gander, Edgar; Narath, Sophie; Ratzer, Maria; Eisenberg, Tobias; Madeo, Frank; Pieber, Thomas; Sinner, Frank

    2014-01-01

    Polyamines are ubiquitous active biogenic amines which contribute to basic cellular functions. Hence, their quantification in samples of diverse biological origins is essential for understanding how they function, especially in disease-relevant conditions. We present here a robust, high-throughput solid-phase extraction online coupled to a liquid chromatography–tandem mass spectrometry (SPE–LC/MS/MS) approach for the simultaneous quantification of eight polyamines in various biological samples. The polyamines include 1,3-diaminopropane, putrescine, cadaverin, N-acetyl-putrescine, spermidine, spermine, N1-acetyl-spermine, and l-ornithine. The novelty of the work is the use of two SPE columns online coupled to LC/MS/MS, which minimizes the sample pretreatment to a single derivatization step. The analysis is complete within 4 min, making the method highly suitable for routine clinical analysis and high throughput screenings. The method was fully validated with serum samples. Dynamic ranges were 0.03 to 15 μg/ml for ornithine and 1 to 500 ng/ml for other polyamines, which cover physiological concentrations in serum samples. Lower limits of quantification (LLoQ) were found to be between 0.1 and 5 ng/ml. As a proof of concept, we investigated gender differences in polyamine levels by analyzing the serum levels of 102 subjects. PMID:24485539

  1. Sensitive detection of β-agonists in pork tissue with novel molecularly imprinted polymer extraction followed liquid chromatography coupled tandem mass spectrometry detection.

    PubMed

    Wang, Peilong; Liu, Ximeng; Su, Xiaoou; Zhu, Ruohua

    2015-10-01

    A novel molecularly imprinted polymer micro-spheres (MIPMs) with phenylethanolamine A as the template and the p-vinylbenzoic acid as the functional monomer were synthesized for the selective absorption of clenbuterol and other β-agonists including brombuterol, bromchlorbuterol, clorprenaline and ractopamine. The absorption performances of the MIPMs were studied and the experimental results demonstrated that the extraction capacities of five β-agonists with MIPMs were about from 2.7 to 3.4 times as much as that with non-imprinted polymer micro-spheres. Based on the clean-up of five β-agonists in pork tissues with MIPMs, a sensitive determination method for five β-agonists coupled with ultra performance chromatography coupled tandem mass spectrometry detection has been developed. The limits of detection for five β-agonists were <0.02 μg/kg. The mean recoveries and repeatability of five β-agonists in pork tissues varied from 70.0% to 116.0% and from 2.5% to 10.4%, respectively. The developed method was successfully applied to analysis of 22 real pork tissues samples. PMID:25872428

  2. A quantitative assay for reductive metabolism of a pesticide in fish using electrochemistry coupled with liquid chromatography tandem mass spectrometry.

    PubMed

    Bussy, Ugo; Chung-Davidson, Yu-Wen; Li, Ke; Li, Weiming

    2015-04-01

    This is the first study to use electrochemistry to generate a nitro reduction metabolite as a standard for a liquid chromatography-mass spectrometry-based quantitative assay. This approach is further used to quantify 3-trifluoromethyl-4-nitrophenol (TFM) reductive metabolism. TFM is a widely used pesticide for the population control of sea lamprey (Petromyzon marinus), an invasive species of the Laurentian Great Lakes. Three animal models, sea lamprey, lake sturgeon (Acipenser fulvescens), and rainbow trout (Oncorhynchus mykiss), were selected to evaluate TFM reductive metabolism because they have been known to show differential susceptibilities to TFM toxicity. Amino-TFM (aTFM; 3-trifluoromethyl-4-aminophenol) was the only reductive metabolite identified through liquid chromatography-high-resolution mass spectrometry screening of liver extracts incubated with TFM and was targeted for electrochemical synthesis. After synthesis and purification, aTFM was used to develop a quantitative assay of the reductive metabolism of TFM through liquid chromatography and tandem mass spectrometry. The concentrations of aTFM were measured from TFM-treated cellular fractions, including cytosolic, nuclear, membrane, and mitochondrial protein extracts. Sea lamprey extracts produced the highest concentrations (500 ng/mL) of aTFM. In addition, sea lamprey and sturgeon cytosolic extracts showed concentrations of aTFM substantially higher than those of rainbow trout. However, other fractions of lake sturgeon extracts tend to show aTFM concentrations similar to those of rainbow trout but not with sea lamprey. These data suggest that the level of reductive metabolism of TFM may be associated with the sensitivities of the animals to this particular pesticide. PMID:25730707

  3. Robust analysis of underivatized free amino acids in soil by hydrophilic interaction liquid chromatography coupled with electrospray tandem mass spectrometry.

    PubMed

    Gao, Jiajia; Helmus, Rick; Cerli, Chiara; Jansen, Boris; Wang, Xiang; Kalbitz, Karsten

    2016-06-01

    Amino acids are an important and highly dynamic fraction of organic N in soils and their determination in soil without derivatization is challenging due to the difficulties in separation and detection of trace amounts of these polar analytes. In the present work, we developed an analytical method to quantify 20 free amino acids in aqueous soil extracts without derivatization. The method employed hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) technique combined with a cation exchange solid phase extraction (SPE). Four stable isotope labelled amino acids were used as internal standards to improve the method performance. Good separation of 20 underivatized amino acids was achieved within 12min. The limit of detection (LODs) and limit of quantification (LOQs) were in the range of 13-384ngg(-1) and 43-1267ngg(-1) (dry soil basis), respectively. The results showed that overall recoveries with high precision were obtained for the extracted free amino acids from ten different soils. The overall recoveries of 18 amino acids were similar for the ten soils used, which differed substantially in organic C content and in other properties as soil texture and pH. For most of the amino acids, the average recoveries from soil extracts were between 74% and 117%, with the exception of Met (31%), Pro (52%) and Arg (68%). Variability was within acceptable limits (relative standard deviations were between 4% and 13%), with the exception of Met (relative standard deviation=90%) and Arg (relative standard deviation=53%). Thus the proposed method with high throughout and high analyte specificity shows great promise for consistent analysis of free amino acids extracted from soils and offers new horizons for the analysis of amino acids in terrestrial and aquatic ecosystem. PMID:27157424

  4. A Proteomic View of Desulfovibrio Vulgaris Metabolim as Determined by Liquid Chromatography Coupled with Tandem Mass Spectrometry

    SciTech Connect

    Zhang, Weiwen; Gritsenko, Marina A.; Moore, Ronald J.; Culley, David E.; Nie, Lei; Petritis, Konstantinos; Strittmatter, Eric F.; Camp, David G.; Smith, Richard D.; Brockman, Fred J.

    2006-08-15

    Direct liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to examine the proteins from Desulfovibrio vulgaris grown at exponential or stationary phase on a minimal medium containing either lactate or formate as the primary carbon source, with the goal of an initial characterization of the diversity of proteins synthesized under these conditions. Across all four growth conditions, 976 gene products were identified with high confidence, which is equal to approximately 28% of all predicted proteins in the D. vulgaris genome. Among these, fifty-two out of 55 predicted ribosomal proteins (~95%) were identified with high confidence. Functional analysis showed that the proteins identified were distributed among almost all functional classes, with the energy metabolism category containing the greatest number of identified proteins. At least 154 open reading frames (ORFs) originally annotated as hypothetical proteins were found to encode expressed proteins, which provided verification for the authenticity of these hypothetical proteins. Proteomic analysis showed that members of the proton gradient pathway, catalyzed by alcohol dehydrogenases and heterodisulfide reductases, and [NiFe] hydrogenase (HynAB-1) of the hydrogen cycling pathway were highly expressed in all four growth conditions, suggesting they may be the primary pathways for ATP synthesis in D. vulgaris. Most of the enzymes involved in substrate-level phosphorylation were also detected in all tested conditions. However, no enzyme involved in CO cycling or formate cycling was detected, suggesting these are not the primary pathways for ATP biosynthesis under the tested conditions. This study provides the first proteomic overview of the cellular metabolism of D. vulgaris.

  5. Determination of ultratrace levels of tributyltin in waters by isotope dilution and gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Rodríguez-Cea, Andrés; Rodríguez-González, Pablo; Font Cardona, Nuria; Aranda Mares, José Luís; Ballester Nebot, Salomé; García Alonso, J Ignacio

    2015-12-18

    The current EU legislation lays down the Environmental Quality Standards (EQS) of 45 priority substances in surface water bodies. In particular, the concentration of tributyltin (TBT) must not exceed 0.2ngL(-1) and analytical methodologies with a Limit of Quantification (LOQ) equal or below 0.06ngL(-1) are urged to be developed. This work presents a procedure for the determination of ultratrace levels of TBT in water samples by Isotope Dilution and GC-MS/MS operating in Selected Reaction Monitoring (SRM) mode which meets current EU requirements. The method requires the monitorization of five consecutive transitions (287>175 to 291>179) for the sensitive and selective detection of TBT. The measured isotopic distribution of TBT fragment ions was in agreement with the theoretical values computed by a polynomial expansion algorithm. The combined use of Tandem Mass Spectrometry, a sample volume of 250mL, the preconcentration of 1mL of organic phase to 30μL and an injection volume of 25μL by Programmed Temperature Vaporization provided a LOQ of 0.0426ngL(-1) for TBT (calculated as ten times the standard deviation of nine independent blanks). The recovery for TBT calculated in Milli-Q water at the EQS level was 106.3±4%. A similar procedure was also developed for the quantification of dibutyltin (DBT) and monobutyltin (MBT) in water samples showing satisfactory results. The method was finally implemented in a routine testing laboratory to demonstrate its applicability to real samples obtaining quantitative recoveries for TBT at the EQS level in mineral water, river water and seawater. PMID:26614170

  6. Coupled biotic-abiotic Mn(II) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides

    NASA Astrophysics Data System (ADS)

    Learman, D. R.; Wankel, S. D.; Webb, S. M.; Martinez, N.; Madden, A. S.; Hansel, C. M.

    2011-10-01

    Manganese (Mn) oxides are among the strongest oxidants and sorbents in the environment, impacting the transport and speciation of metals, cycling of carbon, and flow of electrons within soils and sediments. The oxidation of Mn(II) to Mn(III/IV) oxides has been primarily attributed to biological processes, due in part to the faster rates of bacterial Mn(II) oxidation compared to observed mineral-induced and other abiotic rates. Here we explore the reactivity of biogenic Mn oxides formed by a common marine bacterium ( Roseobacter sp. AzwK-3b), which has been previously shown to oxidize Mn(II) via the production of extracellular superoxide. Oxidation of Mn(II) by superoxide results in the formation of highly reactive colloidal birnessite with hexagonal symmetry. The colloidal oxides induce the rapid oxidation of Mn(II), with dramatically accelerated rates in the presence of organics, presumably due to mineral surface-catalyzed organic radical generation. Mn(II) oxidation by the colloids is further accelerated in presence of both organics and light, implicating reactive oxygen species in aiding abiotic oxidation. Indeed, the enhancement of Mn(II) oxidation is negated when the colloids are reacted with Mn(II) in the presence of superoxide dismutase, an enzyme that scavenges the reactive oxygen species (ROS) superoxide. The reactivity of the colloidal phase is short-lived due to the rapid evolution of the birnessite from hexagonal to pseudo-orthogonal symmetry. The secondary particulate triclinic birnessite phase exhibits a distinct lack of Mn(II) oxidation and subsequent Mn oxide formation. Thus, the evolution of initial reactive hexagonal birnessite to non-reactive triclinic birnessite imposes the need for continuous production of new colloidal hexagonal particles for Mn(II) oxidation to be sustained, illustrating an intimate dependency of enzymatic and mineral-based reactions in Mn(II) oxidation. Further, the coupled enzymatic and mineral-induced pathways are linked such that enzymatic formation of Mn oxide is requisite for the mineral-induced pathway to occur. Here, we show that Mn(II) oxidation involves a complex network of abiotic and biotic processes, including enzymatically produced superoxide, mineral catalysis, organic reactions with mineral surfaces, and likely photo-production of ROS. The complexity of coupled reactions involved in Mn(II) oxidation here highlights the need for further investigations of microbially-mediated Mn oxide formation, including identifying the role of Mn oxide surfaces, organics, reactive oxygen species, and light in Mn(II) oxidation and Mn oxide phase evolution.

  7. Copper-catalyzed oxidative homo- and cross-coupling of Grignard reagents using diaziridinone.

    PubMed

    Zhu, Yingguang; Xiong, Tao; Han, Wenyong; Shi, Yian

    2014-12-01

    Transition-metal-catalyzed cross-coupling reactions are among the most powerful synthetic transformations. This paper describes an efficient copper-catalyzed homo- and cross-coupling of Grignard reagents with di-tert-butyldiaziridinone as oxidant under mild conditions, giving the coupling products in good to excellent yields. The reaction process has a broad substrate scope and is also effective for the C(sp)-C(sp(3)) coupling. PMID:25420218

  8. Cu(I)-Catalyzed Tandem Reaction of Carbene Coupling and Horner-Wadsworth-Emmons Type Olefination: Access toward Enynes.

    PubMed

    Zhou, Yujing; Ye, Fei; Zhou, Qi; Zhang, Yan; Wang, Jianbo

    2016-05-01

    A novel strategy to synthesize 1,3-enynes has been successfully developed based on Cu(I)-catalyzed cross-coupling of α-diazo phosphonates and alkynes with a subsequent Horner-Wadsworth-Emmons (HWE) type reaction. This method provides straightforward access to conjugated enynes with high efficiency, good stereoselectivity and excellent functional group compatibility. Copper(I) carbene migratory insertion plays a crucial role in this transformation. PMID:27115055

  9. Electronic structure and magnetic coupling in copper oxide superconductors

    SciTech Connect

    Wang, Y.J. ); Newton, M.D. ); Davenport, J.W. )

    1992-11-01

    The electronic structure and magnetic coupling in La{sub 2}CuO{sub 4} and Nd{sub 2}CuO{sub 4} have been analyzed using the results of all-valence-electron calculations for (Cu{sub 2}O{sub 11}){sup 18{minus}}, (Cu{sub 4}O{sub 12}){sup 16{minus}}, and (Cu{sub 4}O{sub 20}){sup 32{minus}} clusters, and their {ital p}- and {ital n}-doped variants, embedded in a Madelung potential to represent the crystal environment. The calculations employ the semiempirical incomplete neglect of differential overlap (INDO) method, which is parametrized on the basis of atomic and molecular spectroscopic data, but which makes use of no data from copper oxide materials. The energies of the low-lying cluster spin states are fitted to a Heisenberg Hamiltonian and yield values of {ital J} (134 meV for La{sub 2}CuO{sub 4} and 117 meV for Nd{sub 2}CuO{sub 4}) in close agreement with experiment. The evaluation of {ital J} can be compactly represented in terms of the parameters ({ital t}, {ital U}, and {ital V}) of a one-band Hamiltonian that controls resonance among covalent and ionic valence-bond structures. The resonance mixing is achieved by configuration interaction (CI) among valence-band structures defined in terms of localized molecular orbitals (LMO's) obtained from self-consistent field (SCF) INDO calculations. {ital P} doping is found to involve strong hybridization of the 2{ital p}{sigma} orbitals of the in-plane oxygen ions and the 3{ital d}{sub {ital x}}{sup 2}{minus}{ital y}{sup 2} orbitals of the Cu ions, and the resulting holes are predominantly ({similar to}60%) located in the 2{ital p}{sigma} orbitals. The lowest-energy {ital n}-doped cluster states involve addition of electrons to the 4{ital s}/4{ital p} Cu atom manifolds. However, the separation of these states from low-spin (3{ital d}{sup 10}) alternatives is uncertain because of apparent sensitivity to the representation of the crystal potential, as found by Martin.

  10. Residue determination of glufosinate in plant origin foods using modified Quick Polar Pesticides (QuPPe) method and liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Han, Yongtao; Song, Le; Zhao, Pengyue; Li, Yanjie; Zou, Nan; Qin, Yuhong; Li, Xuesheng; Pan, Canping

    2016-04-15

    A sensitive and specific method for the determination of glufosinate in plant origin foods was developed. The method involves extraction using modified QuPPe method, clean-up by multi-walled carbon nanotubes (MWCNTs), derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) and detection with liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The method was validated on twelve matrices spiked at 10 or 20, 100 and 500 μg/kg. The recovery ranged from 80% to 108% with intra-day RSDs (n=5) of 0.6-9.8% and inter-day RSDs (n=15) of 3.0-9.4%. Good linearities (R(2)⩾0.9991) were obtained for all matrices. The limit of detection (LOD) and limit of quantification (LOQ) for the selected matrices ranged from 0.3 to 3.3 μg kg(-1) and from 1 to 10 μg kg(-1), respectively. The method was demonstrated to be reliable and sensitive for the routine monitoring of glufosinate in plant origin foods. PMID:26617010

  11. Two-dimensional liquid chromatography coupled to tandem mass spectrometry for vitamin D metabolite profiling including the C3-epimer-25-monohydroxyvitamin D3.

    PubMed

    Mena-Bravo, A; Priego-Capote, F; Luque de Castro, M D

    2016-06-17

    A method based on automated on-line solid phase extraction coupled to two-dimensional liquid chromatography with tandem mass spectrometry detection (SPE-2DLC-MS/MS) is here reported for vitamin D metabolite profiling in human serum with absolute quantitation. Two-dimensional LC was configured with two complementary analytical columns, pentafluorophenyl (PFP) and C18 phases, for determination of 25 hydroxyvitamin D3 epimers and the resting bioactive metabolites of vitamin D (D3 and D2)-25-hydroxyvitamin D2, 1,25-dihydroxyvitamin D3, 1,25-dihydroxyvitamin D2 and 24,25-dihydroxyvitamin D3. Quantitative determination was supported on the use of a stable isotopic labelled internal standard for each analyte and the resulting method was validated by analysis of a standard reference material certified by the National Institute of Standards & Technology (NIST-972a) and 5 samples provided by the vitamin D External Quality Assurance Scheme (DEQAS). The limits of detection were between 9 and 90pg/mL for the eight analytes, and precision, expressed as relative standard deviation, was lower than 11.6%. Two-dimensional LC has shown to be the key to discriminate between 25 hydroxyvitamin D3 epimers in a quantitative analysis also involving dihydroxyvitamin D metabolites. PMID:27180887

  12. Automated hollow-fiber liquid-phase microextraction coupled with liquid chromatography/tandem mass spectrometry for the analysis of aflatoxin M₁ in milk.

    PubMed

    Huang, Siming; Hu, Du; Wang, Ying; Zhu, Fang; Jiang, Ruifen; Ouyang, Gangfeng

    2015-10-16

    An automated hollow fiber liquid-phase microextraction (HF-LPME) coupled with liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed for the extraction and determination of aflatoxin M1 (AFM1) in milk samples. Parameters affecting the extraction efficiency, such as the extraction phase, matrix conditions, extraction time and temperature, were investigated. Under the optimal conditions (ratio of water to milk, 4:1; extraction time, 50 min; extraction temperature, 50°C; extraction phase, 50 mg L(-1) anti-AFM1 antibody in PBS buffer solution; volume of HCl solution, 250 μL; agitation speed, 250 rpm), the matrix-matched calibration curve for AFM1 determination showed good linearity in the range of 0.25-5 μg kg(-1). The enrichment factor (EF) reached 48, and the limits of detection and quantification were 0.06 and 0.21 μg kg(-1), respectively. The developed method was successfully applied for the extraction of AFM1 from spiked milk samples, with recoveries from 61.0% to 106.7%. The method was highly specific to AFM1 analysis, and the results demonstrated that the method can be automated, inexpensive, and free from interference. PMID:26365912

  13. Application of QuEChERS based method for the determination of pesticides in nutraceutical products (Camellia sinensis) by liquid chromatography coupled to triple quadrupole tandem mass spectrometry.

    PubMed

    Martínez-Domínguez, Gerardo; Nieto-García, Antonio José; Romero-González, Roberto; Frenich, Antonia Garrido

    2015-06-15

    A QuEChERS (quick, easy, cheap, effective, rugged, and safe) based method has been evaluated and validated for the determination and quantification of approximately 100 LC-amenable pesticides in nutraceutical products obtained from green tea (Camellia sinensis). Extraction was performed with acidified acetonitrile (acetic acid 1% (v/v)), and additional clean-up steps were not necessary. Pesticides determination was achieved using ultra high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS). Total running time was 11 min. Pesticides were quantified using matrix-matched calibration. Recoveries ranged from 70% to 117% and relative standard deviation (RSD) was lower than 20% at concentration levels of 25, 50 and 100 μg/kg for intra-day precision and equal or lower than 25% for inter-day precision. Limits of quantification (LOQ) were equal or lower than 25 μg/kg. The validated method was applied to commercial nutraceutical products, detecting acetamiprid (56 μg/kg) and carbendazim (13 μg/kg) in two samples. PMID:25660875

  14. Depletion study of enrofloxacin and its metabolite ciprofloxacin in edible tissues and feathers of white leghorn hens by liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    San Martn, B; Cornejo, J; Iragen, D; Hidalgo, H; Anadn, A

    2007-08-01

    To ensure delivery of safe foods to consumers, withdrawal times for drugs must be respected according to the maximum residual limits established by regulatory agencies. Because of availability and price, feather meal is currently incorporated into animal feed as a protein source for farm species. Few data are available on residual drugs in feathers from treated animals. A depletion study was performed with laying hens treated intramuscularly with 5% enrofloxacin (Enromic) at 10 mg/kg body weight over 3 days. Thirty-three birds were treated and slaughtered at different times between 6 and 216 h after treatment; and samples of muscle plus skin, liver, kidney, and feathers were collected. High-performance liquid chromatography coupled with a tandem mass spectrometry method was validated before sample analysis to determine the decision limit, detection capability, recovery, and precision. Liver was the edible tissue with the slowest drug depletion. A withdrawal time of 6 days was calculated based on European Union maximum residual limits (100 microg/kg). A withdrawal time of 9 days was calculated based on Japan maximum residual limits (10 microg/kg). Enrofloxacin plus ciprofloxacin concentrations in feathers remained high through all sampling periods. Thus, feathers from treated animals should not be fed to food-producing animals. PMID:17803156

  15. Identification of Polish cochineal (Porphyrophora polonica L.) in historical textiles by high-performance liquid chromatography coupled with spectrophotometric and tandem mass spectrometric detection.

    PubMed

    Lech, Katarzyna; Jarosz, Maciej

    2016-05-01

    The present work reports a method for identification of Polish cochineal (Porphyrophora polonica L.) in historical fabrics by the use of high-performance liquid chromatography coupled with diode array and tandem mass spectrometric detection with electrospray ionization (HPLC-DAD-ESI MS/MS). This hyphened technique allows detection and identification of 16 new minor colorants present in the discussed scale insect (including two previously observed by Wouters and Verhecken (Ann Soc Entomol Fr. 1989;25:393-410), but specified only as compounds of unknown structures) that do not occur (e.g., in American cochineal). The MS/MS experiments, complemented with UV-VIS data, enable identification of mono- and di-, C- and O-hexosides of kermesic and flavokermesic acids or their derivatives. The present paper introduces a fingerprint of color compounds present in Polish cochineal and defines them, particularly pp6 (ppI, O-hexoside of flavokermesic acid), as its markers allow distinguishing of Polish-cochineal reds from the American ones. Usefulness of the selected set of markers for identification of Polish cochineal has been demonstrated in the examination of textiles from the collection of the National Museum in Warsaw using the multiple reaction monitoring (MRM) method, originally elaborated on the basis of this study. PMID:26935929

  16. Identification of sulforhodamine B photodegradation products present in nonpermanent tattoos by micro liquid chromatography coupled with tandem high-resolution mass spectrometry.

    PubMed

    Gosetti, Fabio; Bolfi, Bianca; Marengo, Emilio

    2015-06-01

    This article deals with the photodegradation of sulforhodamine B, a dye widely used in nonpermanent tattoos. Degradation evidence was obtained from both aqueous and sweat-simulating solutions of the dye after 9 days of Solarbox irradiation. The identification of the degradation products was achieved using a nontarget approach. For this purpose, a micro liquid chromatography method coupled with tandem high-resolution mass spectrometry was developed. In addition, the chemical structures of five degradation products and two dye impurities were elucidated. The degradation products were the same for both types of solution, whereas the degradation rate of the dye in sweat-simulating solution was slightly faster than that in aqueous solution. The method was also applied to samples of tattooed pigskin subjected to irradiation, in order to better simulate the irradiation effects on the dye used on the skin. None of the degradation products found in the sulforhodamine B solutions were identified in the degraded tattooed pigskin samples, but a new signal at m/z 637.3051 (positive ionization) was found, and the structure of the corresponding molecule was elucidated. The mutagenicity of the photodegradation products was evaluated using a quantitative structure-activity relationship approach, which gave negative results for all the structures elucidated. Graphical Abstract Comparison between tattoed pigskin before and after photodegration process. Strategies for the identification of sulforhodamine B degradation products. PMID:25939426

  17. A multi-residue method for determination of 70 organic micropollutants in surface waters by solid-phase extraction followed by gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Terzopoulou, Evangelia; Voutsa, Dimitra; Kaklamanos, George

    2015-01-01

    A multi-residue method, based on gas chromatography coupled to tandem mass spectrometry (GC-MS/MS), has been developed for the determination of 70 organic micropollutants from various chemical classes (organochlorinated, organophosphorous, triazines, carbamate and urea, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pharmaceuticals, phenols, etc.) in surface waters. A single-step SPE extraction using OASIS HLB cartridges was employed for the recovery of target micropollutants. The method has been validated according to monitoring performance criteria of the Water Framework Directive, taking into account the approved guidelines on quality assurance and quality control. The recoveries ranged from 60 to 110 %, the coefficient of variation from 0.84 to 27.4 %, and the uncertainty from 6 to 37 %. The LOD varied from 6.0 to 40 ng/L. The limits of quantification for the priority pollutants anthracene, alachlor, atrazine, benzo(a)pyrene, chlorfenvinphos, diuron, isoproturon, nonylphenol, simazine, and terbutryn fulfill the criterion of <30 % of the relevant environmental standards. The method was employed to investigate the water quality in the basin of a transboundary river, Strymonas, in NE Greece during three sampling campaigns conducted in the year 2013. Thirty-nine compounds were detected in the river water. Metolachlor, diuron, isoproturon, salicylic acid, chlorfenvinphos, 1,2-benzanthracene, pyrene, diflubenzuron, and carbaryl exhibited the highest detection frequencies. PMID:25109470

  18. Quantitative determination of nine urinary metabolites of organophosphate flame retardants using solid phase extraction and ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS).

    PubMed

    Kosarac, Ivana; Kubwabo, Cariton; Foster, Warren G

    2016-03-01

    Over the last few years, the use of organophosphate flame retardants (OPFRs) has been on the rise; however, there are knowledge gaps in both the human health effects of OPFRs and levels of human exposure. Currently, human biomonitoring data on the levels of OPFR metabolites in the Canadian population are still non-existent. Herein we describe a novel method to measure nine urinary OPFR metabolites using solid phase extraction and ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). The method detection limits were between 0.08 and 0.25ng/mL for target metabolites. The newly developed and validated method was applied to the analysis of 24 urine samples collected in 2010-12 from pregnant Canadian women. The most frequently detected OPFR metabolite in urine of study participants (detection frequency: 97%) was diphenyl phosphate (DPHP), with concentrations ranging between <0.13-25.2ng/mL, followed (75%) by the sum of two metabolites (DoCP: Di-o-cresyl phosphate and DpCP: Di-p- cresyl phosphate) of tricresyl phosphate, with concentrations between <0.13-4.38ng/mL. With the exception of desbutyl-tris-(2-butoxy-ethyl) phosphate which was not detected in any of the samples, all other OPFR metabolites measured were found among study participants with variable detection frequency, suggesting pregnant Canadian women may be exposed to OPFRs. PMID:26869296

  19. Structural Characterization of New Peptide Variants Produced by Cyanobacteria from the Brazilian Atlantic Coastal Forest Using Liquid Chromatography Coupled to Quadrupole Time-of-Flight Tandem Mass Spectrometry.

    PubMed

    Sanz, Miriam; Andreote, Ana Paula Dini; Fiore, Marli Fatima; Dörr, Felipe Augusto; Pinto, Ernani

    2015-06-01

    Cyanobacteria from underexplored and extreme habitats are attracting increasing attention in the search for new bioactive substances. However, cyanobacterial communities from tropical and subtropical regions are still largely unknown, especially with respect to metabolite production. Among the structurally diverse secondary metabolites produced by these organisms, peptides are by far the most frequently described structures. In this work, liquid chromatography/electrospray ionization coupled to high resolution quadrupole time-of-flight tandem mass spectrometry with positive ion detection was applied to study the peptide profile of a group of cyanobacteria isolated from the Southeastern Brazilian coastal forest. A total of 38 peptides belonging to three different families (anabaenopeptins, aeruginosins, and cyanopeptolins) were detected in the extracts. Of the 38 peptides, 37 were detected here for the first time. New structural features were proposed based on mass accuracy data and isotopic patterns derived from full scan and MS/MS spectra. Interestingly, of the 40 surveyed strains only nine were confirmed to be peptide producers; all of these strains belonged to the order Nostocales (three Nostoc sp., two Desmonostoc sp. and four Brasilonema sp.). PMID:26096276

  20. Identification of metabolites of PSORALEAE FRUCTUS in rats by ultra performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry analysis.

    PubMed

    Wang, Pei-le; Yao, Zhi-hong; Zhang, Feng-xiang; Shen, Xiu-yu; Dai, Yi; Qin, Ling; Yao, Xin-sheng

    2015-08-10

    The fruit of Psoralea corylifolia (Psoraleae Fructus) is a traditional Chinese medicine (TCM), which has been used to prevent and treat vitiligo, psoriasis, and osteoporosis in China for thousands of years. Phytochemical investigation on Psoraleae Fructus, as well as some metabolism research focused on pharmacokinetics of several single compounds from this plant, has been reported. However, the effective material of Psoraleae Fructus is still unknown. In the present study, the metabolic fate of multiple components of Psoraleae Fructus in rats was investigated by ultra performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS). Based on a three-step strategy, a total of 142 Psoraleae Fructus-related xenobiotics were identified or tentatively characterized in rat biofluids after oral administration of six representative single compounds and Psoraleae Fructus extract. All six different types of constituents of Psoraleae Fructus, including furocoumarin, coumestan, isoflavone, flavanone, chalcone and monoterpene phenol, could be absorbed into the circulation system. In addition, compared with the metabolism of six representative single compounds, different metabolic fate was observed after oral administration of Psoraleae Fructus extract, which indicated that the drug-drug interactions occurred when fed by multi-component herbal extract, and the investigations only focused on several main components were not sufficient to represent and reflect the overall efficacy of plants. The present study will be conducive to further pharmacological mechanism research on Psoraleae Fructus. PMID:25951619

  1. Direct and sensitive determination of glyphosate and aminomethylphosphonic acid in environmental water samples by high performance liquid chromatography coupled to electrospray tandem mass spectrometry.

    PubMed

    Guo, Hongyue; Riter, Leah S; Wujcik, Chad E; Armstrong, Daniel W

    2016-04-22

    A novel method based on high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) was developed for the sensitive determination of glyphosate and its major degradation product, AMPA in environmental water samples. The method involves the use of MS compatible mobile phases (0.1% formic acid in water and acetonitrile) for HPLC and direct analysis of water samples without sample derivatization. The method has been validated in different types of water matrices (drinking, surface and groundwater) by accuracy and precision studies with samples spiked at 0.1, 7.5 and 90ppb. All mean accuracy values ranged from 85% to 112% for glyphosate and AMPA using both primary and secondary quantitative ion transitions (RSD≤10%). Moreover, both primary and secondary ion transitions for glyphosate and AMPA can achieve the quantitation limits at 0.1ppb. The linear dynamic range of the calibration curves were from 0.1 to 100ppb for each analyte at each ion transitions with correlation coefficient higher than 0.997. PMID:26993781

  2. Robust method for the analysis of phytochelatins in rice by high-performance liquid chromatography coupled with electrospray tandem mass spectrometry based on polymeric column materials.

    PubMed

    Yu, Shasha; Bian, Yingfang; Zhou, Rong; Mou, Renxiang; Chen, Mingxue; Cao, Zhaoyun

    2015-12-01

    A sensitive and robust high-performance liquid chromatography coupled with electrospray tandem mass spectrometry method for the identification and quantification of glutathione and phytochelatins from rice was developed. Homogenized samples were extracted with water containing 100 mM dithiothreitol, and solid-phase extraction using polymer anion exchange resin was employed for sample purification. Chromatography was performed on a polymeric column with acetonitrile and water containing 0.1% formic acid as the mobile phase at the flow rate of 300 μL/min. The limit of quantitation was 6-100 nM. This assay showed excellent linearity for both glutathione and phytochelatins over physiological normal ranges, with correlation coefficients (r) > 0.9976. Recoveries for four biothiols were within the range of 76-118%, within relative standard deviations less than 15%. The intraday precision (n = 7) was 2.1-13.3%, and the interday precision over 15 days was 4.3-15.2%. The optimized method was applied to analyze tissue samples from rice grown using nutrient solutions with three different cadmium concentrations (0, 50, and 100 μM). With increasing cadmium concentrations, the content of phytochelatin 2 and phytochelatin 3 in rice roots increased, in contrast to most phytochelatins, and the content of glutathione in rice stems and roots decreased significantly. PMID:26541262

  3. Elucidating the structure of carbon nanoparticles by ultra-performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Hu, Qin; Meng, Xiangpeng; Choi, Martin M F; Gong, Xiaojuan; Chan, Wan

    2016-03-10

    A fast and accurate ultra-performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) method was developed for the separation and structural elucidation of fluorescent carbon nanoparticles (CNP). The CNP was synthesised from microwave-assisted pyrolysis of citric acid (CA) and 1,2-ethylenediamine (EDA). By using UPLC separation, the CNP product was well separated into ten fractions within 4.0 min. Based on high-accuracy MS and MS/MS analyses, the CNP species were revealed to display six kinds of chemical formulas, including (C10H20N4O5)n, (C8H12N2O5)n, (C16H22N4O9)n, (C6H8O7)n, (C14H18N2O11)n, and (C14H16N2O10)n. In particular, our study revealed for the first time that the CNP species exist as supramolecular clusters with their individual monomers units linked together through non-covalent bonding forces. These findings clearly indicated the usefulness of UPLC-ESI-Q-TOF-MS/MS in identifying the chemical composition of CNP product. It is anticipated that our proposed methodology can be applied to study the structure-property relationships of CNP, facilitating in the production of CNP with desirable spectral features. PMID:26893091

  4. Development of an online microbore hollow fiber enzyme reactor coupled with nanoflow liquid chromatography-tandem mass spectrometry for global proteomics.

    PubMed

    Kim, Jin Yong; Lee, Sun Young; Kim, Sook-Kyung; Park, Sang Ryoul; Kang, Dukjin; Moon, Myeong Hee

    2013-06-01

    In this study, we report the development of a microbore hollow fiber enzyme reactor (mHFER) coupled to nanoflow liquid chromatography-tandem mass spectrometry (nLC-ESI-MS/MS) for the online digestion or selective enrichment of glycopeptides and analysis of proteins. With mHFER, enzymatic digestion of protein could be achieved by continuous flow within a very small volume (~10 μL) of mHF inserted in a PEEK tube. Digested peptides exited through the pores of the hollow fiber membrane wall to external single or multiplexed trap columns for nLC-ESI-MS/MS analysis. Evaluation of online mHFER-nLC-ESI-MS/MS system was made with bovine serum albumin (BSA) by varying the temperature of digestion and the amount of protein injected. We evaluated the ability of the mHFER system to enrich glycopeptides by injecting a mixture of lectin (concanavalin A) and digested peptides from α-1-acid glycoprotein (AGP) into the mHFER, followed by delivery of PNGase F for endoglycosidic digestion. Nonglycosylated peptides unbound to lectins eluted at the first breakthrough run while N-linked glycopeptides eluted after the endoglycosidic digestion. The developed method was applied to urine samples from patients with prostate cancer and controls; 67 N-linked glycopeptides were identified and relative differences in glycopeptide content between patient and control samples were determined. PMID:23634719

  5. Rapid analysis of long-chain glycolipids in heterocystous cyanobacteria using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry.

    PubMed

    Bauersachs, Thorsten; Hopmans, Ellen C; Compaoré, Justine; Stal, Lucas J; Schouten, Stefan; Damsté, Jaap S Sinninghe

    2009-05-01

    Under nitrogen-depleted conditions, N2-fixing cyanobacteria of the order Nostocales and Stigonematales differentiate vegetative cells into heterocysts. The cell envelope of these specialized cells contains unique glycolipids, consisting of a sugar moiety glycosidically bound to long-chain diols, triols and hydroxyketones. Only few reports have been published on these glycolipids in cultured cyanobacteria and none has reported them in natural environments. Here we show that heterocyst glycolipids can be rapidly and sensitively analyzed using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC/ESI-MS2). Positive ion mass spectra of the glycolipids consisted of protonated molecules and diagnostic product ions, indicating losses of sugar groups as well as hydroxyl and carbonyl functionalities from an alkyl chain. Using this method, heterocyst glycolipids were for the first time identified in a natural ecosystem, i.e., a microbial mat from the North Sea barrier island Schiermonnikoog, The Netherlands. This technique will facilitate the quick screening of cyanobacterial cultures and natural environments for the presence of heterocyst glycolipids, which may aid in assessing the role of heterocystous cyanobacteria in the global nitrogen cycle. PMID:19347866

  6. Multi-residue enantiomeric analysis of pharmaceuticals and their active metabolites in the Guadalquivir River basin (South Spain) by chiral liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    López-Serna, Rebeca; Kasprzyk-Hordern, Barbara; Petrović, Mira; Barceló, Damià

    2013-07-01

    This paper describes the development and application of a multi-residue chiral liquid chromatography coupled with tandem mass spectrometry method for simultaneous enantiomeric profiling of 18 chiral pharmaceuticals and their active metabolites (belonging to several therapeutic classes including analgesics, psychiatric drugs, antibiotics, cardiovascular drugs and β-agonists) in surface water and wastewater. To the authors' knowledge, this is the first time an enantiomeric method including such a high number of pharmaceuticals and their metabolites has been reported. Some of the pharmaceuticals have never been studied before in environmental matrices. Among them are timolol, betaxolol, carazolol and clenbuterol. A monitoring programme of the Guadalquivir River basin (South Spain), including 24 sampling sites and five wastewater treatment plants along the basin, revealed that enantiomeric composition of studied pharmaceuticals is dependent on compound and sampling site. Several compounds such as ibuprofen, atenolol, sotalol and metoprolol were frequently found as racemic mixtures. On the other hand, fluoxetine, propranolol and albuterol were found to be enriched with one enantiomer. Such an outcome might be of significant environmental relevance as two enantiomers of the same chiral compound might reveal different ecotoxicity. For example, propranolol was enriched with S(-)-enantiomer, which is known to be more toxic to Pimephales promelas than R(+)-propranolol. Fluoxetine was found to be enriched with S(+)-enantiomer, which is more toxic to P. promelas than R(-)-fluoxetine. PMID:23579471

  7. Simultaneous determination of urinary parabens, bisphenol A, triclosan, and 8-hydroxy-2'-deoxyguanosine by liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    PubMed

    Ren, Lu; Fang, Jianzhang; Liu, Guihua; Zhang, Jianqing; Zhu, Zhou; Liu, Honghe; Lin, Kai; Zhang, Huimin; Lu, Shaoyou

    2016-04-01

    A simple and fast method was developed for the simultaneous determination of five parabens, bisphenol A (BPA), triclosan (TCS), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in human urine using liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The solid-phase extraction (SPE) procedure, chromatographic conditions, and MS/MS parameters were optimized to achieve maximum sensitivity and accuracy for the analytes. The validation results showed that the correlation coefficients (R (2)) and recoveries ranged from 0.999 to 1 and 83.9 to 109.9 %, respectively, and the intra-day and inter-day precisions (relative standard deviation, RSD) were within the range of 1.3-8.5 % and 1.3-9.0 %, respectively. The limits of detection for the analytes ranged from 0.001 to 0.05 μg/L. The method was successfully employed to determine parabens, BPA, TCS, and 8-OHdG in urine samples from school students in Guangzhou, China. The results showed that methyl, ethyl, n-propyl parabens, BPA, TCS, and 8-OHdG were frequently detected in urine samples. n-Butyl and benzyl parabens were only detected in a part of the samples due to their low concentrations in urine. PMID:26873198

  8. Structural Characterization of New Peptide Variants Produced by Cyanobacteria from the Brazilian Atlantic Coastal Forest Using Liquid Chromatography Coupled to Quadrupole Time-of-Flight Tandem Mass Spectrometry

    PubMed Central

    Sanz, Miriam; Andreote, Ana Paula Dini; Fiore, Marli Fatima; Dörr, Felipe Augusto; Pinto, Ernani

    2015-01-01

    Cyanobacteria from underexplored and extreme habitats are attracting increasing attention in the search for new bioactive substances. However, cyanobacterial communities from tropical and subtropical regions are still largely unknown, especially with respect to metabolite production. Among the structurally diverse secondary metabolites produced by these organisms, peptides are by far the most frequently described structures. In this work, liquid chromatography/electrospray ionization coupled to high resolution quadrupole time-of-flight tandem mass spectrometry with positive ion detection was applied to study the peptide profile of a group of cyanobacteria isolated from the Southeastern Brazilian coastal forest. A total of 38 peptides belonging to three different families (anabaenopeptins, aeruginosins, and cyanopeptolins) were detected in the extracts. Of the 38 peptides, 37 were detected here for the first time. New structural features were proposed based on mass accuracy data and isotopic patterns derived from full scan and MS/MS spectra. Interestingly, of the 40 surveyed strains only nine were confirmed to be peptide producers; all of these strains belonged to the order Nostocales (three Nostoc sp., two Desmonostoc sp. and four Brasilonema sp.). PMID:26096276

  9. Carbamazepine in municipal wastewater and wastewater sludge: ultrafast quantification by laser diode thermal desorption-atmospheric pressure chemical ionization coupled with tandem mass spectrometry.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Picard, P; Surampalli, R Y

    2012-09-15

    In this study, the distribution of the anti-epileptic drug carbamazepine (CBZ) in wastewater (WW) and aqueous and solid phases of wastewater sludge (WWS) was carried out. A rapid and reliable method enabling high-throughput sample analysis for quicker data generation, detection, and monitoring of CBZ in WW and WWS was developed and validated. The ultrafast method (15s per sample) is based on the laser diode thermal desorption-atmospheric pressure chemical ionization (LDTD-APCI) coupled to tandem mass spectrometry (MS/MS). The optimization of instrumental parameters and method application for environmental analysis are presented. The performance of the novel method was evaluated by estimation of extraction recovery, linearity, precision and detection limit. The method detection limits was 12 ng L(-1) in WW and 3.4 ng g(-1) in WWS. The intra- and inter-day precisions were 8% and 11% in WW and 6% and 9% in WWS, respectively. Furthermore, three extraction methods, ultrasonic extraction (USE), microwave-assisted extraction (MAE) and accelerated solvent extraction (ASE) with three different solvent condition such as methanol, acetone and acetonitrile:ethyle acetate (5:1, v/v) were compared on the basis of procedural blank and method recovery. Overall, ASE showed the best extraction efficiency with methanol as compared to USE and MAE. Furthermore, the quantification of CBZ in WW and WWS samples showed the presence of contaminant in all stages of the treatment plant. PMID:22967548

  10. [Determination of ten pesticides of pyrazoles and pyrroles in tea by accelerated solvent extraction coupled with gas chromatography-tandem mass spectrometry].

    PubMed

    Xu, Dunming; Lu, Shengyu; Chen, Dajie; Lan, Jinchang; Zhang, Zhigang; Yang, Fang; Zhou, Yu

    2013-03-01

    An effective method was developed and applied to determine the residues of ten pesticides of pyrazoles and pyrroles in tea by accelerated solvent extraction coupled with gas chromatography-tandem mass spectrometry (ASE-GC-MS/MS). The samples were extracted with ethyl acetate-hexane (1:1, v/v) for 5 min at 1.03 x 10(7) Pa and 100 degree C for one cycle. Then, they were purified by Envi-Carb/PSA column, and eluted by ethyl acetate-hexane (1:1, v/v). The analytes were determined by GC-MS/MS and quantified by external standard method. The limits of quantification were 0.003 mg/kg for fenpyroximate, 0.001 mg/kg for fipronil-sulfide, 0.002 mg/kg for fipronil, 0.005 mg/kg for fipronil-sulfone, 0.002 mg/kg for chlorfenapyr, 0.006 mg/kg for flusilazole, 0.001 mg/kg for difenzoquat, 0.001 mg/kg for pyraflufen-ethyl, 0.000 3 mg/kg for tebufenpyrad and 0.005 mg/kg for tolfenpyrad. The results show that the proposed method is sensitive and accurate for the determination of the ten pesticide residues. PMID:23785993

  11. Dissipation and residues determination of propamocarb in ginseng and soil by high-performance liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Wang, Chunwei; Wang, Yan; Gao, Jie; Xu, Yuncheng; Cui, Lili

    2014-09-01

    Two-year field trials were performed at two experimental sites to investigate dissipation and terminal residues of propamocarb in ginseng root, stem, leaf, and soil by high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Mean recoveries ranged from 80.5 to 95.6% with relative standard deviations (RSDs) of 5.5-9.1% at fortified levels of 0.01, 0.02, 0.05 and 0.20 mg kg(-1). The half-lives of propamocarb were 5.00-11.36 days in root, 5.07-11.46 days in stem, 6.83-11.31 days in leaf and 6.44-8.43 days in soil. The terminal residues of propamocarb were below the maximum residue limits (MRLs) of EU (0.20 mg kg(-1)) and South Korea (0.50 mg kg(-1) in fresh ginseng and 1.0 mg kg(-1) in dried ginseng) over 28 days after last spraying at recommended dosage. The results provide a quantitative basis for establishing the MRL and give a suggestion of safe and reasonable use of propamocarb in ginseng. PMID:24791956

  12. Demonstration of side coupling to cladding modes through zinc oxide nanorods grown on multimode optical fiber.

    PubMed

    Fallah, H; Chaudhari, M; Bora, T; Harun, S W; Mohammed, W S; Dutta, J

    2013-09-15

    A novel concept is introduced that utilizes the scattering properties of zinc oxide nanorods to control light guidance and leakage inside optical fibers coated with nanorods. The effect of the hydrothermal growth conditions of the nanorods on light scattering and coupling to optical fiber are experimentally investigated. At optimum conditions, 5% of the incident light is side coupled to the cladding modes. This coupling scheme could be used in different applications such as distributed sensors and light combing. Implementation of the nanorods on fiber provides low cost and controllable nonlithography-based solutions for free space to fiber coupling. Higher coupling efficiencies can be achieved with further optimization. PMID:24104829

  13. Determination of phosphoserine/threonine by nano ultra-performance liquid chromatography-tandem mass spectrometry coupled with microscale labeling.

    PubMed

    Chen, Rong-Chun; Chuang, Lea-Yea; Tseng, Wei-Lung; Tyan, Yu-Chang; Lu, Chi-Yu

    2013-12-15

    Protein phosphorylation is an important regulatory post-translational modification in many biochemical processes. The phosphopeptide analysis strategies developed in this study were all at microscale. After using a standard microwave oven to assist protein digestion, phosphoserine and phosphothreonine were tagged with chemical analogues, such as 2-mercaptoethanol and 3-mercapto-1-propanol, to enable simultaneously relative quantitation and identification. This method enabled the use of thio alcohols for direct labeling of phosphorylated sites (not labeled at the mercapto, amino, hydroxyl, or carboxyl groups) of phosphopeptides. Various digestion parameters (e.g., microwave power, reaction time, NH4HCO3 concentration) and derivatization efficiency parameters (e.g., reaction time, labeling tag concentration) were studied and optimized. In both control and experimental samples, microwave-assisted digestion coupled with relative quantitation using analogue tags enabled calculation of phosphopeptide ratios in the same sequence. A non-labeling method was also established for quantifying phosphopeptides in human plasma by using the abundant protein albumin as an internal control for normalizing relative quantities of phosphopeptides. Nano ultra-performance liquid chromatography (nanoUPLC) was combined with LTQ Orbitrap to enable simultaneous protein relative quantitation and identification. These strategies proved to be effective for quantifying phosphopeptides in biological samples. PMID:23994561

  14. Copper-catalyzed aerobic oxidative coupling: From ketone and diamine to pyrazine

    PubMed Central

    Wu, Kun; Huang, Zhiliang; Qi, Xiaotian; Li, Yingzi; Zhang, Guanghui; Liu, Chao; Yi, Hong; Meng, Lingkui; Bunel, Emilio E.; Miller, Jeffrey T.; Pao, Chih-Wen; Lee, Jyh-Fu; Lan, Yu; Lei, Aiwen

    2015-01-01

    Copper-catalyzed aerobic oxidative C–H/N–H coupling between simple ketones and diamines was developed toward the synthesis of a variety of pyrazines. Various substituted ketones were compatible for this transformation. Preliminary mechanistic investigations indicated that radical species were involved. X-ray absorption fine structure experiments elucidated that the Cu(II) species 5 coordinated by two N atoms at a distance of 2.04 Å and two O atoms at a shorter distance of 1.98 Å was a reactive one for this aerobic oxidative coupling reaction. Density functional theory calculations suggested that the intramolecular coupling of cationic radicals was favorable in this transformation. PMID:26601302

  15. Palladium-catalyzed oxidative carbonylative coupling of arylboronic acids with terminal alkynes to alkynones.

    PubMed

    Natte, Kishore; Chen, Jianbin; Neumann, Helfried; Beller, Matthias; Wu, Xiao-Feng

    2014-08-14

    We describe here an interesting palladium-catalyzed oxidative carbonylation of arylboronic acids with terminal alkynes. By the appropriate combination of a palladium salt, a ligand, and an oxidant, the desired alkynones were isolated in moderate to good yields. Notably, all the reactions were performed at room temperature, and moisture and air can be tolerated by this procedure. More importantly, this is the first example of oxidative carbonylative coupling of arylboronic acids with alkynes which filled the missing link in carbonylative coupling reactions. PMID:24968345

  16. Chemical synthesis of dioxygen-18 labelled omega-/beta-oxidized cysteinyl leukotrienes: analysis by gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry.

    PubMed

    Tsikas, D; Fauler, J; Frölich, J C

    1995-05-19

    Cysteinyl leukotrienes (LT) C4, LTD4 and LTE4 are potent mediators of anaphylaxis and inflammation. LTE4 is extensively metabolized in man mainly by omega-oxidation followed by subsequent beta-oxidation to more polar and biologically inactive metabolites. This paper describes a method for the synthesis of [1,20-18O2]-carboxy-LTE4, [1,18-18O2]-carboxy-dinor-LTE4, and [1,16-18O2]-carboxy-14,15-dihydro-tetranor-LTE4 starting from the unlabelled dimethyl esters of 20-carboxy-LTA4, 18-carboxy-dinor-LTA4 and 16-carboxy-14,15-dihydro-tetranor-LTA4, respectively, by separate chemical conjugation with cysteine hydrochloride in H2-18O-methanol followed by alkaline hydrolysis with Li18OH. The isotopic purity of the isolated reaction products was 94% at 18O for all three preparations while only 0.3% remained unlabelled as confirmed by negative-ion chemical-ionization gas chromatography-mass spectrometry (GC-NICI-MS) after their catalytical reduction/desulphurization and derivatization. The 18O2-labelled compounds are demonstrated to be suitable internal standards for quantification by GC-NICI-MS and GC-NICI-tandem MS. We found by GC-NICI-tandem MS that the excretion rate of 20-carboxy-LTE4 is comparable to that of LTE4 (both in nmol/mol creatinine, mean +/- S.E.) in healthy children (26.7 +/- 4.7 vs. 32.0 +/- 6.0, n = 9) and adults (13.9 +/- 1.1 vs. 27.2 +/- 5.4, n = 3). PMID:7663693

  17. Plasma-Chemical Synthesis of Oxide Powders Using Transformer-Coupled Discharge

    NASA Astrophysics Data System (ADS)

    M. Ulanov, I.; V. Isupov, M.; Yu Litvinsev, A.; A. Mischenko, P.

    2013-04-01

    An experimental investigation of transformer-coupled discharge in an Ar-O2 mixture with the addition of SiCl4, TiCl4 and ZrCl4 has been carried out under the atmospheric pressure of plasma-forming gases. Discharge power and discharge heat losses have been determined, and the dispersion and phase composition of reaction products (oxide powders) has been analyzed with SEM and X-ray diffraction analysis. Investigations reveal the formation of ultrafine oxide powders in the case of vaporized chloride (SiCl4 and TiCl4) injecting into the transformer coupled discharge. In the case of fine powder (ZrCl4) injection, full oxidation was not observed and reaction products consisted of a mixture of ZrO2 and ZrOCl2. A conclusion has been made regarding the perspectives of using transformer-coupled discharge to produce ultrafine oxide powders.

  18. Quantitation of sorafenib and its active metabolite sorafenib N-oxide in human plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Li, Lie; Zhao, Ming; Navid, Fariba; Pratz, Keith; Smith, B Doug; Rudek, Michelle A; Baker, Sharyn D

    2010-11-01

    A simple and rapid method with high performance liquid chromatography/tandem mass spectrometry is described for the quantitation of the kinase inhibitor sorafenib and its active metabolite sorafenib N-oxide in human plasma. A protein precipitation extraction procedure was applied to 50 μL of plasma. Chromatographic separation of the two analytes, and the internal standard [(2)H(3)(13)C]-sorafenib, was achieved on a C(18) analytical column and isocratic flow at 0.3 mL/min for 4 min. Mean within-run and between-run precision for all analytes were <6.9% and accuracy was <5.3%. Calibration curves were linear over the concentration range of 50-10,000 ng/mL for sorafenib and 10-2500 ng/mL for sorafenib N-oxide. This method allows a specific, sensitive, and reliable determination of the kinase inhibitor sorafenib and its active metabolite sorafenib N-oxide in human plasma in a single analytical run. PMID:20870468

  19. Graphene oxide based in-tube solid-phase microextraction combined with liquid chromatography tandem mass spectrometry for the determination of triazine herbicides in water.

    PubMed

    Tan, Feng; Zhao, Cong; Li, Lianjun; Liu, Min; He, Xin; Gao, Jinsuo

    2015-07-01

    A novel in-tube solid-phase microextraction method based on a graphene oxide coated column was developed for the determination of triazines in waters. This column was prepared by the covalent modification of monolayer graphene oxide sheets onto the inner wall of a fused-silica capillary. Scanning electron microscopy showed that the thickness of the graphene oxide coating was ∼30 nm, with a porous, wrinkled membrane-like structure. Its performance was evaluated through the extraction of triazines in water. Results showed that the coating was stable for at least 100 replicate extractions, and variety of multi-columns was less than 10%. Flow rate, loading volume, pH, and ionic strength of samples played an important effect on the extraction. The high extraction efficiency was mainly attributed to π-π stacking and hydrogen bonding interactions. The in-tube solid-phase microextraction was used in the determination of triazines with liquid chromatography and tandem mass spectrometry, and the detection limits were 0.0005-0.005 μg/L for five triazine compounds. Further, the method was applied to the analysis of triazine herbicides in real samples including tap water, sea water, and river water, and the recoveries were 82.8-112.0, 85.4-110.5, and 81.6-105.9%, respectively, with RSDs of 2.7-7.1%. PMID:25903447

  20. Determination of androgens and progestogens in environmental and biological samples using fabric phase sorptive extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Guedes-Alonso, Rayco; Ciofi, Lorenzo; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan; Bubba, Massimo Del; Kabir, Abuzar; Furton, Kenneth G

    2016-03-11

    Androgens and progestogens are two important groups of endocrine disrupting compounds (EDCs) which are implicated to produce severe detrimental impact over aquatic biota, even at very low concentrations of ngL(-1). For this reason, one of the major challenges to analytical chemists is the development of sensitive and selective extraction processes which allow the rapid and green determination of these emerging pollutants at low concentrations in environmental samples. Fabric phase sorptive extraction is a new, highly sensitive, efficient and solvent minimized technique which combine the advantages of sol-gel derived microextraction sorbents and the rich surface chemistry of cellulose fabric substrate. This process has several advantages such as minimum usage of organic solvents, short extraction times, small sample volumes and high analyte preconcentration factors. In this study, an extraction method based on sorptive fabric phase coupled to ultra-high-performance liquid chromatography tandem mass spectrometry detection (FPSE-UHPLC-MS/MS) has been developed for the determination of four progestogens and six androgens in environmental and biological samples. All the parameters involved in the extraction, such as sample volume, extraction and desorption times, desorption solvent volume and sample pH values have been optimized. The developed method provides satisfactory limits of detection (between 1.7 and 264ngL(-1)), good recoveries and low relative standard deviations (below 10% in tap and osmosis water and below 20% in wastewater and urine). Subsequently, the method was used to analyse tap water, wastewater treated with different processing technologies and urine samples. The concentrations of the detected hormones ranged from 28.3 to 227.3 ngL(-1) in water samples and from 1.1 to 3.7μgL(-1) in urine samples. PMID:26858117

  1. Screening of drugs in equine plasma using automated on-line solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry.

    PubMed

    Kwok, W H; Leung, David K K; Leung, Gary N W; Wan, Terence S M; Wong, Colton H F; Wong, Jenny K Y

    2010-05-01

    A rapid liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed for the simultaneous screening of 19 drugs of different classes in equine plasma using automated on-line solid-phase extraction (SPE) coupled with a triple quadrupole mass spectrometer. Plasma samples were first protein precipitated using acetonitrile. After centrifugation, the supernatant was directly injected into the on-line SPE system and analysed by a triple quadrupole LC-MS-MS in positive electrospray ionisation (+ESI) mode with selected reaction monitoring (SRM) scan function. On-line extraction and chromatographic separation of the targeted drugs were performed using respectively a polymeric extraction column (2 cm L x 2.1mm ID, 25 microm particle size) and a reversed-phase C18 LC column (3 cm L x 2.1mm ID, 3 microm particle size) with gradient elution to provide fast analysis time. The overall instrument turnaround time was 9.5 min, inclusive of post-run and equilibration time. Plasma samples fortified with 19 targeted drugs including narcotic analgesics, local anaesthetics, antipsychotics, bronchodilators, mucolytics, corticosteroids, sedative and tranquillisers at sub-parts per billion (ppb) to low parts per trillion (ppt) levels could be consistently detected. No significant matrix interference was observed at the expected retention times of the targeted ion transitions. Over 70% of the drugs studied gave detection limits at or below 100 pg/mL, with some detection limits reaching down to 19 pg/mL. The method had been validated for extraction recovery, precision and sensitivity, and a blockage study had also been carried out. This method is used regularly in the authors' laboratory to screen for the presence of targeted drugs in pre-race plasma samples from racehorses. PMID:20122690

  2. Detection of seven pesticides in cucumbers using hollow fibre-based liquid-phase microextraction and ultra-high pressure liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Wang, Jianfeng; Du, Zhenxia; Yu, Wenlian; Qu, Shuping

    2012-07-20

    A liquid-phase microextraction (LPME) methodology based on the use of porous polyvinylidene fluoride (PVDF) hollow fibres was developed for extracting seven pesticides from cucumbers. The seven pesticides include propoxur, carbofuran, atrazine, cyanatryn, metolachlor, prometryn and tebuconazole. The PVDF hollow fibre provides higher extraction efficiency due to its higher porosity and better solvent compatibility. A new desorption methodology was developed since some pesticides were absorbed by the wall pore of the PVDF. Ultra-high pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was used for pesticide analysis. In order to obtain high recoveries and enrichment factors of the analytes, several parameters such as method of sealing, acceptor phase (organic solvents), stirring speed, extraction time, salting out effect, desorption mode and time were optimized. A fast, simple method for closing fibre ends was practiced by using mechanical crimping. Pesticides were extracted from the sample to the organic solvent and then desorbed in a mixture of methanol:water (1:1 v/v) prior to chromatographic analysis. Limits of detection (LOD) for the multi-reaction-monitoring (MRM) mode of the method varies from 0.01 to 0.31 μg/kg with optimized sample preparation. Calibration curves are linear with R² ≥ 0.991. Enrichment factor of the hollow fibre LPME ranges from 100 to 147. Matrix effect has been considered and is in the range of 76-122%. The relative recoveries from cucumber samples are between 63% and 119% with the relative standard deviation (RSD, n=6) lower than 20%. PMID:22682952

  3. Budesonide quantification by HPLC coupled to atmospheric pressure photoionization (APPI) tandem mass spectrometry. Application to a comparative systemic bioavailability of two budesonide formulations in healthy volunteers.

