Science.gov

Sample records for tandem oxidation coupling

  1. Palladium-Catalyzed Tandem Regioselective Oxidative Coupling from Indoles and Maleimides: One-Pot Synthesis of Indolopyrrolocarbazoles and Related Indolylmaleimides.

    PubMed

    An, Yu-Long; Yang, Zhen-Hua; Zhang, He-Hui; Zhao, Sheng-Yin

    2016-01-15

    An efficient Pd(II)-catalyzed approach for the direct synthesis of indolo[3,2-a]pyrrolo[3,4-c]carbazole-6,8-diones has been developed from both free and protected (NH) indoles and maleimides via a regioselective tandem oxidative coupling reaction. The yields are moderate to excellent. In addition, 2-substituted indoles are suitable substrates in this protocol, leading to the formation of indolylmaleimides. The present methodology provides a concise route to highly functionalized indolopyrrolocarbazole derivatives. PMID:26709531

  2. Development of a reliable method based on ultra-performance liquid chromatography coupled to tandem mass spectrometry to measure thiol-associated oxidative stress in whole blood samples.

    PubMed

    Escobar, Javier; Sánchez-Illana, Ángel; Kuligowski, Julia; Torres-Cuevas, Isabel; Solberg, Rønnaug; Garberg, Håvard T; Huun, Marianne U; Saugstad, Ola D; Vento, Máximo; Cháfer-Pericás, Consuelo

    2016-05-10

    The aminothiols are biological compounds with numerous vital functions. One of the most relevant is their role as antioxidant systems. The reduced to oxidized ratios are extremely useful indicators of oxidative stress and cellular redox status. We have validated an ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) method to determine the levels of glutathione, cysteine, homocysteine, and their respective oxidized compounds in whole blood samples. Results showed excellent linearity for all the analytes with correlation coefficients between 0.990 and 0.997, suitable precision with intra-day coefficient of variation ≤20%, and satisfactory accuracy with recoveries between 75 and 130%. The limits of detection in whole blood samples were 1.16nmolL(-1) for glutathione, 115.8nmolL(-1) for oxidized glutathione, 9.3nmolL(-1) for homocystine, 92.6nmolL(-1) for homocysteine, 347nmolL(-1) for cystine and 0.23nmolL(-1) for cysteine. The suitability of the method was ascertained in whole blood samples (n=80) from a consolidated experimental model of hypoxia-reoxygenation in newborn piglets. PMID:26895495

  3. Online screening of nitric oxide scavengers in natural products using high performance liquid chromatography coupled with tandem diode array and fluorescence detection.

    PubMed

    Li, Dapeng; Wang, Ting; Guo, Yujie; Hu, Yuanjia; Yu, Boyang; Qi, Jin

    2015-12-18

    Nitric oxide (NO) is an important cellular signaling molecule with extensive physiological and pathophysiological effects. NO scavengers have the potential to treat inflammation, septic shock and other related diseases, and numerous examples have been chemically synthesized or isolated from natural products. The chemical diversity of natural products, however, means that a huge effort is necessary to efficiently screen and identify bioactive compounds, especially NO scavengers. In this article, we propose an effective analytical method to screen for NO scavengers in three natural products using an online system that couples high performance liquid chromatography with tandem diode array and fluorescence detection (HPLC-DAD-FLD). Eighteen compounds from radix of Scutellaria baicalensis Georgi and green tea displayed significant NO scavenging activity whereas components of Pueraria lobata (Willd.) Ohwi had no discernable activity. The structures of the active compounds were elucidated using Agilent Accurate-Mass Q-TOF LC/MS system. Preliminary analysis of structure-activity relationships indicated that, in flavonoids, a 2,3-double bond and a 3-H atom or a 3-OH group are essential for activity. In tannins, poly-hydroxyl groups are important for NO scavenging activity. Method validation indicated that the newly developed method is both reliable and repeatable. The online method that we present provides a simple, rapid and effective way to identify and characterize NO scavengers present in natural products. PMID:26607316

  4. Sensitive and simultaneous determination of 5-methylcytosine and its oxidation products in genomic DNA by chemical derivatization coupled with liquid chromatography-tandem mass spectrometry analysis.

    PubMed

    Tang, Yang; Zheng, Shu-Jian; Qi, Chu-Bo; Feng, Yu-Qi; Yuan, Bi-Feng

    2015-03-17

    Cytosine methylation (5-methylcytosine, 5-mC) in genomic DNA is an important epigenetic mark that has regulatory roles in diverse biological processes. 5-mC can be oxidized stepwise by the ten-eleven translocation (TET) proteins to form 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-foC), and 5-carboxylcytosine (5-caC), which constitutes the active DNA demethylation pathway in mammals. Owing to the extremely limited contents of endogenous 5-mC oxidation products, no reported method can directly determine all these cytosine modifications simultaneously. In the current study, we developed selective derivatization of cytosine moieties with 2-bromo-1-(4-dimethylamino-phenyl)-ethanone (BDAPE) coupled with liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) for the simultaneous determination of these cytosine modifications in genomic DNA. The chemical derivatization notably improved the liquid chromatography separation and dramatically increased detection sensitivities of these cytosine modifications. The limits of detection (LODs) of the derivatives of 5-mC, 5-hmC, 5-foC, and 5-caC were 0.10, 0.06, 0.11, and 0.23 fmol, respectively. Using this method, we successfully quantified 5-mC, 5-hmC, 5-foC, and 5-caC in genomic DNA from human colorectal carcinoma (CRC) tissues and tumor-adjacent normal tissues. The results demonstrated significant depletion of 5-hmC, 5-foC, and 5-caC in tumor tissues compared to tumor-adjacent normal tissues, and the depletion of 5-hmC, 5-foC, and 5-caC may be a general feature of CRC; these cytosine modifications could serve as potential biomarkers for the early detection and prognosis of CRC. Moreover, the marked depletion of 5-hmC, 5-foC, and 5-caC may also have profound effects on epigenetic regulation in the development and formation of CRC. PMID:25675106

  5. Determination of oxidation products of 5-methylcytosine in plants by chemical derivatization coupled with liquid chromatography/tandem mass spectrometry analysis.

    PubMed

    Tang, Yang; Xiong, Jun; Jiang, Han-Peng; Zheng, Shu-Jian; Feng, Yu-Qi; Yuan, Bi-Feng

    2014-08-01

    Cytosine methylation (5-methylcytosine, 5-mC) in DNA is an important epigenetic mark that has regulatory roles in various biological processes. In plants, active DNA demethylation can be achieved through direct cleavage by DNA glycosylases, followed by replacement of 5-mC with cytosine by base excision repair (BER) machinery. Recent studies in mammals have demonstrated 5-mC can be sequentially oxidized to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-foC), and 5-carboxylcytosine (5-caC) by Ten-eleven translocation (TET) proteins. The consecutive oxidations of 5-mC constitute the active DNA demethylation pathway in mammals, which raised the possible presence of oxidation products of 5-mC (5-hmC, 5-foC, and 5-caC) in plant genomes. However, there is no definitive evidence supporting the presence of these modified bases in plant genomic DNA, especially for 5-foC and 5-caC. Here we developed a chemical derivatization strategy combined with liquid chromatography-electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method to determine 5-formyl-2'-deoxycytidine (5-fodC) and 5-carboxyl-2'-deoxycytidine (5-cadC). Derivatization of 5-fodC and 5-cadC by Girard's reagents (GirD, GirT, and GirP) significantly increased the detection sensitivities of 5-fodC and 5-cadC by 52-260-fold. Using this method, we demonstrated the widespread existence of 5-fodC and 5-cadC in genomic DNA of various plant tissues, indicating that active DNA demethylation in plants may go through an alternative pathway similar to mammals besides the pathway of direct DNA glycosylases cleavage combined with BER. Moreover, we found that environmental stresses of drought and salinity can change the contents of 5-fodC and 5-cadC in plant genomes, suggesting the functional roles of 5-fodC and 5-cadC in response to environmental stresses. PMID:24970241

  6. Accelerator mass spectrometry with a coupled tandem-linac system

    SciTech Connect

    Kutschera, W.

    1984-01-01

    A coupled system provides higher energies, which allows one to extend AMS to hitherto untouched mass regions. Another important argument is that the complexity, although bothersome for the operation, increases the selectivity of detecting a particular isotope. The higher-energy argument holds for any heavy-ion accelerator which is capable of delivering higher energy than a tandem. The present use of tandem-linac combinations for AMS, rather than cyclotrons, linacs or combinations of these machines, has mainly to do with the fact that this technique was almost exclusively developed around tandem accelerators. Therefore the tandem-linac combination is a natural extension to higher energies. The use of negative ions has some particular advantages in suppressing background from unwanted elements that do not form stable negative ions (e.g., N, Mg, Ar). On the other hand, this limits the detection of isotopes to elements which do form negative ions. For particular problems it may therefore be advantageous to use a positive-ion machine. What really matters most for choosing one or the other machine is to what extent the entire accelerator system can be operated in a truly quantiative way from the ion source to the detection system. 20 references, 4 figures.

  7. Analysis of urinary 8-isoprostane as an oxidative stress biomarker by stable isotope dilution using automated online in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry.

    PubMed

    Mizuno, Keisuke; Kataoka, Hiroyuki

    2015-08-10

    We have developed a simple and sensitive method for the determination of the oxidative stress biomarker 8-isoprostane (8-IP) in human urine by automated online in-tube solid-phase microextraction (SPME) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) using a Zorbax Eclipse XDB-8 column and 0.1% formic acid/methanol (25/75, v/v) as a mobile phase. Electrospray MS/MS for 8-IP was performed on an API 4000 triple quadruple mass spectrometer in negative ion mode. The optimum in-tube SPME conditions were 20 draw/eject cycles with a sample size of 40 ?L using a Carboxen 1006 PLOT capillary column for the extraction. The extracted compounds were easily desorbed from the capillary by passage of the mobile phase, and no carryover was observed. Total analysis time of this method including online extraction and analysis was about 30 min for each sample. The in-tube SPME LC-MS/MS method showed good linearity in the concentration range of 20-1000 pg/mL with a correlation coefficient r = 0.9999 for 8-IP using a stable isotope-labeled internal standard, 8-IP-d4. The detection limit of 8-IP was 3.3 pg/mL and the proposed method showed 42-fold higher sensitivity than the direct injection method. The intra-day and inter-day precisions (relative standard deviations) were below 5.0% and 8.5% (n = 5), respectively. This method was applied successfully to the analysis of urine samples without pretreatment or interference peaks. The recovery rates of 8-IP spiked into urine samples were above 92%. This method is useful for assessing the effects of oxidative stress and antioxidant intake. PMID:25956225

  8. Simultaneous determination of the bilirubin oxidation end products Z-BOX A and Z-BOX B in human serum using liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Seidel, Raphael A; Kahnes, Marcel; Bauer, Michael; Pohnert, Georg

    2015-01-01

    Bilirubin oxidation end products (BOXes) appear upon endogenous heme degradation and can be found in the cerebrospinal fluid after hemorrhagic stroke. BOXes are assumed to contribute to delayed cerebral vasospasm and secondary loss of brain tissue. Here, we present a validated LC-ESI-MS/MS method for the sensitive determination of the regio-isomers Z-BOX A and Z-BOX B in human serum. We found that Z-BOX A and Z-BOX B appear in serum of healthy volunteers. The sample preparation includes the addition of 5-bromonicotinamide as internal standard and protein precipitation with acetonitrile. Baseline-separation was achieved on a C-18 column with a binary solvent gradient of formic acid in water/acetonitrile at 1 mL/min within a total analysis time of 17 min. Using single reaction monitoring in the positive ion mode, the linear working ranges were 2.74-163 pg/?L (Z-BOX A) and 2.12-162.4 pg/?L (Z-BOX B) with R(2)>0.995. Intra- and inter-day precisions were <10%. The inherent analyte concentrations of Z-BOX A (14.4 5.1 nM) and Z-BOX B (10.9 3.1 nM) in pooled human serum were determined by standard addition. The photolability of both analytes was demonstrated. This method enables to monitor Z-BOX A and Z-BOX B as a prerequisite to systematically study the biological significance of higher order metabolites of heme degradation. PMID:25463201

  9. Tandem Catalytic C(sp(3) )-H Amination/Sila-Sonogashira-Hagihara Coupling Reactions with Iodine Reagents.

    PubMed

    Buendia, Julien; Darses, Benjamin; Dauban, Philippe

    2015-05-01

    A new tandem C-N and C-C bond-forming reaction has been achieved through Rh(II) /Pd(0) catalysis. The sequence first involves an iodine(III) oxidant, then the in situ generated iodine(I) by-product is used as a coupling partner. The overall process demonstrates the synthetic value of iodoarenes produced in trivalent iodine reagent mediated oxidations. PMID:25783616

  10. Tandem ion mobility spectrometry coupled to laser excitation

    NASA Astrophysics Data System (ADS)

    Simon, Anne-Laure; Chirot, Fabien; Choi, Chang Min; Clavier, Christian; Barbaire, Marc; Maurelli, Jacques; Dagany, Xavier; MacAleese, Luke; Dugourd, Philippe

    2015-09-01

    This manuscript describes a new experimental setup that allows to perform tandem ion mobility spectrometry (IMS) measurements and which is coupled to a high resolution time-of-flight mass spectrometer. It consists of two 79 cm long drift tubes connected by a dual ion funnel assembly. The setup was built to permit laser irradiation of the ions in the transfer region between the two drift tubes. This geometry allows selecting ions according to their ion mobility in the first drift tube, to irradiate selected ions, and examine the ion mobility of the product ions in the second drift tube. Activation by collision is possible in the same region (between the two tubes) and between the second tube and the time-of-flight. IMS-IMS experiments on Ubiquitin are reported. We selected a given isomer of charge state +7 and explored its structural rearrangement following collisional activation between the two drift tubes. An example of IMS-laser-IMS experiment is reported on eosin Y, where laser irradiation was used to produce radical ions by electron photodetachment starting from doubly deprotonated species. This allowed measuring the collision cross section of the radical photo-product, which cannot be directly produced with an electrospray source.

  11. Tandem ion mobility spectrometry coupled to laser excitation.

    PubMed

    Simon, Anne-Laure; Chirot, Fabien; Choi, Chang Min; Clavier, Christian; Barbaire, Marc; Maurelli, Jacques; Dagany, Xavier; MacAleese, Luke; Dugourd, Philippe

    2015-09-01

    This manuscript describes a new experimental setup that allows to perform tandem ion mobility spectrometry (IMS) measurements and which is coupled to a high resolution time-of-flight mass spectrometer. It consists of two 79 cm long drift tubes connected by a dual ion funnel assembly. The setup was built to permit laser irradiation of the ions in the transfer region between the two drift tubes. This geometry allows selecting ions according to their ion mobility in the first drift tube, to irradiate selected ions, and examine the ion mobility of the product ions in the second drift tube. Activation by collision is possible in the same region (between the two tubes) and between the second tube and the time-of-flight. IMS-IMS experiments on Ubiquitin are reported. We selected a given isomer of charge state +7 and explored its structural rearrangement following collisional activation between the two drift tubes. An example of IMS-laser-IMS experiment is reported on eosin Y, where laser irradiation was used to produce radical ions by electron photodetachment starting from doubly deprotonated species. This allowed measuring the collision cross section of the radical photo-product, which cannot be directly produced with an electrospray source. PMID:26429458

  12. Oxidation-induced conformational changes in calcineurin determined by covalent labeling and tandem mass spectrometry.

    PubMed

    Zhou, Xiao; Mester, Caitlin; Stemmer, Paul M; Reid, Gavin E

    2014-11-01

    The Ca(2+)/calmodulin activated phosphatase, calcineurin, is inactivated by H2O2 or superoxide-induced oxidation, both in vivo and in vitro. However, the potential for global and/or local conformation changes occurring within calcineurin as a function of oxidative modification, that may play a role in the inactivation process, has not been examined. Here, the susceptibility of calcineurin methionine residues toward H2O2-induced oxidation were determined using a multienzyme digestion strategy coupled with capillary HPLC-electrospray ionization mass spectrometry and tandem mass spectrometry analysis. Then, regions within the protein complex that underwent significant conformational perturbation upon oxidative modification were identified by monitoring changes in the modification rates of accessible lysine residues between native and oxidized forms of calcineurin, using an amine-specific covalent labeling reagent, S,S'-dimethylthiobutanoylhydroxysuccinimide ester (DMBNHS), and tandem mass spectrometry. Importantly, methionine residues found to be highly susceptible toward oxidation, and the lysine residues exhibiting large increases in accessibility upon oxidation, were all located in calcineurin functional domains involved in Ca(2+)/CaM binding regulated calcineurin stimulation. These findings therefore provide initial support for the novel mechanistic hypothesis that oxidation-induced global and/or local conformational changes within calcineurin contribute to inactivation via (i) impairing the interaction between calcineurin A and calcineurin B, (ii) altering the low-affinity Ca(2+) binding site in calcineurin B, (iii) inhibiting calmodulin binding to calcineurin A, and/or (iv) by altering the affinity between the calcineurin A autoinhibitory domain and the catalytic center. PMID:25286016

  13. Perovskite catalysts for oxidative coupling

    DOEpatents

    Campbell, K.D.

    1991-06-25

    Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  14. Perovskite catalysts for oxidative coupling

    DOEpatents

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  15. Equivalent circuit analysis of radiative coupling in monolithic tandem solar cells

    NASA Astrophysics Data System (ADS)

    Lan, Dongchen; Green, Martin A.

    2015-06-01

    As solar cell efficiency improves towards the Shockley-Queisser limit, so does the radiative efficiency of the cell. For tandem stacks of cells where energy conversion efficiency now exceeds 46%, radiative coupling between the cells is becoming increasingly important to consider in cell design, measurement, and performance prediction. We show how an equivalent circuit model can capture the complex radiative interactions between cells in such tandem stacks, allowing more insight into the impact on cell performance. The circuit's use is demonstrated by deriving results relevant to the critical step of eliminating coupling effects from measured cell spectral responses.

  16. Tandem Dehydrogenation/Oxidation/Oxidative Cyclization Approach to Wrightiadione and Its Derivatives.

    PubMed

    Jeong, Yujeong; Moon, Youngtaek; Hong, Sungwoo

    2015-07-01

    Wrightiadione contains a unique tetracyclic isoflavone moiety and has been shown to exhibit a broad range of biological activities. An efficient and straightforward synthetic method for generating the molecular complexity of wrightiadione was developed through three-step tandem dehydrogenation/oxidation/oxidative cyclization reactions with a Pd/Cu catalytic system. This unprecedented one-pot route utilizes a broad range of substrates, providing a convenient and powerful synthetic tool for accessing naturally occurring tetracyclic isoflavone wrightiadione and its nitrogen-containing derivatives. PMID:26090926

  17. Flight and Analytical Methods for Determining the Coupled Vibration Response of Tandem Helicopters

    NASA Technical Reports Server (NTRS)

    Yeates, John E , Jr; Brooks, George W; Houbolt, John C

    1957-01-01

    Chapter one presents a discussion of flight-test and analysis methods for some selected helicopter vibration studies. The use of a mechanical shaker in flight to determine the structural response is reported. A method for the analytical determination of the natural coupled frequencies and mode shapes of vibrations in the vertical plane of tandem helicopters is presented in Chapter two. The coupled mode shapes and frequencies are then used to calculate the response of the helicopter to applied oscillating forces.

  18. Synthesis of Pyrrolidines and Pyrroles via Tandem Amination/Cyanation/Alkylation and Amination/Oxidation Sequences

    PubMed Central

    Han, Junbin; Lu, Zhichao; Hammond, Gerald B.; Xu, Bo

    2014-01-01

    Starting from a primary amine-tethered alkyne 1, a copper-catalyzed three-component tandem amination/cyanation/alkylation sequence gives ?-CN pyrrolidine 6 in good yield and regioselectivity. Also, a silver mediated tandem amination/oxidation of a secondary amine-tethered alkyne 7 produces functionalized pyrrole 8 in good yield. All reactions were conducted in one pot without any protection/deprotection steps. PMID:25386099

  19. Synthesis of Quinoxaline Derivatives via Tandem Oxidative Azidation/Cyclization Reaction of N-Arylenamines.

    PubMed

    Ma, Haichao; Li, Dianjun; Yu, Wei

    2016-02-19

    A new method was developed for the synthesis of quinoxalines. This method employs N-arylenamines and TMSN3 as the starting materials and implements two oxidative C-N bond-forming processes in a tandem pattern by using (diacetoxyiodo)benzene as the common oxidant. The present reaction conditions are mild and simple and thus are useful in practical synthesis. PMID:26863185

  20. MEASUREMENT OF OXIDATIVE STRESS PARAMETERS USING LIQUID CHROMATOGRAPHY - TANDEM MASS SPECTROSCOPY (LC-MS/MS)

    EPA Science Inventory

    What is the study?
    An invited review article. Measurement of oxidative stress parameters using liquid chromatography-tandem mass spectroscopy (LC-MS/MS)
    Why was it done?
    Although oxidative stress is frequently cited as a cause of various adverse biological eff...

  1. Quantification of Oxidative DNA Lesions in Tissues of Long-Evans Cinnamon Rats by Capillary High-performance Liquid Chromatography-Tandem Mass Spectrometry Coupled with Stable Isotope-dilution Method

    PubMed Central

    Wang, Jin; Yuan, Bifeng; Guerrero, Candace; Bahde, Ralf; Gupta, Sanjeev; Wang, Yinsheng

    2011-01-01

    The purpose of our study was to develop suitable methods to quantify oxidative DNA lesions in the setting of transition metal-related diseases. Transition metal-driven Fenton reactions constitute an important endogenous source of reactive oxygen species (ROS). In genetic diseases with accumulation of transition metal ions, excessive ROS production causes pathophysiological changes, including DNA damage. Wilsons disease is an autosomal recessive disorder with copper toxicosis due to deficiency of ATP7B protein needed for excreting copper into bile. The Long-Evans Cinnamon (LEC) rat bears a deletion in Atp7b gene and serves as an excellent model for hepatic Wilsons disease. We used a sensitive capillary LC-ESI-MS/MS/MS method in conjunction with stable-isotope dilution technique to quantify several types of oxidative DNA lesions in liver and brain of LEC rats. These lesions included 5-formyl-2?-deoxyuridine, 5-hydroxymethyl-2?-deoxyuridine, and the 5?R and 5?S diastereomers of 8,5?-cyclo-2?-deoxyguanosine and 8,5?-cyclo-2?-deoxyadenosine. Moreover, the levels of these DNA lesions in the liver and brain increased with age and correlated with age-dependent regulation of the expression of DNA repair genes in LEC rats. These results provide significant new knowledge for better understanding the implications of oxidative DNA lesions in transition metal-induced diseases, such as Wilsons disease, as well as in ageing and ageing-related pathological conditions. PMID:21323344

  2. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants.

    PubMed

    Escande, Vincent; Renard, Brice-Loc; Grison, Claude

    2015-04-01

    Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese-Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (-)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (-)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines. PMID:25263417

  3. Aryl Ketone Synthesis via Tandem Orthoplatinated Triarylphosphite-Catalyzed Addition Reactions of Arylboronic Acids with Aldehydes Followed by Oxidation

    PubMed Central

    Liao, Yuan-Xi; Hu, Qiao-Sheng

    2010-01-01

    Tandem orthoplatinated triarylphosphite-catalyzed addition reactions of arylboronic acids with aldehydes followed by oxidation to yield aryl ketones is described. 3-Pentanone was identified as a suitable oxidant for the tandem aryl ketone formation reaction. By using microwave energy, aryl ketones were obtained in high yields with the catalyst loading as low as 0.01%. PMID:20849092

  4. Coupled operation of the Oak Ridge isochronous cyclotron and the 25 MV tandem

    SciTech Connect

    Lord, R.S.; Ball, J.B.; Beckers, R.M.; Cleary, T.P.; Hudson, E.D.; Ludemann, C.A.; Martin, J.A.; Milner, W.T.; Mosko, S.W.; Ziegler, N.F.

    1981-01-01

    Coupled operation of the 25 MV tandem and the Oak Ridge Isochronous Cyclotron (ORIC) was achieved on January 27, 1981. A beam of 38 MeV /sup 16/O/sup 2 +/ was injected into ORIC, stripped to 8/sup +/ and accelerated to 324 MeV. Shortly afterwards, the energy was increased to the maximum design value of 25 MeV/amu (400 MeV). A spectrum taken of the scattering of this beam from a thin /sup 208/Pb target in the broad range spectrograh exhibited a resolution of 115 keV (FWHM). Performance of the system was in close agreement with that predicted from calculations.

  5. Tandem catalytic oxidative deacetylation of acetoacetic esters and heteroaromatic cyclizations.

    PubMed

    Ju, Yeming; Miao, Di; Yu, Ruiyang; Koo, Sangho

    2015-03-01

    One pot syntheses of furan, thiophene, and pyrrole were accomplished by oxidative deacetylation using Mn(III)/Co(II) catalysts and the Paal-Knorr reaction from 1,5-dicarbonyl compounds, which are prepared from the conjugate addition of ethyl acetoacetate to ?,?-unsaturated carbonyl compounds. The oxidative deacetylation and reductive cyclization of ?-ketoesters derived from ethyl acetoacetate and o-nitrobenzyl bromides efficiently produced diversely substituted indoles. PMID:25573411

  6. CFD-CAA Coupled Calculations of a Tandem Cylinder Configuration to Assess Facility Installation Effects

    NASA Technical Reports Server (NTRS)

    Redonnet, Stephane; Lockard, David P.; Khorrami, Mehdi R.; Choudhari, Meelan M.

    2011-01-01

    This paper presents a numerical assessment of acoustic installation effects in the tandem cylinder (TC) experiments conducted in the NASA Langley Quiet Flow Facility (QFF), an open-jet, anechoic wind tunnel. Calculations that couple the Computational Fluid Dynamics (CFD) and Computational Aeroacoustics (CAA) of the TC configuration within the QFF are conducted using the CFD simulation results previously obtained at NASA LaRC. The coupled simulations enable the assessment of installation effects associated with several specific features in the QFF facility that may have impacted the measured acoustic signature during the experiment. The CFD-CAA coupling is based on CFD data along a suitably chosen surface, and employs a technique that was recently improved to account for installed configurations involving acoustic backscatter into the CFD domain. First, a CFD-CAA calculation is conducted for an isolated TC configuration to assess the coupling approach, as well as to generate a reference solution for subsequent assessments of QFF installation effects. Direct comparisons between the CFD-CAA calculations associated with the various installed configurations allow the assessment of the effects of each component (nozzle, collector, etc.) or feature (confined vs. free jet flow, etc.) characterizing the NASA LaRC QFF facility.

  7. Iron Catalyzed Dual-Oxidative Dehydrogenative (DOD) Tandem Annulation of Glycine Derivatives with Tetrahydrofurans.

    PubMed

    Huo, Congde; Chen, Fengjuan; Yuan, Yong; Xie, Haisheng; Wang, Yajun

    2015-10-16

    A novel iron-catalyzed dual-oxidative dehydrogenative (DOD) tandem annulation of glycine derivatives with tetrahydrofurans (THFs) for the synthesis of high value quinoline fused lactones has been developed. The reactions were performed under mild reaction conditions. And the use of cheap substrates (glycine derivatives and THF) and an even cheaper simple inorganic iron salt as the catalyst makes this protocol very attractive for potential synthetic applications. PMID:26430718

  8. Optimization of two-lens coupling structure for a tandem-set solid-state laser system

    NASA Astrophysics Data System (ADS)

    Wang, You; Kan, Hirofumi; Ogawa, Takayo; Wada, Satoshi

    2010-08-01

    This is a serial report on birefringence compensation for a LD-side-pumped solid-state laser (LSPSSL) system. In this paper, a coupling system with two coupling lenses and a normal 90 rotator has been analyzed in detail to obtain a perfect compensation of birefringence in two tandem-set rods. The optimum configuration can be determined by selecting a suitable coupling geometry as well as the focal lengths of two coupling lenses. By using the optimum conditions, almost all the birefringence can be removed in a tandem-arranged rod system. We also found that there are many coupling structures which can realize a complete compensation of birefringence if the thermally induced characteristics of two rods are absolutely equivalent. For two rods with different thermally induced features, the optimum structure is unique with the best birefringence elimination. These conclusions are different from the general expressions of clearing up the depolarization loss in many published references.

  9. Catalytic migratory oxidative coupling of nitrones.

    PubMed

    Hashizume, Shogo; Oisaki, Kounosuke; Kanai, Motomu

    2011-08-19

    A Cu(I)-catalyzed migratory oxidative coupling between nitrones and heterocycles or a methylamine is described. Selective C-C bond-formation proceeds through cleavage of two C(sp(3))-H bonds concomitant with C?N double bond-migration. The reaction provides an alternating nitrone moiety, allowing for further synthetically useful transformations. Radical clock studies suggest that the nucleophilic addition of nitrones to an oxidatively generated carbocation is a key step. PMID:21766802

  10. Controllable Tuning Plasmonic Coupling with Nanoscale Oxidation.

    PubMed

    Ding, Tao; Sigle, Daniel; Zhang, Liwu; Mertens, Jan; de Nijs, Bart; Baumberg, Jeremy

    2015-06-23

    The nanoparticle on mirror (NPoM) construct is ideal for the strong coupling of localized plasmons because of its simple fabrication and the nanometer-scale gaps it offers. Both of these are much harder to control in nanoparticle dimers. Even so, realizing controllable gap sizes in a NPoM remains difficult and continuous tunability is limited. Here, we use reactive metals as the mirror so that the spacing layer of resulting metal oxide can be easily and controllably created with specific thicknesses resulting in continuous tuning of the plasmonic coupling. Using Al as a case study, we contrast different approaches for oxidation including electrochemical oxidation, thermal annealing, oxygen plasma treatments, and photo-oxidation by laser irradiation. The thickness of the oxidation layer is calibrated with depth-mode X-ray photoemission spectroscopy (XPS). These all consistently show that increasing the thickness of the oxidation layer blue-shifts the plasmonic resonance peak while the transverse mode remains constant, which is well matched by simulations. Our approach provides a facile and reproducible method for scalable, local and controllable fabrication of NPoMs with tailored plasmonic coupling, suited for many applications of sensing, photochemistry, photoemission, and photovoltaics. PMID:25978297

  11. Controllable Tuning Plasmonic Coupling with Nanoscale Oxidation

    PubMed Central

    2015-01-01

    The nanoparticle on mirror (NPoM) construct is ideal for the strong coupling of localized plasmons because of its simple fabrication and the nanometer-scale gaps it offers. Both of these are much harder to control in nanoparticle dimers. Even so, realizing controllable gap sizes in a NPoM remains difficult and continuous tunability is limited. Here, we use reactive metals as the mirror so that the spacing layer of resulting metal oxide can be easily and controllably created with specific thicknesses resulting in continuous tuning of the plasmonic coupling. Using Al as a case study, we contrast different approaches for oxidation including electrochemical oxidation, thermal annealing, oxygen plasma treatments, and photo-oxidation by laser irradiation. The thickness of the oxidation layer is calibrated with depth-mode X-ray photoemission spectroscopy (XPS). These all consistently show that increasing the thickness of the oxidation layer blue-shifts the plasmonic resonance peak while the transverse mode remains constant, which is well matched by simulations. Our approach provides a facile and reproducible method for scalable, local and controllable fabrication of NPoMs with tailored plasmonic coupling, suited for many applications of sensing, photochemistry, photoemission, and photovoltaics. PMID:25978297

  12. Determination of malachite green residues in rainbow trout muscle with liquid chromatography and liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Halme, K; Lindfors, E; Peltonen, K

    2004-07-01

    A method for the determination of malachite green and its major metabolite leucomalachite green in rainbow trout muscle is reported with limits of detection of 0.8 and 0.6 microg kg(-1), respectively. Residues were extracted with an acetonitrile-acetate buffer mixture and partitioned into methylene chloride. Clean-up of the extracts was performed on alumina and propylsulfonic acid solid-phase extraction columns using the automated solid-phase extraction system. The chromatographic separation of malachite green and leucomalachite green was achieved on a Chromspher 5B column using an acetonitrile-acetate buffer mobile phase. Leucomalachite green was converted to malachite green by post-column oxidation before spectrophotometric detection at 600 nm. The mean recoveries of malachite green and leucomalachite green from control rainbow trout muscle spiked at 2-50 microg kg(-1) were 65% (range 63.4-65.9%, relative standard deviation 3.9-16.1%) and 74% (range 58.3-82.6%, relative standard deviation 3.3-11.4%), respectively. Qualitative confirmation of the determined residues was performed with liquid chromatography coupled with tandem mass spectrometry detection with limits of detection of 2.5 and 1 microg kg(-1) for malachite green and leucomalachite green, respectively. PMID:15370837

  13. Oligonucleotide covalent modifications by estrogen quinones evidenced by use of liquid chromatography coupled to negative electrospray ionization tandem mass spectrometry.

    PubMed

    Debrauwer, L; Rathahao, E; Couve, C; Poulain, S; Pouyet, C; Jouanin, I; Paris, A

    2002-11-01

    Liquid chromatography coupled to tandem mass spectrometry has been used for the detection and the structural characterization of T-rich model oligonucleotides covalently modified by estradiol-2,3-quinone. After separation by gradient elution, adducts were analyzed by negative electrospray mass spectrometry, enabling to evidence and localize the modifications in the oligonucleotide sequence. Modifications by one molecule of estrogen were evidenced on purines (A, G) whereas no reaction was observed on pyrimidic bases (T). Isomeric adducts were differentiated using tandem mass spectrometry, and energy resolved mass spectrometry allowed to underline differences in the behavior of the adducts towards collisional excitation into an ion trap device. PMID:12462603

  14. Copper-catalyzed tandem phosphination-decarboxylation-oxidation of alkynyl acids with H-phosphine oxides: a facile synthesis of β-ketophosphine oxides.

    PubMed

    Zhang, Pengbo; Zhang, Liangliang; Gao, Yuzhen; Xu, Jian; Fang, Hua; Tang, Guo; Zhao, Yufen

    2015-05-01

    The general method for the tandem phosphination-decarboxylation-oxidation of alkynyl acids under aerobic conditions has been developed. In the presence of CuSO4·5H2O and TBHP, the reactions provide a novel access to β-ketophosphine oxides in good to excellent yields. This transformation allows the direct formation of a P-C bond and the construction of a keto group in one reaction. PMID:25855268

  15. Benzene oxidation coupled to sulfate reduction

    USGS Publications Warehouse

    Lovley, D.R.; Coates, J.D.; Woodward, J.C.; Phillips, E.J.P.

    1995-01-01

    Highly reduced sediments from San Diego Bay, Calif., that were incubated under strictly anaerobic conditions metabolized benzene within 55 days when they were exposed initially to I ??M benzene. The rate of benzene metabolism increased as benzene was added back to the benzene-adapted sediments. When a [14C]benzene tracer was included with the benzene added to benzene-adapted sediments, 92% of the added radioactivity was recovered as 14CO2. Molybdate, an inhibitor of sulfate reduction, inhibited benzene uptake and production of 14CO2 from [14C]benzene. Benzene metabolism stopped when the sediments became sulfate depleted, and benzene uptake resumed when sulfate was added again. The stoichiometry of benzene uptake and sulfate reduction was consistent with the hypothesis that sulfate was the principal electron acceptor for benzene oxidation. Isotope trapping experiments performed with [14C]benzene revealed that there was no production of such potential extracellular intermediates of benzene oxidation as phenol, benzoate, p-hydroxybenzoate, cyclohexane, catechol, and acetate. The results demonstrate that benzene can be oxidized in the absence of O2, with sulfate serving as the electron acceptor, and suggest that some sulfate reducers are capable of completely oxidizing benzene to carbon dioxide without the production of extracellular intermediates. Although anaerobic benzene oxidation coupled to chelated Fe(III) has been documented previously, the study reported here provides the first example of a natural sediment compound that can serve as an electron acceptor for anaerobic benzene oxidation.