    PubMed

    Borges, Ney Carter do Carmo; Astigarraga, Rafael Barrientos; Sverdloff, Carlos Eduardo; Borges, Bruno Carter; Paiva, Thaís Rodrigues; Galvinas, Paulo Rebelo; Moreno, Ronilson Agnaldo

    2011-02-01

    In the present study, a novel, fast, sensitive and robust method to quantify budesonide in human plasma using 3-keto-desogestrel as the internal standard (IS) is described. The analyte and the IS were extracted from human plasma by liquid-liquid extraction (LLE) using ether. Extracted samples were analyzed by high performance liquid chromatography coupled to Atmospheric pressure photoionization tandem mass spectrometry (HPLC-APPI-MS/MS). Chromatography was performed isocratically on a C18, 5 μm analytical column. The temperature of the autosampler was kept at 6 °C and the run time was 4.00 min. A linear calibration curve over the range 7.5-1000 pg ml⁻¹ was obtained and the lowest concentration quantified was 7.5 pg ml⁻¹, demonstrating acceptable accuracy and precision. This analytical method was applied in a relative bioavailability study in order to compare a test budesonide 64 μg/dose nasal spray formulation vs. a reference 64 μg/dose nasal spray formulation (Budecort Aqua) in 48 volunteers of both sexes. The study was conducted in an open randomized two-period crossover design and with a one-week washout period. Plasma samples were obtained over a 14 h interval. Since the 90% CI for both C(max), AUC(last) and AUC(0-inf) were within the 80-125% interval proposed by the Food and Drug Administration and ANVISA, it was concluded that budesonide 64 μg/dose nasal spray was bioequivalent to Budecort Acqua® 64 μg/dose nasal spray, according to both the rate and extent of absorption. PMID:21233029

  4. Renewable sorbent material for solid phase extraction with direct coupling of sequential injection analysis-bead injection to liquid chromatography-electrospray ionization tandem mass spectrometry.

    PubMed

    Boonjob, Warunya; Sklenářová, Hana; Barron, Leon; Solich, Petr; Smith, Norman

    2015-07-01

    The use of small scale renewable sorbent material for automated solid phase extraction of multi-residue pharmaceuticals in environmental samples exploiting the sequential injection analysis-bead injection with direct coupling to liquid chromatography-electrospray ionization tandem mass spectrometry (SIA-BI-μSPE-LC-ESI-MS/MS) is presented to determine beta-blockers, namely atenolol, sotalol, pindolol, acebutolol, timolol, metoprolol, labetalol, carazolol, propranolol and betaxolol. These compounds yielded the same product ions, therefore were affected in terms of quantification when flow injection analysis-mass spectrometry (FIA-MS) was used. Thus, analytes and matrix present in the sample travel together into the ionization source which can seriously affect the ionization efficiency and analyte signals due to monitoring over a short time period. Graphical abstract A two-dimensional analysis involving a time dimension (retention time) and an m/z dimension (fragmentation ion) is promising for the various sample types. Using the developed method, absolute recoveries percentages of 10 mL of sample loading volume were >91% for all β-blockers with enrichment factor of 62-74, limits of detection of 0.005-0.07 μg L(-1), limits of quantification of 0.01-0.23 μg L(-1), enrichment factor of 62-72 and repeatability within range 7-12%. This developed method is suggested to be used as quantitative screening technique for drugs of abuse or persistent contamination using different kinds of sorbent materials and complex matrix such as biological fluid sample as well. PMID:25971945

  5. Determination of eight nitrosamines in water at the ng L(-1) levels by liquid chromatography coupled to atmospheric pressure chemical ionization tandem mass spectrometry.

    PubMed

    Ripollés, Cristina; Pitarch, Elena; Sancho, Juan V; López, Francisco J; Hernández, Félix

    2011-09-19

    In this work, we have developed a sensitive method for detection and quantification of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMor), N-nitrosomethylethylamine (NMEA), N-nitrosopirrolidine (NPyr), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPip), N-nitroso-n-dipropylamine (NDPA) and N-nitrosodi-n-butylamine (NDBA) in drinking water. The method is based on liquid chromatography coupled to tandem mass spectrometry, using atmospheric pressure chemical ionization (APCI) in positive mode with a triple quadrupole analyzer (QqQ). The simultaneous acquisition of two MS/MS transitions in selected reaction monitoring mode (SRM) for each compound, together with the evaluation of their relative intensity, allowed the simultaneous quantification and reliable identification in water at ppt levels. Empirical formula of the product ions selected was confirmed by UHPLC-(Q)TOF MS accurate mass measurements from reference standards. Prior to LC-MS/MS QqQ analysis, a preconcentration step by off-line SPE using coconut charcoal EPA 521 cartridges (by passing 500 mL of water sample) was necessary to improve the sensitivity and to meet regulation requirements. For accurate quantification, two isotope labelled nitrosamines (NDMA-d(6) and NDPA-d(14)) were added as surrogate internal standards to the samples. The optimized method was validated at two concentration levels (10 and 100 ng L(-1)) in drinking water samples, obtaining satisfactory recoveries (between 90 and 120%) and precision (RSD<20%). Limits of detection were found to be in the range of 1-8 ng L(-1). The described methodology has been applied to different types of water samples: chlorinated from drinking water and wastewater treatment plants (DWTP and WWTP, respectively), wastewaters subjected to ozonation and tap waters. PMID:21819861

  6. Determination of chiral pharmaceuticals and illicit drugs in wastewater and sludge using microwave assisted extraction, solid-phase extraction and chiral liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Evans, Sian E; Davies, Paul; Lubben, Anneke; Kasprzyk-Hordern, Barbara

    2015-07-01

    This is the first study presenting a multi-residue method allowing for comprehensive analysis of several chiral pharmacologically active compounds (cPACs) including beta-blockers, antidepressants and amphetamines in wastewater and digested sludge at the enantiomeric level. Analysis of both the liquid and solid matrices within wastewater treatment is crucial to being able to carry out mass balance within these systems. The method developed comprises filtration, microwave assisted extraction and solid phase extraction followed by chiral liquid chromatography coupled with tandem mass spectrometry to analyse the enantiomers of 18 compounds within all three matrices. The method was successfully validated for 10 compounds within all three matrices (amphetamine, methamphetamine, MDMA, MDA, venlafaxine, desmethylvenlafaxine, citalopram, metoprolol, propranolol and sotalol), 7 compounds validated for the liquid matrices only (mirtazapine, salbutamol, fluoxetine, desmethylcitalopram, atenolol, ephedrine and pseudoephedrine) and 1 compound (alprenolol) passing the criteria for solid samples only. The method was then applied to wastewater samples; cPACs were found at concentration ranges in liquid matrices of: 1.7 ng L(-1) (metoprolol) - 1321 ng L(-1) (tramadol) in influent,

  7. Determination of peanut allergens in cereal-chocolate-based snacks: metal-tag inductively coupled plasma mass spectrometry immunoassay versus liquid chromatography/electrospray ionization tandem mass spectrometry.

    PubMed

    Careri, Maria; Elviri, Lisa; Maffini, Monica; Mangia, Alessandro; Mucchino, Claudio; Terenghi, Mattia

    2008-01-01

    A comparison of two methods for the identification and determination of peanut allergens based on europium (Eu)-tagged inductively coupled plasma mass spectrometry (ICP-MS) immunoassay and on liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) with a triple quadrupole mass analyzer was carried out on a complex food matrix like a chocolate rice crispy-based snack. The LC/MS/MS method was based on the determination of four different peptide biomarkers selective for the Ara h2 and Ara h3/4 peanut proteins. The performance of this method was compared with that of a non-competitive sandwich enzyme-linked immunosorbent assay (ELISA) method with ICP-MS detection of the metal used to tag the antibody for the quantitative peanut protein analysis in food. The limit of detection (LOD) and quantitation of the ICP-MS immunoassay were 2.2 and 5 microg peanuts g(-1) matrix, respectively, the recovery ranged from 86 +/- 18% to 110 +/- 4% and linearity was proved in the 5-50 microg g(-1) range. The LC/MS/MS method allowed us to obtain LODs of 1 and 5 microg protein g(-1) matrix for Ara h3/4 and Ara h2, respectively, thus obtaining significantly higher values with respect to the ELISA ICP-MS method, taking into account the different expression for concentrations. Linearity was established in the 10-200 microg g(-1) range of peanut proteins in the food matrix investigated and good precision (RSD <10%) was demonstrated. Both the two approaches, used for screening or confirmative purposes, showed the power of mass spectrometry when used as a very selective detector in difficult matrices even if some limitations still exist, i.e. matrix suppression in the LC/ESI-MS/MS procedure and the change of the Ag/Ab binding with matrix in the ICP-MS method. PMID:18278822

  8. Determination of trichothecenes A (T-2 toxin, HT-2 toxin, and diacetoxyscirpenol) in the tissues of broilers using liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Yang, Lingchen; Zhao, Zhiyong; Wu, Aibo; Deng, Yifeng; Zhou, Zhenlei; Zhang, Jianpeng; Hou, Jiafa

    2013-12-30

    A stable and sensitive method has been developed for use in food and livestock product safety for the detection of mycotoxins. This newly developed method allows for the determination of T-2 toxin, HT-2 toxin and diacetoxyscirpenol (DAS) in heart, liver, spleen, lung, kidney, Glandular stomach, muscular stomach, small intestine, muscle, bone and brain samples from broilers using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The samples were initially extracted with ethyl acetate before being filtered through a 0.22μm nylon syringe filter and subjected to chromatographic separation on a reversed-phase C18 (50×2.1mm, 3μm) column. A mobile phase composed of 0.1% acetic acid and 10mM ammonium acetate in methanol and water was used in an assay of the levels of T-2 toxin, HT-2 toxin and DAS. For the analysis of the target compounds, the mass spectrometer was operated under positive electrospray ionization conditions in the selected reaction monitoring mode. The limit of detection was in the range of 0.02-0.05ng/g, whereas the limit of quantification was in the range of 0.08-0.15ng/g. The extraction recoveries of spiked samples from the high, intermediate and low levels ranged from 58.5% to 110.5%, and the relative standard deviation (RSD (%)) values were less than 17.0%. The results of inter- and intra-day precision (RSD (%)) were within 14.7%. The results revealed that the present method could be successfully applied to the analysis of T-2 toxin, HT-2 toxin and DAS in the real samples. PMID:24231141

  9. Development of a coupled-column liquid chromatographic-tandem mass spectrometric method for the direct determination of betamethasone in urine.

    PubMed

    Polettini, A; Marrubini Bouland, G; Montagna, M

    1998-08-25

    Different hyphenated liquid chromatographic (LC) and mass spectrometric (MS) techniques were investigated in order to set-up a method for the fast, direct analysis of betamethasone in hydrolysed and non-hydrolysed urine using large-volume sample injection. After the optimisation of the LC parameters using a traditional UV detector and of the thermospray and mass spectrometric parameters by flow injection, urine samples (0.5 ml) were submitted to analysis by either LC combined with tandem mass spectrometry (MS-MS), coupled-column LC (LC-LC) combined with single quadrupole MS, and LC-LC-MS-MS. Both the three-step configurations (LC-MS-MS and LC-LC-MS) did not provide satisfactory results: loss of sensitivity was noted in the case of LC-MS-MS (likely due to reduced efficiency in the ionisation of betamethasone in the thermospray owing to the presence of large amounts of matrix interference), while in the case of LC-LC-MS a high chemical noise resulting in insufficient selectivity of detection was observed. On the contrary, LC-LC-MS-MS analysis proved to meet the demand of high speed of analysis (sample throughput, 4.5 h(-1)), selectivity, and sensitivity (LOQ, 1 ng/ml; LOD, 0.2 ng/ml). Notwithstanding the complex analytical system adopted, the developed procedure was manageable and very robust, provided that at the beginning of each analytical session the performance of the system was controlled by checking the retention time of the analytes on the first analytical column with UV detection and by optimising vaporiser temperature of the thermospray by flow injection. PMID:9746249

  10. Profiling of phytohormones in rice under elevated cadmium concentration levels by magnetic solid-phase extraction coupled with liquid chromatography tandem mass spectrometry.

    PubMed

    Cai, Bao-Dong; Yin, Jia; Hao, Yan-Hong; Li, Yu-Nan; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-08-01

    Phytohormones, a collection of signal small molecules with various structures, regulate a series of physiological processes of plants. For instance, they regulate the growth and development, response to biotic and abiotic stresses. Quantification of trace endogenous phytohormones is essential to elucidate their molecular mechanisms in response to stresses. However, the structural and chemical diversity of phytohormones make it difficult to purify and enrich multiple phytohormones in one-step. In the current study, a method was developed to comprehensively profile phytohormones, including 8 cytokinins (CKs), indole-3-acetic acid (IAA), abscisic acid (ABA), jasmonic acid (JA) and 10 gibberellins (GAs) by Fe3O4@TiO2-based magnetic solid-phase extraction coupled with ultra-performance liquid chromatography-electrospray tandem mass spectrometry (Fe3O4@TiO2-based MSPE-UPLC-MS/MS). In the proposed method, the phytohormones in the acetonitrile extract of plant tissues were captured and purified by one-step MSPE using Fe3O4@TiO2 as a sorbent prior to UPLC-MS/MS analysis. The sensitivity, accuracy and reproducibility of the proposed analytical method were demonstrated to satisfy the profiling of multiple phytohormones in plant tissue. We then further used the Fe3O4@TiO2-based MSPE-UPLC-MS/MS method to explore the change of phytohormones in rice under Cd stress. The results showed that CKs, IAA, ABA, JA and biological active GAs all increased under Cd stress, suggesting that these phytohormones may take part in response to Cd stress. The study may promote the further understanding of the physiological functions of phytohormones in response to Cd stress. PMID:26141271

  11. Determination of caffeine, myosmine, and nicotine in chocolate by headspace solid-phase microextraction coupled with gas chromatography-tandem mass spectrometry.

    PubMed

    Müller, Christoph; Vetter, Florian; Richter, Elmar; Bracher, Franz

    2014-02-01

    The occurrence of the bioactive components caffeine (xanthine alkaloid), myosmine and nicotine (pyridine alkaloids) in different edibles and plants is well known, but the content of myosmine and nicotine is still ambiguous in milk/dark chocolate. Therefore, a sensitive method for determination of these components was established, a simple separation of the dissolved analytes from the matrix, followed by headspace solid-phase microextraction coupled with gas chromatography-tandem mass spectrometry (HS-SPME-GC-MS/MS). This is the first approach for simultaneous determination of caffeine, myosmine, and nicotine with a convenient SPME technique. Calibration curves were linear for the xanthine alkaloid (250 to 3000 mg/kg) and the pyridine alkaloids (0.000125 to 0.003000 mg/kg). Residuals of the calibration curves were lower than 15%, hence the limits of detection were set as the lowest points of the calibration curves. The limits of detection calculated from linearity data were for caffeine 216 mg/kg, for myosmine 0.000110 mg/kg, and for nicotine 0.000120 mg/kg. Thirty samples of 5 chocolate brands with varying cocoa contents (30% to 99%) were analyzed in triplicate. Caffeine and nicotine were detected in all samples of chocolate, whereas myosmine was not present in any sample. The caffeine content ranged from 420 to 2780 mg/kg (relative standard deviation 0.1 to 11.5%) and nicotine from 0.000230 to 0.001590 mg/kg (RSD 2.0 to 22.1%). PMID:24446916

  12. Simultaneous determination of dextromethorphan, dextrorphan and doxylamine in human plasma by HPLC coupled to electrospray ionization tandem mass spectrometry: application to a pharmacokinetic study.

    PubMed

    Donato, J L; Koizumi, F; Pereira, A S; Mendes, G D; De Nucci, G

    2012-06-15

    In the present study, a fast, sensitive and robust method to quantify dextromethorphan, dextrorphan and doxylamine in human plasma using deuterated internal standards (IS) is described. The analytes and the IS were extracted from plasma by a liquid-liquid extraction (LLE) using diethyl-ether/hexane (80/20, v/v). Extracted samples were analyzed by high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Chromatographic separation was performed by pumping the mobile phase (acetonitrile/water/formic acid (90/9/1, v/v/v) during 4.0min at a flow-rate of 1.5 mL min? into a Phenomenex Gemini C18, 5 ?m analytical column (150 4.6 mm i.d.). The calibration curve was linear over the range from 0.2 to 200 ng mL? for dextromethorphan and doxylamine and 0.05 to 10 ng mL? for dextrorphan. The intra-batch precision and accuracy (%CV) of the method ranged from 2.5 to 9.5%, and 88.9 to 105.1%, respectively. Method inter-batch precision (%CV) and accuracy ranged from 6.7 to 10.3%, and 92.2 to 107.1%, respectively. The run-time was for 4 min. The analytical procedure herein described was used to assess the pharmacokinetics of dextromethorphan, dextrorphan and doxylamine in healthy volunteers after a single oral dose of a formulation containing 30 mg of dextromethorphan hydrobromide and 12.5mg of doxylamine succinate. The method has high sensitivity, specificity and allows high throughput analysis required for a pharmacokinetic study. PMID:22651995

  13. Exchange coupling at cobalt/nickel oxide interfaces

    NASA Astrophysics Data System (ADS)

    Baruth, Andrew Gerald

    Spin arrangement at interfaces in layered magnetic materials is of vital importance to the emerging field of spintronics. Knowledge of how and why the interfacial spins behave in a certain way will aid in the development of future magnetic-based memories. Much exploration has taken place in the interlayer exchange coupling (IEC) of ferromagnetic heterostructures with in-plane anisotropy. Only recently has it become apparent that to achieve the goals of increased areal density in magnetic memory a push for exploring magnetic materials with perpendicular magnetic anisotropy (PMA) must occur. An interesting and promising candidate for such a magnetic system is [Co/Pt]/NiO/[Co/Pt], where two [Co/Pt] multilayers with PMA are separated by a thin, insulating, antiferromagnetic NiO layer and display oscillatory coupling with NiO thickness. This magnetic heterostructure displays an entirely new IEC where the Ni spins within the NiO layer cant in concert with the adjacent [Co/Pt] layers, causing the periodicity of the oscillatory coupling to coincide with the NiO antiferromagnetic ordering parameter. The strength and sign of this coupling, either positive (favoring parallel alignment) or negative (favoring anti-parallel alignment), can be tuned with slight changes in the NiO layer thickness. The origin of the oscillatory IEC was investigated using advanced microscopy and spectroscopy techniques. For antiferromagnetically coupled [Co/Pt] layers, the competition between magnetostatic coupling and IEC gives rise to a region of overlapping domains (resulting in a ferromagnetically coupled stripe). Discovered with high resolution magnetic force microscopy and quantitatively modeled with micromagnetic simulation, the width of this overlap region scales inversely with the IEC. Heterostructures of Co/NiO/[Co/Pt], where the Co ([Co/Pt]) has in-plane (out-of-plane) anisotropy, allow for isothermal tuning of the hysteresis loop shift along the applied field axis at room temperature, as well as display a greatly enhanced blocking temperature (increase of more than 175K). The presence of the [Co/Pt] multilayer with PMA is responsible for the enhancement. In addition, these structures display temperature dependent exchange bias training effects, which have been successfully modeled using a phenomenological thermodynamic approach.

  14. Rapid and effective sample cleanup based on graphene oxide-encapsulated core-shell magnetic microspheres for determination of fifteen trace environmental phenols in seafood by liquid chromatography-tandem mass spectrometry.

    PubMed

    Pan, Sheng-Dong; Chen, Xiao-Hong; Shen, Hao-Yu; Li, Xiao-Ping; Cai, Mei-Qiang; Zhao, Yong-Gang; Jin, Mi-Cong

    2016-05-01

    In this study, graphene oxide-encapsulated core-shell magnetic microspheres (GOE-CS-MM) were fabricated by a self-assemble approach between positive charged poly(diallyldimethylammonium) chloride (PDDA)-modified Fe3O4@SiO2 and negative charged GO sheets via electrostatic interaction. The as-prepared GOE-CS-MM was carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer analysis (VSM), and X-ray photoelectron spectroscopy (XPS), and was used as a cleanup adsorbent in magnetic solid-phase extraction (MSPE) for determination of 15 trace-level environmental phenols in seafood coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS). The obtained results showed that the GOE-CS-MM exhibited excellent cleanup efficiency and could availably reduce the matrix effect. The cleanup mechanisms were investigated and referred to π-π stacking interaction and hydrogen bond between GOE-CS-MM and impurities in the extracts. Moreover, the extraction and cleanup conditions of GOE-CS-MM toward phenols were optimized in detail. Under the optimized conditions, the limits of detection (LODs) were found to be 0.003-0.06 μg kg(-1), and satisfactory recovery values of 84.8-103.1% were obtained for the tested seafood samples. It was confirmed that the developed method is simple, fast, sensitive, and accurate for the determination of 15 trace environmental phenols in seafood samples. PMID:27086097

  15. A fully coupled model for water-gas-heat reactive transport with methane oxidation in landfill covers.

    PubMed

    Ng, C W W; Feng, S; Liu, H W

    2015-03-01

    Methane oxidation in landfill covers is a complex process involving water, gas and heat transfer as well as microbial oxidation. The coupled phenomena of microbial oxidation, water, gas, and heat transfer are not fully understood. In this study, a new model is developed that incorporates water-gas-heat coupled reactive transport in unsaturated soil with methane oxidation. Effects of microbial oxidation-generated water and heat are included. The model is calibrated using published data from a laboratory soil column test. Moreover, a series of parametric studies are carried out to investigate the influence of microbial oxidation-generated water and heat, initial water content on methane oxidation efficiency. Computed and measured results of gas concentration and methane oxidation rate are consistent. It is found that the coupling effects between water-gas-heat transfer and methane oxidation are significant. Ignoring microbial oxidation-generated water and heat can result in a significant difference in methane oxidation efficiency by 100%. PMID:25489976

  16. MEASUREMENT OF NITRIC OXIDE PRODUCTION IN HUMANS USING 15N-ARGININE AND TANDEM LC/MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitric oxide (NO) plays a critical role in several physiologic processes, including modulation of peripheral vascular resistance, gastrointestinal peristalsis, inflammation and neuronal function. NO is synthesized in tissues by three classes of nitric oxide synthases (NOS) and rapidly degraded to ni...

  17. Phosphine Oxides as Stabilizing Ligands for the Palladium-Catalyzed Cross-Coupling of Potassium Aryldimethylsilanolates

    PubMed Central

    Denmark, Scott E.; Smith, Russell C.; Tymonko, Steven A.

    2012-01-01

    The palladium-catalyzed cross-coupling reaction of potassium (4-methoxyphenyl)dimethylsilanolate (K+1−) with aryl bromides has been demonstrated using triphenylphosphine oxide as a stabilizing ligand. Unsymmetrical biaryls can be prepared from a variety of aryl bromides in good yield with short reaction times. Qualitative kinetics studies compared effects of different phosphine oxides on the rate of cross-coupling and established the beneficial effect of these ligands in the reaction of electron-rich arylsilanolates. The improved yield and reproducibility of the cross-coupling of several bromides was demonstrated by direct comparison of reactions performed with and without triphenylphosphine oxide under non-rigorous exclusion of oxygen. PMID:23162169

  18. Powerful fluoroalkoxy molybdenum(V) reagent for selective oxidative arene coupling reaction.

    PubMed

    Schubert, Moritz; Leppin, Jana; Wehming, Kathrin; Schollmeyer, Dieter; Heinze, Katja; Waldvogel, Siegfried R

    2014-02-24

    We introduce the novel fluoroalkoxy molybdenum(V) reagent 1 which has superior reactivity and selectivity in comparison to MoCl5 or the MoCl5 /TiCl4 reagent mixture in the oxidative coupling reactions of aryls. Common side reactions, such as chlorination and/or oligomer formation, are drastically diminished creating a powerful and useful reagent for oxidative coupling. Theoretical treatment of the reagent interaction with 1,2-dimethoxybenzene-type substrates indicates an inner-sphere electron transfer followed by a radical cationic reaction pathway for the oxidative-coupling process. EPR spectroscopic and electrochemical studies, X-ray analyses, computational investigations, and the experimental scope provide a highly consistent picture. The substitution of chlorido ligands by hexafluoroisopropoxido moieties seems to boost both the reactivity and selectivity of the metal center which might be applied to other reagents as well. PMID:24478061

  19. Catalyst-Free Three-Component Tandem CDC Cyclization: Convenient Access to Isoindolinones from Aromatic Acid, Amides, and DMSO by a Pummerer-Type Rearrangement.

    PubMed

    Wang, Peng-Min; Pu, Fan; Liu, Ke-Yan; Li, Chao-Jun; Liu, Zhong-Wen; Shi, Xian-Ying; Fan, Juan; Yang, Ming-Yu; Wei, Jun-Fa

    2016-04-25

    A catalyst-free multicomponent CDC reaction is rarely reported, especially for the intermolecular tandem CDC cyclization, which represents an important strategy for constructing cyclic compounds. Herein, a three-component tandem CDC cyclization by a Pummerer-type rearrangement to afford biologically relevant isoindolinones from aromatic acids, amides, and DMSO, is described. This intermolecular tandem reaction undergoes a C(sp(2) )-H/C(sp(3) )-H cross-dehydrogenative coupling, C-N bond formation, and intramolecular amidation. A notable feature of this novel protocol is avoiding a catalyst and additive (apart from oxidant). PMID:26998754

  20. Microstructure and lateral conductivity control of hydrogenated nanocrystalline silicon oxide and its application in a-Si:H/a-SiGe:H tandem solar cells

    NASA Astrophysics Data System (ADS)

    Tian-Tian, Li; Tie, Yang; Jia, Fang; De-Kun, Zhang; Jian, Sun; Chang-Chun, Wei; Sheng-Zhi, Xu; Guang-Cai, Wang; Cai-Chi, Liu; Ying, Zhao; Xiao-Dan, Zhang

    2016-04-01

    Phosphorous-doped hydrogenated nanocrystalline silicon oxide (n-nc-SiO x :H) films are prepared via radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). Increasing deposition power during n-nc-SiO x :H film growth process can enhance the formation of nanocrystalline and obtain a uniform microstructure of n-nc-SiO x :H film. In addition, in 20s interval before increasing the deposition power, high density small grains are formed in amorphous SiO x matrix with higher crystalline volume fraction (I c) and have a lower lateral conductivity. This uniform microstructure indicates that the higher I c can leads to better vertical conductivity, lower refractive index, wider optical band-gap. It improves the back reflection in a-Si:H/a-SiGe:H tandem solar cells acting as an n-nc-SiO x :H back reflector prepared by the gradient power during deposition. Compared with the sample with SiO x back reflector, with a constant power used in deposition process, the sample with gradient power SiO x back reflector can enhance the total short-circuit current density (J sc) and the initial efficiency of a-Si:H/a-SiGe:H tandem solar cells by 8.3% and 15.5%, respectively. Project supported by the Hi-Tech Research and Development Program of China (Grant No. 2013AA050302), the National Natural Science Foundation of China (Grant No. 61474065), Tianjin Municipal Research Key Program of Application Foundation and Advanced Technology, China (Grant No. 15JCZDJC31300), the Key Project in the Science & Technology Pillar Program of Jiangsu Province, China (Grant No. BE2014147-3), and the Specialized Research Fund for the Ph. D. Program of Higher Education, China (Grant No. 20120031110039).

  1. Biomimetic oxidative coupling of sinapyl acetate by silver oxide: preferential formation of β-O-4 type structures.

    PubMed

    Kishimoto, Takao; Takahashi, Nana; Hamada, Masahiro; Nakajima, Noriyuki

    2015-03-01

    Biomimetic oxidations of sinapyl alcohol and sinapyl acetate were carried out with Ag2O to better understand the high frequency of β-O-4 structures in highly acylated natural lignins. The major products from the Ag2O oxidation of sinapyl alcohol were sinapyl aldehyde (14% yield), β-O-4-coupled dimer (32% yield), and β-β-coupled dimer (3% yield). In contrast, the Ag2O oxidation of sinapyl acetate produced β-O-4-coupled dimer in 66% yield. Oligomeric products with predominantly β-O-4 structures were also obtained in 18% yield. The yield of the β-O-4-coupled products from sinapyl acetate was much higher than that from sinapyl alcohol. Computational calculations based on density functional theory showed that the negative charge at Cβ was significantly reduced by the γ-acetyl group. The computational calculations suggest that the Coulombic repulsion between Cβ and O4 in sinapyl acetate radicals was significantly reduced by the γ-acetyl group, contributing to the preferential formation of β-O-4 structures from sinapyl acetate. PMID:25654327

  2. Spatially coupled catalytic ignition of CO oxidation on Pt: mesoscopic versus nano-scale.

    PubMed

    Spiel, C; Vogel, D; Schlögl, R; Rupprechter, G; Suchorski, Y

    2015-12-01

    Spatial coupling during catalytic ignition of CO oxidation on μm-sized Pt(hkl) domains of a polycrystalline Pt foil has been studied in situ by PEEM (photoemission electron microscopy) in the 10(-5)mbar pressure range. The same reaction has been examined under similar conditions by FIM (field ion microscopy) on nm-sized Pt(hkl) facets of a Pt nanotip. Proper orthogonal decomposition (POD) of the digitized FIM images has been employed to analyze spatiotemporal dynamics of catalytic ignition. The results show the essential role of the sample size and of the morphology of the domain (facet) boundary in the spatial coupling in CO oxidation. PMID:26021411

  3. Oxidative Coupling of Enolates, Enol Silanes and Enamines: Methods and Natural Product Synthesis

    PubMed Central

    Guo, Fenghai; Clift, Michael D.

    2013-01-01

    The oxidative coupling of enolates, enol silanes, and enamines provides a direct method for the construction of useful 1,4-dicarbonyl synthons. Despite being first reported in 1935, with subsequent important advances beginning in the 1970’s, the development of this powerful reaction into a reliable methodology was somewhat limited. In recent years, there have been a number of reports from several research groups demonstrating advances in several neglected areas of oxidative coupling. This microreview summarizes these new advances in methodology and provides an overview of recent natural product syntheses that showcase the power of these transformations. PMID:23471479

  4. Biomimetic Synthesis of Moschamine-Related Indole Alkaloids via Iron-Catalyzed Selectively Oxidative Radical Coupling.

    PubMed

    Liang, Kangjiang; Yang, Jing; Tong, Xiaogang; Shang, Wenbin; Pan, Zhiqiang; Xia, Chengfeng

    2016-03-18

    An iron-catalyzed oxidative radical coupling reaction was developed to selectively construct indolofuran or bisphenolic indole cores, which exist in two types of moschamine-related indole alkaloids. Both (+)-decursivine and 4,4″-bis(N-feruloyl)serotonin were biomimetically synthesized by using coupling reactions. The proposed reassignment of the structure of montamine as 4,4″-bis(N-feruloyl)serotonin was excluded. PMID:26949004

  5. Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry.

    PubMed

    Ibáñez, María; Pozo, Oscar J; Sancho, Juan V; López, Francisco J; Hernández, Félix

    2005-07-22

    This paper describes a method for the sensitive and selective determination of glyphosate, glufosinate and aminomethylphosphonic acid (AMPA) residues in water and soil samples. The method involves a derivatization step with 9-fluorenylmethylchloroformate (FMOC) in borate buffer and detection based on liquid chromatography coupled to electrospray tandem mass spectrometry (LC-ESI-MS/MS). In the case of water samples a volume of 10 mL was derivatized and then 4.3 mL of the derivatized mixture was directly injected in an on-line solid phase extraction (SPE)-LC-MS/MS system using an OASIS HLB cartridge column and a Discovery chromatographic column. Soil samples were firstly extracted with potassium hydroxide. After that, the aqueous extract was 10-fold diluted with water and 2 mL were derivatized. Then, 50 microL of the derivatized 10-fold diluted extract were injected into the LC-MS/MS system without pre-concentration into the SPE cartridge. The method has been validated in both ground and surface water by recovery studies with samples spiked at 50 and 500 ng/L, and also in soil samples, spiked at 0.05 and 0.5 mg/kg. In water samples, the mean recovery values ranged from 89 to 106% for glyphosate (RSD <9%), from 97 to 116% for AMPA (RSD < 10%), and from 72 to 88% in the case of glufosinate (RSD < 12%). Regarding soil samples, the mean recovery values ranged from 90 to 92% for glyphosate (RSD <7%), from 88 to 89% for AMPA (RSD <5%) and from 83 to 86% for glufosinate (RSD <6%). Limits of quantification for all the three compounds were 50 ng/L and 0.05 mg/kg in water and soil, respectively, with limits of detection as low as 5 ng/L, in water, and 5 microg/kg, in soil. The use of labelled glyphosate as internal standard allowed improving the recovery and precision for glyphosate and AMPA, while it was not efficient for glufosinate, that was quantified by external standards calibration. The method developed has been applied to the determination of these compounds in real water and soil samples from different areas. All the detections were confirmed by acquiring two transitions for each compound. PMID:16038204

  6. Characterization of in vitro and in vivo metabolites of carnosic acid, a natural antioxidant, by high performance liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Song, Yuelin; Yan, Haixia; Chen, Jinfeng; Wang, Yitao; Jiang, Yong; Tu, Pengfei

    2014-02-01

    Carnosic acid (CA) is a widely employed antioxidant and the main active component in rosemary and sage, but its metabolism remains largely unknown. The present study investigated the metabolism of CA in vitro and in vivo for the first time, using high performance liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry (HPLC-Q-trap-MS). A couple of scan modes were adopted in mass spectrometer domain, including Q1 full scan, neutral loss scan-information dependent acquisition-enhanced product ion (NL-IDA-EPI) and precursor ion scan-information dependent acquisition-enhanced product ion (PI-IDA-EPI). In particular, a prediction was carried out on the basis of in vitro metabolism results, and gave birth to a multiple ion monitoring-information dependent acquisition-enhanced product ion (MIM-IDA-EPI) mode aiming to detect the trace metabolites in CA-treated biological samples. A total of ten metabolites (M4-13), along with three degradative products (M1-3), were identified for CA from in vitro metabolism models, including liver microsomes of human and rats (HLMs and RLMs), human intestinal microsomes (HIMs) and two species of Cunninghamella elegans. Twelve (U1-12) and six (F1-6) metabolites were detected from CA-treated urine and feces, respectively. In addition, five metabolites (SM2-6) in vivo were purified and definitely identified using NMR spectroscopy. The results of both in vitro and in vivo metabolism studies indicated poor metabolic stability for CA, and the glucuronidation and oxidation metabolisms extensively occurred for CA in vitro, while oxidation, glucuronidation and methylation were the main metabolic pathways observed in vivo. PMID:24291799

  7. Mesoporous Manganese Oxide Catalyzed Aerobic Oxidative Coupling of Anilines To Aromatic Azo Compounds.

    PubMed

    Dutta, Biswanath; Biswas, Sourav; Sharma, Vinit; Savage, Nancy Ortins; Alpay, S Pamir; Suib, Steven L

    2016-02-01

    Herein we introduce an environmentally friendly approach to the synthesis of symmetrical and asymmetrical aromatic azo compounds by using air as the sole oxidant under mild reaction conditions in the presence of cost-effective and reusable mesoporous manganese oxide materials. PMID:26749298

  8. Rapid screening of N-oxides of chemical warfare agents degradation products by ESI-tandem mass spectrometry.

    PubMed

    Sridhar, L; Karthikraj, R; Lakshmi, V V S; Raju, N Prasada; Prabhakar, S

    2014-08-01

    Rapid detection and identification of chemical warfare agents and related precursors/degradation products in various environmental matrices is of paramount importance for verification of standards set by the chemical weapons convention (CWC). Nitrogen mustards, N,N-dialkylaminoethyl-2-chlorides, N,N-dialkylaminoethanols, N-alkyldiethanolamines, and triethanolamine, which are listed CWC scheduled chemicals, are prone to undergo N-oxidation in environmental matrices or during decontamination process. Thus, screening of the oxidized products of these compounds is also an important task in the verification process because the presence of these products reveals alleged use of nitrogen mustards or precursors of VX compounds. The N-oxides of aminoethanols and aminoethylchlorides easily produce [M + H](+) ions under electrospray ionization conditions, and their collision-induced dissociation spectra include a specific neutral loss of 48 u (OH + CH2OH) and 66 u (OH + CH2Cl), respectively. Based on this specific fragmentation, a rapid screening method was developed for screening of the N-oxides by applying neutral loss scan technique. The method was validated and the applicability of the method was demonstrated by analyzing positive and negative samples. The method was useful in the detection of N-oxides of aminoethanols and aminoethylchlorides in environmental matrices at trace levels (LOD, up to 500 ppb), even in the presence of complex masking agents, without the use of time-consuming sample preparation methods and chromatographic steps. This method is advantageous for the off-site verification program and also for participation in official proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons (OPCW), the Netherlands. The structure of N-oxides can be confirmed by the MS/MS experiments on the detected peaks. A liquid chromatography-mass spectrometry (LC-MS) method was developed for the separation of isomeric N-oxides of aminoethanols and aminoethylchlorides using a C18 Hilic column. Critical isomeric compounds can be confirmed by LC-MS/MS experiments, after detecting the N-oxides from the neutral loss scanning method. PMID:24553657

  9. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.; Lonergan, D.J.

    1989-01-01

    The ability of Alteromonas putrefaciens to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory Fe(III) or Mn(IV) reduction was investigated. A. putrefaciens grew with hydrogen, formate, lactate, or pyruvate as the sole electron donor and Fe(III) as the sole electron acceptor. Lactate and pyruvate were oxidized to acetate, which was not metabolized further. With Fe(III) as the electron acceptor, A. putrefaciens had a high affinity for hydrogen and formate and metabolized hydrogen at partial pressures that were 25-fold lower than those of hydrogen that can be metabolized by pure cultures of sulfate reducers or methanogens. The electron donors for Fe(III) reduction also supported Mn(IV) reduction. The electron donors for Fe(III) and Mn(IV) reduction and the inability of A. putrefaciens to completely oxidize multicarbon substrates to carbon dioxide distinguish A. putrefaciens from GS-15, the only other organism that is known to obtain energy for growth by coupling the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). The ability of A. putrefaciens to reduce large quantities of Fe(III) and to grow in a defined medium distinguishes it from a Pseudomonas sp., which is the only other known hydrogen-oxidizing, Fe(III)-reducing microorganism. Furthermore, A. putrefaciens is the first organism that is known to grow with hydrogen as the electron donor and Mn(IV) as the electron acceptor and is the first organism that is known to couple the oxidation of formate to the reduction of Fe(III) or Mn(IV). Thus, A. putrefaciens provides a much needed microbial model for key reactions in the oxidation of sediment organic matter coupled to Fe(III) and Mn(IV) reduction.

  10. Observation of T-2 and HT-2 glucosides from Fusarium sporotrichioides by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultures of Fusarium sporotrichioides were extracted and subjected to evaluation by high performance liquid chromatography – tandem mass spectrometry (LC-MS/MS). Along with the expected T-2 and HT-2 toxins, compounds 162 m/z higher than the toxins were observed. Fragmentation behavior of the larger ...

  11. Synthesis of highly substituted acenes through rhodium-catalyzed oxidative coupling of arylboron reagents with alkynes.

    PubMed

    Fukutani, Tatsuya; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2011-04-15

    The rhodium-catalyzed oxidative 1:2 coupling reactions of arylboronic acids or their esters with alkynes smoothly proceed to produce the corresponding annulated products. Of special note, highly substituted, readily soluble, and tractable anthracene and tetracene derivatives can be obtained selectively from 2-naphthyl- and 2-anthrylboron reagents, respectively. PMID:21395298

  12. Substituent-enabled oxidative dehydrogenative cross-coupling of 1,4-naphthoquinones with alkenes.

    PubMed

    Zhang, Chi; Wang, Meining; Fan, Zhoulong; Sun, Li-Ping; Zhang, Ao

    2014-08-15

    A Rh-catalyzed oxidative dehydrogenative cross-coupling of 1,4-naphthquinones with alkenes was achieved by using a substituent-enabled C(sp(2))-H functionalization (SEF) strategy. The method shows high functional group tolerance, broad substrate scope, and great potential for further functional transformations. PMID:25075553

  13. Metal-free oxidative cross-coupling of diazirines with arylboronic acids.

    PubMed

    Wu, Guojiao; Zhao, Xia; Ji, Wenzhi; Zhang, Yan; Wang, Jianbo

    2016-01-21

    We report herein a metal-free cross-coupling of diazirines with arylboronic acids under oxidative conditions. The reaction affords a series of substituted olefins. It is proposed that the interaction between the nitrogen on diazirine with arylboronic acid plays a key role in this transformation. PMID:26688566

  14. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment

    PubMed Central

    Marzocchi, Ugo; Trojan, Daniela; Larsen, Steffen; Louise Meyer, Rikke; Peter Revsbech, Niels; Schramm, Andreas; Peter Nielsen, Lars; Risgaard-Petersen, Nils

    2014-01-01

    Filamentous bacteria of the Desulfobulbaceae family can conduct electrons over centimeter-long distances thereby coupling oxygen reduction at the surface of marine sediment to sulfide oxidation in deeper anoxic layers. The ability of these cable bacteria to use alternative electron acceptors is currently unknown. Here we show that these organisms can use also nitrate or nitrite as an electron acceptor thereby coupling the reduction of nitrate to distant oxidation of sulfide. Sulfidic marine sediment was incubated with overlying nitrate-amended anoxic seawater. Within 2 months, electric coupling of spatially segregated nitrate reduction and sulfide oxidation was evident from: (1) the formation of a 4–6-mm-deep zone separating sulfide oxidation from the associated nitrate reduction, and (2) the presence of pH signatures consistent with proton consumption by cathodic nitrate reduction, and proton production by anodic sulfide oxidation. Filamentous Desulfobulbaceae with the longitudinal structures characteristic of cable bacteria were detected in anoxic, nitrate-amended incubations but not in anoxic, nitrate-free controls. Nitrate reduction by cable bacteria using long-distance electron transport to get privileged access to distant electron donors is a hitherto unknown mechanism in nitrogen and sulfur transformations, and the quantitative importance for elements cycling remains to be addressed. PMID:24577351

  15. Selective oxidation and N-coupling by purified laccase of xylaria polymorpha MTCC-1100.

    PubMed

    Chaurasia, Pankaj Kumar; Yadava, Sudha; Bharati, Shashi Lata; Singh, Sunil Kumar

    2014-01-01

    The chemical route of oxidation of methyl group to its aldehyde is inconvenient because once a methyl group is attacked, it is likely to be oxidized to the carboxylic acid and it is very difficult to stop the reaction at the aldehyde stage. Fungal laccases can be used for such oxidation reaction and the reaction can be completed sharply within 1-2 hrs. Coupling of amines are another important reactions known forfungal laccases; coupling reactions generally take 3-7 hrs. We have used the purified laccase of molecular weight 63 kDa obtained from the fungal strainXylaria polymorpha MTCC-100 with activity of 1.95 IU/mL for selective oxidation of 2-fluorotoluene, 4-fluorotoluene, and 2-chlorotoluene to 2-fluorobenzaldehyde, 4-fluorobenzaldehyde, and 2-chlorobenzaldehyde, respectively, and syntheses of 3-(3,4-dihydroxyphenyl)-propionic acid derivatives by N-coupling of amines. In each oxidation reactions, ABTS was used as mediator molecule. All the syntheses are ecofriendly and were performed at room temperature. PMID:25898759

  16. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment.

    PubMed

    Marzocchi, Ugo; Trojan, Daniela; Larsen, Steffen; Meyer, Rikke Louise; Revsbech, Niels Peter; Schramm, Andreas; Nielsen, Lars Peter; Risgaard-Petersen, Nils

    2014-08-01

    Filamentous bacteria of the Desulfobulbaceae family can conduct electrons over centimeter-long distances thereby coupling oxygen reduction at the surface of marine sediment to sulfide oxidation in deeper anoxic layers. The ability of these cable bacteria to use alternative electron acceptors is currently unknown. Here we show that these organisms can use also nitrate or nitrite as an electron acceptor thereby coupling the reduction of nitrate to distant oxidation of sulfide. Sulfidic marine sediment was incubated with overlying nitrate-amended anoxic seawater. Within 2 months, electric coupling of spatially segregated nitrate reduction and sulfide oxidation was evident from: (1) the formation of a 4-6-mm-deep zone separating sulfide oxidation from the associated nitrate reduction, and (2) the presence of pH signatures consistent with proton consumption by cathodic nitrate reduction, and proton production by anodic sulfide oxidation. Filamentous Desulfobulbaceae with the longitudinal structures characteristic of cable bacteria were detected in anoxic, nitrate-amended incubations but not in anoxic, nitrate-free controls. Nitrate reduction by cable bacteria using long-distance electron transport to get privileged access to distant electron donors is a hitherto unknown mechanism in nitrogen and sulfur transformations, and the quantitative importance for elements cycling remains to be addressed. PMID:24577351

  17. Identification of oxidative coupling products of xylenols arising from laboratory-scale phytoremediation.

    PubMed

    Poerschmann, J; Schultze-Nobre, L; Ebert, R U; Górecki, T

    2015-01-01

    Oxidative coupling reactions take place during the passage of xylenols through a laboratory-scale helophyte-based constructed wetland system. Typical coupling product groups including tetramethyl-[1,1'-biphenyl] diols and tetramethyl diphenylether monools as stable organic intermediates could be identified by a combination of pre-chromatographic derivatization and GC/MS analysis. Structural assignment of individual analytes was performed by an increment system developed by Zenkevich to pre-calculate retention sequences. The most abundant analyte turned out to be 3,3',5,5'-tetramethyl-[1,1'-biphenyl]-4,4'-diol, which can be formed by a combination of radicals based on 2,6-xylenol or by an attack of a 2,6-xylenol-based radical on 2,6-xylenol. Organic intermediates originating from oxidative coupling could also be identified in anaerobic constructed wetland systems. This finding suggested the presence of (at least partly) oxic conditions in the rhizosphere. PMID:24992220

  18. Validation of a liquid chromatography tandem mass spectrometry method to measure oxidized and reduced forms of glutathione in whole blood and verification in a mouse model as an indicator of oxidative stress.

    PubMed

    Lee, Sang-Guk; Yim, Jisook; Lim, Yein; Kim, Jeong-Ho

    2016-04-15

    As a possible marker of oxidative stress, many studies have measured whole blood reduced glutathione (GSH) and oxidized glutathione (GSSG). However, large differences in GSH and GSSG levels reported in different studies, calls for a reliable standardized method. In this study, we validate not only analytical performance of new measurement method for GSH and GSSG, but also the clinical utility of these markers in a mouse model with chronic oxidative stress. Twenty mice were randomized into four treatment groups according to iron burden: 0mg, 5mg, 10mg, or 15mg of iron were injected into the peritoneum per day over 4 weeks. To prevent artifactual GSH auto-oxidation, we pretreated the sample with N-ethylmaleimide (NEM) immediately after sample collection. After protein precipitation using sulfosalicylic acid, GSSG and GSH-NEM were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The mean GSH/GSSG ratios of the mouse model were 163.1, 31.0, 27.9, and 12.8 for control, 5mg, 10mg, and 15mg injection groups, respectively, showing a decrease in the GSH/GSSG ratios according to the amount of oxidative stress induced. Inter-assay coefficients of variation were 4.1% for GSH-NEM and 7.3% for GSSG. Recoveries were 98.0-105.9% for GSH-NEM and 98.0-107.3% for GSSG. No ion suppression was observed at the retention time for GSH-NEM and GSSG. This study suggests an accurate method that can be used for glutathione measurement using LC-MS/MS, and showed that GSH/GSSG ratio could provide an assessment of the degree of oxidative stress. PMID:26575459

  19. Tandem betatron

    DOEpatents

    Keinigs, Rhonald K.

    1992-01-01

    Two betatrons are provided in tandem for alternately accelerating an electron beam to avoid the single flux swing limitation of conventional betatrons and to accelerate the electron beam to high energies. The electron beam is accelerated in a first betatron during a period of increasing magnetic flux. The eletron beam is extracted from the first betatron as a peak magnetic flux is reached and then injected into a second betatron at a time of minimum magnetic flux in the second betatron. The cycle may be repeated until the desired electron beam energy is obtained. In one embodiment, the second betatron is axially offset from the first betatron to provide for electron beam injection directly at the axial location of the beam orbit in the second betatron.

  20. Feasibility of a tandem photocatalytic oxidation-adsorption system for removal of monoaromatic compounds at concentrations in the sub-ppm-range.

    PubMed

    Jo, Wan-Kuen; Yang, Chang-Hee

    2009-09-01

    Unlike previous photocatalytic oxidation (PCO) studies incorporated with adsorption, this study investigates the feasibility of applying a tandem PCO-adsorption hybrid technique regarding low-level monoaromatic compound removal. The PCO efficiencies decreased as the hydraulic diameter (HD) increased. A PCO reactor of a medium HD size was selected for further experiments. Under conditions relevant to the use of the PCO system, the CO level measured during the PCO process was minimal in comparison to indoor CO levels. Trace level formations of formaldehyde and acetaldehyde were observed during the photocatalytic process, but these compounds were undetectable at the activated carbon unit outlet. The degradation efficiencies, obtained from the PCO unit, exhibited a dependence on both the inlet concentration (IC) and relative humidity (RH), whereas those from the PCO-adsorption hybrid system did not. Under specific conditions, the PCO unit presented a high degradation efficiency of close to, or exceeding 90%, in regards to ethyl benzene, o-xylene, and m,p-xylene. However, the benzene air concentrations, after being treated by the PCO unit, substantially exceeded the USEPA inhalation reference concentration guideline of 30microgm(-3) (corresponding to 0.01ppm). In contrast, the PCO-adsorption hybrid system presented a high removal efficiency of close to 100% regarding all compounds, regardless of the IC or RH range. Consequently, it is suggested that the PCO-adsorption hybrid system has a synergistic advantage of photocatalysis and adsorption in regards to the BTEX elimination process. PMID:19666187

  1. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction

    NASA Astrophysics Data System (ADS)

    Yang, Wendy H.; Weber, Karrie A.; Silver, Whendee L.

    2012-08-01

    The oxidation of ammonium is a key step in the nitrogen cycle, regulating the production of nitrate, nitrous oxide and dinitrogen. In marine and freshwater ecosystems, anaerobic ammonium oxidation coupled to nitrite reduction, termed anammox, accounts for up to 67% of dinitrogen production. Dinitrogen production through anaerobic ammonium oxidation has not been observed in terrestrial ecosystems, but the anaerobic oxidation of ammonium to nitrite has been observed in wetland soils under iron-reducing conditions. Here, we incubate tropical upland soil slurries with isotopically labelled ammonium and iron(III) to assess the potential for anaerobic ammonium oxidation coupled to iron(III) reduction, otherwise known as Feammox, in these soils. We show that Feammox can produce dinitrogen, nitrite or nitrate in tropical upland soils. Direct dinitrogen production was the dominant Feammox pathway, short-circuiting the nitrogen cycle and resulting in ecosystem nitrogen losses. Rates were comparable to aerobic nitrification and to denitrification, the latter being the only other process known to produce dinitrogen in terrestrial ecosystems. We suggest that Feammox could fuel nitrogen losses in ecosystems rich in poorly crystalline iron minerals, with low or fluctuating redox conditions.

  2. Comparison of electron and chemical ionization modes for the quantification of thiols and oxidative compounds in white wines by gas chromatography-tandem mass spectrometry.

    PubMed

    Thibon, Cécile; Pons, Alexandre; Mouakka, Nadia; Redon, Pascaline; Méreau, Raphaël; Darriet, Philippe

    2015-10-01

    A rapid, sensitive method for assaying volatile impact compounds in white wine was developed using gas chromatography-tandem mass spectrometry (GC-MS/MS) technology, with a triple quadrupole analyzer operating in chemical ionization and electron impact mode. This GC-MS/MS method made it possible to assay volatile thiols (3SH: 3-sulfanylhexanol, formerly 3MH; 3SHA: 3-sulfanylhexyl acetate, formerly 3MHA; 4MSP: 4-methyl-4-sulfanylpentan-2-one, formerly 4MMP; BM: benzenemethanethiol; E2SA: ethyl 2-sulfanylacetate; and 2FM: 2-furanmethanethiol) and odoriferous oxidation markers (Sotolon: 4,5-dimethyl-3-hydroxy-2(5)H-furanone, methional, and phenylacetaldehyde) simultaneously in dry white wines, comparing electron impact (EI) and chemical ionization (CI) modes. More molecular ions were produced by CI than protonated molecules, despite the greater fragmentation caused by EI. So, even using the best reactant gas giving the highest signal for thiols, EI was the best ionization mode, with the lowest detection limits. For all compounds of interest, the limits of quantification (LOQ) obtained were well below their detection thresholds (ranging from 0.5 to 8.5ng/L for volatile thiols and 65-260ng/L for oxidation markers). Recovery rates ranged from 86% to 111%, reproducibility (in terms of relative standard deviation; RSD) was below 18% in all cases, with correlation coefficients above 0.991 for all analytes. The method was successfully applied to the analysis of compounds of interest in Sauvignon Blanc wines from a single estate and ten different vintages. PMID:26358562

  3. Study of kinetic desorption rate constant in fish muscle and agarose gel model using solid phase microextraction coupled with liquid chromatography with tandem mass spectrometry.

    PubMed

    Togunde, Oluranti Paul; Oakes, Ken; Servos, Mark; Pawliszyn, Janusz

    2012-09-12

    This study aims to use solid phase microextraction (SPME), a simple tool to investigate diffusion rate (time) constant of selected pharmaceuticals in gel and fish muscle by comparing desorption rate of diffusion of the drugs in both agarose gel prepared with phosphate-buffered saline (PBS; pH 7.4) and fish muscle. The gel concentration (agarose gel model) that could be used to simulate tissue matrix (fish muscle) for free diffusion of drugs under in vitro and in vivo conditions was determined to model mass transfer phenomena between fibre polymer coating and environmental matrix such that partition coefficients and desorption time constant (diffusion coefficient) can be determined. SPME procedure involves preloading the extraction phase (fibre) with the standards from spiked PBS for 1h via direct extraction. Subsequently, the preloaded fibre is introduced to the sample such fish or agarose gel for specified time ranging from 0.5 to 60 h. Then, fibre is removed at specified time and desorbed in 100 μL of desorption solution (acetonitrile: water 1:1) for 90 min under agitation speed of 1000 rpm. The samples extract were immediately injected to the instrument and analysed using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). The limit of detection of the method in gel and fish muscle was 0.01-0.07 ng mL(-1) and 0.07-0.34 ng g(-1), respectively, while the limit quantification was 0.10-0.20 ng mL(-1) in gel samples and 0.40-0.97 ng g(-1) in fish sample. The reproducibility of the method was good (5-15% RSD). The results suggest that kinetics of desorption of the compounds in fish tissue and different viscosity of gel can be determined using desorption time constant. In this study, desorption time constant which is directly related to desorption rate (diffusion kinetics) of selected drugs from the fibre to the gel matrix is faster as the viscosity of the gel matrix reduces from 2% (w/v) to 0.8% (w/v). As the concentration of gel reduces, viscosity of the gel will be reduced therefore allowing faster diffusion which invariably affect desorption time constant. Also, desorption time constant of model drugs in the fish muscle and 0.8-0.9% (w/v) gel model are similar based on free diffusion of studied compounds. In addition, in vitro and in vivo desorption time constant comparison shows that desorption time constant in an in vivo system (live fish muscle) is generally higher than an in vitro system (dead fish muscle) except for sertraline and nordiazepam. This study demonstrates SPME as a simple investigative tool to understand kinetics of desorption in an in vivo system with a goal to measure desorption rate of pharmaceuticals in fish. PMID:22884200

  4. Amine-functional magnetic polymer modified graphene oxide as magnetic solid-phase extraction materials combined with liquid chromatography-tandem mass spectrometry for chlorophenols analysis in environmental water.

    PubMed

    Pan, Sheng-Dong; Zhou, Li-Xin; Zhao, Yong-Gang; Chen, Xiao-Hong; Shen, Hao-Yu; Cai, Mei-Qiang; Jin, Mi-Cong

    2014-10-01

    A novel planar-structure amine-functional magnetic polymer modified graphene oxide nanocomposite (NH2-MP@GO) was synthesized. The properties were characterized by transmission electron microscopy (TEM) and Fourier-transform infrared spectrometry (FTIR). The obtained adsorption results showed that the NH2-MP@GO had great adsorptive ability toward five chlorophenols (CPs), including 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP). Based on these, an effective magnetic solid-phase extraction (MSPE) procedure coupled with high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the preconcentration and determination of the five CPs in environmental water samples was developed. Various experimental parameters that could affect the extraction efficiencies had been investigated in detail. Under the optimum conditions, the enrichment factors of the method for the target CPs were found to be 1000. The proposed method was successfully applied for the analysis of environmental water samples with recoveries ranging from 86.4 to 99.8% with correlation coefficients (R) higher than 0.9994. Good linearities were obtained ranging from 10 to 500ng/L for 2-CP, 5 to 500ng/L for 2,4-DCP, 2 to 500ng/L for 2,4,6-TeCP and 2,3,4,6-TeCP, and 1 to 500ng/L for PCP, respectively. The limits of quantitation for the five CPs were 0.6-9.2ng/L. It was confirmed that the planar-structure NH2-MP@GO was a kind of highly effective MSPE materials used for the trace CPs analyses. PMID:25160956

  5. Identification of novel in vivo MAP kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography.

    PubMed

    Hoehenwarter, Wolfgang; Thomas, Martin; Nukarinen, Ella; Egelhofer, Volker; Röhrig, Horst; Weckwerth, Wolfram; Conrath, Uwe; Beckers, Gerold J M

    2013-02-01

    Mitogen-activated protein kinase (MPK) cascades are important for eukaryotic signal transduction. They convert extracellular stimuli (e.g. some hormones, growth factors, cytokines, microbe- or damage-associated molecular patterns) into intracellular responses while at the same time amplifying the transmitting signal. By doing so, they ensure proper performance, and eventually survival, of a given organism, for example in times of stress. MPK cascades function via reversible phosphorylation of cascade components MEKKs, MEKs, and MPKs. In plants the identity of most MPK substrates remained elusive until now. Here, we provide a robust and powerful approach to identify and quantify, with high selectivity, site-specific phosphorylation of MPK substrate candidates in the model plant Arabidopsis thaliana. Our approach represents a two-step chromatography combining phosphoprotein enrichment using Al(OH)(3)-based metal oxide affinity chromatography, tryptic digest of enriched phosphoproteins, and TiO(2)-based metal oxide affinity chromatography to enrich phosphopeptides from complex protein samples. When applied to transgenic conditional gain-of-function Arabidopsis plants supporting in planta activation of MPKs, the approach allows direct measurement and quantification ex vivo of site-specific phosphorylation of several reported and many yet unknown putative MPK substrates in just a single experiment. PMID:23172892

  6. Ternary and coupled binary zinc tin oxide nanopowders: Synthesis, characterization, and potential application in photocatalytic processes

    SciTech Connect

    Ivetić, T.B.; Finčur, N.L.; Đačanin, Lj. R.; Abramović, B.F.; Lukić-Petrović, S.R.

    2015-02-15

    Highlights: • Mechanochemically synthesized nanocrystalline zinc tin oxide (ZTO) powders. • Photocatalytic degradation of alprazolam in the presence of ZTO water suspensions. • Coupled binary ZTO exhibits enhanced photocatalytic activity compared to ternary ZTO. - Abstract: In this paper, ternary and coupled binary zinc tin oxide nanocrystalline powders were prepared via simple solid-state mechanochemical method. X-ray diffraction, scanning electron microscopy, Raman and reflectance spectroscopy were used to study the structure and optical properties of the obtained powder samples. The thermal behavior of zinc tin oxide system was examined through simultaneous thermogravimetric-differential scanning calorimetric analysis. The efficiencies of ternary (Zn{sub 2}SnO{sub 4} and ZnSnO{sub 3}) and coupled binary (ZnO/SnO{sub 2}) zinc tin oxide water suspensions in the photocatalytic degradation of alprazolam, short-acting anxiolytic of the benzodiazepine class of psychoactive drugs, under UV irradiation were determined and compared with the efficiency of pure ZnO and SnO{sub 2}.

  7. Coupling Between and Among Ammonia Oxidizers and Nitrite Oxidizers in Grassland Mesocosms Submitted to Elevated CO2 and Nitrogen Supply.

    PubMed

    Simonin, Marie; Le Roux, Xavier; Poly, Franck; Lerondelle, Catherine; Hungate, Bruce A; Nunan, Naoise; Niboyet, Audrey

    2015-10-01

    Many studies have assessed the responses of soil microbial functional groups to increases in atmospheric CO2 or N deposition alone and more rarely in combination. However, the effects of elevated CO2 and N on the (de)coupling between different microbial functional groups (e.g., different groups of nitrifiers) have been barely studied, despite potential consequences for ecosystem functioning. Here, we investigated the short-term combined effects of elevated CO2 and N supply on the abundances of the four main microbial groups involved in soil nitrification: ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (belonging to the genera Nitrobacter and Nitrospira) in grassland mesocosms. AOB and AOA abundances responded differently to the treatments: N addition increased AOB abundance, but did not alter AOA abundance. Nitrobacter and Nitrospira abundances also showed contrasted responses to the treatments: N addition increased Nitrobacter abundance, but decreased Nitrospira abundance. Our results support the idea of a niche differentiation between AOB and AOA, and between Nitrobacter and Nitrospira. AOB and Nitrobacter were both promoted at high N and C conditions (and low soil water content for Nitrobacter), while AOA and Nitrospira were favored at low N and C conditions (and high soil water content for Nitrospira). In addition, Nitrobacter abundance was positively correlated to AOB abundance and Nitrospira abundance to AOA abundance. Our results suggest that the couplings between ammonia and nitrite oxidizers are influenced by soil N availability. Multiple environmental changes may thus elicit rapid and contrasted responses between and among the soil ammonia and nitrite oxidizers due to their different ecological requirements. PMID:25877793

  8. Simultaneous speciation of selenium and sulfur species in selenized odorless garlic (Allium sativum L. Shiro) and shallot (Allium ascalonicum) by HPLC-inductively coupled plasma-(octopole reaction system)-mass spectrometry and electrospray ionization-tandem mass spectrometry.