  16. Differential Ion Mobility Spectrometry Coupled to Tandem Mass Spectrometry Enables Targeted Leukemia Antigen Detection

    PubMed Central

    2015-01-01

    Differential ion mobility spectrometry (DIMS) can be used as a filter to remove undesired background ions from reaching the mass spectrometer. The ability to use DIMS as a filter for known analytes makes DIMS coupled to tandem mass spectrometry (DIMSMS/MS) a promising technique for the detection of cancer antigens that can be predicted by computational algorithms. In experiments using DIMSMS/MS that were performed without the use of high-performance liquid chromatography (HPLC), a predicted model antigen, GLR (FLSSANEHL), was detected at a concentration of 10 pM (20 amol) in a mixture containing 94 competing model peptide antigens, each at a concentration of 1 ?M. Without DIMS filtering, the GLR peptide was undetectable in the mixture even at 100 nM. Again, without using HPLC, DIMSMS/MS was used to detect 2 of 3 previously characterized antigens produced by the leukemia cell line U937.A2. Because of its sensitivity, a targeted DIMSMS/MS methodology can likely be used to probe for predicted cancer antigens from cancer cell lines as well as human tumor samples. PMID:25184817

  17. Determination of Fusarium mycotoxins by liquid chromatography/tandem mass spectrometry coupled with immunoaffinity extraction.

    PubMed

    Tanaka, Hiroki; Takino, Masahiko; Sugita-Konishi, Yoshiko; Tanaka, Toshitsugu; Leeman, David; Toriba, Akira; Hayakawa, Kazuichi

    2010-08-30

    A method for the simultaneous quantitative determination of deoxynivalenol (DON), T-2 toxin (T-2), HT-2 toxin (HT-2) and zearalenone (ZEN) in wheat and biscuit by liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) coupled with immunoaffinity extraction is described. A clean-up was carried out using a DZT MS-PREP immunoaffinity column (IAC), and the effect of the sample dilution rate and sample loading was investigated. Furthermore, the effects of ion suppression of a multifunctional column (MFC) and the IAC in the clean-up were compared. The results with the DZT MS-PREP IAC showed that it is possible to make the sample dilution rate low, and indicated a higher solvent-tolerance than usual with an IAC. Sample loading was optimized at 0.25 g. Ion suppression was lowered by purification of the toxins using the DZT MS-PREP IAC. Recoveries of each mycotoxin from wheat and biscuit samples spiked at two levels ranged from 78 to 109%. The limits of detection in wheat and biscuit was in the range of 0.03-0.33 ng x g(-1). From these studies, it is suggested that use of an IAC is effective in the clean-up of each mycotoxin, and, when combined with LC/ESI-MS/MS, it is good for the determination of mycotoxins in foodstuffs due to its rapidity and high sensitivity. PMID:20658684

  18. External control of electron energy distributions in a dual tandem inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Sridhar, Shyam; Zhu, Weiye; Donnelly, Vincent M.; Economou, Demetre J.; Logue, Michael D.; Kushner, Mark J.

    2015-08-01

    The control of electron energy probability functions (EEPFs) in low pressure partially ionized plasmas is typically accomplished through the format of the applied power. For example, through the use of pulse power, the EEPF can be modulated to produce shapes not possible under continuous wave excitation. This technique uses internal control. In this paper, we discuss a method for external control of EEPFs by transport of electrons between separately powered inductively coupled plasmas (ICPs). The reactor incorporates dual ICP sources (main and auxiliary) in a tandem geometry whose plasma volumes are separated by a grid. The auxiliary ICP is continuously powered while the main ICP is pulsed. Langmuir probe measurements of the EEPFs during the afterglow of the main ICP suggests that transport of hot electrons from the auxiliary plasma provided what is effectively an external source of energetic electrons. The tail of the EEPF and bulk electron temperature were then elevated in the afterglow of the main ICP by this external source of power. Results from a computer simulation for the evolution of the EEPFs concur with measured trends.

  19. Determination of sulfonamides in beeswax by liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Mitrowska, Kamila; Antczak, Maja

    2015-12-01

    The manuscript presents the development of a new method for the quantification of 16 sulfonamides in beeswax. Different sample preparation techniques were tested and modified to maximise the recovery of the target analytes and minimise the amount of coeluted impurities under conditions that provide reproducible results. The proposed method consisted of melting and dilution of beeswax in a mixture of n-hexane and isopropanol followed by extraction with 2% acetic acid. The extract was cleaned up by solid-phase extraction using strong cation exchange phase. Determination of the sulfonamides was achieved by liquid chromatography coupled to tandem mass spectrometry with the use of a pentafluorophenyl analytical column and applying a gradient elution with acetonitrile and 0.01% acetic acid as mobile phases. The limits of detection and limits of quantification ranged from 1 to 2μg/kg and from 2 to 5μg/kg, respectively. The recoveries varied between 65.2% and 117.8% while coefficient of variation of the method was less than 24.2% under intermediate precision conditions. Finally, the method was applied to the analysis of real samples of beeswax from beekeepers and commercial foundations manufacturers. PMID:26554312

  20. Ignition delay of a pulsed inductively coupled plasma (ICP) in tandem with an auxiliary ICP

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Sridhar, Shyam; Donnelly, Vincent M.; Economou, Demetre J.

    2015-12-01

    Plasma ignition delays were observed in a ‘main’ inductively coupled plasma (ICP), in tandem with an ‘auxiliary’ ICP. The Faraday-shielded ICPs were separated by a grounded metal grid. Power (13.56 MHz) to the main ICP was pulsed with a frequency of 1 kHz, while the auxiliary ICP was operated in continuous wave (cw) mode. In chlorine plasmas, ignition delay was observed for duty cycles greater than 60% and, in contrast to expectation, the delay was longer with increasing duty cycle up to ~99.5%. The ignition delay could be varied by changing the auxiliary and/or main ICP power. Langmuir probe measurements provided the temporal evolution of electron temperature, and electron and positive ion densities. These measurements revealed that the plasma was ignited shortly after the decaying positive ion density (n +), in the afterglow of the main ICP, reached the density ({{n}+},\\text{aux} ) prevailing when only the auxiliary ICP was powered. At that time, production of electrons began to dominate their loss in the main ICP, due to hot electron injection from the auxiliary ICP. As a result, {{n}\\text{e}} increased from a value below {{n}\\text{e,\\text{aux}}} , improving inductive power coupling efficiency, further increasing plasma density leading to plasma ignition. Plasma ignition delay occurred when the afterglow of the pulsed plasma was not long enough for the ion density to reach {{n}+},\\text{aux} during the afterglow. Besides Cl2, plasma ignition delays were also observed in other electronegative gases (SF6, CF4/O2 and O2) but not in an electropositive gas (Ar).

  1. Oxidative coupling of methane over sodium promoted praseodymium oxide

    SciTech Connect

    Gaffney, A.M.; Jones, C.A.; Leonard, J.J.; Sofranko, J.A. )

    1988-12-01

    Unpromoted and alkali-promoted lanthanide oxides were evaluated in the oxidative coupling of methane to higher hydrocarbons. Methane conversion was carried out catalytically and in a redox mode by cycling methane and air independently over the lanthanide oxides. The sodium-promoted nonstoichiometric oxide, 4% Na on Pr{sub 6}O{sub 11}, was most active and selective, giving in the redox mode 21% methane conversion and 76% C{sub 2}{sup +} selectivity at 800 C and 1.4. WHSV (weight hourly space velocity, g CH{sub 4}/g cat. hr). At comparable conversion catalytic methane conversion had a C{sub 2}{sup +} selectivity of 64%. This selectivity deficit with respect to redox is attributed to an additional destructive route of the methyl radical, namely the reaction with molecular oxygen to yield a methylperoxy intermediate. Process variable studies support a mechanism whereby methane is activated at the metal oxide surface to form a methyl radical and in the gas phase C{sub 2}{sup +} hydrocarbon building occurs.

  2. Measurement of oxidative stress parameters using liquid chromatography-tandem mass spectroscopy (LC-MS/MS)

    SciTech Connect

    Winnik, Witold M. Kitchin, Kirk T.

    2008-11-15

    There is increasingly intense scientific and clinical interest in oxidative stress and the many parameters used to quantify the degree of oxidative stress. However, there remain many analytical limitations to currently available assays for oxidative stress markers. Recent improvements in software, hardware, and instrumentation design have made liquid chromatography and tandem mass spectroscopy (LC-MS/MS) methods optimal choices for the determination of many oxidative stress markers. In particular, LC-MS/MS often provides the advantages of higher specificity, higher sensitivity, and the capacity to determine multiple analytes (e.g. 4-11 oxidative stress markers per LC run) when compared to other available methods, such as gas chromatography-MS, immunoassays, spectrophotometric or flourometric assays. LC-MS/MS methods are also compatible with cleanup and sample preparation methods including prior solid phase extraction or automated two dimensional LC/LC chromatography followed by MS/MS. LC-MS/MS provides three analytical filtering functions: (1) the LC column provides initial separation as each analyte elutes from the column. (2) The first MS dimension isolates ions of a particular mass-to-charge (m/z) ratio. (3) The selected precursor ion is fragmented into product ions that provide structural information about the precursor ion. Quantitation is achieved based on the abundances of the product ions. The sensitivity limits for LC-MS/MS usually lie within the range of fg-pg of analyte per LC on-column injection. In this article, the present capabilities of LC-MS/MS are briefly presented and some specific examples of the strengths of these LC-MS/MS assays are discussed. The selected examples include methods for isoprostanes, oxidized proteins and amino acids, and DNA biomarkers of oxidative stress.

  3. Methane coupling over magnesium oxide: how doping can work.

    PubMed

    Schwach, Pierre; Willinger, Marc Georg; Trunschke, Annette; Schlgl, Robert

    2013-10-18

    Electronic doping of magnesium oxide catalysts has an effect on the oxidative coupling of methane. Highly active sites can be created by co-modification of MgO with iron and gold in ppm quantities. PMID:24106011

  4. Defluorinated Sparfloxacin as a New Photoproduct Identified by Liquid Chromatography Coupled with UV Detection and Tandem Mass Spectrometry

    PubMed Central

    Engler, Michael; Rsing, Guido; Srgel, Fritz; Holzgrabe, Ulrike

    1998-01-01

    Photodegradation of sparfloxacin was observed by means of high-pressure liquid chromatography with UV detection and liquid chromatography coupled with UV detection and tandem mass spectrometry (LC-MS/MS). Three products were detected. Comparison with an independently synthesized derivative of sparfloxacin revealed the structure of one product which is believed to be 8-desfluorosparfloxacin. The second product is likely to be formed by the splitting off of a fluorine and a cyclopropyl ring. Thus, photodefluorination of quinolone antibacterial agents is found and proved for the first time by LC-MS/MS. PMID:9593143

  5. [Research progress in microbial methane oxidation coupled to denitrification].

    PubMed

    Zhu, Jing; Yuan, Meng-Dong; Liu, Jing-Jing; Huang, Xiao-Xiao; Wu, Wei-Xiang

    2013-12-01

    Methane oxidation coupled to denitrification is an essential bond to connect carbon- and nitrogen cycling. To deeply research this process will improve our understanding on the biochemical cycling of global carbon and nitrogen. As an exogenous gaseous carbon source of denitrification, methane can both regulate the balance of atmospheric methane to effectively mitigate the greenhouse effect caused by methane, and reduce the cost of exogenous carbon source input in traditional wastewater denitrification treatment process. As a result, great attention has being paid to the mechanical study of the process. This paper mainly discussed the two types of methane oxidation coupled to denitrification, i. e., aerobic methane oxidation coupled to denitrification (AME-D) and anaerobic methane oxidation coupled to denitrification (ANME-D), with the focus on the microbiological coupling mechanisms and related affecting factors. The existing problems in the engineering application of methane oxidation coupled to denitrification were pointed out, and the application prospects were approached. PMID:24697087

  6. Exciton-Plasmon Coupling Enhancement via Metal Oxidation.

    PubMed

    Todisco, Francesco; D'Agostino, Stefania; Esposito, Marco; Fernndez-Domnguez, Antonio I; De Giorgi, Milena; Ballarini, Dario; Dominici, Lorenzo; Tarantini, Iolena; Cuscun, Massimo; Della Sala, Fabio; Gigli, Giuseppe; Sanvitto, Daniele

    2015-10-27

    In this paper, we report on the effect of metal oxidation on strong coupling interactions between silver nanostructures and a J-aggregated cyanine dye. We show that metal oxidation can sensibly affect the plexcitonic system, inducing a change in the coupling strength. In particular, we demonstrate that the presence of oxide prevents the appearance of Rabi splitting in the extinction spectra for thick spacers. In contrast, below a threshold percentage, the oxide layer results in an higher coupling strength between the plasmon and the Frenkel exciton. Contrary to common belief, a thin oxide layer seems thus to act, under certain conditions, as a coupling mediator between an emitter and a localized surface plasmon excited in a metallic nanostructure. This suggests that metal oxidation can be exploited as a means to enhance light-matter interactions in strong coupling applications. PMID:26378956

  7. Materials considerations for the coupling of thermochemical hydrogen cycles to tandem mirror reactors

    SciTech Connect

    Krikorian, O.H.

    1980-10-10

    Candidate materials are discussed and initial choices made for the critical elements in a liquid Li-Na Cauldron Tandem Mirror blanket and the General Atomic Sulfur-Iodine Cycle for thermochemical hydrogen production. V and Ti alloys provide low neutron activation, good radiation damage resistance, and good chemical compatibility for the Cauldron design. Aluminide coated In-800H and siliconized SiC are materials choices for heat exchanger components in the thermochemical cycle interface.

  8. Titanium oxidation by rf inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Valencia-Alvarado, R.; de la Piedad-Beneitez, A.; Lpez-Callejas, R.; Barocio, S. R.; Mercado-Cabrera, A.; Pea-Eguiluz, R.; Muoz-Castro, A. E.; Rodrguez-Mndez, B. G.; de la Rosa-Vzquez, J. M.

    2014-05-01

    The development of titanium dioxide (TiO2) films in the rutile and anatase phases is reported. The films have been obtained from an implantation/diffusion and sputtering process of commercially pure titanium targets, carried out in up to 500 W plasmas. The experimental outcome is of particular interest, in the case of anatase, for atmospheric pollution degradation by photocatalysis and, as to the rutile phase, for the production of biomaterials required by prosthesis and implants. The reactor employed consists in a cylindrical pyrex-like glass vessel inductively coupled to a 13.56 MHz RF source. The process takes place at a 510-2 mbar pressure with the target samples being biased from 0 to -3000 V DC. The anatase phase films were obtained from sputtering the titanium targets over glass and silicon electrically floated substrates placed 2 cm away from the target. The rutile phase was obtained by implantation/diffusion on targets at about 700 C. The plasma was developed from a 4:1 argon/oxygen mixture for ~5 hour processing periods. The target temperature was controlled by means of the bias voltage and the plasma source power. The obtained anatase phases did not require annealing after the plasma oxidation process. The characterization of the film samples was conducted by means of x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy and Raman spectroscopy.

  9. Magnetostructural and magnetodielectric coupling in spinel oxides

    NASA Astrophysics Data System (ADS)

    Kemei, Moureen Chemurgor

    Spinels oxides are of great interest functionally as multiferroic, battery, and magnetic materials as well as fundamentally because they exhibit novel spin, structural, and orbital ground states. Competing interactions are at the heart of novel functional behavior in spinels. Here, we explore the intricate landscape of spin, lattice, and orbital interactions in magnetic spinels by employing variable-temperature high-resolution synchrotron x-ray powder diffraction, total neutron scattering, magnetic susceptibility, dielectric, and heat capacity measurements. We show that the onset of long-range magnetic interactions often gives rise to lattice distortions. We present the complete crystallographic descriptions of the ground state structures of several spinels, thereby paving the way for accurate modeling and design of structure-property relationships in these materials. We also report the emergence of magnetodielectric coupling in the magnetostructural phases of some of the studied spinels. We begin by examining spin-lattice coupling in the Jahn-Teller active systems NiCr2O4 and CuCr2O4. Orbital ordering yields a cubic to tetragonal lattice distortion in these materials above their magnetic ordering temperatures, however, we find that magnetic ordering also drives structural distortions in these spinels through exchange striction. We provide the first orthorhombic structural descriptions of NiCr 2O4 and CuCr2O4. Our observation of strong spin-lattice coupling in NiCr2O4 and CuCr 2O4 inspired the study of magnetodielectric coupling in these spinels. Magnetocapacitance measurements of NiCr2O4 reveal multiferroic behavior and new magnetostructural distortions below the Neel temperature. This observation illustrates the sensitivity of dielectric measurements to magnetostructural transitions in spinel materials. Finally, in the examination of NiCr2O4 we show that magnetodielectric coupling is well described by Ginzburg-Landau theory. In addition to exchange striction, geometric frustration couples spin interactions to the lattice of the spinels MgCr2O4 and ZnCr2O4. Novel spin ground states that are important for memory and quantum computing applications are predicted to exist in these spinels. However, their structural and spin ground states are not well understood. We find that tetragonal and orthorhombic phases coexist in antiferromagnetic MgCr2O4 and ZnCr2O4. The structural deformations in these materials lift spin degeneracy by primarily distorting the pyrochlore Cr sublattice. In subsequent studies, we probe the effect of adding dilute spins on the non-magnetic cation sites of MgCr2O 4 and ZnCr2O4. Substitution of Co2+ cations in Zn1-xCoxCr2O4 completely suppress the spin-Jahn-Teller distortion of ZnCr2O4 while, Cu2+ substitutions in Mg1-xCuxCr 2O4 and Zn1-xCuxCr2O 4 induce Jahn-Teller distortions at temperatures above their magnetic ordering temperatures. The Jahn-Teller distortions of Mg1-xCu xCr2O4 and Zn1-xCuxCr 2O4 do not lift spin degeneracy, therefore magnetic ordering is still suppressed down to low temperatures. We show that only more than 20% magnetic A substituents can lift spin degeneracy in MgCr 2O4 and ZnCr2O4. We have also examined the magnetostructural phase transition of the spinel Mn3O4. We show that Mn3O4 undergoes a magnetostructural phase transition from tetragonal I4 1/amd symmetry to a phase coexistence regime consisting of tetragonal I41/amd and orthorhombic Fddd symmetries. Phase coexistence in Mn3O4 is mediated by strain due to a significant lattice mismatch between the low temperature orthorhombic phase and the high temperature tetragonal phase. We propose that strain could be used to control the structure and properties of Mn3O4. Our investigations of spin-driven lattice distortions in spinel oxides illustrate that structural phase coexistence is prevalent for spinels with Neel temperatures below 50 K.

  10. Palladium(II)-Catalyzed Tandem Oxidative Acetoxylation/ortho CH Activation/Carbocyclization of Arylallenes

    PubMed Central

    2015-01-01

    Herein we report an example of tandem oxidative acetoxylation/carbocyclization of arylallenes 1 using Pd(OAc)2. The catalytic protocol is highly selective and provides access to new CC and CO bonds leading to a carbocyclization. The reaction proceeds via CH activation by Pd. Mechanistic investigations show that the CH activation is not the rate-limiting step and indicate that the reaction proceeds via acetoxylation of the allene. PMID:26201012

  11. Measurement of trimethylamine-N-oxide by stable isotope dilution liquid chromatography tandem mass spectrometry

    PubMed Central

    Wang, Zeneng; Levison, Bruce S.; Hazen, Jennie E.; Donahue, Lillian; Li, Xin-Min; Hazen, Stanley L.

    2014-01-01

    Trimethylamine-N-oxide (TMAO) levels in blood predict future risk for major adverse cardiac events including myocardial infarction, stroke and death. Thus, the rapid determination of circulating TMAO concentration is of clinical interest. Here we report a method to measure TMAO in biological matrices by stable isotope dilution liquid chromatography tandem mass spectrometry (LC/MS/MS) with lower and upper limits of quantification of 0.05 and >200 M, respectively. Spike and recovery studies demonstrate an accuracy at low (0.5 M), mid (5 M) and high (100 M) levels of 98.2%, 97.3% and 101.6%, respectively. Additional assay performance metrics include intra-day and inter-day coefficients of variance of < 6.4% and < 9.9%, respectively, across the range of TMAO levels. Stability studies reveal TMAO in plasma is stable both during storage at ?80 C for 5 years and to multiple freeze thaw cycles. Fasting plasma normal range studies among apparently healthy subjects (n=349) shows a range of 0.73 126 M, median (interquartile range) levels of 3.45 (2.255.79) M, and increasing values with age. The LC/MS/MS based assay reported should be of value for further studies evaluating TMAO as a risk marker and for examining the effect of dietary, pharmacologic and environmental factors on TMAO levels. PMID:24704102

  12. Measurement of trimethylamine-N-oxide by stable isotope dilution liquid chromatography tandem mass spectrometry.

    PubMed

    Wang, Zeneng; Levison, Bruce S; Hazen, Jennie E; Donahue, Lillian; Li, Xin-Min; Hazen, Stanley L

    2014-06-15

    Trimethylamine-N-oxide (TMAO) levels in blood predict future risk for major adverse cardiac events including myocardial infarction, stroke, and death. Thus, the rapid determination of circulating TMAO concentration is of clinical interest. Here we report a method to measure TMAO in biological matrices by stable isotope dilution liquid chromatography tandem mass spectrometry (LC/MS/MS) with lower and upper limits of quantification of 0.05 and >200?M, respectively. Spike and recovery studies demonstrate an accuracy at low (0.5?M), mid (5?M), and high (100?M) levels of 98.2, 97.3, and 101.6%, respectively. Additional assay performance metrics include intraday and interday coefficients of variance of <6.4 and <9.9%, respectively, across the range of TMAO levels. Stability studies reveal that TMAO in plasma is stable both during storage at -80C for 5years and to multiple freeze thaw cycles. Fasting plasma normal range studies among apparently healthy subjects (n=349) show a range of 0.73-126?M, median (interquartile range) levels of 3.45 (2.25-5.79)?M, and increasing values with age. The LC/MS/MS-based assay reported should be of value for further studies evaluating TMAO as a risk marker and for examining the effect of dietary, pharmacologic, and environmental factors on TMAO levels. PMID:24704102

  13. Online Monitoring Oxidative Products and Metabolites of Nicotine by Free Radicals Generation with Fenton Reaction in Tandem Mass Spectrometry

    PubMed Central

    Liang, Shih-Shin; Shiue, Yow-Ling; Kuo, Chao-Jen; Liao, Wei-Ting; Tsai, Eing-Mei

    2013-01-01

    In general, over 70% absorbed nicotine is metabolized to cotinine and trans-3′-hydroxycotinine by cytochrome oxidase P450, and nicotine is also a major addictive and the psychoactive component in cigarettes. As a xenobiotic metabolism, hydrophobic compounds are usually converted into more hydrophilic products through enzyme systems such as cytochrome oxidase P450, sulfotransferases, and UDP-glucuronosyltransferases to deliver drug metabolites out of the cell during the drug metabolic process. In this study, an electrodeless electrochemical oxidation (EEO) reaction via Fenton reaction by producing free radical to react with nicotine to immediately monitor the oxidative products and metabolic derivatives of nicotine by tandem mass spectrometer (MS) is done. Fenton reaction generates free radicals via ferrous ion (Fe2+) and hydrogen peroxide (H2O2) to oxidize DNA and to degrade proteins in cells. In the EEO method, the oxidative products of nicotine including cotinine, cotinine-N-oxide, trans-3′-hydroxycotinine, nornicotine, norcotinine, 4-oxo-4-(3-pyridyl)-butanoic acid, 4-hydroxy-4-(3-pyridyl)-butanoic acid, and nicotine-N′-oxide were detected by tandem mass spectrometer to simulate the changes of nicotine and its derivatives in a time-dependent manner. PMID:23983622

  14. Online monitoring oxidative products and metabolites of nicotine by free radicals generation with Fenton reaction in tandem mass spectrometry.

    PubMed

    Liang, Shih-Shin; Shiue, Yow-Ling; Kuo, Chao-Jen; Guo, Su-Er; Liao, Wei-Ting; Tsai, Eing-Mei

    2013-01-01

    In general, over 70% absorbed nicotine is metabolized to cotinine and trans-3'-hydroxycotinine by cytochrome oxidase P450, and nicotine is also a major addictive and the psychoactive component in cigarettes. As a xenobiotic metabolism, hydrophobic compounds are usually converted into more hydrophilic products through enzyme systems such as cytochrome oxidase P450, sulfotransferases, and UDP-glucuronosyltransferases to deliver drug metabolites out of the cell during the drug metabolic process. In this study, an electrodeless electrochemical oxidation (EEO) reaction via Fenton reaction by producing free radical to react with nicotine to immediately monitor the oxidative products and metabolic derivatives of nicotine by tandem mass spectrometer (MS) is done. Fenton reaction generates free radicals via ferrous ion (Fe(2+)) and hydrogen peroxide (H2O2) to oxidize DNA and to degrade proteins in cells. In the EEO method, the oxidative products of nicotine including cotinine, cotinine-N-oxide, trans-3'-hydroxycotinine, nornicotine, norcotinine, 4-oxo-4-(3-pyridyl)-butanoic acid, 4-hydroxy-4-(3-pyridyl)-butanoic acid, and nicotine-N'-oxide were detected by tandem mass spectrometer to simulate the changes of nicotine and its derivatives in a time-dependent manner. PMID:23983622

  15. Identification of methylene diphenyl diisocyanate thermal degradation products in a generation chamber by liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Gagne, Sébastien; Cloutier, Yves

    2016-02-01

    Isocyanate thermal degradation characterization by liquid chromatography coupled with electrospray tandem mass spectrometry has been performed to elucidate the methylene diphenyl diisocyanate (MDI) thermal degradation structure emitted in a generation chamber using a temperature between 50°C and 180°C to produce MDI vapors. [M+H](+) ions containing an isocyanate functional group were studied by tandem mass spectrometry. The [M+H](+) ion analyses based on the combination of full scans and precursor ion scans were useful for identifying all structures. The compounds emitted were identified and validated as a mixture of compounds containing amine and isocyanate functions. Residual MDI, methylene diphenyl amino-isocyanate, and methylene diphenyl diamine were identified. Polymerized forms of these structures were also observed because amine and isocyanate chemical functions react rapidly to polymerize. These results must be used with special care by scientists establishing sensitization diagnostics and developing sampling devices using generation chambers as they must be related to MDI behavior in workplaces. Even if pure MDI is introduced in the generation chamber, several different compounds are generated when the MDI is heated at a high temperature. This can result in some misleading interpretations for non-specific isocyanate sampling device development and sensitization diagnostics as MDI is present in the chamber with other compounds with known adverse effects. PMID:26337647

  16. Enzymic mechanism of oxidative phosphorylation: (coupling unit/coupling sequences/transmembrane orientation/phosphoryl transferase)

    SciTech Connect

    Green, D.E.; Vande Zande, H.

    1982-02-01

    Oxidative phosphorylation, like substrate-level phosphorylation, involves oxidative conversion of inorganic phosphate to a reactive species followed by interaction of this species with enzyme-bound ADP to form enzyme-bound ATP. The reactive species is a phosphoryl ester in substrate-level phosphorylation and a phosphonium ion or orthophosphate in oxidative phosphorylation. The coupled synthesis is mediated by a combination of two classical enzymes in substrate-level phosphorylation and by a set of energy-coupled enzymes in oxidative phosphorylation. The full range of experimental evidence supporting this proposed enzymic mechanism of oxidative phosphorylation is presented as well as the rationalization of phenomena that hitherto have eluded explanation.

  17. Hydrophilic interaction liquid chromatography-electrospray ionization-tandem mass spectrometry of a complex mixture of native and oxidized phospholipids.

    PubMed

    Losito, I; Facchini, L; Diomede, S; Conte, E; Megli, F M; Cataldi, T R I; Palmisano, F

    2015-11-27

    A mixture of native and oxidized phospholipids (PLs), generated by the soybean lipoxygenase type V-catalyzed partial oxidation of a lipid extract obtained from human platelets, was analyzed by Hydrophilic Interaction Liquid Chromatography-ElectroSpray Ionization-Tandem Mass Spectrometry (HILIC-ESI-MS/MS). The complexity of the resulting mixture was remarkable, considering that the starting lipid extract, containing (as demonstrated in a previous study) about 130 native PLs, was enriched with enzymatically generated hydroperoxylated derivatives and chemically generated hydroxylated forms of PLs bearing polyunsaturated side chains. Nonetheless, the described analytical approach proved to be very powerful; indeed, focusing on phosphatidylcolines (PCs), the most abundant PL class in human platelets, about fifty different native/oxidized species could be identified in a single HILIC-ESI-MS/MS run. Low-energy collision induced dissociation tandem MS (CID-MS/MS) experiments on chromatographically separated species showed single neutral losses of H2O2 and H2O to be typical fragmentation pathways of hydroperoxylated PCs, whereas a single H2O loss was observed for hydroxylated ones. Moreover, diagnostic losses of n-hexanal or n-pentanol were exploited to recognize PCs hydroperoxylated on the last but five carbon atom of a ?-6 polyunsaturated side chain. Despite the low resolution of the 3D ion trap mass analyzer used, the described HILIC-ESI-MS/MS approach appears very promising for the identification of oxidized lipids in oxidatively stressed complex biological systems. PMID:26508677

  18. Formation of oligomeric alkenylperoxides during the oxidation of unsaturated fatty acids: an electrospray ionization tandem mass spectrometry study.

    PubMed

    Villaverde, Juan José; Santos, Sónia A O; Maciel, Elisabete; Simões, Mário M Q; Pascoal Neto, Carlos; Domingues, M Rosário M; Silvestre, Armando J D

    2012-02-01

    This study reports the identification of oligomeric alkenylperoxides by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS(2)), during the oxidation of oleic, linoleic and linolenic acids with Fenton's (Fe(2+)/H(2)O(2)) and Fe(2+)/O(2) systems. The reactions were followed by ferrous oxidation-xylenol orange method together with GC-MS and GC-FID, allowing to observe that both oxidation systems are different in terms of hydroperoxide evolution, probably due to the presence of different intermediate reactive species: perferryl ion and OH(·) radical responsible for the decomposition of lipid hydroperoxides and formation of new compounds. The analysis of ESI-MS in the negative mode, obtained after oxidation of each fatty acid, confirmed the presence of the monomeric oxidation products together with other compounds at high mass region above m/z 550. These new ions were attributed to oligomeric structures, identified by the fragmentation pathways observed in the tandem mass spectra. PMID:22359325

  19. Upgrading light hydrocarbons via tandem catalysis: a dual homogeneous Ta/Ir system for alkane/alkene coupling.

    PubMed

    Leitch, David C; Lam, Yan Choi; Labinger, Jay A; Bercaw, John E

    2013-07-17

    Light alkanes and alkenes are abundant but are underutilized as energy carriers because of their high volatility and low energy density. A tandem catalytic approach for the coupling of alkanes and alkenes has been developed in order to upgrade these light hydrocarbons into heavier fuel molecules. This process involves alkane dehydrogenation by a pincer-ligated iridium complex and alkene dimerization by a Cp*TaCl2(alkene) catalyst. These two homogeneous catalysts operate with up to 60/30 cooperative turnovers (Ir/Ta) in the dimerization of 1-hexene/n-heptane, giving C13/C14 products in 40% yield. This dual system can also effect the catalytic dimerization of n-heptane (neohexene as the H2 acceptor) with cooperative turnover numbers of 22/3 (Ir/Ta). PMID:23799786

  20. Qualitative analysis of phenolic compounds in apple pomace using liquid chromatography coupled to mass spectrometry in tandem mode.

    PubMed

    Sánchez-Rabaneda, Ferran; Jáuregui, Olga; Lamuela-Raventós, Rosa Maria; Viladomat, Francesc; Bastida, Jaume; Codina, Carles

    2004-01-01

    The occurrence of phenolic compounds in apple residues resulting from the juice industry was investigated to provide an alternative use for this raw material. For the identification of these compounds, liquid chromatography coupled to ionspray mass spectrometry in tandem mode (LC/MS/MS) with negative ion detection was used. The residues were first extracted and then chromatographed on Sephadex LH-20 to yield 13 fractions. Positive identification of the compounds was based on their retention times and mass spectra in full scan mode (MS), and in different MS/MS modes (product ion scan, precursor ion scan and neutral loss scan). In this way, 60 compounds, including cinnamic and benzoic acid derivatives and flavonoids, were identified, some of them not previously reported in apple waste. PMID:14978800

  1. Tandem mobile robot system

    DOEpatents

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  2. Plasma lipid analysis by hydrophilic interaction liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    PubMed

    Sonomura, Kazuhiro; Kudoh, Shinobu; Sato, Taka-Aki; Matsuda, Fumihiko

    2015-06-01

    A novel method for the analysis of endogenous lipids and related compounds was developed employing hydrophilic interaction liquid chromatography with electrospray ionization tandem mass spectrometry. A hydrophilic interaction liquid chromatography with carbamoyl stationary phase achieved clear separation of phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, ceramide, and mono-hexsosyl ceramide groups with good peak area repeatability (RSD% < 10) and linearity (R(2) > 0.99). The established method was applied to human plasma assays and a total of 117 endogenous lipids were successfully detected and reproducibly identified. In addition, we investigated the simultaneous detection of small polar metabolites such as amino and organic acids co-existing in the same biological samples processed in a single analytical run with lipids. Our results show that hydrophilic interaction liquid chromatography is a useful tool for human plasma lipidome analysis and offers more comprehensive metabolome coverage. PMID:25845351

  3. IMPACT OF OXYGEN MEDIATED OXIDATIVE COUPLING ON ADSORPTION KINETICS

    EPA Science Inventory

    The presence of molecular oxygen in the test environment promotes oxidative coupling (polymer formation) of phenolic compounds on the surface of granular activated carbon (GAC). Both adsorption equilibria and adsorption kinetics are affected by these chemical reactions. Lack of...

  4. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, Richard B. (Hurricane, WV); Warren, Barbara K. (Charleston, WV)

    1991-01-01

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  5. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, R.B.; Warren, B.K.

    1991-12-17

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  6. Tandem C–H oxidation/cyclization/rearrangement and its application to asymmetric syntheses of (−)-brussonol and (−)-przewalskine E

    PubMed Central

    Jiao, Zhi-Wei; Tu, Yong-Qiang; Zhang, Qing; Liu, Wen-Xing; Zhang, Shu-Yu; Wang, Shao-Hua; Zhang, Fu-Min; Jiang, Sen

    2015-01-01

    Natural products are a vital source of lead compounds in drug discovery. Development of efficient tandem reactions to build useful compounds and apply them to the synthesis of natural products is not only a significant challenge but also an important goal for chemists. Here we describe a tandem C–H oxidation/cyclization/rearrangement of isochroman-derived allylic silylethers, promoted by DDQ and InCl3. This method allows the efficient construction of tricyclic benzoxa[3.2.1]octanes with a wide substrate scope. We employ this tandem reaction to achieve the asymmetric total syntheses of (−)-brussonol and (−)-przewalskine E. PMID:26081438

  7. Fast quantification of endogenous carbohydrates in plasma using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Zhu, Bangjie; Liu, Feng; Li, Xituo; Wang, Yan; Gu, Xue; Dai, Jieyu; Wang, Guiming; Cheng, Yu; Yan, Chao

    2015-01-01

    Endogenous carbohydrates in biosamples are frequently highlighted as the most differential metabolites in many metabolomics studies. A simple, fast, simultaneous quantitative method for 16 endogenous carbohydrates in plasma has been developed using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. In order to quantify 16 endogenous carbohydrates in plasma, various conditions, including columns, chromatographic conditions, mass spectrometry conditions, and plasma preparation methods, were investigated. Different conditions in this quantified analysis were performed and optimized. The reproducibility, precision, recovery, matrix effect, and stability of the method were verified. The results indicated that a methanol/acetonitrile (50:50, v/v) mixture could effectively and reproducibly precipitate rat plasma proteins. Cold organic solvents coupled with vortex for 1 min and incubated at -20C for 20 min were the most optimal conditions for protein precipitation and extraction. The results, according to the linearity, recovery, precision, matrix effect, and stability, showed that the method was satisfactory in the quantification of endogenous carbohydrates in rat plasma. The quantified analysis of endogenous carbohydrates in rat plasma performed excellently in terms of sensitivity, high throughput, and simple sample preparation, which met the requirement of quantification in specific expanded metabolomic studies after the global metabolic profiling research. PMID:25359182

  8. Nitric Oxide Enhances Charge-Coupled Device

    NASA Technical Reports Server (NTRS)

    Hecht, Michael H.; Poindexter, Edward H.

    1990-01-01

    Simple treatment increases and stabilizes quantum efficiency of charge-coupled-device photodetector illuminated on back surface at wavelengths less than 4,500 Angstrom. Must be biased in strong accumulation mode. Physical principle of enhancement explained more fully in "Metal Film Increases CCD Output" (NPO-16815). Useful for imaging at wavelengths from ultraviolet to blue; for example, in astronomical observations.

  9. Quantification of Neurotransmitters in Mouse Brain Tissue by Using Liquid Chromatography Coupled Electrospray Tandem Mass Spectrometry

    PubMed Central

    Kim, Tae-Hyun; Choi, Juhee

    2014-01-01

    A simple and rapid liquid chromatography tandem mass spectrometry method has been developed for the determination of BH4, DA, 5-HT, NE, EP, Glu, and GABA in mouse brain using epsilon-acetamidocaproic acid and isotopically labeled neurotransmitters as internal standards. Proteins in the samples were precipitated by adding acetonitrile, and then the supernatants were separated by a Sepax Polar-Imidazole (2.1?mm 100?mm, i.d., 3??m) column by adding a mixture of 10?mM ammonium formate in acetonitrile/water (75?:?25, v/v, 300??l/min) for BH4 and DA. To assay 5-HT, NE, EP, Glu, and GABA; a Luna 3?? C18 (3.0?mm 150?mm, i.d., 3??m) column was used by adding a mixture of 1% formic acid in acetonitrile/water (20?:?80, v/v, 350??l/min). The total chromatographic run time was 5.5?min. The method was validated for the analysis of samples. The calibration curve was linear between 10 and 2000?ng/g for BH4 (r2 = 0.995) , 10 and 5000?ng/g for DA (r2 = 0.997) , 20 and 10000?ng/g for 5-HT (r2 = 0.994) , NE (r2 = 0.993) , and EP (r2 = 0.993) , and 0.2 and 200??g/g for Glu (r2 = 0.996) and GABA (r2 = 0.999) in the mouse brain tissues. As stated above, LC-MS/MS results were obtained and established to be a useful tool for the quantitative analysis of BH4, DA, 5-HT, NE, EP, Glu, and GABA in the experimental rodent brain. PMID:25258696

  10. Asymmetric synthesis of the main core of kaurane family members triggered by an oxidative polycyclization-pinacol tandem process.

    PubMed

    Desjardins, Samuel; Maertens, Gaëtan; Canesi, Sylvain

    2014-09-19

    Polycyclization processes represent expeditious routes used in both nature and the laboratory to produce complex polycyclic molecules. A new stereoselective oxidative variant of such a polycyclization has been developed in which the cascade is triggered by a phenol dearomatization and is concluded by a pinacol transposition. This unprecedented avenue combines the synthetic power of a polycyclization and a transposition in tandem and enables the rapid formation of the tetracyclic main core of kaurane diterpenes containing several asymmetric and quaternary carbon centers in a single step from a simple phenol derivative. PMID:25191786

  11. Coupling Oxidative Signals to Protein Phosphorylation via Methionine Oxidation in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms involved in sensing oxidative signaling molecules such as H2O2 in plant and animal cells are not completely understood. In the present study, we tested the postulate that oxidation of methionine (Met) to Met sulfoxide (MetSO) can couple oxidative signals to changes in protein phosphor...

  12. Simultaneous analysis of 28 urinary VOC metabolites using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS).

    PubMed

    Alwis, K Udeni; Blount, Benjamin C; Britt, April S; Patel, Dhrusti; Ashley, David L

    2012-10-31

    Volatile organic compounds (VOCs) are ubiquitous in the environment, originating from many different natural and anthropogenic sources, including tobacco smoke. Long-term exposure to certain VOCs may increase the risk for cancer, birth defects, and neurocognitive impairment. Therefore, VOC exposure is an area of significant public health concern. Urinary VOC metabolites are useful biomarkers for assessing VOC exposure because of non-invasiveness of sampling and longer physiological half-lives of urinary metabolites compared with VOCs in blood and breath. We developed a method using reversed-phase ultra high performance liquid chromatography (UPLC) coupled with electrospray ionization tandem mass spectrometry (ESI/MSMS) to simultaneously quantify 28 urinary VOC metabolites as biomarkers of exposure. We describe a method that monitors metabolites of acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon-disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride and xylene. The method is accurate (mean accuracy for spiked matrix ranged from 84 to 104%), sensitive (limit of detection ranged from 0.5 to 20 ng mL(-1)) and precise (the relative standard deviations ranged from 2.5 to 11%). We applied this method to urine samples collected from 1203 non-smokers and 347 smokers and demonstrated that smokers have significantly elevated levels of tobacco-related biomarkers compared to non-smokers. We found significant (p<0.0001) correlations between serum cotinine and most of the tobacco-related biomarkers measured. These findings confirm that this method can effectively quantify urinary VOC metabolites in a population exposed to volatile organics. PMID:23062436

  13. Combined application of high resolution and tandem mass spectrometers to characterize methionine oxidation in a parathyroid hormone formulation.

    PubMed

    Pan, Changkang; Valente, Joseph J; LoBrutto, Rosario; Pickett, Jennifer S; Motto, Michael

    2010-03-01

    Identification and monitoring of degradation products is a critical aspect of drug product stability programs. This process can present unique challenges when working with complex biopharmaceutical formulations that do not readily lend themselves to straightforward HPLC analysis. The therapeutic 34 amino acid parathyroid hormone fragment (PTH1-34) contains methionine (Met) residues at positions 8 and 18. Oxidation of these Met residues results in reduced biological activity and thus efficacy of the potential drug product. Here, we present an effective approach for the identification of PTH1-34 oxidation products in a drug product formulation in which the stability indicating method used non-MS compatible HPLC conditions to separate excipients, drug substance and degradation products. High resolution and tandem mass spectrometers were used in conjunction with cyanogen bromide (CNBr) mediated digestion to accurately identify the oxidation products observed in an alternative MS compatible HPLC method used for drug substance analysis. All anticipated CNBr digested peptide fragments, including both oxidized and nonoxidized peptide fragments, were positively identified using TOF MS without the need for additional enzymatic digestion. Once identified, the oxidation products generated were injected onto the original non-MS compatible HPLC drug product stability indicating method and the respective retention times were confirmed. This allowed the oxidative stability of different formulations to be effectively monitored during the solid state stability program and during variant selection. PMID:19711445

  14. Determination of Niacin and Its Metabolites Using Supercritical Fluid Chromatography Coupled to Tandem Mass Spectrometry

    PubMed Central

    Taguchi, Kaori; Fukusaki, Eiichiro; Bamba, Takeshi

    2014-01-01

    Niacin, a water-soluble vitamin belonging to the vitamin B group, has been known to cause various problems in the human body when deficient. The vitamin is derived from the diet and afterwards, niacin and its metabolites are secreted in blood or urine. It can be analyzed using liquid chromatography (LC) coupled to mass spectrometry, but niacin and its metabolites are very polar compounds. Recently, supercritical fluid chromatography (SFC) is gaining attention for polar compound analysis. To our best knowledge, the report on the analysis of endogenous-very hydrophilic metabolites in biofluids by SFC has not been found. In this study, we investigated whether the separation of hydrophilic metabolites in biofluids is achievable by SFC. In addition, we also examined the applicability of SFC coupled to MS in extrapolating unknown metabolites by means of spectra information. As a result, an analysis method to quantify the target compounds using SFC/MS/MS was constructed for niacin and its metabolites. Additional putative metabolites from niacin were also identified using the MS fragmentation spectra in plasma and urine. Consequently, the method using SFC/MS/MS allowed for the analysis of polar compounds with low log?P ranging from ?3.7 to 0.29. This study is the first report of the separation of niacin and its seven metabolites in human urine and these results showed that SFC-MS/MS can be an alternative technique for hydrophilic metabolite analysis. PMID:25386386

  15. Multiresidue method for fast determination of pesticides in fruit juices by ultra performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Romero-Gonzlez, R; Garrido Frenich, A; Martnez Vidal, J L

    2008-06-30

    A new analytical method for the simultaneous determination of 90 pesticides in fruit juices by ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) has been developed and validated. Extraction was performed with acetonitrile, applying QuEChERS methodology, and the extracts were analyzed without any further clean-up step, providing better results than solid phase extraction (SPE) procedure. Before chromatographic step, extracts were diluted with water (1:1) in order to obtain good peak shapes. Several chromatographic conditions were evaluated in order to achieve a fast separation in Multiple Reaction Monitoring (MRM) mode, obtaining a run time of only 11 min. Matrix effect was studied for different types of fruit juices (peach, orange, pineapple, apple and multifruit), indicating that multifruit juice can be selected as representative matrix for routine analysis of these food commodities. Pesticides were quantified using matrix-matched calibration with recoveries between 70.4 and 108.5% and relative standard deviation lower than 20%. Limits of quantification were lower than 5 microg L(-1) in all the cases. The developed procedure was applied to commercial fruit juices, detecting carbendazim, cyprodinil and thiabendazol in a few samples. PMID:18585265

  16. Analysis of anabolic androgenic steroids as sulfate conjugates using high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Rzeppa, S; Heinrich, G; Hemmersbach, P

    2015-12-01

    Improvements in doping analysis can be effected by speeding up analysis time and extending the detection time. Therefore, direct detection of phase II conjugates of doping agents, especially anabolic androgenic steroids (AAS), is proposed. Besides direct detection of conjugates with glucuronic acid, the analysis of sulfate conjugates, which are usually not part of the routine doping control analysis, can be of high interest. Sulfate conjugates of methandienone and methyltestosterone metabolites have already been identified as long-term metabolites. This study presents the synthesis of sulfate conjugates of six commonly used AAS and their metabolites: trenbolone, nandrolone, boldenone, methenolone, mesterolone, and drostanolone. In the following these sulfate conjugates were used for development of a fast and easy analysis method based on sample preparation using solid phase extraction with a mixed-mode sorbent and detection by high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Validation demonstrated the suitability of the method with regard to the criteria given by the technical documents of the World Anti-Doping Agency (WADA). In addition, suitability has been proven by successful detection of the synthesized sulfate conjugates in excretion urines and routine doping control samples. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26472592

  17. Determinations of airborne synthetic musks by polyurethane foam coupled with triple quadrupole gas chromatography tandem mass spectrometer.

    PubMed

    Wang, I-Ting Ivy; Cheng, Shu-Fang; Tsai, Shih-Wei

    2014-02-21

    Synthetic musk is widely used in various scented consumer products. However, the exposure via inhalation is often ignored due to pleasant smells. In addition, the information regarding the distribution of synthetic musk in air is limited. Hence, this research is aimed to develop a highly sensitive and widely applicable method for the determination of airborne synthetic musk. In this study, polyurethane foam (PUF) and filter were employed for active air sampling. Microwave assisted extraction (MAE) and nitrogen evaporator were performed for sample preparation. A gas chromatography coupled with triple quadrupole tandem mass spectrometer (GC/MS-MS) with specific multiple reaction monitoring (MRM) transition pairs was applied for sample analysis. Compared with using selected ion monitoring (SIM) mode traditionally, the sensitivities were improved in this study about an order at least. In terms of air concentration, as low as 0.48ngm(-3) can be determined when sampling at 3.5Lmin(-1) for 8h. The method established was further applied to the analysis of synthetic musk compounds in air samples collected in a cosmetics plant. The results showed that the airborne concentrations of gaseous polycyclic musk, gaseous nitro-musk, and particle-phase polycyclic musk were 6.410(2), 4.010(1) and 3.110(2)ngm(-3), respectively. Meanwhile, Cashmeran, Celstolide, Galaxolide, and Tonalide were found as the dominant musk compounds in the factory investigated. PMID:24480734

  18. Oscillatory exchange coupling and positive magnetoresistance in epitaxial oxide heterostructures

    PubMed

    Nikolaev; Dobin; Krivorotov; Cooley; Bhattacharya; Kobrinskii; Glazman; Wentzovitch; Dahlberg; Goldman

    2000-10-23

    Oscillation in the exchange coupling between ferromagnetic La(2/3)Ba(1/3)MnO3 layers with paramagnetic LaNiO3 spacer layer thickness has been observed in epitaxial heterostructures of the two oxides. This behavior is explained within the RKKY model employing an ab initio calculated band structure of LaNiO3, taking into account strong electron scattering in the spacer. Antiferromagnetically coupled superlattices exhibit a positive current-in-plane magnetoresistance. PMID:11030992

  19. Improvement of Mitochondria Extract from Saccharomyces cerevisiae Characterization in Shotgun Proteomics Using Sheathless Capillary Electrophoresis Coupled to Tandem Mass Spectrometry.

    PubMed

    Ibrahim, Marianne; Gahoual, Rabah; Enkler, Ludovic; Becker, Hubert Dominique; Chicher, Johana; Hammann, Philippe; François, Yannis-Nicolas; Kuhn, Lauriane; Leize-Wagner, Emmanuelle

    2016-04-01

    In this work, we describe the characterization of a quantity-limited sample (100 ng) of yeast mitochondria by shotgun bottom-up proteomics. Sample characterization was carried out by sheathless capillary electrophoresis, equipped with a high sensitivity porous tip and coupled to tandem mass spectrometry (CESI-MS-MS) and concomitantly with a state-of-art nano flow liquid chromatography coupled to a similar mass spectrometry (MS) system (nanoLC-MS-MS). With single injections, both nanoLC-MS-MS and CESI-MS-MS 60 min-long separation experiments allowed us to identify 271 proteins (976 unique peptides) and 300 proteins (1,765 unique peptides) respectively, demonstrating a significant specificity and complementarity in identification depending on the physicochemical separation employed. Such complementary, maximizing the number of analytes detected, presents a powerful tool to deepen a biological sample's proteomic characterization. A comprehensive study of the specificity provided by each separating technique was also performed using the different properties of the identified peptides: molecular weight, mass-to-charge ratio (m/z), isoelectric point (pI), sequence coverage or MS-MS spectral quality enabled to determine the contribution of each separation. For example, CESI-MS-MS enables to identify larger peptides and eases the detection of those having extreme pI without impairing spectral quality. The addition of peptides, and therefore proteins identified by both techniques allowed us to increase significantly the sequence coverages and then the confidence of characterization. In this study, we also demonstrated that the two yeast enolase isoenzymes were both characterized in the CESI-MS-MS data set. The observation of discriminant proteotypic peptides is facilitated when a high number of precursors with high-quality MS-MS spectra are generated. PMID:26860395

  20. Quantification of endogenous brassinosteroids in sub-gram plant tissues by in-line matrix solid-phase dispersion-tandem solid phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Lu; Duan, Chunfeng; Wu, Dapeng; Guan, Yafeng

    2014-09-12

    A matrix solid-phase dispersion (MSPD)-tandem mixed mode anion exchange (MAX)-mixed mode cation exchange (MCX) solid phase extraction-high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) method was developed for quantification of six endogenous brassinosteroids (BRs) (24-epibrassinolide, 24-epicastasterone, 6-deoxo-24-epicastasterone, dolichosterone, teasterone and typhasterol) in rice plant tissues. Non-polar interferences were removed effectively by C8 dispersant used in MSPD, while the following tandem MAX-MCX process facilitated the elimination of polar and ionizable compounds. The weak reversed-phase retention feature of MAX-MCX leaded to good compatibility of the elution solvents in the in-line coupled MSPD-MAX-MCX system. This system was optimized for extraction and purification of BRs in plant samples. The effects of the type of solid phase, the elution solvent, the extraction temperature and the clean-up material were studied. Before HPLC separation, BRs purified were derivatized by m-aminophenylboronic acid to enhance the sensitivity of MS/MS to BRs. Compared with traditional liquid-liquid extraction and solid phase extraction (LLE-SPE), the proposed MSPD-MAX-MCX method showed higher extraction efficiency, lower matrix effect, and advantages of easy manipulation and time-saving. The in-line MSPD-MAX-MCX coupled with HPLC-MS/MS method provided a linear response over two orders of magnitude of BRs concentration with correlation coefficients above 0.9982, limits of detection between 0.008 and 0.04ngmL(-1), relative standard deviations (RSDs) below 29.4%, and recoveries above 77.8%. The proposed method has been successfully applied to analysis of endogenous BRs in rice plant at booting stage and maturity stage. PMID:25092597

  1. Proteomic analysis of the organ of corti using nanoscale liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Peng, Hong; Liu, Miao; Pecka, Jason; Beisel, Kirk W; Ding, Shi-Jian

    2012-01-01

    The organ of Corti (OC) in the cochlea plays an essential role in auditory signal transduction in the inner ear. For its minute size and trace amount of proteins, the identification of the molecules in pathophysiologic processes in the bone-encapsulated OC requires both delicate separation and a highly sensitive analytical tool. Previously, we reported the development of a high resolution metal-free nanoscale liquid chromatography system for highly sensitive phosphoproteomic analysis. Here this system was coupled with a LTQ-Orbitrap XL mass spectrometer to investigate the OC proteome from normal hearing FVB/N male mice. A total of 628 proteins were identified from six replicates of single LC-MS/MS analysis, with a false discovery rate of 1% using the decoy database approach by the OMSSA search engine. This is currently the largest proteome dataset for the OC. A total of 11 proteins, including cochlin, myosin VI, and myosin IX, were identified that when defective are associated with hearing impairment or loss. This study demonstrated the effectiveness of our nanoLC-MS/MS platform for sensitive identification of hearing loss-associated proteins from minute amount of tissue samples. PMID:22942697

  2. Combining novel device architecture and NIR dye towards the fabrication of transparent conductive oxide-less tandem dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Baranwal, Ajay Kumar; Fujikawa, Naotaka; Hayat, Azwar; Ogomi, Yuhei; Pandey, Shyam S.; Ma, Tingli; Hayase, Shuzi

    2015-10-01

    Tandem solar cells with different device architectures utilizing a back contact transparent conductive oxide-less bottom electrode (TCO-less tandem DSSC) that has better control of the optical transmission losses incurred by intermediate TCO layers with flexible Pt/tin-doped indium oxide (ITO)-polyethylene terephthalate film as an intermediate layer are reported. The proposed device architecture suppresses the optical loss to a greater extent (around 30%). Sensitizers were ruthenium-based N719 dye in the top electrode, while the newly synthesized phthalocyanine dye (PC25) corresponding to photon harvesting in the near infrared (NIR) region (up to 900 nm) was used in the TCO-less bottom cell. Open circuit voltage (Voc) ≥ 1.18 V (sum of top cell and bottom cell Voc) justifies the TCO-less tandem DSSC formation.

  3. Tear proteomic analysis of Sjgren syndrome patients with dry eye syndrome by two-dimensional-nano-liquid chromatography coupled with tandem mass spectrometry

    PubMed Central

    Li, Bing; Sheng, Minjie; Li, Jianhua; Yan, Guoquan; Lin, Anjuan; Li, Min; Wang, Weifang; Chen, Yihui

    2014-01-01

    We examined the tear film proteome of patients with Sjgren's syndrome (SS) and dry eye syndrome (group A), patients with dry eye symptoms (group B) and normal volunteers (group C). Tear samples were pooled from 8 subjects from each group and were subjected to two-dimensional-nano-liquid chromatography coupled with tandem mass spectrometry (2D-nano-LC-MS/MS). The tear breakup time for group A was significantly reduced compared with group B and C (P < 0.001). Group A (Schirmer I test, 2.13 2.38?mm/5?min) had markedly lower tear volume than group B (5.94 4.75?mm/5?min) and C (14.44 6.57?mm/5?min) (P < 0.001). Group A had significantly higher normalized tear protein content (1.8291 0.2241??g/mm) than group B (1.0839 0.1120??g/mm) (P = 0.001) and C (0.2028 0.0177??g/mm) (P = 0.001). The 2D-nano-LC-MS/MS analysis identified a total of 435 proteins, including 182 (54.8%), 247 (74.4%) and 278 (83.7%) in group A, B, and C, respectively, with 56 (16.7%) proteins including defensin ?1, clusterin and lactotransferrin unique to group A. In conclusion, dry eye syndrome in SS patients is associated with an altered proteomic profile with dysregulated expression of proteins involved in a variety of important cellular process including inflammation, immunity, and oxidative stress. PMID:25159733

  4. Simultaneous determination of 24 polycyclic aromatic hydrocarbons in edible oil by tandem solid-phase extraction and gas chromatography coupled/tandem mass spectrometry.

    PubMed

    Xu, Ting; Tang, Hua; Chen, Dazhou; Dong, Haifeng; Li, Lei

    2015-01-01

    An efficient and fast tandem SPE method followed by GC/MS/MS has been developed for the determination and the quantification of 24 polycyclic aromatic hydrocarbons (PAHs) in edible oil. This method includes the monitoring of 15 + 1 PAHs designated as a priority by the European Union in their 2005/108/EC recommendation and 16 PAHs listed by the U. S. Environmental Protection Agency. The sample preparation procedures were based on SPE in which PAH-dedicated cartridges with molecularly imprinted polymers and graphitized carbon black were used in series. The novel tandem SPE combination of selective extraction and purification of light and heavy PAHs provided highly purified analytes. Identification and quantification of 24 target PAHs were performed using GC/MS/MS with the isotope dilution approaches using D-labeled and (13)C-labeled PAHs. The advantages of GC/MS/MS as compared to other detection methods include high sensitivity, selectivity, and interpretation ability. The method showed satisfactory linearity (R(2) > 0.998) over the range assayed (0.5-200 ?g/kg); the LODs ranged from 0.03 to 0.6 ?g/kg, and LOQs from 0.1 to 2.0 ?g/kg. The recoveries using this method at three spiked concentration levels (2, 10, and 50 ?g/kg) ranged from 56.8 to 117.7%. The RSD was lower than 12.7% in all cases. The proposed analytical method has been successfully applied for the analysis of the 24 PAHs in edible oil. PMID:25905761

  5. Coupling of oxidative dehydrogenation and aromatization reactions of butane

    SciTech Connect

    Xu, Wen-Qing; Suib, S.L. )

    1994-01-01

    Coupling of oxidative dehydrogenation and aromatization of butane by using a dual function catalyst has led to a significant enhancement of the yields (from 25 to 40%) and selectivities to aromatics (from 39 to 64%). Butane is converted to aromatics by using either zinc-promoted [Ga]-ZSM-5 or zinc and gallium copromoted [Fe]-ZSM-5 zeolite as a catalyst. However, the formation of aromatics is severely limited by hydrocracking of butane to methane, ethane, and propane due to the hydrogen formed during aromatization reactions. On the other hand, the oxidative dehydrogenation of butane to butene over molybdate catalysts is found to be accompanied by a concurrent undesirable reaction, i.e., total oxidation. When two of these reactions (oxidative dehydrogenation and aromatization of butane) are coupled by using a dual function catalyst they have shown to complement each other. It is believed that the rate-limiting step for aromatization (butane to butene) is increased by adding an oxidative dehydrogenation catalyst (Ga-Zn-Mg-Mo-O). The formation of methane, ethane, and propane was suppressed due to the removal of hydrogen initially formed as water. Studies of ammonia TPD show that the acidities of [Fe]-ZSM-5 are greatly affected by the existence of metal oxides such as Ga[sub 2]O[sub 3], MgO, ZnO, and MoO[sub 3]. 40 refs., 9 figs., 1 tab.

  6. Oxidation of aromatic contaminants coupled to microbial iron reduction

    USGS Publications Warehouse

    Lovley, D.R.; Baedecker, M.J.; Lonergan, D.J.; Cozzarelli, I.M.; Phillips, E.J.P.; Siegel, D.I.

    1989-01-01

    THE contamination of sub-surface water supplies with aromatic compounds is a significant environmental concern1,2. As these contaminated sub-surface environments are generally anaerobic, the microbial oxidation of aromatic compounds coupled to nitrate reduction, sulphate reduction and methane production has been studied intensively1-7. In addition, geochemical evidence suggests that Fe(III) can be an important electron acceptor for the oxidation of aromatic compounds in anaerobic groundwater. Until now, only abiological mechanisms for the oxidation of aromatic compounds with Fe(III) have been reported8-12. Here we show that in aquatic sediments, microbial activity is necessary for the oxidation of model aromatic compounds coupled to Fe(III) reduction. Furthermore, a pure culture of the Fe(III)-reducing bacterium GS-15 can obtain energy for growth by oxidizing benzoate, toluene, phenol or p-cresol with Fe(III) as the sole electron acceptor. These results extend the known physiological capabilities of Fe(III)-reducing organisms and provide the first example of an organism of any type which can oxidize an aromatic hydrocarbon anaerobically. ?? 1989 Nature Publishing Group.

  7. Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry

    PubMed Central

    2011-01-01

    Background Plant hormones play a pivotal role in several physiological processes during a plant's life cycle, from germination to senescence, and the determination of endogenous concentrations of hormones is essential to elucidate the role of a particular hormone in any physiological process. Availability of a sensitive and rapid method to quantify multiple classes of hormones simultaneously will greatly facilitate the investigation of signaling networks in controlling specific developmental pathways and physiological responses. Due to the presence of hormones at very low concentrations in plant tissues (10-9 M to 10-6 M) and their different chemistries, the development of a high-throughput and comprehensive method for the determination of hormones is challenging. Results The present work reports a rapid, specific and sensitive method using ultrahigh-performance liquid chromatography coupled to electrospray ionization tandem spectrometry (UPLC/ESI-MS/MS) to analyze quantitatively the major hormones found in plant tissues within six minutes, including auxins, cytokinins, gibberellins, abscisic acid, 1-amino-cyclopropane-1-carboxyic acid (the ethylene precursor), jasmonic acid and salicylic acid. Sample preparation, extraction procedures and UPLC-MS/MS conditions were optimized for the determination of all plant hormones and are summarized in a schematic extraction diagram for the analysis of small amounts of plant material without time-consuming additional steps such as purification, sample drying or re-suspension. Conclusions This new method is applicable to the analysis of dynamic changes in endogenous concentrations of hormones to study plant developmental processes or plant responses to biotic and abiotic stresses in complex tissues. An example is shown in which a hormone profiling is obtained from leaves of plants exposed to salt stress in the aromatic plant, Rosmarinus officinalis. PMID:22098763

  8. Enhanced separation and characterization of deamidated peptides with RP-ERLIC-based multidimensional chromatography coupled with tandem mass spectrometry.

    PubMed

    Hao, Piliang; Qian, Jingru; Dutta, Bamaprasad; Cheow, Esther Sok Hwee; Sim, Kae Hwan; Meng, Wei; Adav, Sunil S; Alpert, Andrew; Sze, Siu Kwan

    2012-03-01

    Deamidation of asparaginyl residues in proteins produces a mixture of asparaginyl, n-aspartyl, and isoaspartyl residues, which affects the proteins' structure, function, and stability. Thus, it is important to identify and quantify the products to evaluate the effects in biological systems. It is still a challenging task to distinguish between the n-Asp and isoAsp deamidation products in a proteome-wide analysis because of their similar physicochemical properties. The quantification of the isomeric deamidated peptides is also rather difficult because of their coelution/poor separation in reverse-phase liquid chromatography (RPLC). We here propose a RP-ERLIC-MS/MS approach for separating and quantifying on a proteome-wide scale the three products related to deamidation of the same peptide. The key to the method is the use of RPLC in the first dimensional separation and ERLIC (electrostatic repulsion-hydrophilic interaction chromatography) in the second, with direct online coupling to tandem MS. The coelution of the three deamidation-related peptides in RPLC is then an asset, as they are collected in the same fraction. They are then separated and identified in the second dimension with ERLIC, which separates peptides on the basis of both pI and GRAVY values. The coelution of the three products in RPLC and their efficient separation in ERLIC were validated using synthetic peptides, and the performance of ERLIC-MS/MS was tested using peptide mixtures from two proteins. Applying this sequence to rat liver tissue, we identified 302 unique N-deamidated peptides, of which 20 were identified via all three deamidation-related products and 70 of which were identified via two of them. PMID:22239700

  9. Demonstration of direct bioanalysis of drugs in plasma using nanoelectrospray infusion from a silicon chip coupled with tandem mass spectrometry.

    PubMed

    Dethy, Jean-Marie; Ackermann, Bradley L; Delatour, Claude; Henion, Jack D; Schultz, Gary A

    2003-02-15

    Quantitative bioanalysis by direct nanoelectrospray infusion coupled to tandem mass spectrometry has been achieved using an automated liquid sampler integrated with an array of microfabricated electrospray nozzles allowing rapid, serial sample introduction (1 min/ sample). Standard curves prepared in human plasma for verapamil (r2 = 0.999) and its metabolite norverapamil (r2 = 0.998) were linear over a range of 2.5-500 ng/ mL. Based on the observed precision and accuracy, a lower limit of quantitation of 5 ng/mL was assigned for both analytes. Sample preparation consisted of protein precipitation with an organic solvent containing the structural analogue gallopamil as an internal standard. Protein precipitation was selected both to maximize throughput and to test the robustness of direct nanoelectrospray infusion. Aliquots of supernatant (10 pL) were transferred to the back plane of the chip using disposable, conductive pipet tips for direct infusion at a flow rate of 300 nL/min. Electrospray ionization occurred from the etched nozzles (30-microm o.d.) on the front of the chip, initiated by a voltage applied to the liquid through the pipet tip. The chip was positioned near the API sampling orifice of a triple quadrupole mass spectrometer, which was operated in selected reaction monitoring mode. Results are presented that document the complete elimination of system carry-over, attributed to lack of a redundant fluid path. This technology offers potential advantages for MS-based screening applications in drug discovery by reducing the time for methods development and sample analysis. PMID:12622370

  10. Determination of fungicides in wine by mixed-mode solid phase extraction and liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Carpinteiro, I; Ramil, M; Rodrguez, I; Cela, R

    2010-11-26

    A novel procedure for the determination of nine selected fungicides (metalaxyl-M, azoxystrobin, myclobutanil, flusilazole, penconazole, tebuconazole, propiconazole, diniconazole and difenoconazole) in wine samples is presented. Sample enrichment and purification is simultaneously performed using mixed-mode, anion exchange and reversed-phase, OASIS MAX solid-phase extraction (SPE) cartridges. Analytes were determined by liquid chromatography coupled to tandem mass spectrometry using atmospheric pressure electrospray ionization (LC-ESI-MS/MS). Parameters affecting the chromatographic determination and the extraction-purification processes were thoroughly investigated. Under optimized conditions, 10 mL of wine were firstly diluted 1:1 with ultrapure water and then passed through the mixed-mode SPE cartridge at a flow of ca. 5 mLmin(-1). After a washing step with 5 mL of an aqueous NH(4)OH solution (5%, w:v), analytes were recovered with just 1 mL of methanol and injected in the LC-MS/MS system without any additional purification. The selective extraction process avoided significant changes in the ionization efficiency for red and white wine extracts in comparison with pure standards in methanol. Performance of the method was good in terms of precision (RSDs<11%) and accuracy (absolute recoveries>72%, determined against pure standards in methanol) reporting method LOQs in the range of 0.01-0.79 ngmL(-1) for target compounds, which are far below the EU maxima residue levels (MRLs) for fungicides in vinification grapes and wine. Several commercial wines from different geographic areas in Spain were analyzed. In most samples, metalaxyl-M and azoxystrobin were found at concentrations up to several ngmL(-1). PMID:20971470

  11. Enantiomeric analysis of drugs of abuse in wastewater by chiral liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Kasprzyk-Hordern, Barbara; Kondakal, Vishnu V R; Baker, David R

    2010-07-01

    The manuscript concerns the development and validation of a method for enantiomeric analysis of structurally related amphetamines (amphetamine, methamphetamine, 4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxy-N-ethylamphetamine (MDEA)), ephedrines (ephedrine, pseudoephedrine and norephedrine) and venlafaxine in wastewater by means of chiral chromatography coupled with tandem mass spectrometry. Solid-phase extraction on Oasis HLB sorbent used for sample clean-up and concentration of analytes resulted in very good recoveries accounting for >70%. Signal suppression during MS analysis was negligible for most studied analytes. Resolution of enantiomers of chiral drugs was found to be higher than 1. Preliminary assay validation was undertaken. The mean correlation coefficients of the calibration curves, which were on average higher than 0.997 for all studied analytes, showed good linearity of the method in the studied range. Intra- and inter-day repeatabilities were on average less than 5%. The method quantification limits in wastewater were at low ppt levels and varied from 2.25 to 11.75ng/L. The method was successfully applied for the analysis of raw and treated wastewater samples collected from four wastewater treatment plants. A common occurrence of 1R,2S (-)-ephedrine, 1S,2S (+)-pseudoephedrine and venlafaxine in both raw and treated wastewater samples was observed. Amphetamine, methamphetamine, MDMA and MDEA were also detected in several wastewater samples. The study of enantiomeric fractions of these chiral drugs proved their variable non-racemic composition. The influence of wastewater treatment processes on the enantiomeric composition of chiral drugs was also noted and might indicate enantioselective processes occurring during treatment, although more comprehensive research has to be undertaken to support this hypothesis. PMID:20537654

  12. Quantitative assay for six potential breast cancer biomarker peptides in human serum by liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    van den Broek, Irene; Sparidans, Rolf W; Schellens, Jan H M; Beijnen, Jos H

    2010-02-15

    An assay to quantify several possible breast cancer peptide biomarkers in human serum has been developed and validated, using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The peptides include bradykinin, Hyp(3)-bradykinin, des-Arg(9)-bradykinin and fragments of fibrinogen alpha-chain (Fib-alpha([605-629])), inter-alpha-trypsin inhibitor heavy chain 4 (ITIH(4[666-687])) and complement component 4a (C4a([1337-1350])). Ile(13)-ITIH(4[666-687]), d20-C4a([1337-1350]) and Sar-D-Phe(8)-des-Arg(9)-bradykinin were used as internal standards. Bovine plasma, with 2 mM captopril and 2 mM D-L-mercaptoethanol-3-guanidino-ethylthiopropanoic acid (MEGETPA) to prevent rapid degradation of the bradykinins, was used as analyte-free matrix. Recoveries for solid-phase extraction (SPE) on mixed-mode weak cation exchange sorbents were between 62 and 90%. Multiple reaction monitoring (MRM) on a triple quadrupole mass spectrometer equipped with a heated electrospray source (H-ESI), operating in the positive ion-mode, was used for detection. The assay was fully validated and stabilities of the peptides were extensively explored. Bradykinin (10-500 ng/ml), Hyp(3)-bradykinin (4-200 ng/ml), des-Arg(9)-bradykinin (2-100 ng/ml), Fib-alpha([605-629]) (120-3000 ng/ml), ITIH(4[666-687]) (0.4-10 ng/ml) and C4a([1337-1350]) (1-25 ng/ml) were simultaneously quantified with deviations from the nominal concentrations below 22% and intra- and inter-assay precisions below 15 and 20%, respectively, for all peptides at all concentrations. The method has been successfully applied to several serum samples from breast cancer patients and matched controls. PMID:20116351

  13. Multi-class mycotoxins analysis in Angelica sinensis by ultra fast liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Liu, Qiutao; Kong, Weijun; Guo, Weiying; Yang, Meihua

    2015-04-15

    An ultra fast liquid chromatography coupled with tandem mass spectrometry (UFLC-MS/MS) method was developed and validated for simultaneous analysis of multi-class mycotoxins including aflatoxins (AFB1, AFB2, AFG1 and AFG2), ochratoxin A (OTA), fumonisins (FB1 and FB2) and zearalanone (ZEN) in 20 batches of Angelica sinensis samples collected from different markets and stores in China. The eight mycotoxins were extracted and cleaned up by using QuEChERS-based procedure, and then were quantified under the multiple reaction monitoring (MRM) together with positive and negative ionization modes. Focusing on the optimization of extraction and clean-up conditions, as well as UFLC separation and MS/MS parameters of targeted analytes, the developed method expressed good linearity for the eight mycotoxins within their respective linear ranges with correlation coefficients all higher than 0.9974. The limits of detection (LODs) and quantification (LOQs) ranged from 0.005 to 0.125 ?g/kg and from 0.0625 to 0.25 ?g/kg, respectively. Recoveries for spiked A. sinensis sample at three different levels were all above 78.9% with relative standard deviations (RSDs) below 6.36% for all analytes. Analysis of real samples demonstrated that two visibly moldy A. sinensis samples were detected with AFB1 of 2.07 and 2.92 ?g/kg, and AFG1 of 2.84 and 1.53 ?g/kg. The proposed quantitative method with significant advantages including simple pretreatment, rapid determination and high sensitivity would be the preferred candidate for the determination and quantification of multi-class mycotoxin contaminants in complex matrixes, which well fulfilled the maximum residue limits (MRLs) from various countries. PMID:25795322

  14. Ethyl-glucuronide and ethyl-sulfate in placental and fetal tissues by liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Morini, Luca; Falcn, Maria; Pichini, Simona; Garcia-Algar, Oscar; Danesino, Paolo; Groppi, Angelo; Luna, Aurelio

    2011-11-01

    The aim of this study was to develop a method for the determination of ethyl-glucuronide (EtG) and ethyl-sulfate (EtS), two direct ethanol metabolites, in early placental and fetal human tissues, as potential biomarkers of transplacental ethanol transfer from the mother to the fetus. Placental and fetal tissue samples were obtained from women undergoing voluntary termination of pregnancy at 12 weeks of gestation. Samples were deproteinized and directly injected into a liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) system. Limits of detection of 13.0 and 23.0 pmol/g and lower limits of quantification of 22.0 and 40.0 pmol/g were reached for EtG and EtS, respectively. Inter- and intraday imprecision and accuracy were always lower than 15%. The method was applied to 70 samples (35 placentas and 35 fetal tissues). Of 35 samples, 4 samples collected from 4 women tested positive for EtG and EtS, always showing higher concentrations for EtG. The placenta/fetal tissue ratio for EtG was 2.9 0.9, whereas EtS showed a ratio of 1.7 0.7. Preliminary results suggest that these metabolites are present in both tissues. Further studies should now corroborate the hypothesis, not yet confirmed, that transplacental transfer of ethanol takes place not only for the parent compound but also for EtG and EtS. PMID:21787742

  15. Study on chemical profiles and metabolites of Allii Macrostemonis Bulbus as well as its representative steroidal saponins in rats by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Qin, Zi-Fei; Dai, Yi; Yao, Zhi-Hong; He, Liang-Liang; Wang, Qi-Yi; Geng, Jian-Liang; Chen, Hai-Feng; Yao, Xin-Sheng

    2016-02-01

    Allii Macrostemonis Bulbus (AMB) is increasingly becoming popular as an edible vegetable or traditional folk medicine in East Asia due to its great health and medicinal properties. However, due to a lack of available research, the effective material of AMB still remains unknown. In this study, we applied a strategy utilising ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS) to investigate chemical profiles of AMB. In addition, metabolite profiles of five representative single steroidal saponins as well as AMB were investigated. Moreover, the metabolic features of saponins in AMB were summarised. After oral administration, the saponins underwent massive phase I and phase II metabolism. Sequential deglycosylation metabolism in rat intestine was the main metabolic pathway of the steroidal saponins, while oxidation, dehydrogenation, glucuronic acid reactions in liver also take part in further modification. These results expand our knowledge about the metabolism of AMB. PMID:26304378

  16. Dissipation and residues of clethodim and its oxidation metabolites in a rape-field ecosystem using QuEChERS and liquid chromatography/tandem mass spectrometry.