    PubMed

    Ogra, Yasumitsu; Ishiwata, Kazuya; Iwashita, Yuji; Suzuki, Kazuo T

    2005-11-01

    The simultaneous speciation of selenium and sulfur in selenized odorless garlic (Allium sativum L. Shiro) and a weakly odorous Allium plant, shallot (Allium ascalonicum), was performed by means of a hyphenated technique, a HPLC coupled with an inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) equipped with an octopole reaction system (ORS). The aqueous extracts of them contained the common seleno compound that was identified as gamma-glutamylmethylselenocysteine by an electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Normal garlic contains alliin as the major sulfur-containing compound, which is the biological precursor of the garlic odorant, allicin. Alliin, however, was not detected in the extracts of the selenized odorless garlic. At least, four unidentified sulfur-containing compounds were detected in odorless garlic and shallot. Moreover, these Allium plants showed chemopreventive effects against human leukemia cells. PMID:16233877

  9. Effects of coupling agents on mechanical properties of metal oxide-polymethacrylate composites.

    PubMed

    Yoshida, K; Greener, E H

    1994-02-01

    The effects of several coupling agents on the mechanical properties of metal oxide-polymethacrylate composites reinforced with titanium dioxide (TiO2), aluminium oxide (Al2O3), silica (SiO2) and zirconium dioxide (ZrO2), as fillers for opaque resins were assessed. The prepared composites consist of 24.75 wt% triethyleneglycol dimethacrylate (TEGDMA), 24.75 wt% 1,6-bis(methacryloxy-2- ethoxycarbonylamino)-2,4,4-trimethylhexane (UDMA), 0.5 wt% benzoyl peroxide (BPO) and 50 wt% metal oxide filler. Three methacrylate coupling agents--methoxydiethyleneglycol trimethacryloyl titanate, 3-trimethoxysilylpropyl methacrylate and 2,2-di(allyloxymethyl)butyl trimethacryloyl zirconate--were used for surface treatment of TiO2, SiO2 and ZrO2, respectively, while Al2O3 was treated with 4-methacryloxyethyl trimellitate anhydride (4-META). 4-META was also adopted as a coupler for TiO2, SiO2 and ZrO2 powders. Compressive and transverse strength specimens were prepared with the use of coupled or untreated filler and heat cured at 110 degrees C and 0.5 MPa for 30 min. All coupled metal oxide composites had significantly higher compressive and transverse strengths than did untreated composites after 1 month's immersion in 37 degrees C water. Scanning electron microscopy (SEM) of fractured TiO2 composite surfaces after storage in water for 1 month showed an interface failure between TiO2 filler and matrix resin for untreated TiO2 composite and cohesive failures within the resin for treated specimen. Similar results were observed with silanated SiO2 composite. However, cohesive and interface failures were seen in zirconated ZrO2- and 4-META-coupled Al2O3 composites. Thus, titanated TiO2-polymethacrylate composite may be useful as a composite pigment for opaque resin materials. PMID:8157814

  10. Nanocrystal assembly for tandem catalysis

    DOEpatents

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  11. Organo-Iodine(III)-Catalyzed Oxidative Phenol-Arene and Phenol-Phenol Cross-Coupling Reaction.

    PubMed

    Morimoto, Koji; Sakamoto, Kazuma; Ohshika, Takao; Dohi, Toshifumi; Kita, Yasuyuki

    2016-03-01

    The direct oxidative coupling reaction has been an attractive tool for environmentally benign chemistry. Reported herein is that the hypervalent iodine catalyzed oxidative metal-free cross-coupling reaction of phenols can be achieved using Oxone as a terminal oxidant in 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP). This method features a high efficiency and regioselectivity, as well as functional-group tolerance under very mild reaction conditions without using metal catalysts. PMID:26879796

  12. "Nanocrystal bilayer for tandem catalysis"

    SciTech Connect

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  13. Concurrent Formation of Carbon-Carbon Bonds and Functionalized Graphene by Oxidative Carbon-Hydrogen Coupling Reaction.

    PubMed

    Morioku, Kumika; Morimoto, Naoki; Takeuchi, Yasuo; Nishina, Yuta

    2016-01-01

    Oxidative C-H coupling reactions were conducted using graphene oxide (GO) as an oxidant. GO showed high selectivity compared with commonly used oxidants such as (diacetoxyiodo) benzene and 2,3-dichloro-5,6-dicyano-p-benzoquinone. A mechanistic study revealed that radical species contributed to the reaction. After the oxidative coupling reaction, GO was reduced to form a material that shows electron conductivity and high specific capacitance. Therefore, this system could concurrently achieve two important reactions: C-C bond formation via C-H transformation and production of functionalized graphene. PMID:27181191

  14. Bimolecular Coupling Reactions through Oxidatively Generated Aromatic Cations: Scope and Stereocontrol

    PubMed Central

    Cui, Yubo; Villafane, Louis A.; Clausen, Dane J.

    2013-01-01

    Chromenes, isochromenes, and benzoxathioles react with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone to form stable aromatic cations that react with a range of nucleophiles. These oxidative fragment coupling reactions provide rapid access to structurally diverse heterocycles. Conducting the reactions in the presence of a chiral Brønsted acid results in the formation of an asymmetric ion pair that can provide enantiomerically enriched products in a rare example of a stereoselective process resulting from the generation of a chiral electrophile through oxidative carbon–hydrogen bond cleavage. PMID:23913987

  15. Photo-oxidative tuning of individual and coupled GaAs photonic crystal cavities.

    PubMed

    Piggott, Alexander Y; Lagoudakis, Konstantinos G; Sarmiento, Tomas; Bajcsy, Michal; Shambat, Gary; Vučković, Jelena

    2014-06-16

    We demonstrate a photo-induced oxidation technique for tuning GaAs photonic crystal cavities using a low-power 390 nm pulsed laser. The laser oxidizes a small (< 1 μm) diameter spot, reducing the local index of refraction and blueshifting the cavity. The tuning progress can be actively monitored in real time. We also demonstrate tuning an individual cavity within a pair of proximity-coupled cavities, showing that this method can be used to tune individual cavities in a cavity network, with applications in quantum simulations and quantum computing. PMID:24977595

  16. Immobilization of Laccase for Oxidative Coupling of Trans-Resveratrol and Its Derivatives

    PubMed Central

    Zhang, Hong; Xun, Erna; Wang, Jiaxin; Chen, Ge; Cheng, Tiexin; Wang, Zhi; Ji, Tengfei; Wang, Lei

    2012-01-01

    Trametes villosa Laccase (TVL) was immobilized through physical adsorption on SBA-15 mesoporous silica and the immobilized TVL was used in the oxidative coupling of trans-resveratrol. Higher loading and activity of the immobilized enzyme on SBA-15 were obtained when compared with the free enzyme. The effects of reaction conditions, such as buffer type, pH, temperature and substrate concentration were investigated, and the optimum conditions were screened and resulted in enzyme activity of up to 10.3 ?mol/gh. Furthermore, the oxidative couplings of the derivatives of trans-resveratrol were also catalyzed by immobilized TVL. The immobilized TVL was recyclable and could maintain 78% of its initial activity after reusing it four times. PMID:22754345

  17. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui; Tammela, Petter; Strømme, Maria; Nyholm, Leif

    2015-02-01

    A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes.A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07251k

  18. Spatially coupled catalytic ignition of CO oxidation on Pt: mesoscopic versus nano-scale

    PubMed Central

    Spiel, C.; Vogel, D.; Schlögl, R.; Rupprechter, G.; Suchorski, Y.

    2015-01-01

    Spatial coupling during catalytic ignition of CO oxidation on μm-sized Pt(hkl) domains of a polycrystalline Pt foil has been studied in situ by PEEM (photoemission electron microscopy) in the 10−5 mbar pressure range. The same reaction has been examined under similar conditions by FIM (field ion microscopy) on nm-sized Pt(hkl) facets of a Pt nanotip. Proper orthogonal decomposition (POD) of the digitized FIM images has been employed to analyze spatiotemporal dynamics of catalytic ignition. The results show the essential role of the sample size and of the morphology of the domain (facet) boundary in the spatial coupling in CO oxidation. PMID:26021411

  19. Development of oxidative coupling strategies for site-selective protein modification.

    PubMed

    ElSohly, Adel M; Francis, Matthew B

    2015-07-21

    As the need to prepare ever more complex but well-defined materials has increased, a similar need for reliable synthetic strategies to access them has arisen. Accordingly, recent years have seen a steep increase in the development of reactions that can proceed under mild conditions, in aqueous environments, and with low concentrations of reactants. To enable the preparation of well-defined biomolecular materials with novel functional properties, our laboratory has a continuing interest in developing new bioconjugation reactions. A particular area of focus has been the development of oxidative reactions to perform rapid site- and chemoselective couplings of electron rich aromatic species with both unnatural and canonical amino acid residues. This Account details the evolution of oxidative coupling reactions in our laboratory, from initial concepts to highly efficient reactions, focusing on the practical aspects of performing and developing reactions of this type. We begin by discussing our rationale for choosing an oxidative coupling approach to bioconjugation, highlighting many of the benefits that such strategies provide. In addition, we discuss the general workflow we have adopted to discover protein modification reactions directly in aqueous media with biologically relevant substrates. We then review our early explorations of periodate-mediated oxidative couplings between primary anilines and p-phenylenediamine substrates, highlighting the most important lessons that were garnered from these studies. Key mechanistic insights allowed us to develop second-generation reactions between anilines and anisidine derivatives. In addition, we summarize the methods we have used for the introduction of aniline groups onto protein substrates for modification. The development of an efficient and chemoselective coupling of anisidine derivatives with tyrosine residues in the presence of ceric ammonium nitrate is next described. Here, our logic and workflow are used to highlight the challenges and opportunities associated with the optimization of site-selective chemistries that target native amino acids. We close by discussing the most recent reports from our laboratory that have capitalized on the unique reactivity of o-iminoquinone derivatives. We discuss the various oxidants and conditions that can be used to generate these reactive intermediates from appropriate precursors, as well as the product distributions that result. We also describe our work to determine the nature of iminoquinone reactivity with proteins and peptides bearing free N-terminal amino groups. Through this discussion, we hope to facilitate the use of oxidative approaches to protein bioconjugation, as well as inspire the discovery of new reactions for the site-selective modification of biomolecular targets. PMID:26057118

  20. Intramolecular anodic olefin coupling reactions: using competition studies to probe the mechanism of oxidative cyclization reactions.

    PubMed

    Xu, Hai-Chao; Moeller, Kevin D

    2010-04-16

    A competition experiment was designed so that the relative rates of anodic cyclization reactions under various electrolysis conditions can be determined. Reactions with ketene dithioacetal and enol ether-based substrates that use lithium methoxide as a base were shown to proceed through radical cation intermediates that were trapped by a sulfonamide anion. Results for the oxidative coupling of a vinyl sulfide with a sulfonamide anion using the same conditions were consistent with the reaction proceeding through a nitrogen-radical. PMID:20302359

  1. Heterogeneous Rhodium-Catalyzed Aerobic Oxidative Dehydrogenative Cross-Coupling: Nonsymmetrical Biaryl Amines.

    PubMed

    Matsumoto, Kenji; Yoshida, Masahiro; Shindo, Mitsuru

    2016-04-18

    The first heterogeneously catalyzed oxidative dehydrogenative cross-coupling of aryl amines is reported herein. 2-Naphthylamine analogues were reacted with various electron-rich arenes using a heterogeneous Rh/C catalyst under mild aerobic conditions, thus affording nonsymmetrical biaryl amines in excellent yields with high selectivities. This reaction provides a mild, operationally simple, and efficient approach for the synthesis of biaryls which are important to pharmaceutical and materials chemistry. PMID:26996772

  2. Reduced toxicity of olive mill waste waters by oxidative coupling with biomimetic catalysis.

    PubMed

    Celano, Giuseppe; Smejkalová, Daniela; Spaccini, Riccardo; Piccolo, Alessandro

    2008-07-01

    Large quantities of environmentally toxic olive mill waste waters (OMWW) result from olive oil production worldwide. A synthetic water-soluble meso-tetra(2,6-dichloro-3-sulfonatophenyl)porphyrinate of iron(III) chloride (FePha) was used as biomimetic catalystto oxidatively couple toxic phenols in OMWW fractions obtained by micro-, ultra-, and nanofiltration, and reverse osmosis. The occurrence of oxidative coupling in different OMWW size-fractions was assessed by high performance size exclusion chromatography (HPSEC), before and after conformational disruption with acetic acid, and measurements of proton spin-lattice relaxation time in the rotating frame (T1(rho)H) through 13C-CPMAS-NMR spectroscopy. The concurrent reduction in toxicity of OMWW size-fractions brought about by the FePha treatment was monitored by an algal bioassay. HPSEC chromatograms of OMWW samples subjected to catalyzed coupling showed apparent weight-average molecular weight (Mwa) values varying from 18 to 185% larger than for control. Moreover, when such FePha-treated fractions were added to acetic acid prior to HPSEC, the Mwa values still ranged from 14 to 162% larger than for control fractions similarly treated with acetic acid. This evidence of polymerization among toxic phenols was confirmed by T1(rho)(H) values which were significantly enhanced by the FePha treatment, thereby indicating an increased conformational rigidity of OMWW materials. These molecular changes were reflected in a significantly reduced toxicity exerted on microalgae by the OMWW size-fractions subjected to catalyzed oxidative couplings. Our results suggest that OMWW can be effectively treated with a biomimetic catalyst to induce oxidative phenol polymerization and reduce their toxicity before amendments to soils or other disposal means. PMID:18678023

  3. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil.

    PubMed

    Pratscher, Jennifer; Dumont, Marc G; Conrad, Ralf

    2011-03-01

    Ammonia oxidation is an essential part of the global nitrogen cycling and was long thought to be driven only by bacteria. Recent findings expanded this pathway also to the archaea. However, most questions concerning the metabolism of ammonia-oxidizing archaea, such as ammonia oxidation and potential CO(2) fixation, remain open, especially for terrestrial environments. Here, we investigated the activity of ammonia-oxidizing archaea and bacteria in an agricultural soil by comparison of RNA- and DNA-stable isotope probing (SIP). RNA-SIP demonstrated a highly dynamic and diverse community involved in CO(2) fixation and carbon assimilation coupled to ammonia oxidation. DNA-SIP showed growth of the ammonia-oxidizing bacteria but not of archaea. Furthermore, the analysis of labeled RNA found transcripts of the archaeal acetyl-CoA/propionyl-CoA carboxylase (accA/pccB) to be expressed and labeled. These findings strongly suggest that ammonia-oxidizing archaeal groups in soil autotrophically fix CO(2) using the 3-hydroxypropionate-4-hydroxybutyrate cycle, one of the two pathways recently identified for CO(2) fixation in Crenarchaeota. Catalyzed reporter deposition (CARD)-FISH targeting the gene encoding subunit A of ammonia monooxygenase (amoA) mRNA and 16S rRNA of archaea also revealed ammonia-oxidizing archaea to be numerically relevant among the archaea in this soil. Our results demonstrate a diverse and dynamic contribution of ammonia-oxidizing archaea in soil to nitrification and CO(2) assimilation and that their importance to the overall archaeal community might be larger than previously thought. PMID:21368116

  4. Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria

    PubMed Central

    He, Zhanfei; Geng, Sha; Cai, Chaoyang; Liu, Shuai; Liu, Yan; Pan, Yawei; Lou, Liping; Zheng, Ping; Xu, Xinhua

    2015-01-01

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite. PMID:26048927

  5. Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria.

    PubMed

    He, Zhanfei; Geng, Sha; Cai, Chaoyang; Liu, Shuai; Liu, Yan; Pan, Yawei; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-08-15

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite. PMID:26048927

  6. Proton Coupled Electron Transfer Reactions at the Surface of Metal Oxide Nanomaterials

    NASA Astrophysics Data System (ADS)

    Braten, Miles N.

    Nanostructured metal oxide materials are found in many products and processes in our society today, but they play a particularly important role in the conversion and storage of energy. The materials are used as catalysts and redox active supports in devices such as dye sensitized solar cells, solid oxide fuel cells, and flow batteries, where they transfer and store electrons and charge balancing cations. Oftentimes electron transfer is modulated by the cations and when the cation is a proton, these redox reactions are known as proton coupled electron transfer (PCET) reactions. The work described in this dissertation focuses on understanding the PCET reactivity of nanocrystalline metal oxide materials. Chapter 1 introduces the concept of PCET and provides background information on the zinc oxide (ZnO) nanocrystals (NCs) which the majority of the research is focused on. Chapter 2 examines the chemistry that occurs during the photoreduction of ZnO NCs. Chapter 3 describes experiments probing how ZnO NC capping ligand concentration and NC size modulate PCET reaction rates. Chapter 4 describes experiments that compare the PCET reactivity of ZnO NCs with different numbers of electrons and protons stored on them. Chapter 5 describes attempts to observe the electrochemical reduction of ZnO NCs attached to gold electrodes. Finally, Chapter 6 contains attempts to identify a nanostructured metal oxide alkane oxidation catalyst for use in fuel cell.

  7. Tandem one-pot palladium-catalyzed coupling of hydrazones, haloindoles, and amines: synthesis of amino-N-vinylindoles and their effect on human colon carcinoma cells.

    PubMed

    Roche, Maxime; Bignon, Jérôme; Brion, Jean-Daniel; Hamze, Abdallah; Alami, Mouad

    2014-08-15

    The synthesis of amino-substituted N-vinylazoles was achieved by a new palladium-assisted tandem catalytic reaction involving N-tosylhydrazones, halo-substituted azoles, and amines. Accordingly, two Csp(2)-N bonds were formed through two mechanistically distinct reactions using a single Pd(II)/Pd(0) catalyst system in a one-pot fashion. This work paves the way for the design of biological relevant compounds in an amino-substituted N-vinylindole series. Among several polyoxygenated derivatives evaluated, compounds 5e and 5u were found to exhibit good antiproliferative activity. PMID:25029590

  8. Surface phenomena during the oxidative coupling of methane over Li/MgO

    SciTech Connect

    Peil, K.P.; Goodwin, J.G. Jr.; Marcelin, G. )

    1991-09-01

    This paper details an investigation of the oxidative coupling of methane for reaction temperatures up to 645 C over MgO and Li/MgO catalysts using steady-state isotopic transient kinetic analysis (SSITKA). Oxygen-exchange experiments in the absence of methane resulted in a quantification of the lattice oxygen diffusivity and total oxygen uptake. The catalyst had three more-or-less distinct regions: (1) the physical surface at which exchange between the gas phase and the solid occurred, (2) several subsurface atomic layers readily available for exchange, and (3) the bulk oxide. Using isotopic switches of oxygen and methane under steady-state reaction, the active intermediates along the carbon and oxygen reaction pathways are quantified. Lattice oxygen was found to play a significant role in the oxidation process under steady-state reaction. CO and CO{sub 2} appeared to be formed via a multistep surface oxidation pathway while ethane was formed via surface-generated intermediates along a parallel pathway. Sites involved with the generation of intermediates for selective coupling were found to have a lower activity than sites active for the generation of nonselective intermediates.

  9. Cascade Oxidative Coupling/Cyclization: A Gateway to 3-Amino Polysubstituted Five-Membered Heterocycles.

    PubMed

    Li, Kaizhi; You, Jingsong

    2016-03-18

    Taking advantage of the coordinating activation strategy, we have developed the cascade oxidative coupling/cyclization of α-C(sp(3))-H bonds of amines with enamines or β-keto esters for the synthesis of three types of five-membered heterocycles. α-Amino acids as the substrate lead to 3-amino 1,3-dihydro-2H-pyrrol-2-ones and furan-2(3H)-ones by using air or dioxygen as the sole clean oxidant, respectively. α-Amino ketones give a range of 3-amino 1H-pyrroles by using di-tert-butyl peroxide as the oxidant. A three-component, one-pot reaction from readily available amine, β-keto ester, and α-amino ketone enhances the practicality of the modular construction of 1H-pyrrole scaffolds. This programmed protocol features simple reaction conditions, readily available starting materials, broad substrate scope, and high functional group tolerance. PMID:26914339

  10. Improved photoelectric conversion efficiency from titanium oxide-coupled tin oxide nanoparticles formed in flame

    NASA Astrophysics Data System (ADS)

    Gu, Feng; Huang, Wenjuan; Wang, Shufen; Cheng, Xing; Hu, Yanjie; Li, Chunzhong

    2014-12-01

    The charge losses as a result of recombination to redox electrolyte and dye cation make tin oxide (SnO2)-based dye-sensitized solar cells (DSSCs) particularly inferior when compared with its titanium oxide (TiO2) counterpart. In this article, TiO2 nanocrystal is sealed in SnO2 by a modified flame spray pyrolysis (FSP) approach and the recombination losses to dye cation of SnO2 photoanode are effectively suppressed due to the negatively shifted Fermi level with the formation of bandedge-engineered core/shell structure. The fabricated TiO2@SnO2 (TSN)-device shows an open circuit voltage of 0.59 V and an efficiency of 3.82%, significantly better than those of the TiO2-, and SnO2-DSSCs devices. After surface modification, the conversion efficiency could be further improved to 7.87% while the open circuit voltage reaches 0.70 V. The higher efficiency of the TSN-based device is attributed to the enhanced electron injection arising from decreased interfacial charge recombination losses and improved electron transport. This strategy renders a new concept for further improvement of photovoltaic performance by engineering the dynamics of electron transport and recombination in DSSCs.

  11. Tandem affinity purification of histones, coupled to mass spectrometry, identifies associated proteins and new sites of post-translational modification in Saccharomyces cerevisiae.

    PubMed

    Valero, M Luz; Sendra, Ramon; Pamblanco, Mercè

    2016-03-16

    Histones and their post-translational modifications contribute to regulating fundamental biological processes in all eukaryotic cells. We have applied a conventional tandem affinity purification strategy to histones H3 and H4 of the yeast Saccharomyces cerevisiae. Mass spectrometry analysis of the co-purified proteins revealed multiple associated proteins, including core histones, which indicates that tagged histones may be incorporated to the nucleosome particle. Among the many other co-isolated proteins there are histone chaperones, elements of chromatin remodeling, of nucleosome assembly/disassembly, and of histone modification complexes. The histone chaperone Rtt106p, two members of chromatin assembly FACT complex and Psh1p, an ubiquitin ligase, were the most abundant proteins obtained with both H3-TAP and H4-TAP, regardless of the cell extraction medium stringency. Our mass spectrometry analyses have also revealed numerous novel post-translational modifications, including 30 new chemical modifications in histones, mainly by ubiquitination. We have discovered not only new sites of ubiquitination but that, besides lysine, also serine and threonine residues are targets of ubiquitination on yeast histones. Our results show the standard tandem affinity purification procedure is suitable for application to yeast histones, in order to isolate and characterize histone-binding proteins and post-translational modifications, avoiding the bias caused by histone purification from a chromatin-enriched fraction. PMID:26778144

  12. Comprehensive analysis of ß-lactam antibiotics including penicillins, cephalosporins, and carbapenems in poultry muscle using liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Berendsen, Bjorn J A; Gerritsen, Henk W; Wegh, Robin S; Lameris, Steven; van Sebille, Ralph; Stolker, Alida A M; Nielen, Michel W F

    2013-09-01

    A comprehensive method for the quantitative residue analysis of trace levels of 22 ß-lactam antibiotics, including penicillins, cephalosporins, and carbapenems, in poultry muscle by liquid chromatography in combination with tandem mass spectrometric detection is reported. The samples analyzed for ß-lactam residues are hydrolyzed using piperidine in order to improve compound stability and to include the total residue content of the cephalosporin ceftifour. The reaction procedure was optimized using a full experimental design. Following detailed isotope labeling, tandem mass spectrometry studies and exact mass measurements using high-resolution mass spectrometry reaction schemes could be proposed for all ß-lactams studied. The main reaction occurring is the hydrolysis of the ß-lactam ring under formation of the piperidine substituted amide. For some ß-lactams, multiple isobaric hydrolysis reaction products are obtained, in accordance with expectations, but this did not hamper quantitative analysis. The final method was fully validated as a quantitative confirmatory residue analysis method according to Commission Decision 2002/657/EC and showed satisfactory quantitative performance for all compounds with trueness between 80 and 110% and within-laboratory reproducibility below 22% at target level, except for biapenem. For biapenem, the method proved to be suitable for qualitative analysis only. PMID:23430185

  13. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  14. COUPLING

    DOEpatents

    Hawke, B.C.

    1963-02-26

    This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)

  15. Enhanced spin-phonon-electronic coupling in a 5d oxide

    DOE PAGESBeta

    Calder, Stuart A.; Yamaura, K.; Tsujimoto, Y.; Sun, Y. S.; Stone, Matthew B.; Shi, Y. G.; Lang, Jonathan; Christianson, Andrew D.; Lumsden, Mark D.; Lee, Jun Hee; et al

    2015-11-26

    Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40 cm 1, the largest measured in any material. The anomalous modes are shown to involve solely Os O interactions and magnetism is revealed as the driving microscopic mechanism formore » the phonon renormalization. The magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials.« less

  16. Enhanced spin-phonon-electronic coupling in a 5d oxide.

    PubMed

    Calder, S; Lee, J H; Stone, M B; Lumsden, M D; Lang, J C; Feygenson, M; Zhao, Z; Yan, J-Q; Shi, Y G; Sun, Y S; Tsujimoto, Y; Yamaura, K; Christianson, A D

    2015-01-01

    Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal-insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40 cm(-1), the largest measured in any material. The anomalous modes are shown to involve solely Os-O interactions and magnetism is revealed as the driving microscopic mechanism for the phonon renormalization. The magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials. PMID:26608626

  17. Enhanced spin-phonon-electronic coupling in a 5d oxide

    SciTech Connect

    Calder, Stuart A.; Yamaura, K.; Tsujimoto, Y.; Sun, Y. S.; Stone, Matthew B.; Shi, Y. G.; Lang, Jonathan; Christianson, Andrew D.; Lumsden, Mark D.; Lee, Jun Hee; Feygenson, Mikhail; Zhao, Zhiying; Yan, Jiaqiang

    2015-11-26

    Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40 cm 1, the largest measured in any material. The anomalous modes are shown to involve solely Os O interactions and magnetism is revealed as the driving microscopic mechanism for the phonon renormalization. The magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials.

  18. Enhanced spin-phonon-electronic coupling in a 5d oxide

    PubMed Central

    Calder, S.; Lee, J. H.; Stone, M. B.; Lumsden, M. D.; Lang, J. C.; Feygenson, M.; Zhao, Z.; Yan, J.-Q.; Shi, Y. G.; Sun, Y. S.; Tsujimoto, Y.; Yamaura, K.; Christianson, A. D.

    2015-01-01

    Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal–insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40 cm−1, the largest measured in any material. The anomalous modes are shown to involve solely Os–O interactions and magnetism is revealed as the driving microscopic mechanism for the phonon renormalization. The magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials. PMID:26608626

  19. In situ high temperature oxidation analysis of Zircaloy-4 using acoustic emission coupled with thermogravimetry

    NASA Astrophysics Data System (ADS)

    Omar, Al Haj; Véronique, Peres; Eric, Serris; François, Grosjean; Jean, Kittel; François, Ropital; Michel, Cournil

    2015-06-01

    Zircaloy-4 oxidation behavior at high temperature (900 °C), which can be reached in case of severe accidental situations in nuclear pressurised water reactor, was studied using acoustic emission analysis coupled with thermogravimetry. Two different atmospheres were used to study the oxidation of Zircaloy-4: (a) helium and pure oxygen, (b) helium and oxygen combined with slight addition of air. The experiments with 20% of oxygen confirm the dependence on oxygen anions diffusion in the oxide scale. Under a mixture of oxygen and air in helium, an acceleration of the corrosion was observed due to the detrimental effect of nitrogen. The kinetic rate increased significantly after a kinetic transition (breakaway). This acceleration was accompanied by an acoustic emission activity. Most of the acoustic emission bursts were recorded after the kinetic transition (post-transition) or during the cooling of the sample. The characteristic features of the acoustic emission signals appear to be correlated with the different populations of cracks and their occurrence in the ZrO2 layer or in the α-Zr(O) layer. Acoustic events were recorded during the isothermal dwell time at high temperature under air. They were associated with large cracks in the zirconia porous layer. Acoustic events were also recorded during cooling after oxidation tests both under air or oxygen. For the latter, cracks were observed in the oxygen enriched zirconium metal phase and not in the dense zirconia layer after 5 h of oxidation.

  20. Design and analysis of a coupled solid oxide fuel cell and metal hydride bed system

    NASA Astrophysics Data System (ADS)

    Song, Ke

    Solid oxide fuel cells have exhibited excellent performance at high temperature for a few years. However, the fuel supply and the practical fuel cell application need to be improved especially for transportation or stand-alone facility usage. Two modified hydrogen storage models (two vessel and three vessel hydrogen storage system) are presented in this study. The gravimetric density and volumetric density are calculated in order to meet the DOE requirements. Furthermore, the time dependence model of hydrogen releasing in metal hydride bed (MHB) is built up. And the simulations are carried on in isothermal and adiabatic conditions. The simulation results indicate: the isothermal model can provide sufficient hydrogen flow until the MHB is emptied; the adiabatic model can only last short period because of the fast temperature decreasing in MHB. The steady state and time dependence model of coupled solid oxide fuel cells (SOFC) and MHB system are also investigated. The steady state model focuses on the heat recycle process for coupled system. The calculation shows the heat generated in system can provide enough energy for inner recycle. On the other hand, the time de-pendence model mainly concerns the time delay in such a coupled system. The simu-lation shows the time delay mainly comes from hydrogen feed.

  1. Toluene derivatives as simple coupling precursors for cascade palladium-catalyzed oxidative C-H bond acylation of acetanilides.

    PubMed

    Wu, Yinuo; Choy, Pui Ying; Mao, Fei; Kwong, Fuk Yee

    2013-01-25

    A palladium-catalyzed cascade cross-coupling of acetanilide and toluene for the synthesis of ortho-acylacetanilide is described. Toluene derivatives can act as effective acyl precursors (upon sp(3)-C-H bond oxidation by a Pd/TBHP system) in the oxidative coupling between two C-H bonds. This dehydrogenative Pd-catalyzed ortho-acylation proceeds under mild reaction conditions. PMID:23230572

  2. A simulated countercurrent moving-bed chromatographic reactor for the oxidative coupling of methane: Experimental results

    SciTech Connect

    Tonkovich, A.L.Y.; Carr, R.W.

    1994-09-01

    The oxidative coupling reaction of methane (OCM) represents a potential commercial ethylene production route. However, the highest reported yields do not exceed 20%. The methane coupling reaction is accompanied by the undesired conversion of methane to carbon oxides. The relative amount of oxygen and methane along with other parameters, including temperature, determine the favored reaction pathway. High hydrocarbon to oxygen feed ratios give high ethane/ethylene selectivities but at the expense of the hydrocarbon conversion. When the methane to oxygen feed ratio is low, combustion is favored. The simulated countercurrent moving-bed chromatographic reactor (SCMCR) is applied to the OCM. A modified experimental configuration is designed and evaluated. A four-section apparatus, each containing a reaction and two separation columns, is used to quickly separate the reactants and products using the principles of simulated countercurrent flow. Simultaneous reaction and separation of the reactive products column is desired, but unattainable because of an incompatibility between OCM reaction and separation temperatures. Microreactor yields with a samarium oxide catalyst gives yields between 2% and 10%. Yields as high as 50% are observed with the same catalyst and run conditions in the SCMCR. These yields are significantly higher than previously reported values. The effects of temperature, feed switching time, and methane to oxygen feed ratio have been investigated. The reactor, while not fully optimized, does give promise as an alternative production method for ethylene.

  3. Different Sources of Nitric Oxide Mediate Neurovascular Coupling in the Lateral Geniculate Nucleus of the Cat

    PubMed Central

    de Labra, Carmen; Rivadulla, Casto; Espinosa, Nelson; Dasilva, Miguel; Cao, Ricardo; Cudeiro, Javier

    2009-01-01

    Understanding the link between neuronal responses (NRs) and metabolic signals is fundamental to our knowledge of brain function and it is a milestone in our efforts to interpret data from modern non invasive optical techniques such as fMRI, which are based on the close coupling between metabolic demand of active neurons and local changes in blood flow. The challenge is to unravel the link. Here we show, using spectrophotometry to record oxyhaemoglobin and methemoglobin (surrogate markers of cerebral flow and nitric oxide levels respectively) together with extracellular neuronal recordings in vivo and applying a multiple polynomial regression model, that the markers are able to predict up about 80% of variability in NR. Furthermore, we show that the coupling between blood flow and neuronal activity is heavily influenced by nitric oxide (NO). While NRs show the typical saturating response, blood flow shows a linear behaviour during contrast-response curves, with nitric oxide from different sources acting differently for low and high intensity. PMID:19826613

  4. Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection.

    PubMed

    Orčić, Dejan; Francišković, Marina; Bekvalac, Kristina; Svirčev, Emilija; Beara, Ivana; Lesjak, Marija; Mimica-Dukić, Neda

    2014-01-15

    A method for quantification of 45 plant phenolics (including benzoic acids, cinnamic acids, flavonoid aglycones, C- and O-glycosides, coumarins, and lignans) in plant extracts was developed, based on reversed phase HPLC separation of extract components, followed by tandem mass spectrometric detection. The phenolic profile of 80% MeOH extracts of the stinging nettle (Urtica dioica L.) herb, root, stem, leaf and inflorescence was obtained by using this method. Twenty-one of the investigated compounds were present at levels above the reliable quantification limit, with 5-O-caffeoylquinic acid, rutin and isoquercitrin as the most abundant. The inflorescence extracts were by far the richest in phenolics, with the investigated compounds amounting 2.5-5.1% by weight. As opposed to this, the root extracts were poor in phenolics, with only several acids and derivatives being present in significant amounts. The results obtained by the developed method represent the most detailed U. dioica chemical profile so far. PMID:24054211

  5. Quantitative determination method for trace amount of penicillin contaminants in commercially available drug product by HPLC coupled with tandem mass spectrometry.

    PubMed

    Takada, Wataru; Adachi, Toshikazu; Kihara, Noriaki; Kitamura, Satoshi; Kitagawa, Teruyuki; Mifune, Masaki; Saito, Yutaka

    2005-02-01

    A quantitative determination method for trace amount of penicillin contaminants in an active pharmaceutical ingredient (API) has been developed. Selective extraction of penicillin contaminants from the matrix containing API and specific separation among penicillin contaminants were achieved through an on-line column switching technique with gradient elution, followed by tandem mass spectrometric determination. Validation was conducted on the developed method in terms of specificity, linearity, accuracy, precision, and detection limit, and appeared reasonable. The detection limit was estimated as 0.03 ng/ml or lower of the concentration of penicillin contaminants in the preparation, corresponding to 4 parts par billion (ppb) against the API. This fulfilled the regulatory requirement by the authorities. PMID:15684515

  6. Micro-solid phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry for the determination of stimulants, hallucinogens, ketamine and phencyclidine in oral fluids.

    PubMed

    Sergi, Manuel; Compagnone, Dario; Curini, Roberta; D'Ascenzo, Giuseppe; Del Carlo, Michele; Napoletano, Sabino; Risoluti, Roberta

    2010-08-24

    A confirmatory method for the determination of illicit drugs based on micro-solid phase extraction with modified tips, made of a functionalized fiberglass with apolar chains of octadecylsilane into monolithic structure, has been developed in this study. Drugs belonging to different chemical classes, such as amphetamine, methamphetamine, methylenedioxyamphetamine, methylenedioxyethylamphetamine, methylenedioxymethylamphetamine, cocaine, benzoylecgonine, ketamine, mescaline, phencyclidine and psilocybine were analyzed. The quantitation was performed by liquid chromatography-tandem mass spectrometry and the analytes were detected in positive ionization by means of an electrospray source. The limits of quantification ranged between 0.3 ng mL(-1) for cocaine and 4.9 ng mL(-1) for psilocybine, with coefficients of determination (r(2)) >0.99 for all the analytes as recommended in the guidelines of Society of Forensic Toxicologists-American Association Forensic Sciences. PMID:20800724

  7. Measurement of catecholamines in rat and mini-pig plasma and urine by liquid chromatography-tandem mass spectrometry coupled with solid phase extraction.

    PubMed

    He, Huaibing; Carballo-Jane, Ester; Tong, Xinchun; Cohen, Lucinda H

    2015-08-01

    A tandem mass spectrometry method combined with an ion-pair chromatographic separation after weak cation exchange solid phase sample extraction for epinephrine (E), norepinephrine (NE) and dopamine (DA) has been developed. Two surrogate matrixes for plasma and urine as well as stable isotope labeled internal standards were utilized for quantitation. The observed dynamic range of E, NE and DA was 0.025-100ng/ml for plasma, and 0.25-1000ng/ml for urine with a r(2) regression coefficient >0.99. Extraction recoveries were greater than 60% and the lower limit of quantitation was 25pg/ml for all three analytes in plasma. This method provided excellent sensitivity and selectivity for use with small sample volumes (≤25uL), enabling high-throughput pharmacodynamic animal model development and screening of adverse effects. PMID:26117309

  8. Simultaneous determination of 3-O-acetyloleanolic acid and oleanolic acid in rat plasma using liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Kim, Eunyoung; Noh, Keumhan; Lee, Sang Joon; Shin, Beomsoo; Hwang, Joo Tae; Lee, Seung Woong; Rho, Mun-Chul; Kang, Wonku

    2016-01-25

    3-O-Acetyloleanolic acid (OAA) is a triterpenoid compound, and exerts an apoptosis in cancer cell lines, an inhibition of both atopic and allergic contact dermatitis in murine model, and a suppression of inflammatory bone loss in mice. OAA can be converted into oleanolic acid (OA) by hydrolysis in vivo, and OA exhibits several pharmacological effects as well. A liquid chromatographic method using tandem mass spectrometry (MS/MS) was developed for the simultaneous determination of OAA and OA in rat plasma. After liquid-liquid extraction with ethylacetate, both substances were chromatographed on a reversed phase column with a mobile phase of 0.1% formic acid aqueous solution and acetonitrile (1:9, v/v). The accuracy and precision of the assay were in accordance with FDA regulations for the validation of bioanalytical methods. This analytical method was successfully applied to monitor plasma concentrations of both substances over time following an intravenous administration of OAA in rats. PMID:26520257

  9. Multi-residue method for the determination of pesticides and pesticide metabolites in honeybees by liquid and gas chromatography coupled with tandem mass spectrometry-Honeybee poisoning incidents.

    PubMed

    Kiljanek, Tomasz; Niewiadowska, Alicja; Semeniuk, Stanisław; Gaweł, Marta; Borzęcka, Milena; Posyniak, Andrzej

    2016-02-26

    A method for the determination of 200 pesticides and pesticide metabolites in honeybee samples has been developed and validated. Almost 98% of compounds included in this method are approved to use within European Union, as active substances of plant protection products or veterinary medicinal products used by beekeepers to control mites Varroa destructor in hives. Many significant metabolites, like metabolites of imidacloprid, thiacloprid, fipronil, methiocarb and amitraz, are also possible to detect. The sample preparation was based on the buffered QuEChERS method. Samples of bees were extracted with acetonitrile containing 1% acetic acid and then subjected to clean-up by dispersive solid phase extraction (dSPE) using a new Z-Sep+ sorbent and PSA. The majority of pesticides, including neonicotionoids and their metabolites, were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) but some of pesticides, especially pyrethroid insecticides, were analyzed by gas chromatography tandem mass spectrometry (GC-MS/MS). The procedure was validated according to the Guidance document SANCO/12571/2013 at four concentration levels: 1, 5, 10 and 100ng/g bees and verified in the international proficiency test. The analysis of bee samples spiked at the limit of quantification (LOQ) showed about 98% mean recovery value (trueness) and 97% of analytes showed recovery in the required range of 70-120% and RSDr (precision) below 20%. Linearity and matrix effects were also established. The LOQs of pesticides were in the range of 1-100ng/g. The developed method allows determination of insecticides at concentrations of 10ng/g or less, except abamectin and tebufenozide. LOQ values are lower than the median lethal doses LD50 for bees. The method was used to investigate more than 70 honeybee poisoning incidents. Data about detected pesticides and their metabolites are included. PMID:26830634

  10. Pd-catalyzed tandem sp2-sp3 coupling reactions of chiral stannolanes: an efficient preparation of optically active tetrahydrobenz[f]isoindoles.

    PubMed

    Kamimura, Akio; So, Masahiro; Ishikawa, Shingo; Uno, Hidemitsu

    2013-03-15

    A novel double Migita-Kosugi-Stille coupling reaction with dihydrostannolanes, which are readily available from a radical cascade reaction, was achieved with dihalobenzenes in the presence of a palladium catalyst. Use of unsymmetrical 1-bromo-2-iodobenzene derivatives accomplished the double coupling reaction which gave tetrahydrobenz[f]isoindoles in a regioselective manner. PMID:23461269

  11. Novel approach to fast determination of cholesterol oxidation products in Cypriot foodstuffs using ultra-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Georgiou, Christiana A; Constantinou, Michalis S; Andreou, Rafaella; Hapeshi, Evroula; Fatta-Kassinos, Despo; Kapnissi-Christodoulou, Constantina P

    2016-04-01

    This paper reports the development and validation of a new method based on ultra-performance LC coupled to MS/MS for the simultaneous determination of four cholesterol oxidation products (COPs) in foodstuffs in only 4.1 min. The COPs were detected by ESI in positive-ion mode with multiple reaction monitoring, and the mass spectrometric conditions were optimized in order to increase sensitivity. The developed method was validated in terms of linearity, precision, LODs, and LOQs. Recoveries of the extraction process ranged from 86 to 98.5% when the samples were fortified at 100, 500, and 1500 ng/mL. The applicability of the method was confirmed by analyzing different food samples. Considering the paucity of data regarding the content of COPs in Cypriot foods, particular attention was devoted, for the first time, to the determination of the profile of the main COPs in widely consumed, traditional Cypriot foodstuffs (halloumi cheese, hiromeri, snails, etc.). PMID:26333847

  12. I?-catalyzed oxidative C(sp)-H/S-H coupling: utilizing alkanes and mercaptans as the nucleophiles.

    PubMed

    Yuan, Jiwen; Ma, Xu; Yi, Hong; Liu, Chao; Lei, Aiwen

    2014-11-28

    By using alkanes and mercaptans as the nucleophiles with di-tert-butyl peroxide (DTBP) as the oxidant, I2-catalyzed oxidative C(sp(3))-H/S-H coupling was achieved. This protocol provides a novel process to construct C(sp(3))-S bonds from commercially available hydrocarbons and mercaptans. PMID:25297879

  13. Strongly coupled phase transition in ferroelectric/correlated electron oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Jiang, Lu; Seok Choi, Woo; Jeen, Hyoungjeen; Egami, Takeshi; Nyung Lee, Ho

    2012-07-01

    We fabricated ultrathin ferroelectric/correlated electron oxide heterostructures composed of the ferroelectric Pb(Zr0.2Ti0.8)O3 and the correlated electron oxide (CEO) La0.8Sr0.2MnO3 on SrTiO3 substrates by pulsed laser epitaxy. The hole accumulation in the ultrathin CEO layer was substantially modified by heterostructuring with the ferroelectric layer, resulting in an insulator-metal transition. In particular, our thickness dependent study showed that drastic changes in transport and magnetic properties were strongly coupled to the modulation of charge carriers by ferroelectric field effect, which was confined to the vicinity of the interface. Thus, our results provide crucial evidence that strong ferroelectric field effect control can be achieved in ultrathin (10 nm) heterostructures, yielding at least a 100 000-fold change in resistivity.

  14. Catalytic partial oxidation coupled with membrane purification to improve resource and energy efficiency in syngas production.

    PubMed

    Iaquaniello, G; Salladini, A; Palo, E; Centi, G

    2015-02-01

    Catalytic partial oxidation coupled with membrane purification is a new process scheme to improve resource and energy efficiency in a well-established and large scale-process like syngas production. Experimentation in a semi industrial-scale unit (20 Nm(3)  h(-1) production) shows that a novel syngas production scheme based on a pre-reforming stage followed by a membrane for hydrogen separation, a catalytic partial oxidation step, and a further step of syngas purification by membrane allows the oxygen-to-carbon ratio to be decreased while maintaining levels of feed conversion. For a total feed conversion of 40 %, for example, the integrated novel architecture reduces oxygen consumption by over 50 %, with thus a corresponding improvement in resource efficiency and an improved energy efficiency and economics, these factors largely depending on the air separation stage used to produce pure oxygen. PMID:25571881

  15. Mechanism of the cathodic process coupled to the oxidation of iron monosulfide by dissolved oxygen.

    PubMed

    Duinea, Mădălina I; Costas, Andreea; Baibarac, Mihaela; Chiriță, Paul

    2016-04-01

    This study investigated the mechanism of iron monosulfide (FeS) oxidation by dissolved oxygen (O2(aq)). Synthetic FeS was reacted with O2(aq) for 6days and at 25°C. We have characterized the initial and reacted FeS surface using Scanning Electron Microscopy coupled with Energy Dispersive X-ray (SEM/EDX) analysis, Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). It was found that during the aqueous oxidation of FeS new solid phases (disulfide, polysulfide, elemental sulfur, ferric oxyhydroxides and Fe3O4) develop on the mineral surface. The results of potentiodynamic polarization experiments show that after 2days of FeS electrode immersion in oxygen bearing solution (OBS) at initial pH 5.1 and 25°C the modulus of cathodic Tafel slopes dramatically decreases, from 393mV/dec to 86mV/dec. This decrease is ascribed to the change of the mechanism of electron transfer from cathodic sites to O2 (mechanism of cathodic process). The oxidation current densities (jox) indicate that mineral oxidative dissolution is not inhibited by pH increase up to 6.7. Another conclusion, which emerges from the analysis of jox, is that the dissolved Fe(3+) does not intermediate the aqueous oxidation of FeS. The results of electrochemical impedance spectroscopy (EIS) show that after 2days of contact between electrode and OBS the properties of FeS/water interface change. From the analysis of the EIS, FTIR spectroscopy, Raman spectroscopy and SEM/EDX data we can conclude that the change of FeS/water interface properties accompanies the formation of new solid phases on the mineral surface. The new characteristics of the surface layer and FeS/water interface do not cause the inhibition of mineral oxidation. PMID:26773612

  16. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    USGS Publications Warehouse

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  17. Production of N2 through Anaerobic Ammonium Oxidation Coupled to Nitrate Reduction in Marine Sediments

    PubMed Central

    Thamdrup, Bo; Dalsgaard, Tage

    2002-01-01

    In the global nitrogen cycle, bacterial denitrification is recognized as the only quantitatively important process that converts fixed nitrogen to atmospheric nitrogen gas, N2, thereby influencing many aspects of ecosystem function and global biogeochemistry. However, we have found that a process novel to the marine nitrogen cycle, anaerobic oxidation of ammonium coupled to nitrate reduction, contributes substantially to N2 production in marine sediments. Incubations with 15N-labeled nitrate or ammonium demonstrated that during this process, N2 is formed through one-to-one pairing of nitrogen from nitrate and ammonium, which clearly separates the process from denitrification. Nitrite, which accumulated transiently, was likely the oxidant for ammonium, and the process is thus similar to the anammox process known from wastewater bioreactors. Anaerobic ammonium oxidation accounted for 24 and 67% of the total N2 production at two typical continental shelf sites, whereas it was detectable but insignificant relative to denitrification in a eutrophic coastal bay. However, rates of anaerobic ammonium oxidation were higher in the coastal sediment than at the deepest site and the variability in the relative contribution to N2 production between sites was related to large differences in rates of denitrification. Thus, the relative importance of anaerobic ammonium oxidation and denitrification in N2 production appears to be regulated by the availability of their reduced substrates. By shunting nitrogen directly from ammonium to N2, anaerobic ammonium oxidation promotes the removal of fixed nitrogen in the oceans. The process can explain ammonium deficiencies in anoxic waters and sediments, and it may contribute significantly to oceanic nitrogen budgets. PMID:11872482

  18. Identification and quantification of grapefruit juice furanocoumarin metabolites in urine: an approach based on ultraperformance liquid chromatography coupled to linear ion trap-Orbitrap mass spectrometry and solid-phase extraction coupled to ultraperformance liquid chromatography coupled to triple quadrupole-tandem mass spectrometry.

    PubMed

    Regueiro, Jorge; Vallverdú-Queralt, Anna; Negreira, Noelia; Simal-Gándara, Jesús; Lamuela-Raventós, Rosa M

    2014-03-01

    Grapefruit is a rich source of flavonoids but also contains furanocoumarins, which are known to strongly interact with a variety of medications. Thus, characterization of grapefruit furanocoumarin metabolites may help in a better understanding of grapefruit-drug interactions. In the present work, identification of the main metabolites of grapefruit juice furanocoumarins in urine was performed by ultraperformance liquid chromatography (UPLC) coupled to linear ion trap-Orbitrap mass spectrometry (LTQ-Orbitrap). Glucuronides of 6',7'-dihydroxybergamottin and a hydroxybergamottin-like metabolite were identified for the first time as grapefruit juice metabolites. Afterward, a fast and sensitive method based on solid-phase extraction (SPE) and UPLC coupled to triple quadrupole-tandem mass spectrometry (QqQ-MS/MS) was developed for determination of the identified metabolites in urine. The proposed method was applied to urine samples of five volunteers after intakes of moderate doses of grapefruit, lemon, and orange juices. Furanocoumarin metabolites were only detected in urines after consumption of grapefruit juice. PMID:24568314

  19. Assessment of the stoichiometry and efficiency of CO2 fixation coupled to reduced sulfur oxidation

    PubMed Central

    Klatt, Judith M.; Polerecky, Lubos

    2015-01-01

    Chemolithoautotrophic sulfur oxidizing bacteria (SOB) couple the oxidation of reduced sulfur compounds to the production of biomass. Their role in the cycling of carbon, sulfur, oxygen, and nitrogen is, however, difficult to quantify due to the complexity of sulfur oxidation pathways. We describe a generic theoretical framework for linking the stoichiometry and energy conservation efficiency of autotrophic sulfur oxidation while accounting for the partitioning of the reduced sulfur pool between the energy generating and energy conserving steps as well as between the main possible products (sulfate vs. zero-valent sulfur). Using this framework, we show that the energy conservation efficiency varies widely among SOB with no apparent relationship to their phylogeny. Aerobic SOB equipped with reverse dissimilatory sulfite reductase tend to have higher efficiency than those relying on the complete Sox pathway, whereas for anaerobic SOB the presence of membrane-bound, as opposed to periplasmic, nitrate reductase systems appears to be linked to higher efficiency. We employ the framework to also show how limited rate measurements can be used to estimate the primary productivity of SOB without the knowledge of the sulfate-to-zero-valent-sulfur production ratio. Finally, we discuss how the framework can help researchers gain new insights into the activity of SOB and their niches. PMID:26052315

  20. Rapid identification of synthetic colorants in food samples by using indium oxide nanoparticle-functionalized porous polymer monolith coupled with HPLC-MS/MS.

    PubMed

    Qi, Ruifang; Zhou, Xiao; Li, Xiqian; Ma, Jiutong; Lu, Chunmei; Mu, Jun; Zhang, Xuguang; Jia, Qiong

    2014-12-01

    A synthetic protocol for the preparation of an indium oxide nanoparticle-functionalized poly(methacrylic acid-glycidyl methacrylate-ethylene dimethacrylate-ethanediamine) monolithic column is reported. Various techniques, including scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermal gravimetric analysis-derivative thermogravimetric analysis were employed to characterize the synthesized monolith. The modified monolithic column was coupled with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for determining synthetic colorants in various food samples. Under optimized conditions, good linearity was obtained for all the targets with squared regression coefficients greater than 0.9982. The limits of detection (S/N = 3) for 12 synthetic colorants were in the range of 0.012-2.97 μg kg(-1). The intra-day and inter-day relative standard deviations, ranging from 2.7% to 8.5%, were within the acceptable range. The developed method was successfully applied to the determination of synthetic colorants in food samples (candy, milk, jelly, jam, canned food, juice, and carbonated drink). Target recoveries at different spiked levels ranged from 73.5% to 112.1% with relative standard deviations of less than 10.3%. PMID:25313528

  1. Ultra high performance liquid chromatography with electrospray ionization tandem mass spectrometry coupled with hierarchical cluster analysis to evaluate Wikstroemia indica (L.) C. A. Mey. from different geographical regions.

    PubMed

    Wei, Lan; Wang, Xiaobo; Mu, Shanxue; Sun, Lixin; Yu, Zhiguo

    2015-06-01

    A sensitive, rapid and simple ultra high performance liquid chromatography with electrospray ionization tandem mass spectrometry method was developed to determine seven constituents (umbelliferone, apigenin, triumbelletin, daphnoretin, arctigenin, genkwanin and emodin) in Wikstroemia indica (L.) C. A. Mey. The chromatographic analysis was performed on an ACQUITY UPLC® BEH C18 column (2.1 × 50 mm, 1.7 μm) by gradient elution with the mobile phase of 0.05% formic acid aqueous solution (A) and acetonitrile (B). Multiple reaction monitoring mode with positive and negative electrospray ionization interface was carried out to detect the components. This method was validated in terms of specificity, linearity, accuracy, precision and stability. Excellent linear behavior was observed over the certain concentration ranges with the correlation coefficient values higher than 0.999. The intraday and innerday precisions were within 2.0%. The recoveries of seven analytes were 99.4-101.1% with relative standard deviation less than 1.2%. The 18 Wikstroemia indica samples from different origins were classified by hierarchical clustering analysis according to the contents of seven components. The results demonstrated that the developed method could successfully be used to quantify simultaneously of seven components in Wikstroemia indica and could be a helpful tool for the detection and confirmation of the quality of traditional Chinese medicines. PMID:25866087

  2. Qualitative screening of veterinary anti-microbial agents in tissues, milk, and eggs of food-producing animals using liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Chen, Dongmei; Yu, Jie; Tao, Yanfei; Pan, Yuanhu; Xie, Shuyu; Huang, Lingli; Peng, Dapeng; Wang, Xu; Wang, Yulian; Liu, Zhenli; Yuan, Zonghui

    2016-04-01

    A method for the analysis of 120 drugs in animal derived food was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). These analytes belong to 12 families of veterinary anti-microbial agents (quinolones, macrolides, β-lactams, nitroimidazoles, sulfonamides, lincomycines, chloramphenicols, quinoxalines, tetracyclines, polypeptides, and antibacterial synergists) as well as other compounds not assigned to a particular drug family. The animal derived food samples include muscle and liver of swine, bovine, sheep, and chicken, as well as hen eggs and dairy milk. The sample preparation included ultrasound-assisted extraction (UAE) with acetonitrile-water and a final clean-up with auto solid-phase extraction (SPE) on HLB cartridges. The detection and quantification of 120 anti-microbial agents was performed using LC-MS/MS in positive and negative ion mode. The chromatographic separation was performed on a C18 column using acetonitrile and 0.1% formic acid as the mobile phase. The limit of detection (LOD) and limit of quantification (LOQ) of all drugs in food-producing animals were 0.5-3.0μg/kg and 1.5-10.0μg/kg, respectively. The developed method was successfully utilized to monitor real samples, which demonstrated that it is a simple, fast, and robust method, and could be used as a regulatory to screen for the presence of residues from veterinary anti-microbial drugs in animal-derived foods. PMID:26950031

  3. High-internal-phase-emulsion polymeric monolith coupled with liquid chromatography-electrospray tandem mass spectrometry for enrichment and sensitive detection of trace cytokinins in plant samples.

    PubMed

    Du, Fuyou; Sun, Lin; Zhen, Xian; Nie, Honggang; Zheng, Yanjie; Ruan, Guihua; Li, Jianping

    2015-08-01

    High-internal-phase-emulsion polymers (polyHIPEs) show great promise as solid-phase-extraction (SPE) materials because of the tremendous porosity and highly interconnected framework afforded by the high-internal-phase-emulsion (HIPE) technique. In this work, polyHIPE monolithic columns as novel SPE materials were prepared and applied to trace enrichment of cytokinins (CKs) from complex plant samples. The polyHIPE monoliths were synthesized via the in-situ polymerization of the continuous phase of a HIPE containing styrene (STY) and divinylbenzene (DVB) in a stainless column, and revealed highly efficient and selective enrichment ability for aromatic compounds. Under the optimized experimental conditions, a method using a monolithic polyHIPE column combined with liquid chromatography-electrospray tandem mass spectrometry (LC-MS-MS) was developed for the simultaneous extraction and sensitive determination of trans-zeatin (tZ), meta-topolin (mT), kinetin (K), and kinetin riboside (KR). The proposed method had good linearity, with correlation coefficients (R (2)) from 0.9957 to 0.9984, and low detection limits (LODs, S/N = 3) in the range 2.4-47 pg mL(-1) for the four CKs. The method was successfully applied to the determination of CKs in real plant samples, and obtained good recoveries ranging from 68.8 % to 103.0 % and relative standard deviations (RSDs) lower than 16 %. PMID:26025552

  4. Multi-analyte high performance liquid chromatography coupled to high resolution tandem mass spectrometry method for control of pesticide residues, mycotoxins, and pyrrolizidine alkaloids.

    PubMed

    Dzuman, Zbynek; Zachariasova, Milena; Veprikova, Zdenka; Godula, Michal; Hajslova, Jana

    2015-03-10

    A new reliable and highly sensitive method based on high performance liquid chromatographic (HPLC) separation and high resolution tandem mass spectrometric detection (HRMS/MS) has been developed and validated for determination of 323 pesticide residues, 55 mycotoxins, and 11 plant toxins represented by pyrrolizidine alkaloids. The method was validated for three matrices, leek, wheat, and tea differing in nature/amount of co-extracts that may cause various matrix effects. For target analytes isolation, optimized QuEChERS-based (quick, easy, cheap, effective, rugged, and safe) extraction procedure was employed. Spectral HRMS/MS library has been established providing an entire spectrum of fragment ions for each analyte, which allows unbiased identification and confirmation of target compounds. The limits of quantification (LOQs) of target analytes were below 10 μg kg(-1) for 82%, 81%, and 61% for matrices leek, wheat, and tea, respectively. Recoveries were in the acceptable range (70-120%) according to SANCO/12571/2013 for most of target analytes, except for highly polar 'masked' mycotoxin deoxynivalenol-3-glucoside with recoveries 35%, 47%, and 42% for matrices leek, wheat, and tea, respectively. The linearities of calibration curves expressed as coefficients of determination were in the range of 0.9661-1.000, and repeatabilities expressed as relative standard deviations (RSDs) at LOQs lied in the range of 0.25-13.51%. The trueness of the method was verified using several certified reference materials (CRMs) and proficiency test samples. PMID:25732310

  5. Identification of multiple ingredients for a Traditional Chinese Medicine preparation (bu-yang-huan-wu-tang) by liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Shaw, Lee-Hsin; Chen, Wei-Ming; Tsai, Tung-Hu

    2013-01-01

    Bu-yang-huan-wu-tang (BYHWT) is a popular Traditional Chinese Medicine formula consisting of seven herbal medicines (Astragalus membranaceus, Angelica sinensis, Paeonia lactiflora, Ligusticum chuanxiong, Carthamus tinctorius, Amygdalus persica and Pheretima aspergillum), that has been used in China for centuries to overcome stroke-induced disability. To ensure the consistency of quality, a reliable analytical method is required, therefore, we developed a liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for quantitative analysis of the major constituents in BYHWT. The herbal ingredients consisting of the cycloartane-type triterpene glycosides of astragaloside I, astragaloside II and astragaloside IV; isoflavones of formononetin, ononin calycosin, calycosin-7-O-β-d-glucoside; ligustilide and paeoniflorin were separated on a C18 column with gradient elution of methanol/10 mM ammonium acetate buffer-formic acid (100:0.1, v/v). This study was performed by a mass spectrometer using electrospray ionization (ESI) with positive ionization ions monitored in the multiple reaction-monitoring (MRM) mode. The linearity, accuracy, precision, limit of detection (LOD) and lower limit of quantification (LLOQ) were validated for this quantification method, and the sensitivity, reliability and reproducibility were all confirmed. The experiments provided a good method for analyzing BYHWT extracts. This study also quantitated the active components in various brands of commercially available products. The results indicated that the pharmaceutical industrial products of BYHWT exhibited considerable variation in their contents of the herbal compounds. PMID:24036516

  6. A validated assay for the simultaneous quantification of six tyrosine kinase inhibitors and two active metabolites in human serum using liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    van Erp, Nielka P; de Wit, Djoeke; Guchelaar, Henk-Jan; Gelderblom, Hans; Hessing, Trees J; Hartigh, Jan den

    2013-10-15

    A sensitive, sophisticated and practical bioanalytical assay for the simultaneous determination of six tyrosine kinase inhibitors (imatinib, sunitinib, nilotinib, dasatinib, pazopanib, regorafenib) and two active metabolites (N-desmethyl imatinib and N-desethyl sunitinib) was developed and validated. For the quantitative assay, a mixture of three stable isotopes as internal standards was added to human serum, standards and controls. Thereafter, samples were pre-treated using protein precipitation with methanol. The supernatant was diluted with water and injected into an ultra pressure liquid chromatographic system with an Acquity TQ tandem mass spectrometry detector. The compounds were separated on an Acquity BEH C18 analytical column (100mm2.1mm ID, 1.7?m particle size) and eluted with a linear gradient system. The ions were detected in the multiple reaction monitoring mode. The lower limit of quantification and the linearity of all compounds generously met with the concentrations that are to be expected in clinical practice. The developed bioanalytical assay can be used for guiding TKI therapy in daily clinical practice as well as for investigator-initiated research. PMID:24013127

  7. Fast profiling of chemical constituents in Yiqing Capsule by ultra-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry.