    PubMed

    You, Xiangwei; Liang, Lin; Liu, Fengmao

    2014-01-15

    A rapid, sensitive and selective method using Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) procedure for simultaneous determination of clethodim and its oxidation metabolites (clethodim sulfoxide and clethodim sulphone) in soil, rape plant and rape seed was developed using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The limits of detection (LODs) of the proposed method ranged from 0.002mg/kg to 0.01mg/kg, and average recoveries were 78.7-104.2%. The trial results showed that clethodim dissipated so rapidly that few clethodim residues were detectable. Clethodim sulfoxide dissipated quickly in rape plant and soil with half-lives of 4.3 and 4.0days, respectively. Clethodim sulphone showed a tendency of rapid increase initially followed by a decrease in rape plant but could not be detected in soil. The terminal residues of clethodim in rape seedsat harvest time were below the maximum residue limit (MRL, 0.5mg/kg). PMID:24054227

  17. Hydrogen sulfide oxidation is coupled to oxidative phosphorylation in mitochondria of Solemya reidi

    SciTech Connect

    Powell, M.A.; Somero, G.N.

    1986-08-01

    Solemya reidi, a gutless clam found in sulfide-rich habitats, contains within its gills bacterial symbionts thought to oxidize sulfur compounds and provide a reduced carbon food source to the clam. However, the initial step or steps in sulfide oxidation occur in the animal tissue, and mitochondria isolated from both gill and symbiont-free foot tissue of the clam coupled the oxidation of sulfide to oxidative phosphorylation (adenosine triphosphate (ATP) synthesis). The ability of Solemya reidi to exploit directly the energy in sulfide for ATP synthesis is unprecedented, and suggests that sulfide-habitat animals that lack bacterial symbionts may also use sulfide as an inorganic energy source.

  18. Simultaneous analysis of mono-, di-, and tri-ethanolamine in cosmetic products using liquid chromatography coupled tandem mass spectrometry.

    PubMed

    Shin, Kyong-Oh; Lee, Yong-Moon

    2016-01-01

    Alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA) are used as wetting agents in shampoos, lotions, creams, and other cosmetics. DEA is widely used to provide lather in shampoos and maintain a favorable consistency in lotions and creams. Although DEA is not harmful, it may react with other ingredients in the cosmetic formula after extended storage periods to form an extremely potent carcinogen called nitrosodiethanolamine (NDEA), which is readily absorbed through the skin and has been linked to the development of stomach, esophagus, liver, and bladder cancers. The purpose of this study was to develop a simultaneous quantification method for measurement of MEA, DEA, and TEA in cosmetic products. Liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) was performed using a hydrophilic interaction liquid chromatography (HILIC) column with isocratic elution containing acetonitrile and 5 mM ammonium formate in water (88:12, v/v). Identification and quantification of alkanolamines were performed using MS/MS monitoring to assess the transition from precursor to product ion of MEA (m/z, 61.1 → 44.0), DEA (m/z, 106.1 → 88.0), TEA (m/z, 150.1 → 130.0), and the internal standard triethylamine (m/z, 102.2 → 58.0). Alkanolamines extractions were simplified using a single extraction with acetonitrile in the cosmetic matrix. Performance of the method was evaluated with quality parameters such as specificity, carry-over, linearity and calibration, correlation of determination (R(2)), detection limit, precision, accuracy, and recovery. Calibration curves of MEA (2.9-1000 ppb), DEA (1-1000 ppb), and TEA (1-1000 ppb) were constructed by plotting concentration versus peak-area ratio (analyte/internal standard with a correlation coefficient greater than 0.99). The intra- and inter-assay accuracy ranged from 92.92 to 101.15 % for all analytes. The intra- and inter-assay precision for MEA, DEA, and TEA showed all coefficients of variance were less than 9.38 % for QC samples. Limits of detection and limits of quantification were 2.00 and 15.63 ppb for MEA, 0.49 and 1.96 ppb for DEA, and 0.49 and 1.96 ppb for TEA, respectively. This novel quantification method simplified sample preparation and allowed accurate and reproducible quantification of alkanolamines in the ng/g cosmetic weight (ppb) range for several cosmetic products. PMID:26578210

  19. Endothelial nitric oxide synthase gene intron 4 variable number tandem repeat polymorphism in ?-thalassemia major: relation to cardiovascular complications.

    PubMed

    Tantawy, Azza A G; Adly, Amira A M; Ismail, Eman A; Aly, Shereen H

    2015-06-01

    Endothelial nitric oxide synthase (eNOS), an enzyme that generates nitric oxide, is a major determinant of endothelial function. Several eNOS gene polymorphisms have been reported as 'susceptibility genes' in various human diseases states, including cardiovascular, pulmonary and renal diseases. We studied the 27-base pair tandem repeat polymorphism in intron 4 of eNOS gene in 60 ?-thalassemia major (?-TM) patients compared with 60 healthy controls and assessed its role in subclinical atherosclerosis and vascular complications. Patients were evaluated stressing on transfusion history, splenectomy, thrombotic events, echocardiography and carotid intima-media thickness (CIMT). Analysis of eNOS intron 4 gene polymorphism was performed by PCR. No significant difference was found between ?-TM patients and controls with regard to the distribution of eNOS4 alleles or genotypes. The frequency of eNOS4a allele (aa and ab genotypes) was significantly higher in ?-TM patients with pulmonary hypertension or cardiomyopathy. Logistic regression analysis revealed that eNOS4a allele was an independent risk factor for pulmonary hypertension in ?-TM patients [odds ratio (OR) 2.2, 95% confidence interval (95% CI) 1.19-5.6; P?

  20. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    SciTech Connect

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  1. Controlling Spatial Coupling in Catalytic CO Oxidation on Platinum

    NASA Astrophysics Data System (ADS)

    Lund, C. D.; Yamamoto, S. Y.; Surko, C. M.; Maple, M. B.

    1997-03-01

    Reaction-rate oscillations are known to occur in oxidation reactions on a variety of metal catalysts. The most extensively studied system of this type is the oxidation of carbon monoxide on platinum. Most studies have focused on temporal behavior. Recently, we constructed an experiment in which we can study both the spatial and temporal behavior of CO oxidation on Pt thin-film catalysts, using a continuous-flow reactor and infrared imaging techniques.(S.Y. Yamamoto, C.M. Surko, M.B. Maple, and R.K.Pina, J. Chem. Phys. 102, 8614 (1995).) In most experiments to date, all parts of the catalysts are found to oscillate in phase. By systematically blocking the possible spatial coupling mechanisms, we have shown that the various parts of the catalyst are coupled by diffusion of the reactants in the gas stream.(S.Y. Yamamoto, C.M. Surko, and M.B. Maple, J. Chem. Phys. 103, 8209 (1995).) Using argon instead of helium as the inert buffer gas and increasing the gas flow rate, we find that we are able to control the degree of spatial synchronization. This results in non-trivial spatial patterns which will be discussed.

  2. Atomic Scale Interface Coupling Effects in Epitaxial Oxides

    NASA Astrophysics Data System (ADS)

    Segal, Yaron

    The fabrication of well controlled heterointerfaces is the cornerstone for much of modern microelectronics. High quality interfaces of novel materials, particularly of the correlated transition metal oxides, enable the creation of structures with rich and surprising phenomena. In this thesis, we present two epitaxial interfaces in which atomic scale details control the properties of the structure. (1) MBE grown BaO/Si is a prototype for the epitaxial oxide/silicon interface, which is of interest for future generations of MOSFET devices. Using a combination of synchrotron X-ray diffraction, TEM, RHEED and first principles calculations, we identify a sub-Angstrom rumpling reconstruction at the interface which elucidates how the sharp transition from a diamond covalent lattice to ionic rocksalt occurs. (2) La1- xSrxMnO 3 is a CMR oxide. By manipulation of its composition, strain, thickness and carrier distribution we are able to achieve a large resonant coupling between the oxygen octahedra rotation of a SrTiO3 substrate and a La1-xSrxMnO 3 film. The divergence of the rotation amplitude at the structural transition of the SrTiO3 leads to pronounced changes in the transport and magnetic properties of the film. We describe the mechanical coupling using a quantitative atomic model and explain it as the result of the role of octahedra orientation in La1-xSr xMnO3.

  3. A novel method for the simultaneous analysis of seven biothiols in rice (Oryza sativa L.) using hydrophilic interaction chromatography coupled with electrospray tandem mass spectrometry.

    PubMed

    Cao, Zhao-Yun; Sun, Li-Hua; Mou, Ren-Xiang; Zhou, Rong; Zhu, Zhi-Wei; Chen, Ming-Xue

    2015-01-22

    Analysis of biothiols is still problematic, due to their high polarity, oxidation sensitivity and time-consuming sample preparation. In this paper, a direct, rapid and sensitive method was developed for simultaneous quantification of unbound cysteine (Cys), glutathione (GSH) and phytochelatins (PCs) in rice leaf, stem and root samples by hydrophilic interaction chromatography coupled with electrospray tandem mass spectrometry (HILIC-MS/MS). Homogenized samples were extracted with water containing 50mM dithiothreitol, without derivatization and further clean-up, and the extracts were injected directly onto an Xbridge Amide-HILIC column (3.5μm, 150mm×2.1mm i.d.). The best chromatographic separation and MS sensitivity was achieved using a linear gradient elution with 10mM aqueous ammonium formate and acetonitrile as the mobile phase. In MS/MS mode the detection limit (S/N≥3) of seven biothiols was 3-105nM. Good linearities were observed (r>0.995) with linear dynamic range at least over three orders of magnitude. Recoveries for most analytes were within the range of 77-128%, with relative standard deviations less than 18.2%. The intra-day precision (n=7) was 6.1-11.7%, and the inter-day precision over 15 d (n=15) was 8.5-16.3% for all biothiols. The optimized HILIC-MS/MS method was applied to study the influence of different cadmium (Cd) concentrations (0, 1 and 50μM) on contents of Cys, GSH and PC2-6 in rice tissue. With increasing Cd concentrations in nutrient solutions, contents of PC2-4 in rice roots increased but contents of Cys and GSH decreased. Contents of PC2-4 in both rice leafs and stems increased markedly at high dose Cd (50μM) treatment compared with controls, compared with low Cd concentrations (1μM). However, both PC5 and PC6 were not detected throughout the stress experiment. PMID:25436484

  4. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters.

    PubMed

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel M M; Schubert, Carsten J

    2015-09-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  5. Microfluidic chip based nano liquid chromatography coupled to tandem mass spectrometry for the determination of abused drugs and metabolites in human hair.

    PubMed

    Zhu, Kevin Y; Leung, K Wing; Ting, Annie K L; Wong, Zack C F; Ng, Winki Y Y; Choi, Roy C Y; Dong, Tina T X; Wang, Tiejie; Lau, David T W; Tsim, Karl W K

    2012-03-01

    A microfluidic chip based nano-HPLC coupled to tandem mass spectrometry (nano-HPLC-Chip-MS/MS) has been developed for simultaneous measurement of abused drugs and metabolites: cocaine, benzoylecgonine, cocaethylene, norcocaine, morphine, codeine, 6-acetylmorphine, phencyclidine, amphetamine, methamphetamine, MDMA, MDA, MDEA, and methadone in the hair of drug abusers. The microfluidic chip was fabricated by laminating polyimide films and it integrated an enrichment column, an analytical column and a nanospray tip. Drugs were extracted from hairs by sonication, and the chromatographic separation was achieved in 15 min. The drug identification and quantification criteria were fulfilled by the triple quardropule tandem mass spectrometry. The linear regression analysis was calibrated by deuterated internal standards with all of the R(2) at least over 0.993. The limit of detection (LOD) and the limit of quantification (LOQ) were from 0.1 to 0.75 and 0.2 to 1.25 pg/mg, respectively. The validation parameters including selectivity, accuracy, precision, stability, and matrix effect were also evaluated here. In conclusion, the developed sample preparation method coupled with the nano-HPLC-Chip-MS/MS method was able to reveal the presence of drugs in hairs from the drug abusers, with the enhanced sensitivity, compared with the conventional HPLC-MS/MS. PMID:22281681

  6. Atomistic calculation of the thickness and temperature dependence of exchange coupling through a dilute magnetic oxide

    NASA Astrophysics Data System (ADS)

    Evans, R. F. L.; Coopman, Q.; Devos, S.; Fan, W. J.; Hovorka, O.; Chantrell, R. W.

    2014-12-01

    The exchange coupling of two magnetic layers via a diffuse oxide interlayer is studied with an atomistic spin model. We investigate the effect of magnetic concentration and oxide layer thickness on the effective exchange coupling strength and find an exponential dependence of the coupling strength on the oxide thickness without the need for magnetic pinholes. Furthermore we show that exchange coupling has a strong temperature dependence which is significant for the reversal dynamics during heat assisted magnetic recording.

  7. Tandem oxidation/halogenation of aryl allylic alcohols under Moffatt-Swern conditions.

    PubMed

    Yin, Jiandong; Gallis, Christina E; Chisholm, John D

    2007-08-31

    Aryl allylic alcohols are converted to halogenated unsaturated ketones or allylic halides using excess Moffatt-Swern reagent. Electron-poor aromatic rings favor formation of the halogenated ketone, while electron-donating substituents in the ortho or para positions favor formation of the allylic halide. The oxidation/halogenation reaction performs well with both oxalyl chloride and oxalyl bromide, providing access to the corresponding chlorides or bromides, respectively. PMID:17685577

  8. Exploiting the oxidative coupling reaction of MBTH for indapamide determination.

    PubMed

    Ribeiro, David S M; Prior, João A V; Santos, João L M; Lopes, João A; Lima, José L F C

    2009-09-15

    The oxidative coupling reaction between aromatic amines and 3-methylbenzothiazolin-2-one hydrazone (MBTH) in the presence of cerium(IV) has been extensively used with quantitative analytical purposes. Nevertheless, a literature survey reveals that different wavelengths (visible range) can be used to monitor the reaction products when using MBTH and Ce(IV) as colour developing reagents. In the present work, the oxidative coupling reaction of indapamide (an oral antihypertensive diuretic drug) with MBTH in the presence of cerium(IV) was evaluated using distinct reaction approaches and was implemented in an automated multipumping flow system. The developed methodology was applied in the spectrophotometric control of the drug in pharmaceutical formulations. The optimization of the proposed multipumping flow system was performed by using an experimental design approach, namely by exploiting a Plackett-Burman factorial design and a central cubic faces design. This work revealed the formation of products with different reaction kinetics, chemical stabilities and absorbance spectra, depending on the sequence of addition of the reagents. By exploiting a specific sequence in the addition of reagents, the proposed automatic system allowed the rapid quantification of indapamide in pharmaceutical formulations, with a determination rate of about 25 h(-1), and a relative deviation under 2.1% when comparing with the reference procedure. Detection limit was approximately 1 mg L(-1). PMID:19615526

  9. Coupled polaronic and ion transport in nanocrystalline metal oxide electrodes

    NASA Astrophysics Data System (ADS)

    Rosso, Kevin

    2012-02-01

    We report new computational methods and fundamental understanding in the dynamics of coupled charge and ion transport in nanoscale metal oxides. The methods attack the multi-scale problem of simulating the collective diffusivities of ions and charge compensating e-/h+ carriers in single crystal particles, across particle-particle grain boundaries, and through networks of grains for select systems. Methods include embedded quantum mechanical clusters at the DFT and MP2 levels of theory for atomic-scale polaronic and ion transport kinetics, classical DFT-based free energy calculations for grain-scale conductivity in the framework of the Poisson-Nernst-Planck formalism, and phase field simulation of charged particle diffusivity for conductivity at the grain network scale. This combination of approaches is one of a kind in terms of its multi-scale range, scaling, and computational efficiency. We are presently focused on coupled electron and Li+ ion transport in polymorphs of TiO2, and also in mixed valence spinel oxides, for electrode conductivity optimization and improving energy storage materials performance for Li+ batteries.

  10. Orthogonal tandem catalysis

    NASA Astrophysics Data System (ADS)

    Lohr, Tracy L.; Marks, Tobin J.

    2015-06-01

    Tandem catalysis is a growing field that is beginning to yield important scientific and technological advances toward new and more efficient catalytic processes. 'One-pot' tandem reactions, where multiple catalysts and reagents, combined in a single reaction vessel undergo a sequence of precisely staged catalytic steps, are highly attractive from the standpoint of reducing both waste and time. Orthogonal tandem catalysis is a subset of one-pot reactions in which more than one catalyst is used to promote two or more mechanistically distinct reaction steps. This Perspective summarizes and analyses some of the recent developments and successes in orthogonal tandem catalysis, with particular focus on recent strategies to address catalyst incompatibility. We also highlight the concept of thermodynamic leveraging by coupling multiple catalyst cycles to effect challenging transformations not observed in single-step processes, and to encourage application of this technique to energetically unfavourable or demanding reactions.

  11. Forensic analysis of printing inks using tandem Laser Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Subedi, Kiran; Trejos, Tatiana; Almirall, José

    2015-01-01

    Elemental analysis, using either LA-ICP-MS or LIBS, can be used for the chemical characterization of materials of forensic interest to discriminate between source materials originating from different sources and also for the association of materials known to originate from the same source. In this study, a tandem LIBS/LA-ICP-MS system that combines the benefits of both LIBS and LA-ICP-MS was evaluated for the characterization of samples of printing inks (toners, inkjets, intaglio and offset.). The performance of both laser sampling methods is presented. A subset of 9 black laser toners, 10 colored (CMYK) inkjet samples, 12 colored (CMYK) offset samples and 12 intaglio inks originating from different manufacturing sources were analyzed to evaluate the discrimination capability of the tandem method. These samples were selected because they presented a very similar elemental profile by LA-ICP-MS. Although typical discrimination between different ink sources is found to be > 99% for a variety of inks when only LA-ICP-MS was used for the analysis, additional discrimination was achieved by combining the elemental results from the LIBS analysis to the LA-ICP-MS analysis in the tandem technique, enhancing the overall discrimination capability of the individual laser ablation methods. The LIBS measurements of the Ca, Fe, K and Si signals, in particular, improved the discrimination for this specific set of different ink samples previously shown to exhibit very similar LA-ICP-MS elemental profiles. The combination of these two techniques in a single setup resulted in better discrimination of the printing inks with two distinct fingerprint spectra, providing information from atomic/ionic emissions and isotopic composition (m/z) for each ink sample.

  12. Calculation of the Lateral Stability of a Directly Coupled Tandem-Towed Fighter Airplane and Correlation with Experimental Data

    NASA Technical Reports Server (NTRS)

    Shanks, Robert E.

    1958-01-01

    A theoretical method is presented for predicting the dynamic lateral stability characteristics of an airplane towed in tandem by a much larger airplane. Values of period and time to damp to one-half amplitude and rolling motions calculated by an analog computer have been correlated with results of two experimental investigations conducted in the Langley free-flight tunnel which were part of a U.S. Air Force program (Project FICON) to develop a satisfactory arrangement by which a bomber could tow a parasite fighter. In general, the theoretical results agree with the experimental results.

  13. [Determination of chlorpyrifos' main metabolite 3,5,6-trichloro-2-pyridinol in human urine by ultra performance liquid chromatography coupled with tandem mass spectrometry].

    PubMed

    Wang, Na; Sun, Juan; Shi, Lili; Ji, Guixiang; Chen, Guosong

    2013-09-01

    A method for the determination of 3,5,6-trichloro-2-pyridinol (3,5,6-TCP) in human urine, which is the main metabolite of chlorpyrifos, has been established employing ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/ MS). The urine samples were prepared by liquid-liquid extraction with dichloromethane-ethyl acetate (20: 80, v/v) solution followed by the separation with the gradient elution of acetonitrile-water on an ACQUITY UPLC BEH C18 column. The analyte was detected by tandem mass spectrometry under the negative ion mode with the electrospray ionization (ESI) source and the selective ion recording (SIR) mode. Under the optimized conditions, the calibration curve was linear in the range of 0.005 -0.4 mg/L. The limit of detection was 0.41 microg/L. The average recovery was 97.9%. The intra- and inter-day precisions calculated with RSDs were all within 15% at each quality control (QC) level. The developed method is simple, sensitive, accurate and repeatable, which has been successfully applied to determine the exposure level of 3,5,6-TCP in the real samples of human urine. The results show that this method is supportive for the exposure assessment in human health risk analysis and monitoring the biological burden of chlorpyrifos. PMID:24392630

  14. Determination of parabens in urine samples by microextraction using packed sorbent and ultra-performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Cristina Jardim, Valeria; de Paula Melo, Lidervan; Soares Domingues, Diego; Costa Queiroz, Maria Eugnia

    2015-01-01

    A simple, sensitive, and selective method using ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) was developed and validated for simultaneous determination of parabens [methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), butyl paraben (BuP), and benzyl paraben (BzP)] in human urine samples. After microextraction by packed sorbent (MEPS) using a C18 phase, the parabens were separated on a Kinetex C18 column (100 mm 2.1 mm 1.7 ?m) within 4.6 min using isocratic elution. These compounds were detected on a triple quadrupole tandem mass spectrometer using the multiple reactions monitoring (MRM) mode via an electrospray ionization source operating in the negative ionization mode. Important factors that influence MEPS performance were evaluated, such as the sample pH, draw-eject sample volume, clean-up step, and desorption conditions. The proposed MEPS/UPLC-MS/MS method presented a linear range from 0.5 ng mL(-1) (limit of quantification - LOQ) to 50 ng mL(-1), and interassay precision with coefficients of variation lower than 15%, and relative standard error values of the accuracy ranged from -8.8% to 15%. The MEPS/UPLC-MS/MS method was applied successfully to determine parabens in urine samples from 30 postpartum volunteers, enabling assessment of human exposure to these compounds. PMID:25463195

  15. Quantification of 1-(13) C-L-methionine in rat serum with hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry and its application in pharmacokinetic study.

    PubMed

    Xu, Ying; Huang, Xiao; Nie, Xiuli; Yang, Li; Yan, Weili; Wang, Zhengtao; Wang, Changhong; Hu, Zhibi

    2011-09-01

    A rapid, selective and sensitive hydrophilic interaction liquid chromatography (HILIC) coupled with tandem mass spectrometry (MS/MS) method was developed to determine 1-(13) C-l-methionine in rat serum. Proteins in serum were precipitated using acetonitrile and the supernatant was separated after centrifugation. 1-(13) C-l-phenylalnine was used as the internal standard. HILIC-tandem mass spectrometry analysis was performed on a hydrophilic interaction silica column (TSK-GEL AMIDE-80) using a linear gradient elution system, acetonitrile-5?mm ammonium acetate containing 0.1% formic acid and multiple reaction monitoring mode for 1-(13) C-l-methionine and 1-(13) C-l-phenylalnine. The assay was validated with a linear range between 10 and 150?ng?mL(-1) (r ? 0.99) and a lower limit of quantification of 10?ng?mL(-1) , calculated with weighted (1/x(2) ) least squares linear regression. The RSD of intra-day precision was smaller than 3.6% and the inter-day RSD less than 6.5%, while the average recovery was 100.48% with an RSD of accuracy within 2.9%, determined from quality control samples. The HILIC-MS/MS method was fully validated and successfully applied to the in vivo pharmacokinetic study of stable-isotope 1-(13) C-l-methionine in rats. PMID:21287581

  16. Coupling Oxygen Consumption with Hydrocarbon Oxidation in Bacterial Multicomponent Monooxygenases.

    PubMed

    Wang, Weixue; Liang, Alexandria D; Lippard, Stephen J

    2015-09-15

    A fundamental goal in catalysis is the coupling of multiple reactions to yield a desired product. Enzymes have evolved elegant approaches to address this grand challenge. A salient example is the biological conversion of methane to methanol catalyzed by soluble methane monooxygenase (sMMO), a member of the bacterial multicomponent monooxygenase (BMM) superfamily. sMMO is a dynamic protein complex of three components: a hydroxylase, a reductase, and a regulatory protein. The active site, a carboxylate-rich non-heme diiron center, is buried inside the 251 kDa hydroxylase component. The enzyme processes four substrates: O2, protons, electrons, and methane. To couple O2 activation to methane oxidation, timely control of substrate access to the active site is critical. Recent studies of sMMO, as well as its homologues in the BMM superfamily, have begun to unravel the mechanism. The emerging and unifying picture reveals that each substrate gains access to the active site along a specific pathway through the hydroxylase. Electrons and protons are delivered via a three-amino-acid pore located adjacent to the diiron center; O2 migrates via a series of hydrophobic cavities; and hydrocarbon substrates reach the active site through a channel or linked set of cavities. The gating of these pathways mediates entry of each substrate to the diiron active site in a timed sequence and is coordinated by dynamic interactions with the other component proteins. The result is coupling of dioxygen consumption with hydrocarbon oxidation, avoiding unproductive oxidation of the reductant rather than the desired hydrocarbon. To initiate catalysis, the reductase delivers two electrons to the diiron(III) center by binding over the pore of the hydroxylase. The regulatory component then displaces the reductase, docking onto the same surface of the hydroxylase. Formation of the hydroxylase-regulatory component complex (i) induces conformational changes of pore residues that may bring protons to the active site; (ii) connects hydrophobic cavities in the hydroxylase leading from the exterior to the diiron active site, providing a pathway for O2 and methane, in the case of sMMO, to the reduced diiron center for O2 activation and substrate hydroxylation; (iii) closes the pore, as well as a channel in the case of four-component BMM enzymes, restricting proton access to the diiron center during formation of "Fe2O2" intermediates required for hydrocarbon oxidation; and (iv) inhibits undesired electron transfer to the Fe2O2 intermediates by blocking reductase binding during O2 activation. This mechanism is quite different from that adopted by cytochromes P450, a large class of heme-containing monooxygenases that catalyze reactions very similar to those catalyzed by the BMM enzymes. Understanding the timed enzyme control of substrate access has implications for designing artificial catalysts. To achieve multiple turnovers and tight coupling, synthetic models must also control substrate access, a major challenge considering that nature requires large, multimeric, dynamic protein complexes to accomplish this feat. PMID:26293615

  17. Elucidating collision induced dissociation products and reaction mechanisms of protonated uracil by coupling chemical dynamics simulations with tandem mass spectrometry experiments.

    PubMed

    Molina, Estefanía Rossich; Ortiz, Daniel; Salpin, Jean-Yves; Spezia, Riccardo

    2015-12-01

    In this study we have coupled mixed quantum-classical (quantum mechanics/molecular mechanics) direct chemical dynamics simulations with electrospray ionization/tandem mass spectrometry experiments in order to achieve a deeper understanding of the fragmentation mechanisms occurring during the collision induced dissociation of gaseous protonated uracil. Using this approach, we were able to successfully characterize the fragmentation pathways corresponding to ammonia loss (m/z 96), water loss (m/z 95) and cyanic or isocyanic acid loss (m/z 70). Furthermore, we also performed experiments with isotopic labeling completing the fragmentation picture. Remarkably, fragmentation mechanisms obtained from chemical dynamics simulations are consistent with those deduced from isotopic labeling. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26634967

  18. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin zearalenone in the model plant Arabidopsis thaliana

    PubMed Central

    BERTHILLER, F.; WERNER, U.; SULYOK, M.; KRSKA, R.; HAUSER, M.-T.; SCHUHMACHER, R.

    2010-01-01

    The biotransformation products of zearalenone, a Fusarium mycotoxin, were elucidated using the model plant Arabidopsis thaliana. After treatment of plant seedlings with 50 ?M zearalenone, both the liquid media and the plant extracts were analysed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). An array of 17 different metabolites, most prominently glucosides, malonylglucosides, di-hexose- and hexosepentose disaccharides of zearalenone, and ?- and ?-zearalenol, were detected in the samples. Time courses for the different zearalenone metabolites were recorded and they give a closer insight into the metabolism kinetics. A scheme proposing the zearalenone metabolism in A. thaliana is given. The aspect of food safety regarding the (potential) occurrence of masked mycotoxins in agricultural commodities is discussed. PMID:17071522

  19. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin zearalenone in the model plant Arabidopsis thaliana.

    PubMed

    Berthiller, F; Werner, U; Sulyok, M; Krska, R; Hauser, M-T; Schuhmacher, R

    2006-11-01

    The biotransformation products of zearalenone, a Fusarium mycotoxin, were elucidated using the model plant Arabidopsis thaliana. After treatment of plant seedlings with 50 microM zearalenone, both the liquid media and the plant extracts were analysed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). An array of 17 different metabolites, most prominently glucosides, malonylglucosides, di-hexose- and hexose-pentose disaccharides of zearalenone, and alpha- and beta-zearalenol, were detected in the samples. Time courses for the different zearalenone metabolites were recorded and they give a closer insight into the metabolism kinetics. A scheme proposing the zearalenone metabolism in A. thaliana is given. The aspect of food safety regarding the (potential) occurrence of masked mycotoxins in agricultural commodities is discussed. PMID:17071522

  20. Comparison of Electrospray Ionization and Atmospheric Chemical Ionization Coupled with the Liquid Chromatography-Tandem Mass Spectrometry for the Analysis of Cholesteryl Esters

    PubMed Central

    Lee, Hae-Rim; Kochhar, Sunil; Shim, Soon-Mi

    2015-01-01

    The approach of two different ionization techniques including electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was tested for the analysis of cholesteryl esters (CEs). The retention time (RT), signal intensity, protonated ion, and product ion of CEs were compared between ESI and APCI. RT of CEs from both ionizations decreased with increasing double bonds, while it increased with longer carbon chain length. The ESI process generated strong signal intensity of precursor ions corresponding to [M+Na]+ and [M+NH4]+ regardless of the number of carbon chains and double bonds in CEs. On the other hand, the APCI process produced a protonated ion of CEs [M+H]+ with a weak signal intensity, and it is selectively sensitive to detect precursor ions of CEs with unsaturated fatty acids. The ESI technique proved to be effective in ionizing more kinds of CEs than the APCI technique. PMID:25873970

  1. Separation of nucleobases, nucleosides, and nucleotides using two zwitterionic silica-based monolithic capillary columns coupled with tandem mass spectrometry.

    PubMed

    Moravcov, Dana; Haapala, Markus; Planeta, Josef; Hytylinen, Tuulia; Kostiainen, Risto; Wiedmer, Susanne K

    2014-12-19

    The capability of employing synthesized zwitterionic silica-based monolithic capillary columns (140 mm 0.1mm) for separation of highly polar and hydrophilic nucleobases, nucleosides, and nucleotides in hydrophilic interaction chromatography is reported. The suitability of the columns for on-line conjunction with electrospray tandem mass spectrometry was explored. Our results show that the grafted layer of zwitterionic monomer ([2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl)-ammonium hydroxide or 2-methacryloyloxyethyl phosphorylcholine) on the silica monolithic surface significantly improved the separation selectivity and reproducibility, as compared to the bare silica monolith. The stepwise elution from 90% to 70% of acetonitrile enabled separation of a complex sample mixture containing 21 compounds with a total analysis time less than 40 min. PMID:25465366

  2. Tandem tracking

    USGS Multimedia Gallery

    Biologist Sabrina Davenport tandem tracks the Lower Missouri River during high water on June 2, 2011.  Two boats (note boat out window) tracking in tandem can detect fish effectively across a wider river and can turn to search behind wing dikes and sandbars where sturgeon can hide during h...

  3. Photoassisted oxidation of ruthenium(ii)-photocatalysts Ru(bpy)3(2+) and Ru(bpz)3(2+) to RuO4: orthogonal tandem photoredox and oxidation catalysis.

    PubMed

    Alpers, Dirk; Gallhof, Malte; Stark, Christian B W; Brasholz, Malte

    2016-01-01

    Common photoredox catalysts Ru(bpy)3(2+) and Ru(bpz)3(2+) are rapidly converted into Ruthenium(viii)-oxide through continuous visible light irradiation in the presence of NaIO4 or H5IO6. This hitherto unreported photoassisted catalyst oxidation was utilized in the development of tandem catalytic protocols which combine a photoredox reaction with a subsequent RuO4-mediated oxidation. The new concept was demonstrated through one-pot radical cation Diels-Alder (RCDA)/1,5-diene cyclisation sequences. PMID:26592543

  4. A direct temperature-resolved tandem mass spectrometry study of cholesterol oxidation products in light-aged egg tempera paints with examples from works of art

    NASA Astrophysics Data System (ADS)

    van den Brink, Oscar F.; Ferreira, Ester S. B.; van der Horst, Jerre; Boon, Jaap J.

    2009-07-01

    Cholesterol (1) constitutes approximately 5% of the lipid fraction of eggs. The compound is therefore abundant in fresh egg tempera paints. The fate of cholesterol upon light ageing of egg tempera paint binding medium was investigated by direct temperature resolved mass spectrometry (DTMS) and tandem mass spectrometry (DTMSMS). Cholesterol oxidation products (COPs) such as 5,6-epoxycholestan-3-ol (2) and 3-hydroxycholest-5-en-7-one (3) were positively identified in light-aged egg binding medium. Given the fast rate of oxidation of cholesterol, the corresponding oxidation products are better markers for egg tempera than the cholesterol molecule itself. Cholesterol and COPs were discovered in paints on German baroque altar pieces from the 16th and 18th C and in a 20th C glaze on a Mark Rothko Seagram Mural painting at Tate by DTMS fingerprinting analysis of paint microsamples.

  5. Structural elucidation of N-oxidized clemastine metabolites by liquid chromatography/tandem mass spectrometry and the use of Cunninghamella elegans to facilitate drug metabolite identification.

    PubMed

    Tevell Aberg, Annica; Lfgren, Helena; Bondesson, Ulf; Hedeland, Mikael

    2010-05-30

    Cunninghamella elegans is a filamentous fungus that has been shown to biotransform drugs into the same metabolites as mammals. In this paper we describe the use of C. elegans to aid the identification of clemastine metabolites since high concentrations of the metabolites were produced and MS(n) experiments were facilitated. The combination of liquid chromatography and tandem mass spectrometry with two different ionization techniques and hydrogen/deuterium exchange were used for structural elucidation of the clemastine metabolites. Norclemastine, four isomers of hydroxylated clemastine, and two N-oxide metabolites were described for the first time in C. elegans incubations. The N-oxidations were confirmed by hydrogen/deuterium exchange and deoxygenation (-16 Da) upon atmospheric pressure chemical ionization mass spectrometry. By MS(n) fragmentation it was concluded that two of the hydroxylated metabolites were oxidized on the methylpyrridyl moiety, one on the aromatic ring with the chloro substituent, and one on the aromatic ring without the chlorine. PMID:20411584

  6. Determination of norcantharidin in mouse tissues by liquid chromatography coupled to tandem mass spectrometry and its tissue distribution study.

    PubMed

    Zhang, R; Wang, J; Yuan, G; Wei, C; Liu, X; Wang, B; Gao, H; Guo, R

    2012-06-01

    The purpose of this study is to determine the concentrations of norcantharidin (CAS NO: 5442-12-6) in mouse tissues and investigate its tissue distribution after intragastric administration of disodium norcantharidate solution. A highly sensitive and specific liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated, using ribavirin (CAS NO: 36791-04-5) as the internal standard (IS). Norcantharidin and IS were extracted from 0.3 mL tissue homogenates using protein precipitation with acetone under acid condition. The analyte was separated on a C18 reverse phase column and analyzed by MS/MS in the multiple reaction monitoring (MRM) mode using ESI with positive ionization, m/z 169?123 for norcantharidin and m/z 267?135 for IS. The developed method was validated over a linear range of concentrations 0.01~5 ?gmL - 1 in liver, lung, kidney, stomach, small intestine, uterus and testis, 0.005~0.5 ?gmL - 1 in heart, spleen and brain, the correlation coefficients (r2) were between 0.9918 and 0.9976. The tissue distribution study result was as follows: The AUC0-t of norcantharidin in tissues was in the order as follows: small intestine, stomach, uterus, kidney, testis, liver, lung, spleen, heart, brain. PMID:22473525

  7. Determination of nicotine and its metabolites accumulated in fish tissue using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Chang, Yun-Wei; Nguyen, Hien P; Chang, Mike; Burket, S Rebekah; Brooks, Bryan W; Schug, Kevin A

    2015-07-01

    The determination of nicotine and its major metabolites (cotinine and anabasine) in fish tissue was performed using liquid chromatography and tandem mass spectrometry. Marine and freshwater fish were purchased from local grocery stores and were prepared based on a quick, easy, cheap, effective, rugged, and safe sample preparation protocol. To determine the highly polar compounds, hydrophilic interaction liquid chromatography was also used. There were modest suppressions on measured nicotine signals (10%) due to the matrix effects from marine fish but no obvious effects on freshwater fish signals. Method validation was incorporated with internal standards and carried out with matrix-matched calibration. The detection limits for nicotine, cotinine, and anabasine were 9.4, 3.0, and 1.5 ng/g in fish, respectively. Precision was quite acceptable returning less than 8% RSD at low, medium, and high concentrations. Acceptable and reproducible extraction recoveries (70-120%) of all three compounds were achieved, except for anabasine at low concentration (61%). The method was then applied to define nicotine bioaccumulation in a fathead minnow model, which resulted in rapid uptake with steady state internal tissue levels, reached within 12 h. This developed method offers a fast, easy, and sensitive way to evaluate nicotine and its metabolite residues in fish tissues. PMID:25953492

  8. Chromatographic behavior of 12 polar pteridines in hydrophilic interaction chromatography using five different HILIC columns coupled with tandem mass spectrometry.

    PubMed

    Xiong, Xin; Liu, Yanmeng

    2016-04-01

    Retention characteristic of 5 hydrophilic interaction chromatography (HILIC) columns, containing neutral and possibly negatively charged support (silica, diol and amide), cationic phase (triazole) and zwitterionic phase (sulfobetaine), that are commercially available were studied for the separation of a group of 12 polar pteridines. The main factors influencing the retention and selectivity of pteridines for these different HILIC systems have been studied in liquid chromatography-tandem mass spectrometry (LC-MS/MS) conditions: mobile phase composition, buffer type, pH and concentration and the separation mechanism was also investigated. Results of the effects of organic modifier, buffer pH and ion strength indicate that the retention mechanism is a mixed-mode of adsorption and ion exchange, and optimization of HILIC analyses depends on the ionization state of the analytes. For silica, diol, amide and sulfobetaine phases, hydrophilic partitioning mainly contributes to the retention, while electrostatic interactions and hydrogen-bonding should be considered to understand the elution orders for triazole phase. An zwitterionic phase (ZIC-HILIC) provided the stronger retention for all pteridines than other tested columns. PMID:26838435

  9. The role of nitric oxide in neurovascular coupling.

    PubMed

    Dormanns, K; Brown, R G; David, T

    2016-04-01

    Nitric oxide (NO) is a neurotransmitter known to act as a potent cerebral vasodilator. Its role in neurovascular coupling (NVC) is discussed controversially and one of the main unanswered questions is which cell type provides the governing source of NO for the regulation of vasodynamics. Mathematical modelling can be an appropriate tool to investigate the contribution of NO towards the key components of NVC and analyse underlying mechanisms. The lumped parameter model of a neurovascular unit, including neurons (NE), astrocytes (AC), smooth muscle cells (SMC) and endothelial cells (EC), was extended to model the NO signalling pathway. Results show that NO leads to a general shift of the resting regional blood flow by dilating the arteriolar radius. Furthermore, dilation during neuronal activation is enhanced. Simulations show that potassium release is responsible for the fast onset of vascular response, whereas NO-modulated mechanisms maintain dilation. Wall shear stress-activated NO release from the EC leads to a delayed return to the basal state of the arteriolar radius. The governing source of vasodilating NO that diffuses into the SMC, which determine the arteriolar radius, depends on neuronal activation. In the resting state the EC provides the major contribution towards vasorelaxation, whereas during neuronal stimulation NO produced by the NE dominates. PMID:26796228

  10. Oxidative coupling by photo-induced electron ejection from carbanions

    SciTech Connect

    Fox, M.A.; Owen, R.C.

    1980-01-01

    When the tetraphenylcyclophenadienyl anion (1) is excited in tetrahydrofuran with wavelengths longer than 490 nm, no discernible photoreaction can be detected. However, if a thin layer of stirred solution is excited in this region at the surface of an n-TiO/sub 2/ electrode, a small photocurrent is produced and dimeric product (dihydrooctaphenylfulvalene) can be isolated. Parallel results are obtained if (1) is excited in a stirred suspension of platinized n-TiO/sub 2/ powder. Although the quantum efficiency for the production of photocurrent is low, the process is sufficiently clean to be an attractive synthetic route for oxidative coupling reactions. A reasonable mechanism for this conversion will be suggested and the effect of solvent and the associated cation on the efficiency of photocurrent production will be considered. The application of this reaction in extending the wavelength of photoresponse of stable n-type semiconductors and in using visible light as a means of initiating new organic reactions will be discussed.

  11. Polyamines in biological samples: Rapid and robust quantification by solid-phase extraction online-coupled to liquid chromatography–tandem mass spectrometry

    PubMed Central

    Magnes, Christoph; Fauland, Alexander; Gander, Edgar; Narath, Sophie; Ratzer, Maria; Eisenberg, Tobias; Madeo, Frank; Pieber, Thomas; Sinner, Frank

    2014-01-01

    Polyamines are ubiquitous active biogenic amines which contribute to basic cellular functions. Hence, their quantification in samples of diverse biological origins is essential for understanding how they function, especially in disease-relevant conditions. We present here a robust, high-throughput solid-phase extraction online coupled to a liquid chromatography–tandem mass spectrometry (SPE–LC/MS/MS) approach for the simultaneous quantification of eight polyamines in various biological samples. The polyamines include 1,3-diaminopropane, putrescine, cadaverin, N-acetyl-putrescine, spermidine, spermine, N1-acetyl-spermine, and l-ornithine. The novelty of the work is the use of two SPE columns online coupled to LC/MS/MS, which minimizes the sample pretreatment to a single derivatization step. The analysis is complete within 4 min, making the method highly suitable for routine clinical analysis and high throughput screenings. The method was fully validated with serum samples. Dynamic ranges were 0.03 to 15 μg/ml for ornithine and 1 to 500 ng/ml for other polyamines, which cover physiological concentrations in serum samples. Lower limits of quantification (LLoQ) were found to be between 0.1 and 5 ng/ml. As a proof of concept, we investigated gender differences in polyamine levels by analyzing the serum levels of 102 subjects. PMID:24485539

  12. Sensitive detection of ?-agonists in pork tissue with novel molecularly imprinted polymer extraction followed liquid chromatography coupled tandem mass spectrometry detection.

    PubMed

    Wang, Peilong; Liu, Ximeng; Su, Xiaoou; Zhu, Ruohua

    2015-10-01

    A novel molecularly imprinted polymer micro-spheres (MIPMs) with phenylethanolamine A as the template and the p-vinylbenzoic acid as the functional monomer were synthesized for the selective absorption of clenbuterol and other ?-agonists including brombuterol, bromchlorbuterol, clorprenaline and ractopamine. The absorption performances of the MIPMs were studied and the experimental results demonstrated that the extraction capacities of five ?-agonists with MIPMs were about from 2.7 to 3.4 times as much as that with non-imprinted polymer micro-spheres. Based on the clean-up of five ?-agonists in pork tissues with MIPMs, a sensitive determination method for five ?-agonists coupled with ultra performance chromatography coupled tandem mass spectrometry detection has been developed. The limits of detection for five ?-agonists were <0.02 ?g/kg. The mean recoveries and repeatability of five ?-agonists in pork tissues varied from 70.0% to 116.0% and from 2.5% to 10.4%, respectively. The developed method was successfully applied to analysis of 22 real pork tissues samples. PMID:25872428

  13. Polyamines in biological samples: rapid and robust quantification by solid-phase extraction online-coupled to liquid chromatography-tandem mass spectrometry.

    PubMed

    Magnes, Christoph; Fauland, Alexander; Gander, Edgar; Narath, Sophie; Ratzer, Maria; Eisenberg, Tobias; Madeo, Frank; Pieber, Thomas; Sinner, Frank

    2014-02-28

    Polyamines are ubiquitous active biogenic amines which contribute to basic cellular functions. Hence, their quantification in samples of diverse biological origins is essential for understanding how they function, especially in disease-relevant conditions. We present here a robust, high-throughput solid-phase extraction online coupled to a liquid chromatography-tandem mass spectrometry (SPE-LC/MS/MS) approach for the simultaneous quantification of eight polyamines in various biological samples. The polyamines include 1,3-diaminopropane, putrescine, cadaverin, N-acetyl-putrescine, spermidine, spermine, N(1)-acetyl-spermine, and l-ornithine. The novelty of the work is the use of two SPE columns online coupled to LC/MS/MS, which minimizes the sample pretreatment to a single derivatization step. The analysis is complete within 4min, making the method highly suitable for routine clinical analysis and high throughput screenings. The method was fully validated with serum samples. Dynamic ranges were 0.03 to 15?g/ml for ornithine and 1 to 500ng/ml for other polyamines, which cover physiological concentrations in serum samples. Lower limits of quantification (LLoQ) were found to be between 0.1 and 5ng/ml. As a proof of concept, we investigated gender differences in polyamine levels by analyzing the serum levels of 102 subjects. PMID:24485539

  14. A quantitative assay for reductive metabolism of a pesticide in fish using electrochemistry coupled with liquid chromatography tandem mass spectrometry.

    PubMed

    Bussy, Ugo; Chung-Davidson, Yu-Wen; Li, Ke; Li, Weiming

    2015-04-01

    This is the first study to use electrochemistry to generate a nitro reduction metabolite as a standard for a liquid chromatography-mass spectrometry-based quantitative assay. This approach is further used to quantify 3-trifluoromethyl-4-nitrophenol (TFM) reductive metabolism. TFM is a widely used pesticide for the population control of sea lamprey (Petromyzon marinus), an invasive species of the Laurentian Great Lakes. Three animal models, sea lamprey, lake sturgeon (Acipenser fulvescens), and rainbow trout (Oncorhynchus mykiss), were selected to evaluate TFM reductive metabolism because they have been known to show differential susceptibilities to TFM toxicity. Amino-TFM (aTFM; 3-trifluoromethyl-4-aminophenol) was the only reductive metabolite identified through liquid chromatography-high-resolution mass spectrometry screening of liver extracts incubated with TFM and was targeted for electrochemical synthesis. After synthesis and purification, aTFM was used to develop a quantitative assay of the reductive metabolism of TFM through liquid chromatography and tandem mass spectrometry. The concentrations of aTFM were measured from TFM-treated cellular fractions, including cytosolic, nuclear, membrane, and mitochondrial protein extracts. Sea lamprey extracts produced the highest concentrations (500 ng/mL) of aTFM. In addition, sea lamprey and sturgeon cytosolic extracts showed concentrations of aTFM substantially higher than those of rainbow trout. However, other fractions of lake sturgeon extracts tend to show aTFM concentrations similar to those of rainbow trout but not with sea lamprey. These data suggest that the level of reductive metabolism of TFM may be associated with the sensitivities of the animals to this particular pesticide. PMID:25730707

  15. Quantitative trace analysis of eight chloramphenicol isomers in urine by chiral liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Berendsen, Bjorn J A; Essers, Martien L; Stolker, Linda A A M; Nielen, Michel W F

    2011-10-14

    Chloramphenicol is a broad-spectrum antibiotic with, apart from its human medicinal use, veterinary abuse in all major food-producing animals. Chloramphenicol occurs in four stereoisomers (all para-nitro substituted) and furthermore four meta-nitro analogs of chloramphenicol exist. In this paper these are referred to as eight chloramphenicol isomers. According to EU regulations an analytical method should be able to discriminate the analyte from interfering substances that might be present in the sample, including isomers. For the first time a quantitative method for the analysis of trace levels of eight chloramphenicol isomers in urine by chiral liquid chromatography in combination with tandem mass spectrometric detection is reported. The separation of the isomers on the analytical column, the clean-up of urine and the selectivity of the monitored product ions turned out to be critical parameters. To obtain reproducible retention isocratic elution on a chiral AGP column was applied. For urine samples matrix compounds present in the final extract caused decreased retention of the isomers on the chiral stationary phase and a lack of chromatographic resolution. Therefore an extended clean-up procedure that combines solid phase extraction and liquid-liquid extraction had to be developed. The final method was fully validated and showed satisfactory performance for all isomers with decision limits (CC?) ranging from 0.005 to 0.03 ?g L(-1) and within-laboratory reproducibility of all isomers below 20% at the minimum required performance limit level of 0.3 ?g L(-1). PMID:21893319

  16. Determination of ultratrace levels of tributyltin in waters by isotope dilution and gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Rodrguez-Cea, Andrs; Rodrguez-Gonzlez, Pablo; Font Cardona, Nuria; Aranda Mares, Jos Lus; Ballester Nebot, Salom; Garca Alonso, J Ignacio

    2015-12-18

    The current EU legislation lays down the Environmental Quality Standards (EQS) of 45 priority substances in surface water bodies. In particular, the concentration of tributyltin (TBT) must not exceed 0.2ngL(-1) and analytical methodologies with a Limit of Quantification (LOQ) equal or below 0.06ngL(-1) are urged to be developed. This work presents a procedure for the determination of ultratrace levels of TBT in water samples by Isotope Dilution and GC-MS/MS operating in Selected Reaction Monitoring (SRM) mode which meets current EU requirements. The method requires the monitorization of five consecutive transitions (287>175 to 291>179) for the sensitive and selective detection of TBT. The measured isotopic distribution of TBT fragment ions was in agreement with the theoretical values computed by a polynomial expansion algorithm. The combined use of Tandem Mass Spectrometry, a sample volume of 250mL, the preconcentration of 1mL of organic phase to 30?L and an injection volume of 25?L by Programmed Temperature Vaporization provided a LOQ of 0.0426ngL(-1) for TBT (calculated as ten times the standard deviation of nine independent blanks). The recovery for TBT calculated in Milli-Q water at the EQS level was 106.34%. A similar procedure was also developed for the quantification of dibutyltin (DBT) and monobutyltin (MBT) in water samples showing satisfactory results. The method was finally implemented in a routine testing laboratory to demonstrate its applicability to real samples obtaining quantitative recoveries for TBT at the EQS level in mineral water, river water and seawater. PMID:26614170

  17. Rapid quantification of miglustat in human plasma and cerebrospinal fluid by liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Guitton, Jrme; Coste, Sylvie; Guffon-Fouilhoux, Nathalie; Cohen, Sabine; Manchon, Monique; Guillaumont, Marc

    2009-01-15

    Miglustat (OGT 918) is an iminosugar recently introduced in therapeutic as potential alternative therapy in disorders found in several diseases such as Tay-Sachs, Gaucher or Niemann-Pick diseases. A highly sensitive liquid-chromatography-electrospray tandem mass spectrometry (LC-MS/MS) assay was developed for the quantification of miglustat in human plasma and cerebrospinal fluid (CSF). The sample preparation consists in a simple protein precipitation with a mixture of acetonitrile/methanol (75/25) which yields 100% recovery. The isocratic separation utilizes an Atlantis Hilic (3 microm, 150 mm x 2.1 mm) column, with a mobile phase of acetonitrile/water/ammonium acetate buffer (75/10/15, v/v/v) delivered at 230 microl/min. Selected reaction monitoring (SRM) mode was used with the transitions m/z 220-->158 for the miglustat and m/z 208-->m/z 146 for the miglitol (internal standard). Good linearity was observed in a range from 125 to 2500 ng/ml and from 50 to 1000 ng/ml, for plasma and CSF, respectively. The within-run precision of the assay was less than 6%, and the between-run run precision was less than 6.5%, for six replicates at each of three concentrations and evaluated on three separated days for both plasma and CSF mediums. Assay accuracy was in the range of 98-106.5%. Stability of miglustat was reported under a variety of storage conditions. The miglustat concentrations in two children are presented to demonstrate the clinical interest of this new method. PMID:19095507

  18. Oxidation of Silicon in AN Rf-Coupled Plasma.

    NASA Astrophysics Data System (ADS)

    Eljabaly, Kamal Ali

    Different aspects of plasma enhanced oxidation in an electrodeless rf system based on an earlier design are presented. Oxidation rates were fitted to a power law model. The effect on oxidation rate and/or thickness uniformity were investigated for different oxygen-argon concentrations in the plasma, rf frequency and power, and pressure. Annealing studies of SiO_2 grown in an rf plasma system are also presented. Samples were given post oxidation anneals at either 900 ^circC or 1000^circ C in either argon or oxygen, for 15 or 30 minutes. Flatband, net coulombic charge, and breakdown values for these post oxidation annealed oxides were obtained with poly-gated capacitors. Plasma oxides were also annealed in pure oxygen at temperatures ranging from 700^circ C to 1000^circC for 16 hours to 15 minutes respectively. Flatband and breakdown measurements were conducted with both the plasma and thermal "control" oxides using aluminum gated MOS capacitors only. It was found that those oxides which had received a post oxidation anneal in oxygen at 1000^circC for 15 minutes were comparable to thermal oxides. The oxidation mechanism(s) accompanying plasma oxidation is also described. O^{18 } and Si^{30} were used as markers to trace the oxidation process. Based on these double marker studies, it appears that the oxidation process occurs by the interstitial diffusion of oxygen to the Si-SiO_2 interface attended possibly by a "knock on" process or an oxygen exchange reaction. The sign of the charge of the oxidizing species and the experimental setup used in that study is also discussed. It was concluded that the oxidizing species for the plasma system used in this study are positively charged.

  19. Copper-catalyzed oxidative homo- and cross-coupling of Grignard reagents using diaziridinone.

    PubMed

    Zhu, Yingguang; Xiong, Tao; Han, Wenyong; Shi, Yian

    2014-12-01

    Transition-metal-catalyzed cross-coupling reactions are among the most powerful synthetic transformations. This paper describes an efficient copper-catalyzed homo- and cross-coupling of Grignard reagents with di-tert-butyldiaziridinone as oxidant under mild conditions, giving the coupling products in good to excellent yields. The reaction process has a broad substrate scope and is also effective for the C(sp)-C(sp(3)) coupling. PMID:25420218

  20. Residue determination of glufosinate in plant origin foods using modified Quick Polar Pesticides (QuPPe) method and liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Han, Yongtao; Song, Le; Zhao, Pengyue; Li, Yanjie; Zou, Nan; Qin, Yuhong; Li, Xuesheng; Pan, Canping

    2016-04-15

    A sensitive and specific method for the determination of glufosinate in plant origin foods was developed. The method involves extraction using modified QuPPe method, clean-up by multi-walled carbon nanotubes (MWCNTs), derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) and detection with liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The method was validated on twelve matrices spiked at 10 or 20, 100 and 500 μg/kg. The recovery ranged from 80% to 108% with intra-day RSDs (n=5) of 0.6-9.8% and inter-day RSDs (n=15) of 3.0-9.4%. Good linearities (R(2)⩾0.9991) were obtained for all matrices. The limit of detection (LOD) and limit of quantification (LOQ) for the selected matrices ranged from 0.3 to 3.3 μg kg(-1) and from 1 to 10 μg kg(-1), respectively. The method was demonstrated to be reliable and sensitive for the routine monitoring of glufosinate in plant origin foods. PMID:26617010

  1. Quantitative determination of nine urinary metabolites of organophosphate flame retardants using solid phase extraction and ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS).

    PubMed

    Kosarac, Ivana; Kubwabo, Cariton; Foster, Warren G

    2016-03-01

    Over the last few years, the use of organophosphate flame retardants (OPFRs) has been on the rise; however, there are knowledge gaps in both the human health effects of OPFRs and levels of human exposure. Currently, human biomonitoring data on the levels of OPFR metabolites in the Canadian population are still non-existent. Herein we describe a novel method to measure nine urinary OPFR metabolites using solid phase extraction and ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). The method detection limits were between 0.08 and 0.25ng/mL for target metabolites. The newly developed and validated method was applied to the analysis of 24 urine samples collected in 2010-12 from pregnant Canadian women. The most frequently detected OPFR metabolite in urine of study participants (detection frequency: 97%) was diphenyl phosphate (DPHP), with concentrations ranging between <0.13-25.2ng/mL, followed (75%) by the sum of two metabolites (DoCP: Di-o-cresyl phosphate and DpCP: Di-p- cresyl phosphate) of tricresyl phosphate, with concentrations between <0.13-4.38ng/mL. With the exception of desbutyl-tris-(2-butoxy-ethyl) phosphate which was not detected in any of the samples, all other OPFR metabolites measured were found among study participants with variable detection frequency, suggesting pregnant Canadian women may be exposed to OPFRs. PMID:26869296

  2. Elucidating the structure of carbon nanoparticles by ultra-performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Hu, Qin; Meng, Xiangpeng; Choi, Martin M F; Gong, Xiaojuan; Chan, Wan

    2016-03-10

    A fast and accurate ultra-performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) method was developed for the separation and structural elucidation of fluorescent carbon nanoparticles (CNP). The CNP was synthesised from microwave-assisted pyrolysis of citric acid (CA) and 1,2-ethylenediamine (EDA). By using UPLC separation, the CNP product was well separated into ten fractions within 4.0min. Based on high-accuracy MS and MS/MS analyses, the CNP species were revealed to display six kinds of chemical formulas, including (C10H20N4O5)n, (C8H12N2O5)n, (C16H22N4O9)n, (C6H8O7)n, (C14H18N2O11)n, and (C14H16N2O10)n. In particular, our study revealed for the first time that the CNP species exist as supramolecular clusters with their individual monomers units linked together through non-covalent bonding forces. These findings clearly indicated the usefulness of UPLC-ESI-Q-TOF-MS/MS in identifying the chemical composition of CNP product. It is anticipated that our proposed methodology can be applied to study the structure-property relationships of CNP, facilitating in the production of CNP with desirable spectral features. PMID:26893091

  3. Structural Characterization of New Peptide Variants Produced by Cyanobacteria from the Brazilian Atlantic Coastal Forest Using Liquid Chromatography Coupled to Quadrupole Time-of-Flight Tandem Mass Spectrometry

    PubMed Central

    Sanz, Miriam; Andreote, Ana Paula Dini; Fiore, Marli Fatima; Dörr, Felipe Augusto; Pinto, Ernani

    2015-01-01

    Cyanobacteria from underexplored and extreme habitats are attracting increasing attention in the search for new bioactive substances. However, cyanobacterial communities from tropical and subtropical regions are still largely unknown, especially with respect to metabolite production. Among the structurally diverse secondary metabolites produced by these organisms, peptides are by far the most frequently described structures. In this work, liquid chromatography/electrospray ionization coupled to high resolution quadrupole time-of-flight tandem mass spectrometry with positive ion detection was applied to study the peptide profile of a group of cyanobacteria isolated from the Southeastern Brazilian coastal forest. A total of 38 peptides belonging to three different families (anabaenopeptins, aeruginosins, and cyanopeptolins) were detected in the extracts. Of the 38 peptides, 37 were detected here for the first time. New structural features were proposed based on mass accuracy data and isotopic patterns derived from full scan and MS/MS spectra. Interestingly, of the 40 surveyed strains only nine were confirmed to be peptide producers; all of these strains belonged to the order Nostocales (three Nostoc sp., two Desmonostoc sp. and four Brasilonema sp.). PMID:26096276

  4. Automated hollow-fiber liquid-phase microextraction coupled with liquid chromatography/tandem mass spectrometry for the analysis of aflatoxin M? in milk.

    PubMed

    Huang, Siming; Hu, Du; Wang, Ying; Zhu, Fang; Jiang, Ruifen; Ouyang, Gangfeng

    2015-10-16

    An automated hollow fiber liquid-phase microextraction (HF-LPME) coupled with liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed for the extraction and determination of aflatoxin M1 (AFM1) in milk samples. Parameters affecting the extraction efficiency, such as the extraction phase, matrix conditions, extraction time and temperature, were investigated. Under the optimal conditions (ratio of water to milk, 4:1; extraction time, 50 min; extraction temperature, 50C; extraction phase, 50 mg L(-1) anti-AFM1 antibody in PBS buffer solution; volume of HCl solution, 250 ?L; agitation speed, 250 rpm), the matrix-matched calibration curve for AFM1 determination showed good linearity in the range of 0.25-5 ?g kg(-1). The enrichment factor (EF) reached 48, and the limits of detection and quantification were 0.06 and 0.21 ?g kg(-1), respectively. The developed method was successfully applied for the extraction of AFM1 from spiked milk samples, with recoveries from 61.0% to 106.7%. The method was highly specific to AFM1 analysis, and the results demonstrated that the method can be automated, inexpensive, and free from interference. PMID:26365912

  5. A multi-residue method for determination of 70 organic micropollutants in surface waters by solid-phase extraction followed by gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Terzopoulou, Evangelia; Voutsa, Dimitra; Kaklamanos, George

    2015-01-01

    A multi-residue method, based on gas chromatography coupled to tandem mass spectrometry (GC-MS/MS), has been developed for the determination of 70 organic micropollutants from various chemical classes (organochlorinated, organophosphorous, triazines, carbamate and urea, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pharmaceuticals, phenols, etc.) in surface waters. A single-step SPE extraction using OASIS HLB cartridges was employed for the recovery of target micropollutants. The method has been validated according to monitoring performance criteria of the Water Framework Directive, taking into account the approved guidelines on quality assurance and quality control. The recoveries ranged from 60 to 110 %, the coefficient of variation from 0.84 to 27.4 %, and the uncertainty from 6 to 37 %. The LOD varied from 6.0 to 40 ng/L. The limits of quantification for the priority pollutants anthracene, alachlor, atrazine, benzo(a)pyrene, chlorfenvinphos, diuron, isoproturon, nonylphenol, simazine, and terbutryn fulfill the criterion of <30 % of the relevant environmental standards. The method was employed to investigate the water quality in the basin of a transboundary river, Strymonas, in NE Greece during three sampling campaigns conducted in the year 2013. Thirty-nine compounds were detected in the river water. Metolachlor, diuron, isoproturon, salicylic acid, chlorfenvinphos, 1,2-benzanthracene, pyrene, diflubenzuron, and carbaryl exhibited the highest detection frequencies. PMID:25109470

  6. Depletion study of enrofloxacin and its metabolite ciprofloxacin in edible tissues and feathers of white leghorn hens by liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    San Martn, B; Cornejo, J; Iragen, D; Hidalgo, H; Anadn, A

    2007-08-01

    To ensure delivery of safe foods to consumers, withdrawal times for drugs must be respected according to the maximum residual limits established by regulatory agencies. Because of availability and price, feather meal is currently incorporated into animal feed as a protein source for farm species. Few data are available on residual drugs in feathers from treated animals. A depletion study was performed with laying hens treated intramuscularly with 5% enrofloxacin (Enromic) at 10 mg/kg body weight over 3 days. Thirty-three birds were treated and slaughtered at different times between 6 and 216 h after treatment; and samples of muscle plus skin, liver, kidney, and feathers were collected. High-performance liquid chromatography coupled with a tandem mass spectrometry method was validated before sample analysis to determine the decision limit, detection capability, recovery, and precision. Liver was the edible tissue with the slowest drug depletion. A withdrawal time of 6 days was calculated based on European Union maximum residual limits (100 microg/kg). A withdrawal time of 9 days was calculated based on Japan maximum residual limits (10 microg/kg). Enrofloxacin plus ciprofloxacin concentrations in feathers remained high through all sampling periods. Thus, feathers from treated animals should not be fed to food-producing animals. PMID:17803156

  7. Multi-residue enantiomeric analysis of pharmaceuticals and their active metabolites in the Guadalquivir River basin (South Spain) by chiral liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Lpez-Serna, Rebeca; Kasprzyk-Hordern, Barbara; Petrovi?, Mira; Barcel, Dami

    2013-07-01

    This paper describes the development and application of a multi-residue chiral liquid chromatography coupled with tandem mass spectrometry method for simultaneous enantiomeric profiling of 18 chiral pharmaceuticals and their active metabolites (belonging to several therapeutic classes including analgesics, psychiatric drugs, antibiotics, cardiovascular drugs and ?-agonists) in surface water and wastewater. To the authors' knowledge, this is the first time an enantiomeric method including such a high number of pharmaceuticals and their metabolites has been reported. Some of the pharmaceuticals have never been studied before in environmental matrices. Among them are timolol, betaxolol, carazolol and clenbuterol. A monitoring programme of the Guadalquivir River basin (South Spain), including 24 sampling sites and five wastewater treatment plants along the basin, revealed that enantiomeric composition of studied pharmaceuticals is dependent on compound and sampling site. Several compounds such as ibuprofen, atenolol, sotalol and metoprolol were frequently found as racemic mixtures. On the other hand, fluoxetine, propranolol and albuterol were found to be enriched with one enantiomer. Such an outcome might be of significant environmental relevance as two enantiomers of the same chiral compound might reveal different ecotoxicity. For example, propranolol was enriched with S(-)-enantiomer, which is known to be more toxic to Pimephales promelas than R(+)-propranolol. Fluoxetine was found to be enriched with S(+)-enantiomer, which is more toxic to P. promelas than R(-)-fluoxetine. PMID:23579471

  8. Dissipation and residues determination of propamocarb in ginseng and soil by high-performance liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Wang, Chunwei; Wang, Yan; Gao, Jie; Xu, Yuncheng; Cui, Lili

    2014-09-01

    Two-year field trials were performed at two experimental sites to investigate dissipation and terminal residues of propamocarb in ginseng root, stem, leaf, and soil by high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Mean recoveries ranged from 80.5 to 95.6% with relative standard deviations (RSDs) of 5.5-9.1% at fortified levels of 0.01, 0.02, 0.05 and 0.20 mg kg(-1). The half-lives of propamocarb were 5.00-11.36 days in root, 5.07-11.46 days in stem, 6.83-11.31 days in leaf and 6.44-8.43 days in soil. The terminal residues of propamocarb were below the maximum residue limits (MRLs) of EU (0.20 mg kg(-1)) and South Korea (0.50 mg kg(-1) in fresh ginseng and 1.0 mg kg(-1) in dried ginseng) over 28 days after last spraying at recommended dosage. The results provide a quantitative basis for establishing the MRL and give a suggestion of safe and reasonable use of propamocarb in ginseng. PMID:24791956

  9. Simultaneous Quantification of 11 Constituents in Wuji Pill Using Ultra Performance Liquid Chromatography Coupled With a Triple Quadrupole Electrospray Tandem Mass Spectrometry.

    PubMed

    Tian, Tingting; Jin, Yiran; Ma, Yinghua; Xie, Weiwei; Xu, Huijun; Du, Yingfeng

    2016-02-01

    An ultra performance liquid chromatography coupled with a triple quadrupole electrospray tandem mass spectrometry (UPLC-MS-MS) method was developed for analyzing and identifying the constituents of 11 compounds including berberine, epiberberine, berberrubine, jatrorrhizine, coptisine, palmatine, evodiamine, rutaecarpine, limonin, paeoniflorin and albiflorin in Wuji pill (WJ pill), a traditional Chinese medicine. The chromatographic separation was performed on a C18 column and the mobile phase was composed of water (0.1% formic acid and 2 mmol ammonium acetate) and methanol with a linear gradient elution. The detection was performed by multiple reaction monitoring mode, using electrospray ionization in the positive ion mode. The total run time was 14 min. The calibration curves were linear with all correlation coefficients higher than 0.9987 in the tested range. The intra- and interday precisions were no more than 4.9%, and the average recoveries were from 92.4 to 107.8% with the relative standard deviations no more than 7.8%. The developed method was successfully employed to analyze five batches of WJ pill samples. This is the first time to establish a method for the quality control of WJ pill to ensure the safety and efficacy in clinical applications effectively. PMID:26363492

  10. Determination of pesticide residues in samples of green minor crops by gas chromatography and ultra performance liquid chromatography coupled to tandem quadrupole mass spectrometry.