    PubMed

    Zheng, Guo-Dong; Li, Kai; Li, Yue-shan; Liu, E-Hu

    2012-01-01

    An ultra-performance liquid chromatography/electrospray ionization tandem mass spectrometry (UPLC-ESI-MS(n)) has been developed for structural characterization and identification of multi-constituents in Yiqing Capsule, a well-known combined herbal remedy prepared from the extract mixtures of Rhizoma Coptidis, Radix et Rhizoma Rhei and Radix Scutellariae. The UPLC analysis was performed on an Agilent ZorBax SB-C(18) column (4.6 mm×50 mm, 1.8 μm) and gradient elution of 0.1% formic acid solution and acetonitrile in 16 min. Based on their retention times and mass spectra in comparison with the data from standards or references, a total of 29 compounds including 3 phenolic acids and 4 anthraquinones from Radix et Rhizoma Rhei, 8 alkaloids from Rhizoma Coptidis and 14 flavonoids from Radix Scutellariae were unambiguously identified or tentatively characterized in the complex system. The MS data and fragmentation information of two isomers of feruloylquinic acid were first reported in Radix et Rhizoma Rhei and in Yiqing Capsules. This study is expected to be accepted as an effective and reliable pattern for comprehensive and systematic characterization of this commonly used Chinese herbal preparation. PMID:22125294

  8. Analysis of phenolic compounds by high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry in senescent and water-stressed tobacco.

    PubMed

    Torras-Claveria, Laura; Jáuregui, Olga; Codina, Carles; Tiburcio, Antonio F; Bastida, Jaume; Viladomat, Francesc

    2012-01-01

    Evaluation of a significant part of the phenylpropanoid pathway metabolites is facilitated by the fast high-performance liquid chromatography with electrospray ionization tandem mass spectrometry (LC-MS/MS) analytical method. The technology described was applied in tobacco plants (Nicotiana tabacum L. cv. Wisconsin) to identify 20 phenolic compounds and to detect differences in phenylpropanoid profiles in two types of experiments. In the first one, senescent and non-senescent parts of flowering plants were compared, while in the second, watered plants were compared with water-stressed young plants. The 20 identified phenolic compounds were: seven hydroxycinnamoylquinic acids, seven hydroxycinnamic acid glucosides, one salicylic acid glucoside, two conjugated flavonols with disaccharides, and three hydroxycinnamic acid amides (HCAA) of putrescine. In general, the levels of phenylpropanoid compounds increased under water stress or senescent conditions, with the exception of HCAA, which decreased in senescent samples, and 4-O-p-coumaroylquinic acid and trihydroxycinamic acid-O-glucoside, which did not change in both experiments. The main product in all the samples was 5-O-caffeoylquinic acid (neochlorogenic acid). Another compound, kaempferol-7-O-neohesperidoside, was tentatively identified for the first time in tobacco plants. This method, which can be applied in other plant species, allows a simple and efficient comparative study of metabolite profile variations (qualitative and quantitative) in response to different physiological and/or environmental plant situations. PMID:22118617

  9. Quantitative analysis of D-24851, a novel anticancer agent, in human plasma and urine by liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Stokvis, Ellen; Nan-Offeringa, Lianda G A H; Ouwehand, Mariët; Tibben, Matthijs M; Rosing, Hilde; Schnaars, Yvonne; Grigat, Martina; Romeis, Peter; Schellens, Jan H M; Beijnen, Jos H

    2004-01-01

    The development of a liquid chromatography/tandem mass spectrometric assay for the quantitative analysis of the novel tubulin inhibitor D-24851 in human plasma and urine is described. D-24851 and the deuterated internal standard were extracted from 250 microL of plasma or urine using hexane/ether (1:1, v/v). Subsequently, 10-microL aliquots of reconstituted extracts were injected onto an Inertsil ODS analytical column (50 x 2.0 mm i.d., 5 microm particle size). An eluent consisting of methanol/5 mM ammonium acetate, 0.004% formic acid in water (80:20, v/v) was pumped at a flow rate of 0.2 mL/min. An API 365 triple quadrupole mass spectrometer was used in the multiple reaction monitoring mode for sensitive detection. For human plasma a dynamic range of 1-1000 ng/mL was validated, and for human urine a range of 0.25-50 ng/mL. Validation was performed according to the most recent FDA guidelines and all results were within requirements. The assay has been successfully applied to support a phase I clinical trial with orally administered D-24851. PMID:15216507

  10. Quantitative and selective assay of 5-methylindirubine, an inhibitor of cyclin-dependent kinases, in murine plasma using coupled liquid chromatography and electrospray tandem mass spectrometry.

    PubMed

    Vainchtein, Liia D; Rosing, Hilde; Maier, Armin; Fiebig, Heinz-Herbert; Schellens, Jan H M; Beijnen, Jos H

    2007-09-01

    A sensitive and rapid LC-MS/MS assay for the quantitative determination of 5-methylindirubine (5-MI) in murine plasma is described. A 50-microL-murine plasma aliquot was spiked with an internal standard, indirubine-3-monoxime (IMO), and extracted with 1.25 mL diethyl ether. Dried extracts were reconstituted in methanol-water (8:2, v/v) and 10 microL-volumes were injected onto the HPLC system. Separation was achieved on a Gemini C18 column (150 mm x 2.1 mm ID, particle size 5 microm) using an alkaline eluent (10 mM ammonium hydroxide-methanol (5:95, v/v)). Detection was performed by negative ion electrospray followed by tandem mass spectrometry. The assay quantifies 5-MI in a range from 1 to 500 ng/mL using 50 microL of murine EDTA plasma samples. Validation results demonstrate that 5-MI concentrations can be accurately and precisely quantified in murine plasma. This assay is used to support pre-clinical pharmacologic studies with 5-MI. PMID:17631060

  11. Determination of eight artificial sweeteners and common Stevia rebaudiana glycosides in non-alcoholic and alcoholic beverages by reversed-phase liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Kubica, Paweł; Namieśnik, Jacek; Wasik, Andrzej

    2015-02-01

    The method for the determination of acesulfame-K, saccharine, cyclamate, aspartame, sucralose, alitame, neohesperidin dihydrochalcone, neotame and five common steviol glycosides (rebaudioside A, rebaudioside C, steviol, steviolbioside and stevioside) in soft and alcoholic beverages was developed using high-performance liquid chromatography and tandem mass spectrometry with electrospray ionisation (HPLC-ESI-MS/MS). To the best of our knowledge, this is the first work that presents an HPLC-ESI-MS/MS method which allows for the simultaneous determination of all EU-authorised high-potency sweeteners (thaumatin being the only exception) in one analytical run. The minimalistic sample preparation procedure consisted of only two operations; dilution and centrifugation. Linearity, limits of detection and quantitation, repeatability, and trueness of the method were evaluated. The obtained recoveries at three tested concentration levels varied from 97.0 to 105.7%, with relative standard deviations lower than 4.1%. The proposed method was successfully applied for the determination of sweeteners in 24 samples of different soft and alcoholic drinks. PMID:25471292

  12. On-line coupling of solid-phase extraction to liquid chromatography-tandem mass spectrometry for the determination of macrolide antibiotics in environmental water.

    PubMed

    Ding, Jie; Ren, Nanqi; Chen, Ligang; Ding, Lan

    2009-02-23

    An automated on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) system was developed for the determination of macrolide antibiotics including erythromycin (ETM), roxithromycin (RTM), tylosin (TLS) and tilmicosin (TMC) in environmental water samples. A Capcell Pak MF Ph-1 column packed with restricted access material (RAM) was used as SPE column for the concentration of the analytes and clean-up of the sample. One milliliter water sample was injected into the conditioned SPE column and the matrix was washed out with 3 mL high purity water. By rotation of the switching valve, macrolides (MLs) were eluted in the back-flush mode and transferred to the analytical column by the chromatographic mobile phase. The matrix effect was evaluated by the directly injection LC-MS and on-line SPE-LC-MS methods. The limits of detection (LODs) and limits of quantification (LOQs) obtained are in the range of 2-6 and 7-20 ng L(-1), respectively, which means that the proposed method is suitable for trace analysis of MLs at low level concentration. The intra- and inter-day precisions are in the range of 2.9-7.2% and 3.3-8.9%, respectively. In the three fortified levels (20, 200 and 2000 ng L(-1)), recoveries of MLs ranging from 86.5% to 98.3% are obtained. PMID:19185123

  13. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling

    PubMed Central

    Muñoz, Manuel F.; Puebla, Mariela; Figueroa, Xavier F.

    2015-01-01

    Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30) and channels formed by pannexins (Panx-1). The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO) can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS) and neuronal NOS (nNOS) are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in this process. PMID:25805969

  14. The role of Ile87 of CYP158A2 in oxidative coupling reaction

    SciTech Connect

    Zhao, Bin; Bellamine, Aouatef; Lei, Li; Waterman, Michael R.

    2012-05-15

    Both CYP158A1 and CYP158A2 are able to catalyze an oxidative C-C coupling reaction producing biflaviolin or triflaviolin in Streptomyces coelicolor A3(2). The substrate-bound crystal structures of CYP158A2 and CYP158A1 reveal that the side chain of Ile87 in CYP158A2 points to the active site contacting the distal flaviolin molecule, however, the bulkier side chain of Lys90 in CYP158A1 (corresponding to Ile87 in CYP158A2) is toward the distal surface of the protein. These results suggest that these residues could be important in determining product regiospecificity. In order to explore the role of the two residues in catalysis, the reciprocal mutants, Ile87Lys and Lys90Ile, of CYP158A2 and CYP158A1, respectively, were generated and characterized. The mutant Ile87Lys enzyme forms two isomers of biflaviolin instead of three isomers of biflaviolin in wild-type CYP158A2. CYP158A1 containing the substitution of lysine with isoleucine has the same catalytic activity compared with the wild-type CYP158A1. The crystal structure of Ile87Lys showed that the BC loop in the mutant is in a very different orientation compared with the BC loop in both CYP158A1/A2 structures. These results shed light on the mechanism of the oxidative coupling reaction catalyzed by cytochrome P450.

  15. Determination of minocycline by oxidative coupling and diazocoupling reactions in pharmaceutical formulations.

    PubMed

    Prasad, Adapa V S S; Lakshmi, Chilukuri S R; Sastry, Chilukuri S P; Uppuleti, Viplava P

    2002-10-15

    Simple and sensitive spectrophotometric methods (M(1)-M(4)) by the application of oxidative coupling and diazocoupling reactions for the assay of minocycline (MC) in pure form and pharmaceutical formulations have been described. Methods M(1) and M(2) involve the oxidative coupling reactions of MC with 3-methyl-2-benzothiozolinone hydrazone (MBTH) (method M(1), lambda(max) 440 nm) or 4-aminophenazone (4-AP) (method M(2), lambda(max) 520 nm) in the presence of periodate. Methods M(3) and M(4) are based on the formation of diazocoupling products of MC with diazotised p-nitroaniline (DPNA) (method M(3), lambda(max) 420 nm) or diazotised sulfanilic acid (DSAC) (method M(4), lambda(max) 420 nm). Regression analysis of Beer's law plot showed good correlation in the concentration range of 8-48, 20-120, 4-20 and 8-40 microg ml(-1) for methods A, B, C and D, respectively. The molar absorptivities fell within the range of 2.23 x 10(3)-1.51 x 10(4) l mol(-1) cm(-1). The recoveries range from 99.02 to 100.61%. PMID:12367673

  16. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake.

    PubMed

    Deutzmann, Joerg S; Stief, Peter; Brandes, Josephin; Schink, Bernhard

    2014-12-23

    Anaerobic methane oxidation coupled to denitrification, also known as "nitrate/nitrite-dependent anaerobic methane oxidation" (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660-4,890 µmol CH4⋅m(-2)⋅d(-1)) and actual rates calculated from microsensor profiles (31-437 µmol CH4⋅m(-2)⋅d(-1)) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones. PMID:25472842

  17. Asymmetric tandem organic solar cells

    NASA Astrophysics Data System (ADS)

    Howells, Thomas J.

    Organic photovoltaics (OPVs) is an area that has attracted much attention recently as a potential low cost, sustainable source of energy with a good potential for full-scale commercialisation. Understanding the factors that determine the efficiency of such cells is therefore a high priority, as well as developing ways to boost efficiency to commercially-useful levels. In addition to an intensive search for new materials, significant effort has been spent on ways to squeeze more performance out of existing materials, such as multijunction cells. This thesis investigates double junction tandem cells in the context of small molecule organic materials. . Two different organic electron donor materials, boron subphthalocyanine chloride (SubPc) and aluminium phthalocyanine chloride (ClAlPc) were used as donors in heterojunctions with C60 to create tandem cells for this thesis. These materials have been previously used for solar cells and the absorption spectra of the donor materials complement each other, making them good candidates for tandem cell architectures. The design of the recombination layer between the cells is considered first, with silver nanoparticles demonstrated to work well as recombination centres for charges from the front and back sub-cells, necessary to avoid a charge build-up at the interface. The growth conditions for the nanoparticles are optimised, with the tandem cells outperforming the single heterojunction architecture. Optical modelling is considered as a method to improve the understanding of thin film solar cells, where interference effects from the reflective aluminium electrode are important in determining the magnitude of absorption a cell can achieve. The use of such modelling is first demonstrated in hybrid solar cells based on a SubPc donor with a titanium oxide (TiOx) acceptor; this system is ideal for observing the effects of interference as only the SubPc layer has significant absorption. The modelling is then applied to tandem cells where it is used to predict the short-circuit current (Jsc) generation of the sub-cells, which is not accessible experimentally. Current-matching is then used to predict the Jsc of the complete tandem device. . As a support to the optical modelling, ellipsometry measurements of thin films of ClAlPc are presented. These films of known thickness are analysed to extract the complex refractive index for use in optical modelling calculations. A dependence of the complex refractive index on film thickness and substrate is also noted. Finally, the external quantum efficiency (EQE) technique is considered as applied to solar cells, and an additional method is proposed to characterise current balancing in asymmetric tandem cells under illumination. This technique is verified experimentally by two separate sets of data..

  18. Studies of Zinc Oxide Nanocrystals: Quantification of Capping Ligands and the Coupling of Protons and Electrons

    NASA Astrophysics Data System (ADS)

    Valdez, Carolyn N.

    The energetics of semiconductors are widely relevant to technologies ranging from chemical- and photo-catalysis to charge injection in photovoltaic materials. In these processes involving electron transfer, protons often play a critical but overlooked role in facilitating charge transfer. For example, the conduction band energies of most metal oxides in contact with an aqueous solution demonstrate a Nernstian pH dependence, an observation that cannot be explained by surface protonation models. Given that a Nernstian dependence is typically attributed to proton coupled electron transfer (PCET), we are interested in determining if the reduction of metal oxides can also be described by PCET. Zinc oxide (ZnO) nanocrystals (NCs) were chosen as a model system given the broad range of previous research on bulk and nanocrystalline forms of ZnO, the relative ease of synthesis and characterization, and their use in developing a fundamental understanding of interfacial electron transfer. We demonstrate that photochemically reduced NCs react with hydrogen-atom acceptors, indicating that both electrons and protons are transferred by the NCs. To isolate the influence of a proton coupled to the extra electron in the conduction band, the NCs have also been reduced chemically. Addition of an excess of the one-electron reductant CoCp*2 (Cp* = pentamethylcyclopentadienyl, -1.94 V vs. Fc/Fc+) gives NCs that contain extra electrons in the conduction band, without protons that arise from photoreduction. Protons can also be individually added stoichiometrically to the NCs by either a photoreduction/oxidation sequence or by addition of acid. Using these methods, we have shown that the presence of one extra proton drastically alters the redox potential of the NCs. With the addition of acid the NC orbitals are lowered, allowing the systematic variation of driving force for electron transfer from the reductant to the NCs. In the presence of excess reductant and acid, the number of electrons per NC (max) reaches a maximum, beyond which the addition of more acid has no effect. This max varies with the NC radius with an r3 dependence, so the density of electrons (max) is constant over a range of NC sizes. The approximately 1:1 relationship of with protons per NC, and the dramatic dependence of max on the nature of the cation (H+ vs. MCp*2+) suggest that the protons intercalate into the NCs under these conditions. These studies illustrate the strong coupling between protons and electrons in ZnO NCs and show that proton activity is a key parameter in nanomaterial energetics.

  19. Determination of cyromazine and melamine in chicken eggs using quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction coupled with liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Pei-Cheng; Lee, Ren-Jye; Chen, Chung-Yu; Chou, Chi-Chung; Lee, Maw-Rong

    2012-11-01

    A rapid and sensitive method has been developed for the simultaneous detection of cyromazine and melamine in chicken eggs using the quick, easy, cheap, effective, rugged and safe (QuEChERS) method coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The optimal extraction solvent for the liquid-liquid extraction was 5 mL of acetonitrile with a 0.1 M hydrochloric acid aqueous solution (99.5:0.5, v/v). The extract was cleaned with 0.5 g of anhydrous magnesium sulfate and 10 mg of graphitized carbon black. The analysis of cyromazine and melamine was accomplished by combining the use of an anion exchange LC column with tandem mass spectrometry in the positive electrospray ionization mode with selected reaction monitoring mode (SRM). The detection limits were 1.6 ng g(-1) for cyromazine and 8 ng g(-1) for melamine, and the quantitation limits were 5.5 ng g(-1) for cyromazine and 25 ng g(-1) for melamine. The recoveries of cyromazine and melamine in the spiked egg samples were 83.2% and 104.6%, respectively, with an relative standard deviation (RSD) of less than 18.1%. The intra-day and inter-day precisions, represented by the RSD, ranged from 1.5% to 8.8% and 6.8% to 14.3%, respectively. The proposed method was tested by analyzing chicken eggs from the markets and from the veterinary medicine laboratory. The concentrations of cyromazine and melamine detected in these samples were in the range of 20-94 ng g(-1). The results demonstrated that the QuEChERS method combined with LC-MS/MS is a simple, rapid and inexpensive method for the analysis of cyromazine and melamine in eggs. PMID:23101655

  20. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  1. A single marker choice strategy in simultaneous characterization and quantification of multiple components by rapid resolution liquid chromatography coupled with triple quadrupole tandem mass spectrometry (RRLC-QqQ-MS).

    PubMed

    Ning, Zhangchi; Liu, Zhenli; Song, Zhiqian; Zhao, Siyu; Dong, Yunzhuo; Zeng, Honglian; Shu, Yisong; Lu, Cheng; Liu, Yuanyan; Lu, Aiping

    2016-05-30

    Single standard to determine multi-components (SSDMC) method has been accepted as an efficient technique for the quality control of Traditional Chinese medicines (TCMs), especially for overcoming the shortage of reference standards. HPLC-UV methods have been applied to establish SSDMC method for quantitative analysis in several plant medicines and Chinese patent medicines, however, no LC-MS methods have been used. The purpose of this study is to put forward an improved strategy for the choice of single marker in SSDMC using rapid resolution liquid chromatography coupled with triple quadrupole tandem mass spectrometry (RRLC-QqQ-MS). Five different Panax genus plants, recorded in the Chinese Pharmacopeia 2015 edition, were used as research subjects. An improved SSDMC strategy for simultaneous characterization and determination of 18 bioactive saponins in five Panax plants was put forward, and which was validated to be more superior. Then, it was fully investigated with respect to linearity, LODs, LOQs, precision and accuracy. Coupling with multivariate statistical analysis, the established and validated SSDMC strategy could be successively used in discrimination of the five Panax genus plants. PMID:26955755

  2. Thickness dependence of exchange coupling in (111)-oriented perovskite oxide superlattices

    NASA Astrophysics Data System (ADS)

    Jia, Yue; Chopdekar, Rajesh V.; Arenholz, Elke; Liu, Zhiqi; Biegalski, Michael D.; Porter, Zachary D.; Mehta, Apurva; Takamura, Yayoi

    2016-03-01

    Epitaxial L a0.7S r0.3Mn O3(LSMO )/L a0.7S r0.3Fe O3 (LSFO) superlattices on (111)-oriented SrTi O3 substrates with sublayer thicknesses ranging from 3 to 60 unit cells (u.c.) were synthesized and characterized. Detailed analysis of their structural, electronic, and magnetic properties were performed to explore the effect of sublayer thickness on the magnetic structure and exchange coupling at (111)-oriented perovskite oxide interfaces. In the ultrathin limit (3-6 u.c.), we find that the antiferromagnetic (AF) properties of the LSFO sublayers are preserved with an out-of-plane canting of the AF spin axis, while the ferromagnetic (FM) properties of the LSMO sublayers are significantly depressed. For thicker LSFO layers (>9 u.c.), the out-of-plane canting of the AF spin axis is only present in superlattices with thick LSMO sublayers. As a result, exchange coupling in the form of spin-flop coupling exists only in superlattices which display both robust ferromagnetism and out-of-plane canting of the AF spin axis.

  3. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Li, Ji-Sen; Wang, Yu; Liu, Chun-Hui; Li, Shun-Li; Wang, Yu-Guang; Dong, Long-Zhang; Dai, Zhi-Hui; Li, Ya-Fei; Lan, Ya-Qian

    2016-04-01

    Electrochemical water splitting is one of the most economical and sustainable methods for large-scale hydrogen production. However, the development of low-cost and earth-abundant non-noble-metal catalysts for the hydrogen evolution reaction remains a challenge. Here we report a two-dimensional coupled hybrid of molybdenum carbide and reduced graphene oxide with a ternary polyoxometalate-polypyrrole/reduced graphene oxide nanocomposite as a precursor. The hybrid exhibits outstanding electrocatalytic activity for the hydrogen evolution reaction and excellent stability in acidic media, which is, to the best of our knowledge, the best among these reported non-noble-metal catalysts. Theoretical calculations on the basis of density functional theory reveal that the active sites for hydrogen evolution stem from the pyridinic nitrogens, as well as the carbon atoms, in the graphene. In a proof-of-concept trial, an electrocatalyst for hydrogen evolution is fabricated, which may open new avenues for the design of nanomaterials utilizing POMs/conducting polymer/reduced-graphene oxide nanocomposites.

  4. The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II.

    PubMed

    Meyer, Thomas J; Huynh, My Hang V; Thorp, H Holden

    2007-01-01

    All higher life forms use oxygen and respiration as their primary energy source. The oxygen comes from water by solar-energy conversion in photosynthetic membranes. In green plants, light absorption in photosystem II (PSII) drives electron-transfer activation of the oxygen-evolving complex (OEC). The mechanism of water oxidation by the OEC has long been a subject of great interest to biologists and chemists. With the availability of new molecular-level protein structures from X-ray crystallography and EXAFS, as well as the accumulated results from numerous experiments and theoretical studies, it is possible to suggest how water may be oxidized at the OEC. An integrated sequence of light-driven reactions that exploit coupled electron-proton transfer (EPT) could be the key to water oxidation. When these reactions are combined with long-range proton transfer (by sequential local proton transfers), it may be possible to view the OEC as an intricate structure that is "wired for protons". PMID:17604381

  5. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution.

    PubMed

    Li, Ji-Sen; Wang, Yu; Liu, Chun-Hui; Li, Shun-Li; Wang, Yu-Guang; Dong, Long-Zhang; Dai, Zhi-Hui; Li, Ya-Fei; Lan, Ya-Qian

    2016-01-01

    Electrochemical water splitting is one of the most economical and sustainable methods for large-scale hydrogen production. However, the development of low-cost and earth-abundant non-noble-metal catalysts for the hydrogen evolution reaction remains a challenge. Here we report a two-dimensional coupled hybrid of molybdenum carbide and reduced graphene oxide with a ternary polyoxometalate-polypyrrole/reduced graphene oxide nanocomposite as a precursor. The hybrid exhibits outstanding electrocatalytic activity for the hydrogen evolution reaction and excellent stability in acidic media, which is, to the best of our knowledge, the best among these reported non-noble-metal catalysts. Theoretical calculations on the basis of density functional theory reveal that the active sites for hydrogen evolution stem from the pyridinic nitrogens, as well as the carbon atoms, in the graphene. In a proof-of-concept trial, an electrocatalyst for hydrogen evolution is fabricated, which may open new avenues for the design of nanomaterials utilizing POMs/conducting polymer/reduced-graphene oxide nanocomposites. PMID:27032372

  6. Abcb11 Deficiency Induces Cholestasis Coupled to Impaired β-Fatty Acid Oxidation in Mice*

    PubMed Central

    Zhang, Yuanyuan; Li, Fei; Patterson, Andrew D.; Wang, Yao; Krausz, Kristopher W.; Neale, Geoffrey; Thomas, Sarah; Nachagari, Deepa; Vogel, Peter; Vore, Mary; Gonzalez, Frank J.; Schuetz, John D.

    2012-01-01

    The bile salt export pump (BSEP) is an ATP-binding cassette transporter that serves as the primary system for removing bile salts from the liver. In humans, deficiency of BSEP, which is encoded by the ABCB11 gene, causes severe progressive cholestatic liver disease from early infancy. In previous studies of Abcb11 deficiency in mice generated on a mixed genetic background, the animals did not recapitulate the human disease. We reasoned that ABCB11 deficiency may cause unique changes in hepatic metabolism that are predictive of liver injury. To test this possibility, we first determined that Abcb11 knock-out (KO) C57BL/6J mice recapitulate human deficiency. Before the onset of cholestasis, Abcb11 KO mice have altered hepatic lipid metabolism coupled with reduced expression of genes important in mitochondrial fatty acid oxidation. This was associated with increased serum free-fatty acids, reduced total white adipose, and marked impairment of long-chain fatty acid β-oxidation. Importantly, metabolomic analysis confirmed that Abcb11 KO mice have impaired mitochondrial fatty acid β-oxidation with the elevated fatty acid metabolites phenylpropionylglycine and phenylacetylglycine. These metabolic changes precede cholestasis but may be of relevance to cholestatic disease progression because altered fatty acid metabolism can enhance reactive oxygen species that might exacerbate cholestatic liver damage. PMID:22619174

  7. Abcb11 deficiency induces cholestasis coupled to impaired β-fatty acid oxidation in mice.

    PubMed

    Zhang, Yuanyuan; Li, Fei; Patterson, Andrew D; Wang, Yao; Krausz, Kristopher W; Neale, Geoffrey; Thomas, Sarah; Nachagari, Deepa; Vogel, Peter; Vore, Mary; Gonzalez, Frank J; Schuetz, John D

    2012-07-13

    The bile salt export pump (BSEP) is an ATP-binding cassette transporter that serves as the primary system for removing bile salts from the liver. In humans, deficiency of BSEP, which is encoded by the ABCB11 gene, causes severe progressive cholestatic liver disease from early infancy. In previous studies of Abcb11 deficiency in mice generated on a mixed genetic background, the animals did not recapitulate the human disease. We reasoned that ABCB11 deficiency may cause unique changes in hepatic metabolism that are predictive of liver injury. To test this possibility, we first determined that Abcb11 knock-out (KO) C57BL/6J mice recapitulate human deficiency. Before the onset of cholestasis, Abcb11 KO mice have altered hepatic lipid metabolism coupled with reduced expression of genes important in mitochondrial fatty acid oxidation. This was associated with increased serum free-fatty acids, reduced total white adipose, and marked impairment of long-chain fatty acid β-oxidation. Importantly, metabolomic analysis confirmed that Abcb11 KO mice have impaired mitochondrial fatty acid β-oxidation with the elevated fatty acid metabolites phenylpropionylglycine and phenylacetylglycine. These metabolic changes precede cholestasis but may be of relevance to cholestatic disease progression because altered fatty acid metabolism can enhance reactive oxygen species that might exacerbate cholestatic liver damage. PMID:22619174

  8. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution

    PubMed Central

    Li, Ji-Sen; Wang, Yu; Liu, Chun-Hui; Li, Shun-Li; Wang, Yu-Guang; Dong, Long-Zhang; Dai, Zhi-Hui; Li, Ya-Fei; Lan, Ya-Qian

    2016-01-01

    Electrochemical water splitting is one of the most economical and sustainable methods for large-scale hydrogen production. However, the development of low-cost and earth-abundant non-noble-metal catalysts for the hydrogen evolution reaction remains a challenge. Here we report a two-dimensional coupled hybrid of molybdenum carbide and reduced graphene oxide with a ternary polyoxometalate-polypyrrole/reduced graphene oxide nanocomposite as a precursor. The hybrid exhibits outstanding electrocatalytic activity for the hydrogen evolution reaction and excellent stability in acidic media, which is, to the best of our knowledge, the best among these reported non-noble-metal catalysts. Theoretical calculations on the basis of density functional theory reveal that the active sites for hydrogen evolution stem from the pyridinic nitrogens, as well as the carbon atoms, in the graphene. In a proof-of-concept trial, an electrocatalyst for hydrogen evolution is fabricated, which may open new avenues for the design of nanomaterials utilizing POMs/conducting polymer/reduced-graphene oxide nanocomposites. PMID:27032372

  9. Rapid determination of 88 veterinary drug residues in milk using automated TurborFlow online clean-up mode coupled to liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhu, Wei-xia; Yang, Ji-zhou; Wang, Zhao-xing; Wang, Cai-juan; Liu, Ya-feng; Zhang, Li

    2016-02-01

    A novel method based on TurborFlow online solid phase extraction (SPE) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been established for simultaneous screening and confirmation of 88 wide-range veterinary drugs belonging to eight families (20 sulfonamides, 7 macrolides, 15 quinolones, 8 penicillins, 13 benzimidazoles, 4 tetracyclines, 2 sedatives, and 19 hormones) in milk. The preparation method consists of sample dilution and ultrasonic extraction, followed by an automated turbulent flow cyclone chromatography sample clean-up system. The detection was achieved in selected reaction monitoring mode (SRM). The total run time was within 39 min, including automated extraction, analytical chromatography and re-equilibration of the turboflow system. The optimization of different experimental parameters including extraction, purification, separation, and detection were evaluated separately in this study. The developed method was validated and good performing characteristics were obtained. The linear regression coefficients (R(2)) of matrix-match calibration standard curves established for quantification were higher than 0.9930. The limits of detection (LOD) were in the range of 0.2-2.0 μg/kg given by signal-noise ratio ≥3 (S/N) and the limits of quantification (LOQ, S/N≥10) ranged between 0.5 μg/kg and 10 μg/kg. Average recoveries of spiked target compounds with different levels were between 63.1% and 117.4%, with percentage relative standard deviations (RSD) in the range of 3.3-17.6%. The results indicated that the developed method has great potential for the routine laboratory analysis of large numbers of samples on measuring different classes of compounds. In comparison to traditional procedures, the automated sample clean-up ensures rapid, effective, sensitive analyses of veterinary drugs in milk. PMID:26653466

  10. [Simultaneous determination of glyphosate and glufosinate-ammonium residues in tea by ultra performance liquid chromatography-tandem mass spectrometry coupled with pre-column derivatization].

    PubMed

    Wu, Xiaogang; Chen, Xiaoquan; Xiao, Haijun; Liu, Binqiu

    2015-10-01

    A method was developed for the determination of glyphosate (GLY) and glufosinate-ammonium (GLUF) in tea using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The sample was extracted with ultrapure water and dichloromethane for 30 min under ultrasonication, followed by a simple cleanup with a C18 solid phase extraction (SPE) cartridge, and then GLY and GLUF were derivatized using 9-fluorenylmethoxycarbonyl (FMOC-Cl) in borate buffer for 2 h. The derivatives of GLY and GLUF were separated on a Waters C18 column (50 mm x 2.1 mm, 1.7 μm) in a gradient elution mode, and finally detected with positive electrospray ionization-mass spectrometry (ESI-MS/MS ) in multiple reaction monitoring (MRM) mode. The quantification analysis was performed by external standard method. The method showed a good linearity (r > 0. 990) in the range of 0.003 125-0.1 mg/L. The limits of detection (LODs) of GLY and GLUF were 0.03 mg/kg. At the spiked levels of 0.375, 1.5 and 4.5 mg/kg, the recoveries of GLY and GLUF were 87.37%-99.11% and 81.44% -86.17% respectively, and the relative standard deviations (RSDs) (n = 6) of GLY and GLUF were 0.68%-1.35% and 1.01%-2.33%, respectively. This method is simple, rapid and characterized with acceptable sensitivity and accuracy to meet the requirements for the analysis of GLY and GLUF simultaneously in tea. PMID:26930967

  11. Separation of isomeric short-chain acyl-CoAs in plant matrices using ultra-performance liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Purves, Randy W; Ambrose, Stephen J; Clark, Shawn M; Stout, Jake M; Page, Jonathan E

    2015-02-01

    Acyl coenzyme A (acyl-CoA) thioesters are important intermediates in cellular metabolism and being able to distinguish among them is critical to fully understanding metabolic pathways in plants. Although significant advances have been made in the identification and quantification of acyl-CoAs using liquid chromatography tandem mass spectrometry (LC-MS/MS), separation of isomeric species such as isobutyryl- and n-butyrl-CoA has remained elusive. Here we report an ultra-performance liquid chromatography (UPLC)-MS/MS method for quantifying short-chain acyl-CoAs including isomeric species n-butyryl-CoA and isobutyryl-CoA as well as n-valeryl-CoA and isovaleryl-CoA. The method was applied to the analysis of extracts of hop (Humulus lupulus) and provided strong evidence for the existence of an additional structural isomer of valeryl-CoA, 2-methylbutyryl-CoA, as well as an unexpected isomer of hexanoyl-CoA. The results showed differences in the acyl-CoA composition among varieties of Humulus lupulus, both in glandular trichomes and cone tissues. When compared with the analysis of hemp (Cannabis sativa) extracts, the contribution of isobutyryl-CoAs in hop was greater as would be expected based on the downstream polyketide products. Surprisingly, branched chain valeryl-CoAs (isovaleryl-CoA and 2-methylbutyryl-CoA) were the dominant form of valeryl-CoAs in both hop and hemp. The capability to separate these isomeric forms will help to understand biochemical pathways leading to specialized metabolites in plants. PMID:25553535

  12. Determination and occurrence of phenoxyacetic acid herbicides and their transformation products in groundwater using ultra high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    McManus, Sarah-Louise; Moloney, Mary; Richards, Karl G; Coxon, Catherine E; Danaher, Martin

    2014-01-01

    A sensitive method was developed and validated for ten phenoxyacetic acid herbicides, six of their main transformation products (TPs) and two benzonitrile TPs in groundwater. The parent compounds mecoprop, mecoprop-p, 2,4-D, dicamba, MCPA, triclopyr, fluroxypr, bromoxynil, bentazone, and 2,3,6-trichlorobenzoic acid (TBA) are included and a selection of their main TPs: phenoxyacetic acid (PAC), 2,4,5-trichloro-phenol (TCP), 4-chloro-2-methylphenol (4C2MP), 2,4-dichlorophenol (DCP), 3,5,6-trichloro-2-pyridinol (T2P), and 3,5-dibromo-4-hydroxybenzoic acid (BrAC), as well as the dichlobenil TPs 2,6-dichlorobenzamide (BAM) and 3,5-dichlorobenzoic acid (DBA) which have never before been determined in Irish groundwater. Water samples were analysed using an efficient ultra-high performance liquid chromatography (UHPLC) method in an 11.9 min separation time prior to detection by tandem mass spectrometry (MS/MS). The limit of detection (LOD) of the method ranged between 0.00008 and 0.0047 µg·L(-1) for the 18 analytes. All compounds could be detected below the permitted limits of 0.1 µg·L(-1) allowed in the European Union (EU) drinking water legislation. The method was validated according to EU protocols laid out in SANCO/10232/2006 with recoveries ranging between 71% and 118% at the spiked concentration level of 0.06 µg·L(-1). The method was successfully applied to 42 groundwater samples collected across several locations in Ireland in March 2012 to reveal that the TPs PAC and 4C2MP were detected just as often as their parent active ingredients (a.i.) in groundwater. PMID:25514054

  13. Rapid analysis of aflatoxin M1 in milk using dispersive liquid-liquid microextraction coupled with ultrahigh pressure liquid chromatography tandem mass spectrometry.

    PubMed

    Campone, Luca; Piccinelli, Anna Lisa; Celano, Rita; Russo, Mariateresa; Rastrelli, Luca

    2013-10-01

    A simple, rapid, and sensitive method based on simultaneous protein precipitation and extraction of aflatoxin M1 (AFM1) followed by dispersive liquid-liquid microextraction (DLLME) and ultrahigh pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) analysis was developed for the determination of AFM1 in milk samples. In order to precipitate the proteins and extract AFM1 from milk, a sample pretreatment using acetonitrile and NaCl as the extraction/denaturant solvent and salting-out agent, respectively, was optimised. Subsequently, the acetonitrile (upper) phase, containing AFM1, was used as the disperser solvent in DLLME, and extractant (chloroform) and water were added in turn to the extract to perform the DLLME process. The main parameters affecting the extraction efficiency of the whole analytical procedure, such as acetonitrile volume, amount of salt, type and volume of extractant and water volume, were carefully optimised by experimental design. Under optimum conditions, the developed method provides an enrichment factor of 33 and detection and quantification limits (0.6 and 2.0 ng kg(-1), respectively) below the maximum levels imposed by current regulations for AFM1 in milk and infant milk formulae. Recoveries (61.3-75.3%) and repeatability (RSD < 10, n = 3), tested in different types of milk at four AFM1 levels, met the performance criteria required by EC Regulation No. 401/2006. Moreover, the matrix effect on the signal intensity of the analyte was negligible. The proposed method provides a rapid extraction and an accurate determination of AFM1 in milk and formula milk using a simple and inexpensive sample preparation procedure. PMID:23942569

  14. Liquid chromatography coupled to tandem and high resolution mass spectrometry for the characterisation of ofloxacin transformation products after titanium dioxide photocatalysis.

    PubMed

    Jimenez-Villarin, Javier; Serra-Clusellas, Anna; Martínez, Cristina; Conesa, Aleix; Garcia-Montaño, Júlia; Moyano, Encarnación

    2016-04-22

    The characterization of pharmaceutical drugs and their transformation products have become an important analytical research field because its presence in the environment could induce bacterial resistance. Despite all efforts made by the scientific community, detection and structure identification of unknown chemicals still remains the most challenging task in non-targeted analytics. Given that, the objective of the present study was to develop an untargeted workflow to detect, quantify, identify and characterize ofloxacin and its transformation products (OFX TPs) after photocatalytic treatments based on TiO2 nanoparticles and TiO2 nanofibers. For the characterization and chemical structure assignment of OFX TPs, mass defect filters, mass accurate measurements (HRMS), tandem mass spectrometry in a q-Orbitrap (MS/HRMS) and the photocatalysis of the isotopically labelled ofloxacin (OFX-d3) were used. Since a large set of data was obtained in each run, data treatment based on statistical analysis and mass defect filtering was used to reduce the number of potential TP candidates from 2497m/z peaks to 70. Moreover, ions generated by in-source CID and by redox reactions in the electrospray source (ESI) were also detected and discarded from the TP candidate list. Moreover, the whole kinetics evolution of the generated TPs provided a deeper insight into the degradation mechanism and was used to propose a degradation pathway for the OFX in the aqueous phase. The time evolution of the TPs generated during the photocatalytic process using both types of catalysts (NPs and NFs) and different set-ups (suspended and supported conditions) indicated that OFX was completely removed from the aqueous solution in less than 4h. Among the condition tested TiO2 nanoparticles in suspended conditions showed the fastest kinetics (k: 0.161min(-1)). PMID:27025791

  15. Surrogate analyte approach for quantitation of endogenous NAD(+) in human acidified blood samples using liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    PubMed

    Liu, Liling; Cui, Zhiyi; Deng, Yuzhong; Dean, Brian; Hop, Cornelis E C A; Liang, Xiaorong

    2016-02-01

    A high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for the quantitative determination of NAD(+) in human whole blood using a surrogate analyte approach was developed and validated. Human whole blood was acidified using 0.5N perchloric acid at a ratio of 1:3 (v:v, blood:perchloric acid) during sample collection. 25μL of acidified blood was extracted using a protein precipitation method and the resulting extracts were analyzed using reverse-phase chromatography and positive electrospray ionization mass spectrometry. (13)C5-NAD(+) was used as the surrogate analyte for authentic analyte, NAD(+). The standard curve ranging from 0.250 to 25.0μg/mL in acidified human blood for (13)C5-NAD(+) was fitted to a 1/x(2) weighted linear regression model. The LC-MS/MS response between surrogate analyte and authentic analyte at the same concentration was obtained before and after the batch run. This response factor was not applied when determining the NAD(+) concentration from the (13)C5-NAD(+) standard curve since the percent difference was less than 5%. The precision and accuracy of the LC-MS/MS assay based on the five analytical QC levels were well within the acceptance criteria from both FDA and EMA guidance for bioanalytical method validation. Average extraction recovery of (13)C5-NAD(+) was 94.6% across the curve range. Matrix factor was 0.99 for both high and low QC indicating minimal ion suppression or enhancement. The validated assay was used to measure the baseline level of NAD(+) in 29 male and 21 female human subjects. This assay was also used to study the circadian effect of endogenous level of NAD(+) in 10 human subjects. PMID:26766786

  16. Simultaneous determination of ten biogenic amines in a thymopolypeptides injection using ultra-performance liquid chromatography coupled with electrospray ionization tandem quadrupole mass spectrometry.

    PubMed

    Li, Yong; Yang, Huaxin; Liao, Haiming; Fan, Huihong; Liang, Chenggang; Deng, Lijuan; Jin, Shaohong

    2013-06-15

    A selective and sensitive ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-MS) method was developed for the simultaneous determination of ten biogenic amines (tryptamine, 2-phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine, adrenaline, dopamine and spermine) in a thymopolypeptides injection from the Chinese market for the first time. Biogenic amines (BAs) were pre-column derivatised by dansyl chloride after direct sample dilution. Dansylated amines were separated on an ACQUITY UPLC BEH Shield RP18 column (2.1mm×150mm I.D., 1.7μm) using a gradient elution. Quantification was done by monitoring fragment ions of each derivative under the MS mode of multiple reaction monitoring (MRM). A satisfactory result of method validation was obtained. The linearity ranged from 0.32 to 1182.9μg/L and the correlation coefficients (r) for all amines were above 0.99. The LOD ranged from 0.08μg/L for 2-phenylethylamine and tyramine to 8.00μg/L for adrenaline; the LOQ ranged from 0.32μg/L for 2-phenylethylamine to 12.12μg/L for dopamine. The recovery ranged from 75.8 to 110.3% after spiking standard solutions of BAs to a sample at three levels. The intra and inter-day precision RSD were 0.78-8.85% and 1.39-9.93% respectively. Eighty-four injections were analyzed by this method. Nine biogenic amines were found in them except adrenaline. Moreover, the relationship between the result of test for depressor substances and the content of BAs was statistically analyzed. PMID:23644498

  17. Detection of 22 antiepileptic drugs by ultra-performance liquid chromatography coupled with tandem mass spectrometry applicable to routine therapeutic drug monitoring.

    PubMed

    Shibata, Mai; Hashi, Sachiyo; Nakanishi, Haruka; Masuda, Satohiro; Katsura, Toshiya; Yano, Ikuko

    2012-12-01

    The purpose of this study was to develop an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method of 22 antiepileptics for routine therapeutic monitoring. The antiepileptics used in the analyses were carbamazepine, carbamazepine-10,11-epoxide, clobazam, N-desmethylclobazam, clonazepam, diazepam, N-desmethyldiazepam, ethosuximide, felbamate, gabapentin, lamotrigine, levetiracetam, N-desmethylmesuximide, nitrazepam, phenobarbital, phenytoin, primidone, tiagabine, topiramate, valproic acid, vigabatrin and zonisamide. After protein precipitation of 50 μL plasma with methanol, the supernatant was diluted with water or was evaporated to dryness and reconstituted with mobile phase in the case of benzodiazepines. Separation was achieved on an Acquity UPLC BEH C₁₈ column with a gradient mobile phase of 10 mm ammonium acetate containing 0.1% formic acid and methanol at a flow rate of 0.4 mL/min. An Acquity TQD instrument in multiple reaction monitoring mode with ion mode switching was used for detection. All antiepileptics were detected and quantified within 10 min, with no endogenous interference. All the calibration curves showed good linearity in the therapeutic range (r²  < 0.99). The precision and accuracy values for intra- and inter-assays were within ±15% except for phenobarbital and tiagabine. A good correlation was observed between the concentration of clinical samples measured by the new method described here and the conventional methods. The values of carbamazepine and phenytoin by UPLC-MS/MS were lower than those detected by the immunoassays, which might be caused by the cross-reaction of antibodies with their metabolites. In conclusion, we developed a simple and selective UPLC-MS/MS method suitable for routine therapeutic monitoring of antiepileptics. PMID:22383262

  18. Multi-residue enantiomeric analysis of human and veterinary pharmaceuticals and their metabolites in environmental samples by chiral liquid chromatography coupled with tandem mass spectrometry detection.

    PubMed

    Camacho-Muñoz, Dolores; Kasprzyk-Hordern, Barbara

    2015-12-01

    Enantiomeric profiling of chiral pharmacologically active compounds (PACs) in the environment has hardly been investigated. This manuscript describes, for the first time, a multi-residue enantioselective method for the analysis of human and veterinary chiral PACs and their main metabolites from different therapeutic groups in complex environmental samples such as wastewater and river water. Several analytes targeted in this paper have not been analysed in the environment at enantiomeric level before. These are aminorex, carboxyibuprofen, carprofen, cephalexin, 3-N-dechloroethylifosfamide, 10,11-dihydro-10-hydroxycarbamazepine, dihydroketoprofen, fenoprofen, fexofenadine, flurbiprofen, 2-hydroxyibuprofen, ifosfamide, indoprofen, mandelic acid, 2-phenylpropionic acid, praziquantel and tetramisole. The method is based on chiral liquid chromatography utilising a chiral α1-acid glycoprotein column and tandem mass spectrometry detection. Excellent chromatographic separation of enantiomers (Rs≥1.0) was achieved for chloramphenicol, fexofenadine, ifosfamide, naproxen, tetramisole, ibuprofen and their metabolites: aminorex and dihydroketoprofen (three of four enantiomers), and partial separation (Rs = 0.7-1.0) was achieved for ketoprofen, praziquantel and the following metabolites: 3-N-dechloroethylifosfamide and 10,11-dihydro-10-hydroxycarbamazepine. The overall performance of the method was satisfactory for most of the compounds targeted. Method detection limits were at low nanogram per litre for surface water and effluent wastewater. Method intra-day precision was on average under 20% and sample pre-concentration using solid phase extraction yielded recoveries >70% for most of the analytes. This novel, selective and sensitive method has been applied for the quantification of chiral PACs in surface water and effluent wastewater providing excellent enantioresolution of multicomponent mixtures in complex environmental samples. It will help with better understanding of the role of individual enantiomers in the environment and will enable more accurate environmental risk assessment. PMID:26462925

  19. Tandem robot control system and method for controlling mobile robots in tandem

    DOEpatents

    Hayward, David R.; Buttz, James H.; Shirey, David L.

    2002-01-01

    A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.

  20. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    PubMed Central

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin; Schink, Bernhard

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660–4,890 µmol CH4⋅m−2⋅d−1) and actual rates calculated from microsensor profiles (31–437 µmol CH4⋅m−2⋅d−1) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones. PMID:25472842

  1. Stereoselective synthesis of 1,3-disubstituted isoindolines via Rh(iii)-catalyzed tandem oxidative olefination-cyclization of 4-aryl cyclic sulfamidates.

    PubMed

    Son, Se-Mi; Seo, Yeon Ji; Lee, Hyeon-Kyu

    2016-03-10

    Rh(iii)-catalyzed tandem ortho C-H olefination of cyclic 4-aryl sulfamidates (1) and subsequent intramolecular cyclization are described. This reaction serves as a method for the direct and stereoselective synthesis of 1,3-disubstituted isoindolines (3) starting with enantiomerically enriched 4-aryl cyclic sulfamidates. In this process, the configurational integrity of the stereogenic center in the starting cyclic sulfamidate is completely retained. In addition, the process generates trans-1,3-disubstituted isoindolines exclusively. PMID:26841961

  2. Copper-catalyzed difunctionalization of activated alkynes by radical oxidation-tandem cyclization/dearomatization to synthesize 3-trifluoromethyl spiro[4.5]trienones.

    PubMed

    Hua, Hui-Liang; He, Yu-Tao; Qiu, Yi-Feng; Li, Ying-Xiu; Song, Bo; Gao, Pin; Song, Xian-Rong; Guo, Dong-Hui; Liu, Xue-Yuan; Liang, Yong-Min

    2015-01-19

    A copper-catalyzed difunctionalizing trifluoromethylation of activated alkynes with the cheap reagent sodium trifluoromethanesulfinate (NaSO2CF3 or Langlois' reagent) has been developed incorporating a tandem cyclization/dearomatization process. This strategy affords a straightforward route to synthesis of 3-(trifluoromethyl)-spiro[4.5]trienones, and presents an example of difunctionalization of alkynes for simultaneous formation of two carbon-carbon single bonds and one carbon-oxygen double bond. PMID:25452200

  3. Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling oxidation, dissolution, and fracturing

    USGS Publications Warehouse

    Buss, H.L.; Sak, P.B.; Webb, S.M.; Brantley, S.L.

    2008-01-01

    In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers (???2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive ??V of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction. Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion in d (0 0 1) from 10.0 to 10.5 A??, forming 'altered biotite'. Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(II). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 ?? 10-14 mol biotite m-2 s-1. Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 ??m resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone. Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 cm surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 ?? 10-13 mol hornblende m-2 s-1: the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the corestone, biotite oxidation induces spheroidal fracturing, facilitating the influx of fluids that react with other minerals, dissolving plagioclase and chlorite, creating additional porosity, and eventually dissolving hornblende and precipitating secondary minerals. The thickness of the resultant saprolite is maintained at steady state by a positive feedback between the denudation rate and the weathering advance rate driven by the concentration of pore water O2 at the bedrock-saprolite interface. ?? 2008 Elsevier Ltd. All rights reserved.

  4. Weathering of the Rio Blanco Quartz Diorite, Luquillo Mountains, Puerto Rico: Coupling Oxidation, Dissolution, And Fracturing

    SciTech Connect

    Buss, H.L.; Sak, P.B.; Webb, S.M.; Brantley, S.L.

    2009-05-12

    In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers ({approx}2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive {Delta}V of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction. Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion in d (0 0 1) from 10.0 to 10.5 {angstrom}, forming 'altered biotite'. Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(II). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 x 10{sup -14} mol biotite m{sup -2} s{sup -1}. Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 {micro}m resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone. Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 cm surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 x 10{sup -13} mol hornblende m{sup -2} s{sup -1}: the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the corestone, biotite oxidation induces spheroidal fracturing, facilitating the influx of fluids that react with other minerals, dissolving plagioclase and chlorite, creating additional porosity, and eventually dissolving hornblende and precipitating secondary minerals. The thickness of the resultant saprolite is maintained at steady state by a positive feedback between the denudation rate and the weathering advance rate driven by the concentration of pore water O{sub 2} at the bedrock-saprolite interface.

  5. Determination of bisphenols in beverages by mixed-mode solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Regueiro, Jorge; Wenzl, Thomas

    2015-11-27

    Facing growing restrictions on the use of bisphenol A in food contact materials, several bisphenol analogs are arising as major alternatives to replace this chemical in most of its applications. This work reports a simple and robust method based on mixed-mode solid-phase extraction and stable-isotope dilution liquid chromatography-tandem mass spectrometry for the analysis of bisphenol A and its main analogs - bisphenol S, 4,4'-sulfonylbis(2-methylphenol), bisphenol F, bisphenol E, bisphenol B, bisphenol Z, bisphenol AF, bisphenol AP, tetrabromobisphenol A and bisphenol P - in alcoholic and non-alcoholic beverages. Mixed-mode solid-phase extraction, combining cationic exchange and reversed-phase mechanisms, was optimized to provide a selective extraction and purification of the target analytes. Derivatization of bisphenols with pyridine-3-sulfonyl chloride allowed increasing their ionization efficiency by electrospray ionization. Validation of the proposed method was performed in terms of selectivity, matrix effects, linearity, precision, measurement uncertainty, trueness and limits of detection. Satisfactory repeatability and intermediate precision were obtained; the related relative standard deviations were ≤9% and ≤12%, respectively. The relative expanded uncertainty (k=2) was below 20% for all bisphenol analogs and the trueness of the method was demonstrated by recovery experiments. Limits of detection (LOD) ranged from 1.6ngL(-1) to 27.9ngL(-1) for all compounds. Finally, several canned and non-canned beverages were analyzed to demonstrate the applicability of the method. Only bisphenol A and three bisphenol F isomers were detected in any of the samples. Bisphenol A concentration ranged from

  6. Optimal control strategies for hydrogen production when coupling solid oxide electrolysers with intermittent renewable energies

    NASA Astrophysics Data System (ADS)

    Cai, Qiong; Adjiman, Claire S.; Brandon, Nigel P.

    2014-12-01

    The penetration of intermittent renewable energies requires the development of energy storage technologies. High temperature electrolysis using solid oxide electrolyser cells (SOECs) as a potential energy storage technology, provides the prospect of a cost-effective and energy efficient route to clean hydrogen production. The development of optimal control strategies when SOEC systems are coupled with intermittent renewable energies is discussed. Hydrogen production is examined in relation to energy consumption. Control strategies considered include maximizing hydrogen production, minimizing SOEC energy consumption and minimizing compressor energy consumption. Optimal control trajectories of the operating variables over a given period of time show feasible control for the chosen situations. Temperature control of the SOEC stack is ensured via constraints on the overall temperature difference across the cell and the local temperature gradient within the SOEC stack, to link materials properties with system performance; these constraints are successfully managed. The relative merits of the optimal control strategies are analyzed.

  7. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode.

    PubMed

    Davids, Paul S; Jarecki, Robert L; Starbuck, Andrew; Burckel, D Bruce; Kadlec, Emil A; Ribaudo, Troy; Shaner, Eric A; Peters, David W

    2015-12-01

    Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification that can only be obtained by direct tunnelling. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxide-semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W(-1) cm(-2) at -0.1 V. PMID:26414194

  8. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode

    NASA Astrophysics Data System (ADS)

    Davids, Paul S.; Jarecki, Robert L.; Starbuck, Andrew; Burckel, D. Bruce; Kadlec, Emil A.; Ribaudo, Troy; Shaner, Eric A.; Peters, David W.

    2015-12-01

    Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification that can only be obtained by direct tunnelling. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxide-semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W-1 cm-2 at -0.1 V.

  9. Nitrate reduction coupled with pyrite oxidation in the surface sediments of a sulfide-rich ecosystem

    NASA Astrophysics Data System (ADS)

    Hayakawa, Atsushi; Hatakeyama, Mizuho; Asano, Ryoki; Ishikawa, Yuichi; Hidaka, Shin

    2013-06-01

    studies of denitrification have focused on organic carbon as an electron donor, but reduced sulfur can also support denitrification. Few studies have reported nitrate (NO3-) reduction coupled with pyrite oxidation and its stoichiometry in surface sediments, especially without experimental pyrite addition. In this study, we evaluated NO3- reduction coupled with sulfur oxidation by long-term incubation of surface sediments from a sulfide-rich ecosystem in Akita Prefecture, Japan. The surface sediments were sampled from a mud pool and a riverbed. Fresh sediments and water were incubated under anoxic conditions (and one oxic condition) at 20°C. NO3- addition increased the SO42- concentration and decreased the NO3- concentration. SO42- production (∆SO42-) was strongly and linearly correlated with NO3- consumption (∆NO3-) during the incubation period (R2 = 0.983, P < 0.01, and n = 8), and the slope of the regression (∆NO3-/∆SO42-) and the stoichiometry indicated sulfur-driven NO3- reduction by indigenous autotrophic denitrifying bacteria. Framboidal pyrite and marcasite (both FeS2) were present in the sediments and functioned as the electron donors for autotrophic denitrification. Both ∆NO3- and ∆SO42- were higher in the riverbed sediment than in the mud pool sediment, likely because of the higher amount of easily oxidizable S (pyrite) in the riverbed sediment. Consistently low ammonium (NH4+) concentrations indicated that NO3- reduction by dissimilatory NO3- reduction to NH4+ was small but could not be disregarded. Our results demonstrate that sulfide-rich ecosystems with easily oxidizable metal-bound sulfides such as FeS2 near the ground surface may act as denitrification hot spots.

  10. Using ultrashort optical pulses to couple ferroelectric and ferromagnetic order in an oxide heterostructure

    NASA Astrophysics Data System (ADS)

    Sheu, Y. M.; Trugman, S. A.; Yan, L.; Jia, Q. X.; Taylor, A. J.; Prasankumar, R. P.

    2014-12-01

    A new approach to all-optical detection and control of the coupling between electric and magnetic order on ultrafast timescales is achieved using time-resolved second-harmonic generation (SHG) to study a ferroelectric (FE)/ferromagnet (FM) oxide heterostructure. We use femtosecond optical pulses to modify the spin alignment in a Ba0.1Sr0.9TiO3 (BSTO)/La0.7Ca0.3MnO3 (LCMO) heterostructure and selectively probe the ferroelectric response using SHG. In this heterostructure, the pump pulses photoexcite non-equilibrium quasiparticles in LCMO, which rapidly interact with phonons before undergoing spin-lattice relaxation on a timescale of tens of picoseconds. This reduces the spin-spin correlations in LCMO, applying stress on BSTO through magnetostriction. This then modifies the FE polarization through the piezoelectric effect, on a timescale much faster than laser-induced heat diffusion from LCMO to BSTO. We have thus demonstrated an ultrafast indirect magnetoelectric effect in a FE/FM heterostructure mediated through elastic coupling, with a timescale primarily governed by spin-lattice relaxation in the FM layer.

  11. Using ultrashort optical pulses to couple ferroelectric and ferromagnetic order in an oxide heterostructure.

    PubMed

    Sheu, Y M; Trugman, S A; Yan, L; Jia, Q X; Taylor, A J; Prasankumar, R P

    2014-01-01

    A new approach to all-optical detection and control of the coupling between electric and magnetic order on ultrafast timescales is achieved using time-resolved second-harmonic generation (SHG) to study a ferroelectric (FE)/ferromagnet (FM) oxide heterostructure. We use femtosecond optical pulses to modify the spin alignment in a Ba(0.1)Sr(0.9)TiO3 (BSTO)/La(0.7)Ca(0.3)MnO3 (LCMO) heterostructure and selectively probe the ferroelectric response using SHG. In this heterostructure, the pump pulses photoexcite non-equilibrium quasiparticles in LCMO, which rapidly interact with phonons before undergoing spin-lattice relaxation on a timescale of tens of picoseconds. This reduces the spin-spin correlations in LCMO, applying stress on BSTO through magnetostriction. This then modifies the FE polarization through the piezoelectric effect, on a timescale much faster than laser-induced heat diffusion from LCMO to BSTO. We have thus demonstrated an ultrafast indirect magnetoelectric effect in a FE/FM heterostructure mediated through elastic coupling, with a timescale primarily governed by spin-lattice relaxation in the FM layer. PMID:25534775

  12. Copper-catalyzed domino synthesis of quinazolinones via Ullmann-type coupling and aerobic oxidative C-H amidation.

    PubMed

    Xu, Wei; Jin, Yibao; Liu, Hongxia; Jiang, Yuyang; Fu, Hua

    2011-03-18

    An efficient copper-catalyzed approach to quinazolinone derivatives has been developed, and the protocol uses cheap and readily available substituted 2-halobenzamides and (aryl)methanamines as the starting materials as well as economical and environmentally friendly air as the oxidant. This can be the first example of constructing N-heterocycles via sequential Ullmann-type coupling under air and aerobic oxidative C-H amidation. PMID:21344914

  13. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence.

    PubMed

    Ding, Long-Jun; An, Xin-Li; Li, Shun; Zhang, Gan-Lin; Zhu, Yong-Guan

    2014-09-16

    Anaerobic ammonium oxidation coupled to iron(III) reduction (termed Feammox) with dinitrogen, nitrite, or nitrate as the end-product is a recently discovered process of nitrogen cycling. However, Feammox has not been described in paddy soils, which are rich in iron(III) oxides and subjected to intensive nitrogen fertilization. Here, evidence for Feammox in a paddy soil chronosequence with a gradient of microbially reducible iron(III) levels was obtained in Southern China using (15)N-labeled ammonium-based isotopic tracing and acetylene inhibition techniques. Our study demonstrated the occurrence of Feammox in the chronosequence, and direct dinitrogen production was shown to be the dominant Feammox pathway. Within the chronosequence, three paddy soils with higher microbially reducible iron(III) levels had higher Feammox rates (ranged from 0.17 to 0.59 mg N kg(-1) d(-1)) compared to an uncultivated soil (0.04 mg N kg(-1) d(-1)). It is estimated that a loss of 7.8-61 kg N ha(-1) year(-1) is associated with Feammox in the examined paddy soils. Overall, we discover that rice cultivation could enrich microbially reducible iron(III), accelerate Feammox reaction and thus fuel nitrogen loss from soils, and suggest that Feammox could be a potentially important pathway for nitrogen loss in paddy soils. PMID:25158120

  14. Transition-metal-assisted radical/radical cross-coupling: a new strategy to the oxidative C(sp3)-H/N-H cross-coupling.

    PubMed

    Zhou, Liangliang; Tang, Shan; Qi, Xiaotian; Lin, Caitao; Liu, Kun; Liu, Chao; Lan, Yu; Lei, Aiwen

    2014-06-20

    A transition-metal-assisted oxidative C(sp(3))-H/N-H cross-coupling reaction of N-alkoxyamides with aliphatic hydrocarbons is described. During the reaction, nitrogen radicals were generated from the oxidation of N-alkoxyamides. Experiments and DFT calculations revealed that transition-metal catalyst could lower the reactivity of the generated nitrogen radical by the coordination of the transition metal, which allowed the selective radical/radical cross-coupling with the transient sp(3) carbon radical to construct C(sp(3))--N bonds. Various C(sp(3))-H bonds could be transformed into C(sp(3))-N bonds through this radical amidation strategy. PMID:24921665

  15. Ionic liquid-based one-step micellar extraction of multiclass polar compounds from hawthorn fruits by ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Hu, Shuai-Shuai; Yi, Ling; Li, Xing-Ying; Cao, Jun; Ye, Li-Hong; Cao, Wan; Da, Jian-Hua; Dai, Han-Bin; Liu, Xiao-Juan

    2014-06-11

    An ionic liquid (IL)-based one-step micellar extraction procedure was developed for the extraction of multiclass polar analytes (protocatechuic acid, chlorogenic acid, epicatechin, hyperoside, isoquercitrin, quercetin) from hawthorn fruits and their determination using ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF/MS). Compared to conventional organic solvent extractions, this newly proposed method was much easier, more sensitive, environmentally friendly, and effective as well. Several important parameters influencing the micellar extraction efficiency are discussed, such as selection of ILs, surfactant concentration, and extraction time. Under the optimal conditions, good linearity was achieved for each analyte with correlation coefficients (r(2)) ranging from 0.9934 to 0.9999, and the recovery values ranged from 89.3 to 106% with relative standard deviations lower than 5.5%. Results suggest that the IL-based one-step micellar extraction could be an alternative and promising means in future food analysis. PMID:24845828

  16. High-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight and ion-trap tandem mass spectrometry to identify phenolic compounds from a lemon verbena extract.

    PubMed

    Quirantes-Piné, R; Funes, L; Micol, V; Segura-Carretero, A; Fernández-Gutiérrez, A

    2009-07-10

    High-performance liquid chromatography with diode array and electrospray ionization mass spectrometric detection was used to carry out the comprehensive characterization of a lemon verbena extract with demonstrated antioxidant and antiinflammatory activity. Two different MS techniques have been coupled to HPLC: on one hand, time-of-flight mass spectrometry, and on the other hand, tandem mass spectrometry on an ion-trap. The use of a small particle size C18 column (1.8 microm) provided a great resolution and made possible the separation of several isomers. The UV-visible spectrophotometry was used to delimit the class of phenolic compound and the accurate mass measurements on time-of-flight spectrometer enabled to identify the compounds present in the extract. Finally, the fragmentation pattern obtained in MS-MS experiments confirmed the proposed structures. This procedure was able to determine many well-known phenolic compounds present in lemon verbena such as verbascoside and its derivatives, diglucuronide derivatives of apigenin and luteolin, and eukovoside. Also gardoside, verbasoside, cistanoside F, theveside, campneoside I, chrysoeriol-7-diglucuronide, forsythoside A and acacetin-7-diglucuronide were found for the first time in lemon verbena. PMID:19500792

  17. High-speed homogenization coupled with microwave-assisted extraction followed by liquid chromatography-tandem mass spectrometry for the direct determination of alkaloids and flavonoids in fresh Isatis tinctoria L. hairy root cultures.

    PubMed

    Jiao, Jiao; Gai, Qing-Yan; Zhang, Lin; Wang, Wei; Luo, Meng; Zu, Yuan-Gang; Fu, Yu-Jie

    2015-06-01

    A new, simple and efficient analysis method for fresh plant in vitro cultures-namely, high-speed homogenization coupled with microwave-assisted extraction (HSH-MAE) followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-was developed for simultaneous determination of six alkaloids and eight flavonoids in Isatis tinctoria hairy root cultures (ITHRCs). Compared with traditional methods, the proposed HSH-MAE offers the advantages of easy manipulation, higher efficiency, energy saving, and reduced waste. Cytohistological studies were conducted to clarify the mechanism of HSH-MAE at cellular/tissue levels. Moreover, the established LC-MS/MS method showed excellent linearity, precision, repeatability, and reproducibility. The HSH-MAE-LC-MS/MS method was also successfully applied for screening high-productivity ITHRCs. Overall, this study opened up a new avenue for the direct determination of secondary metabolic profiles from fresh plant in vitro cultures, which is valuable for improving quality control of plant cell/organ cultures and sheds light on the metabolomic analysis of biological samples. Graphical Abstract HSH-MAE-LC-MS/MS opened up a new avenue for the direct determination of alkaloids and flavonoids in fresh Isatis tinctoria hairy root cultures. PMID:25893802

  18. On-line coupling of in-tube boronate affinity solid phase microextraction with high performance liquid chromatography-electrospray ionization tandem mass spectrometry for the determination of cis-diol biomolecules.

    PubMed

    He, Jiangang; Liu, Zhen; Ren, Lianbing; Liu, Yunchun; Dou, Peng; Qian, Kai; Chen, Hong-Yuan

    2010-06-30

    Boronate affinity solid phase microextraction (BA-SPME) is a new format appeared recently with great potential for specific extraction of cis-diol-containing compounds. Unlike conventional SPME, BA-SPME relies on covalent interactions and thereby features with specific selectivity, eliminated matrix effect and manipulable capture/release. However, only on-fiber BA-SPME and its off-line combination with high performance liquid chromatography (HPLC) have been reported so far. In this study, we report on-line coupling of in-tube BA-SPME with HPLC-electrospray ionization tandem mass spectroscopy (in-tube BA-SPME-HPLC-ESI-MS/MS) for the specific and sensitive determination of cis-diol-containing biomolecules. A boronate affinity extraction phase was prepared onto the inner surface of the capillary by copolymerization of vinylphenylboronic acid (VPBA) and ethylene glycol dimethacrylate (EDMA). The extraction conditions were optimized by choosing appropriate extraction/desorption solutions and extraction time. The extraction capacity, linear range, reproducibility and life-time were investigated. The developed method was successfully applied for the determination of dopamine in urine samples. Since many cis-diol-containing compounds are of great biological importance, the in-tube BA-SPME-HPLC method can be a promising tool. PMID:20685466

  19. Simple and quick determination of analgesics and other contaminants of emerging concern in environmental waters by on-line solid phase extraction coupled to liquid chromatography-tandem mass spectrometry.

    PubMed

    Ferrer-Aguirre, Alejandra; Romero-González, Roberto; Vidal, J L Martínez; Frenich, Antonia Garrido

    2016-05-13

    A simple and quick analytical method has been developed for the determination of pharmaceutical compounds in water. An on-line solid-phase extraction (SPE) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been optimized to determine 7 contaminants of emerging concern in environmental waters at ngL(-1) levels. This procedure requires minimal sample handling and small sample volume (900μL) with a total running time of 18min. Several SPE parameters were evaluated and optimized in order to achieve a high sample throughput. Therefore sample volume, carryover and reusability of the cartridges were evaluated. Performance characteristics were evaluated and good linearity was obtained (R(2)>0.98). Recoveries were evaluated in spiked samples at three concentrations and the values ranged from 71 to 104%. Intra and inter-day precision was lower than 10 and 13% respectively. Limits of quantification were equal to or lower than 10ngL(-1), except for 1,7-dimethylxanthine (20ngL(-1)) and ibuprofen (50ngL(-1)). The method was applied to 20 environmental water samples, and ibuprofen was the compound most widely detected at concentrations up to 42.06μgL(-1), whereas the other compounds were detected in fewer samples at lower concentrations (up to 15.99μgL(-1)). PMID:27063372

  20. Simultaneous Determination of 16 Nucleosides and Nucleobases in Euryale ferox Salisb. by Liquid Chromatography Coupled with Electro Spray Ionization Tandem Triple Quadrupole Mass Spectrometry (HPLC-ESI-TQ-MS/MS) in Multiple Reaction Monitoring (MRM) Mode.

    PubMed

    Wang, Hong; Wu, Qinan; Wu, Chengying; Jiang, Zheng

    2015-09-01

    In this study, a simple, rapid, efficient analytical method was established for the qualification and quantification of 16 nucleosides and nucleobases in Euryale ferox Salisb. by using liquid chromatography coupled with electrospray ionization tandem triple quadrupole mass spectrometry (HPLC-ESI-TQ-MS/MS) in multiple-reaction monitoring (MRM) mode. Ideal separation of 16 target compounds was achieved on Xbridge Amide HILIC column (4.6 × 150 mm, 3.5 μm) with gradient elution in 11 min by optimized conditions. Variations of nucleosides and nucleobase in samples from different cultivation regions ranging from 190.50 to 1594.30 μg/g were obvious. The total nucleoside contents were higher than total nucleobases, especially in the compositions of guanosine, cytidine and 2'-deoxyguanosine. Samples 1-18 with dense thorns were better characters than samples 19-26 without thorns in terms of nucleosides and nucleobases concentrations in general. The limits of detection (LODs) and quantification (LOQs) for 16 analytical substances were investigated to be 0.11-6.33 ng/mL and 0.35-21.1 ng/mL, respectively. And the method was first applied to large aquatic plants with good linearity, precision, repeatability and accuracy. All present information provided a scientific and rational reference for quality assessment and control of Euryale ferox Salisb. PMID:25947362

  1. Report on three aliphatic dimethylarsinoyl compounds as common minor constituents in marine samples. An investigation using high-performance liquid chromatography/inductively coupled plasma mass spectrometry and electrospray ionisation tandem mass spectrometry.

    PubMed

    Sloth, Jens J; Larsen, Erik H; Julshamn, Kåre

    2005-01-01

    Three water-soluble aliphatic arsenicals, dimethylarsinoyl acetate (DMAA), dimethylarsinoyl ethanol (DMAE), and dimethylarsinoyl propionate (DMAP), were identified in marine biological samples. Sample extracts in methanol/water (1 + 1) were analysed by cation-exchange high-performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/ICPMS). Eluate fractions from the HPLC/ICPMS analyses containing the compounds in question were collected and subjected to analysis by electrospray ionisation tandem mass spectrometry (ESI-MS/MS), which provided supportive evidence for the structures of the three compounds. The concentrations of the three arsenicals were determined in 37 marine organisms comprising algae, crustaceans, bivalves, fish and mammals by HPLC/ICPMS. The three arsenicals DMAA, DMAE and DMAP, which occurred at microg kg(-1) concentrations, were detected in 25, 23 and 17 of the 37 samples analysed, respectively. The limits of detection were 2-3 microg kg(-1) dry mass. The data illustrate that the three compounds are common minor constituents in marine samples. This is the first report on DMAE and DMAP as naturally occurring species in marine samples. The presence of DMAA and DMAE supports a proposed biosynthesis of arsenobetaine (AB) from dimethylarsinoylribosides. Alternative proposals, which explain the presence of the compounds in marine samples, are addressed briefly in the paper. PMID:15593252

  2. Comparative Analysis of Amino Acids, Nucleosides, and Nucleobases in Thais clavigera from Different Distribution Regions by Using Hydrophilic Interaction Ultra-Performance Liquid Chromatography Coupled with Triple Quadrupole Tandem Mass Spectrometry

    PubMed Central

    Ge, Yahui; Tang, Yuping; Guo, Sheng; Liu, Xin; Zhu, Zhenhua; Liu, Pei; Duan, Jin-ao

    2015-01-01

    Thais clavigera, as function food, is distributed widely along the coasts of China. To compare and tap its potentially nutritional and functional values, hydrophilic interaction ultra-performance liquid chromatography coupled with triplequadrupole tandem mass spectrometry (HILIC-UPLC-TQ-MS/MS) was used for simultaneous identification and quantification of amino acids, nucleosides, and nucleobases in the extracts of T. clavigera from 19 sea areas in China, and a PCA was further performed for comparing their content variation in different distribution regions. The total contents of amino acids varied from 116.74 mg/g to 298.58 mg/g being higher than contents of nucleosides and nucleobases that varied from 2.65 mg/g and 20.49 mg/g. Among the habitats, Hainan province had content advantages on others. By PCA, samples collected from different regions were classified into three groups. For specific constituents, lysine accounted for large part of essential amino acids; glycine and taurine also play important roles in the delicate taste and health care function of it. Inosine takes up most of total contents of nucleosides and nucleobases. These results provided good data for establishing quality standard of T. clavigera related products and their further development and utilization. PMID:26290666

  3. Dual ultrasonic-assisted dispersive liquid-liquid microextraction coupled with microwave-assisted derivatization for simultaneous determination of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol by ultra high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhao, Xian-En; Lv, Tao; Zhu, Shuyun; Qu, Fei; Chen, Guang; He, Yongrui; Wei, Na; Li, Guoliang; Xia, Lian; Sun, Zhiwei; Zhang, Shijuan; You, Jinmao; Liu, Shu; Liu, Zhiqiang; Sun, Jing; Liu, Shuying

    2016-03-11

    This paper, for the first time, reported a speedy hyphenated technique of low toxic dual ultrasonic-assisted dispersive liquid-liquid microextraction (dual-UADLLME) coupled with microwave-assisted derivatization (MAD) for the simultaneous determination of 20(S)-protopanaxadiol (PPD) and 20(S)-protopanaxatriol (PPT). The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) detection using multiple-reaction monitoring (MRM) mode. A mass spectrometry sensitizing reagent, 4'-carboxy-substituted rosamine (CSR) with high reaction activity and ionization efficiency was synthesized and firstly used as derivatization reagent. Parameters of dual-UADLLME, MAD and UHPLC-MS/MS conditions were all optimized in detail. Low toxic brominated solvents were used as extractant instead of traditional chlorinated solvents. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect and extremely low limits of detection (LODs, 0.010 and 0.015ng/mL for PPD and PPT, respectively) were achieved. The main advantages were rapid, sensitive and environmentally friendly, and exhibited high selectivity, accuracy and good matrix effect results. The proposed method was successfully applied to pharmacokinetics of PPD and PPT in rat plasma. PMID:26877173

  4. Selectively adsorptive extraction of phenylarsonic acids in chicken tissue by carboxymethyl α-cyclodextrin immobilized Fe3O4 magnetic nanoparticles followed ultra performance liquid chromatography coupled tandem mass spectrometry detection.

    PubMed

    Jia, Jing; Zhang, Wei; Wang, Jing; Wang, Peilong; Zhu, Ruohua

    2014-01-01

    Carboxymethyl α-cyclodextrin immobilized Fe3O4 magnetic nanoparticles (CM-α-CD-Fe3O4) were synthesized for the selectively adsorptive extraction of five phenylarsonic acids including p-amino phenylarsonic acid, p-nitro phenylarsonic acid, p-hydroxy phenylarsonic acid, p-acylamino phenylarsonic acid and p-hydroxy-3-nitro phenylarsonic acid in chicken tissue. Using ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS), a highly sensitive analytical method was proposed for the determination of five phenylarsonic acids. It was shown that CM-α-CD-Fe3O4 could extract the five phenylarsonic acids in complex chicken tissue samples with high extraction efficiency. Under the optimal conditions, a high enrichment factor, ranging from 349 to 606 fold, was obtained. The limits of detection (LODs) (at a signal-to-noise ratio of 3) were in the range of 0.05-0.11 µg/kg for the five phenylarsonic acids. The proposed method was applied for the determination of five target phenylarsonic acids in chicken muscle and liver samples. Recoveries for the spiked samples with 0.2 µg/kg, 2.0 µg/kg and 20 µg/kg of each phenylarsonic acids were in the range of 77.2%-110.2%, with a relative standard deviation (RSD) of less than 12.5%. PMID:25215503

  5. Selectively Adsorptive Extraction of Phenylarsonic Acids in Chicken Tissue by Carboxymethyl α-Cyclodextrin Immobilized Fe3O4 Magnetic Nanoparticles Followed Ultra Performance Liquid Chromatography Coupled Tandem Mass Spectrometry Detection

    PubMed Central

    Jia, Jing; Zhang, Wei; Wang, Jing; Wang, Peilong; Zhu, Ruohua

    2014-01-01

    Carboxymethyl α-cyclodextrin immobilized Fe3O4 magnetic nanoparticles (CM-α-CD-Fe3O4) were synthesized for the selectively adsorptive extraction of five phenylarsonic acids including p-amino phenylarsonic acid, p-nitro phenylarsonic acid, p-hydroxy phenylarsonic acid, p-acylamino phenylarsonic acid and p-hydroxy-3-nitro phenylarsonic acid in chicken tissue. Using ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS), a highly sensitive analytical method was proposed for the determination of five phenylarsonic acids. It was shown that CM-α-CD-Fe3O4 could extract the five phenylarsonic acids in complex chicken tissue samples with high extraction efficiency. Under the optimal conditions, a high enrichment factor, ranging from 349 to 606 fold, was obtained. The limits of detection (LODs) (at a signal-to-noise ratio of 3) were in the range of 0.05–0.11 µg/kg for the five phenylarsonic acids. The proposed method was applied for the determination of five target phenylarsonic acids in chicken muscle and liver samples. Recoveries for the spiked samples with 0.2 µg/kg, 2.0 µg/kg and 20 µg/kg of each phenylarsonic acids were in the range of 77.2%–110.2%, with a relative standard deviation (RSD) of less than 12.5%. PMID:25215503

  6. Data for the identification of proteins and post-translational modifications of proteins associated to histones H3 and H4 in S. cerevisiae, using tandem affinity purification coupled with mass spectrometry.

    PubMed

    Valero, M Luz; Sendra, Ramon; Pamblanco, Mercè

    2016-03-01

    Tandem affinity purification method (TAP) allows the efficient purification of native protein complexes which incorporate a target protein fused with the TAP tag. Purified multiprotein complexes can then be subjected to diverse types of proteomic analyses. Here we describe the data acquired after applying the TAP strategy on histones H3 and H4 coupled with mass spectrometry to identify associated proteins and protein post-translational modifications in the budding yeast, Saccharomyces cerevisiae. The mass spectrometry dataset described here consists of 14 files generated from four different analyses in a 5600 Triple TOF (Sciex) by information-dependent acquisition (IDA) LC-MS/MS. The above files contain information about protein identification, protein relative abundance, and PTMs identification. The instrumental raw data from these files has been also uploaded to the ProteomeXchange Consortium via the PRIDE partner repository, with the dataset identifier PRIDE: PXD002671 and http://dx.doi.org/10.6019/PXD002671. These data are discussed and interpreted in http://dx.doi.org/10.1016/j.jprot.2016.01.004. Valero et al. (2016) [1]. PMID:26949727

  7. Data for the identification of proteins and post-translational modifications of proteins associated to histones H3 and H4 in S. cerevisiae, using tandem affinity purification coupled with mass spectrometry

    PubMed Central

    Valero, M Luz; Sendra, Ramon; Pamblanco, Mercè

    2016-01-01

    Tandem affinity purification method (TAP) allows the efficient purification of native protein complexes which incorporate a target protein fused with the TAP tag. Purified multiprotein complexes can then be subjected to diverse types of proteomic analyses. Here we describe the data acquired after applying the TAP strategy on histones H3 and H4 coupled with mass spectrometry to identify associated proteins and protein post-translational modifications in the budding yeast, Saccharomyces cerevisiae. The mass spectrometry dataset described here consists of 14 files generated from four different analyses in a 5600 Triple TOF (Sciex) by information‐dependent acquisition (IDA) LC–MS/MS. The above files contain information about protein identification, protein relative abundance, and PTMs identification. The instrumental raw data from these files has been also uploaded to the ProteomeXchange Consortium via the PRIDE partner repository, with the dataset identifier PRIDE: PXD002671 and http://dx.doi.org/10.6019/PXD002671. These data are discussed and interpreted in http://dx.doi.org/10.1016/j.jprot.2016.01.004. Valero et al. (2016) [1]. PMID:26949727

  8. Human exposure assessment to a large set of polymer additives through the analysis of urine by solid phase extraction followed by ultra high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Pouech, Charlène; Kiss, Agneta; Lafay, Florent; Léonard, Didier; Wiest, Laure; Cren-Olivé, Cécile; Vulliet, Emmanuelle

    2015-12-01

    Polymer items are extensively present in the human environment. Humans may be consequently exposed to some compounds, such as additives, incorporated in these items. The objective of this work is to assess the human exposure to the main additives such as those authorized in the packaging for pharmaceutical products. The urinary matrix was selected to optimally answer this challenge because it has already been proven that the exposure to chemicals can be revealed by the analysis of this biological matrix. A multi-residue analytical method for the trace analysis at ng/mL in human urine was developed, and consisted of an extraction of analytes from urine by solid phase extraction (SPE) and an analysis by ultra-high performance liquid chromatography coupled to a tandem mass spectrometer (UHPLC-MS/MS). Even if the quantification of these compounds was an analytical challenge because of (i) the presence of these substances in the analytical process, (ii) the diversity of their physicochemical properties, and (iii) the complexity of the matrix, the optimized method exhibited quantification limits lower than 25ng/mL and recoveries between 51% and 120% for all compounds. The method was validated and applied to 52 human urines. To the best of our knowledge, this work presents the first study allowing the assessment of the occurrence of more than twenty polymer additives at ng/mL in human urine. PMID:26554294

  9. Chemical Profiling of Re-Du-Ning Injection by Ultra-Performance Liquid Chromatography Coupled with Electrospray Ionization Tandem Quadrupole Time-of-Flight Mass Spectrometry through the Screening of Diagnostic Ions in MSE Mode

    PubMed Central

    Wang, Zhenzhong; Geng, Jianliang; Dai, Yi; Xiao, Wei; Yao, Xinsheng

    2015-01-01

    The broad applications and mechanism explorations of traditional Chinese medicine prescriptions (TCMPs) require a clear understanding of TCMP chemical constituents. In the present study, we describe an efficient and universally applicable analytical approach based on ultra-performance liquid chromatography coupled to electrospray ionization tandem quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q/TOF-MS) with the MSE (E denotes collision energy) data acquisition mode, which allowed the rapid separation and reliable determination of TCMP chemical constituents. By monitoring diagnostic ions in the high energy function of MSE, target peaks of analogous compounds in TCMPs could be rapidly screened and identified. “Re-Du-Ning” injection (RDN), a eutherapeutic traditional Chinese medicine injection (TCMI) that has been widely used to reduce fever caused by viral infections in clinical practice, was studied as an example. In total, 90 compounds, including five new iridoids and one new sesquiterpene, were identified or tentatively characterized by accurate mass measurements within 5 ppm error. This analysis was accompanied by MS fragmentation and reference standard comparison analyses. Furthermore, the herbal sources of these compounds were unambiguously confirmed by comparing the extracted ion chromatograms (EICs) of RDN and ingredient herbal extracts. Our work provides a certain foundation for further studies of RDN. Moreover, the analytical approach developed herein has proven to be generally applicable for profiling the chemical constituents in TCMPs and other complicated mixtures. PMID:25875968

  10. Chemical profiling of Re-Du-Ning injection by ultra-performance liquid chromatography coupled with electrospray ionization tandem quadrupole time-of-flight mass spectrometry through the screening of diagnostic Ions in MS(E) mode.

    PubMed

    Li, Haibo; Yu, Yang; Wang, Zhenzhong; Geng, Jianliang; Dai, Yi; Xiao, Wei; Yao, Xinsheng

    2015-01-01

    The broad applications and mechanism explorations of traditional Chinese medicine prescriptions (TCMPs) require a clear understanding of TCMP chemical constituents. In the present study, we describe an efficient and universally applicable analytical approach based on ultra-performance liquid chromatography coupled to electrospray ionization tandem quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q/TOF-MS) with the MS(E) ((E) denotes collision energy) data acquisition mode, which allowed the rapid separation and reliable determination of TCMP chemical constituents. By monitoring diagnostic ions in the high energy function of MS(E), target peaks of analogous compounds in TCMPs could be rapidly screened and identified. "Re-Du-Ning" injection (RDN), a eutherapeutic traditional Chinese medicine injection (TCMI) that has been widely used to reduce fever caused by viral infections in clinical practice, was studied as an example. In total, 90 compounds, including five new iridoids and one new sesquiterpene, were identified or tentatively characterized by accurate mass measurements within 5 ppm error. This analysis was accompanied by MS fragmentation and reference standard comparison analyses. Furthermore, the herbal sources of these compounds were unambiguously confirmed by comparing the extracted ion chromatograms (EICs) of RDN and ingredient herbal extracts. Our work provides a certain foundation for further studies of RDN. Moreover, the analytical approach developed herein has proven to be generally applicable for profiling the chemical constituents in TCMPs and other complicated mixtures. PMID:25875968

  11. An oxidative coupling product of luteolin with cysteine ester and its enhanced inhibitory activity for xanthine oxidase.

    PubMed

    Masuda, Toshiya; Nojima, Shoko; Miura, Yukari; Honda, Sari; Masuda, Akiko

    2015-08-15

    Oxidative coupling reactions of several flavonoids with a cysteine ester (a radicalic and nucleophilic biochemical) were carried out and the abilities of the coupling products against xanthine oxidase (XO) were screened. One of the products, derived from luteolin, showed a notable inhibitory effect. A potent XO inhibitory compound was isolated from the complex mixture of the product of the coupling of luteolin and cysteine ethyl ester, and its structure was determined by NMR and MS analysis. The compound has a unique 1,4-thiazine ring unit on the luteolin B-ring and is inhibited XO 4.5 times more strongly than it did luteolin. PMID:26096677

  12. Fast and simultaneous determination of eleven synthetic color additives in flour and meat products by liquid chromatography coupled with diode-array detector and tandem mass spectrometry.

    PubMed

    Qi, Ping; Lin, Zi-hao; Chen, Gui-yun; Xiao, Jian; Liang, Zhi-an; Luo, Li-ni; Zhou, Jun; Zhang, Xue-wu

    2015-08-15

    In this study, an efficient, fast and sensitive method for the simultaneous determination of eleven synthetic color additives (Allura red, Amaranth, Azo rubine, Brilliant blue, Erythrosine, Indigotine, Ponceau 4R, New red, Sunset yellow, Quinoline yellow and Tartrazine) in flour and meat foodstuffs is developed and validated using HPLC coupled with DAD and MS/MS. The color additives were extracted with ammonia-methanol and was further purified with SPE procedure using Strata-AW column in order to reduce matrix interference. This HPLC-DAD method is intended for a comprehensive survey of color additives in foods. HPLC-MS/MS method was used as the further confirmation and identification. Validation data showed the good recoveries in the range of 75.2-113.8%, with relative standard deviations less than 15%. These methods are suitable for the routine monitoring analysis of eleven synthetic color additives due to its sensitivity, reasonable time and cost. PMID:25794727

  13. Determination of cocaine and methadone in urine samples by thin-film solid-phase microextraction and direct analysis in real time (DART) coupled with tandem mass spectrometry.

    PubMed

    Rodriguez-Lafuente, Angel; Mirnaghi, Fatemeh S; Pawliszyn, Janusz

    2013-12-01

    The use of thin-film solid-phase microextraction (SPME) as the sampling preparation step before direct analysis in real time (DART) was evaluated for the determination of two prohibited doping substances, cocaine and methadone, in urine samples. Results showed that thin-film SPME improves the detectability of these compounds: signal-to-blank ratios of 5 (cocaine) and 13 (methadone) were obtained in the analysis of 0.5 ng/ml in human urine. Thin-film SPME also provides efficient sample cleanup, avoiding contamination of the ion source by salt residues from the urine samples. Extraction time was established in 10 min, thus providing relatively short analysis time and high throughput when combined with a 96-well shaker and coupled with DART technique. PMID:23685960

  14. Analysis of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) and its brominated analogues in chlorine-treated water by gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS).

    PubMed

    Planas, Carles; Ventura, Francesc; Caixach, Josep; Martín, Jordi; Boleda, M Rosa; Paraira, Miquel

    2015-11-01

    A simple, selective and sensitive method for the analysis of the strong mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) and its brominated analogues (BMXs) in chlorine-treated water has been developed. The method is based on gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS), previous liquid-liquid extraction (LLE) of a smaller sample volume compared to other methods and on-line derivatization with a silylation reactive. GC-QqQ-MS/MS has been raised as an alternative easier to perform than gas chromatography coupled to high resolution mass spectrometry (GC-HRMS) for the analysis of MX and BMXs, and it allows to achieve low LODs (0.3 ng/L for MX and 0.4-0.9 ng/L for BMXs). This technique had not been previously described for the analysis of MX and BMXs. Quality parameters were calculated and real samples related to 3 drinking water treatment plants (DWTPs), tap water and both untreated and chlorinated groundwater were analyzed. Concentrations of 0.3-6.6 ng/L for MX and 1.0-7.3 ng/L for BMXs were detected. Results were discussed according to five of the main factors affecting MX and BMXs formation in chlorine-treated water (organic precursors, influence of bromide ions, evolution of MX and BMXs in the drinking water distribution system, groundwater chlorination and infiltration of water coming from chlorination processes in groundwater). PMID:26452804

  15. Analysis of coupled Sr/Ca and 87Sr/ 86Sr variations in enamel using laser-ablation tandem quadrupole-multicollector ICPMS

    NASA Astrophysics Data System (ADS)

    Balter, Vincent; Telouk, Philippe; Reynard, Bruno; Braga, José; Thackeray, Francis; Albarède, Francis

    2008-08-01

    We present in this study results obtained with a laser-ablation coupled with both a quadrupole and a multi-collector ICPMS. The simultaneous in situ Sr/Ca and 87Sr/ 86Sr measurements along growth profiles in enamel allows the concomitant diet and migration patterns in mammals to be reconstructed. Aliquots of the powdered international standard NIST "SRM1400 Bone Ash" with certified Sr and Ca contents, was sintered at high pressure and temperature and was adopted as the reference material for external reproducibility and calibration of the results. A total of 145 coupled elemental and isotopic measurements of herbivores enamel from the Kruger National Park, South Africa, gives intra-tooth Sr/Ca and 87Sr/ 86Sr variations that are well larger than external reproducibility. Sr/Ca profiles systematically decrease from the dentine-enamel junction to the outer enamel whereas 87Sr/ 86Sr profiles exhibit variable patterns. Using a simple geometric model of hypsodont teeth growth, we demonstrate that a continuous recording of the 87Sr/ 86Sr variations can be reconstructed in the tooth length axis. This suggests that the mobility of a mammal can be reconstructed over a period of more than a year with a resolution of a ten of days, by sampling enamel along growth profiles. Our geometric model of hypsodont teeth growth predicts that an optimal distance between two successive profiles is equal to the enamel thickness. However, this model does not apply to the Sr/Ca signal which is likely to be altered during the enamel maturation stage due to differential maturation processes along enamel thickness. Here, the observed constant decreases of the Sr/Ca ratios in the ungulates of Kruger National Park suggests that they did not changed of diet, while some of them were migrating.

  16. Peroxidase-catalyzed oxidative coupling of phenols in the presence of geosorbents: rates of non-extractable product formation.

    PubMed

    Huang, Qingguo; Selig, Hildegarde; Weber, Walter J

    2002-02-15

    Oxidative coupling processes in subsurface systems comprise a form of natural contaminant attenuation in which hydroxylated aromatic compounds (HACs) are incorporated into soil/sediment organic matter matrices. Here we describe the oxidative coupling of phenol catalyzed by horseradish peroxidase (HRP) in systems containing two geosorbents having organic matter of different composition; specifically Chelsea soil, a near-surface geologically young soil having a predominantly humic-type soil/sediment organic matter (SOM) matrix, and Lachine shale, a diagenetically older natural material having a predominantly kerogen-type SOM matrix. It was found that each of these two different types of natural geosorbents increased the formation of non-extractable coupling products (NEPs) over that which occurred in solids-free systems. The extent of coupling was higher in the systems containing humic-type Chelsea SOM than in those containing kerogen-type Lachine SOM. It was observed that HRP inactivation by free radical attack was significantly reduced in the presence of each geosorbent. A rate model was developed to facilitate quantitative evaluation and mechanistic interpretation of such coupling processes. Experimental rate measurements revealed thatthe greater extent of reaction observed in the presence of Chelsea soil than in the presence of Lachine shale can be attributed to two factors: (i) more effective protection of HRP from inactivation by the Chelsea SOM and (ii) the greater reactivity of Chelsea SOM with respect to cross-coupling. Interrelationships among enzyme protection, cross-coupling reactivity, and SOM chemistry are discussed. PMID:11878372

  17. Electrophoretic microheterogeneity and subunit composition of the 13S coupling factors of oxidative and photosynthetic phosphorylation.

    PubMed

    Adolfsen, R; McClung, J A; Moudrianakis, E N

    1975-04-22

    Two electrophoretically distinguishable species of the 13S coupling factor of oxidative phosphorylation from Alcaligenes faecalis are detectable by standard polyacrylamide gel electrophoresis in the absence of urea, detergents, or any other protein-denaturing reagents. The slower species (type IA) can be converted into the faster species (type IB) by treatment with ATP, and the fast form converts into the slow form when aged at 4 degrees. The enzyme undergoes these conversions both when it is free in solution and when it is membrane bound. The ATP analog adenylyl imidodiphosphate (AMP-PNP) gives the conversion without being hydrolyzed and without causing any apparent change in the mass of the protein, which suggests that the conversion may be a ligand-induced conformational change. Types IA and IB can convert into three other electrophoretically distinguishable species (types IIA, IIB, and III) if the purification procedure involves chromatography on a DEAE-Sephadex column equilibrated in phosphate buffer. These conversions can be prevented if the column is eluted in morpholinoethanesulfonic acid (Mes) buffer and KCl. Type IIA is convertible into type IIB by ATP treatment. Types IA and IB will also convert into types IIA and IIB and finally into type III when aged for extended periods of time at 4 degrees, without a detectable change in mass. Coupling factor activity is lost when type I enzyme converts into type II enzyme, as is the ability of the enzyme to bind to the membrane. However, ATPase activity does not change significantly. The mitochondrial 13S coupling factor shows up to three electrophoretically distinguishable species. The use of phosphate buffer during DEAE-Sephadex chromatography gives conversion of slower species into faster species. ATP treatment does not give interconversions, and aging at 4 degrees gives only a slow dissociation of the enzyme into subunits. The chloroplast 13S coupling factor also shows up to three electrophoretic species. Incubation with ATP does not give interconversions, but a temperature-dependent conversion of the major species into a faster species occurs upon aging. The subunit composition of the three 13S enzymes is very similar by polyacrylamide gel electrophoresis in sodium dodecyl sulfate, the major difference being in the number of classes of small polypeptides. PMID:1168491

  18. Accurate quantification of mercapturic acids of styrene (PHEMAs) in human urine with direct sample injection using automated column-switching high-performance liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Reska, M; Ochsmann, E; Kraus, T; Schettgen, T

    2010-08-01

    Styrene is one of the most important industrial chemicals, with an enormously high production volume worldwide. The urinary mercapturic acids of its metabolite styrene-7,8-oxide, namely N-acetyl-S-(2-hydroxy-1-phenylethyl)-L-cysteine (PHEMA 1) and N-acetyl-S-(2-hydroxy-2-phenylethyl)-L-cysteine (PHEMA 2), are specific biomarkers for the determination of individual internal exposure to this highly reactive intermediate of styrene. We have developed and validated a fast, specific and very sensitive method for the accurate determination of the sum of phenylhydroxyethyl mercapturic acids (PHEMAs) in human urine with an automated multidimensional liquid chromatography-tandem mass spectrometry method using (13)C(6)-labelled PHEMAs as internal standards. Analytes were stripped from the urinary matrix by online extraction on a restricted access material, transferred to the analytical column and subsequently determined by tandem mass spectrometry. The limit of quantification (LOQ) for the sum of PHEMAs was 0.3 microg/L urine and allowed us to quantify the background exposure of the (smoking) general population. Precision within series and between series ranged from 1.5 to 6.8% at three concentrations ranging from 3 to 30 microg/L urine; the mean accuracy was between 104 and 110%. We applied the method to spot urine samples from 40 subjects of the general population with no known occupational exposure to styrene. The median levels (range) for the sum of PHEMAs in urine of non-smokers (n = 22) were less than 0.3 microg/L (less than 0.3 to 1.1 microg/L), whereas in urine of smokers (n = 18), the median levels were 0.46 microg/L (less than 0.3 to 2.8 microg/L). Smokers showed a significantly higher excretion of the sum of PHEMAs (p = 0.02). Owing to its automation and high sensitivity, our method is well suited for application in occupational or environmental studies. PMID:20556363

  19. Modification by covalent reaction or oxidation of cysteine residues in the Tandem-SH2 Domains of ZAP-70 and Syk Can Block Phosphopeptide Binding

    PubMed Central

    Visperas, Patrick R.; Winger, Jonathan A.; Horton, Timothy M.; Shah, Neel H.; Aum, Diane J.; Tao, Alyssa; Barros, Tiago; Yan, Qingrong; Wilson, Christopher G.; Arkin, Michelle R.; Weiss, Arthur; Kuriyan, John

    2015-01-01

    Zeta-chain Associated Protein of 70kDa (ZAP-70) and Spleen tyrosine kinase (Syk) are non-receptor tyrosine kinases that are essential for T-cell and B-cell antigen receptor signaling, respectively. They are recruited, via their tandem-SH2 domains, to doubly-phosphorylated Immunoreceptor Tyrosine-based Activation Motifs (ITAMs) on invariant chains of immune antigen receptors. Because of their critical roles in immune signaling, ZAP-70 and Syk are targets for the development of drugs for autoimmune diseases. We show that three thiol-reactive small molecules can prevent the tandem-SH2 domains of ZAP-70 and Syk from binding to phosphorylated ITAMs. We identify a specific cysteine residue in the phosphotyrosine-binding pocket of each protein (Cys 39 in ZAP-70, Cys 206 in Syk) that is necessary for inhibition by two of these compounds. We also find that ITAM binding to ZAP-70 and Syk is sensitive to the presence of hydrogen peroxide, and these two cysteine residues are also necessary for inhibition by hydrogen peroxide. Our findings suggest a mechanism by which the generation of reactive oxygen species generated during responses to antigen could attenuate signaling through these kinases, and may also inform the development of ZAP-70 and Syk inhibitors that bind covalently to their SH2 domains. PMID:25287889

  20. Aza-oxindole synthesis by oxidative coupling of C(sp2)-H and C(sp3)-H centers.

    PubMed

    Dey, Chandan; Kündig, E Peter

    2012-03-25

    A Cu(II) mediated oxidative C(sp(2))-H and C(sp(3))-H coupling protocol gives access to aza-oxindoles in good to excellent yield in the presence of NaOtBu as base and toluene as solvent. PMID:22337506

  1. Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Akira; Inuzuka, Riko; Takashima, Toshihiro; Hayashi, Toru; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2014-06-01

    Manganese oxides have been extensively investigated as model systems for the oxygen-evolving complex of photosystem II. However, most bioinspired catalysts are inefficient at neutral pH and functional similarity to the oxygen-evolving complex has been rarely achieved with manganese. Here we report the regulation of proton-coupled electron transfer involved in water oxidation by manganese oxides. Pyridine and its derivatives, which have pKa values intermediate to the water ligand bound to manganese(II) and manganese(III), are used as proton-coupled electron transfer induction reagents. The induction of concerted proton-coupled electron transfer is demonstrated by the detection of deuterium kinetic isotope effects and compliance of the reactions with the libido rule. Although proton-coupled electron transfer regulation is essential for the facial redox change of manganese in photosystem II, most manganese oxides impair these regulatory mechanisms. Thus, the present findings may provide a new design rationale for functional analogues of the oxygen-evolving complex for efficient water splitting at neutral pH.

  2. Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH

    PubMed Central

    Yamaguchi, Akira; Inuzuka, Riko; Takashima, Toshihiro; Hayashi, Toru; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2014-01-01

    Manganese oxides have been extensively investigated as model systems for the oxygen-evolving complex of photosystem II. However, most bioinspired catalysts are inefficient at neutral pH and functional similarity to the oxygen-evolving complex has been rarely achieved with manganese. Here we report the regulation of proton-coupled electron transfer involved in water oxidation by manganese oxides. Pyridine and its derivatives, which have pKa values intermediate to the water ligand bound to manganese(II) and manganese(III), are used as proton-coupled electron transfer induction reagents. The induction of concerted proton-coupled electron transfer is demonstrated by the detection of deuterium kinetic isotope effects and compliance of the reactions with the libido rule. Although proton-coupled electron transfer regulation is essential for the facial redox change of manganese in photosystem II, most manganese oxides impair these regulatory mechanisms. Thus, the present findings may provide a new design rationale for functional analogues of the oxygen-evolving complex for efficient water splitting at neutral pH. PMID:24977746

  3. Iodine-mediated oxidative annulation for one-pot synthesis of pyrazines and quinoxalines using a multipathway coupled domino strategy.

    PubMed

    Viswanadham, K K Durga Rao; Prathap Reddy, Muktapuram; Sathyanarayana, Pochampalli; Ravi, Owk; Kant, Ruchir; Bathula, Surendar Reddy

    2014-11-14

    An efficient iodine-mediated oxidative annulation of aryl acetylenes-arylethenes-aromatic ketones with 1,2-diamines for the synthesis of pyrazines and regioselective synthesis of quinoxalines is presented. A multipathway coupled domino approach has been developed for the one-pot synthesis of 1,4-diazines with high functional group compatibility. PMID:25238170

  4. Palladium-catalyzed oxidative cross-coupling of N-tosylhydrazones with indoles: synthesis of N-vinylindoles.

    PubMed

    Zeng, Xiaobao; Cheng, Guolin; Shen, Jinhai; Cui, Xiuling

    2013-06-21

    A general and efficient palladium-catalyzed oxidative cross-coupling reaction of N-tosylhydrazones with indoles providing N-vinylindoles has been developed. The reaction proceeds smoothly with various indoles and N-tosylhydrazones in a stereocontrolled manner, and a wide variety of N-vinylindoles were obtained up to 99% yields for 26 examples. PMID:23745723

  5. Transformation and removal of bisphenol A from aqueous phase via peroxidase mediated oxidative coupling reactions: efficacy, products, and pathways.

    PubMed

    Huang, Qingguo; Weber, Walter J

    2005-08-15

    A systematic investigation of the feasibility of and mechanisms for transformation and removal of bisphenol A (BPA) from aqueous phase via oxidative coupling mediated by horseradish peroxidase is described. It is demonstrated that BPA can be effectively transformed into precipitable solid products in HRP-mediated oxidative coupling reactions. A total of 13 reaction intermediates and products are identified using LC/MS and GC/MS techniques, and with the help of ab initio molecular modeling, detailed reaction pathways are proposed. It is postulated that two BPA radicals are coupled primarily by the interaction of an oxygen atom on one radical and propyl-substituted aromatic carbon atom on another, followed by elimination of an isopropylphenol carboncation. All intermediates or products detected can be interpreted as resulting from either coupling or substitution reactions between BPA and other intermediates or products. The efficacy of the reaction at low substrate concentrations is demonstrated using a sensitive analytical procedure involving solid-phase extractions. The results suggest that catalyzed oxidative coupling reactions may be important natural transformation pathways for estrogenic phenolic compounds and indicate their potential use as an efficient means for removal of estrogenicity from waters and wastewaters. PMID:16173560

  6. Metabolite profiling of licorice (Glycyrrhiza glabra) from different locations using comprehensive two-dimensional liquid chromatography coupled to diode array and tandem mass spectrometry detection.

    PubMed

    Montero, Lidia; Ibáñez, Elena; Russo, Mariateresa; di Sanzo, Rosa; Rastrelli, Luca; Piccinelli, Anna Lisa; Celano, Rita; Cifuentes, Alejandro; Herrero, Miguel

    2016-03-24

    Profiling of the main metabolites from several licorice (Glycyrrhiza glabra) samples collected at different locations is carried out in this work by using comprehensive two-dimensional liquid chromatography (LC × LC) coupled to diode array (DAD) and mass spectrometry (MS) detectors. The optimized method was based on the application of a HILIC-based separation in the first dimension combined with fast RP-based second dimension separation. This set-up was shown to possess powerful separation capabilities allowing separating as much as 89 different metabolites in a single sample. Identification and grouping of metabolites according to their chemical class were achieved using the DAD, MS and MS/MS data. Triterpene saponins were the most abundant metabolites followed by glycosylated flavanones and chalcones, whereas glycyrrhizic acid, as expected, was confirmed as the main component in all the studied samples. LC × LC-DAD-MS/MS was able to resolve these complex licorice samples providing with specific metabolite profiles to the different licorice samples depending on their geographical origin. Namely, from 19 to 50 specific compounds were exclusively determined in the 2D-chromatograms from the different licorice samples depending on their geographical origin, which can be used as a typical pattern that could potentially be related to their geographical location and authentication. PMID:26944999

  7. Application of a cholesterol stationary phase in the analysis of phosphorothioate oligonucleotides by means of ion pair chromatography coupled with tandem mass spectrometry.

    PubMed

    Studzińska, Sylwia; Krzemińska, Katarzyna; Szumski, Michał; Buszewski, Bogusław

    2016-07-01

    The main aim of this study was the investigation of the influence of several ion pair reagents towards both the retention and the mass spectrometry sensitivity of phosphorothioate oligonucleotides. A cholesterol stationary phase was applied for the first time in the analysis of this group of compounds. The mobile phase composition was modified by changing the concentration and the type of amines and acetates or 1,1,1,3,3,3-hexafluoroisopropanol. It has been shown that the increase of amines concentration results in the retention factor increase for each oligonucleotide, on each adsorbent. The only exception was the mobile phase composed of triethylamine and 1,1,1,3,3,3-hexafluoroisopropanol. This is a consequence of interactions taking place between a cholesterol molecule and an alcohol. This effect was convenient when the mass spectrometry detection was applied, since it allowed an increase in the sensitivity. Moreover, optimization of the mobile phase composition and its impact on the efficiency of ionization process and on the sensitivity in mass spectrometry were also presented. The optimization of this new method, based on cholesterol stationary phase coupled with mass spectrometry detection, was finally applied for the determination of phosphorothioate oligonucleotides impurity in a real sample. PMID:27154674

  8. Online molecularly imprinted solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry for the determination of hormones in water and sediment samples.

    PubMed

    Matějíček, David; Vlček, Jiří; Burešová, Alena; Pelcová, Pavlína

    2013-05-01

    The molecularly imprinted SPE directly coupled to RP LC-MS/MS method has been developed and successfully validated for the determination of six hormones in water and sediment samples. The method is based on the use the home-made column filled with a molecularly imprinted sorbent (imprinted against estrogens) that was used under nonaqueous conditions. Thus, its high selectivity could be utilized resulting in low matrix components' coextraction. The method showed excellent recovery (92-105%) and satisfactory sensitivity (LOQs water: 1.9-4.0 ng/L; LOQs sediment: 0.2-0.5 ng/g). The intra- and interprecision for water and sediment was in the range of 4.0-6.0% and 4.4-7.6%, respectively. Finally, 20 water and sediment samples collected from the Svratka river were analyzed. Only estrone was quantified in eight water samples (4.4-7.1 ng/L); no analytes were found in sediment samples. PMID:23441059

  9. Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production

    SciTech Connect

    Horvath, Samantha; Fernandez, Laura; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2012-09-25

    The design of molecular electrocatalysts for H2 oxidation and production is important for the development of alternative renewable energy sources that are abundant, inexpensive, and environmentally benign. Recently nickel-based molecular electrocatalysts with pendant amines that act as proton relays for the nickel center were shown to effectively catalyze H2 oxidation and production. We developed a quantum mechanical approach for studying proton-coupled electron transfer processes in these types of molecular electrocatalysts. This theoretical approach is applied to a nickel-based catalyst in which phosphorous atoms are directly bonded to the nickel center and nitrogen atoms of the ligand rings act as proton relays. The cataly c step of interest involves electron transfer between the nickel complex and the electrode as well as intramolecular proton transfer between the nickel and nitrogen atoms. This process can occur sequentially, with either the electron or proton transferring first, or concertedly, with the electron and proton transferring simultaneously without a stable intermediate. The heterogeneous rate constants are calculated as functions of overpotential for the concerted electron-proton transfer reaction and the two electron transfer reactions in the sequential mechanisms. Our calculations illustrate that the concerted electron-proton transfer standard rate constant will increase as the equilibrium distance between the nickel and nitrogen atoms decreases and as the nitrogen atoms become more mobile to facilitate the contraction of this distance. This approach assists in the identification of the favored mechanisms under various experimental conditions and provides insight into the qualitative impact of substituents on the nitrogen and phosphorous atoms. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under FWP 56073.

  10. NON-ENZYMATIC REDUCTION OF QUINONE METHIDES DURING OXIDATIVE COUPLING OF MONOLIGNOLS: IMPLICATIONS FOR THE ORIGIN OF BENZYL STRUCTURES IN LIGNINS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignin is believed to be synthesized by oxidative coupling of 4-hydroxyphenylpropanoids. In native lignin there are some types of reduced structures that cannot be explained by oxidative coupling. In the present work we showed via biomimetic model experiments that nicotinamide adenine dinucleotide (...

  11. A novel validated procedure for the determination of nicotine, eight nicotine metabolites and two minor tobacco alkaloids in human plasma or urine by solid-phase extraction coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry

    PubMed Central

    Miller, Eleanor I; Norris, Hye-Ryun K; Rollins, Douglas E; Tiffany, Stephen T; Wilkins, Diana G

    2010-01-01

    A novel validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) procedure was developed and fully validated for the simultaneous determination of nicotine-N-β-D-glucuronide, cotinine-N-oxide, trans-3-hydroxycotinine, norcotinine, trans-nicotine-1′-oxide, cotinine, nornicotine, nicotine, anatabine, anabasine and cotinine-N-β-D-glucuronide in human plasma or urine. Target analytes and corresponding deuterated internal standards were extracted by solid-phase extraction and analyzed by LC-MS/MS with electrospray ionization (ESI) using multiple reaction monitoring (MRM) data acquisition. Calibration curves were linear over the selected concentration ranges for each analyte, with calculated coefficients of determination (R2) of greater than 0.99. The total extraction recovery (%) was concentration dependent and ranged from 52–88 % in plasma and 51–118 % in urine. The limit of quantification for all analytes in plasma and urine were 1.0 ng/mL and 2.5 ng/mL respectively with the exception of cotinine-N-β-D-glucuronide which was 50 ng/mL. Intra-day and inter-day imprecision were ≤14 % and ≤17 % respectively. Matrix effect (%) was sufficiently minimized to ≤19 % for both matrices using the described sample preparation and extraction methods. The target analytes were stable in both matrices for at least 3 freeze thaw cycles, 24 hours at room temperature, 24 hours in the refrigerator (4 °C) and 1 week in the freezer (−20 °C). Reconstituted plasma and urine extracts were stable for at least 72 hours storage in the liquid chromatography autosampler at 4 °C. The plasma procedure has been successfully applied in the quantitative determination of selected analytes in samples collected from nicotine-abstinent human participants as part of a pharmacokinetic study investigating biomarkers of nicotine use in plasma following controlled low dose (7 mg) transdermal nicotine delivery. Nicotine, cotinine, trans-3-hydroxycotinine and trans-nicotine-1′-oxide were detected in the particular sample presented herein. The urine procedure has been used to facilitate the monitoring of unauthorized tobacco use by clinical study participants at the time of physical examination (before enrolment) and on the pharmacokinetic study day. PMID:20097626

  12. Characterization and evaluation of two-dimensional microfluidic chip-HPLC coupled to tandem mass spectrometry for quantitative analysis of 7-aminoflunitrazepam in human urine.

    PubMed

    Bai, Hsin-Yu; Lin, Shu-Ling; Chan, Shen-An; Fuh, Ming-Ren

    2010-10-01

    Microfluidic chip-based high-performance-liquid-chromatography coupled to mass spectrometry (chip-HPLC-MS) has been widely used in proteomic research due to its enhanced sensitivity. We employed a chip-HPLC-MS system for determining small molecules such as drug metabolites in biological fluids. This chip-HPLC-MS system integrates a microfluidic switch, a 2-dimensional column design including an enrichment column (160 nL) for sample pre-concentration and an analytical column for chromatographic separation, as well as a nanospray emitter on a single polyimide chip. In this study, a relatively large sample volume (500 nL) was injected into the enrichment column for pre-concentration and an additional 4 μL of the initial mobile phase was applied to remove un-retained components from the sample matrix prior to chromatographic separation. The 2-dimensional column design provides the advantages of online sample concentration and reducing matrix influence on MS detection. 7-Aminoflunitrazepam (7-aminoFM2), a major metabolite of flunitrazepam (FM2), was determined in urine samples using the integrated chip-HPLC-MS system. The linear range was 0.1-10 ng mL(-1) and the method detection limit (signal-to-noise ratio of 3) was 0.05 ng mL(-1) for 7-aminoFM2. After consecutive liquid-liquid extraction (LLE) and solid-phase extraction (SPE), the chip-HPLC-MS exhibited high correlation between 7-aminoFM2 spiked Milli-Q water and 7-aminoFM2 spiked urine samples. This system also showed good precision (n = 5) and recovery for spiked urine samples at the levels of 0.1, 1.0, and 10 ng mL(-1). Intra-day and inter-day precision were 2.0-7.1% and 4.3-6.0%, respectively. Clinical urine samples were also analyzed by this chip-HPLC-MS system and acceptable relative differences (-1.3 to -13.0%) compared with the results using a GC-MC method were determined. Due to its high sensitivity and ease of operation, the chip-HPLC-MS system can be utilized for the determination of small molecules such as drug metabolites and neurotransmitters in biological fluids for clinical diagnosis. PMID:20820494

  13. Utilization of the dilute acidic sulfate effluent as resources by coupling solvent extraction-oxidation-hydrolysis.

    PubMed

    Ren, Xiulian; Wei, Qifeng; Chen, Yongxing; Guo, Jingjing; Wei, Sijie; Wang, Xiaofei

    2015-12-15

    The pollution risk of dilute acidic sulfate effluent (DASE),which is discharged from titanium dioxide factories heavily every year, has sparked the recycling of sulfuric acid, iron and water. In this study, a new green recovery process for the DASE is proposed based on coupling solventextraction-oxidation-hydrolysis. Compared to the conventional ways, this innovative method allows the effective extraction of sulfuric acid and the precipitation of FexOy·nH2O in onestep without adding inorganic neutralizer or precipitant. Trioctylamine (TOA) in kerosene (20-50%) was used as an organic phase for solvent extraction. The hydrolytic productions and the raffinate purified by a cation exchange were evaluated using XRD and ICP-OES, respectively. The initial pH of 0.63 and Fe(II) concentration of 0.1mol/L in the DASE, the volume ratio of organic toaqueous phase (O/A) of 3/1, and reaction temperature of 25°C were determined as the optimal conditions. Under this conditions, Fe(II) was transformed as yellow precipitation which was characterized as α-FeOOH, and pH of raffinate was in the range of 3.6-3.8. PMID:26282088

  14. Biological oxidation of Fe(II) in reduced nontronite coupled with nitrate reduction by Pseudogulbenkiania sp. Strain 2002

    NASA Astrophysics Data System (ADS)

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi; Agrawal, Abinash; Liu, Deng; Zhang, Jing; Edelmann, Richard E.

    2013-10-01

    The importance of microbial nitrate-dependent Fe(II) oxidation to iron biogeochemistry is well recognized. Past research has focused on oxidation of aqueous Fe2+ and structural Fe(II) in oxides, carbonates, and phosphate, but the importance of structural Fe(II) in phyllosilicates in this reaction is only recently studied. However, the effect of clay mineralogy on the rate and the mechanism of the reaction, and subsequent mineralogical end products are still poorly known. The objective of this research was to study the coupled process of microbial oxidation of Fe(II) in clay mineral nontronite (NAu-2), and nitrate reduction by Pseudogulbenkiania species strain 2002, and to determine mineralogical changes associated with this process. Bio-oxidation experiments were conducted using Fe(II) in microbially reduced nontronite as electron donor and nitrate as electron acceptor in bicarbonate-buffered medium under both growth and nongrowth conditions to investigate cell growth on this process. The extents of Fe(II) oxidation and nitrate reduction were measured by wet chemical methods. X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and 57Fe-Mössbauer spectroscopy were used to observe mineralogical changes associated with Fe(III) reduction and Fe(II) oxidation in NAu-2. The bio-oxidation extent under growth and nongrowth conditions reached 67% and 57%, respectively. Over the same time period, nitrate was completely reduced under both conditions to nitrogen gas (N2), via an intermediate product nitrite. Abiotic oxidation by nitrite partly accelerated Fe(II) oxidation rate under the growth condition. The oxidized Fe(III) largely remained in the nontronite structure, but secondary minerals such as vivianite, ferrihydrite, and magnetite formed depending on specific experimental conditions. The results of this study highlight the importance of iron-bearing clay minerals in the global nitrogen cycle with potential applications in nitrate removal in natural environments.

  15. High-throughput determination of multi-mycotoxins in Chinese yam and related products by ultra fast liquid chromatography coupled with tandem mass spectrometry after one-step extraction.

    PubMed

    Li, Menghua; Kong, Weijun; Li, Yanjun; Liu, Hongmei; Liu, Qiutao; Dou, Xiaowen; Ou-Yang, Zhen; Yang, Meihua

    2016-06-01

    A simple, accurate and sensitive ultra fast liquid chromatography coupled with tandem mass spectrometry (UFLC-MS/MS) method was developed for high-throughput determination of aflatoxins (AFB1, AFB2, AFG1 and AFG2), ochratoxin A (OTA), fumonisins (FB1 and FB2) and zearalenone (ZEA) in Chinese yam, yam flours and yam-derived products. Mycotoxins were extracted from the samples with methanol-water-formic acid (79:20:1, v/v/v) and no further cleanup step before analysis. After optimization of some crucial parameters including sample preparation, chromatographic separation and MS/MS conditions, the method was successfully validated to exhibit excellent performance in terms of satisfactory linearity (r≥0.9977), limits of detection (≤0.15ngmL(-1)) and quantification (≤0.5ngmL(-1)) with good precision (RSD for intra- and inter-day variations of ≤4.65% and 6.31%, respectively), good accuracy (recoveries of 71.0-106.0%) and robustness, together with short run time (8min/sample). The developed method was applied for simultaneous detection and quantification of the above 8 mycotaxins in 27 batches of Chinese yam and related products collected from different markets and pharmacies in China. The results revealed that 1 normal sample and 4 moldy samples were found to be contaminated with different mycotoxins. The detected concentrations of AFB1 in 2 moldy samples exceeded the regulatory maximum residue levels. The proposed method was capable for simultaneous determination of mycotoxins in this and other types of complex matrices. PMID:27085799

  16. Direct determination of glyphosate and its major metabolite, aminomethylphosphonic acid, in fruits and vegetables by mixed-mode hydrophilic interaction/weak anion-exchange liquid chromatography coupled with electrospray tandem mass spectrometry.

    PubMed

    Chen, Ming-Xue; Cao, Zhao-Yun; Jiang, Yan; Zhu, Zhi-Wei

    2013-01-11

    A novel method was developed for the direct, sensitive, and rapid determination of glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), in fruit and vegetable samples by mixed-mode hydrophilic interaction/weak anion-exchange liquid chromatography (HILIC/WAX) coupled with electrospray tandem mass spectrometry (ESI-MS/MS). Homogenized samples were extracted with water, without derivatization or further clean-up, and the extracts were injected directly onto the Asahipak NH2P-50 4E column (250 mm × 4.6 mm i.d., 5 μm). The best results were obtained when the column was operated under mixed-mode HILIC/WAX elution conditions. An initial 10-min washing step with acetonitrile/water (10:90, v/v) in HILIC mode was used to remove potentially interfering compounds, and then the analytes were eluted in WAX mode with acetonitrile and water containing 0.1 molL(-1) ammonium hydroxide under gradient elution for the ESI analysis in negative ion mode. Limits of quantification of glyphosate and AMPA were 5 μgkg(-1) and 50 μgkg(-1), respectively, with limits of detection as low as 1.2 μgkg(-1) for glyphosate and 15 μgkg(-1) for AMPA. The linearity was satisfactory, with correlation coefficients (r)>0.9966. Recovery studies were carried out on spiked matrices (6 vegetables, 3 fruits) with glyphosate at four concentrations and AMPA at three concentrations. The mean recoveries for glyphosate and AMPA were 75.3-110% and 76.1-110%, respectively, with relative standard deviations in the range of 1.1-13.8%. The intra-day precision (n=7) for glyphosate and AMPA in vegetable and fruit samples spiked at an intermediate level between 5.9% and 7.5%, and the inter-day precision over 11 days (n=11) was between 7.0% and 13%. PMID:23261284

  17. Identification and fragmentation pathways of caffeine metabolites in urine samples via liquid chromatography with positive electrospray ionization coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry.

    PubMed

    Bianco, Giuliana; Abate, Salvatore; Labella, Cristiana; Cataldi, Tommaso R I

    2009-04-01

    Liquid chromatography (LC) with positive ion electrospray ionization (ESI+) coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) was employed for the simultaneous determination of caffeine and its metabolites in human urine within a single chromatographic run. LC/ESI-FTICRMS led to the unambiguous determination of the molecular masses of the studied compounds without interference from other biomolecules. A systematic and comprehensive study of the mass spectral behaviour of caffeine and its fourteen metabolites by tandem mass spectrometry (MS/MS) was performed, through in-source ion trap collision-induced dissociation (CID) of the protonated molecules, [M+H](+). A retro-Diels-Alder (RDA) process along with ring-contraction reactions were the major fragmentation pathways observed during CID. The base peak of xanthine precursors originates from the loss of methyl isocyanate (CH(3)NCO, 57 Da) or isocyanic acid (HNCO, 43 Da), which in turn lose a CO unit. Also uric acid derivatives shared a RDA rearrangement as a common fragmentation process and a successive loss of CO(2) or CO. The uracil derivatives showed a loss of a ketene unit (CH(2)CO, 42 Da) from the protonated molecule along with the loss of H(2)O or CO. To assess the potential of the present method three established metabolite ratios to measure P450 CYP1A2, N-acetyltransferase and xanthine oxidase activities were evaluated by a number of identified metabolites from healthy human urine samples after caffeine intake. PMID:19260028

  18. A rapid and simple method for the simultaneous determination of four endogenous monoamine neurotransmitters in rat brain using hydrophilic interaction liquid chromatography coupled with atmospheric-pressure chemical ionization tandem mass spectrometry.