    PubMed

    Walorczyk, Stanis?aw; Dro?d?y?ski, Dariusz; Kierzek, Roman

    2015-01-01

    A method was developed for pesticide analysis in samples of high chlorophyll content belonging to the group of minor crops. A new type of sorbent, known as ChloroFiltr, was employed for dispersive-solid phase extraction cleanup (dispersive-SPE) to reduce the unwanted matrix background prior to concurrent analysis by gas chromatography and ultra-performance liquid chromatography coupled to tandem quadrupole mass spectrometry (GC-MS/MS and UPLC-MS/MS). Validation experiments were carried out on green, unripe plants of lupin, white mustard and sorghum. The overall recoveries at the three spiking levels of 0.01, 0.05 and 0.5 mg kg(-1) fell in the range between 68 and 120% (98% on average) and 72-104% (93% on average) with relative standard deviation (RSD) values between 2 and 19% (7% on average) and 3-16% (6% on average) by GC-MS/MS and UPLC-MS/MS technique, respectively. Because of strong enhancement or suppression matrix effects (absolute values >20%) which were exhibited by about 80% of the pesticide and matrix combinations, acceptably accurate quantification was achieved by using matrix-matched standards. Up to now, the proposed method has been successfully used to study the dissipation patterns of pesticides after application on lupin, white mustard, soya bean, sunflower and field bean in experimental plot trials conducted in Poland. PMID:25476298

  11. Application of hollow fibre liquid phase microextraction for the multiresidue determination of pesticides in alcoholic beverages by ultra-high pressure liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Bolaos, P Plaza; Romero-Gonzlez, R; Frenich, A Garrido; Vidal, J L Martnez

    2008-10-24

    An alternative method has been developed to determine more than 50 pesticides in alcoholic beverages using hollow fibre liquid phase microextraction (HF-LPME) followed by ultra-high pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS), without any further clean-up step. Pesticides were extracted from the sample to the organic solvent immobilized in the fibre and they were desorbed in methanol prior to chromatographic analysis. Experimental parameters related to microextraction such as type of organic solvent, extraction time and agitation rate have been optimized. The extraction method has been validated for several types of alcoholic beverages such as wine and beer, and no matrix effect was observed. The technique requires minimal sample handling and solvent consumption. Using optimum conditions, low detection limits (0.01-5.61microgL(-1)) and good linearity (R(2)>0.95) were obtained. Repeatability and interday precision ranged from 3.0 to 16.8% and from 5.9 to 21.2%, respectively. Finally the optimized method was applied to real samples and carbaryl, triadimenol, spyroxamine, epoxiconazole, triflumizol and fenazaquin were detected in some of the analyzed samples. The obtained results indicated that the new method can be successfully applied for extraction and determination of pesticides in alcoholic beverages, increasing sample throughput. PMID:18762301

  12. Application of QuEChERS based method for the determination of pesticides in nutraceutical products (Camellia sinensis) by liquid chromatography coupled to triple quadrupole tandem mass spectrometry.

    PubMed

    Martnez-Domnguez, Gerardo; Nieto-Garca, Antonio Jos; Romero-Gonzlez, Roberto; Frenich, Antonia Garrido

    2015-06-15

    A QuEChERS (quick, easy, cheap, effective, rugged, and safe) based method has been evaluated and validated for the determination and quantification of approximately 100 LC-amenable pesticides in nutraceutical products obtained from green tea (Camellia sinensis). Extraction was performed with acidified acetonitrile (acetic acid 1% (v/v)), and additional clean-up steps were not necessary. Pesticides determination was achieved using ultra high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS). Total running time was 11 min. Pesticides were quantified using matrix-matched calibration. Recoveries ranged from 70% to 117% and relative standard deviation (RSD) was lower than 20% at concentration levels of 25, 50 and 100 ?g/kg for intra-day precision and equal or lower than 25% for inter-day precision. Limits of quantification (LOQ) were equal or lower than 25 ?g/kg. The validated method was applied to commercial nutraceutical products, detecting acetamiprid (56 ?g/kg) and carbendazim (13 ?g/kg) in two samples. PMID:25660875

  13. Determination of six chemotherapeutic agents in municipal wastewater using online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry.

    PubMed

    Rabii, Farida W; Segura, Pedro A; Fayad, Paul B; Sauv, Sbastien

    2014-07-15

    Due to the increased consumption of chemotherapeutic agents, their high toxicity, carcinogenicity, their occurrence in the aquatic environment must be properly evaluated. An analytical method based on online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry was developed and validated. A 1 mL injection volume was used to quantify six of the most widely used cytotoxic drugs (cyclophosphamide, gemcitabine, ifosfamide, methotrexate, irinotecan and epirubicin) in municipal wastewater. The method was validated using standard additions. The validation results in wastewater influent had coefficients of determination (R(2)) between 0.983 and 0.998 and intra-day precision ranging from 7 to 13% (expressed as relative standard deviation %RSD), and from 9 to 23% for inter-day precision. Limits of detection ranged from 4 to 20 ng L(-1) while recovery values were greater than 70% except for gemcitabine, which is the most hydrophilic compound in the selected group and had a recovery of 47%. Matrix effects were interpreted by signal suppression and ranged from 55 to 118% with cyclophosphamide having the highest value. Two of the target anticancer drugs (cyclophosphamide and methotrexate) were detected and quantified in wastewater (effluent and influent) and ranged from 13 to 60 ng L(-1). The proposed method thus allows proper monitoring of potential environmental releases of chemotherapy agents. PMID:24388503

  14. Rapid determination of sixteen sulfonylurea herbicides in surface water by solid phase extraction cleanup and ultra-high-pressure liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Yan, Cuimin; Zhang, Beibei; Liu, Wenyuan; Feng, Feng; Zhao, Yonggang; Du, Hui

    2011-11-15

    A sensitive and very fast analytical method has been developed for the simultaneous quantification of sixteen sulfonylurea herbicides in surface water. An ultra-high-pressure liquid chromatography coupled with tandem mass spectrometry method with solid phase extraction for sample cleanup has been developed for screening sixteen sulfonylurea herbicides (oxasulfuron, thifensulfuron-methyl, cinosulfuron, metsulfuron methyl, sulfometuron methyl, triasulfuron, rimsulfuron, ethametsulfuron methyl, sulfosulfuron, tribenuron methyl, bensulfuron methyl, iodosulfuron methyl, pyrazosulfuron ethyl, prosulfuron, chlorimuron ethyl, ethoxysulfuron) in water samples simultaneously within 12 min. Water samples were acidified, and the target herbicides were extracted by passing through ProElut C18 extraction cartridges. After drying by nitrogen flow, the cartridges were eluted with elution solvents, and the eluate was then evaporated to dryness, redissolved and analyzed. The mobile phase composed of 0.02% formic acid and acetonitrile using gradient elution. A triple quadrupole mass spectrometer equipped with an electrospray ionization source operated in the positive ion with selective reaction monitoring mode. Each of the analytes in all the samples was monitored using protonated molecule and its two characteristic fragment ions for confirmation. The limits of detection for all analytes were below 1.0 ng/mL, except for sulfosulfuron and prosulfuron, and limits of quantitation were between 1 and 8 ng/mL for this method. Three water types were used for the validation of the method. PMID:21983197

  15. Liquid chromatography coupled to ion trap-tandem mass spectrometry to evaluate juvenile hormone III levels in bee hemolymph from Nosema spp. infected colonies.

    PubMed

    Ares, A M; Nozal, M J; Bernal, J L; Martn-Hernndez, R; M Higes; Bernal, J

    2012-06-15

    It has been described a fast, simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to measure juvenile hormone III (JH III), which was used to study of the effects of Nosema spp. infection on JH III levels in bee hemolymph. Honey bee hemolymph was extracted by centrifugation and mixed with a solution of phenylthiourea in methanol. This mixture was then centrifuged and the supernatant removed and evaporated to dryness. The residue was reconstituted in methanol containing the internal standard (methoprene) and injected onto an LC-MS/MS (ion-trap) system coupled to electrospray ionization (ESI) in positive mode. Chromatography was performed on a Synergi Hydro-RP column (4 ?m, 30 mm 4.60 mm i.d.) using a mobile phase of 20 mM ammonium formate and methanol in binary gradient elution mode. The method was fully validated and it was found to be selective, linear from 15 to 14,562 pg/?L, precise and accurate, with %RSD values below 5%. The limits of detection and quantification were: LOD, 6 pg/?L; LOQ, 15 pg/?L. Finally, the proposed LC-MS/MS method was used to analyze JH III levels in the hemolymph of worker honey bees (Apis mellifera iberiensis) experimentally infected with different Nosema spp. (Nosema apis, Spanish and Dutch Nosema ceranae strains). The highest concentrations of JH III were detected in hemolymph from bees infected with Spanish N. ceranae. PMID:22664054

  16. Structural Characterization of New Peptide Variants Produced by Cyanobacteria from the Brazilian Atlantic Coastal Forest Using Liquid Chromatography Coupled to Quadrupole Time-of-Flight Tandem Mass Spectrometry.

    PubMed

    Sanz, Miriam; Andreote, Ana Paula Dini; Fiore, Marli Fatima; Dörr, Felipe Augusto; Pinto, Ernani

    2015-06-01

    Cyanobacteria from underexplored and extreme habitats are attracting increasing attention in the search for new bioactive substances. However, cyanobacterial communities from tropical and subtropical regions are still largely unknown, especially with respect to metabolite production. Among the structurally diverse secondary metabolites produced by these organisms, peptides are by far the most frequently described structures. In this work, liquid chromatography/electrospray ionization coupled to high resolution quadrupole time-of-flight tandem mass spectrometry with positive ion detection was applied to study the peptide profile of a group of cyanobacteria isolated from the Southeastern Brazilian coastal forest. A total of 38 peptides belonging to three different families (anabaenopeptins, aeruginosins, and cyanopeptolins) were detected in the extracts. Of the 38 peptides, 37 were detected here for the first time. New structural features were proposed based on mass accuracy data and isotopic patterns derived from full scan and MS/MS spectra. Interestingly, of the 40 surveyed strains only nine were confirmed to be peptide producers; all of these strains belonged to the order Nostocales (three Nostoc sp., two Desmonostoc sp. and four Brasilonema sp.). PMID:26096276

  17. Robust method for the analysis of phytochelatins in rice by high-performance liquid chromatography coupled with electrospray tandem mass spectrometry based on polymeric column materials.

    PubMed

    Yu, Shasha; Bian, Yingfang; Zhou, Rong; Mou, Renxiang; Chen, Mingxue; Cao, Zhaoyun

    2015-12-01

    A sensitive and robust high-performance liquid chromatography coupled with electrospray tandem mass spectrometry method for the identification and quantification of glutathione and phytochelatins from rice was developed. Homogenized samples were extracted with water containing 100 mM dithiothreitol, and solid-phase extraction using polymer anion exchange resin was employed for sample purification. Chromatography was performed on a polymeric column with acetonitrile and water containing 0.1% formic acid as the mobile phase at the flow rate of 300 ?L/min. The limit of quantitation was 6-100 nM. This assay showed excellent linearity for both glutathione and phytochelatins over physiological normal ranges, with correlation coefficients (r) > 0.9976. Recoveries for four biothiols were within the range of 76-118%, within relative standard deviations less than 15%. The intraday precision (n = 7) was 2.1-13.3%, and the interday precision over 15 days was 4.3-15.2%. The optimized method was applied to analyze tissue samples from rice grown using nutrient solutions with three different cadmium concentrations (0, 50, and 100 ?M). With increasing cadmium concentrations, the content of phytochelatin 2 and phytochelatin 3 in rice roots increased, in contrast to most phytochelatins, and the content of glutathione in rice stems and roots decreased significantly. PMID:26541262

  18. Ultra high performance liquid chromatography coupled to tandem mass spectrometry determination of lipid peroxidation biomarkers in newborn serum samples.

    PubMed

    Chfer-Perics, C; Rahkonen, L; Snchez-Illana, A; Kuligowski, J; Torres-Cuevas, I; Cernada, M; Cubells, E; Nuez-Ramiro, A; Andersson, S; Vento, M; Escobar, J

    2015-07-30

    Byproducts of arachidonic (AA) and docosahexaenoic acid (DHA) oxidation are highly relevant for the study of free radical associated conditions in the perinatal period. Plasma metabolites can provide the clinician with a snapshot of the oxidant status of patients before and after specific clinical interventions (e.g.: supplementation with oxygen). We describe a new andreliable ultra-performance liquid mass spectrometry method to determine F2-isoprostanes and other byproducts (isoprostanes, isofurans, neuroprostanes, neurofurans) in newborn serum samples. Cord blood samples were obtained from severely depressed newborn infants (Apgar score 1 min < 3; arterial cord pH < 7.00), and aliquoted for serum determination and stored at -80 C. A UHPLC-MS/MS method was employed. It has a series of technical advantages: simple sample treatment; reduced sample volume (100 ?L) which is essential for preterm neonates with low circulating blood volume, high throughput of sample analysis (96 samples in less than 24 h) and high selectivity for different isoprostanes isomers. Excellent sensitivity was achieved within limits of detection between 0.06 and 4.2 nmol L(-1), which renders this method suitable to monitoranalyte concentration in newborn samples. The method's precision was satisfactory; with coefficients of variation around 5-12% (intra-day) and 7-17% (inter-day). The reliability of the described method was assessed by analysis of spiked serum samples obtaining recoveries between 70% and 120%. The proposed method has rendered suitable for serum determination for newborn babies at risk of oxygen free radical associated conditions. PMID:26320656

  19. A serially coupled stationary phase method for the determination of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine by liquid chromatography ion trap tandem mass spectrometry.

    PubMed

    Rota, Cristina; Cristoni, Simone; Trenti, Tommaso; Cariani, Elisabetta

    2013-01-01

    Oxidative attack to DNA is of particular interest since DNA modifications can lead to heritable mutations. The most studied product of DNA oxidation is 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG). While 8-oxodG determination in blood and tissue cells is prone to artifacts, its measurement in urine employing liquid chromatography tandem mass spectrometry (LC-MS/MS) has gained more and more interest for increased reliability. LC-MS/MS can be affected by matrix effects and this is particularly true when ion trap is used as MS analyzer, due to ion accumulation in the trap and related space charge effect. In the present work, we have developed a LC-MS/MS method where the combination of cation exchange and reverse phase solid phases resulted in LC separation optimization. This together with the employment of an isotopically labeled internal standard, allowed the usage of ion trap LC-MS/MS, typically not employed for quantitative measurement in biological samples, for the measurement of 8-oxodG in urine samples from control populations. Four different urine matrices were employed for method validation. Limit of quantitation was set at least at 0.5ng/ml. While analyzing urine samples from healthy volunteers, 8-oxodG levels reported as ng/ml were statistically different comparing males with females (p<0.05, Mann Whitney test); while comparing results normalized for creatinine no statistical significant difference was found. Mean urinary 8-oxodG level found in healthy volunteers was 1.160.46nmol/mmol creatinine. The present method by enhancing at best the chromatographic performances allows the usage of ion trap LC-MS/MS for the measurement of 8-oxodG in urine samples from control populations. PMID:24251117

  20. Determination of phosphoserine/threonine by nano ultra-performance liquid chromatography-tandem mass spectrometry coupled with microscale labeling.

    PubMed

    Chen, Rong-Chun; Chuang, Lea-Yea; Tseng, Wei-Lung; Tyan, Yu-Chang; Lu, Chi-Yu

    2013-12-15

    Protein phosphorylation is an important regulatory post-translational modification in many biochemical processes. The phosphopeptide analysis strategies developed in this study were all at microscale. After using a standard microwave oven to assist protein digestion, phosphoserine and phosphothreonine were tagged with chemical analogues, such as 2-mercaptoethanol and 3-mercapto-1-propanol, to enable simultaneously relative quantitation and identification. This method enabled the use of thio alcohols for direct labeling of phosphorylated sites (not labeled at the mercapto, amino, hydroxyl, or carboxyl groups) of phosphopeptides. Various digestion parameters (e.g., microwave power, reaction time, NH4HCO3 concentration) and derivatization efficiency parameters (e.g., reaction time, labeling tag concentration) were studied and optimized. In both control and experimental samples, microwave-assisted digestion coupled with relative quantitation using analogue tags enabled calculation of phosphopeptide ratios in the same sequence. A non-labeling method was also established for quantifying phosphopeptides in human plasma by using the abundant protein albumin as an internal control for normalizing relative quantities of phosphopeptides. Nano ultra-performance liquid chromatography (nanoUPLC) was combined with LTQ Orbitrap to enable simultaneous protein relative quantitation and identification. These strategies proved to be effective for quantifying phosphopeptides in biological samples. PMID:23994561

  1. Coupling UV-H2O2 to accelerate dimethyl phthalate (DMP) biodegradation and oxidation.

    PubMed

    Chen, Bin; Song, Jiaxiu; Yang, Lihui; Bai, Qi; Li, Rongjie; Zhang, Yongming; Rittmann, Bruce E

    2015-11-01

    Dimethyl phthalate (DMP), an important industrial raw material, is an endocrine disruptor of concern for human and environmental health. DMP exhibits slow biodegradation, and its coupled treatment by means of advanced oxidation may enhance its biotransformation and mineralization. We evaluated two ways of coupling UV-H2O2 advanced oxidation to biodegradation: sequential coupling and intimate coupling in an internal circulation baffled biofilm reactor (ICBBR). During sequential coupling, UV-H2O2 pretreatment generated carboxylic acids that depressed the pH, and subsequent biodegradation generated phthalic acid; both factors inhibited DMP biodegradation. During intimately coupled UV-H2O2 with biodegradation, carboxylic acids and phthalic acid (PA) did not accumulate, and the biodegradation rate was 13% faster than with biodegradation alone and 78% faster than with biodegradation after UV-H2O2 pretreatment. Similarly, DMP oxidation with intimate coupling increased by 5 and 39%, respectively, compared with biodegradation alone and sequential coupling. The enhancement effects during intimate coupling can be attributed to the rapid catabolism of carboxylic acids, which generated intracellular electron carriers that directly accelerated di-oxygenation of PA and relieved the inhibition effect of PA and low pH. Thus, intimate coupling optimized the impacts of energy input from UV irradiation used together with biodegradation. PMID:26342301

  2. Platinum-catalyzed cross-dehydrogenative coupling reaction in the absence of oxidant.

    PubMed

    Shu, Xing-Zhong; Yang, Yan-Fang; Xia, Xiao-Feng; Ji, Ke-Gong; Liu, Xue-Yuan; Liang, Yong-Min

    2010-09-21

    A third strategy for cross-dehydrogenative coupling reaction has been reported via platinum-catalyzed sp(3) C-H and sp(3) C-H coupling reaction in the absence of oxidant. Nitroalkanes as well as dialkyl malonate derivatives, beta-keto esters and malononitrile are active participants in this coupling reaction. Both cyclic and acyclic non-activated simple ketones are good reactants in this reaction. PMID:20664883

  3. MEASUREMENT OF PYRETHROID RESIDUES IN ENVIRONMENTAL AND FOOD SAMPLES BY ENHANCED SOLVENT EXTRACTION/SUPERCRITICAL FLUID EXTRACTION COUPLED WITH GAS CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

    EPA Science Inventory

    The abstract summarizes pyrethorid methods development research. It provides a summary of sample preparation and analytical techniques such as supercritical fluid extraction, enhance solvent extraction, gas chromatography and tandem mass spectrometry.

  4. Determination of peanut allergens in cereal-chocolate-based snacks: metal-tag inductively coupled plasma mass spectrometry immunoassay versus liquid chromatography/electrospray ionization tandem mass spectrometry.

    PubMed

    Careri, Maria; Elviri, Lisa; Maffini, Monica; Mangia, Alessandro; Mucchino, Claudio; Terenghi, Mattia

    2008-01-01

    A comparison of two methods for the identification and determination of peanut allergens based on europium (Eu)-tagged inductively coupled plasma mass spectrometry (ICP-MS) immunoassay and on liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) with a triple quadrupole mass analyzer was carried out on a complex food matrix like a chocolate rice crispy-based snack. The LC/MS/MS method was based on the determination of four different peptide biomarkers selective for the Ara h2 and Ara h3/4 peanut proteins. The performance of this method was compared with that of a non-competitive sandwich enzyme-linked immunosorbent assay (ELISA) method with ICP-MS detection of the metal used to tag the antibody for the quantitative peanut protein analysis in food. The limit of detection (LOD) and quantitation of the ICP-MS immunoassay were 2.2 and 5 microg peanuts g(-1) matrix, respectively, the recovery ranged from 86 +/- 18% to 110 +/- 4% and linearity was proved in the 5-50 microg g(-1) range. The LC/MS/MS method allowed us to obtain LODs of 1 and 5 microg protein g(-1) matrix for Ara h3/4 and Ara h2, respectively, thus obtaining significantly higher values with respect to the ELISA ICP-MS method, taking into account the different expression for concentrations. Linearity was established in the 10-200 microg g(-1) range of peanut proteins in the food matrix investigated and good precision (RSD <10%) was demonstrated. Both the two approaches, used for screening or confirmative purposes, showed the power of mass spectrometry when used as a very selective detector in difficult matrices even if some limitations still exist, i.e. matrix suppression in the LC/ESI-MS/MS procedure and the change of the Ag/Ab binding with matrix in the ICP-MS method. PMID:18278822

  5. Detection of seven pesticides in cucumbers using hollow fibre-based liquid-phase microextraction and ultra-high pressure liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Wang, Jianfeng; Du, Zhenxia; Yu, Wenlian; Qu, Shuping

    2012-07-20

    A liquid-phase microextraction (LPME) methodology based on the use of porous polyvinylidene fluoride (PVDF) hollow fibres was developed for extracting seven pesticides from cucumbers. The seven pesticides include propoxur, carbofuran, atrazine, cyanatryn, metolachlor, prometryn and tebuconazole. The PVDF hollow fibre provides higher extraction efficiency due to its higher porosity and better solvent compatibility. A new desorption methodology was developed since some pesticides were absorbed by the wall pore of the PVDF. Ultra-high pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was used for pesticide analysis. In order to obtain high recoveries and enrichment factors of the analytes, several parameters such as method of sealing, acceptor phase (organic solvents), stirring speed, extraction time, salting out effect, desorption mode and time were optimized. A fast, simple method for closing fibre ends was practiced by using mechanical crimping. Pesticides were extracted from the sample to the organic solvent and then desorbed in a mixture of methanol:water (1:1 v/v) prior to chromatographic analysis. Limits of detection (LOD) for the multi-reaction-monitoring (MRM) mode of the method varies from 0.01 to 0.31 μg/kg with optimized sample preparation. Calibration curves are linear with R² ≥ 0.991. Enrichment factor of the hollow fibre LPME ranges from 100 to 147. Matrix effect has been considered and is in the range of 76-122%. The relative recoveries from cucumber samples are between 63% and 119% with the relative standard deviation (RSD, n=6) lower than 20%. PMID:22682952

  6. Determination of androgens and progestogens in environmental and biological samples using fabric phase sorptive extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Guedes-Alonso, Rayco; Ciofi, Lorenzo; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan; Bubba, Massimo Del; Kabir, Abuzar; Furton, Kenneth G

    2016-03-11

    Androgens and progestogens are two important groups of endocrine disrupting compounds (EDCs) which are implicated to produce severe detrimental impact over aquatic biota, even at very low concentrations of ngL(-1). For this reason, one of the major challenges to analytical chemists is the development of sensitive and selective extraction processes which allow the rapid and green determination of these emerging pollutants at low concentrations in environmental samples. Fabric phase sorptive extraction is a new, highly sensitive, efficient and solvent minimized technique which combine the advantages of sol-gel derived microextraction sorbents and the rich surface chemistry of cellulose fabric substrate. This process has several advantages such as minimum usage of organic solvents, short extraction times, small sample volumes and high analyte preconcentration factors. In this study, an extraction method based on sorptive fabric phase coupled to ultra-high-performance liquid chromatography tandem mass spectrometry detection (FPSE-UHPLC-MS/MS) has been developed for the determination of four progestogens and six androgens in environmental and biological samples. All the parameters involved in the extraction, such as sample volume, extraction and desorption times, desorption solvent volume and sample pH values have been optimized. The developed method provides satisfactory limits of detection (between 1.7 and 264ngL(-1)), good recoveries and low relative standard deviations (below 10% in tap and osmosis water and below 20% in wastewater and urine). Subsequently, the method was used to analyse tap water, wastewater treated with different processing technologies and urine samples. The concentrations of the detected hormones ranged from 28.3 to 227.3 ngL(-1) in water samples and from 1.1 to 3.7μgL(-1) in urine samples. PMID:26858117

  7. Determination of volatile organic compounds in water by headspace solid-phase microextraction gas chromatography coupled to tandem mass spectrometry with triple quadrupole analyzer.

    PubMed

    Cervera, M I; Beltran, J; Lopez, F J; Hernandez, F

    2011-10-17

    In the present work, a rapid method with little sample handling has been developed for determination of 23 selected volatile organic compounds in environmental and wastewater samples. The method is based on headspace solid-phase microextraction (SPME) followed by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) determination using triple quadrupole analyzer (QqQ) in electron ionization mode. The best conditions for extraction were optimised with a factorial design taking into account the interaction between different parameters and not only individual effects of variables. In the optimized procedure, 4 mL of water sample were extracted using a 10 mL vial and adding 0.4 g NaCl (final NaCl content of 10%). An SPME extraction with carboxen/polydimethylsiloxane 75 ?m fiber for 30 min at 50C (with 5 min of previous equilibration time) with magnetic stirring was applied. Chromatographic determination was carried out by GC-MS/MS working in Selected Reaction Monitoring (SRM) mode. For most analytes, two MS/MS transitions were acquired, although for a few compounds it was difficult to obtain characteristic abundant fragments. In those cases, a pseudo selected reaction monitoring (pseudo-SRM) with three ions was used instead. The intensity ratio between quantitation (Q) and confirmation (q) signals was used as a confirmatory parameter. The method was validated by means of recovery experiments (n=6) spiking mineral water samples at three concentration levels (0.1, 5 and 50 ?g L(-1)). Recoveries between 70% and 120% were generally obtained with relative standard deviations (RSDs) lower than 20%. The developed method was applied to surface water and wastewater from a wastewater treatment plant and from a municipal solid-waste treatment plant. Several compounds, like chloroform, benzene, trichloroethylene, toluene, tetrachloroethylene, dibromochloromethane, xylenes and bromoform were detected and confirmed in all the samples analyzed. PMID:21907025

  8. Profiling of phytohormones in rice under elevated cadmium concentration levels by magnetic solid-phase extraction coupled with liquid chromatography tandem mass spectrometry.

    PubMed

    Cai, Bao-Dong; Yin, Jia; Hao, Yan-Hong; Li, Yu-Nan; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-08-01

    Phytohormones, a collection of signal small molecules with various structures, regulate a series of physiological processes of plants. For instance, they regulate the growth and development, response to biotic and abiotic stresses. Quantification of trace endogenous phytohormones is essential to elucidate their molecular mechanisms in response to stresses. However, the structural and chemical diversity of phytohormones make it difficult to purify and enrich multiple phytohormones in one-step. In the current study, a method was developed to comprehensively profile phytohormones, including 8 cytokinins (CKs), indole-3-acetic acid (IAA), abscisic acid (ABA), jasmonic acid (JA) and 10 gibberellins (GAs) by Fe3O4@TiO2-based magnetic solid-phase extraction coupled with ultra-performance liquid chromatography-electrospray tandem mass spectrometry (Fe3O4@TiO2-based MSPE-UPLC-MS/MS). In the proposed method, the phytohormones in the acetonitrile extract of plant tissues were captured and purified by one-step MSPE using Fe3O4@TiO2 as a sorbent prior to UPLC-MS/MS analysis. The sensitivity, accuracy and reproducibility of the proposed analytical method were demonstrated to satisfy the profiling of multiple phytohormones in plant tissue. We then further used the Fe3O4@TiO2-based MSPE-UPLC-MS/MS method to explore the change of phytohormones in rice under Cd stress. The results showed that CKs, IAA, ABA, JA and biological active GAs all increased under Cd stress, suggesting that these phytohormones may take part in response to Cd stress. The study may promote the further understanding of the physiological functions of phytohormones in response to Cd stress. PMID:26141271

  9. Simultaneous determination of dextromethorphan, dextrorphan and doxylamine in human plasma by HPLC coupled to electrospray ionization tandem mass spectrometry: application to a pharmacokinetic study.

    PubMed

    Donato, J L; Koizumi, F; Pereira, A S; Mendes, G D; De Nucci, G

    2012-06-15

    In the present study, a fast, sensitive and robust method to quantify dextromethorphan, dextrorphan and doxylamine in human plasma using deuterated internal standards (IS) is described. The analytes and the IS were extracted from plasma by a liquid-liquid extraction (LLE) using diethyl-ether/hexane (80/20, v/v). Extracted samples were analyzed by high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Chromatographic separation was performed by pumping the mobile phase (acetonitrile/water/formic acid (90/9/1, v/v/v) during 4.0min at a flow-rate of 1.5 mL min? into a Phenomenex Gemini C18, 5 ?m analytical column (150 4.6 mm i.d.). The calibration curve was linear over the range from 0.2 to 200 ng mL? for dextromethorphan and doxylamine and 0.05 to 10 ng mL? for dextrorphan. The intra-batch precision and accuracy (%CV) of the method ranged from 2.5 to 9.5%, and 88.9 to 105.1%, respectively. Method inter-batch precision (%CV) and accuracy ranged from 6.7 to 10.3%, and 92.2 to 107.1%, respectively. The run-time was for 4 min. The analytical procedure herein described was used to assess the pharmacokinetics of dextromethorphan, dextrorphan and doxylamine in healthy volunteers after a single oral dose of a formulation containing 30 mg of dextromethorphan hydrobromide and 12.5mg of doxylamine succinate. The method has high sensitivity, specificity and allows high throughput analysis required for a pharmacokinetic study. PMID:22651995

  10. Determination of trichothecenes A (T-2 toxin, HT-2 toxin, and diacetoxyscirpenol) in the tissues of broilers using liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Yang, Lingchen; Zhao, Zhiyong; Wu, Aibo; Deng, Yifeng; Zhou, Zhenlei; Zhang, Jianpeng; Hou, Jiafa

    2013-12-30

    A stable and sensitive method has been developed for use in food and livestock product safety for the detection of mycotoxins. This newly developed method allows for the determination of T-2 toxin, HT-2 toxin and diacetoxyscirpenol (DAS) in heart, liver, spleen, lung, kidney, Glandular stomach, muscular stomach, small intestine, muscle, bone and brain samples from broilers using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The samples were initially extracted with ethyl acetate before being filtered through a 0.22μm nylon syringe filter and subjected to chromatographic separation on a reversed-phase C18 (50×2.1mm, 3μm) column. A mobile phase composed of 0.1% acetic acid and 10mM ammonium acetate in methanol and water was used in an assay of the levels of T-2 toxin, HT-2 toxin and DAS. For the analysis of the target compounds, the mass spectrometer was operated under positive electrospray ionization conditions in the selected reaction monitoring mode. The limit of detection was in the range of 0.02-0.05ng/g, whereas the limit of quantification was in the range of 0.08-0.15ng/g. The extraction recoveries of spiked samples from the high, intermediate and low levels ranged from 58.5% to 110.5%, and the relative standard deviation (RSD (%)) values were less than 17.0%. The results of inter- and intra-day precision (RSD (%)) were within 14.7%. The results revealed that the present method could be successfully applied to the analysis of T-2 toxin, HT-2 toxin and DAS in the real samples. PMID:24231141

  11. Renewable sorbent material for solid phase extraction with direct coupling of sequential injection analysis-bead injection to liquid chromatography-electrospray ionization tandem mass spectrometry.

    PubMed

    Boonjob, Warunya; Sklenářová, Hana; Barron, Leon; Solich, Petr; Smith, Norman

    2015-07-01

    The use of small scale renewable sorbent material for automated solid phase extraction of multi-residue pharmaceuticals in environmental samples exploiting the sequential injection analysis-bead injection with direct coupling to liquid chromatography-electrospray ionization tandem mass spectrometry (SIA-BI-μSPE-LC-ESI-MS/MS) is presented to determine beta-blockers, namely atenolol, sotalol, pindolol, acebutolol, timolol, metoprolol, labetalol, carazolol, propranolol and betaxolol. These compounds yielded the same product ions, therefore were affected in terms of quantification when flow injection analysis-mass spectrometry (FIA-MS) was used. Thus, analytes and matrix present in the sample travel together into the ionization source which can seriously affect the ionization efficiency and analyte signals due to monitoring over a short time period. Graphical abstract A two-dimensional analysis involving a time dimension (retention time) and an m/z dimension (fragmentation ion) is promising for the various sample types. Using the developed method, absolute recoveries percentages of 10 mL of sample loading volume were >91% for all β-blockers with enrichment factor of 62-74, limits of detection of 0.005-0.07 μg L(-1), limits of quantification of 0.01-0.23 μg L(-1), enrichment factor of 62-72 and repeatability within range 7-12%. This developed method is suggested to be used as quantitative screening technique for drugs of abuse or persistent contamination using different kinds of sorbent materials and complex matrix such as biological fluid sample as well. PMID:25971945

  12. Determination of chiral pharmaceuticals and illicit drugs in wastewater and sludge using microwave assisted extraction, solid-phase extraction and chiral liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Evans, Sian E; Davies, Paul; Lubben, Anneke; Kasprzyk-Hordern, Barbara

    2015-07-01

    This is the first study presenting a multi-residue method allowing for comprehensive analysis of several chiral pharmacologically active compounds (cPACs) including beta-blockers, antidepressants and amphetamines in wastewater and digested sludge at the enantiomeric level. Analysis of both the liquid and solid matrices within wastewater treatment is crucial to being able to carry out mass balance within these systems. The method developed comprises filtration, microwave assisted extraction and solid phase extraction followed by chiral liquid chromatography coupled with tandem mass spectrometry to analyse the enantiomers of 18 compounds within all three matrices. The method was successfully validated for 10 compounds within all three matrices (amphetamine, methamphetamine, MDMA, MDA, venlafaxine, desmethylvenlafaxine, citalopram, metoprolol, propranolol and sotalol), 7 compounds validated for the liquid matrices only (mirtazapine, salbutamol, fluoxetine, desmethylcitalopram, atenolol, ephedrine and pseudoephedrine) and 1 compound (alprenolol) passing the criteria for solid samples only. The method was then applied to wastewater samples; cPACs were found at concentration ranges in liquid matrices of: 1.7 ng L(-1) (metoprolol) - 1321 ng L(-1) (tramadol) in influent,

  13. Determination of caffeine, myosmine, and nicotine in chocolate by headspace solid-phase microextraction coupled with gas chromatography-tandem mass spectrometry.