    PubMed

    Zhou, Wenbin; Zhu, Bangjie; Liu, Feng; Lyu, Chunming; Zhang, Shen; Yan, Chao; Cheng, Yu; Wei, Hai

    2015-10-01

    Endogenous monoamine neurotransmitters play an essential role in neural communication in mammalians. Many quantitative methods for endogenous monoamines have been developed during recent decades. Yet, matrix effect was usually a challenge in the quantification, in many cases asking for tedious sample preparation or sacrificing sensitivity. In this work, a simple, fast and sensitive method with no matrix effect was developed to simultaneously determine four endogenous monoamines including serotonin, dopamine, epinephrine and norepinephrine in rat brain tissues, using hydrophilic interaction liquid chromatography coupled with atmospheric-pressure chemical ionization tandem mass spectrometry. Various conditions, including columns, chromatographic conditions, ion source, MS/MS conditions, and brain tissue preparation methods, were optimized and validated. Pre-weighed 20mg brain sample could be effectively and reproducibly homogenized and protein-precipitated by 20 times value of 0.2% formic acid in cold organic solvents (methanol-acetonitrile, 10:90, v/v). This method exhibited excellent linearity for all analytes (regression coefficients>0.998 or 0.999). The precision, expressed as coefficients of variation, was less than 3.43% for intra-day analyses and ranged from 4.17% to 15.5% for inter-day analyses. Good performance was showed in limit of detection (between 0.3nM and 3.0nM for all analytes), recovery (90.8-120%), matrix effect (84.4-107%), accuracy (89.8-100%) and stability (88.3-104%). The validated method was well applied to simultaneously determine the endogenous serotonin, dopamine, epinephrine and norepinephrine in four brain sections of 18 Wistar rats. The quantification of four endogenous monoamines in rat brain performed excellently in the sensitivity, high throughput, simple sample preparation and matrix effect. PMID:26363373

  19. Determination of melamine in animal feed based on liquid chromatography tandem mass spectrometry analysis and dynamic microwave-assisted extraction coupled on-line with strong cation-exchange resin clean-up.

    PubMed

    Chen, Ligang; Zeng, Qinglei; Du, Xiaobo; Sun, Xin; Zhang, Xiaopan; Xu, Yang; Yu, Aimin; Zhang, Hanqi; Ding, Lan

    2009-11-01

    In this work, a new method was developed for the determination of melamine (MEL) in animal feed. The method was based on the on-line coupling of dynamic microwave-assisted extraction (DMAE) to strong cation-exchange (SCX) resin clean-up. The MEL was first extracted by 90% acidified methanol aqueous solution (v/v, pH = 3) under the action of microwave energy, and then the extract was cooled and passed through the SCX resin. Thus, the protonated MEL was retained on the resin through ion exchange interaction and the sample matrixes were washed out. Some obvious benefits were achieved, such as acceleration of analytical process, together with reduction in manual handling, risk of contamination, loss of analyte, and sample consumption. Finally, the analyte was separated by a liquid chromatograph with a SCX analytical column, and then identified and quantitatived by a tandem mass spectrometry with positive ionization mode and multiple-reaction monitoring. The DMAE parameters were optimized by the Box-Behnken design. The linearity of quantification obtained by analyzing matrix-matched standards is in the range of 50-5,000 ng g(-1). The limit of detection and limit of quantification obtained are 12.3 and 41.0 ng g(-1), respectively. The mean intra- and inter-day precisions expressed as relative standard deviations with three fortified levels (50, 250, and 500 ng g(-1)) are 5.1% and 7.3%, respectively, and the recoveries of MEL are in the range of 76.1-93.5%. The proposed method was successfully applied to determine MEL in different animal feeds obtained from the local market. MEL was detectable with the contents of 279, 136, and 742 ng g(-1) in three samples. PMID:19756536

  20. Quantitative determination of oseltamivir and oseltamivir carboxylate in human fluoride EDTA plasma including the ex vivo stability using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    PubMed

    Kromdijk, W; Rosing, H; van den Broek, M P H; Beijnen, J H; Huitema, A D R

    2012-04-01

    Oseltamivir, the ethyl ester prodrug of the neuramidase inhibitor oseltamivir carboxylate, is licensed for the treatment of patients with influenza virus infection. Here we describe the development and validation of an assay for the simultaneous quantification of oseltamivir and oseltamivir carboxylate in human fluoride EDTA plasma including the ex vivo stability using liquid chromatography coupled to tandem mass spectrometry. Sample pretreatment consisted of protein precipitation with 8% (v/v) trichloroacetic acid in water using only 50 μL plasma. Chromatographic separation was performed on a reversed phase C18 column (150 mm × 2.0 mm ID, particle size 4 μm) with a stepwise gradient using 0.1% formic acid and methanol at a flow rate of 250 μL/min. A triple quadrupole mass spectrometer operating in the positive ionization mode was used for detection and drug quantification. The method was validated over a range of 3-300 ng/mL for oseltamivir and 10-10,000 ng/mL for oseltamivir carboxylate. Deuterated oseltamivir and oseltamivir carboxylate were used as internal standards. The intra-assay accuracies and precisions for oseltamivir were between -8.8 and 16.3% at the LLOQ level, whereas for all other concentration levels this was -8.6 and 14.5%. For oseltamivir carboxylate the intra-assay accuracies and precisions were between -10.9 and 10.7% at all levels. Furthermore, oseltamivir was stable in plasma and whole blood ex vivo in commercially available fluoride EDTA tubes for at least 24h at 2-8 °C. This method is now applied for the determination of both compounds in specific patient populations to evaluate current dosing guidelines. PMID:22418071

  1. Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Huntscha, Sebastian; Singer, Heinz P; McArdell, Christa S; Frank, Carolin E; Hollender, Juliane

    2012-12-14

    An automated multiresidue method consisting of an online solid-phase extraction step coupled to a high performance liquid chromatography-tandem mass spectrometer (online-SPE-HPLC-MS/MS method) was developed for the determination of 88 polar organic micropollutants with a broad range of physicochemical properties (logD(OW) (pH 7): -4.2 to 4.2). Based on theoretical considerations, a single mixed-bed multilayer cartridge containing four different extraction materials was composed for the automated enrichment of water samples. This allowed the simultaneous analysis of pesticides, biocides, pharmaceuticals, corrosion inhibitors, many of their transformation products, and the artificial sweetener sucralose in three matrices groundwater, surface water, and wastewater. Limits of quantification (LOQs) were in the environmentally relevant concentration range of 0.1-87 ng/L for groundwater and surface water, and 1.5-206 ng/L for wastewater. The majority of the compounds could be quantified below 10 ng/L in groundwater (82%) and surface water (80%) and below 100 ng/L in wastewater (80%). Relative recoveries were largely between 80 and 120%. Intraday and inter-day precision, expressed as relative standard deviation, were generally better than 10% and 20%, respectively. 50 isotope labeled internal standards were used for quantification and accordingly, relative recoveries as well as intraday and inter-day precision were better for compounds with corresponding internal standard. The applicability of this method was shown during a sampling campaign at a riverbank filtration site for drinking water production with travel times of up to 5 days. 36 substances of all compound classes investigated could be found in concentrations between 0.1 and 600 ng/L. The results revealed the persistence of carbamazepine and sucralose in the groundwater aquifer as well as degradation of the metamizole metabolite 4-acetamidoantipyrine. PMID:23137864

  2. Determination of aminoglycoside residues in milk and muscle based on a simple and fast extraction procedure followed by liquid chromatography coupled to tandem mass spectrometry and time of flight mass spectrometry.

    PubMed

    Arsand, Juliana Bazzan; Jank, Louíse; Martins, Magda Targa; Hoff, Rodrigo Barcellos; Barreto, Fabiano; Pizzolato, Tânia Mara; Sirtori, Carla

    2016-07-01

    Antibiotics are widely used in veterinary medicine mainly for treatment and prevention of diseases. The aminoglycosides are one of the antibiotics classes that have been extensively employed in animal husbandry for the treatment of bacterial infections, but also as growth promotion. The European Union has issued strict Maximum Residue Levels (MRLs) for aminoglycosides in several animal origin products including bovine milk, bovine, swine and poultry muscle. This paper describes a fast and simple analytical method for the determination of ten aminoglycosides (spectinomycin, tobramycin, gentamicin, kanamycin, hygromycin, apramycin, streptomycin, dihydrostreptomycin, amikacin and neomycin) in bovine milk and bovine, swine and poultry muscle. For sample preparation, an extraction method was developed using trichloroacetic acid and clean up with low temperature precipitation and C18 bulk. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to carry out quantitative analysis and liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-QTOF-MS) was used to screening purposes. Both methods were validated according to the European Union Commission Directive 2002/657/EC. Good performance characteristics were obtained for recovery, precision, calibration curve, specificity, decision limits (CCα) and detection capabilities (CCβ) in all matrices evaluated. The detection limit (LOD) and quantification limit (LOQ) were ranging from 5 to 100ngg(-1) and 12.5 to 250ngg(-1), respectively. Good linearity (r)-above 0.99-was achieved in concentrations ranging from 0.0 to 2.0×MRL. Recoveries ranged from 36.8% to 98.0% and the coefficient of variation from 0.9 to 20.2%, noting that all curves have been made into their own matrices in order to minimize the matrix effects. The CCβ values obtained in qualitative method were between 25 and 250ngg(-1). The proposed method showed to be simple, easy, and adequate for high-throughput analysis of a large number of samples per day at low cost. PMID:27154646

  3. Characterization of procyanidin B2 oxidation products in an apple juice model solution and confirmation of their presence in apple juice by high-performance liquid chromatography coupled to electrospray ion trap mass spectrometry.

    PubMed

    Poupard, Pascal; Sanoner, Philippe; Baron, Alain; Renard, Catherine M G C; Guyot, Sylvain

    2011-11-01

    Procyanidins (i.e. condensed tannins) are polyphenols commonly found in fruits. During juice and cider making, apple polyphenol oxidase catalyzes the oxidation of caffeoylquinic acid (CQA) into its corresponding o-quinone which further reacts with procyanidins and other polyphenols, leading to the formation of numerous oxidation products. However, the structure and the reaction pathways of these neoformed phenolic compounds are still largely unknown. Experiments were carried out on a model system to gain insights into the chemical processes occurring during the initial steps of fruit processing. Procyanidin B2 was oxidized by caffeoylquinic acid o-quinone (CQAoq) in an apple juice model solution. The reaction products were monitored using high performance liquid chromatography (HPLC) coupled to ultraviolet (UV)-visible and electrospray tandem mass spectrometry (ESI-MS/MS) in the negative mode. Oxidative conversion of procyanidin B2 ([M-H](-) at m/z 577) into procyanidin A2 at m/z 575 was unambiguously confirmed. In addition, several classes of products were characterized by their deprotonated molecules ([M-H](-)) and their MS/MS fragmentation patterns: hetero-dimers (m/z 929) and homo-dimers (m/z 1153 and 705) resulting from dimerization involving procyanidin and CQA molecules; intramolecular addition products at m/z 575, 573, 927, 1151 and 703. Interestingly, no extensive polymerization was observed. Analysis of a cider apple juice enabled comparison with the results obtained on a biosynthetic model solution. However, procyanidin A2 did not accumulate but seemed to be an intermediate in the formation of an end-product at m/z 573 for which two structural hypotheses are given. These structural modifications of native polyphenols as a consequence of oxidation probably have an impact on the organoleptic and nutritional properties of apple juices and other apple-derived foods. PMID:22124992

  4. Controls on N2 production via iron reduction coupled to anaerobic ammonium oxidation

    NASA Astrophysics Data System (ADS)

    Yang, W. H.; Weber, K.; Silver, W. L.

    2011-12-01

    Iron (Fe) reduction coupled to anaerobic ammonium (NH4+) oxidation is a novel nitrogen (N) cycling pathway that can lead to ecosystem N loss via production of dinitrogen (N2), nitrate (NO3-), or nitrite (NO2-). This pathway, termed Feammox, can short circuit the N cycle via direct N2 production or lead to N2O and N2 production via denitrification of Feammox-generated NO2- and NO3-. Theoretically, Feammox becomes less thermodynamically favorable as pH increases, with pH 6.5 as the threshold for favorability of Feammox to NO2- or NO3-. Availability of iron oxides may also limit Feammox rates because high labile C availability drives high Fe reduction rates under anaerobic soil conditions. In contrast, NH4+ availability may not be a strong control on Feammox rates if gross mineralization and/or dissimilatory NO3- reduction to NH4+ continue to produce NH4+ under anaerobic conditions. We performed laboratory experiments using surface soils (0-10 cm depth) from the Luquillo Experimental Forest, Puerto Rico to investigate the controls on Feammox rates. Soil slurries were pre-incubated in an oxygen (O2)-free glove box for 6 days to deplete background O2, NO2-, and NO3-. We measured the 30N2 mole fraction of produced N2 at 24 hours after the addition of either 15NH4+ alone or 15NH4+ in stoichiometric equivalency with an amorphous Fe(III) gel (HFO) to the soil slurries (n = 8). Feammox rates were conservatively estimated from 30N2 alone because 30N2 production could result only from Feammox of 15NH4+ whereas 29N2 production could result from a variety of pathways. In soils at pH 4.27 ± 0.02, we measured rates of Feammox ranging from 0.32 ± 0.13 μg N g-1 d-1 (± SE), following 15NH4+ addition alone, to 1.20 ± 0.28 μg N g-1 d-1 with the addition of both 15NH4+ and Fe(III). In soils at pH 6.12 ± 0.03, Feammox rates ranged from 0.03 ± 0.01 μg N g-1 d-1, following 15NH4+ addition alone, to 0.02 ± 0.01 μg N g-1 d-1 with the addition of both 15NH4+ and Fe(III). Our data suggest that the threshold for thermodynamic favorability of Feammox may be lower than calculated (~6.2) and that the Fe oxide limitation of Feammox rates is less important at high pH. Feammox is most likely to occur in highly weathered soils rich in poorly crystalline Fe that experience fluctuating redox conditions so that Fe oxides are replenished and relatively low pH conditions are restored during oxic periods.

  5. A dual-cathode electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation.

    PubMed

    Chu, Y Y; Qian, Y; Wang, W J; Deng, X L

    2012-01-15

    The degradation of 4-nitrophenol was investigated using a novel electrochemical oxidation system, in which the anodic oxidation at Ti/SnO(2)-Sb(2)O(5)-IrO(2) electrode and the electro-Fenton oxidation with two cathodes were involved. In this system, gas diffusion electrode (GDE) was used to generate H(2)O(2) by O(2) reduction and graphite electrode was employed for the reduction of Fe(3+) regenerating Fe(2+). When the potential values of GDE and graphite cathode were controlled at -0.80 and -0.10 V/SCE respectively, the optimum Fe(2+) concentration for 4-nitrophenol degradation was about 0.10mM, much lower than the concentration of 0.25 mM obtained in the single-cathode system. Due to the combination of electro-Fenton oxidation and anodic oxidation, an effective degradation and a high mineralization current efficiency (MCE) were achieved. After 600 min treatment, 74.5% of the original TOC was removed by the dual-cathode oxidation system. Moreover, it was confirmed that 57.0% of the original nitrogen could be removed in gaseous form from the simulated wastewater. These results indicate that this electrochemical oxidation process might provide an alternative for the degradation of organic pollutants. PMID:22104767

  6. Tuning the Reactivity of Radical through a Triplet Diradical Cu(II) Intermediate in Radical Oxidative Cross-Coupling

    NASA Astrophysics Data System (ADS)

    Zhou, Liangliang; Yi, Hong; Zhu, Lei; Qi, Xiaotian; Jiang, Hanpeng; Liu, Chao; Feng, Yuqi; Lan, Yu; Lei, Aiwen

    2015-11-01

    Highly selective radical/radical cross-coupling is paid more attention in bond formations. However, due to their intrinsic active properties, radical species are apt to achieve homo-coupling instead of cross-coupling, which makes the selective cross-coupling as a great challenge and almost untouched. Herein a notable strategy to accomplish direct radical/radical oxidative cross-coupling has been demonstrated, that is metal tuning a transient radical to a persistent radical intermediate followed by coupling with another transient radical. Here, a transient nitrogen-centered radical is tuned to a persistent radical complex by copper catalyst, followed by coupling with a transient allylic carbon-centered radical. Firstly, nitrogen-centered radical generated from N-methoxybenzamide stabilized by copper catalyst was successfully observed by EPR. Then DFT calculations revealed that a triplet diradical Cu(II) complex formed from the chelation N-methoxybenzamide nitrogen-centered radical to Cu(II) is a persistent radical species. Moreover, conceivable nitrogen-centered radical Cu(II) complex was observed by high-resolution electrospray ionization mass spectrometry (ESI-MS). Ultimately, various allylic amides derivatives were obtained in good yields by adopting this strategy, which might inspire a novel and promising landscape in radical chemistry.

  7. Interactions of soil-derived dissolved organic matter with phenol in peroxidase-catalyzed oxidative coupling reactions.

    PubMed

    Huang, Qingguo; Weber, Walter J

    2004-01-01

    The influence of dissolved soil organic matter (DSOM) derived from three geosorbents of different chemical composition and diagenetic history on the horseradish peroxidase (HRP) catalyzed oxidative coupling reactions of phenol was investigated. Phenol conversion and precipitate-product formation were measured, respectively, by HPLC and radiolabeled species analysis. Fourier transform infrared (FTIR) spectroscopy and capillary electrophoresis (CE) were used to characterize the products of enzymatic coupling, and the acute toxicities of the soluble products were determined by Microtox assay. Phenol conversion and precipitate formation were both significantly influenced by cross-coupling of phenol with dissolved organic matter, particularly in the cases of the more reactive and soluble DSOMs derived from two diagenetically "young" humic-type geosorbents. FTIR and CE characterizations indicate that enzymatic cross-coupling in these two cases leads to incorporation of phenol in DSOM macromolecules, yielding nontoxic soluble products. Conversely, cross-coupling appears to proceed in parallel with self-coupling in the presence of the relatively inert and more hydrophobic DSOM derived from a diagenetically "old" kerogen-type shale material. The products formed in this system have lower solubility and precipitate more readily, although their soluble forms tend to be more toxic than those formed by dominant cross-coupling reactions in the humic-type DSOM solutions. Several of the findings reported may be critically important with respect to feasibility evaluations and the engineering design of associated remediation schemes. PMID:14740756

  8. Tuning the Reactivity of Radical through a Triplet Diradical Cu(II) Intermediate in Radical Oxidative Cross-Coupling

    PubMed Central

    Zhou, Liangliang; Yi, Hong; Zhu, Lei; Qi, Xiaotian; Jiang, Hanpeng; Liu, Chao; Feng, Yuqi; Lan, Yu; Lei, Aiwen

    2015-01-01

    Highly selective radical/radical cross-coupling is paid more attention in bond formations. However, due to their intrinsic active properties, radical species are apt to achieve homo-coupling instead of cross-coupling, which makes the selective cross-coupling as a great challenge and almost untouched. Herein a notable strategy to accomplish direct radical/radical oxidative cross-coupling has been demonstrated, that is metal tuning a transient radical to a persistent radical intermediate followed by coupling with another transient radical. Here, a transient nitrogen-centered radical is tuned to a persistent radical complex by copper catalyst, followed by coupling with a transient allylic carbon-centered radical. Firstly, nitrogen-centered radical generated from N-methoxybenzamide stabilized by copper catalyst was successfully observed by EPR. Then DFT calculations revealed that a triplet diradical Cu(II) complex formed from the chelation N-methoxybenzamide nitrogen-centered radical to Cu(II) is a persistent radical species. Moreover, conceivable nitrogen-centered radical Cu(II) complex was observed by high-resolution electrospray ionization mass spectrometry (ESI-MS). Ultimately, various allylic amides derivatives were obtained in good yields by adopting this strategy, which might inspire a novel and promising landscape in radical chemistry. PMID:26525888

  9. Theoretical studies on CuCl-catalyzed C-H activation/C-O coupling reactions: oxidant and catalyst effects.

    PubMed

    Zhang, Lu-Lu; Li, Shi-Jun; Zhang, Lei; Fang, De-Cai

    2016-05-11

    Copper-complex catalyzed coupling reactions have been widely applied in the production of many important organic moieties from a synthetic perspective. In this work, a series of density functional theory (DFT) calculations, employing the B3LYP + IDSCRF/DZVP method, have been performed for a typical CuCl-catalyzed C-O cross-coupling reaction. The novel reaction mechanism was reported as four successive processes: oxidative radical generation (ORG) or oxidative addition (OA), hydrogen abstraction (HA), C-H activation/reductive elimination, and separation of product and recycling of catalyst (SP & RC). Our calculations provided a deep understanding on the dissimilar chemical activities associated with varying the oxidants used; detailed energy profile analyses suggested that the first oxidation process could proceed via either of the two competing channels (ORG and OA mechanisms) which is the basis to explain the different experimental yields. In addition, our molecular modelling gave theoretical evidence that Cu(ii) → Cu(i) reduction by solvent DMF (and a water molecule) might serve as a preliminary step to produce some more active Cu(i) species that could subsequently be oxidized into Cu(iii) favorably. In contrast, the Cu(ii) → Cu(iii) direct pathway was estimated to be prohibited from thermodynamics. All the calculation results in this work are parallel with the experimental observations. PMID:27088885

  10. Biological reduction of uranium coupled with oxidation of ammonium by Acidimicrobiaceae bacterium A6 under iron reducing conditions.

    PubMed

    Gilson, Emily R; Huang, Shan; Jaffé, Peter R

    2015-11-01

    This study investigated the possibility of links between the biological immobilization of uranium (U) and ammonium oxidation under iron (Fe) reducing conditions. The recently-identified Acidimicrobiaceae bacterium A6 (ATCC, PTA-122488) derives energy from ammonium oxidation coupled with Fe reduction. This bacterium has been found in various soil and wetland environments, including U-contaminated wetland sediments. Incubations of Acidimicrobiaceae bacteria A6 with nontronite, an Fe(III)-rich clay, and approximately 10 µM U indicate that these bacteria can use U(VI) in addition to Fe(III) as an electron acceptor in the presence of ammonium. Measurements of Fe(II) production and ammonium oxidation support this interpretation. Concentrations of approximately 100 µM U were found to entirely inhibit Acidimicrobiaceae bacteria A6 activity. These results suggest that natural sites of active ammonium oxidation under Fe reducing conditions by Acidimicrobiaceae bacteria A6 could be hotspots of U immobilization by bioreduction. This is the first report of biological U reduction that is not coupled to carbon oxidation. PMID:26525893

  11. Acetaldehyde partial oxidation on the Au(111) model catalyst surface: C-C bond activation and formation of methyl acetate as an oxidative coupling product

    NASA Astrophysics Data System (ADS)

    Karatok, Mustafa; Vovk, Evgeny I.; Shah, Asad A.; Turksoy, Abdurrahman; Ozensoy, Emrah

    2015-11-01

    Partial oxidation of acetaldehyde (CH3CHO) on the oxygen pre-covered Au(111) single crystal model catalyst was investigated via Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction Spectroscopy (TPRS) techniques, where ozone (O3) was utilized as the oxygen delivery agent providing atomic oxygen to the reacting surface. We show that for low exposures of O3 and small surface oxygen coverages, two partial oxidation products namely, methyl acetate (CH3COOCH3) and acetic acid (CH3COOH) can be generated without the formation of significant quantities of carbon dioxide. The formation of methyl acetate as the oxidative coupling reaction product implies that oxygen pre-covered Au(111) single crystal model catalyst surface can activate C-C bonds. In addition to the generation of these products; indications of the polymerization of acetaldehyde on the gold surface were also observed as an additional reaction route competing with the partial and total oxidation pathways. The interplay between the partial oxidation, total oxidation and polymerization pathways reveals the complex catalytic chemistry associated with the interaction between the acetaldehyde and atomic oxygen on catalytic gold surfaces.

  12. Catalytic migratory oxidative coupling of nitrones through an outer-sphere C(sp3)-H activation process.

    PubMed

    Hashizume, Shogo; Oisaki, Kounosuke; Kanai, Motomu

    2011-09-01

    Outer-sphere redox catalysis is key to efficient C-H activation, which has attracted increased interest in organic chemistry. In this account, we describe a Cu(I) -catalyzed oxidative coupling between nitrones and various ethers or amines as an example. Predictable site-selective C-C bond formation was achieved through activation of the C-H bonds in each coupling partner and the migration of a C-N double bond. Mechanistic studies strongly suggested that the reaction proceeded via an oxonium/iminium cation species as the key intermediate. The mechanistic information allows for future extension of outer-sphere redox catalysis. PMID:21898780

  13. Rapid and automated analysis of aflatoxin M1 in milk and dairy products by online solid phase extraction coupled to ultra-high-pressure-liquid-chromatography tandem mass spectrometry.

    PubMed

    Campone, Luca; Piccinelli, Anna Lisa; Celano, Rita; Pagano, Imma; Russo, Mariateresa; Rastrelli, Luca

    2016-01-01

    This study reports a fast and automated analytical procedure for the analysis of aflatoxin M1 (AFM1) in milk and dairy products. The method is based on the simultaneous protein precipitation and AFM1 extraction, by salt-induced liquid-liquid extraction (SI-LLE), followed by an online solid-phase extraction (online SPE) coupled to ultra-high-pressure-liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis to the automatic pre-concentration, clean up and sensitive and selective determination of AFM1. The main parameters affecting the extraction efficiency and accuracy of the analytical method were studied in detail. In the optimal conditions, acetonitrile and NaCl were used as extraction/denaturant solvent and salting-out agent in SI-LLE, respectively. After centrifugation, the organic phase (acetonitrile) was diluted with water (1:9 v/v) and purified (1mL) by online C18 cartridge coupled with an UHPLC column. Finally, selected reaction monitoring (SRM) acquisition mode was applied to the detection of AFM1. Validation studies were carried out on different dairy products (whole and skimmed cow milk, yogurt, goat milk, and powder infant formula), providing method quantification limits about 25 times lower than AFM1 maximum levels permitted by EU regulation 1881/2006 in milk and dairy products for direct human consumption. Recoveries (86-102%) and repeatability (RSD<3, n=6) meet the performance criteria required by EU regulation N. 401/2006 for the determination of the levels of mycotoxins in foodstuffs. Moreover, no matrix effects were observed in the different milk and dairy products studied. The proposed method improves the performance of AFM1 analysis in milk samples as AFM1 determination is performed with a degree of accuracy higher than the conventional methods. Other advantages are the reduction of sample preparation procedure, time and cost of the analysis, enabling high sample throughput that meet the current concerns of food safety and the public health protection. PMID:26589945

  14. Coupling between crystal structure and magnetism in transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Barton, Phillip Thomas

    Transition-metal oxides exhibit a fascinating array of phenomena ranging from superconductivity to negative thermal expansion to catalysis. This dissertation focuses on magnetism, which is integral to engineering applications such as data storage, electric motors/generators, and transformers. The investigative approach follows structure-property relationships from materials science and draws on intuition from solid-state chemistry. The interplay between crystal structure and magnetic properties is studied experimentally in order to enhance the understanding of magnetostructural coupling mechanisms and provide insight into avenues for tuning behavior. A combination of diffraction and physical property measurements were used to study structural and magnetic phase transitions as a function of chemical composition, temperature, and magnetic field. The systems examined are of importance in Li-ion battery electrochemistry, condensed-matter physics, solid-state chemistry, and p-type transparent conducting oxides. The materials were prepared by solid-state reaction of powder reagents at high temperatures for periods lasting tens of hours. The first project discussed is of a solid solution between NiO, a correlated insulator, and LiNiO2, a layered battery cathode. Despite the deceptive structural and compositional simplicity of this system, a complete understanding of its complex magnetic properties has remained elusive. This study shows that nanoscale domains of chemical order form at intermediate compositions, creating interfaces between antiferromagnetism and ferrimagnetism that give rise to magnetic exchange bias. A simple model of the magnetism is presented along with a comprehensive phase diagram. The second set of investigations focus on the Ge-Co-O system where the spin-orbit coupling of Co(II) plays a significant role. GeCo2O 4 is reported to exhibit unusual magnetic behavior that arises from Ising spin in its spinel crystal structure. Studies by variable-temperature synchrotron X-ray diffraction reveal a magnetostructural transition and capacitance measurements show evidence for magnetodielectric behavior. The above work uncovered a Co10Ge3O16 phase that had a known structure but whose physical properties were largely uncharacterized. This project examined its metamagnetic properties using detailed magnetometry experiments. Upon the application of a magnetic field, this material goes through a first-order phase transition from a noncollinear antiferromagnet to an unknown ferrimagnetic state. Lastly, this thesis explored the chemical dilution of magnetism in some perovskite and delafossite solid solutions. In the perovskite structure, compositions intermediate to the endmembers SrRuO3, a ferromagnetic metal, and LaRhO3, a diamagnetic semiconductor, were investigated. While the magnetism of this system is poised between localized and itinerant behavior, a compositionally-driven metal to insulator transition, revealed by electrical resistivity measurements, did not strongly impact the magnetic properties. Instead, both octahedral tilting and magnetic dilution had strong effects, and comparison of this characterization to Sr1-- x CaxRuO3 reinforces the important role of structural distortions in determining magnetic ground state. The final materials studied were of composition CuAl1-- xCrxO2 (0 < x < 1) in the delafossite structure. The primary interest was the geometric frustration of antiferromagnetism in CuCrO 2 and significant short-range correlations were observed above TN. The analysis found that reducing the number of degenerate states through Al substitution did not enhance magnetic ordering because of the weakening of magnetic exchange.

  15. Catalytic properties of oxygen semipermeable perovskite-type ceramic membrane materials for oxidative coupling of methane

    SciTech Connect

    Lin, Y.S.; Zeng, Y.

    1996-11-01

    The catalytic properties for the oxidative coupling of methane (OCM) of La{sub 0.8}Sr{sub 0.2}CoO{sub 3} (LSC) and SrCo{sub 0.8}Fe{sub 0.2}O{sub 3}(SCF) in solid solution were studied and compared with those of 5 wt% Li/MgO, using a steady/unsteady state packed-bed reactor and a transient microbalance. The results of the steady-state cofeed experiments show that LSC possesses OCM catalytic properties similar to those of Li/MgO in terms of C{sub 2} yield and selectivity at temperatures of around 800 C. The former gives a larger C{sub 2} space time yield than the latter. SCF exhibits poor OCM catalytic properties at 700-850{degrees}C. To further examine the suitability of LSC as a membrane material for use in a dense membrane reactor for OCM, the instant OCM selectivity and activity and oxygen consumption rate for LSC and 5% Li/MgO on exposure to pure methane in cyclic feed mode were measured respectively at 850{degrees}C and 800{degrees}C. For both materials, the unsteady-state cyclic feed operation gives a smaller initial OCM activity and larger initial C{sub 2} selectivity than the cofeed steady state operation. Li/MgO quickly loses its OCM activity and selectivity in the unsteady state operation due to rapid consumption of the active sites. Up to 5 min of methane run time, LSC maintains appreciable OCM activity with poorer C{sub 2} selectivity as compared to the steady state cofeed operation. The surface of LSC membrane at low oxygen partial pressure may become nonselective for OCM in membrane reactor applications. 48 refs., 12 figs., 4 tabs.

  16. Synthesis and Application of Chiral Spiro Cp Ligands in Rhodium-Catalyzed Asymmetric Oxidative Coupling of Biaryl Compounds with Alkenes.

    PubMed

    Zheng, Jun; Cui, Wen-Jun; Zheng, Chao; You, Shu-Li

    2016-04-27

    The vastly increasing application of chiral Cp ligands in asymmetric catalysis results in growing demand for novel chiral Cp ligands. Herein, we report a new class of chiral Cp ligands based on 1,1'-spirobiindane, a privileged scaffold for chiral ligands and catalysts. The corresponding Rh complexes are shown to be excellent catalysts in asymmetric oxidative coupling reactions, providing axially chiral biaryls in 19-97% yields with up to 98:2 er. PMID:27070297

  17. Self-assembly of a superparamagnetic raspberry-like silica/iron oxide nanocomposite using epoxy-amine coupling chemistry.

    PubMed

    Cano, Manuel; de la Cueva-Méndez, Guillermo

    2015-02-28

    The fabrication of colloidal nanocomposites would benefit from controlled hetero-assembly of ready-made particles through covalent bonding. Here we used epoxy-amine coupling chemistry to promote the self-assembly of superparamagnetic raspberry-like nanocomposites. This adaptable method induced the covalent attachment of iron oxide nanoparticles sparsely coated with amine groups onto epoxylated silica cores in the absence of other reactants. PMID:25635377

  18. Platinum Metal-Free Catalysts for Selective Soft Oxidative Methane → Ethylene Coupling. Scope and Mechanistic Observations.

    PubMed

    Peter, Matthias; Marks, Tobin J

    2015-12-01

    Using abundant soft oxidants, a high methane-to-ethylene conversion might be achievable due to the low thermodynamic driving force for over-oxidation. Here we report on the oxidative coupling of methane by gaseous S2 (SOCM). The catalytic properties of Pd/Fe3O4 are compared with those of Fe3O4, and it is found that high ethylene selectivities can be achieved without noble metals; conversion and selectivity on Fe3O4 are stable for at least 48 h at SOCM conditions. SOCM data for 10 oxides are compared, and ethylene selectivities as high as 33% are found; the C2H4/C2H6 ratios of 9-12 observed at the highest S2 conversions are significantly higher than the C2H4/C2H6 ratios usually found in the CH4 coupling with O2. Complementary in-detail analytical studies show that, on Mg, Zr, Sm, W, and La catalysts, which strongly coke during the reaction, lower ethylene selectivities are observed than on Fe, Ti, and Cr catalysts, which only coke to a minor extent. Further catalyst-dependent changes during SOCM in surface area, surface composition, and partial conversion to oxysulfides and sulfides are discussed. Evidence concerning the reaction mechanism is obtained taking into account the selectivity for the different reaction products versus the contact time. CH4 coupling proceeds non-oxidatively with the evolution of H2 on some catalysts, and evidence is presented that C2H4 and C2H2 formation occur via C2H6 and C2H4 dehydrogenation, respectively. PMID:26551955

  19. Biological Oxidation of Fe(II) in Reduced Nontronite Coupled with Nitrate Reduction by Pseudogulbenkiania sp. Strain 2002

    SciTech Connect

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.; Agrawal, A.; Liu, Deng; Zhang, Jing; Edelmann, Richard E.

    2013-10-15

    Nitrate contamination in soils, sediments, and water bodies is a significant issue. Although much is known about nitrate degradation in these environments, especially via microbial pathways, a complete understanding of all degradation processes, especially in clay mineral-rich soils, is still lacking. The objective of this study was to study the potential of removing nitrate contaminant using structural Fe(II) in clay mineral nontronite. Specifically, the coupled processes of microbial oxidation of Fe(II) in microbially reduced nontronite (NAu-2) and nitrate reduction by Pseudogulbenkiania species strain 2002 was investigated. Bio-oxidation experiments were conducted in bicarbonate-buffered medium under both growth and nongrowth conditions. The extents of Fe(II) oxidation and nitrate reduction were measured by wet chemical methods. X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and 57Fe-Mössbauer spectroscopy were used to observe mineralogical changes associated with Fe(III) reduction and Fe(II) oxidation in nontronite. The bio-oxidation extent under growth and nongrowth conditions reached 93% and 57%, respectively. Over the same time period, nitrate was completely reduced under both conditions to nitrogen gas (N2), via an intermediate product nitrite. Magnetite was a mineral product of nitrate-dependent Fe(II) oxidation, as evidenced by XRD data and TEM diffraction patterns. The results of this study highlight the importance of iron-bearing clay minerals in the global nitrogen cycle with potential applications in nitrate removal in soils.

  20. Controlled surface modification of Ti-40Nb implant alloy by electrochemically assisted inductively coupled RF plasma oxidation.

    PubMed

    Gttlicher, Markus; Rohnke, Marcus; Helth, Arne; Leichtwei, Thomas; Gemming, Thomas; Gebert, Annett; Eckert, Jrgen; Janek, Jrgen

    2013-11-01

    Low temperature metal oxidation induced by plasma in the absence of liquid electrolytes can be useful for the surface preparation of orthopedic devices since residues from these may be harmful and need to be removed before implantation. In this study the oxidation of Ti-40Nb for biomedical application was achieved by employing an inductively coupled radio frequency oxygen plasma. The correlation between the growth mode of the surface oxide and the electric conductivity ratio of the plasma and the oxide phase were studied by varying the sample temperature, oxygen gas pressure and additional bias potential. The plasma treated samples were characterised by confocal laser microscopy, SEM, EBSD, XPS, TEM and ToF-SIMS. The surface energy was determined by contact angle measurements using the Owens-Wendt-Rabel-Kaelble method. Well adhering oxide layers consisting of TiO2 and Nb2O5 with thicknesses between 50 and 150 nm were obtained. Surface roughness values and microstructure indicate that the growth mode of the oxide can be well controlled by the sample temperature and oxygen gas pressure. At temperatures above 450C a migration of Ti ions towards the surface controls the growth process. A bias potential higher than +50 V causes rough and defective surfaces with high surface energies. PMID:23891813

  1. Mitochondrial coupling and capacity of oxidative phosphorylation in skeletal muscle of Inuit and Caucasians in the arctic winter.

    PubMed

    Gnaiger, E; Boushel, R; Søndergaard, H; Munch-Andersen, T; Damsgaard, R; Hagen, C; Díez-Sánchez, C; Ara, I; Wright-Paradis, C; Schrauwen, P; Hesselink, M; Calbet, J A L; Christiansen, M; Helge, J W; Saltin, B

    2015-12-01

    During evolution, mitochondrial DNA haplogroups of arctic populations may have been selected for lower coupling of mitochondrial respiration to ATP production in favor of higher heat production. We show that mitochondrial coupling in skeletal muscle of traditional and westernized Inuit habituating northern Greenland is identical to Danes of western Europe haplogroups. Biochemical coupling efficiency was preserved across variations in diet, muscle fiber type, and uncoupling protein-3 content. Mitochondrial phenotype displayed plasticity in relation to lifestyle and environment. Untrained Inuit and Danes had identical capacities to oxidize fat substrate in arm muscle, which increased in Danes during the 42 days of acclimation to exercise, approaching the higher level of the Inuit hunters. A common pattern emerges of mitochondrial acclimatization and evolutionary adaptation in humans at high latitude and high altitude where economy of locomotion may be optimized by preservation of biochemical coupling efficiency at modest mitochondrial density, when submaximum performance is uncoupled from VO2max and maximum capacities of oxidative phosphorylation. PMID:26589126

  2. Scope and Mechanistic Study of the Coupling Reaction of α, β-Unsaturated Carbonyl Compounds with Alkenes: Uncovering Electronic Effects on Alkene Insertion vs Oxidative Coupling Pathways

    PubMed Central

    Kwon, Ki-Hyeok; Lee, Do W.; Yi, Chae S.

    2011-01-01

    The cationic ruthenium-hydride complex [(C6H6)(PCy3)(CO)RuH]+BF4− (1) was found to be a highly effective catalyst for the intermolecular conjugate addition of simple alkenes to α,β-unsaturated carbonyl compounds to give (Z)-selective tetrasubstituted olefin products. The analogous coupling reaction of cinnamides with electron-deficient olefins led to the oxidative coupling of two olefinic C–H bonds in forming (E)-selective diene products. The intramolecular version of the coupling reaction efficiently produced indene and bicyclic fulvene derivatives. The empirical rate law for the coupling reaction of ethyl cinnamate with propene was determined as: rate = k[1]1[propene]0[cinnamate]−1. A negligible deuterium kinetic isotope effect (kH/kD = 1.1±0.1) was measured from both (E)-C6H5CH=C(CH3)CONHCH3 and (E)-C6H5CD=C(CH3)CONHCH3 with styrene. In contrast, a significant normal isotope effect (kH/kD = 1.7±0.1) was observed from the reaction of (E)-C6H5CH=C(CH3)CONHCH3 with styrene and styrene-d10. A pronounced carbon isotope effect was measured from the coupling reaction of (E)-C6H5CH=CHCO2Et with propene (13C(recovered)/13C(virgin) at Cβ = 1.019(6)), while a negligible carbon isotope effect (13C(recovered)/13C(virgin) at Cβ = 0.999(4)) was obtained from the reaction of (E)-C6H5CH=C(CH3)CONHCH3 with styrene. Hammett plots from the correlation of para-substituted p-X-C6H4CH=CHCO2Et (X = OCH3, CH3, H, F, Cl, CO2Me, CF3) with propene and from the treatment of (E)-C6H5CH=CHCO2Et with a series of para-substituted styrenes p-Y-C6H4CH=CH2 (Y = OCH3, CH3, H, F, Cl, CF3) gave the positive slopes for both cases (ρ = +1.1±0.1 and +1.5±0.1, respectively). Eyring analysis of the coupling reaction led to the thermodynamic parameters, Δ H‡ = 20±2 kcal mol−1 and S‡ = −42±5 e.u. Two separate mechanistic pathways for the coupling reaction have been proposed on the basis of these kinetic and spectroscopic studies. PMID:22368318

  3. Peroxidase-Catalyzed Oxidative Coupling of Phenols in the Presence of Geosorbents

    SciTech Connect

    Huang, Qingguo; Weber, Walter J., Jr.

    2003-03-26

    This study focuses on elucidation of the reaction behaviors of peroxidase-mediated phenol coupling in the presence of soil/sediment materials. Our goal is a mechanistic understanding of the influences of geosorbent materials on enzymatic coupling reactions in general and the development of methods for predicting such influences. Extensive experimental investigations of coupling reactions were performed under strategically selected conditions in systems containing model geosorbents having different properties and chemical characteristics. The geosorbents tested were found to influence peroxidase-mediated phenol coupling through one or both of two principal mechanisms; i.e., (1) mitigation of enzyme inactivation and/or (2) participation in cross-coupling reactions. Such influences were found to correlate with the chemical characteristics of the sorbent materials and to be simulated well by a modeling approach designed in this paper. The results of the study have important implications for potential engineering implementation and enhancement of enzymatic coupling reactions in soil/subsurface remediation practice.

  4. Remobilization of Cr(VI) from Cr(OH)3(s) coupled with heterogeneous Mn(II) oxidation

    NASA Astrophysics Data System (ADS)

    Lee, G.; Namgung, S.; Um, W.

    2011-12-01

    Chromium(VI) is known to be the 2nd most common inorganic contaminant due to the wide range of applications of chromium in the industry. The most effective way to remove toxic Cr(VI) under natural conditions as well as in the engineered systems is to reduce it to less toxic Cr(III) using various reductants. Under circumneutral pH conditions, Cr(III) readily precipitates as sparingly soluble Cr(OH)3(s). This solid phase is generally considered as one of the most desirable remediation product of soil and groundwater contaminated by Cr(VI) because it is less toxic and less mobile form of chromium. In addition, this solid is usually believed to be relatively inert to natural oxidants such as dissolved oxygen and Mn oxides. The oxidation of Cr(III) by dissolved oxygen is known to be kinetically sluggish. Previous studies showed that dissolved Cr(III) could easily be oxidized by Mn oxides under acidic conditions but the oxidation became ineffective under neutral or higher pH conditions as a result of Cr(OH)3(s) precipitation. This study examines the potential remobilization of Cr(VI) from this solid by oxidation coupled with heterogeneous oxidation of Mn(II) by dissolved oxygen. 1.0 g/L Cr(OH)3(s) was reacted with 50 ?M Mn(II) in 50 mM NaNO3 at pH 7 to 9 in the presence or absence of dissolved oxygen. The pH was maintained with 10 or 50 mM buffers (MOPS for pH 7 and 8; CHES for pH 9). For the anaerobic conditions, the solutions were purged with N2 in sealed serum bottles. In the absence of dissolved oxygen, the oxidation of Cr(OH)3(s) did not occur either with or without dissolved Mn(II). When the solutions were open to atmosphere, by contrast, the oxidation of the solid did occur both in the presence and absence of Mn(II) when the pH was higher or at 8.0. The amounts of Cr(VI) released increased with increasing pH and were higher in the presence than the absence of Mn(II). At pH 9, Cr(VI) concentration rapidly increased for the first 130 hr and reached up to 300 ppb in the presence of Mn(II). The results of this study show that Cr(OH)3(s) can be oxidized by the product of heterogeneous Mn(II) oxidation and thereby would possibly become a source of toxic Cr(VI).

  5. Distant electric coupling between nitrate reduction and sulphide oxidation investigated by an improved nitrate microscale biosensor

    NASA Astrophysics Data System (ADS)

    Marzocchi, U.; Revsbech, N. P.; Nielsen, L. P.; Risgaard-Petersen, N.

    2012-04-01

    Bacteria are apparently able to transmit electrons to other bacteria (Summers et al. 2010) or to electrodes (Malvankar et al. 2011) by some kind of nanowires (Reguera et al. 2005, Gorbi et al. 2006). Lately it has been shown that such transfer may occur over distances of centimetres in sediments, thereby coupling sulphide oxidation in deeper layers with oxygen reduction near the surface (Nielsen 2011). The finding of these long-distance electrical connections originated from analysis of O2, H2S, and pH profiles measured with microsensors. Nitrate is thermodynamically almost as good an electron acceptor as O2, and we therefore set up an experiment to investigate whether long-distance electron transfer also happens with NO3-. Aquaria were filled with sulphidic marine sediment from Aarhus Bay that was previously used to show long-distance electron transfer to O2. The aquaria were equipped with a lid so that they could be completely filled without a gas phase. Anoxic seawater with 300 μM NO3- was supplied at a constant rate resulting in a steady state concentration in the aquatic phase of 250 μM NO3-. The reservoir with the nitrate-containing water was kept anoxic by bubbling it with a N2/CO2 mixture and was kept at an elevated temperature. The water was cooled on the way to the aquaria to keep the water in the aquaria undersaturated with gasses, so that bubble formation by denitrification in the sediment could be minimised. Profiles of NO3-, H2S, and pH were measured as a function of time (2 months) applying commercial sensors for H2S and pH and an improved microscale NO3- biosensor developed in our laboratory. The penetration of NO3- in the sediment was 4-5 mm after 2 months, whereas sulphide only could be detected below 8-9 mm depth. The electron acceptor and electron donor were thus separated by 4-5 mm, indicating long distance electron transfer. A pH maximum of about 8.6 pH units at the NO3- reduction zone similar to a pH maximum observed in the O2 reduction zone of electro-active sediments could be observed. This pH maximum was the strongest evidence for long-distance electron transfer in oxic sediments, but cannot be taken as proof in denitrifying sediments as conventional denitrification may also produce elevated pH. We are now searching for the NO3- reducing bacteria that may be active in long-distance electron transfer in our sediment. Gorby, Y. A., S. Yanina, et al. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America 103(30): 11358-11363. Malvankar, N. S., M. Vargas, et al. (2011). Tunable metallic-like conductivity in microbial nanowire networks. Nature Nanotechnology 6(9): 573-579. Nielsen, L. P., N. Risgaard-Petersen, et al. (2010). Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463(7284): 1071-1074. Reguera, G., K. D. McCarthy, et al. (2005). Extracellular electron transfer via microbial nanowires. Nature 435(7045): 1098-1101. Summers, Z. M., H. E. Fogarty, et al. (2010). Direct Exchange of Electrons Within Aggregates of an Evolved Syntrophic Coculture of Anaerobic Bacteria. Science 330(6009): 1413-1415.

  6. High-throughput hydrophilic interaction chromatography coupled to tandem mass spectrometry for the optimized quantification of the anti-Gram-negatives antibiotic colistin A/B and its pro-drug colistimethate.

    PubMed

    Mercier, Thomas; Tissot, Fréderic; Gardiol, Céline; Corti, Natascia; Wehrli, Stéphane; Guidi, Monia; Csajka, Chantal; Buclin, Thierry; Couet, William; Marchetti, Oscar; Decosterd, Laurent A

    2014-11-21

    Colistin is a last resort's antibacterial treatment in critically ill patients with multi-drug resistant Gram-negative infections. As appropriate colistin exposure is the key for maximizing efficacy while minimizing toxicity, individualized dosing optimization guided by therapeutic drug monitoring is a top clinical priority. Objective of the present work was to develop a rapid and robust HPLC-MS/MS assay for quantification of colistin plasma concentrations. This novel methodology validated according to international standards simultaneously quantifies the microbiologically active compounds colistin A and B, plus the pro-drug colistin methanesulfonate (colistimethate, CMS). 96-well micro-Elution SPE on Oasis Hydrophilic-Lipophilic-Balanced (HLB) followed by direct analysis by Hydrophilic Interaction Liquid Chromatography (HILIC) with Ethylene Bridged Hybrid--BEH--Amide phase column coupled to tandem mass spectrometry allows a high-throughput with no significant matrix effect. The technique is highly sensitive (limit of quantification 0.014 and 0.006 μg/mL for colistin A and B), precise (intra-/inter-assay CV 0.6-8.4%) and accurate (intra-/inter-assay deviation from nominal concentrations -4.4 to +6.3%) over the clinically relevant analytical range 0.05-20 μg/mL. Colistin A and B in plasma and whole blood samples are reliably quantified over 48 h at room temperature and at +4°C (<6% deviation from nominal values) and after three freeze-thaw cycles. Colistimethate acidic hydrolysis (1M H2SO4) to colistin A and B in plasma was completed in vitro after 15 min of sonication while the pro-drug hydrolyzed spontaneously in plasma ex vivo after 4 h at room temperature: this information is of utmost importance for interpretation of analytical results. Quantification is precise and accurate when using serum, citrated or EDTA plasma as biological matrix, while use of heparin plasma is not appropriate. This new analytical technique providing optimized quantification in real-life conditions of the microbiologically active compounds colistin A and B offers a highly efficient tool for routine therapeutic drug monitoring aimed at individualizing drug dosing against life-threatening infections. PMID:25441071

  7. Simultaneous determination of chlorpyrifos and 3,5,6-trichloro-2-pyridinol in duck muscle by modified QuEChERS coupled to gas chromatography tandem mass spectrometry (GC-MS/MS).

    PubMed

    Li, Rui; He, Liang; Zhou, Ting; Ji, Xiaofeng; Qian, Mingrong; Zhou, Yu; Wang, Qiang

    2014-05-01

    A rapid, specific, and sensitive method based on modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) coupled to gas chromatography tandem mass spectrometry (GC-MS/MS) was developed and validated for simultaneous determination of chlorpyrifos (CP) and its metabolite 3,5,6-trichloro-2-pyridinol (TCP) in duck muscle. The residues of CP and TCP were extracted by acidified acetonitrile. The fat layer of the extract was removed under -20 °C, then the organic layer was evaporated. The analytes were derivatized by N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) and cleaned up by a mixture of 150 mg MgSO4, 25 mg graphitized carbon black (GCB), and 50 mg N-propylethylenediamine (PSA) to remove interference. The final extract was analyzed by GC-MS/MS. Recovery values at the spiking concentrations ranged from 86.2 to 92.3 % for CP and from 74.8 to 81.8 % for TCP, with relative standard deviations (RSDs) lower than 9.5 and 12.3, respectively. The correlation coefficients of CP (from 2 to 2,000 μg/kg) and TCP (from 1 to 1,000 μg/kg) were equal to or higher than 0.998. The limits of detection (LODs) were 0.3 and 0.15 μg/kg, and the limits of quantification (LOQs) were 1.0 and 0.5 μg/kg for CP and TCP in duck muscle, respectively. The average intra- and inter-day accuracy ranged from 84.6 to 91.2 % for CP and 75.6 to 82.3 % for TCP, and the intra- and inter-day precisions were from 5.8 to 8.2 % for CP and 6.5 to 11.9 % for TCP. Furthermore, the CP and TCP residues in duck muscle samples were detected for dietary risk assessment using the validated method. PMID:24691719

  8. Performance of the EU-harmonised mouse bioassay for lipophilic toxins for the detection of azaspiracids in naturally contaminated mussel (Mytilus edulis) hepatopancreas tissue homogenates characterised by liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Hess, Philipp; Butter, Tim; Petersen, Andrew; Silke, Joe; McMahon, Terry

    2009-06-01

    Azaspiracids (AZAs) are a group of lipophilic polyether toxins that were discovered in shellfish from Ireland in 1995, following a food poisoning incident. Both the limited availability of pure AZAs and the co-occurrence in shellfish of other toxins in combination with AZAs have so far prevented an in-depth evaluation of the performance of the EU reference test, the mouse bioassay (MBA), for this toxin group at the regulatory limit. The present study evaluated the performance of the mouse bioassay at the example of a mussel tissue homogenate, naturally contaminated with AZAs, diluted with uncontaminated tissues to appropriate concentration levels. Concentrations were determined using liquid chromatography coupled to tandem mass spectrometry (LC-MS-MS) (7 levels ranging from levels less than the limit of quantification to a maximum of ca. 2.24mg/kg in hepatopancreas, which corresponds to a maximum whole flesh AZA1-equivalent of ca. 0.34mg/kg). Replicate homogenates of each concentration level were analysed by MBA on 7 independent occasions over 6 weeks. Inhomogeneity between replicate aliquot portions was evaluated using LC-MS-MS and ranged from 1.8 to 6.6% RSD for the six levels contaminated above quantification limits. This variation was similar to the variability of the LC-MS-MS method within a batch, and the difference between replicate aliquots could thus be considered negligible. Other uncertainties considered in the study included the short- and long-term variability of the LC-MS-MS method, toxic equivalence factors, relative response factors in mass spectrometric detection, additional analogues and matrix effects. A concentration-response curve was modelled as a 4-parametric logistic fit to a sigmoidal function, with an LC(50) of 0.70mg AZA1-equivalent/kg hepatopancreas tissue. Furthermore, the mathematical model of the lethality data from this study suggests that occasional negative mouse assays at high concentrations, previously observed in the Irish statutory monitoring, are at least partly due to the biological variation of mice and can be understood on a statistical basis. The mathematical model of the concentration-response curve also describes the probability of a positive mouse bioassay at the current regulatory limit of 0.16mg/kg to be ca. 95%. Therefore, it appears that the mouse bioassay performs very well in the implementation of this limit. Hence, the present study very strongly suggests that the MBA and LC-MS-MS techniques can be considered equivalent in the implementation of the current regulatory limit of 0.16mg/kg for Azaspiracids in shellfish. PMID:19254738

  9. Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and quinolone antibiotics by laccase-mediated oxidation coupled with soil adsorption.

    PubMed

    Ding, Huijun; Wu, Yixiao; Zou, Binchun; Lou, Qian; Zhang, Weihao; Zhong, Jiayou; Lu, Lei; Dai, Guofei

    2016-04-15

    The uses of laccase in the degradation and removal of antibiotics have recently been reported because of the high efficiency and environmental friendliness of laccase. However, these removal studies mostly refer to a limited number of antibiotics. In this study, soil adsorption was introduced into the laccase-oxidation system to assist the simultaneous removal of 14 kinds of sulfonamide, tetracycline, and quinolone antibiotics, which differed in structures and chemical properties. The complementary effects of laccase-mediated oxidation and soil adsorption enabled the simultaneous removal. Removal characteristics were determined by a comprehensive consideration of the separate optimum conditions for laccase oxidation and soil adsorption removal experiments. With concentrations of laccase, syringaldehyde (SA), and soil of 0.5mg/mL, 0.5mmol/L, and 50g/L, respectively, and at pH 6 and 25°C, the removal rates of each antibiotic exceeded 70% in 15min and were close to 100% in 180min. Sulfonamide antibiotics (SAs) were removed mainly by laccase oxidation and quinolone antibiotics (QUs) mainly by soil adsorption. Tetracycline antibiotics (TCs) were removed by both treatments in the coupled system, but laccase oxidation dominated. Electrostatic adsorption was speculated to be one of the adsorption mechanisms in soil adsorption with QUs and TCs. PMID:26826938

  10. Tandem mirror fusion research

    SciTech Connect

    Baldwin, D.E.

    1983-12-02

    The tandem mirror program has evolved considerably in the last decade. Of significance is the viable reactor concept embodied in the MARS design. An aggressive experimental program, culminating in the operation of MFTF-B in late 1986, will provide a firm basis for refining the MARS design as necessary for constructing a reactor prototype in the 1990s.

  11. Indium-zinc-oxide electric-double-layer thin-film transistors gated by silane coupling agents 3-triethoxysilylpropylamine-graphene oxide solid electrolyte

    NASA Astrophysics Data System (ADS)

    Guo, Liqiang; Huang, Yukai; Shi, Yangyang; Cheng, Guanggui; Ding, Jianning

    2015-07-01

    Silane coupling agents 3-triethoxysilylpropyla-mine-graphene oxide (KH550-GO) solid electrolyte are prepared by spin coating process. A high proton conductivity of ~1.2   ×   10-3 Scm-1 is obtained at room temperature. A strong electric-double-layer (EDL) effect is observed due to the accumulation of protons at KH550-GO/IZO interface. Indium-Zinc-Oxide thin film transistors gated by KH550-GO solid electrolyte are self-assembled on ITO glass substrates. Good electrical performances are obtained, such as a low subthreshold swing of ~140 mV/dec., a high current on/off ratio of ~2.9   ×   107 and a high field-effect mobility of ~13.2 cm2 V-1 S-1, respectively.

  12. Coupling of Dimethylsulfide Oxidation to Biomass Production by a Marine Flavobacterium▿

    PubMed Central

    Green, David H.; Shenoy, Damodar M.; Hart, Mark C.; Hatton, Angela D.

    2011-01-01

    Dimethylsulfide (DMS) is an important climatically active gas. In the sea, DMS is produced primarily by microbial metabolism of the compatible solute dimethylsulfoniopropionate. Laboratory growth of Bacteroidetes with DMS resulted in its oxidation to dimethyl sulfoxide but only in the presence of glucose. We hypothesized that electrons liberated from sulfur oxidation were used to augment biomass production. PMID:21378049

  13. Fast throughput determination of 21 allergenic disperse dyes from river water using reusable three-dimensional interconnected magnetic chemically modified graphene oxide followed by liquid chromatography-tandem quadrupole mass spectrometry.

    PubMed

    Zhao, Yong-Gang; Li, Xiao-Ping; Yao, Shan-Shan; Zhan, Ping-Ping; Liu, Jun-Chao; Xu, Chang-Ping; Lu, Yi-Yu; Chen, Xiao-Hong; Jin, Mi-Cong

    2016-01-29

    We report the template-free fabrication of three-dimensional hierarchical nanostructures, i.e., three-dimensional interconnected magnetic chemically modified graphene oxide (3D-Mag-CMGO), through a simple and low-cost self-assembly process using one-pot reaction based on solvothermal method. The excellent properties of the 3D-Mag-CMGO are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), FTIR, elementary analyzer (EA) and X-ray photoelectron spectroscopy (XPS). The easiness-to-handle of the magnetic dispersive solid phase extraction (Mag-dSPE) procedure is developed for preconcentration of 21 allergenic disperse dyes from river water. The obtained results show the higher extraction capacity of 3D-Mag-CMGO with recoveries between 80.0-112.0%. Furthermore, an ultra-fast liquid chromatography-tandem quadrupole mass spectrometry (UFLC-MS/MS) method for determination of 21 allergenic disperse dyes in river at sub-ppt levels has been developed with pretreatment of the samples by Mag-dSPE. The limits of quantification (LOQs) for the allergenic disperse dyes are between 0.57-34.05ng/L. Validation results on linearity, specificity, trueness and precision, as well as on application to the analysis of 21 allergenic disperse dyes in fifty real samples demonstrate the applicability to environment monitoring analysis. PMID:26777090

  14. Application of a highly sensitive magnetic solid phase extraction for phytochemical compounds in medicinal plant and biological fluids by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Cao, Wan; Yi, Ling; Ye, Li-Hong; Cao, Jun; Hu, Shuai-Shuai; Xu, Jing-Jing; Peng, Li-Qing; Zhu, Qiong-Yao; Zhang, Qian-Yun

    2015-10-01

    A highly sensitive method using reduced graphene oxide with iron oxide (rGO/Fe3 O4 ) as the sorbent in magnetic SPE has been developed for the purification of five anthraquinones (emodin, rhein, aloeemodin, physcion, and chrysophanol) in rhubarb and rat urine by ultra-HPLC coupled with quadrupole TOF/MS. The extraction was accomplished by adding trace amount rGO/Fe3 O4 suspension to 200 mL of aqueous mixture, and the excellent adsorption capacity of the nanoparticles was fully demonstrated in this procedure. Under the optimized conditions, the calibration curves were linear in the concentration range of 0.05-27.77 ng/mL with correlation coefficients varying from 0.9902 to 0.9978. The LODs ranged from 0.28 to 58.99 pg/mL. The experimental results indicated that the proposed method was feasible for the analysis of anthraquinones in rhubarb and urine samples. PMID:26084454

  15. Lateral-coupled oxide electric-double-layer transistors gated by scandia-ceria-stabilized zirconia electrolyte

    NASA Astrophysics Data System (ADS)

    Zhu, Li Qiang; Xiao, Hui; Wang, Jian Xin

    2016-01-01

    Scandia-ceria-stabilized zirconia (ScCeSZ) is one of the most important electrolytes used for solid oxide fuel cells. However, it has not been reported for applications in electrolyte gated transistors. Here, a high room-temperature proton conductivity of ~8  ×  10-3 S cm-1 and a large electric-double-layer capacitance of ~1.5 μF cm-2 are observed for a tape-casted water-infiltrated ScCeSZ electrolyte. A laterally coupled indium-tin oxide transistor gated by such an electrolyte exhibits good electric performances at a low voltage of 1.5 V, such as the on/off ratio of above 1  ×  105, mobility of 2.2 cm2 Vs-1 and subthreshold swing of ~160 mV/dec. Furthermore, unique synergic proton modulation behaviors are observed and AND logic operation is demonstrated. The laterally-coupled oxide transistors with synergic proton gating effects may find potential applications in chemical sensors and artificial neuromorphic devices.

  16. Evidence of Nitrogen Loss from Anaerobic Ammonium Oxidation Coupled with Ferric Iron Reduction in an Intertidal Wetland.

    PubMed

    Li, Xiaofei; Hou, Lijun; Liu, Min; Zheng, Yanling; Yin, Guoyu; Lin, Xianbiao; Cheng, Lv; Li, Ye; Hu, Xiaoting

    2015-10-01

    Anaerobic ammonium oxidation coupled with nitrite reduction is an important microbial pathway of nitrogen removal in intertidal wetlands. However, little is known about the role of anaerobic ammonium oxidation coupled with ferric iron reduction (termed Feammox) in intertidal nitrogen cycling. In this study, sediment slurry incubation experiments were combined with an isotope-tracing technique to examine the dynamics of Feammox and its association with tidal fluctuations in the intertidal wetland of the Yangtze Estuary. Feammox was detected in the intertidal wetland sediments, with potential rates of 0.24-0.36 mg N kg(-1) d(-1). The Feammox rates in the sediments were generally higher during spring tides than during neap tides. The tidal fluctuations affected the growth of iron-reducing bacteria and reduction of ferric iron, which mediated Feammox activity and the associated nitrogen loss from intertidal wetlands to the atmosphere. An estimated loss of 11.5-18 t N km(-2) year(-1) was linked to Feammox, accounting for approximately 3.1-4.9% of the total external inorganic nitrogen transported into the Yangtze Estuary wetland each year. Overall, the co-occurrence of ferric iron reduction and ammonium oxidation suggests that Feammox can act as an ammonium removal mechanism in intertidal wetlands. PMID:26360245

  17. Coupling Ferroelectricity with Spin-Valley Physics in Oxide-Based Heterostructures

    NASA Astrophysics Data System (ADS)

    Yamauchi, Kunihiko; Barone, Paolo; Shishidou, Tatsuya; Oguchi, Tamio; Picozzi, Silvia

    2015-07-01

    The coupling of spin and valley physics is nowadays regarded as a promising route toward next-generation spintronic and valleytronic devices. In the aim of engineering functional properties for valleytronic applications, we focus on the ferroelectric heterostructure BiAlO3/BiIrO3 , where the complex interplay among a trigonal crystal field, layer degrees of freedom, and spin-orbit coupling mediates a strong spin-valley coupling. Furthermore, we show that ferroelectricity provides a nonvolatile handle to manipulate and switch the emerging valley-contrasting spin polarization.

  18. An ultra-high performance liquid chromatography-tandem mass spectrometric assay for quantifying 3-ketocholanoic acid: Application to the human liver microsomal CYP3A-dependent lithocholic acid 3-oxidation assay.

    PubMed

    Bansal, Sumit; Chai, Swee Fen; Lau, Aik Jiang

    2016-06-15

    Lithocholic acid (LCA), a hepatotoxic and carcinogenic bile acid, is metabolized to 3-ketocholanoic acid (3-KCA) by cytochrome P450 3A (CYP3A). In the present study, the objectives were to develop and validate an ultra-high performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method to quantify 3-KCA and apply it to the human liver microsomal CYP3A-dependent LCA 3-oxidation assay. Chromatographic separation was achieved on a Waters ACQUITY™ UPLC C18 column (50×2.1mm, 1.7μm) with a gradient system consisting of 0.1% v/v formic acid in water (solvent A) and 0.1% v/v formic acid in acetonitrile (solvent B). The retention time was 3.73min for 3-KCA and 2.73min for cortisol (internal standard). Positive electrospray ionization with multiple reaction monitoring (MRM) mode was used to quantify 3-KCA (m/z 375.4→135.2) and cortisol (m/z 363.5→121.0). The limit of detection of 3-KCA was 10μM, the lower limit of quantification was 33.3μM, and the calibration curve was linear from 0.05-10μM with r(2)>0.99. Intra-day and inter-day accuracy and precision were <13.7%. The quality control samples were stable when assessed after 4h at room temperature, 24h at 4°C, 14days at -20°C, and three freeze-thaw cycles. The liver microsomal matrix did not affect 3-KCA quantification. The amount of KCA formed in the human liver microsomal LCA 3-oxidation assay was linear with respect to the amount of microsomal protein (up to 40μg) and incubation time (5-30min). Enzyme kinetics experiment indicated that LCA 3-oxidation followed the Michaelis-Menten model with an apparent Km of 26±7μM and Vmax of 303±50pmol/min/mg protein. This novel UPLC-MS/MS method for quantifying 3-KCA offers a specific, sensitive, and fast approach to determine liver microsomal LCA 3-oxidation. PMID:27153105

  19. Metal-Free Oxidation of Primary Amines to Nitriles through Coupled Catalytic Cycles.

    PubMed

    Lambert, Kyle M; Bobbitt, James M; Eldirany, Sherif A; Kissane, Liam E; Sheridan, Rose K; Stempel, Zachary D; Sternberg, Francis H; Bailey, William F

    2016-04-01

    Synergism among several intertwined catalytic cycles allows for selective, room temperature oxidation of primary amines to the corresponding nitriles in 85-98 % isolated yield. This metal-free, scalable, operationally simple method employs a catalytic quantity of 4-acetamido-TEMPO (ACT; TEMPO=2,2,6,6-tetramethylpiperidine N-oxide) radical and the inexpensive, environmentally benign triple salt oxone as the terminal oxidant under mild conditions. Simple filtration of the reaction mixture through silica gel affords pure nitrile products. PMID:26868873

  20. Lanthanide-Catalyzed Oxyfunctionalization of 1,3-Diketones, Acetoacetic Esters, And Malonates by Oxidative C-O Coupling with Malonyl Peroxides.

    PubMed

    Terent'ev, Alexander O; Vil', Vera A; Gorlov, Evgenii S; Nikishin, Gennady I; Pivnitsky, Kasimir K; Adam, Waldemar

    2016-02-01

    The lanthanide-catalyzed oxidative C-O coupling of 1,3-dicarbonyl compounds with diacyl peroxides, specifically the cyclic malonyl peroxides, has been developed. An important feature of this new reaction concerns the advantageous role of the peroxide acting both as oxidant and reagent for C-O coupling. It is shown that lanthanide salts may be used in combination with peroxides for selective oxidative transformations. The vast range of lanthanide salts (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Y) catalyzes oxidative C-O coupling much more efficiently than other used Lewis and Bronsted acids. This oxidative cross-coupling protocol furnishes mono and double C-O coupling products chemo-selectively in high yields with a broad substrate scope. The double C-O coupling products may be hydrolyzed to vicinal tricarbonyl compounds, which are otherwise cumbersome to prepare. Based on the present experimental results, a nucleophilic substitution mechanism is proposed for the C-O coupling process in which the lanthanide metal ion serves as Lewis acid to activate the enol of the 1,3-dicarbonyl substrate. The side reactions-chlorination and hydroxylation of the 1,3-dicarbonyl partners-may be minimized under proper conditions. PMID:26745010

  1. Demonstrating Advanced Oxidation Coupled with Biodegradation for Removal of Carbamazepine (WERF Report INFR6SG09)

    EPA Science Inventory

    Carbamazepine is an anthropogenic pharmaceutical found in wastewater effluents that is quite resistant to removal by conventional wastewater treatment processes. Hydroxyl radical-based advanced oxidation processes can transform carbamazepine into degradation products but cannot m...

  2. Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions.

    EPA Science Inventory

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; catalyst can be used for oxidation of alcohols, amination reaction and arylation of aryl halides (cross coupli...

  3. Photoelectrocatalytic/photoelectro-Fenton coupling system using a nanostructured photoanode for the oxidation of a textile dye: Kinetics study and oxidation pathway.

    PubMed

    Almeida, Lucio C; Silva, Bianca F; Zanoni, Maria V B

    2015-10-01

    In this study, a coupled photoelectrocatalytic/photoelectro-Fenton reactor was designed to enhance the degradation efficiency of organic pollutants and tested using the azo dye Orange G as a model compound. Pt-decorated TiO2 nanotubes were used as a photoanode with an air-diffusion polytetrafluoroethylene cathode for H2O2 generation. The sum of individual effects of coupling the photoelectrocatalytic and photoelectro-Fenton processes was evaluated as a function of the decolorization and mineralization of Orange G solutions. The dye solutions were only completely decolorized in more acidic conditions (pH 3.0). The mineralization of the Orange G solutions increased in the sequence photoelectrocatalyticcoupled photoelectrocatalytic/photoelectro-Fenton due to the gradual increase in the production of OH radicals. Total organic carbon reductions of 80% for photoelectrocatalysis, 87% for electro-Fenton and 97% for the coupled processes were obtained when using an applied electric charge per unit volume of electrolyzed solution of 200 mA h L(-1). The Orange G decays for all treatments followed pseudo-first-order kinetics, suggesting the attack of a constant concentration of OH radicals. Aromatics such as naphthalenic and benzenic compounds were formed as by-products and were identified using LC-MS/MS analysis. In addition, the generated aliphatic acids were identified using ion-exclusion high-performance liquid chromatography. The final by-products of oxalic and formic acid were identified as ultimate by-products and formed Fe(III) complexes that were rapidly mineralized to CO2 by UV-Vis irradiation. Then, according to the identified oxidation by-products, a plausible pathway was proposed for the degradation of Orange G dye by the coupled process. PMID:25935699

  4. Rapid liquid chromatography-tandem mass spectrometry analysis of 4-hydroxynonenal for the assessment of oxidative degradation and safety of vegetable oils.

    PubMed

    Gabbanini, Simone; Matera, Riccardo; Valvassori, Alice; Valgimigli, Luca

    2015-04-15

    A novel method for the UHPLC-MS/MS analysis of (E)-4-hydroxynonenal (4-HNE) is described. The method is based on derivatization of 4-HNE with pentafluorophenylhydrazine (1) or 4-trifluoromethylphenylhydrazine (2) in acetonitrile in the presence of trifluoroacetic acid as catalyst at room temperature and allows complete analysis of one sample of vegetable oil in only 21 min, including sample preparation and chromatography. The method involving hydrazine 1, implemented in an ion trap instrument with analysis of the transition m/z 337→154 showed LOD=10.9 nM, average accuracy of 101% and precision ranging 2.5-4.0% RSD intra-day (2.7-4.1% RSD inter-day), with 4-HNE standard solutions. Average recovery from lipid matrices was 96.3% from vaseline oil, 91.3% from sweet almond oil and 105.3% from olive oil. The method was tested on the assessment of safety and oxidative degradation of seven samples of dietary oil (soybean, mixed seeds, corn, peanut, sunflower, olive) and six cosmetic-grade oils (avocado, blackcurrant, apricot kernel, echium, sesame, wheat germ) and effectively detected increased 4-HNE levels in response to chemical (Fenton reaction), photochemical, or thermal stress and aging, aimed at mimicking typical oxidation associated with storage or industrial processing. The method is a convenient, cost-effective and reliable tool to assess quality and safety of vegetable oils. PMID:25818139

  5. Proton-Conducting Graphene Oxide-Coupled Neuron Transistors for Brain-Inspired Cognitive Systems.

    PubMed

    Wan, Chang Jin; Zhu, Li Qiang; Liu, Yang Hui; Feng, Ping; Liu, Zhao Ping; Cao, Hai Liang; Xiao, Peng; Shi, Yi; Wan, Qing

    2016-05-01

    Proton-conducting graphene oxide electrolyte films with very high electric-double-layer capacitance are used as the gate dielectrics for oxide-based neuron transistor fabrication. Paired-pulse facilitation, dendritic integration, and orientation tuning are successfully emulated. Additionally, neuronal gain controls (arithmetic) are also experimentally demonstrated. The results provide a new-concept approach for building brain-inspired cognitive systems. PMID:26972820

  6. The Efficacy of Oxidative Coupling for Promoting In-Situ Immobilization of Hydroxylated Aromatics in Contaminated Soil and Sediments Systems - Final Report

    SciTech Connect

    Weber Jr., W. J.

    2000-10-01

    The study clearly shows that the structure and composition of the organic matter of soils and sediments are essential considerations for the selection of materials for engineered applications of oxidative coupling processes. A rate model was developed to facilitate quantitative evaluation and mechanistic interpretation of these fairly complex coupling processes.

  7. Hydrogen Evolution from Water Coupled with the Oxidation of As(III) in a Photocatalytic System.

    PubMed

    Zou, Jian-Ping; Wu, Dan-Dan; Bao, Shao-Kui; Luo, Jinming; Luo, Xu-Biao; Lei, Si-Liang; Liu, Hui-Long; Du, Hong-Mei; Luo, Sheng-Lian; Au, Chak-Tong; Suib, Steven L

    2015-12-30

    A series of heterostructured CdS/Sr2(Nb17/18Zn1/18)2O7-δ composites with excellent photocatalytic ability for simultaneous hydrogen evolution and As(III) oxidation under simulated sunlight were synthesized and characterized. Among them, 30% CdS/Sr2(Nb17/18Zn1/18)2O7-δ (30CSNZO) has the highest in activity, exhibiting a H2 production rate of 1669.1 μmol·h(-1)·g(-1) that is higher than that of many photocatalysts recently reported in the literature. At pH 9, As(III) is completely oxidized to As(V) over 30CSNZO in 30 min of irradiation of simulated sunlight. In the photocatalytic system, H2 production rate decreases with the increase of As(III) concentration, and the recycle experiments show that 30CSNZO exhibits excellent stability, durability, and recyclability for photocatalytic hydrogen evolution and As(III) oxidation. We propose a mechanism in which superoxide radical (·O2(-)) is the active species for As(III) oxidation and the oxidation of As(III) has an effect on hydrogen evolution. For the first time, it is demonstrated that simultaneous hydrogen evolution and arsenite oxidation is possible in a photocatalytic system. PMID:26650610

  8. Direct preparation of N-quaternized and N-oxidized polycyclic azines by palladium-catalyzed cross-coupling. An unequivocal isomer synthesis

    SciTech Connect

    Zoltewicz, J.A.; Cruskie, M.P. Jr.; Dill, C.D.

    1995-01-13

    The authors report several examples of unequivocal isomer preparations using palladium-catalyzed cross-coupling to yield N-oxides and N-quaternized polycyclic azines. This approach serves as a model for such syntheses where selective N-quaternization, N-oxidation, or other types of N-functionalization of several rings is now possible in a regioncontrolled manner.

  9. Three-dimensional fully-coupled electrical and thermal transport model of dynamic switching in oxide memristors

    SciTech Connect

    Gao, Xujiao; Mamaluy, Denis; Mickel, Patrick R.; Marinella, Matthew

    2015-09-08

    In this paper, we present a fully-coupled electrical and thermal transport model for oxide memristors that solves simultaneously the time-dependent continuity equations for all relevant carriers, together with the time-dependent heat equation including Joule heating sources. The model captures all the important processes that drive memristive switching and is applicable to simulate switching behavior in a wide range of oxide memristors. The model is applied to simulate the ON switching in a 3D filamentary TaOx memristor. Simulation results show that, for uniform vacancy density in the OFF state, vacancies fill in the conduction filament till saturation, and then fill out a gap formed in the Ta electrode during ON switching; furthermore, ON-switching time strongly depends on applied voltage and the ON-to-OFF current ratio is sensitive to the filament vacancy density in the OFF state.

  10. Three-dimensional fully-coupled electrical and thermal transport model of dynamic switching in oxide memristors

    DOE PAGESBeta

    Gao, Xujiao; Mamaluy, Denis; Mickel, Patrick R.; Marinella, Matthew

    2015-09-08

    In this paper, we present a fully-coupled electrical and thermal transport model for oxide memristors that solves simultaneously the time-dependent continuity equations for all relevant carriers, together with the time-dependent heat equation including Joule heating sources. The model captures all the important processes that drive memristive switching and is applicable to simulate switching behavior in a wide range of oxide memristors. The model is applied to simulate the ON switching in a 3D filamentary TaOx memristor. Simulation results show that, for uniform vacancy density in the OFF state, vacancies fill in the conduction filament till saturation, and then fill outmore » a gap formed in the Ta electrode during ON switching; furthermore, ON-switching time strongly depends on applied voltage and the ON-to-OFF current ratio is sensitive to the filament vacancy density in the OFF state.« less

  11. Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese

    PubMed Central

    Lovley, Derek R.; Phillips, Elizabeth J. P.

    1988-01-01

    A dissimilatory Fe(III)- and Mn(IV)-reducing microorganism was isolated from freshwater sediments of the Potomac River, Maryland. The isolate, designated GS-15, grew in defined anaerobic medium with acetate as the sole electron donor and Fe(III), Mn(IV), or nitrate as the sole electron acceptor. GS-15 oxidized acetate to carbon dioxide with the concomitant reduction of amorphic Fe(III) oxide to magnetite (Fe3O4). When Fe(III) citrate replaced amorphic Fe(III) oxide as the electron acceptor, GS-15 grew faster and reduced all of the added Fe(III) to Fe(II). GS-15 reduced a natural amorphic Fe(III) oxide but did not significantly reduce highly crystalline Fe(III) forms. Fe(III) was reduced optimally at pH 6.7 to 7 and at 30 to 35C. Ethanol, butyrate, and propionate could also serve as electron donors for Fe(III) reduction. A variety of other organic compounds and hydrogen could not. MnO2 was completely reduced to Mn(II), which precipitated as rhodochrosite (MnCO3). Nitrate was reduced to ammonia. Oxygen could not serve as an electron acceptor, and it inhibited growth with the other electron acceptors. This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe(III) or Mn(IV) reduction can yield energy for microbial growth. GS-15 provides a model for how enzymatically catalyzed reactions can be quantitatively significant mechanisms for the reduction of iron and manganese in anaerobic environments. Images PMID:16347658

  12. Surface concentrations and residence times of intermediates on Sm sub 2 O sub 3 during the oxidative coupling of methane

    SciTech Connect

    Peil, K.P.; Goodwin, J.G. Jr.; Marcelin, G. )

    1990-08-01

    The use of Sm{sub 2}O{sub 3} as a catalyst for the oxidative coupling of methane has been well studied and documented. However, detailed information on the surface of a working Sm{sub 2}O{sub 3} catalyst and the overall carbon reaction pathway is unknown. This communication presents results that delineate completely for the first time the nature of the surface-reaction steps of Sm{sub 2}O{sub 3} and quantifies the working surface under steady-state reaction conditions.

  13. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    PubMed

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking water and groundwater, bottlenecks and potential issues are also discussed. PMID:26734780

  14. Liquid chromatography-(tandem) mass spectrometry for the follow-up of the elimination of persistent pharmaceuticals during wastewater treatment applying biological wastewater treatment and advanced oxidation.

    PubMed

    Gebhardt, Wilhelm; Schröder, Horst Fr

    2007-08-10

    The persistent and hardly eliminable pharmaceutical compounds carbamazepine, diazepam, diclofenac and clofibric acid were monitored in municipal wastewater by electrospray LC-MS and LC-MS-MS in positive and negative mode under high resolution and high mass accuracy conditions. While biological treatment by conventional and membrane bioreactors failed, the advanced oxidation methods using ozone (O3), O3/UV or hydrogen peroxide in combination with UV (H2O2/UV) successfully led to the complete elimination of these compounds. Target compounds could be confirmed as permanently present pollutants in Aachen-Soers wastewater in concentrations between 0.006 and 1.9 microg l(-1). Pharmaceuticals were determined after extraction using either C18 solid-phase extraction or by directly injecting them into the column without pre-concentration, achieving limits of quantification of 0.001 or 0.00001 microg l(-1), respectively. PMID:17582426

  15. Nitrogen isotope fractionation during archaeal ammonia oxidation: Coupled estimates from isotopic measurements of ammonium and nitrite

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Stieglmeier, Michaela; Bayer, Barbara; Jochum, Lara; Melcher, Michael; Wanek, Wolfgang

    2014-05-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous in marine and terrestrial environments and knowledge about the nitrogen (N) isotope effect associated with their ammonia oxidation activity will allow a better understanding of natural abundance isotope ratios, and therefore N transformation processes, in the environment. Here we examine the kinetic isotope effect for ammonia oxidation in a pure soil AOA culture (Ca. Nitrososphaera viennensis) and a marine AOA enrichment culture. We estimated the isotope effect from both isotopic signatures of ammonium and nitrite over the course of ammonia oxidation. Estimates of the isotope effect based on the change in the isotopic signature of ammonium give valuable insight, because these estimates are not subject to the same concerns (e.g., accumulation of an intermediate) as estimates based on isotopic measurements of nitrite. Our results show that both the pure soil AOA culture and a marine AOA enrichment culture have similar but substantial isotope effect during ammonia consumption (31-34 per mill; based on ammonium) and nitrite production (43-45 per mill; based on nitrite). The 15N fractionation factors of both cultures tested fell in the upper range of the reported isotope effects for archaeal and bacterial ammonia oxidation (10-41 per mill) or were even higher than those. The isotope fractionation for nitrite production was significantly larger than for ammonium consumption, indicating that (1) some intermediate (e.g., hydroxylamine) of ammonia oxidation accumulates, allowing for a second 15N fractionation step to be expressed, (2) a fraction of ammonia oxidized is lost via gaseous N forms (e.g., NO or N2O), which is 15N-enriched or (3) a fraction of ammonium is assimilated into AOA biomass, biomass becoming 15N-enriched. The significance of these mechanisms will be explored in more detail for the soil AOA culture, based on isotope modeling and isotopic measurements of biomass and N2O.

  16. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, Ian J.; Wendt, Joel R.

    1994-01-01

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

  17. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  18. Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1.

    PubMed

    Zhang, Tian; Bain, Timothy S; Barlett, Melissa A; Dar, Shabir A; Snoeyenbos-West, Oona L; Nevin, Kelly P; Lovley, Derek R

    2014-01-01

    Microbial oxidation of elemental sulfur with an electrode serving as the electron acceptor is of interest because this may play an important role in the recovery of electrons from sulfidic wastes and for current production in marine benthic microbial fuel cells. Enrichments initiated with a marine sediment inoculum, with elemental sulfur as the electron donor and a positively poised (+300 mV versus Ag/AgCl) anode as the electron acceptor, yielded an anode biofilm with a diversity of micro-organisms, including Thiobacillus, Sulfurimonas, Pseudomonas, Clostridium and Desulfuromonas species. Further enrichment of the anode biofilm inoculum in medium with elemental sulfur as the electron donor and Fe(III) oxide as the electron acceptor, followed by isolation in solidified sulfur/Fe(III) medium yielded a strain of Desulfuromonas, designated strain TZ1. Strain TZ1 effectively oxidized elemental sulfur to sulfate with an anode serving as the sole electron acceptor, at rates faster than Desulfobulbus propionicus, the only other organism in pure culture previously shown to oxidize S with current production. The abundance of Desulfuromonas species enriched on the anodes of marine benthic fuel cells has previously been interpreted as acetate oxidation driving current production, but the results presented here suggest that sulfur-driven current production is a likely alternative. PMID:24169815

  19. Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1

    SciTech Connect

    Zhang, T; Bain, TS; Barlett, MA; Dar, SA; Snoeyenbos-West, OL; Nevin, KP; Lovley, DR

    2014-01-02

    Microbial oxidation of elemental sulfur with an electrode serving as the electron acceptor is of interest because this may play an important role in the recovery of electrons from sulfidic wastes and for current production in marine benthic microbial fuel cells. Enrichments initiated with a marine sediment inoculum, with elemental sulfur as the electron donor and a positively poised (+300 mV versus Ag/AgCl) anode as the electron acceptor, yielded an anode biofilm with a diversity of micro-organisms, including Thiobacillus, Sulfurimonas, Pseudomonas, Clostridium and Desulfuromonas species. Further enrichment of the anode biofilm inoculum in medium with elemental sulfur as the electron donor and Fe(III) oxide as the electron acceptor, followed by isolation in solidified sulfur/Fe(III) medium yielded a strain of Desulfuromonas, designated strain TZ1. Strain TZ1 effectively oxidized elemental sulfur to sulfate with an anode serving as the sole electron acceptor, at rates faster than Desulfobulbus propionicus, the only other organism in pure culture previously shown to oxidize S with current production. The abundance of Desulfuromonas species enriched on the anodes of marine benthic fuel cells has previously been interpreted as acetate oxidation driving current production, but the results presented here suggest that sulfur-driven current production is a likely alternative.

  20. Oxidative C(sp3)-H bond cleavage, C-C and C=C coupling at a boron center with O2 as the oxidant mediated by platinum(II).

    PubMed

    Pal, S; Zavalij, P Y; Vedernikov, A N

    2014-05-25

    Dimethyl- and diphenylplatinum(II) fragments Pt(II)R2 (R = Me, Ph) enable facile and efficient oxidative C(sp(3))-H bond cleavage and stepwise C-C and C=C coupling at the boron atom of a coordinated 1,5-cyclooctanediyldi(2-pyridyl)borato ligand with O2 as the sole oxidant. PMID:24287586

  1. A metalloenzyme-like catalytic system for the chemoselective oxidative cross-coupling of primary amines to imines under ambient conditions.

    PubMed

    Largeron, Martine; Fleury, Maurice-Bernard

    2015-02-23

    The direct oxidative cross-coupling of primary amines is a challenging transformation as homocoupling is usually preferred. We report herein the chemoselective preparation of cross-coupled imines through the synergistic combination of low loadings of Cu(II) metal-catalyst and o-iminoquinone organocatalyst under ambient conditions. This homogeneous cooperative catalytic system has been inspired by the reaction of copper amine oxidases, a family of metalloenzymes with quinone organic cofactors that mediate the selective oxidation of primary amines to aldehydes. After optimization, the desired cross-coupled imines are obtained in high yields with broad substrate scope through a transamination process that leads to the homocoupled imine intermediate, followed by dynamic transimination. The ability to carry out the reactions at room temperature and with ambient air, rather than molecular oxygen as the oxidant, and equimolar amounts of each coupling partner is particularly attractive from an environmentally viewpoint. PMID:25643811

  2. Convergence of G Protein-Coupled Receptor and Nitric Oxide Pathways Determines the Outcome to Cardiac Ischemic Injury

    PubMed Central

    Huang, Z. Maggie; Gao, Erhe; Fonseca, Fabio; Hayashi, Hiroki; Shang, Xiying; Hoffman, Nicholas E.; Chuprun, J. Kurt; Tian, Xufan; Tilley, Doug G.; Madesh, Muniswamy; Lefer, David J.; Stamler, Jonathan S.; Koch, Walter J.

    2014-01-01

    Heart failure caused by ischemic heart disease is a leading cause of death in the developed world. Treatment is currently centered on regimens involving G protein-coupled receptors (GPCRs) or nitric oxide (NO). These regimens are thought to target distinct molecular pathways. We showed that these pathways were interdependent and converged on the effector GRK2 (GPCR kinase 2) to regulate myocyte survival and function. Ischemic injury coupled to GPCR activation, including GPCR desensitization and myocyte loss, requires GRK2 activation, and we found that cardioprotection mediated by S-nitrosylation and inhibition of GRK2 depended on endothelial nitric oxide synthase (eNOS). Conversely, the cardioprotective effects of NO bioactivity were absent in a knock-in mouse with a form of GRK2 that cannot be S-nitrosylated. Because GRK2 and eNOS inhibit each other, the balance of the activities these enzymes in the myocardium determined the outcome to ischemic injury. Our findings suggest new insights into the mechanism of action of classic drugs used to treat heart failure and new therapeutic approaches to ischemic heart disease. PMID:24170934

  3. Reaction-based colorimetric signaling of Cu(2+) ions by oxidative coupling of phenols with 4-aminoantipyrine.

    PubMed

    Kim, Hong Yeong; Lee, Hyo Jin; Chang, Suk-Kyu

    2015-01-01

    A new Cu(2+)-selective chromogenic probe system based on the oxidative coupling of phenols with 4-aminoantipyrine was developed. Cu(2+) ions promoted facile coupling of phenols with 4-aminoantipyrine to yield quinoneimine dyes. Signaling with a number of phenols having no para-substituent, such as o-cresol and m-cresol, as well as p-chlorophenol having para substituent that could be expelled during the oxidation process was possible. The signaling of Cu(2+) ions was not interfered by the presence of representative metal ions except for Al(3+) ions. The possible interference from Al(3+) ions was successfully removed by using fluoride ions as a masking agent. The phenol-4-aminoantipyrine probe system showed chromogenic Cu(2+) signaling by prominent color change from colorless to pink with a detection limit of 8.5×10(-7) M. The signaling of Cu(2+) ions in practical samples using tap water and simulated semiconductor wastewater was also tested. PMID:25476354

  4. Photoinduced Cross-Linking of Dynamic Poly(disulfide) Films via Thiol Oxidative Coupling.

    PubMed

    Feillée, Noémi; Chemtob, Abraham; Ley, Christian; Croutxé-Barghorn, Céline; Allonas, Xavier; Ponche, Arnaud; Le Nouen, Didier; Majjad, Hicham; Jacomine, Léandro

    2016-01-01

    Initially developed as an elastomer with an excellent record of barrier and chemical resistance properties, poly(disulfide) has experienced a revival linked to the dynamic nature of the S-S covalent bond. A novel photobase-catalyzed oxidative polymerization of multifunctional thiols to poly(disulfide) network is reported. Based solely on air oxidation, the single-step process is triggered by the photodecarboxylation of a xanthone acetic acid liberating a strong bicyclic guanidine base. Starting with a 1 μm thick film based on trithiol poly(ethylene oxide) oligomer, the UV-mediated oxidation of thiols to disulfides occurs in a matter of minutes both selectively, i.e., without overoxidation, and quantitatively as assessed by a range of spectroscopic techniques. Thiolate formation and film thickness determine the reaction rates and yield. Spatial control of the photopolymerization serves to generate robust micropatterns, while the reductive cleavage of S-S bridges allows the recycling of 40% of the initial thiol groups. PMID:26502361

  5. Electro-oxidative polymerization and spectroscopic characterization of novel amide polymers using diphenylamine coupling

    SciTech Connect

    Wang, L.; Wang, Q.Q.; Cammarata, V.

    1998-08-01

    The authors have electropolymerized 1,1{prime}-bis[[p-phenylamino(phenyl)]amido-]ferrocene from CH{sub 3}CN, tetrahydrofuran (THF), and CH{sub 2}Cl{sub 2} to form an alternating main chain polymer of diphenylbenzidine and ferrocene. As a comparison, the authors have electropolymerized 1,4 bis[[p-phenylamino(phenyl)]amido-]benzene which lacks the electrochemical response of the ferrocene group. In nonaqueous solvents, the diphenylbenzidine group shows two reversible le{sup {minus}} oxidations. The second le{sup {minus}} oxidation of the diphenylbenzidine overlaps with the le{sup {minus}} oxidation of the ferrocene group at 0.88 V vs. Ag/AgCl in CH{sub 2}Cl{sub 2}. The electrochemistry of the polymer film in aqueous acid shows two le{sup {minus}} waves consistent with oxidation of the diphenylbenzidine group to the cation and then the dication. The spectroelectrochemistry of both polymer films show broad, low-energy, near-IR bands in aprotic solvents such as CH{sub 2}Cl{sub 2}, THF, and CH{sub 3}CN and aqueous solutions with pH < 3. The authors assign these bands to intermolecular {pi} stacking of the protonated diphenylbenzidinium cations. The electrochemistry of both materials is chemically reversible and forms the basis for electrochromic and redox applications.

  6. Size determination and quantification of engineered cerium oxide nanoparticles by flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry.

    PubMed

    Sánchez-García, L; Bolea, E; Laborda, F; Cubel, C; Ferrer, P; Gianolio, D; da Silva, I; Castillo, J R

    2016-03-18

    Facing the lack of studies on characterization and quantification of cerium oxide nanoparticles (CeO2 NPs), whose consumption and release is greatly increasing, this work proposes a method for their sizing and quantification by Flow Field-flow Fractionation (FFFF) coupled to Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Two modalities of FFFF (Asymmetric Flow- and Hollow Fiber-Flow Field Flow Fractionation, AF4 and HF5, respectively) are compared, and their advantages and limitations discussed. Experimental conditions (carrier composition, pH, ionic strength, crossflow and carrier flow rates) are studied in detail in terms of NP separation, recovery, and repeatability. Size characterization of CeO2 NPs was addressed by different approaches. In the absence of feasible size standards of CeO2 NPs, suspensions of Ag, Au, and SiO2 NPs of known size were investigated. Ag and Au NPs failed to show a comparable behavior to that of the CeO2 NPs, whereas the use of SiO2 NPs provided size estimations in agreement to those predicted by the theory. The latter approach was thus used for characterizing the size of CeO2 NPs in a commercial suspension. Results were in adequate concordance with those achieved by transmission electron microscopy, X-ray diffraction and dynamic light scattering. The quantification of CeO2 NPs in the commercial suspension by AF4-ICP-MS required the use of a CeO2 NPs standards, since the use of ionic cerium resulted in low recoveries (99±9% vs. 73±7%, respectively). A limit of detection of 0.9μgL(-1) CeO2 corresponding to a number concentration of 1.8×1012L(-1) for NPs of 5nm was achieved for an injection volume of 100μL. PMID:26903472

  7. Double-sided magnetic molecularly imprinted polymer modified graphene oxide for highly efficient enrichment and fast detection of trace-level microcystins from large-volume water samples combined with liquid chromatography-tandem mass spectrometry.

    PubMed

    Pan, Sheng-Dong; Chen, Xiao-Hong; Li, Xiao-Ping; Cai, Mei-Qiang; Shen, Hao-Yu; Zhao, Yong-Gang; Jin, Mi-Cong

    2015-11-27

    Microcystins (MCs), a group of cyclic heptapeptide heaptoxins and tumor promoters, are generated by cyanobacteria occurring in surface waters, such as eutrophic lakes, rivers, and reservoirs. In this present study, a novel double-sided magnetic molecularly imprinted polymer modified graphene oxide (DS-MMIP@GO) based magnetic solid-phase extraction (MSPE) method was developed for fast, effective and selective enrichment, and recognition of trace MCs in environmental water samples combined with high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The synthesized novel DS-MMIP@GO was used as the adsorbents in this work and was carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectra. The adsorption and desorption conditions of DS-MMIP@GO toward MCs were optimized in detail to obtain the highest binding capacity, selectivity, and release efficiency. Under the optimum conditions, the enrichment factors of the method for eight target MCs were found to be 2000. The limits of quantitation (LOQs) of the method for eight MCs were in range of 0.1-2.0ngL(-1). The double-sided MMIP modified structure provided DS-MMIP@GO with abundant adsorption sites and permitted it to exhibit excellent enrichment and selectivity toward trace-level MCs. The proposed method was successfully applied for the analysis of environmental water samples with recoveries ranging from 84.1 to 98.2%. Compared to conventional methods for MCs detection reported in literatures, the one developed in this work based on DS-MMIP@GO and LC-MS/MS showed much faster, more sensitive, and more convenient. PMID:26477521

  8. Advanced oxidation processes coupled with electrocoagulation for the exhaustive abatement of Cr-EDTA.

    PubMed

    Durante, Christian; Cuscov, Marco; Isse, Abdirisak Ahmed; Sandonà, Giancarlo; Gennaro, Armando

    2011-02-01

    Using Cr-EDTA as a model system, a two-step method has been investigated for the abatement of persistent chromium complexes in water. The treatment consists of an oxidative decomposition of the organic ligands by means of ozonization or electrochemical oxidation at a boron doped diamond (BDD) electrode, followed by removal of the metal via electrochemical coagulation. In the designed synthetic waste, EDTA has been used both as a chelating agent and as a mimic of the organic content of a typical wastewater provided by a purification leather plant. A crucial point evaluated is the influence of the oxidative pretreatment on the chemical modification of the synthetic waste and hence on the electrocoagulation efficacy. Because of the great stability of Cr complexes, such as Cr-EDTA, the classical coagulation methods, based on ligand exchange between Cr(III) and Fe(II) or Fe(III), are ineffective toward Cr abatement in the presence of organic substances. On the contrary, when advanced oxidation processes (AOPs), such as ozonization or electrooxidation at a BDD anode are applied in series with electrocoagulation (EC), complete abatement of the recalcitrant Cr fraction can be achieved. ECs have been carried out by using Fe sacrificial anodes, with alternating polarization and complete Cr abatement (over 99%) has been obtained with modest charge consumption. It has been found that Cr(III) is first oxidized to Cr(VI) in the AOP preceding EC. Then, during EC, Cr(VI) is mainly reduced back to Cr(III) by electrogenerated Fe(II). Thus, Cr is mainly eliminated as Cr(III). However, a small fraction of Cr(VI) goes with the precipitate as confirmed by XPS analysis of the sludge. PMID:21255817

  9. Application of magnetic iron oxide nanoparticles for the analysis of PCBs in water and soil leachates by gas chromatography-tandem mass spectrometry.

    PubMed

    Pérez, Rosa Ana; Albero, Beatriz; Tadeo, José Luis; Molero, Encarnación; Sánchez-Brunete, Consuelo

    2015-03-01

    Two magnetic solid-phase extraction methods (mSPE) were developed and compared for the extraction and preconcentration of polychlorinated biphenyls (PCBs) from water and soil leachates. Analyses were carried out by gas chromatography coupled to triple quadrupole mass spectrometry. The mSPE extraction parameters were optimised using Fe3O4 nanoparticles coated with palmitate or oleate. Differences were found between the developed mSPE methods depending on the magnetic nanoparticle coating. The extraction efficiency of both sorbents was studied by spiking soil leachates at three concentration levels (from 0.6 to 0.18 ng ml(-1) and from 0.4 to 0.04 ng ml(-1) using palmitate or oleate coated nanoparticles, respectively) and recoveries from 86 to 109 % were obtained. The developed method provided a preconcentration factor of 250. The detection limits were about 29 times lower with the oleate-coated nanoparticles. Although both mSPE procedures could be used for the extraction of PCBs from water and soil leachates, oleate-coated nanoparticles gave the best extractive conditions and lower quantifications limits. Finally, the mSPE using oleate-coated nanoparticles was applied to the analysis of PCBs in river waters and in soil leachates obtained from soil with different physico-chemical characteristics. The levels of PCBs present in the leachates depended on the soil sample. The present work demonstrates the applicability of both mSPE methods to the determination of PCBs in water and soil leachates, which is of interest for mobility and bioavailability studies of these compounds in soil. PMID:25644520

  10. Pd loaded amphiphilic COF as catalyst for multi-fold Heck reactions, C-C couplings and CO oxidation

    NASA Astrophysics Data System (ADS)

    Mullangi, Dinesh; Nandi, Shyamapada; Shalini, Sorout; Sreedhala, Sheshadri; Vinod, Chathakudath P.; Vaidhyanathan, Ramanathan

    2015-06-01

    COFs represent a class of polymers with designable crystalline structures capable of interacting with active metal nanoparticles to form excellent heterogeneous catalysts. Many valuable ligands/monomers employed in making coordination/organic polymers are prepared via Heck and C-C couplings. Here, we report an amphiphilic triazine COF and the facile single-step loading of Pd0 nanoparticles into it. An 18-20% nano-Pd loading gives highly active composite working in open air at low concentrations (Conc. Pd(0) <0.05 mol%, average TON 1500) catalyzing simultaneous multiple site Heck couplings and C-C couplings using ‘non-boronic acid’ substrates, and exhibits good recyclability with no sign of catalyst leaching. As an oxidation catalyst, it shows 100% conversion of CO to CO2 at 150 °C with no loss of activity with time and between cycles. Both vapor sorptions and contact angle measurements confirm the amphiphilic character of the COF. DFT-TB studies showed the presence of Pd-triazine and Pd-Schiff bond interactions as being favorable.

  11. Na+- and Cl–-coupled active transport of nitric oxide synthase inhibitors via amino acid transport system B0,+

    PubMed Central

    Hatanaka, Takahiro; Nakanishi, Takeo; Huang, Wei; Leibach, Frederick H.; Prasad, Puttur D.; Ganapathy, Vadivel; Ganapathy, Malliga E.

    2001-01-01

    Nitric oxide synthase (NOS) inhibitors have therapeutic potential in the management of numerous conditions in which NO overproduction plays a critical role. Identification of transport systems in the intestine that can mediate the uptake of NOS inhibitors is important to assess the oral bioavailability and therapeutic efficacy of these potential drugs. Here, we have cloned the Na+- and Cl–-coupled amino acid transport system B0,+ (ATB0,+) from the mouse colon and investigated its ability to transport NOS inhibitors. When expressed in mammalian cells, ATB0,+ can transport a variety of zwitterionic and cationic amino acids in a Na+- and Cl–-coupled manner. Each of the NOS inhibitors tested compete with glycine for uptake through this transport system. Furthermore, using a tritiated analog of the NOS inhibitor NG-nitro-L-arginine, we showed that Na+- and Cl–-coupled transport occurs via ATB0,+. We then studied transport of a wide variety of NOS inhibitors in Xenopus laevis oocytes expressing the cloned ATB0,+ and found that ATB0,+ can transport a broad range of zwitterionic or cationic NOS inhibitors. These data represent the first identification of an ion gradient–driven transport system for NOS inhibitors in the intestinal tract. PMID:11306607

  12. Pd loaded amphiphilic COF as catalyst for multi-fold Heck reactions, C-C couplings and CO oxidation

    PubMed Central

    Mullangi, Dinesh; Nandi, Shyamapada; Shalini, Sorout; Sreedhala, Sheshadri; Vinod, Chathakudath P.; Vaidhyanathan, Ramanathan

    2015-01-01

    COFs represent a class of polymers with designable crystalline structures capable of interacting with active metal nanoparticles to form excellent heterogeneous catalysts. Many valuable ligands/monomers employed in making coordination/organic polymers are prepared via Heck and C-C couplings. Here, we report an amphiphilic triazine COF and the facile single-step loading of Pd0 nanoparticles into it. An 18–20% nano-Pd loading gives highly active composite working in open air at low concentrations (Conc. Pd(0) <0.05 mol%, average TON 1500) catalyzing simultaneous multiple site Heck couplings and C-C couplings using ‘non-boronic acid’ substrates, and exhibits good recyclability with no sign of catalyst leaching. As an oxidation catalyst, it shows 100% conversion of CO to CO2 at 150 °C with no loss of activity with time and between cycles. Both vapor sorptions and contact angle measurements confirm the amphiphilic character of the COF. DFT-TB studies showed the presence of Pd-triazine and Pd-Schiff bond interactions as being favorable. PMID:26057044

  13. Lateral-coupling coplanar-gate oxide-based thin-film transistors on bare paper substrates

    NASA Astrophysics Data System (ADS)

    Wu, Guodong; Wan, Xiang; Yang, Yi; Jiang, Shuanghe

    2014-11-01

    For conventional thin-film transistors (TFTs), bottom-gate or top-gate configuration is always adopted because the channel current is generally controlled by vertical capacitive coupling. In this article, depending on huge lateral electric-double-layer (EDL) capacitor induced by spatial movement of protons in phosphosilicate glass (PSG) solid electrolyte dielectrics, coplanar-gate indium-zinc-oxide (IZO)-TFTs based on the lateral capacitive coupling were fabricated on bare paper substrates. The PSG solid electrolyte films here were used at the same time as gate dielectrics and smooth buffer layers. These TFTs showed a low-voltage operation of only 1 V with a large field-effect mobility of 13.4 cm2 V-1·s, a high current on/off ratio of 6  ×  106 and a small subthreshold swing of 75 mV/decade. Furthermore, with introducing another coplanar gate, AND logic operation was also demonstrated on the coplanar dual-gate TFTs. These simple lateral-coupling coplanar-gate IZO-TFTs on bare paper substrates are very promising for low-cost portable sensors and bio-electronics.

  14. Enantioselective tandem reaction over a site-isolated bifunctional catalyst.

    PubMed

    Xu, Jianyou; Cheng, Tanyu; Zhang, Kun; Wang, Ziyun; Liu, Guohua

    2016-05-21

    Construction of a site-isolated heterogeneous catalyst to realize the compatibility of bimetallic complexes for a feasible tandem reaction is a significant challenge in heterogeneous asymmetric catalysis. Herein, taking advantage of yolk-shell-structured mesoporous silica, we assemble an active site-isolated bifunctional catalyst through assembly of organopalladium-functionality into silicate channels as an outer shell and chiral organoruthenium-functionality onto silicate yolk as an inner core, realizing the one-pot enantioselective tandem reaction from Pd-catalyzed Sonogashira coupling to Ru-catalyzed asymmetric transfer hydrogenation. As presented in this study, this tandem Sonogashira coupling-asymmetric transfer hydrogenation of haloacetophenones and arylacetylenes affords various chiral conjugated alkynols with high yields and up to 99% enantioselectivity. Moreover, a catalyst can also be recovered easily and recycled repeatedly, making it an interesting feature in a practical organic transformation. PMID:27063335

  15. Coupling Fenton and biological oxidation for the removal of nitrochlorinated herbicides from water.

    PubMed

    Sanchis, S; Polo, A M; Tobajas, M; Rodriguez, J J; Mohedano, A F

    2014-02-01

    The combination of Fenton and biological oxidation for the removal of the nitrochlorinated herbicides alachlor, atrazine and diuron in aqueous solution has been studied. The H2O2 dose was varied from 20 to 100% of the stoichiometric amount related to the initial chemical oxygen demand (COD). The effluents from Fenton oxidation were analyzed for ecotoxicity, biodegradability, total organic carbon (TOC), COD and intermediate byproducts. The chemical step resulted in a significant improvement of the biodegradability in spite of its negligible or even slightly negative effect on the ecotoxicity. Working at 60% of the stoichiometric H2O2 dose allowed obtaining highly biodegradable effluents in the cases of alachlor and atrazine. That dose was even lower (40% of the stoichiometric) for diuron. The subsequent biological treatment was carried out in a sequencing batch reactor (SBR) and the combined Fenton-biological treatment allowed up to around 80% of COD reduction. PMID:24333521

  16. Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies.

    PubMed

    Kim, Wooyul; McClure, Beth Anne; Edri, Eran; Frei, Heinz

    2016-06-01

    The reduction of carbon dioxide by water with sunlight in an artificial system offers an opportunity for utilizing non-arable land for generating renewable transportation fuels to replace fossil resources. Because of the very large scale required for the impact on fuel consumption, the scalability of artificial photosystems is of key importance. Closing the photosynthetic cycle of carbon dioxide reduction and water oxidation on the nanoscale addresses major barriers for scalability as well as high efficiency, such as resistance losses inherent to ion transport over macroscale distances, loss of charge and other efficiency degrading processes, or excessive need for the balance of system components, to mention a few. For the conversion of carbon dioxide to six-electron or even more highly reduced liquid fuel products, introduction of a proton conducting, gas impermeable separation membrane is critical. This article reviews recent progress in the development of light absorber-catalyst assemblies for the reduction and oxidation half reactions with focus on well defined polynuclear structures, and on novel approaches for optimizing electron transfer among the molecular or nanoparticulate components. Studies by time-resolved optical and infrared spectroscopy for the understanding of charge transfer processes between the chromophore and the catalyst, and of the mechanism of water oxidation at metal oxide nanocatalysts through direct observation of surface reaction intermediates are discussed. All-inorganic polynuclear units for reducing carbon dioxide by water at the nanoscale are introduced, and progress towards core-shell nanotube assemblies for completing the photosynthetic cycle under membrane separation is described. PMID:27121982

  17. Advancing tandem solar cells by spectrally selective multilayer intermediate reflectors.

    PubMed

    Hoffmann, Andre; Paetzold, Ulrich W; Zhang, Chao; Merdzhanova, Tsvetelina; Lambertz, Andreas; Ulbrich, Carolin; Bittkau, Karsten; Rau, Uwe

    2014-08-25

    Thin-film silicon tandem solar cells are composed of an amorphous silicon top cell and a microcrystalline silicon bottom cell, stacked and connected in series. In order to match the photocurrents of the top cell and the bottom cell, a proper photon management is required. Up to date, single-layer intermediate reflectors of limited spectral selectivity are applied to match the photocurrents of the top and the bottom cell. In this paper, we design and prototype multilayer intermediate reflectors based on aluminum doped zinc oxide and doped microcrystalline silicon oxide with a spectrally selective reflectance allowing for improved current matching and an overall increase of the charge carrier generation. The intermediate reflectors are successfully integrated into state-of-the-art tandem solar cells resulting in an increase of overall short-circuit current density by 0.7 mA/cm(2) in comparison to a tandem solar cell with the standard single-layer intermediate reflector. PMID:25322181

  18. Activated carbon electrodes: electrochemical oxidation coupled with desalination for wastewater treatment.

    PubMed

    Duan, Feng; Li, Yuping; Cao, Hongbin; Wang, Yi; Crittenden, John C; Zhang, Yi

    2015-04-01

    The wastewater usually contains low-concentration organic pollutants and some inorganic salts after biological treatment. In the present work, the possibility of simultaneous removal of them by combining electrochemical oxidation and electrosorption was investigated. Phenol and sodium chloride were chosen as representative of organic pollutants and inorganic salts and a pair of activated carbon plate electrodes were used as anode and cathode. Some important working conditions such as oxygen concentration, applied potential and temperature were evaluated to reach both efficient phenol removal and desalination. Under optimized 2.0 V of applied potential, 38C of temperature, and 500 mL min(-1) of oxygen flow, over 90% of phenol, 60% of TOC and 20% of salinity were removed during 300 min of electrolysis time. Phenol was removed by both adsorption and electrochemical oxidation, which may proceed directly or indirectly by chlorine and hypochlorite oxidation. Chlorophenols were detected as degradation intermediates, but they were finally transformed to carboxylic acids. Desalination was possibly attributed to electrosorption of ions in the pores of activated carbon electrodes. The charging/regeneration cycling experiment showed good stability of the electrodes. This provides a new strategy for wastewater treatment and recycling. PMID:25585871

  19. Construction of an Ultrahigh Pressure Liquid Chromatography-Tandem Mass Spectral Library of Plant Natural Products and Comparative Spectral Analyses.

    PubMed

    Lei, Zhentian; Jing, Li; Qiu, Feng; Zhang, Hua; Huhman, David; Zhou, Zhiqin; Sumner, Lloyd W

    2015-07-21

    A plant natural product tandem mass spectral library has been constructed using authentic standards and purified compounds. Currently, the library contains 1734 tandem mass spectra for 289 compounds, with the majority (76%) of the compounds being plant phenolics such as flavonoids, isoflavonoids, and phenylpropanoids. Tandem mass spectra and chromatographic retention data were acquired on a triple quadrupole mass spectrometer coupled to an ultrahigh pressure liquid chromatograph using six different collision energies (CEs) (10-60 eV). Comparative analyses of the tandem mass spectral data revealed that the loss of ring substituents preceded the C-ring opening during the fragmentation of flavonoids and isoflavonoids. At lower CE (i.e., 10 and 20 eV), the flavonoids and isoflavonoid central ring structures typically remained intact, and fragmentation was characterized by the loss of the substituents (i.e., methyl and glycosyl groups). At higher CE, the flavonoid and isoflavonoid core ring systems underwent C-ring cleavage and/or rearrangement depending on the structure, particularly hydroxylation patterns. In-source electrochemical oxidation was observed for phenolics that had ortho-diphenol moieties (i.e., vicinal hydroxyl groups on the aromatic rings). The ortho-diphenols were oxidized to ortho-quinones, yielding an intensive and, in most cases, a base ion peak corresponding to a [(M - 2H) - H](-) ion in their mass spectra. The library also contains reverse-phase retention times, allowing for the construction, validation, and testing of an artificial neural network retention prediction of other flavonoids and isoflavonoids not contained within the library. The library is freely available for nonprofit, academic use and it can be downloaded at http://www.noble.org/apps/Scientific/WebDownloadManager/DownloadArea.aspx. PMID:26107650

  20. Monolithic tandem solar cell

    DOEpatents

    Wanlass, M.W.

    1994-06-21

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.

  1. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W.

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  2. Kinetics and Mechanisms of Oxidative Cleavage of HIV RRE RNA by Rev-Coupled Transition Metal Chelates.

    PubMed

    Joyner, Jeff C; Keuper, Kevin D; Cowan, J A

    2013-04-01

    Catalytic metallodrugs were used to oxidatively cleave HIV-1 Rev Response Element RNA (RRE RNA), and the mechanisms of RNA cleavage were studied using a combination of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), fluorescence spectroscopy, and gel electrophoresis. The metallodrugs, which contained combinations of the transition metals Fe(2+), Co(2+), Ni(2+), and Cu(2+) and the Rev-coupled chelators DOTA, DTPA, EDTA, NTA, tripeptide GGH, and tetrapeptide KGHK, bind to and cleave HIV RRE RNA through heretofore unknown oxidative mechanisms. The broad spectrum of metal catalysts and co-reagents provided a means for systematic variation of oxidative reactivity without significant perturbation of binding between catalyst and RNA. Detailed MS analyses were used to monitor formation of RNA fragments containing terminal 2',3'-cyclic phosphate (2',3'-cPO4), 3'-phosphate (3'-PO4), 3'-phosphoglycolate (3'-PG), 5'- hydroxyl (5'-OH), 5'- phosphate (5'-PO4) and other nascent overhangs at sites of cleavage. The distinct overhangs corresponded to distinct mechanisms of oxidative hydrogen-abstraction (H abstraction), hydrolysis, and/or endonucleolysis, allowing a dissection of the contributions of various mechanisms of oxidative cleavage. Rapid co-reactant- and catalyst-dependent formation of fragments containing terminal 3'-PG, 3'-PO4 and 5'-PO4 overhangs appeared to be initiated primarily by H abstraction events. The standard thiobarbituric acid (TBA) assay was employed herein in a novel usage to monitor the formation of base 2-hydroxypropenal products produced by 4'-H abstraction in RNA. Formation of an adduct with TBA was monitored by fluorescence, and its quantification correlated with the formation of 3'-PG monitored by MALDI-TOF MS, confirming oxidative 4'-H abstraction as a major mechanism of rapid catalyst-mediated cleavage of RRE RNA. Rapid formation of 3'-PO4 overhangs was most likely a result of 5'-H abstraction. Apparent rates of formation of 3'-PG (a unique product of 4'-H abstraction) at differing nucleotide positions within the RNA were used to triangulate probable 3D positions of metal centers and establish the distance-dependence of 4'-H abstraction for certain catalytic metallodrugs. PMID:23626900

  3. Conjugated Microporous Poly(Benzochalcogenadiazole)s for Photocatalytic Oxidative Coupling of Amines under Visible Light.

    PubMed

    Wang, Zi Jun; Garth, Kim; Ghasimi, Saman; Landfester, Katharina; Zhang, Kai A I

    2015-10-26

    Metal-free visible-light photocatalysts offer a clean, sustainable solution to many pressing environmental issues. Herein, we present a molecular design strategy to fine-tune the valence and conduction band levels of a series of conjugated microporous polymer networks based on poly(benzochalcogenadiazole) for heterogeneous photocatalysis. Enhanced photocatalytic efficiency was observed by altering the chalcogene moieties in the electron-accepting benzochalcogenadiazole unit of the polymer backbone structure. Photooxidative coupling of benzylamines was chosen as a model reaction. This design strategy leading to enhanced efficiency could potentially improve a wide range of photoredox reactions. PMID:26350332

  4. Waveguide-coupled detector in zero-change complementary metal-oxide-semiconductor

    NASA Astrophysics Data System (ADS)

    Alloatti, L.; Srinivasan, S. A.; Orcutt, J. S.; Ram, R. J.

    2015-07-01

    We report a waveguide-coupled photodetector realized in a standard CMOS foundry without requiring changes to the process flow (zero-change CMOS). The photodetector exploits carrier generation in the silicon-germanium normally utilized as stressor in pFETs. The measured responsivity and 3 dB bandwidth are of 0.023 A/W at a wavelength of 1180 nm and 32 GHz at -1 V bias (18 GHz at 0 V bias). The dark current is less than 10 pA and the dynamic range is larger than 60 dB.

  5. Nitrous Oxide as a Hydrogen Acceptor for the Dehydrogenative Coupling of Alcohols.

    PubMed

    Gianetti, Thomas L; Annen, Samuel P; Santiso-Quinones, Gustavo; Reiher, Markus; Driess, Matthias; Grützmacher, Hansjörg

    2016-01-01

    The oxidation of alcohols with N2 O as the hydrogen acceptor was achieved with low catalyst loadings of a rhodium complex that features a cooperative bis(olefin)amido ligand under mild conditions. Two different methods enable the formation of either the corresponding carboxylic acid or the ester. N2 and water are the only by-products. Mechanistic studies supported by DFT calculations suggest that the oxygen atom of N2 O is transferred to the metal center by insertion into the Rh-H bond of a rhodium amino hydride species, generating a rhodium hydroxy complex as a key intermediate. PMID:26693955

  6. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    SciTech Connect

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  7. CuO/ZnO coupled oxide films obtained by the electrodeposition technique and their photocatalytic activity in phenol degradation under solar irradiation.

    PubMed

    Paz, Diego S; Foletto, Edson L; Bertuol, Daniel A; Jahn, Sérgio L; Collazzo, Gabriela C; da Silva, Syllos S; Chiavone-Filho, Osvaldo; do Nascimento, Claudio A O

    2013-01-01

    CuO/ZnO coupled oxide films were electrodeposited onto an aluminum substrate and tested as photocatalysts in degradation of phenol molecules in aqueous solution under sunlight. The obtained films were characterized by X-ray diffraction, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results showed that the photocatalytic activity of films was significant, especially to coupled oxide film with a CuO/ZnO ratio equal to 0.697, which presented about 70% degradation of the aromatic molecules and 42% of total organic carbon (TOC) removal at 300 min under solar irradiation. Therefore, this work highlights the potential application of CuO/ZnO coupled oxide films obtained by electrodeposition onto aluminum substrate in the field of photocatalysis. PMID:24037153

  8. Tandems as injectors for synchrotrons

    SciTech Connect

    Ruggiero, A.G.

    1992-01-01

    This is a review on the use of Tandem electrostatic accelerators for injection and filling of synchrotrons to accelerate intense beams of heavy-ions to relativistic energies. The paper emphasizes the need of operating the Tandems in pulsed mode for this application. It has been experimentally demonstrated that at the present this type of accelerators still provides the most reliable and best performance.

  9. Tandems as injectors for synchrotrons

    SciTech Connect

    Ruggiero, A.G.

    1992-08-01

    This is a review on the use of Tandem electrostatic accelerators for injection and filling of synchrotrons to accelerate intense beams of heavy-ions to relativistic energies. The paper emphasizes the need of operating the Tandems in pulsed mode for this application. It has been experimentally demonstrated that at the present this type of accelerators still provides the most reliable and best performance.

  10. Advanced oxidation of aromatic VOCs using a pilot system with electron beam-catalyst coupling

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Joon; Kim, Junghwan; Son, Youn-Suk; Chung, Sang-Gwi; Kim, Jo-Chun

    2012-05-01

    The decomposition of volatile organic compounds (VOCs) using a pilot system of electron beam (EB)-catalyst coupling was investigated. Two aromatic VOCs, toluene (1800 ppmC) and o-xylene (1500 ppmC), were irradiated with a dose range of 0-10 kGy at room temperature. The removal efficiencies for toluene and o-xylene were 92.4% and 94.5%, respectively, under a 10 kGy absorbed dose condition, which were higher than the results of 45.7% and 52.3% when EB-only was used, respectively. The CO2 selectivity approached 100% for both toluene and o-xylene using the EB-catalyst coupling system, while the concentrations of O3 formed were 0.02 ppm (toluene) and 0.003 ppm (o-xylene) at 10 kGy. The aerosol concentration was also measured as 43.2 μg/m3 (toluene) and 53.4 μg/m3 (o-xylene) at 10 kGy absorbed dose.

  11. Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability

    NASA Astrophysics Data System (ADS)

    Cazzola, Martina; Corazzari, Ingrid; Prenesti, Enrico; Bertone, Elisa; Vernè, Enrica; Ferraris, Sara

    2016-03-01

    Polyphenols are actually achieving an increasing interest due to their potential health benefits, such as antioxidant, anticancer, antibacterial and bone stimulation abilities. However their poor bioavailability and stability hamper an effective clinical application as therapeutic principles. The opportunity to couple these biomolecules with synthetic biomaterials, in order to obtain local delivery at the site of interest, improve their bioavailability and stability and combine their properties with the ones of the substrate, is a challenging opportunity for the biomedical research. A silica based bioactive glass, CEL2, has been successfully coupled with gallic acid and natural polyphenols extracted from red grape skins and green tea leaves. The effectiveness of grafting has been verified by means of XPS analyses and the Folin&Ciocalteu tests. In vitro bioactivity has been investigated by soaking in simulated body fluid (SBF). Surface modification after functionalization and early stage reactivity in SBF have been studied by means of zeta potential electrokinetic measurements in KCl and SBF. Finally the antioxidant properties of bare and modified bioactive glasses has been investigated by means of the evaluation of free radical scavenging activity by Electron Paramagnetic Resonance (EPR)/spin trapping technique after UV photolysis of H2O2 highlighting scavenging activity of the bioactive glass.

  12. Korean red ginseng inhibits arginase and contributes to endotheliumdependent vasorelaxation through endothelial nitric oxide synthase coupling.