    PubMed

    Müller, Christoph; Vetter, Florian; Richter, Elmar; Bracher, Franz

    2014-02-01

    The occurrence of the bioactive components caffeine (xanthine alkaloid), myosmine and nicotine (pyridine alkaloids) in different edibles and plants is well known, but the content of myosmine and nicotine is still ambiguous in milk/dark chocolate. Therefore, a sensitive method for determination of these components was established, a simple separation of the dissolved analytes from the matrix, followed by headspace solid-phase microextraction coupled with gas chromatography-tandem mass spectrometry (HS-SPME-GC-MS/MS). This is the first approach for simultaneous determination of caffeine, myosmine, and nicotine with a convenient SPME technique. Calibration curves were linear for the xanthine alkaloid (250 to 3000 mg/kg) and the pyridine alkaloids (0.000125 to 0.003000 mg/kg). Residuals of the calibration curves were lower than 15%, hence the limits of detection were set as the lowest points of the calibration curves. The limits of detection calculated from linearity data were for caffeine 216 mg/kg, for myosmine 0.000110 mg/kg, and for nicotine 0.000120 mg/kg. Thirty samples of 5 chocolate brands with varying cocoa contents (30% to 99%) were analyzed in triplicate. Caffeine and nicotine were detected in all samples of chocolate, whereas myosmine was not present in any sample. The caffeine content ranged from 420 to 2780 mg/kg (relative standard deviation 0.1 to 11.5%) and nicotine from 0.000230 to 0.001590 mg/kg (RSD 2.0 to 22.1%). PMID:24446916

  14. Copper-catalyzed aerobic oxidative coupling: From ketone and diamine to pyrazine

    PubMed Central

    Wu, Kun; Huang, Zhiliang; Qi, Xiaotian; Li, Yingzi; Zhang, Guanghui; Liu, Chao; Yi, Hong; Meng, Lingkui; Bunel, Emilio E.; Miller, Jeffrey T.; Pao, Chih-Wen; Lee, Jyh-Fu; Lan, Yu; Lei, Aiwen

    2015-01-01

    Copper-catalyzed aerobic oxidative CH/NH coupling between simple ketones and diamines was developed toward the synthesis of a variety of pyrazines. Various substituted ketones were compatible for this transformation. Preliminary mechanistic investigations indicated that radical species were involved. X-ray absorption fine structure experiments elucidated that the Cu(II) species 5 coordinated by two N atoms at a distance of 2.04 and two O atoms at a shorter distance of 1.98 was a reactive one for this aerobic oxidative coupling reaction. Density functional theory calculations suggested that the intramolecular coupling of cationic radicals was favorable in this transformation. PMID:26601302

  15. Exchange coupling at cobalt/nickel oxide interfaces

    NASA Astrophysics Data System (ADS)

    Baruth, Andrew Gerald

    Spin arrangement at interfaces in layered magnetic materials is of vital importance to the emerging field of spintronics. Knowledge of how and why the interfacial spins behave in a certain way will aid in the development of future magnetic-based memories. Much exploration has taken place in the interlayer exchange coupling (IEC) of ferromagnetic heterostructures with in-plane anisotropy. Only recently has it become apparent that to achieve the goals of increased areal density in magnetic memory a push for exploring magnetic materials with perpendicular magnetic anisotropy (PMA) must occur. An interesting and promising candidate for such a magnetic system is [Co/Pt]/NiO/[Co/Pt], where two [Co/Pt] multilayers with PMA are separated by a thin, insulating, antiferromagnetic NiO layer and display oscillatory coupling with NiO thickness. This magnetic heterostructure displays an entirely new IEC where the Ni spins within the NiO layer cant in concert with the adjacent [Co/Pt] layers, causing the periodicity of the oscillatory coupling to coincide with the NiO antiferromagnetic ordering parameter. The strength and sign of this coupling, either positive (favoring parallel alignment) or negative (favoring anti-parallel alignment), can be tuned with slight changes in the NiO layer thickness. The origin of the oscillatory IEC was investigated using advanced microscopy and spectroscopy techniques. For antiferromagnetically coupled [Co/Pt] layers, the competition between magnetostatic coupling and IEC gives rise to a region of overlapping domains (resulting in a ferromagnetically coupled stripe). Discovered with high resolution magnetic force microscopy and quantitatively modeled with micromagnetic simulation, the width of this overlap region scales inversely with the IEC. Heterostructures of Co/NiO/[Co/Pt], where the Co ([Co/Pt]) has in-plane (out-of-plane) anisotropy, allow for isothermal tuning of the hysteresis loop shift along the applied field axis at room temperature, as well as display a greatly enhanced blocking temperature (increase of more than 175K). The presence of the [Co/Pt] multilayer with PMA is responsible for the enhancement. In addition, these structures display temperature dependent exchange bias training effects, which have been successfully modeled using a phenomenological thermodynamic approach.

  16. MEASUREMENT OF NITRIC OXIDE PRODUCTION IN HUMANS USING 15N-ARGININE AND TANDEM LC/MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitric oxide (NO) plays a critical role in several physiologic processes, including modulation of peripheral vascular resistance, gastrointestinal peristalsis, inflammation and neuronal function. NO is synthesized in tissues by three classes of nitric oxide synthases (NOS) and rapidly degraded to ni...

  17. Synthesis of trisubstituted alkenes via direct oxidative arene-alkene coupling.

    PubMed

    Jones, Roderick C; Ga??zowski, Micha?; O'Shea, Donal F

    2013-08-16

    The use of an inorganic oxidant with an acetic acid/acetonitrile solvent combination has been identified as optimal for direct arene/1,2-disubstituted alkene oxidative couplings, providing an efficient route to trisubstituted alkenes. The acetonitrile cosolvent dramatically accelerates the rate of reaction, and an insoluble inorganic oxidant limits unwanted oxidation of substrates. The scope of this procedure is illustrated with arenes and alkenes containing electron-donating and -withdrawing substituents resulting in a general synthetic strategy to trisubstituted alkenes. In situ ESI-MS analysis of the reaction components has identified the key Pd intermediates in the Fujiwara-Moritani catalytic cycle. PMID:23841693

  18. Quantitative trace analysis of a broad range of antiviral drugs in poultry muscle using column-switch liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Berendsen, Bjorn J A; Wegh, Robin S; Essers, Martien L; Stolker, Alida A M; Weigel, Stefan

    2012-02-01

    A liquid chromatography-tandem mass spectrometry method for the analysis of seven antiviral drugs, zanamivir, ribavirin, oseltamivir, oseltamivir carboxylate, amantadine, rimantadine and arbidol, in poultry muscle is reported. The antiviral drugs were extracted from the homogenized poultry muscle sample using methanol. The extract was purified using tandem solid-phase extraction combining a cation exchange cartridge and a phenylboronic acid cartridge. To prevent excessive matrix effects, the analytes were separated from the matrix constituents using a column-switch liquid chromatography system combining a reversed-phase and a Hypercarb analytical column. Detection was carried out using tandem mass spectrometry. The method was fully validated according to 2002/657/EC [1] and proved to be adequate for quantification and confirmation of zanamivir and ribavirin at 10 ?g kg(-1), oseltamivir, oseltamivir carboxylate, amantadine and rimantadine at levels below 1.0 ?g kg(-1) and for qualitative confirmatory analysis of arbidol at levels below 1 ?g kg(-1). PMID:22173207

  19. Steady-state and transient catalytic oxidation and coupling of methane

    SciTech Connect

    Iglesia, E.; Perry, D.L.; Heinemann, H.

    1995-06-01

    This project addresses the conversion of methane from natural gas into ethane, ethylene and higher hydrocarbons. Our research explores the mechanistic and practical implications of carrying out the methane oxidative coupling reaction in reactor designs other than conventional packed-beds with co-fed reactants. These alternate reactor designs are needed to prevent the full oxidation of methane, which limits C{sub 2}, yields in methane oxidative coupling reactions. The research strategy focuses on preventing contact between the 0{sub 2} reactant required for favorable overall thermodynamics and the C{sub 2+} products of methane coupling. The behavior of various reactor designs are simulated using detailed kinetic transport models. These simulations have suggested that the best way to prevent high C0{sub 2} yields is to separate the oxygen and hydrocarbon streams altogether. As a result, the project has focused on the experimental demonstration of proton transport membrane reactors for the selective conversion of methane into higher hydrocarbons.

  20. Pioneering Metal-Free Oxidative Coupling Strategy of Aromatic Compounds Using Hypervalent Iodine Reagents.

    PubMed

    Kita, Yasuyuki; Dohi, Toshifumi

    2015-10-01

    We started our hypervalent iodine research about 30 years ago in the mid-1980s. We soon successfully developed the single-electron-transfer oxidation ability of a hypervalent iodine reagent, specifically, phenyliodine(III) bis(trifluoroacetate) (PIFA), toward aromatic rings of phenyl ethers for forming aromatic cation radicals. This was one of the exciting and unexpected events in our research studies so far, and the discovery was reported in 1991. It also led to the next challenge, developing the metal-free oxidative couplings for C-H functionalizations and direct couplings between the C-H bonds of valuable aromatic compounds in organic synthesis. In order to realize the effective oxidative coupling, pioneering new aromatic ring activations was essential and several useful methodologies have been found for oxidizable arenes. The achievements regarding this objective obtained in our continuous research are herein summarized with classification of the aromatic ring activation strategies. PMID:26223195

  1. ?-Ketoglutarate Dehydrogenase and Glutamate Dehydrogenase Work in Tandem To Modulate the Antioxidant ?-Ketoglutarate during Oxidative Stress in Pseudomonas fluorescens?

    PubMed Central

    Mailloux, Ryan J.; Singh, Ranji; Brewer, Guy; Auger, Christopher; Lemire, Joseph; Appanna, Vasu D.

    2009-01-01

    ?-Ketoglutarate (KG) is a crucial metabolite in all living organisms, as it participates in a variety of biochemical processes. We have previously shown that this keto acid is an antioxidant and plays a key role in the detoxification of reactive oxygen species (ROS). In an effort to further confirm this intriguing phenomenon, Pseudomonas fluorescens was exposed to menadione-containing media, with various amino acids as the sources of nitrogen. Here, we demonstrate that KG dehydrogenase (KGDH) and NAD-dependent glutamate dehydrogenase (GDH) work in tandem to modulate KG homeostasis. While KGDH was sharply decreased in cells challenged with menadione, GDH was markedly increased in cultures containing arginine (Arg), glutamate (Glu), and proline (Pro). When ammonium (NH4) was utilized as the nitrogen source, both KGDH and GDH levels were diminished. These enzymatic profiles were reversed when control cells were incubated in menadione media. 13C nuclear magnetic resonance and high-performance liquid chromatography studies revealed how KG was utilized to eliminate ROS with the concomitant formation of succinate. The accumulation of KG in the menadione-treated cells was dependent on the redox status of the lipoic acid residue in KGDH. Indeed, the treatment of cellular extracts from the menadione-exposed cells with dithiothreitol, a reducing agent, partially restored the activity of KGDH. Taken together, these data reveal that KG is pivotal to the antioxidative defense strategy of P. fluorescens and also point to the ROS-sensing role for KGDH. PMID:19376872

  2. Biomimetic oxidative coupling of sinapyl acetate by silver oxide: preferential formation of β-O-4 type structures.

    PubMed

    Kishimoto, Takao; Takahashi, Nana; Hamada, Masahiro; Nakajima, Noriyuki

    2015-03-01

    Biomimetic oxidations of sinapyl alcohol and sinapyl acetate were carried out with Ag2O to better understand the high frequency of β-O-4 structures in highly acylated natural lignins. The major products from the Ag2O oxidation of sinapyl alcohol were sinapyl aldehyde (14% yield), β-O-4-coupled dimer (32% yield), and β-β-coupled dimer (3% yield). In contrast, the Ag2O oxidation of sinapyl acetate produced β-O-4-coupled dimer in 66% yield. Oligomeric products with predominantly β-O-4 structures were also obtained in 18% yield. The yield of the β-O-4-coupled products from sinapyl acetate was much higher than that from sinapyl alcohol. Computational calculations based on density functional theory showed that the negative charge at Cβ was significantly reduced by the γ-acetyl group. The computational calculations suggest that the Coulombic repulsion between Cβ and O4 in sinapyl acetate radicals was significantly reduced by the γ-acetyl group, contributing to the preferential formation of β-O-4 structures from sinapyl acetate. PMID:25654327

  3. Treatment of pharmaceutical effluent by ultrasound coupled with dual oxidant system.

    PubMed

    Nachiappan, Senthilnathan; Muthukumar, Karuppan

    2013-01-01

    In this study, sonolysis (US), a dual oxidant system (DOX), and ultrasound coupled with a dual oxidant system (US/DOX) were employed to degrade real pharmaceutical effluent. In a DOX system, two effective oxidizing agents such as hydrogen peroxide and activated persulphate were used simultaneously. In this work, for the first time, an easily available waste material, iron swarf, was used as an activator for persulphate oxidation. Iron swarf coupled with an ultrasound system showed better activation. High iron dosage, acidic pH and high temperature favoured degradation with both DOX and US/DOX. Sequential addition of iron swarf produced better results compared to single-step addition. The activation energy was found to be 47.25 and 23.47 kJ/mol for DOX and US/DOX, respectively. The biodegradability index of the effluent was enhanced from 0.13 to 0.81 after treatment with US/DOX. PMID:23530332

  4. Characterization of in vitro and in vivo metabolites of carnosic acid, a natural antioxidant, by high performance liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Song, Yuelin; Yan, Haixia; Chen, Jinfeng; Wang, Yitao; Jiang, Yong; Tu, Pengfei

    2014-02-01

    Carnosic acid (CA) is a widely employed antioxidant and the main active component in rosemary and sage, but its metabolism remains largely unknown. The present study investigated the metabolism of CA in vitro and in vivo for the first time, using high performance liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry (HPLC-Q-trap-MS). A couple of scan modes were adopted in mass spectrometer domain, including Q1 full scan, neutral loss scan-information dependent acquisition-enhanced product ion (NL-IDA-EPI) and precursor ion scan-information dependent acquisition-enhanced product ion (PI-IDA-EPI). In particular, a prediction was carried out on the basis of in vitro metabolism results, and gave birth to a multiple ion monitoring-information dependent acquisition-enhanced product ion (MIM-IDA-EPI) mode aiming to detect the trace metabolites in CA-treated biological samples. A total of ten metabolites (M4-13), along with three degradative products (M1-3), were identified for CA from in vitro metabolism models, including liver microsomes of human and rats (HLMs and RLMs), human intestinal microsomes (HIMs) and two species of Cunninghamella elegans. Twelve (U1-12) and six (F1-6) metabolites were detected from CA-treated urine and feces, respectively. In addition, five metabolites (SM2-6) in vivo were purified and definitely identified using NMR spectroscopy. The results of both in vitro and in vivo metabolism studies indicated poor metabolic stability for CA, and the glucuronidation and oxidation metabolisms extensively occurred for CA in vitro, while oxidation, glucuronidation and methylation were the main metabolic pathways observed in vivo. PMID:24291799

  5. Spatially coupled catalytic ignition of CO oxidation on Pt: mesoscopic versus nano-scale.

    PubMed

    Spiel, C; Vogel, D; Schlögl, R; Rupprechter, G; Suchorski, Y

    2015-12-01

    Spatial coupling during catalytic ignition of CO oxidation on μm-sized Pt(hkl) domains of a polycrystalline Pt foil has been studied in situ by PEEM (photoemission electron microscopy) in the 10(-5)mbar pressure range. The same reaction has been examined under similar conditions by FIM (field ion microscopy) on nm-sized Pt(hkl) facets of a Pt nanotip. Proper orthogonal decomposition (POD) of the digitized FIM images has been employed to analyze spatiotemporal dynamics of catalytic ignition. The results show the essential role of the sample size and of the morphology of the domain (facet) boundary in the spatial coupling in CO oxidation. PMID:26021411

  6. Oxidative Coupling of Enolates, Enol Silanes and Enamines: Methods and Natural Product Synthesis

    PubMed Central

    Guo, Fenghai; Clift, Michael D.

    2013-01-01

    The oxidative coupling of enolates, enol silanes, and enamines provides a direct method for the construction of useful 1,4-dicarbonyl synthons. Despite being first reported in 1935, with subsequent important advances beginning in the 1970s, the development of this powerful reaction into a reliable methodology was somewhat limited. In recent years, there have been a number of reports from several research groups demonstrating advances in several neglected areas of oxidative coupling. This microreview summarizes these new advances in methodology and provides an overview of recent natural product syntheses that showcase the power of these transformations. PMID:23471479

  7. Biomimetic Synthesis of Moschamine-Related Indole Alkaloids via Iron-Catalyzed Selectively Oxidative Radical Coupling.

    PubMed

    Liang, Kangjiang; Yang, Jing; Tong, Xiaogang; Shang, Wenbin; Pan, Zhiqiang; Xia, Chengfeng

    2016-03-18

    An iron-catalyzed oxidative radical coupling reaction was developed to selectively construct indolofuran or bisphenolic indole cores, which exist in two types of moschamine-related indole alkaloids. Both (+)-decursivine and 4,4″-bis(N-feruloyl)serotonin were biomimetically synthesized by using coupling reactions. The proposed reassignment of the structure of montamine as 4,4″-bis(N-feruloyl)serotonin was excluded. PMID:26949004

  8. Rapid screening of N-oxides of chemical warfare agents degradation products by ESI-tandem mass spectrometry.

    PubMed

    Sridhar, L; Karthikraj, R; Lakshmi, V V S; Raju, N Prasada; Prabhakar, S

    2014-08-01

    Rapid detection and identification of chemical warfare agents and related precursors/degradation products in various environmental matrices is of paramount importance for verification of standards set by the chemical weapons convention (CWC). Nitrogen mustards, N,N-dialkylaminoethyl-2-chlorides, N,N-dialkylaminoethanols, N-alkyldiethanolamines, and triethanolamine, which are listed CWC scheduled chemicals, are prone to undergo N-oxidation in environmental matrices or during decontamination process. Thus, screening of the oxidized products of these compounds is also an important task in the verification process because the presence of these products reveals alleged use of nitrogen mustards or precursors of VX compounds. The N-oxides of aminoethanols and aminoethylchlorides easily produce [M + H](+) ions under electrospray ionization conditions, and their collision-induced dissociation spectra include a specific neutral loss of 48 u (OH + CH2OH) and 66u (OH + CH2Cl), respectively. Based on this specific fragmentation, a rapid screening method was developed for screening of the N-oxides by applying neutral loss scan technique. The method was validated and the applicability of the method was demonstrated by analyzing positive and negative samples. The method was useful in the detection of N-oxides of aminoethanols and aminoethylchlorides in environmental matrices at trace levels (LOD, up to 500ppb), even in the presence of complex masking agents, without the use of time-consuming sample preparation methods and chromatographic steps. This method is advantageous for the off-site verification program and also for participation in official proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons (OPCW), the Netherlands. The structure of N-oxides can be confirmed by the MS/MS experiments on the detected peaks. A liquid chromatography-mass spectrometry (LC-MS) method was developed for the separation of isomeric N-oxides of aminoethanols and aminoethylchlorides using a C18 Hilic column. Critical isomeric compounds can be confirmed by LC-MS/MS experiments, after detecting the N-oxides from the neutral loss scanning method. PMID:24553657

  9. Initial operation of ORIC with tandem injection

    SciTech Connect

    Ludemann, C.A.; Ball, J.B.; Beckers, R.M.; Cleary, T.P.; Hudson, E.D.; Lord, R.S.; Martin, J.A.; Milner, W.T.; Mosko, S.W.; Ziegler, N.F.

    1981-01-01

    Coupled operation of the 25 MV tandem and ORIC was achieved on January 27, 1981. The initial beam was 324 MeV /sup 16/O/sup 8 +/ followed shortly by oxygen at 400 MeV-the maximum design energy. Following additional installation and testing of the tandem, coupled operation for a nuclear physics experiment began in August. Performance of the system was in close agreement with that predicted from calculations.

  10. Observation of T-2 and HT-2 glucosides from Fusarium sporotrichioides by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultures of Fusarium sporotrichioides were extracted and subjected to evaluation by high performance liquid chromatography tandem mass spectrometry (LC-MS/MS). Along with the expected T-2 and HT-2 toxins, compounds 162 m/z higher than the toxins were observed. Fragmentation behavior of the larger ...

  11. Mesoporous Manganese Oxide Catalyzed Aerobic Oxidative Coupling of Anilines To Aromatic Azo Compounds.

    PubMed

    Dutta, Biswanath; Biswas, Sourav; Sharma, Vinit; Savage, Nancy Ortins; Alpay, S Pamir; Suib, Steven L

    2016-02-01

    Herein we introduce an environmentally friendly approach to the synthesis of symmetrical and asymmetrical aromatic azo compounds by using air as the sole oxidant under mild reaction conditions in the presence of cost-effective and reusable mesoporous manganese oxide materials. PMID:26749298

  12. Tandem betatron

    DOEpatents

    Keinigs, Rhonald K. (Santa Fe, NM)

    1992-01-01

    Two betatrons are provided in tandem for alternately accelerating an electron beam to avoid the single flux swing limitation of conventional betatrons and to accelerate the electron beam to high energies. The electron beam is accelerated in a first betatron during a period of increasing magnetic flux. The eletron beam is extracted from the first betatron as a peak magnetic flux is reached and then injected into a second betatron at a time of minimum magnetic flux in the second betatron. The cycle may be repeated until the desired electron beam energy is obtained. In one embodiment, the second betatron is axially offset from the first betatron to provide for electron beam injection directly at the axial location of the beam orbit in the second betatron.

  13. Simultaneous solid phase extraction coupled with liquid chromatography tandem mass spectrometry and gas chromatography tandem mass spectrometry for the highly sensitive determination of 15 endocrine disrupting chemicals in seafood.

    PubMed

    Gu, Yun-Yun; Yu, Xue-Jun; Peng, Jin-Feng; Chen, Shu-Bing; Zhong, Ying-Ying; Yin, Da-Qiang; Hu, Xia-Lin

    2014-08-15

    This study aimed to develop a sensitive and reliable multi-residue method for the determination of trace amounts of endocrine disrupting chemicals including five phthalate esters (PAEs), five monoalky phthalate esters (MPEs), four alkylphenols (APs) and bisphenol A (BPA) in seafood. Ultrasonic liquid extraction was selected for extraction based on acetonitrile, instead of frequently-used n-hexane, due to its lower background of PAEs. Application of solid phase extraction (SPE) with primary secondary amine (PSA, 1g/6 mL) cartridge achieved the relatively low matrix effects for MPEs and BPA in seafood. To our knowledge, it is the first study reporting about simultaneous extraction and purification of PAEs, MPEs, APs and BPA in biota samples. To obtain the maximum sensitivity, both liquid chromatography tandem mass spectrometry (LC-MS/MS) and gas chromatography tandem mass spectrometry (GC-MS/MS) were applied for analysis. This method was validated and tested on fish, mollusk and prawn. Sufficient linearity was verified by Mandel's fitting test for the matrix-matched calibrations used in this study for MPEs, APs and BPA, between 0.5 ng/g and 200 ng/g or 400 ng/g. And correlation coefficients of all calibrations suppressed 0.99 for all analytes. Good recoveries were obtained, ranging from 60% to 127% for most compounds. The sensitivity was good with method detection limits (MDLs) of 0.015-2.2 ng/g wet weight (ww) for all compounds. Most MDLs are much lower than those in previous reports. The sensitive method was then applied on real fish, mollusk and prawn samples from the Yangtze River Delta sea area (China), and all the target compounds were detected with the maximum concentrations of PAEs, MPEs, APs and BPA up to 219.3 ng/g ww, 51.4 ng/g ww, 62.0 ng/g ww and 8.6 ng/g ww, respectively. PMID:25023229

  14. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.; Lonergan, D.J.

    1989-01-01

    The ability of Alteromonas putrefaciens to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory Fe(III) or Mn(IV) reduction was investigated. A. putrefaciens grew with hydrogen, formate, lactate, or pyruvate as the sole electron donor and Fe(III) as the sole electron acceptor. Lactate and pyruvate were oxidized to acetate, which was not metabolized further. With Fe(III) as the electron acceptor, A. putrefaciens had a high affinity for hydrogen and formate and metabolized hydrogen at partial pressures that were 25-fold lower than those of hydrogen that can be metabolized by pure cultures of sulfate reducers or methanogens. The electron donors for Fe(III) reduction also supported Mn(IV) reduction. The electron donors for Fe(III) and Mn(IV) reduction and the inability of A. putrefaciens to completely oxidize multicarbon substrates to carbon dioxide distinguish A. putrefaciens from GS-15, the only other organism that is known to obtain energy for growth by coupling the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). The ability of A. putrefaciens to reduce large quantities of Fe(III) and to grow in a defined medium distinguishes it from a Pseudomonas sp., which is the only other known hydrogen-oxidizing, Fe(III)-reducing microorganism. Furthermore, A. putrefaciens is the first organism that is known to grow with hydrogen as the electron donor and Mn(IV) as the electron acceptor and is the first organism that is known to couple the oxidation of formate to the reduction of Fe(III) or Mn(IV). Thus, A. putrefaciens provides a much needed microbial model for key reactions in the oxidation of sediment organic matter coupled to Fe(III) and Mn(IV) reduction.

  15. Metal-free tandem oxidative C(sp(3))-H bond functionalization of alkanes and dearomatization of N-phenyl-cinnamamides: access to alkylated 1-azaspiro[4.5]decanes.

    PubMed

    Zhang, Honglin; Gu, Zhangxi; Xu, Pan; Hu, Hongwen; Cheng, Yixiang; Zhu, Chengjian

    2016-01-11

    The TBPB promoted tandem oxidative C(sp(3))-H bond functionalization of simple alkanes/alkylation-initiated dearomatization of N-phenyl-cinnamamides is reported, providing a direct method for the synthesis of alkylated 1-azaspiro[4.5]decanes with excellent regioselectivity and diastereoselectivity. The formation of two C(sp(3))-C(sp(3)) bonds and construction of a spirodienone motif are involved in one step. PMID:26529516

  16. TBHP/TFA mediated oxidative cross-dehydrogenative coupling of N-heterocycles with aldehydes.

    PubMed

    Chen, Jiayu; Wan, Miao; Hua, Jing; Sun, Yi; Lv, Zheng; Li, Wei; Liu, Lei

    2015-12-21

    An effective and metal-free oxidative cross-dehydrogenative coupling (CDC) of N-heterocycles with diverse aldehydes has been established in the presence of TBHP/TFA. The scope with respect to aldehyde and N-heterocycle components is broad, allowing facile synthesis of a broad range of structurally diverse C1-acyl substituted heterocycles in good efficiency. PMID:26463462

  17. Metal-free oxidative cross-coupling of diazirines with arylboronic acids.

    PubMed

    Wu, Guojiao; Zhao, Xia; Ji, Wenzhi; Zhang, Yan; Wang, Jianbo

    2016-01-21

    We report herein a metal-free cross-coupling of diazirines with arylboronic acids under oxidative conditions. The reaction affords a series of substituted olefins. It is proposed that the interaction between the nitrogen on diazirine with arylboronic acid plays a key role in this transformation. PMID:26688566

  18. Synthesis of highly substituted acenes through rhodium-catalyzed oxidative coupling of arylboron reagents with alkynes.

    PubMed

    Fukutani, Tatsuya; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2011-04-15

    The rhodium-catalyzed oxidative 1:2 coupling reactions of arylboronic acids or their esters with alkynes smoothly proceed to produce the corresponding annulated products. Of special note, highly substituted, readily soluble, and tractable anthracene and tetracene derivatives can be obtained selectively from 2-naphthyl- and 2-anthrylboron reagents, respectively. PMID:21395298

  19. Quantification of DNA damage products resulting from deamination, oxidation and reaction with products of lipid peroxidation by liquid chromatography isotope dilution tandem mass spectrometry

    PubMed Central

    Taghizadeh, Koli; McFaline, Jose L.; Pang, Bo; Sullivan, Matthew; Dong, Min; Plummer, Elaine; Dedon, Peter C.

    2009-01-01

    The analysis of damage products as biomarkers of inflammation has been hampered by a poor understanding of the chemical biology of inflammation, the lack of sensitive analytical methods, and a focus on single chemicals as surrogates for inflammation. To overcome these problems, we developed a general and sensitive liquid chromatographic tandem mass spectrometry (LC/MS-MS) method to quantify, in a single DNA sample, the nucleoside forms of seven DNA lesions reflecting the range of chemistries associated with inflammation: 2?-deoxyuridine, 2?-deoxyxanthosine, and 2?-deoxyinosine from nitrosative deamination; 8-oxo-2?-deoxyguanosine from oxidation; and 1,N2-etheno-2?-deoxyguanosine, 1,N6-etheno-2?-deoxyadenosine, and 3,N4-etheno-2?-deoxycytidine arising from reaction of DNA with lipid peroxidation products. Using DNA purified from cells or tissues under conditions that minimize artifacts, individual nucleosides are purified by HPLC and quantified by isotope-dilution, electrospray ionization LC/MS-MS. The method can be applied to other DNA damage products and requires 4-6 days to complete depending upon the number of samples. PMID:18714297

  20. Measurement of tissue acyl-CoAs using flow-injection tandem mass spectrometry: acyl-CoA profiles in short-chain fatty acid oxidation defects.

    PubMed

    Palladino, Andrew A; Chen, Jie; Kallish, Staci; Stanley, Charles A; Bennett, Michael J

    2012-12-01

    The primary accumulating metabolites in fatty acid oxidation defects are intramitochondrial acyl-CoAs. Typically, secondary metabolites such as acylcarnitines, acylglycines and dicarboxylic acids are measured to study these disorders. Methods have not been adapted for tissue acyl-CoA measurement in defects with primarily acyl-CoA accumulation. Our objective was to develop a method to measure fatty acyl-CoA species that are present in tissues of mice with fatty acid oxidation defects using flow-injection tandem mass spectrometry. Following the addition of internal standards of [(13)C(2)] acetyl-CoA, [(13)C(8)] octanoyl-CoA, and [C(17)] heptadecanoic CoA, acyl-CoA's are extracted from tissue samples and are injected directly into the mass spectrometer. Data is acquired using a 506.9 neutral loss scan and multiple reaction-monitoring (MRM). This method can identify all long, medium and short-chain acyl-CoA species in wild type mouse liver including predicted 3-hydroxyacyl-CoA species. We validated the method using liver of the short-chain-acyl-CoA dehydrogenase (SCAD) knock-out mice. As expected, there is a significant increase in [C(4)] butyryl-CoA species in the SCAD -/- mouse liver compared to wild type. We then tested the assay in liver from the short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) deficient mice to determine the profile of acyl-CoA accumulation in this less predictable model. There was more modest accumulation of medium chain species including 3-hydroxyacyl-CoA's consistent with the known chain-length specificity of the SCHAD enzyme. PMID:23117082

  1. Comparison of electron and chemical ionization modes for the quantification of thiols and oxidative compounds in white wines by gas chromatography-tandem mass spectrometry.

    PubMed

    Thibon, Ccile; Pons, Alexandre; Mouakka, Nadia; Redon, Pascaline; Mreau, Raphal; Darriet, Philippe

    2015-10-01

    A rapid, sensitive method for assaying volatile impact compounds in white wine was developed using gas chromatography-tandem mass spectrometry (GC-MS/MS) technology, with a triple quadrupole analyzer operating in chemical ionization and electron impact mode. This GC-MS/MS method made it possible to assay volatile thiols (3SH: 3-sulfanylhexanol, formerly 3MH; 3SHA: 3-sulfanylhexyl acetate, formerly 3MHA; 4MSP: 4-methyl-4-sulfanylpentan-2-one, formerly 4MMP; BM: benzenemethanethiol; E2SA: ethyl 2-sulfanylacetate; and 2FM: 2-furanmethanethiol) and odoriferous oxidation markers (Sotolon: 4,5-dimethyl-3-hydroxy-2(5)H-furanone, methional, and phenylacetaldehyde) simultaneously in dry white wines, comparing electron impact (EI) and chemical ionization (CI) modes. More molecular ions were produced by CI than protonated molecules, despite the greater fragmentation caused by EI. So, even using the best reactant gas giving the highest signal for thiols, EI was the best ionization mode, with the lowest detection limits. For all compounds of interest, the limits of quantification (LOQ) obtained were well below their detection thresholds (ranging from 0.5 to 8.5ng/L for volatile thiols and 65-260ng/L for oxidation markers). Recovery rates ranged from 86% to 111%, reproducibility (in terms of relative standard deviation; RSD) was below 18% in all cases, with correlation coefficients above 0.991 for all analytes. The method was successfully applied to the analysis of compounds of interest in Sauvignon Blanc wines from a single estate and ten different vintages. PMID:26358562

  2. Study of kinetic desorption rate constant in fish muscle and agarose gel model using solid phase microextraction coupled with liquid chromatography with tandem mass spectrometry.

    PubMed

    Togunde, Oluranti Paul; Oakes, Ken; Servos, Mark; Pawliszyn, Janusz

    2012-09-12

    This study aims to use solid phase microextraction (SPME), a simple tool to investigate diffusion rate (time) constant of selected pharmaceuticals in gel and fish muscle by comparing desorption rate of diffusion of the drugs in both agarose gel prepared with phosphate-buffered saline (PBS; pH 7.4) and fish muscle. The gel concentration (agarose gel model) that could be used to simulate tissue matrix (fish muscle) for free diffusion of drugs under in vitro and in vivo conditions was determined to model mass transfer phenomena between fibre polymer coating and environmental matrix such that partition coefficients and desorption time constant (diffusion coefficient) can be determined. SPME procedure involves preloading the extraction phase (fibre) with the standards from spiked PBS for 1h via direct extraction. Subsequently, the preloaded fibre is introduced to the sample such fish or agarose gel for specified time ranging from 0.5 to 60 h. Then, fibre is removed at specified time and desorbed in 100 μL of desorption solution (acetonitrile: water 1:1) for 90 min under agitation speed of 1000 rpm. The samples extract were immediately injected to the instrument and analysed using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). The limit of detection of the method in gel and fish muscle was 0.01-0.07 ng mL(-1) and 0.07-0.34 ng g(-1), respectively, while the limit quantification was 0.10-0.20 ng mL(-1) in gel samples and 0.40-0.97 ng g(-1) in fish sample. The reproducibility of the method was good (5-15% RSD). The results suggest that kinetics of desorption of the compounds in fish tissue and different viscosity of gel can be determined using desorption time constant. In this study, desorption time constant which is directly related to desorption rate (diffusion kinetics) of selected drugs from the fibre to the gel matrix is faster as the viscosity of the gel matrix reduces from 2% (w/v) to 0.8% (w/v). As the concentration of gel reduces, viscosity of the gel will be reduced therefore allowing faster diffusion which invariably affect desorption time constant. Also, desorption time constant of model drugs in the fish muscle and 0.8-0.9% (w/v) gel model are similar based on free diffusion of studied compounds. In addition, in vitro and in vivo desorption time constant comparison shows that desorption time constant in an in vivo system (live fish muscle) is generally higher than an in vitro system (dead fish muscle) except for sertraline and nordiazepam. This study demonstrates SPME as a simple investigative tool to understand kinetics of desorption in an in vivo system with a goal to measure desorption rate of pharmaceuticals in fish. PMID:22884200

  3. Amine-functional magnetic polymer modified graphene oxide as magnetic solid-phase extraction materials combined with liquid chromatography-tandem mass spectrometry for chlorophenols analysis in environmental water.

    PubMed

    Pan, Sheng-Dong; Zhou, Li-Xin; Zhao, Yong-Gang; Chen, Xiao-Hong; Shen, Hao-Yu; Cai, Mei-Qiang; Jin, Mi-Cong

    2014-10-01

    A novel planar-structure amine-functional magnetic polymer modified graphene oxide nanocomposite (NH2-MP@GO) was synthesized. The properties were characterized by transmission electron microscopy (TEM) and Fourier-transform infrared spectrometry (FTIR). The obtained adsorption results showed that the NH2-MP@GO had great adsorptive ability toward five chlorophenols (CPs), including 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP). Based on these, an effective magnetic solid-phase extraction (MSPE) procedure coupled with high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the preconcentration and determination of the five CPs in environmental water samples was developed. Various experimental parameters that could affect the extraction efficiencies had been investigated in detail. Under the optimum conditions, the enrichment factors of the method for the target CPs were found to be 1000. The proposed method was successfully applied for the analysis of environmental water samples with recoveries ranging from 86.4 to 99.8% with correlation coefficients (R) higher than 0.9994. Good linearities were obtained ranging from 10 to 500ng/L for 2-CP, 5 to 500ng/L for 2,4-DCP, 2 to 500ng/L for 2,4,6-TeCP and 2,3,4,6-TeCP, and 1 to 500ng/L for PCP, respectively. The limits of quantitation for the five CPs were 0.6-9.2ng/L. It was confirmed that the planar-structure NH2-MP@GO was a kind of highly effective MSPE materials used for the trace CPs analyses. PMID:25160956

  4. Nanocrystal assembly for tandem catalysis

    DOEpatents

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  5. Identification of novel in vivo MAP kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography.

    PubMed

    Hoehenwarter, Wolfgang; Thomas, Martin; Nukarinen, Ella; Egelhofer, Volker; Röhrig, Horst; Weckwerth, Wolfram; Conrath, Uwe; Beckers, Gerold J M

    2013-02-01

    Mitogen-activated protein kinase (MPK) cascades are important for eukaryotic signal transduction. They convert extracellular stimuli (e.g. some hormones, growth factors, cytokines, microbe- or damage-associated molecular patterns) into intracellular responses while at the same time amplifying the transmitting signal. By doing so, they ensure proper performance, and eventually survival, of a given organism, for example in times of stress. MPK cascades function via reversible phosphorylation of cascade components MEKKs, MEKs, and MPKs. In plants the identity of most MPK substrates remained elusive until now. Here, we provide a robust and powerful approach to identify and quantify, with high selectivity, site-specific phosphorylation of MPK substrate candidates in the model plant Arabidopsis thaliana. Our approach represents a two-step chromatography combining phosphoprotein enrichment using Al(OH)(3)-based metal oxide affinity chromatography, tryptic digest of enriched phosphoproteins, and TiO(2)-based metal oxide affinity chromatography to enrich phosphopeptides from complex protein samples. When applied to transgenic conditional gain-of-function Arabidopsis plants supporting in planta activation of MPKs, the approach allows direct measurement and quantification ex vivo of site-specific phosphorylation of several reported and many yet unknown putative MPK substrates in just a single experiment. PMID:23172892

  6. "Nanocrystal bilayer for tandem catalysis"

    SciTech Connect

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  7. Simultaneous speciation of selenium and sulfur species in selenized odorless garlic (Allium sativum L. Shiro) and shallot (Allium ascalonicum) by HPLC-inductively coupled plasma-(octopole reaction system)-mass spectrometry and electrospray ionization-tandem mass spectrometry.

    PubMed

    Ogra, Yasumitsu; Ishiwata, Kazuya; Iwashita, Yuji; Suzuki, Kazuo T

    2005-11-01

    The simultaneous speciation of selenium and sulfur in selenized odorless garlic (Allium sativum L. Shiro) and a weakly odorous Allium plant, shallot (Allium ascalonicum), was performed by means of a hyphenated technique, a HPLC coupled with an inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) equipped with an octopole reaction system (ORS). The aqueous extracts of them contained the common seleno compound that was identified as gamma-glutamylmethylselenocysteine by an electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Normal garlic contains alliin as the major sulfur-containing compound, which is the biological precursor of the garlic odorant, allicin. Alliin, however, was not detected in the extracts of the selenized odorless garlic. At least, four unidentified sulfur-containing compounds were detected in odorless garlic and shallot. Moreover, these Allium plants showed chemopreventive effects against human leukemia cells. PMID:16233877

  8. Predicting gold-mediated catalytic oxidative-coupling reactions from single crystal studies.

    PubMed

    Xu, Bingjun; Madix, Robert J; Friend, Cynthia M

    2014-03-18

    Though metallic gold is chemically inert under ambient conditions, its surface is extremely reactive and selective for many key oxidative chemical transformations when activated by atomic oxygen. A molecular-level understanding of the mechanism of these processes could allow researchers to design "green" catalytic processes mediated by gold-based materials. This Account focuses on the mechanistic framework for oxidative-coupling reactions established by fundamental studies on oxygen-activated Au(111) and the application of these principles to steady-state catalytic conditions. We also discuss the importance of the paradigms discovered both for predicting new oxidative-coupling reactions and for understanding existing literature. The mechanistic framework for the oxidative coupling of alcohols on gold surfaces predicts that new oxidative-coupling reactions should occur between amines and aldehydes and amines and alcohols as well as through alcohol carbonylation. Adsorbed atomic oxygen on the gold surface facilitates the activation of the substrates, and nucleophilic attack and ?-H elimination are the two fundamental reactions that propagate the versatile chemistry that ensues. In the self-coupling of primary alcohols, adsorbed atomic oxygen first activates the O-H bond in the hydroxyl group at ?150 K, which forms the corresponding adsorbed alkoxy groups. The rate-limiting step of the self-coupling reaction is the ?-H elimination reaction of alkoxy groups to form the corresponding aldehydes and occurs with an activation barrier of approximately 12 kcal/mol. The remaining alkoxy groups nucleophilically attack the electron-deficient aldehyde carbonyl carbon to yield the adsorbed "hemiacetal". This intermediate undergoes facile ?-H elimination to produce the final coupling products, esters with twice the number of carbon atoms as the starting alcohols. This mechanistic insight suggests that cross-coupling occurs between alcohols and aldehydes, based on the logic that the nucleophilic reaction should be independent of the origin of the aldehydes, whether formed in situ or introduced externally. As a further example, adsorbed amides, formed from deprotonation of amines by atomic oxygen, can also attack aldehydes nucleophilically to yield the corresponding amides. Our mechanistic framework can also explain more elaborate gold-mediated chemistry, such as a unique carbonylation reaction via two subsequent nucleophilic attacks. These model studies on well-defined Au(111) at low pressure predict steady-state catalytic behavior on nanoporous gold under practical conditions. The fundamental principles of this research can also explain many other oxygen-assisted gold-mediated reactions observed under ambient conditions. PMID:24387694

  9. Pattern formation during the CO oxidation on Pt(110) surfaces under global coupling

    NASA Astrophysics Data System (ADS)

    Falcke, M.; Engel, H.

    1994-10-01

    A reaction-diffusion model for CO oxidation on Pt(110) single crystals proposed by Krischer, Eiswirth, and Ertl is supplemented by an equation for the balance of CO partial pressure in the gas phase. This allows us to study the interaction of local and global coupling with the dynamics of the reaction in the oscillatory regime. In absence of global coupling a stability analysis of the homogeneous oscillatory state predicts parameter regions with negative values of the phase diffusion coefficient indicating the possibility of phase turbulence. In the globally coupled system without diffusion we observe the formation of phase-locked clusters of oscillators and irregular behavior. If both surface diffusion and global coupling through the gas phase are taken into account depending on the range of external parameters we get the following types of structures: phase flips, standing waves, spatially irregular coverage pattern, and the uniformly oscillating surface.

  10. Cooperative Reductive Elimination: The Missing Piece in the Oxidative-Coupling Mechanistic Puzzle.

    PubMed

    Funes-Ardoiz, Ignacio; Maseras, Feliu

    2016-02-01

    The reaction between benzoic acid and methylphenylacetylene to form an isocoumarin is catalyzed by Cp*Rh(OAc)2 in the presence of Cu(OAc)2 (H2 O) as an oxidant and a leading example of oxidative-coupling reactions. Its mechanism was elucidated by DFT calculations with the B97D functional. The conventional mechanism, with separate reductive-elimination and reoxidation steps, was found to yield a naphthalene derivative as the major product by CO2 extrusion, contradicting experimental observations. The experimental result was reproduced by an alternative mechanism with a lower barrier: In this case, the copper acetate oxidant plays a key role in the reductive-elimination step, which takes place through a transition state containing both rhodium and copper centers. This cooperative reductive-elimination step would not be accessible with a generic oxidant, which, again, is in agreement with available experimental data. PMID:26806472

  11. Ternary and coupled binary zinc tin oxide nanopowders: Synthesis, characterization, and potential application in photocatalytic processes

    SciTech Connect

    Iveti?, T.B.; Fin?ur, N.L.; ?a?anin, Lj. R.; Abramovi?, B.F.; Luki?-Petrovi?, S.R.

    2015-02-15

    Highlights: Mechanochemically synthesized nanocrystalline zinc tin oxide (ZTO) powders. Photocatalytic degradation of alprazolam in the presence of ZTO water suspensions. Coupled binary ZTO exhibits enhanced photocatalytic activity compared to ternary ZTO. - Abstract: In this paper, ternary and coupled binary zinc tin oxide nanocrystalline powders were prepared via simple solid-state mechanochemical method. X-ray diffraction, scanning electron microscopy, Raman and reflectance spectroscopy were used to study the structure and optical properties of the obtained powder samples. The thermal behavior of zinc tin oxide system was examined through simultaneous thermogravimetric-differential scanning calorimetric analysis. The efficiencies of ternary (Zn{sub 2}SnO{sub 4} and ZnSnO{sub 3}) and coupled binary (ZnO/SnO{sub 2}) zinc tin oxide water suspensions in the photocatalytic degradation of alprazolam, short-acting anxiolytic of the benzodiazepine class of psychoactive drugs, under UV irradiation were determined and compared with the efficiency of pure ZnO and SnO{sub 2}.

  12. Coupling Between and Among Ammonia Oxidizers and Nitrite Oxidizers in Grassland Mesocosms Submitted to Elevated CO2 and Nitrogen Supply.

    PubMed

    Simonin, Marie; Le Roux, Xavier; Poly, Franck; Lerondelle, Catherine; Hungate, Bruce A; Nunan, Naoise; Niboyet, Audrey

    2015-10-01

    Many studies have assessed the responses of soil microbial functional groups to increases in atmospheric CO2 or N deposition alone and more rarely in combination. However, the effects of elevated CO2 and N on the (de)coupling between different microbial functional groups (e.g., different groups of nitrifiers) have been barely studied, despite potential consequences for ecosystem functioning. Here, we investigated the short-term combined effects of elevated CO2 and N supply on the abundances of the four main microbial groups involved in soil nitrification: ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (belonging to the genera Nitrobacter and Nitrospira) in grassland mesocosms. AOB and AOA abundances responded differently to the treatments: N addition increased AOB abundance, but did not alter AOA abundance. Nitrobacter and Nitrospira abundances also showed contrasted responses to the treatments: N addition increased Nitrobacter abundance, but decreased Nitrospira abundance. Our results support the idea of a niche differentiation between AOB and AOA, and between Nitrobacter and Nitrospira. AOB and Nitrobacter were both promoted at high N and C conditions (and low soil water content for Nitrobacter), while AOA and Nitrospira were favored at low N and C conditions (and high soil water content for Nitrospira). In addition, Nitrobacter abundance was positively correlated to AOB abundance and Nitrospira abundance to AOA abundance. Our results suggest that the couplings between ammonia and nitrite oxidizers are influenced by soil N availability. Multiple environmental changes may thus elicit rapid and contrasted responses between and among the soil ammonia and nitrite oxidizers due to their different ecological requirements. PMID:25877793

  13. Organo-Iodine(III)-Catalyzed Oxidative Phenol-Arene and Phenol-Phenol Cross-Coupling Reaction.

    PubMed

    Morimoto, Koji; Sakamoto, Kazuma; Ohshika, Takao; Dohi, Toshifumi; Kita, Yasuyuki

    2016-03-01

    The direct oxidative coupling reaction has been an attractive tool for environmentally benign chemistry. Reported herein is that the hypervalent iodine catalyzed oxidative metal-free cross-coupling reaction of phenols can be achieved using Oxone as a terminal oxidant in 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP). This method features a high efficiency and regioselectivity, as well as functional-group tolerance under very mild reaction conditions without using metal catalysts. PMID:26879796

  14. Bimolecular Coupling Reactions through Oxidatively Generated Aromatic Cations: Scope and Stereocontrol

    PubMed Central

    Cui, Yubo; Villafane, Louis A.; Clausen, Dane J.

    2013-01-01

    Chromenes, isochromenes, and benzoxathioles react with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone to form stable aromatic cations that react with a range of nucleophiles. These oxidative fragment coupling reactions provide rapid access to structurally diverse heterocycles. Conducting the reactions in the presence of a chiral Brnsted acid results in the formation of an asymmetric ion pair that can provide enantiomerically enriched products in a rare example of a stereoselective process resulting from the generation of a chiral electrophile through oxidative carbonhydrogen bond cleavage. PMID:23913987

  15. Simultaneous determination of morinidazole, its N-oxide, sulfate, and diastereoisomeric N(+)-glucuronides in human plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Gao, Ruina; Zhong, Dafang; Liu, Ke; Xia, Yu; Shi, Rongwei; Li, Hua; Chen, Xiaoyan

    2012-11-01

    Morinidazole is a new third-generation 5-nitroimidazole antimicrobial drug. To investigate the pharmacokinetic profiles of morinidazole and its major metabolites in humans, a liquid chromatography-tandem mass spectrometry method was developed and validated for simultaneous determination of morinidazole, its N-oxide metabolite (M4-1), a sulfate conjugate (M7), and two diastereoisomeric N(+)-glucuronides (M8-1 and M8-2) in human plasma. A simple acetonitrile-induced protein precipitation was employed to extract five analytes and internal standard metronidazole from 50?L human plasma. To avoid the interference from the in-source dissociation of the sulfate and achieve the baseline-separation of diastereoisomeric N(+)-glucuronides, all the analytes were separated from each other with the mobile phase consisting of 10mM ammonium formate and acetonitrile using gradient elution on a Hydro-RP C(18) column (50mm2mm, 4?m) with a total run time of 5min. The API 4000 triple quadrupole mass spectrometer was operated under the multiple reaction-monitoring mode using the electrospray ionization technique. The developed method was linear in the concentration ranges of 10.0-12,000ng/mL for morinidazole, 1.00-200ng/mL for M4-1, 2.50-500ng/mL for M7, 3.00-600ng/mL for M8-1, and 10.0-3000ng/mL for M8-2. The intra- and inter-day precisions for each analyte met the accepted value. Results of the stability of morinidazole and its metabolites in human plasma were also presented. The method was successfully applied to the clinical pharmacokinetic studies of morinidazole injection in healthy subjects, patients with moderate hepatic insufficiency, and patients with severe renal insufficiency, respectively. PMID:23122401

  16. Spatially coupled catalytic ignition of CO oxidation on Pt: mesoscopic versus nano-scale

    PubMed Central

    Spiel, C.; Vogel, D.; Schlögl, R.; Rupprechter, G.; Suchorski, Y.

    2015-01-01

    Spatial coupling during catalytic ignition of CO oxidation on μm-sized Pt(hkl) domains of a polycrystalline Pt foil has been studied in situ by PEEM (photoemission electron microscopy) in the 10−5 mbar pressure range. The same reaction has been examined under similar conditions by FIM (field ion microscopy) on nm-sized Pt(hkl) facets of a Pt nanotip. Proper orthogonal decomposition (POD) of the digitized FIM images has been employed to analyze spatiotemporal dynamics of catalytic ignition. The results show the essential role of the sample size and of the morphology of the domain (facet) boundary in the spatial coupling in CO oxidation. PMID:26021411

  17. Transient characteristics for proton gating in laterally coupled indium-zinc-oxide transistors.

    PubMed

    Liu, Ning; Zhu, Li Qiang; Xiao, Hui; Wan, Chang Jin; Liu, Yang Hui; Chao, Jin Yu

    2015-03-25

    The control and detection over processing, transport and delivery of chemical species is of great importance in sensors and biological systems. The transient characteristics of the migration of chemical species reflect the basic properties in the processings of chemical species. Here, we observed the field-configurable proton effects in a laterally coupled transistor gated by phosphorosilicate glass (PSG). The bias on the lateral gate would modulate the interplay between protons and electrons at the PSG/indium-zinc-oxide (IZO) channel interface. Due to the modulation of protons flux within the PSG films, the IZO channel current would be modified correspondingly. The characteristic time for the proton gating is estimated to be on the order of 20 ms. Such laterally coupled oxide based transistors with proton gating are promising for low-cost portable biosensors and neuromorphic system applications. PMID:25741771

  18. Dual-channel-mediated spin coupling for one-electron-oxidized cobalt(II)-saddled porphyrin.

    PubMed

    Cheng, Ru-Jen; Chen, Yu-Hsuan; Chen, Ching-Chin; Lee, Gene-Hsiang; Peng, Shie-Ming; Chen, Peter Ping-Yu

    2014-09-01

    Saddle-shaped Co(II)[OET(p-R)PP] (R = CF3, H, CH3) can be readily oxidized with Cl2, Br2, and I2 to the corresponding one-electron-oxidation product Co[OET(p-R)PP]X (X = Cl, Br, I) with the clear character of a ring cation radical. With the series of (1)H and (13)C NMR spectra of these related complexes, both the axial ligand and peripheral substituent of the ring macrocycle are proven to act as a dual channel to tune spin coupling between low-spin Co(II) and a porphyrin ?-cation radical. Density functional theory calculations have shown that the antiferromagnetic coupling between spins residing in d(z)(2) and a(2u) are expected to exist as the ground state. The paramagnetic properties are attributed to an a(1u)-type ferromagnetic excited triplet state. PMID:25122190

  19. Immobilization of Laccase for Oxidative Coupling of Trans-Resveratrol and Its Derivatives

    PubMed Central

    Zhang, Hong; Xun, Erna; Wang, Jiaxin; Chen, Ge; Cheng, Tiexin; Wang, Zhi; Ji, Tengfei; Wang, Lei

    2012-01-01

    Trametes villosa Laccase (TVL) was immobilized through physical adsorption on SBA-15 mesoporous silica and the immobilized TVL was used in the oxidative coupling of trans-resveratrol. Higher loading and activity of the immobilized enzyme on SBA-15 were obtained when compared with the free enzyme. The effects of reaction conditions, such as buffer type, pH, temperature and substrate concentration were investigated, and the optimum conditions were screened and resulted in enzyme activity of up to 10.3 ?mol/gh. Furthermore, the oxidative couplings of the derivatives of trans-resveratrol were also catalyzed by immobilized TVL. The immobilized TVL was recyclable and could maintain 78% of its initial activity after reusing it four times. PMID:22754345

  20. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui; Tammela, Petter; Strmme, Maria; Nyholm, Leif

    2015-02-01

    A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes.A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07251k

  1. Development of oxidative coupling strategies for site-selective protein modification.

    PubMed

    ElSohly, Adel M; Francis, Matthew B

    2015-07-21

    As the need to prepare ever more complex but well-defined materials has increased, a similar need for reliable synthetic strategies to access them has arisen. Accordingly, recent years have seen a steep increase in the development of reactions that can proceed under mild conditions, in aqueous environments, and with low concentrations of reactants. To enable the preparation of well-defined biomolecular materials with novel functional properties, our laboratory has a continuing interest in developing new bioconjugation reactions. A particular area of focus has been the development of oxidative reactions to perform rapid site- and chemoselective couplings of electron rich aromatic species with both unnatural and canonical amino acid residues. This Account details the evolution of oxidative coupling reactions in our laboratory, from initial concepts to highly efficient reactions, focusing on the practical aspects of performing and developing reactions of this type. We begin by discussing our rationale for choosing an oxidative coupling approach to bioconjugation, highlighting many of the benefits that such strategies provide. In addition, we discuss the general workflow we have adopted to discover protein modification reactions directly in aqueous media with biologically relevant substrates. We then review our early explorations of periodate-mediated oxidative couplings between primary anilines and p-phenylenediamine substrates, highlighting the most important lessons that were garnered from these studies. Key mechanistic insights allowed us to develop second-generation reactions between anilines and anisidine derivatives. In addition, we summarize the methods we have used for the introduction of aniline groups onto protein substrates for modification. The development of an efficient and chemoselective coupling of anisidine derivatives with tyrosine residues in the presence of ceric ammonium nitrate is next described. Here, our logic and workflow are used to highlight the challenges and opportunities associated with the optimization of site-selective chemistries that target native amino acids. We close by discussing the most recent reports from our laboratory that have capitalized on the unique reactivity of o-iminoquinone derivatives. We discuss the various oxidants and conditions that can be used to generate these reactive intermediates from appropriate precursors, as well as the product distributions that result. We also describe our work to determine the nature of iminoquinone reactivity with proteins and peptides bearing free N-terminal amino groups. Through this discussion, we hope to facilitate the use of oxidative approaches to protein bioconjugation, as well as inspire the discovery of new reactions for the site-selective modification of biomolecular targets. PMID:26057118

  2. Intramolecular anodic olefin coupling reactions: using competition studies to probe the mechanism of oxidative cyclization reactions.

    PubMed

    Xu, Hai-Chao; Moeller, Kevin D

    2010-04-16

    A competition experiment was designed so that the relative rates of anodic cyclization reactions under various electrolysis conditions can be determined. Reactions with ketene dithioacetal and enol ether-based substrates that use lithium methoxide as a base were shown to proceed through radical cation intermediates that were trapped by a sulfonamide anion. Results for the oxidative coupling of a vinyl sulfide with a sulfonamide anion using the same conditions were consistent with the reaction proceeding through a nitrogen-radical. PMID:20302359

  3. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance.

    PubMed

    Wang, Zhaohui; Tammela, Petter; Strmme, Maria; Nyholm, Leif

    2015-02-28

    A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16,000 cycles at 5 A g(-1) as well as the largest specific volumetric capacitance (198 F cm(-3)) so far reported for flexible polymer-based electrodes. PMID:25630958

  4. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil.

    PubMed

    Pratscher, Jennifer; Dumont, Marc G; Conrad, Ralf

    2011-03-01

    Ammonia oxidation is an essential part of the global nitrogen cycling and was long thought to be driven only by bacteria. Recent findings expanded this pathway also to the archaea. However, most questions concerning the metabolism of ammonia-oxidizing archaea, such as ammonia oxidation and potential CO(2) fixation, remain open, especially for terrestrial environments. Here, we investigated the activity of ammonia-oxidizing archaea and bacteria in an agricultural soil by comparison of RNA- and DNA-stable isotope probing (SIP). RNA-SIP demonstrated a highly dynamic and diverse community involved in CO(2) fixation and carbon assimilation coupled to ammonia oxidation. DNA-SIP showed growth of the ammonia-oxidizing bacteria but not of archaea. Furthermore, the analysis of labeled RNA found transcripts of the archaeal acetyl-CoA/propionyl-CoA carboxylase (accA/pccB) to be expressed and labeled. These findings strongly suggest that ammonia-oxidizing archaeal groups in soil autotrophically fix CO(2) using the 3-hydroxypropionate-4-hydroxybutyrate cycle, one of the two pathways recently identified for CO(2) fixation in Crenarchaeota. Catalyzed reporter deposition (CARD)-FISH targeting the gene encoding subunit A of ammonia monooxygenase (amoA) mRNA and 16S rRNA of archaea also revealed ammonia-oxidizing archaea to be numerically relevant among the archaea in this soil. Our results demonstrate a diverse and dynamic contribution of ammonia-oxidizing archaea in soil to nitrification and CO(2) assimilation and that their importance to the overall archaeal community might be larger than previously thought. PMID:21368116

  5. Platinum Metal-Free Catalysts for Selective Soft Oxidative Methane ? Ethylene Coupling. Scope and Mechanistic Observations.

    PubMed

    Peter, Matthias; Marks, Tobin J

    2015-12-01

    Using abundant soft oxidants, a high methane-to-ethylene conversion might be achievable due to the low thermodynamic driving force for over-oxidation. Here we report on the oxidative coupling of methane by gaseous S2 (SOCM). The catalytic properties of Pd/Fe3O4 are compared with those of Fe3O4, and it is found that high ethylene selectivities can be achieved without noble metals; conversion and selectivity on Fe3O4 are stable for at least 48 h at SOCM conditions. SOCM data for 10 oxides are compared, and ethylene selectivities as high as 33% are found; the C2H4/C2H6 ratios of 9-12 observed at the highest S2 conversions are significantly higher than the C2H4/C2H6 ratios usually found in the CH4 coupling with O2. Complementary in-detail analytical studies show that, on Mg, Zr, Sm, W, and La catalysts, which strongly coke during the reaction, lower ethylene selectivities are observed than on Fe, Ti, and Cr catalysts, which only coke to a minor extent. Further catalyst-dependent changes during SOCM in surface area, surface composition, and partial conversion to oxysulfides and sulfides are discussed. Evidence concerning the reaction mechanism is obtained taking into account the selectivity for the different reaction products versus the contact time. CH4 coupling proceeds non-oxidatively with the evolution of H2 on some catalysts, and evidence is presented that C2H4 and C2H2 formation occur via C2H6 and C2H4 dehydrogenation, respectively. PMID:26551955

  6. Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria

    PubMed Central

    He, Zhanfei; Geng, Sha; Cai, Chaoyang; Liu, Shuai; Liu, Yan; Pan, Yawei; Lou, Liping; Zheng, Ping; Xu, Xinhua

    2015-01-01

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite. PMID:26048927

  7. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  8. Tandem affinity purification of histones, coupled to mass spectrometry, identifies associated proteins and new sites of post-translational modification in Saccharomyces cerevisiae.

    PubMed

    Valero, M Luz; Sendra, Ramon; Pamblanco, Merc

    2016-03-16

    Histones and their post-translational modifications contribute to regulating fundamental biological processes in all eukaryotic cells. We have applied a conventional tandem affinity purification strategy to histones H3 and H4 of the yeast Saccharomyces cerevisiae. Mass spectrometry analysis of the co-purified proteins revealed multiple associated proteins, including core histones, which indicates that tagged histones may be incorporated to the nucleosome particle. Among the many other co-isolated proteins there are histone chaperones, elements of chromatin remodeling, of nucleosome assembly/disassembly, and of histone modification complexes. The histone chaperone Rtt106p, two members of chromatin assembly FACT complex and Psh1p, an ubiquitin ligase, were the most abundant proteins obtained with both H3-TAP and H4-TAP, regardless of the cell extraction medium stringency. Our mass spectrometry analyses have also revealed numerous novel post-translational modifications, including 30 new chemical modifications in histones, mainly by ubiquitination. We have discovered not only new sites of ubiquitination but that, besides lysine, also serine and threonine residues are targets of ubiquitination on yeast histones. Our results show the standard tandem affinity purification procedure is suitable for application to yeast histones, in order to isolate and characterize histone-binding proteins and post-translational modifications, avoiding the bias caused by histone purification from a chromatin-enriched fraction. PMID:26778144

  9. Novel magnetic states in insulating d4 oxides with strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Svoboda, Christopher; Trivedi, Nandini

    2015-03-01

    The comparable energy scales in 4 d and 5 d transition metal oxides, arising from Coulomb correlations, spin-orbit coupling and bandwidth, can lead to new phases and phenomena. With this motivation we examine an ion with d4 electron configuration in the t2 g sector separated from the other states by crystal field splitting. Upon including spin-orbit coupling, the completely filled j = 3 / 2 manifold is nonmagnetic but with a nonzero magnetic susceptibility. Upon introducing hopping between two d4 atoms, we find novel entangled ferromagnetism generated by the superexchange interaction in a significant part of the phase diagram. We further present results for the temperature dependent susceptibility calculated using exact diagonalization to illustrate this novel magnetic behavior and the role Hund's coupling plays in producing these phases. We make predictions for resonant X-ray scattering and magnetic measurements in pyrochlore osmates. We acknowledge the support of the CEM, and NSF MRSEC, under Grant DMR-1420451.

  10. Surface phenomena during the oxidative coupling of methane over Li/MgO

    SciTech Connect

    Peil, K.P.; Goodwin, J.G. Jr.; Marcelin, G. )

    1991-09-01

    This paper details an investigation of the oxidative coupling of methane for reaction temperatures up to 645 C over MgO and Li/MgO catalysts using steady-state isotopic transient kinetic analysis (SSITKA). Oxygen-exchange experiments in the absence of methane resulted in a quantification of the lattice oxygen diffusivity and total oxygen uptake. The catalyst had three more-or-less distinct regions: (1) the physical surface at which exchange between the gas phase and the solid occurred, (2) several subsurface atomic layers readily available for exchange, and (3) the bulk oxide. Using isotopic switches of oxygen and methane under steady-state reaction, the active intermediates along the carbon and oxygen reaction pathways are quantified. Lattice oxygen was found to play a significant role in the oxidation process under steady-state reaction. CO and CO{sub 2} appeared to be formed via a multistep surface oxidation pathway while ethane was formed via surface-generated intermediates along a parallel pathway. Sites involved with the generation of intermediates for selective coupling were found to have a lower activity than sites active for the generation of nonselective intermediates.

  11. Cascade Oxidative Coupling/Cyclization: A Gateway to 3-Amino Polysubstituted Five-Membered Heterocycles.

    PubMed

    Li, Kaizhi; You, Jingsong

    2016-03-18

    Taking advantage of the coordinating activation strategy, we have developed the cascade oxidative coupling/cyclization of α-C(sp(3))-H bonds of amines with enamines or β-keto esters for the synthesis of three types of five-membered heterocycles. α-Amino acids as the substrate lead to 3-amino 1,3-dihydro-2H-pyrrol-2-ones and furan-2(3H)-ones by using air or dioxygen as the sole clean oxidant, respectively. α-Amino ketones give a range of 3-amino 1H-pyrroles by using di-tert-butyl peroxide as the oxidant. A three-component, one-pot reaction from readily available amine, β-keto ester, and α-amino ketone enhances the practicality of the modular construction of 1H-pyrrole scaffolds. This programmed protocol features simple reaction conditions, readily available starting materials, broad substrate scope, and high functional group tolerance. PMID:26914339

  12. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature.

    PubMed

    Wittstock, A; Zielasek, V; Biener, J; Friend, C M; Bumer, M

    2010-01-15

    Gold (Au) is an interesting catalytic material because of its ability to catalyze reactions, such as partial oxidations, with high selectivities at low temperatures; but limitations arise from the low O2 dissociation probability on Au. This problem can be overcome by using Au nanoparticles supported on suitable oxides which, however, are prone to sintering. Nanoporous Au, prepared by the dealloying of AuAg alloys, is a new catalyst with a stable structure that is active without any support. It catalyzes the selective oxidative coupling of methanol to methyl formate with selectivities above 97% and high turnover frequencies at temperatures below 80 degrees C. Because the overall catalytic characteristics of nanoporous Au are in agreement with studies on Au single crystals, we deduced that the selective surface chemistry of Au is unaltered but that O2 can be readily activated with this material. Residual silver is shown to regulate the availability of reactive oxygen. PMID:20075249

  13. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage.

    PubMed

    Haroon, Mohamed F; Hu, Shihu; Shi, Ying; Imelfort, Michael; Keller, Jurg; Hugenholtz, Philip; Yuan, Zhiguo; Tyson, Gene W

    2013-08-29

    Anaerobic oxidation of methane (AOM) is critical for controlling the flux of methane from anoxic environments. AOM coupled to iron, manganese and sulphate reduction have been demonstrated in consortia containing anaerobic methanotrophic (ANME) archaea. More recently it has been shown that the bacterium Candidatus 'Methylomirabilis oxyfera' can couple AOM to nitrite reduction through an intra-aerobic methane oxidation pathway. Bioreactors capable of AOM coupled to denitrification have resulted in the enrichment of 'M. oxyfera' and a novel ANME lineage, ANME-2d. However, as 'M. oxyfera' can independently couple AOM to denitrification, the role of ANME-2d in the process is unresolved. Here, a bioreactor fed with nitrate, ammonium and methane was dominated by a single ANME-2d population performing nitrate-driven AOM. Metagenomic, single-cell genomic and metatranscriptomic analyses combined with bioreactor performance and (13)C- and (15)N-labelling experiments show that ANME-2d is capable of independent AOM through reverse methanogenesis using nitrate as the terminal electron acceptor. Comparative analyses reveal that the genes for nitrate reduction were transferred laterally from a bacterial donor, suggesting selection for this novel process within ANME-2d. Nitrite produced by ANME-2d is reduced to dinitrogen gas through a syntrophic relationship with an anaerobic ammonium-oxidizing bacterium, effectively outcompeting 'M. oxyfera' in the system. We propose the name Candidatus 'Methanoperedens nitroreducens' for the ANME-2d population and the family Candidatus 'Methanoperedenaceae' for the ANME-2d lineage. We predict that 'M. nitroreducens' and other members of the 'Methanoperedenaceae' have an important role in linking the global carbon and nitrogen cycles in anoxic environments. PMID:23892779

  14. Micro-solid phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry for the determination of stimulants, hallucinogens, ketamine and phencyclidine in oral fluids.

    PubMed

    Sergi, Manuel; Compagnone, Dario; Curini, Roberta; D'Ascenzo, Giuseppe; Del Carlo, Michele; Napoletano, Sabino; Risoluti, Roberta

    2010-08-24

    A confirmatory method for the determination of illicit drugs based on micro-solid phase extraction with modified tips, made of a functionalized fiberglass with apolar chains of octadecylsilane into monolithic structure, has been developed in this study. Drugs belonging to different chemical classes, such as amphetamine, methamphetamine, methylenedioxyamphetamine, methylenedioxyethylamphetamine, methylenedioxymethylamphetamine, cocaine, benzoylecgonine, ketamine, mescaline, phencyclidine and psilocybine were analyzed. The quantitation was performed by liquid chromatography-tandem mass spectrometry and the analytes were detected in positive ionization by means of an electrospray source. The limits of quantification ranged between 0.3 ng mL(-1) for cocaine and 4.9 ng mL(-1) for psilocybine, with coefficients of determination (r(2)) >0.99 for all the analytes as recommended in the guidelines of Society of Forensic Toxicologists-American Association Forensic Sciences. PMID:20800724

  15. Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection.

    PubMed

    Or?i?, Dejan; Francikovi?, Marina; Bekvalac, Kristina; Svir?ev, Emilija; Beara, Ivana; Lesjak, Marija; Mimica-Duki?, Neda

    2014-01-15

    A method for quantification of 45 plant phenolics (including benzoic acids, cinnamic acids, flavonoid aglycones, C- and O-glycosides, coumarins, and lignans) in plant extracts was developed, based on reversed phase HPLC separation of extract components, followed by tandem mass spectrometric detection. The phenolic profile of 80% MeOH extracts of the stinging nettle (Urtica dioica L.) herb, root, stem, leaf and inflorescence was obtained by using this method. Twenty-one of the investigated compounds were present at levels above the reliable quantification limit, with 5-O-caffeoylquinic acid, rutin and isoquercitrin as the most abundant. The inflorescence extracts were by far the richest in phenolics, with the investigated compounds amounting 2.5-5.1% by weight. As opposed to this, the root extracts were poor in phenolics, with only several acids and derivatives being present in significant amounts. The results obtained by the developed method represent the most detailed U. dioica chemical profile so far. PMID:24054211

  16. Simultaneous determination of 3-O-acetyloleanolic acid and oleanolic acid in rat plasma using liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Kim, Eunyoung; Noh, Keumhan; Lee, Sang Joon; Shin, Beomsoo; Hwang, Joo Tae; Lee, Seung Woong; Rho, Mun-Chul; Kang, Wonku

    2016-01-25

    3-O-Acetyloleanolic acid (OAA) is a triterpenoid compound, and exerts an apoptosis in cancer cell lines, an inhibition of both atopic and allergic contact dermatitis in murine model, and a suppression of inflammatory bone loss in mice. OAA can be converted into oleanolic acid (OA) by hydrolysis in vivo, and OA exhibits several pharmacological effects as well. A liquid chromatographic method using tandem mass spectrometry (MS/MS) was developed for the simultaneous determination of OAA and OA in rat plasma. After liquid-liquid extraction with ethylacetate, both substances were chromatographed on a reversed phase column with a mobile phase of 0.1% formic acid aqueous solution and acetonitrile (1:9, v/v). The accuracy and precision of the assay were in accordance with FDA regulations for the validation of bioanalytical methods. This analytical method was successfully applied to monitor plasma concentrations of both substances over time following an intravenous administration of OAA in rats. PMID:26520257

  17. Measurement of catecholamines in rat and mini-pig plasma and urine by liquid chromatography-tandem mass spectrometry coupled with solid phase extraction.

    PubMed

    He, Huaibing; Carballo-Jane, Ester; Tong, Xinchun; Cohen, Lucinda H