    PubMed

    Shin, Woosung; Yoon, Jeongyeon; Oh, Goo Taeg; Ryoo, Sungwoo

    2013-03-01

    Korean red ginseng water extract (KG-WE) has known beneficial effects on the cardiovascular system via inducting nitric oxide (NO) production in endothelium. Endothelial arginase inhibits the activity of endothelial nitric oxide synthase (eNOS) by substrate depletion, thereby reducing NO bioavailability and contributing to vascular diseases including hypertension, aging, and atherosclerosis. In the present study, we demonstrate that KG-WE inhibits arginase activity and negatively regulates NO production and reactive oxygen species generation in endothelium. This is associated with increased dimerization of eNOS without affecting the protein expression levels of either arginase or eNOS. In a vascular tension assay, when aortas isolated from wild type mice were incubated with KG-WE, NO-dependent enhanced vasorelaxation was observed. Furthermore, KG-WE administered via by drinking water to atherogenic model mice being fed high cholesterol diet improved impaired vascular function. Taken together, these results suggest that KG-WE may exert vasoprotective effects through augmentation of NO signaling by inhibiting arginase. Therefore, KG-WE may be useful in the treatment of vascular diseases derived from endothelial dysfunction, such as atherosclerosis. PMID:23717158

  13. Inorganic proton conducting electrolyte coupled oxide-based dendritic transistors for synaptic electronics

    NASA Astrophysics Data System (ADS)

    Wan, Chang Jin; Zhu, Li Qiang; Zhou, Ju Mei; Shi, Yi; Wan, Qing

    2014-04-01

    Ionic/electronic hybrid devices with synaptic functions are considered to be the essential building blocks for neuromorphic systems and brain-inspired computing. Here, artificial synapses based on indium-zinc-oxide (IZO) transistors gated by nanogranular SiO2 proton-conducting electrolyte films are fabricated on glass substrates. Spike-timing dependent plasticity and paired-pulse facilitation are successfully mimicked in an individual bottom-gate transistor. Most importantly, dynamic logic and dendritic integration established by spatiotemporally correlated spikes are also mimicked in dendritic transistors with two in-plane gates as the presynaptic input terminals.Ionic/electronic hybrid devices with synaptic functions are considered to be the essential building blocks for neuromorphic systems and brain-inspired computing. Here, artificial synapses based on indium-zinc-oxide (IZO) transistors gated by nanogranular SiO2 proton-conducting electrolyte films are fabricated on glass substrates. Spike-timing dependent plasticity and paired-pulse facilitation are successfully mimicked in an individual bottom-gate transistor. Most importantly, dynamic logic and dendritic integration established by spatiotemporally correlated spikes are also mimicked in dendritic transistors with two in-plane gates as the presynaptic input terminals. Electronic supplementary information (ESI) available: The structures and transfer characteristics of the IZO junctionless transistor working in bottom-gate mode and in-plane gate mode. See DOI: 10.1039/c3nr05882d

  14. Glutamate Utilization Couples Oxidative Stress Defense and the Tricarboxylic Acid Cycle in Francisella Phagosomal Escape

    PubMed Central

    Ramond, Elodie; Gesbert, Gael; Rigard, Mélanie; Dairou, Julien; Dupuis, Marion; Dubail, Iharilalao; Meibom, Karin; Henry, Thomas; Barel, Monique; Charbit, Alain

    2014-01-01

    Intracellular bacterial pathogens have developed a variety of strategies to avoid degradation by the host innate immune defense mechanisms triggered upon phagocytocis. Upon infection of mammalian host cells, the intracellular pathogen Francisella replicates exclusively in the cytosolic compartment. Hence, its ability to escape rapidly from the phagosomal compartment is critical for its pathogenicity. Here, we show for the first time that a glutamate transporter of Francisella (here designated GadC) is critical for oxidative stress defense in the phagosome, thus impairing intra-macrophage multiplication and virulence in the mouse model. The gadC mutant failed to efficiently neutralize the production of reactive oxygen species. Remarkably, virulence of the gadC mutant was partially restored in mice defective in NADPH oxidase activity. The data presented highlight links between glutamate uptake, oxidative stress defense, the tricarboxylic acid cycle and phagosomal escape. This is the first report establishing the role of an amino acid transporter in the early stage of the Francisella intracellular lifecycle. PMID:24453979

  15. An Alignment Medium for Measuring Residual Dipolar Couplings in Pure DMSO: Liquid Crystals from Graphene Oxide Grafted with Polymer Brushes.

    PubMed

    Zong, Wen; Li, Gao-Wei; Cao, Jiang-Ming; Lei, Xinxiang; Hu, Mao-Lin; Sun, Han; Griesinger, Christian; Tan, Ren Xiang

    2016-03-01

    Residual dipolar couplings (RDCs) have attracted attention in light of their great impact on the structural elucidation of organic molecules. However, the effectiveness of RDC measurements is limited by the shortage of alignment media compatible with widely used organic solvents, such as DMSO. Herein, we present the first liquid crystal (LC) based alignment medium that is compatible with pure DMSO, thus enabling RDC measurements of polar and intermediate polarity molecules. The liquid crystals were obtained by grafting polymer brushes onto graphene oxide (GO) using free radical polymerization. The resulting new medium offers several advantages, such as absence of background signals, narrow line shapes, and tunable alignment. Importantly, this medium is compatible with π-conjugated molecules. Moreover, sonication-induced fragmentation can reduce the size of GO sheets. The resulting anisotropic medium has moderate alignment strength, which is a prerequisite for an accurate RDC measurement. PMID:26890579

  16. High-temperature catalytic oxidative conversion of propane to propylene and ethylene involving coupling of exothermic and endothermic reactions

    SciTech Connect

    Choudhary, V.R.; Rane, V.H.; Rajput, A.M.

    2000-04-01

    Coupling of the exothermic catalytic oxidative conversion and endothermic thermal cracking (noncatalytic) reactions of propane to propylene and ethylene over the SrO/La{sub 2}O{sub 3}/SA5205 catalyst in the presence of steam and limited oxygen was investigated at different process conditions (temperature, 700--850 C; C{sub 3}H{sub 8}/O{sub 2} ratio in feed, 2.0--8.0; H{sub 2}O/C{sub 3}H{sub 8} ratio, 0.5--2.5; space velocity, 2,000--15,000 cm{sup 3}/g h). In the presence of steam and limited O{sub 2}, the endothermic thermal cracking and exothermic oxidative conversion reactions occur simultaneously and there is no coke formation on the catalyst. Because of the direct coupling of exothermic and endothermic reactions, this process occurs in a most energy efficient and safe manner. The propane conversion, selectivity for propylene, and net heat of reaction ({Delta}H{sub r}) in the process are strongly influenced by the temperature and concentration of O{sub 2} relative to the propane in the feed. The C{sub 3}H{sub 6}/C{sub 2}H{sub 4} product ratio is also strongly influenced by the temperature, C{sub 3}H{sub 8}/O{sub 2} feed ratio, and space velocity. The net heat of reaction can be controlled by manipulating the reaction temperature and C{sub 3}H{sub 8}/O{sub 2} ratio in the feed; the process exothermicity is reduced drastically with increasing the temperature and/or C{sub 3}H{sub 8}/O{sub 2} feed ratio.

  17. Redox-active ligand-mediated oxidative addition and reductive elimination at square planar cobalt(III): multielectron reactions for cross-coupling.

    PubMed

    Smith, Aubrey L; Hardcastle, Kenneth I; Soper, Jake D

    2010-10-20

    Square planar cobalt(III) complexes with redox-active amidophenolate ligands are strong nucleophiles that react with alkyl halides, including CH(2)Cl(2), under gentle conditions to generate stable square pyramidal alkylcobalt(III) complexes. The net electrophilic addition reactions formally require 2e(-) oxidation of the metal fragment, but there is no change in metal oxidation state because the reaction proceeds with 1e(-) oxidation of each amidophenolate ligand. Although the four-coordinate complexes are very strong nucleophiles, they are mild outer-sphere reductants. Accordingly, addition of alkyl- or phenylzinc halides to the five-coordinate organometallic complexes regenerates the square planar starting materials and extrudes C-C coupling products. The net 2e(-) reductive elimination reaction also occurs without a oxidation state change at the cobalt(III) center. Together these reactions comprise a complete, well-defined cycle for cobalt Negishi-like cross-coupling of alkyl halides with organozinc reagents. PMID:20879770

  18. FEM simulation of oxidation induced stresses with a coupled crack propagation in a TBC model system

    NASA Astrophysics Data System (ADS)

    Seiler, P.; Bker, M.; Rsier, J.

    2010-06-01

    Plasma sprayed thermal barrier coating systems are used on top of highly stressed components, e.g. on gas turbine blades, to protect the underlying substrate from the high surrounding temperatures. A typical coating system consists of the bond-coat (BC), the thermal barrier coating (TBC), and the thermally grown oxide (TGO) between the BC and the TBC. This study examines the failure mechanisms which are caused by the diffusion of oxygen through the TBC and the resulting growth of the TGO. To study the behaviour of the complex failure mechanisms in thermal barrier coatings, a simplified model system is used to reduce the number of system parameters. The model system consists of a bond-coat material (fast creeping Fecralloy or slow creeping MA956) as the substrate with a Y2O3 partially stabilised plasma sprayed zircon oxide TBC on top and a TGO between the two layers. Alongside the experimental studies a FEM simulation was developed to calculate the stress distribution inside the simplified coating system [1]. The simulation permits the identification of compression and tension areas which are established by the growth of the oxide layer. Furthermore a 2-dimensional finite element model of crack propagation was developed in which the crack direction is calculated by using short trial cracks in different directions. The direction of the crack in the model system is defined as the crack direction with the maximum energy release rate [2,3]. The simulated stress distributions and the obtained crack path provide an insight into the possible failure mechanisms in the coating and allow to draw conclusions for optimising real thermal barrier coating systems. The simulated growth stresses of the TGO show that a slow creeping BC may reduce lifetime. This is caused by stress concentration and cracks under the TGO. A slow creeping BC on the other hand reduces the stresses in the TBC. The different failure mechanisms emphasise the existence of a lifetime optimum which depends on the creep properties of the used bond-coat material. Experimental results show a good agreement with the predicted failure mechanisms.

  19. Catalytic Alkene Carboaminations Enabled by Oxidative Proton-Coupled Electron Transfer

    PubMed Central

    Choi, Gilbert J.; Knowles, Robert R.

    2015-01-01

    Here we describe a dual catalyst system comprised of an iridium photocatalyst and weak phosphate base that is capable of both selectively homolyzing the N–H bonds of N-arylamides (bond dissociation free energies ~ 100 kcal/mol) via concerted proton-coupled electron transfer (PCET) and mediating efficient carboamination reactions of the resulting amidyl radicals. This manner of PCET activation, which finds its basis in numerous biological redox processes, enables the formal homolysis of a stronger amide N–H bond in the presence of weaker allylic C–H bonds, a selectivity that is uncommon in conventional molecular H atom acceptors. Moreover, this transformation affords access to a broad range of structurally complex heterocycles from simple amide starting materials. The design, synthetic scope, and mechanistic evaluation of the PCET process are described. PMID:26166022

  20. 1D Coulomb drag between coupled nanowires formed at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Tang, Yuhe; Tomczyk, Michelle; Huang, Mengchen; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    ``Coulomb drag'' is a transport phenomenon where Coulomb interaction between two close but electrically isolated conductors induces voltage in one conductor when an electric current is injected in the other conductor. It is a powerful approach to probe electronic correlations. Here we examine 1D electronic correlations in a proximally coupled nanowire system where two parallel nanowires are created with conductive atomic force microscopy at the LaAlO3/SrTiO3 interface. Coulomb drag measurements are made by injecting current into one wire (drive wire) and measuring the induced voltage in the other wire (drag wire). This geometry offers experimental insights into the interplay of electron pairing and superconductivity in reduced dimensions. We gratefully acknowledge financial support from DOE DE-SC0014417 (JL).

  1. Manifold, bus support and coupling arrangement for solid oxide fuel cells

    DOEpatents

    Parry, G.W.

    1988-04-21

    Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperature resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC. 11 figs.

  2. Monomolecular layers and thin films of silane coupling agents by vapor-phase adsorption on oxidized aluminum

    SciTech Connect

    Kurth, D.G.; Bein, T.

    1992-08-06

    Thin films of tetraethoxysilane [TEOS], (3-bromopropyl)trimethoxysilane [BPS], trimethoxyvinylsilane [VS], and 3-(trimethoxysilyl) propyl methacrylate [TPM] on oxidized aluminum surfaces have been investigated by reflection-absorption FTIR spectroscopy, ellipsometry, contact angle, and quartz crystal microbalance (QCM) measurements. Gravimetric measurements with the QCM can reveal quantitative aspects of adsorption and film formation, even for films as thin as monolayers. Adsorption of these silane coupling agents from solution typically produces multilayer films. Vapor-phase adsorption of TEOS and TPM at room temperature results in monomolecular layers. The coupling agents VS and BPS require additional heating after the vapor-phase adsorption to initiate the hydrolysis and condensation reactions necessary for the surface attachment, which produces one to three layers. For vapor adsorbed films a packing density of 4-7 molecules/nm{sup 2} was found. The data strongly suggest that the organic moieties in several of these films have a preferential orientation on the surface; they can be viewed as two-dimensional, oligomeric siloxane networks with oriented organic chains. Subsequent heating of TPM films results in structural rearrangements; heating of TEOS results in complete condensation to SiO{sub 2} films. 43 refs., 6 figs., 4 tabs.

  3. Electro-optic switching in iron oxide nanoparticle embedded paramagnetic chiral liquid crystal via magneto-electric coupling

    NASA Astrophysics Data System (ADS)

    Goel, Puja; Arora, Manju; Biradar, Ashok M.

    2014-03-01

    The variation in optical texture, electro-optic, and dielectric properties of iron oxide nanoparticles (NPs) embedded ferroelectric liquid crystal (FLC) with respect to change in temperature and electrical bias conditions are demonstrated in the current investigations. Improvement in spontaneous polarization and response time in nanocomposites has been attributed to magneto-electric (ME) coupling resulting from the strong interaction among the ferromagnetic nanoparticle's exchange field (due to unpaired e-) and the field of liquid crystal molecular director. Electron paramagnetic resonance spectrum of FLC material gives a broad resonance signal with superimposed components indicating the presence of a source of spin. This paramagnetic behavior of host FLC material had been a major factor in strengthening the guest host interaction by giving an additional possibility of (a) spin-spin interaction and (b) interactions between magnetic-dipole and electric-dipole moments (ME effects) in the composite materials. Furthermore, the phenomenon of dielectric and static memory effect in these composites are also observed which yet again confirms the coupling of magnetic NP's field with FLC's director orientation. We therefore believe that such advanced soft materials holding the optical and electrical properties of conventional LCs with the magnetic and electronic properties of ferromagnetic nanoparticles are going to play a key role in the development of futuristic multifunctional optical devices.

  4. Electro-optic switching in iron oxide nanoparticle embedded paramagnetic chiral liquid crystal via magneto-electric coupling

    SciTech Connect

    Goel, Puja; Arora, Manju; Biradar, Ashok M.

    2014-03-28

    The variation in optical texture, electro-optic, and dielectric properties of iron oxide nanoparticles (NPs) embedded ferroelectric liquid crystal (FLC) with respect to change in temperature and electrical bias conditions are demonstrated in the current investigations. Improvement in spontaneous polarization and response time in nanocomposites has been attributed to magneto-electric (ME) coupling resulting from the strong interaction among the ferromagnetic nanoparticle's exchange field (due to unpaired e{sup −}) and the field of liquid crystal molecular director. Electron paramagnetic resonance spectrum of FLC material gives a broad resonance signal with superimposed components indicating the presence of a source of spin. This paramagnetic behavior of host FLC material had been a major factor in strengthening the guest host interaction by giving an additional possibility of (a) spin-spin interaction and (b) interactions between magnetic-dipole and electric-dipole moments (ME effects) in the composite materials. Furthermore, the phenomenon of dielectric and static memory effect in these composites are also observed which yet again confirms the coupling of magnetic NP's field with FLC's director orientation. We therefore believe that such advanced soft materials holding the optical and electrical properties of conventional LCs with the magnetic and electronic properties of ferromagnetic nanoparticles are going to play a key role in the development of futuristic multifunctional optical devices.

  5. Low-temperature catalytic oxidative coupling of methane in an electric field over a Ce–W–O catalyst system

    PubMed Central

    Sugiura, Kei; Ogo, Shuhei; Iwasaki, Kousei; Yabe, Tomohiro; Sekine, Yasushi

    2016-01-01

    We examined oxidative coupling of methane (OCM) over various Ce–W–O catalysts at 423 K in an electric field. Ce2(WO4)3/CeO2 catalyst showed high OCM activity. In a periodic operation test over Ce2(WO4)3/CeO2 catalyst, C2 selectivity exceeded 60% during three redox cycles. However, Ce2(WO4)3/CeO2 catalyst without the electric field showed low activity, even at 1073 K: CH4 Conv., 6.0%; C2 Sel., 2.1%. A synergetic effect between the Ce2(WO4)3 structure and electric field created the reactive oxygen species for selective oxidation of methane. Results of XAFS, in-situ Raman and periodic operation tests demonstrated that OCM occurred as the lattice oxygen in Ce2(WO4)3 (short W–O bonds in distorted WO4 unit) was consumed. The consumed oxygen was reproduced by a redox mechanism in the electric field. PMID:27118726

  6. Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus.

    PubMed

    Gong, Changxiu; Jiang, Jianguo; Li, De'an

    2015-11-01

    We focused on the effects of ultrasound and Fenton reagent in ultrasonic coupling Fenton oxidation (U + F) pre-treatment processes on the disintegration of wastewater treatment plant sludge. The results demonstrated that U + F treatment could significantly increase soluble COD, TOC, total N, proteins, total P and PO4(3-) concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U + F treatment increased the soluble COD by 2.1- and 1.4-fold compared with U and F alone, respectively. U + F treatment increased the total N and P by 1.7- and 2.2-fold, respectively, compared with F alone. After U + F treatment, sludge showed a considerably finer particle size and looser microstructure based on scanning electron microscopy, and the highest OH signal intensity increased from 568.7 by F treatment to 1106.3 using electron spin resonance. This demonstrated that U+F treatment induces disintegration of sludge and release of organic carbon, nitrogen and phosphorus better. PMID:26100728

  7. Antioxidant inhibition of skin inflammation induced by reactive oxidants: evaluation of the redox couple dihydrolipoate/lipoate.

    PubMed

    Fuchs, J; Milbradt, R

    1994-01-01

    Reactive oxygen species play an important role in mediating skin inflammation, and antioxidants may provide protection. We investigated the anti-inflammatory activity of natural antioxidants, such as superoxide dismutase, catalase, trolox (a water-soluble tocopherol analog) and the redox couple dihydrolipoate/lipoate in skin. Furthermore we compared the anti-inflammatory potency of natural R and racemic dihydrolipoate, as well as R and S lipoate. Skin inflammation in hairless mice was induced by intradermal injection of the hydrogen peroxide producing enzyme glucose oxidase (GOD) or by topical application of the prooxidant drug anthralin. Intradermal injection of the antioxidants inhibited skin inflammation caused by GOD (catalase, dihydrolipoate) and anthralin (trolox, superoxide dismutase, dihydrolipoate). There was no statistically significant difference between the anti-inflammatory activity of the natural R and racemic dihydrolipoate. R or S lipoate did not inhibit skin inflammation when injected intradermally. In feeding experiments, however, R lipoate significantly inhibited GOD-mediated skin inflammation, while S lipoate was only marginally protective. We conclude that (1) several natural antioxidants such as catalase, superoxide dismutase and dihydrolipoate have anti-inflammatory properties in dermatitis induced by reactive oxidants, (2) lipoate (oxidized dihydrolipoate) has skin anti-inflammatory activity when administered orally and (3) naturally occurring R lipoate is a more potent anti-inflammatory agent than the non-physiological S lipoate. PMID:8054210

  8. Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress.

    PubMed

    Yin, Nuoya; Liu, Qian; Liu, Jiyan; He, Bin; Cui, Lin; Li, Zhuona; Yun, Zhaojun; Qu, Guangbo; Liu, Sijin; Zhou, Qunfang; Jiang, Guibin

    2013-05-27

    The impact of silver nanoparticles (AgNPs) on the central nervous system is a topic with mounting interest and concern and the facts remain elusive. In the current study, the neurotoxicity of commercial AgNPs to rat cerebellum granule cells (CGCs) and the corresponding molecular mechanism are closely investigated. It is demonstrated that AgNPs induce significant cellular toxicity to CGCs in a dose-dependent manner without damaging the cell membrane. Flow cytometry analysis with the Annexin V/propidium iodide (PI) staining indicates that the apoptotic proportion of CGCs upon treatment with AgNPs is greatly increased compared to the negative control. Moreover, the activity of caspase-3 is largely elevated in AgNP-treated cells compared to the negative control. AgNPs are demonstrated to induce oxidative stress, reflected by the massive generation of reactive oxygen species (ROS), the depletion of antioxidant glutathione (GSH), and the increase of intracellular calcium. Histological examination suggests that AgNPs provoke destruction of the cerebellum granular layer in rats with concomitant activation of caspase-3, in parallel to the neurotoxicity of AgNPs observed in vitro. Taken together, it is demonstrated for the first time that AgNPs substantially impair the survival of primary neuronal cells through apoptosis coupled to oxidative stress, depending on the caspase activation-mediated signaling. PMID:23427069

  9. Aligning electronic and protonic energy levels of proton-coupled electron transfer in water oxidation on aqueous TiO₂.

    PubMed

    Cheng, Jun; Liu, Xiandong; Kattirtzi, John A; VandeVondele, Joost; Sprik, Michiel

    2014-11-01

    The high overpotential in water oxidation on anodes is a limiting factor for the large-scale application of photoelectrochemical cells. To overcome this limitation, it is essential to understand the four proton-coupled electron transfer (PCET) steps in the reaction mechanism and their implications to the overpotential. Herein, a simple scheme to compute the energies of the PCET steps in water oxidation on the aqueous TiO2 surface using a hybrid density functional is described. An energy level diagram for fully decoupled electron- and proton-transfer reactions in which both electronic and protonic levels are placed on the same potential scale is also described. The level diagram helps to visualize the electronic and protonic components of the overpotential, and points out what are needed to improve. For TiO2, it is found that its catalytic activity is due to aligning the protonic energy levels in the PCET steps, while improving the activity requires also aligning the electronic levels. PMID:25056713

  10. Steady-state vs non-steady-state transient kinetic analysis of surface coverages during the oxidative coupling of methane

    SciTech Connect

    Peil, K.P.; Goodwin, J.G. Jr.; Marcelin, G. )

    1991-12-01

    Because of its greater simplicity and lower cost, non-steady-state transient kinetic analysis has been used by a number of workers in the study of methane oxidation. With the non-steady-state technique, the concentration level of one of the reactants is put through a step change and the resulting transients in product and reactant concentrations are obtained. The quantity of surface intermediates detected during this real transient may or may not relate to those existing under steady-state reaction since the surface is experiencing major changes. Examination of reactive surface intermediates under steady-state isotopic transient kinetic analysis. This technique entails an abrupt switch in the isotopic composition of one of the reactants, which does not disturb the steady-state condition, accompanied by the continuous monitoring (e.g., by mass spectrometry) of the relaxation and evolution of labeled reactants and products. The main difference between these two techniques is the unavoidable perturbation of the reaction environment with non-steady-state isotopic transient techniques. Results are presented that detail for the first time some of the problems with trying to relate amounts of surface species measured under non-steady-state conditions to concentrations of surface reaction intermediates existing during the steady-state oxidative coupling of methane.

  11. Bioinspired heme, heme/nonheme diiron, heme/copper, and inorganic NOx chemistry: *NO((g)) oxidation, peroxynitrite-metal chemistry, and *NO((g)) reductive coupling.

    PubMed

    Schopfer, Mark P; Wang, Jun; Karlin, Kenneth D

    2010-07-19

    The focus of this Forum Article highlights work from our own laboratories and those of others in the area of biochemical and biologically inspired inorganic chemistry dealing with nitric oxide [nitrogen monoxide, *NO((g))] and its biological roles and reactions. The latter focus is on (i) oxidation of *NO((g)) to nitrate by nitric oxide dioxygenases (NODs) and (ii) reductive coupling of two molecules of *NO((g)) to give N(2)O(g). In the former case, NODs are described, and the highlighting of possible peroxynitrite/heme intermediates and the consequences of this are given by a discussion of recent works with myoglobin and a synthetic heme model system for NOD action. Summaries of recent copper complex chemistries with *NO((g)) and O(2)(g), leading to peroxynitrite species, are given. The coverage of biological reductive coupling of *NO((g)) deals with bacterial nitric oxide reductases (NORs) with heme/nonheme diiron active sites and on heme/copper oxidases such as cytochrome c oxidase, which can mediate the same chemistry. Recently designed protein and synthetic model compounds (heme/nonheme/diiron or heme/copper) as functional mimics are discussed in some detail. We also highlight examples from the chemical literature, not necessarily involving biologically relevant metal ions, that describe the oxidation of *NO((g)) to nitrate (or nitrite) and possible peroxynitrite intermediates or reductive coupling of *NO((g)) to give nitrous oxide. PMID:20666386

  12. A Hafnium-Based Metal-Organic Framework as a Nature-Inspired Tandem Reaction Catalyst.

    PubMed

    Beyzavi, M Hassan; Vermeulen, Nicolaas A; Howarth, Ashlee J; Tussupbayev, Samat; League, Aaron B; Schweitzer, Neil M; Gallagher, James R; Platero-Prats, Ana E; Hafezi, Nema; Sarjeant, Amy A; Miller, Jeffrey T; Chapman, Karena W; Stoddart, J Fraser; Cramer, Christopher J; Hupp, Joseph T; Farha, Omar K

    2015-10-28

    Tandem catalytic systems, often inspired by biological systems, offer many advantages in the formation of highly functionalized small molecules. Herein, a new metal-organic framework (MOF) with porphyrinic struts and Hf6 nodes is reported. This MOF demonstrates catalytic efficacy in the tandem oxidation and functionalization of styrene utilizing molecular oxygen as a terminal oxidant. The product, a protected 1,2-aminoalcohol, is formed selectively and with high efficiency using this recyclable heterogeneous catalyst. Significantly, the unusual regioselective transformation occurs only when an Fe-decorated Hf6 node and the Fe-porphyrin strut work in concert. This report is an example of concurrent orthogonal tandem catalysis. PMID:26434603

  13. Isolation and Characterization of Microbes Mediating Thermodynamically Favorable Coupling of Anaerobic Oxidation of Methane and Metal Reduction

    NASA Astrophysics Data System (ADS)

    Glass, J. B.; Reed, B. C.; Sarode, N. D.; Kretz, C. B.; Bray, M. S.; DiChristina, T. J.; Stewart, F. J.; Fowle, D. A.; Crowe, S.

    2014-12-01

    Methane is the third most reduced environmentally relevant electron donor for microbial metabolisms after organic carbon and hydrogen. In anoxic ecosystems, the major sink for methane is anaerobic oxidation of methane (AOM) mediated by syntrophic microbial consortia that couple AOM to reduction of an oxidized electron acceptor to yield free energy. In marine sediments, AOM is generally coupled to reduction of sulfate despite an extremely small amount of free energy yield because sulfate is the most abundant electron acceptor in seawater. While AOM coupled to Fe(III) and Mn(IV) reduction (Fe- and Mn-AOM) is 10-30x more thermodynamically favorable than sulfate-AOM, and geochemical data suggests that it occurs in diverse environments, the microorganisms mediating Fe- and Mn-AOM remain unknown. Lake Matano, Indonesia is an ideal ecosystem to enrich for Fe- and Mn-AOM microbes because its anoxic ferruginous deep waters and sediments contain abundant Fe(III), Mn(IV) and methane, and extremely low sulfate and nitrate. Our research aims to isolate and characterize the microbes mediating Fe- and Mn-AOM from three layers of Lake Matano sediments through serial enrichment cultures in minimal media lacking nitrate and sulfate. 16S rRNA amplicon sequencing of sediment inoculum revealed the presence of the Fe(III)-reducing bacterium Geobacter (5-10% total microbial community in shallow sediment and 35-60% in deeper sediment) as well as 1-2% Euryarchaeota implicated in methane cycling, including ANME-1 and 2d and Methanosarcinales. After 90 days of primary enrichment, all three sediment layers showed high levels of Fe(III) reduction (60-90 μM Fe(II) d-1) in the presence of methane compared to no methane and heat-killed controls. Treatments with added Fe(III) as goethite contained higher abundances of Geobacter than the inoculum (60-80% in all layers), suggesting that Geobacter may be mediating Fe(III) reduction in these enrichments. Quantification of AOM rates is underway, and will be used to estimate the plausibility of metal-AOM as a thermodynamically favorable methane sink in anoxic ecosystems of both the modern and ancient Earth.

  14. Multiplex Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Simultaneous Quantification in Human Plasma of Fluconazole, Itraconazole, Hydroxyitraconazole, Posaconazole, Voriconazole, Voriconazole-N-Oxide, Anidulafungin, and Caspofungin▿ †

    PubMed Central

    Decosterd, Laurent Arthur; Rochat, Bertrand; Pesse, Benoît; Mercier, Thomas; Tissot, Frédéric; Widmer, Nicolas; Bille, Jacques; Calandra, Thierry; Zanolari, Boris; Marchetti, Oscar

    2010-01-01

    Therapeutic drug monitoring (TDM) may contribute to optimizing the efficacy and safety of antifungal therapy because of the large variability in drug pharmacokinetics. Rapid, sensitive, and selective laboratory methods are needed for efficient TDM. Quantification of several antifungals in a single analytical run may best fulfill these requirements. We therefore developed a multiplex ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method requiring 100 μl of plasma for simultaneous quantification within 7 min of fluconazole, itraconazole, hydroxyitraconazole, posaconazole, voriconazole, voriconazole-N-oxide, caspofungin, and anidulafungin. Protein precipitation with acetonitrile was used in a single extraction procedure for eight analytes. After reverse-phase chromatographic separation, antifungals were quantified by electrospray ionization-triple-quadrupole mass spectrometry by selected reaction monitoring detection using the positive mode. Deuterated isotopic compounds of azole antifungals were used as internal standards. The method was validated based on FDA recommendations, including assessment of extraction yields, matrix effect variability (<9.2%), and analytical recovery (80.1 to 107%). The method is sensitive (lower limits of azole quantification, 0.01 to 0.1 μg/ml; those of echinocandin quantification, 0.06 to 0.1 μg/ml), accurate (intra- and interassay biases of −9.9 to +5% and −4.0 to +8.8%, respectively), and precise (intra- and interassay coefficients of variation of 1.2 to 11.1% and 1.2 to 8.9%, respectively) over clinical concentration ranges (upper limits of quantification, 5 to 50 μg/ml). Thus, we developed a simple, rapid, and robust multiplex UPLC-MS/MS assay for simultaneous quantification of plasma concentrations of six antifungals and two metabolites. This offers, by optimized and cost-effective lab resource utilization, an efficient tool for daily routine TDM aimed at maximizing the real-time efficacy and safety of different recommended single-drug antifungal regimens and combination salvage therapies, as well as a tool for clinical research. PMID:20855739

  15. Ultrafast Study of Dynamic interfacial Exchange Coupling in Ferromagnet/Oxide/Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Ou, Yu-Sheng; Chiu, Yi-Hsin; Harmon, Nicholas; Odenthal, Patrick; Sheffield, Matthew; Chilcote, Michael; Kawakami, Roland; Flatté, Michael; Johnston-Halperin, Ezekiel

    Time-resolved Kerr/Faraday rotation (TRKR/TRFR) is employed to study GaAs spin dynamics in the regime of strong and dynamic exchange coupling to an adjacent MgO/Fe layer. This study reveals a dramatic, resonant suppression in the inhomogeneous spin lifetime (T2*) in the GaAs layer. Further investigation of the magnetization dynamics of the neighboring Fe layer, also using TRKR/TRFR, reveals not only the expected Kittel-dispersion but also additional lower frequency modes with very short lifetime (65 ps) that are not easily observed with conventional ferromagnetic resonance (FMR) techniques. These results suggest the intriguing possibility of resonant dynamic spin transfer between the GaAs and Fe spin systems. We discuss the potential for this work to establish GaAs spin dynamics as an efficient detector of spin dissipation and transport in the regime of dynamically-driven spin injection in ferromagnet/semiconductor heterostructures. Center for Emergent Materials; U.S. Department of Energy.

  16. Long-range transfer of electron-phonon coupling in oxide superlattices.

    PubMed

    Driza, N; Blanco-Canosa, S; Bakr, M; Soltan, S; Khalid, M; Mustafa, L; Kawashima, K; Christiani, G; Habermeier, H-U; Khaliullin, G; Ulrich, C; Le Tacon, M; Keimer, B

    2012-08-01

    The electron-phonon interaction is of central importance for the electrical and thermal properties of solids, and its influence on superconductivity, colossal magnetoresistance and other many-body phenomena in correlated-electron materials is the subject of intense research at present. However, the non-local nature of the interactions between valence electrons and lattice ions, often compounded by a plethora of vibrational modes, presents formidable challenges for attempts to experimentally control and theoretically describe the physical properties of complex materials. Here we report a Raman scattering study of the lattice dynamics in superlattices of the high-temperature superconductor YBa(2)Cu(3)O(7) (YBCO) and the colossal-magnetoresistance compound La(2/3)Ca(1/3)MnO(3) that suggests a new approach to this problem. We find that a rotational mode of the MnO(6) octahedra in La(2/3)Ca(1/3)MnO(3) experiences pronounced superconductivity-induced line-shape anomalies, which scale linearly with the thickness of the YBCO layers over a remarkably long range of several tens of nanometres. The transfer of the electron-phonon coupling between superlattice layers can be understood as a consequence of long-range Coulomb forces in conjunction with an orbital reconstruction at the interface. The superlattice geometry thus provides new opportunities for controlled modification of the electron-phonon interaction in complex materials. PMID:22797829

  17. Coupled molecular-dynamics and first-principle transport calculations of metal/oxide/metal heterostructures

    NASA Astrophysics Data System (ADS)

    Zapol, Peter; Karpeyev, Dmitry; Maheshwari, Ketan; Zhong, Xiaoliang; Narayanan, Badri; Sankaranarayanan, Subramanian; Wilde, Michael; Heinonen, Olle; Rungger, Ivan

    2015-03-01

    The electronic conduction in Hf-oxide heterostructures for use in, e.g., resistive switching devices, depends sensitively on local oxygen stoichiometry and interactions at interfaces with metal electrodes. In order to model the electronic structure of different disordered configurations near interfaces, we have combined molecular dynamics (MD) simulations with first-principle based non-equilibrium Green's functions (NEGF) methods, including self-interaction corrections. We have developed an approach to generating automated workflows that combine MD and NEGF computations over many parameter values using the Swift parallel scripting language. A sequence of software tools transforms the result of one calculation into the input of the next allowing for a high-throughput concurrent parameter sweep. MD simulations generate systems with quenched disorder, which are then directly fed to NEGF and on to postprocessing. Different computations can be run on different computer platforms matching the computational load to the hardware resources. We will demonstrate results for metal-HfO2-metal heterostructures obtained using this workflow. Argonne National Laboratory's work was supported under U.S. Department of Energy Contract DE-AC02-06CH11357.

  18. Manifold, bus support and coupling arrangement for solid oxide fuel cells

    DOEpatents

    Parry, Gareth W.

    1989-01-01

    Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperture resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. The piping thus forms a manfold for directing fuel and air to each module in a string and makes electrical contact with the module's anode and cathode to conduct the DC power generated by the SOFC. The piping also provides structureal support for each individual module and maintains each string of modules as a structurally integral unit for ensuring high strength in a large 3-dimensional array of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC.

  19. Using Coupled Mesoscale Experiments and Simulations to Investigate High Burn-Up Oxide Fuel Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.

    2014-12-01

    Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.

  20. Proton conducting sodium alginate electrolyte laterally coupled low-voltage oxide-based transistors

    SciTech Connect

    Liu, Yang Hui; Wan, Qing; Qiang Zhu, Li; Shi, Yi

    2014-03-31

    Solution-processed sodium alginate electrolyte film shows a high proton conductivity of ∼5.5 × 10{sup −3} S/cm and a high lateral electric-double-layer (EDL) capacitance of ∼2.0 μF/cm{sup 2} at room temperature with a relative humidity of 57%. Low-voltage in-plane-gate indium-zinc-oxide-based EDL transistors laterally gated by sodium alginate electrolytes are fabricated on glass substrates. The field-effect mobility, current ON/OFF ratio, and subthreshold swing of such EDL transistors are estimated to be 4.2 cm{sup 2} V{sup −1} s{sup −1}, 2.8 × 10{sup 6}, and 130 mV/decade, respectively. At last, a low-voltage driven resistor-load inverter is also demonstrated. Such in-plane-gate EDL transistors have potential applications in portable electronics and low-cost biosensors.

  1. Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism

    USGS Publications Warehouse

    Coates, J.D.; Councell, T.; Ellis, D.J.; Lovley, D.R.

    1998-01-01

    An isolate, designated GC-29, that could incompletely oxidize glucose to acetate and carbon dioxide with Fe(III) serving as the electron acceptor was recovered from freshwater sediments of the Potomac River, Maryland. This metabolism yielded energy to support cell growth. Strain GC-29 is a facultatively anaerobic, Gram-negative motile rod which, in addition to glucose, also used sucrose, lactate, pyruvate, yeast extract, casamino acids or H2 as alternative electron donors for Fe(III) reduction. Stain GC-29 could reduce NO-3, Mn(IV), U(VI), fumarate, malate, S2O32-, and colloidal S0 as well as the humics analog, 2,6-anthraquinone disulfonate. Analysis of the almost complete 16S rRNA sequence indicated that strain GC-29 belongs in the Shewanella genus in the epsilon subdivision of the Proteobacteria. The name Shewanella saccharophilia is proposed. Shewanella saccharophilia differs from previously described fermentative microorganisms that metabolize glucose with the reduction of Fe(III) because it transfers significantly more electron equivalents to Fe(III); acetate and carbon dioxide are the only products of glucose metabolism; energy is conserved from Fe(III) reduction; and glucose is not metabolized in the absence of Fe(III). The metabolism of organisms like S. saccharophilia may account for the fact that glucose is metabolized primarily to acetate and carbon dioxide in a variety of sediments in which Fe(III) reduction is the terminal electron accepting process.

  2. Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism.

    PubMed

    Coates, J D; Councell, T; Ellis, D J; Lovley, D R

    1998-12-01

    An isolate, designated GC-29, that could incompletely oxidize glucose to acetate and carbon dioxide with Fe(III) serving as the electron acceptor was recovered from freshwater sediments of the Potomac River, Maryland. This metabolism yielded energy to support cell growth. Strain GC-29 is a facultatively anaerobic, gram-negative motile rod which, in addition to glucose, also used sucrose, lactate, pyruvate, yeast extract, casamino acids or H2 as alternative electron donors for Fe(III) reduction. Stain GC-29 could reduce NO3(-), Mn(IV), U(VI), fumarate, malate, S2O3(2-), and colloidal S0 as well as the humics analog, 2,6-anthraquinone disulfonate. Analysis of the almost complete 16S rRNA sequence indicated that strain GC-29 belongs in the Shewanella genus in the epsilon subdivision of the Proteobacteria. The name Shewanella saccharophilia is proposed. Shewanella saccharophilia differs from previously described fermentative microorganisms that metabolize glucose with the reduction of Fe(III) because it transfers significantly more electron equivalents to Fe(III); acetate and carbon dioxide are the only products of glucose metabolism; energy is conserved from Fe(III) reduction; and glucose is not metabolized in the absence of Fe(III). The metabolism of organisms like S. saccharophilia may account for the fact that glucose is metabolized primarily to acetate and carbon dioxide in a variety of sediments in which Fe(III) reduction is the terminal electron accepting process. PMID:16887653

  3. New developments in the analysis of fragrances and earthy-musty compounds in water by solid-phase microextraction (metal alloy fibre) coupled with gas chromatography-(tandem) mass spectrometry.

    PubMed

    Machado, S; Gonçalves, C; Cunha, E; Guimarães, A; Alpendurada, M F

    2011-05-30

    Fragrances are widespread aquatic contaminants due to their presence in many personal care products used daily in developed countries. Levels of galaxolide and tonalide are commonly found in surface waters, urban wastewaters and river sediments. On the other hand, earthy-musty compounds confer bad odour to drinking water at levels that challenge the analytical capabilities. The combined determination of earthy-musty compounds and fragrances in water would be a breakthrough to make the traditional organoleptic evaluation of the water quality stricter and safer for the analyst. Two approaches were attempted to improve the analytical capabilities: analyte pre-concentration with a newly developed PDMS-DVB solid-phase microextraction fibre on metal alloy core and sensitive detection by tandem mass spectrometry (MS/MS). The optimization of SPME parameters was carried out using a central composite design and desirability functions. The final optimum extraction conditions were: headspace extraction at 70°C during 40 min adding 200 g L(-1) of NaCl. The detection limits in tandem MS (0.02-20 ng L(-1)) were marginally lower compared to full scan except for geosmin and trichloroanisol which go down to 0.1 and 0.02 ng L(-1), respectively. The analysis of different water matrices revealed that fragrances and earthy-musty compounds were absent from ground- and drinking waters. Surface waters of river Leça contained levels of galaxolide around 250 ng L(-1) in the 4 terminal sampling stations, which are downstream of WWTPs and polluted tributaries. Geosmine was ubiquitously distributed in natural waters similarly in rivers Leça and Douro at concentrations <7 ng L(-1). PMID:21530789

  4. A robust and cost-effective integrated process for nitrogen and bio-refractory organics removal from landfill leachate via short-cut nitrification, anaerobic ammonium oxidation in tandem with electrochemical oxidation.

    PubMed

    Wu, Li-Na; Liang, Da-Wei; Xu, Ying-Ying; Liu, Ting; Peng, Yong-Zhen; Zhang, Jie

    2016-07-01

    A cost-effective process, consisting of a denitrifying upflow anaerobic sludge blanket (UASB), an oxygen-limited anoxic/aerobic (A/O) process for short-cut nitrification, and an anaerobic reactor (ANR) for anaerobic ammonia oxidation (anammox), followed by an electrochemical oxidation process with a Ti-based SnO2-Sb2O5 anode, was developed to remove organics and nitrogen in a sewage diluted leachate. The final chemical oxygen demand (COD), ammonia nitrogen (NH4(+)-N) and total nitrogen (TN) of 70, 11.3 and 39 (all in mg/L), respectively, were obtained. TN removal in UASB, A/O and ANR were 24.6%, 49.6% and 16.1%, respectively. According to the water quality and molecular biology analysis, a high degree of anammox besides short-cut nitrification and denitrification occurred in A/O. Counting for 16.1% of TN removal in ANR, at least 43.2-49% of TN was removed via anammox. The anammox bacteria in A/O and ANR, were in respective titers of (2.5-5.9)×10(9) and 2.01×10(10)copy numbers/(gSS). PMID:27115616

  5. Transition metal free intramolecular selective oxidative C(sp3)-N coupling: synthesis of N-aryl-isoindolinones from 2-alkylbenzamides.

    PubMed

    Verma, Ajay; Patel, Saket; Meenakshi; Kumar, Amit; Yadav, Abhimanyu; Kumar, Shailesh; Jana, Sadhan; Sharma, Shubham; Prasad, Ch Durga; Kumar, Sangit

    2015-01-25

    A synthetic method has been developed for the preparation of biologically important isoindolinones including indoprofen and DWP205190 drugs from 2-alkylbenzamide substrates by transition metal-free intramolecular selective oxidative coupling of C(sp(3))-H and N-H bonds utilizing iodine, potassium carbonate and di-tert-butyl peroxide in acetonitrile at 110-140 °C. PMID:25487732

  6. Synthesis of functionalized alpha-pyrone and butenolide derivatives by rhodium-catalyzed oxidative coupling of substituted acrylic acids with alkynes and alkenes.

    PubMed

    Mochida, Satoshi; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2009-08-21

    The straightforward and efficient synthesis of alpha-pyrone and butenolide derivatives has been achieved by the rhodium-catalyzed oxidative coupling reactions of substituted acrylic acids with alkynes and alkenes, respectively. Some alpha-pyrones obtained exhibit solid-state fluorescence. PMID:19572577

  7. One-step synthesis of isocoumarins and 3-benzylidenephthalides via ligandless Pd-catalyzed oxidative coupling of benzoic acids and vinylarenes.

    PubMed

    Nandi, Debkumar; Ghosh, Debalina; Chen, Shih-Ji; Kuo, Bing-Chiuan; Wang, Nancy M; Lee, Hon Man

    2013-04-01

    A straightforward synthetic method for the preparation of isocoumarins and 3-benzylidenephthalides via C-H olefination and oxidative coupling of readily available benzoic acids and vinylarenes was developed. The directing effect of the substituents on the benzoic acid allows for the synthesis of both types of lactone in pure form. PMID:23506132

  8. Dye Sensitized Tandem Photovoltaic Cells

    SciTech Connect

    Barber, Greg D.

    2009-12-21

    This work provided a new way to look at photoelectrochemical cells and their performance. Although thought of as low efficiency, a the internal efficiency of a 9% global efficiency dye sensitized solar cell is approximately equal to an 18% efficient silicon cell when each is compared to their useful spectral range. Other work undertaken with this contract also reported the first growth oriented titania and perovskite columns on a transparent conducting oxide. Other work has shown than significant performance enhancement in the performance of dye sensitized solar cells can be obtained through the use of coupling inverse opal photonic crystals to the nanocrystalline dye sensitized solar cell. Lastly, a quick efficient method was developed to bond titanium foils to transparent conducting oxide substrates for anodization.

  9. New Effective Material Couple--Oxide Ceramic and Carbon Nanotube-- Developed for Aerospace Microsystem and Micromachine Technologies

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; VanderWal, Randall L.; Tomasek, Aaron J.; Sayir, Ali; Farmer, Serene C.

    2004-01-01

    The prime driving force for using microsystem and micromachine technologies in transport vehicles, such as spacecraft, aircraft, and automobiles, is to reduce the weight, power consumption, and volume of components and systems to lower costs and increase affordability and reliability. However, a number of specific issues need to be addressed with respect to using microsystems and micromachines in aerospace applications--such as the lack of understanding of material characteristics; methods for producing and testing the materials in small batches; the limited proven durability and lifetime of current microcomponents, packaging, and interconnections; a cultural change with respect to system designs; and the use of embedded software, which will require new product assurance guidelines. In regards to material characteristics, there are significant adhesion, friction, and wear issues in using microdevices. Because these issues are directly related to surface phenomena, they cannot be scaled down linearly and they become increasingly important as the devices become smaller. When microsystems have contacting surfaces in relative motion, the adhesion and friction affect performance, energy consumption, wear damage, maintenance, lifetime and catastrophic failure, and reliability. Ceramics, for the most part, do not have inherently good friction and wear properties. For example, coefficients of friction in excess of 0.7 have been reported for ceramics and ceramic composite materials. Under Alternate Fuels Foundation Technologies funding, two-phase oxide ceramics developed for superior high-temperature wear resistance in NASA's High Operating Temperature Propulsion Components (HOTPC) project and new two-layered carbon nanotube (CNT) coatings (CNT topcoat/iron bondcoat/quartz substrate) developed in NASA's Revolutionary Aeropropulsion Concepts (RAC) project have been chosen as a materials couple for aerospace applications, including micromachines, in the nanotechnology lubrication task because of their potential for superior friction and wearf properties in air and in an ultrahigh vacuum, spacelike environment. At the NASA Glenn Research Center, two-phase oxide ceramic eutectics, Al2O3/ZrO2(Y2O3), were directionally solidified using the laser-float-zone process, and carbon nanotubes were synthesized within a high-temperature tube furnace at 800 C. Physical vapor deposition was used to coat all quartz substrates with 5-nm-thick iron as catalyst and bondcoat, which formed iron islands resembling droplets and serving as catalyst particles on the quartz. A series of scanning electron micrographs showing multiwalled carbon nanotubes directionally grown as aligned "nanograss" on quartz is presented. Unidirectional sliding friction eperiments were conducted at Glenn with the two-layered CNT coatings in contact with the two-phase Al2O3/ZrO2(Y2O3) eutectics in air and in ultrachigh vacuum. The main criteria for judging the performance of the materials couple for solid lubrication and antistick applications in a space environment were the coefficient of friction and the wear resistance (reciprocal of wear rate), which had to be less than 0.2 and greater than 10(exp 5) N(raised dot)/cubic millimetes, respectively, in ultrahigh vacuum. In air, the coefficient of friction for the CNT coatings in contact with Al2O3/ZrO2 (Y2O3) eutectics was 0.04, one-fourth of that for quartz. In an ultrahigh vacuum, the coefficient of friction for CNT coatings in contact with Al2O3/ZrO2 (Y2O3) was one-third of that for quartz. The two-phase Al2O3/ZrO2 (Y2O3) eutectic coupled with the two-layered CNT coating met the coefficient of friction and wear resistance criteria both in air and in an ultrahigh vacuum, spacelike environment. This material's couple can dramatically improve the stiction (or adhesion), friction, and wear resistance of the contacting surfaces, which are major issues for microdevices and micromachines.

  10. Over-Oxidation as the Key Step in the Mechanism of the MoCl5-Mediated Dehydrogenative Coupling of Arenes.

    PubMed

    Schubert, Moritz; Franzmann, Peter; Wünsche von Leupoldt, Anica; Koszinowski, Konrad; Heinze, Katja; Waldvogel, Siegfried R

    2016-01-18

    Molybdenum pentachloride is an unusually powerful reagent for the dehydrogenative coupling of arenes. Owing to the high reaction rate using MoCl5, several labile moieties are tolerated in this transformation. The mechanistic course of the reaction was controversially discussed although indications for a single electron transfer as the initial step were found recently. Herein, based on a combined study including synthetic investigations, electrochemical measurements, EPR spectroscopy, DFT calculations, and mass spectrometry, we deduct a highly consistent mechanistic scenario: MoCl5 acts as a one-electron oxidant in the absence of TiCl4 and as two-electron oxidant in the presence of TiCl4, but leads to an over-oxidized intermediate in both cases, which protects it from side reactions. In the course of aqueous work-up the reagent waste (Mo(III/IV) species) acts as reducing agent generating the desired organic C-C coupling product. PMID:26473303

  11. Exergy & Economic Analysis of Catalytic Coal Gasifiers Coupled with Solid Oxide Fuel Cells

    SciTech Connect

    Siefert, Nicholas; Litster, Shawn

    2012-01-01

    The National Energy Technology Laboratory (NETL) has undertaken a review of coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide. One way to achieve an overall system efficiency of greater than 60% is in a power plant in which a catalytic coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis and this is sent to a SOFC, with CO{sub 2} capture occurring either before or after the SOFC. Integration of a catalytic gasifier with a SOFC, as opposed to a conventional entrained flow gasifier, is improved due to (a) decreased exergy destruction inside a catalytic, steam-coal gasifier producing a high-methane content syngas, and (b) decreased exergy destruction in the SOFC due to the ability to operate at lower air stoichiometric flow ratios. For example, thermal management of the SOFC is greatly improved due to the steam-methane reforming in the anode of the fuel cell. This paper has two main goals. First, we converted the levelized cost of electricity (LCOE) estimates of various research groups into an average internal rate of return on investment (IRR) in order to make comparisons between their results, and to underscore the increased rate of return on investment for advanced integrated gasification fuel cell systems with carbon capture & sequestration (IGFC-CCS) compared with conventional integrated gasification combined cycle (IGCC-CCS) systems and pulverized coal combustion (PCC-CCS) systems. Using capital, labor, and fuel costs from previous researchers and using an average price of baseload electricity generation of $61.50 / MW-hr, we calculated inflation-adjusted IRR values of up to 13%/yr for catalytic gasification with pressurized fuel cell and carbon dioxide capture and storage (CCS), whereas we calculate an IRR of ∼4%/yr and ∼2%/yr for new, conventional IGCC-CCS and PCC-CCS, respectively. If the carbon dioxide is used for enhanced oil recovery rather than for saline aquifer storage, then the IRR values improve to 16%/yr, 10%/yr, and 8%/yr, respectively. For comparison, the IRR of a new conventional IGCC or PCC power plant without CO{sub 2} capture are estimated to be 11%/yr and 15.0%/yr, respectively. Second, we conducted an exergy analysis of two different configurations in which syngas from a catalytic gasifier fuels a SOFC. In the first case, the CO{sub 2} is captured before the SOFC, and the anode tail gas is sent back to the catalytic gasifier. In the second case, the anode tail gas is oxy-combusted using oxygen ion ceramic membranes and then CO{sub 2} is captured for sequestration. In both cases, we find that the system efficiency is greater than 60%. These values compare well with previous system analysis. In future work, we plan to calculate the IRR of these two cases and compare with previous economic analyses conducted at NETL.

  12. Neuronal-Derived Nitric Oxide and Somatodendritically Released Vasopressin Regulate Neurovascular Coupling in the Rat Hypothalamic Supraoptic Nucleus

    PubMed Central

    Du, Wenting; Stern, Javier E.

    2015-01-01

    The classical model of neurovascular coupling (NVC) implies that activity-dependent axonal glutamate release at synapses evokes the production and release of vasoactive signals from both neurons and astrocytes, which dilate arterioles, increasing in turn cerebral blood flow (CBF) to areas with increased metabolic needs. However, whether this model is applicable to brain areas that also use less conventional neurotransmitters, such as neuropeptides, is currently unknown. To this end, we studied NVC in the rat hypothalamic magnocellular neurosecretory system (MNS) of the supraoptic nucleus (SON), in which dendritic release of neuropeptides, including vasopressin (VP), constitutes a key signaling modality influencing neuronal and network activity. Using a multidisciplinary approach, we investigated vasopressin-mediated vascular responses in SON arterioles of hypothalamic brain slices of Wistar or VP-eGFP Wistar rats. Bath-applied VP significantly constricted SON arterioles (Δ−41 ± 7%) via activation of the V1a receptor subtype. Vasoconstrictions were also observed in response to single VP neuronal stimulation (Δ−18 ± 2%), an effect prevented by V1a receptor blockade (V2255), supporting local dendritic VP release as the key signal mediating activity-dependent vasoconstrictions. Conversely, osmotically driven magnocellular neurosecretory neuronal population activity leads to a predominant nitric oxide-mediated vasodilation (Δ19 ± 2%). Activity-dependent vasodilations were followed by a VP-mediated vasoconstriction, which acted to limit the magnitude of the vasodilation and served to reset vascular tone following activity-dependent vasodilation. Together, our results unveiled a unique and complex form of NVC in the MNS, supporting a competitive balance between nitric oxide and activity-dependent dendritic released VP, in the generation of proper NVC responses. PMID:25834057

  13. Atmospheric oxygen levels, anaerobic methane oxidation, and the coupling of the global COS cycles by sulfate reduction

    NASA Astrophysics Data System (ADS)

    Wortmann, U. G.; Chernyavsky, B. M.

    2007-12-01

    Changes in the partitioning between the reduced and oxidized reservoirs of carbon and sulfur are the dominant control on atmospheric oxygen levels, and the partitioning itself depends to a large degree on microbial redox processes remineralizing organic matter (OM). However, the controls of organic matter preservation in marine sediments are one of the most complex and controversial issues in contemporary biochemistry. Knowledge how the transition from one electron acceptor to another affects OM remineralization rates is scant even for the transition from aerobic to anaerobic respiration. Much less is known about the transition from anaerobic respiration to fermentation. Although the individual pathways of methane generation are known, our understanding of the complex interactions between different bacterial groups remains limited, resulting in considerable difficulties to resolve these questions in microcosm experiments. Here we show that a dramatic drop in seawater sulfate concentrations during the Early Cretaceous (Wortmann & Chernyavsky, Nature 2007) resulted in a global breakdown of microbial sulfate reduction in the marine subsurface biosphere. This event resulted in a positive excursion of the global δ13C-value, suggesting that organic matter remineralization rates dropped by more than 50%. This implies that the methanogenic microbial community was unable to increase their metabolic rates, despite the increased supply of organic matter. the reduced availability of sulfate for anaerobic methane oxidation did not increase the flux of isotopically light carbon into the ocean/atmosphere system. We therefore speculate that the capacity of marine methanogenic ecosystems to synthesize extracellular enzymes to hydrolyze organic matter is specific to the prevailing type of organic matter. This results in a positive coupling of the metabolic activity of both ecosystems, which in turn is a necessary prerequisite to decouple reduced carbon and sulfur burial, a key requirement to stabilize atmospheric oxygen levels.

  14. Tandem Terminal Ion Source

    SciTech Connect

    2000-10-23

    OAK-B135 Tandem Terminal Ion Source. The terminal ion source (TIS) was used in several experiments during this reporting period, all for the {sup 7}Be({gamma}){sup 8}B experiment. Most of the runs used {sup 1}H{sup +} at terminal voltages from 0.3 MV to 1.5 MV. One of the runs used {sup 2}H{sup +} at terminal voltage of 1.4 MV. The other run used {sup 4}He{sup +} at a terminal voltage of 1.37 MV. The list of experiments run with the TIS to date is given in table 1 below. The tank was opened four times for unscheduled source repairs. On one occasion the tank was opened to replace the einzel lens power supply which had failed. The 10 kV unit was replaced with a 15 kV unit. The second time the tank was opened to repair the extractor supply which was damaged by a tank spark. On the next occasion the tank was opened to replace a source canal which had sputtered away. Finally, the tank was opened to replace the discharge bottle which had been coated with aluminum sputtered from the exit canal.

  15. Development of high band gap materials for tandem solar cells and simulation studies on mechanical tandem solar cells

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Vishnuvardhanan

    Development of low cost, high efficiency tandem solar cells is essential for large scale adoption of solar energy especially in densely populated regions of the world. In this thesis four-terminal mechanical (stack like) tandem solar cells were evaluated using detailed simulation models and design criteria for selecting candidate materials were established. Since silicon solar cells are low cost and have a multi-giga watt global manufacturing and supply chain capacity already in place then only tandem stacks incorporating silicon as one of the layers in the device was investigated. Two candidate materials which have high band gaps that could be used as top cells in the mechanical tandem device were explored as part of the thesis. Dye-sensitized solar cells (DSSC) sensitized with N719 dye (one of the candidates for the top cell) were fabricated with the goal of enabling a flexible processing path to lower cost. Stainless steel (SS) mesh substrates were used to fabricate anodes for flexible DSSC in order to evaluate them as replacements for more expensive Transparent Conducting Oxides (TCO's). Loss mechanisms in DSSC's due to SS mesh oxidation were quantified and protective coatings to prevent oxidation of SS mesh were developed. The second material which was evaluated for use as the top cell was copper zinc tin sulfide (CZTS). CZTS was deposited through a solution deposition route. Detailed investigations were done on the deposited films to understand the chemistry, crystal structure and its opto-electronic properties. Deposited CZTS films were found to be highly crystalline in <112> direction. The films had a direct band gap of 1.5 eV with absorption coefficient greater than 104 cm -1 in agreement with published values. In the second part of the thesis detailed electrical and optical simulation models of the mechanical tandem solar cells were developed based on the most up-to-date materials physical constants available for each layer. The modeling was used to quantify the various theoretical and practical loss mechanisms in tandem devices. Two configurations were evaluated, first was silicon / germanium tandem cell and the second was gallium arsenide / silicon tandem cell. The simulation models were validated by their close match to the performance of experimental standalone solar cells devices reported in the literature. Finally the efficiency limits of the present generation of high band gap solar cells were discussed. Voltage and current loss of the high band gap solar cells were compared with present generation silicon solar cells and challenges in improving their efficiencies were described.

  16. Tunable electrochemical pH modulation in a microchannel monitored via the proton-coupled electro-oxidation of hydroquinone

    PubMed Central

    Contento, Nicholas M.; Bohn, Paul W.

    2014-01-01

    Electrochemistry is a promising tool for microfluidic systems because it is relatively inexpensive, structures are simple to fabricate, and it is straight-forward to interface electronically. While most widely used in microfluidics for chemical detection or as the transduction mechanism for molecular probes, electrochemical methods can also be used to efficiently alter the chemical composition of small (typically <100 nl) microfluidic volumes in a manner that improves or enables subsequent measurements and sample processing steps. Here, solvent (H2O) electrolysis is performed quantitatively at a microchannel Pt band electrode to increase microchannel pH. The change in microchannel pH is simultaneously tracked at a downstream electrode by monitoring changes in the i-V characteristics of the proton-coupled electro-oxidation of hydroquinone, thus providing real-time measurement of the protonated forms of hydroquinone from which the pH can be determined in a straightforward manner. Relative peak heights for protonated and deprotonated hydroquinone forms are in good agreement with expected pH changes by measured electrolysis rates, demonstrating that solvent electrolysis can be used to provide tunable, quantitative pH control within a microchannel. PMID:25379105

  17. Metal oxide affinity chromatography platform-polydopamine coupled functional two-dimensional titania graphene nanohybrid for phosphoproteome research.

    PubMed

    Yan, Yinghua; Sun, Xueni; Deng, Chunhui; Li, Yan; Zhang, Xiangmin

    2014-05-01

    In this work, a facile route was initially developed for preparation of a novel metal oxide affinity chromatography (MOAC) material by grafting titania nanoparticles on polydopamine (PD)-coated graphene (denoted as G@PD@TiO2). In the first step, self-assemble polymerization of dopamine on graphene was performed in basic solution at room temperature, which not only offered the coupling linker between titania and graphene but also improved the hydrophilicity and biological compatibility of the nanohybrids. Thereafter, the titania nanoparticles were grafted on the surface of the PD-coated graphene via a simple hydrothermal treatment. The as-prepared G@PD@TiO2 nanohybrids exhibited high sensitivity (detection limit of 5 fmol) and high selectivity for phosphopeptides at a low molar ratio of phosphopeptides/nonphosphopeptides (1:1000). Moreover, the as-prepared nanohybrids were also investigated for enrichment of phosphopeptides from real biological samples (human serum and mouse brain). A total number of 556 phosphorylation sites were identified from the digest of mouse brain proteins, showing great potential in the practical application. PMID:24673251

  18. Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode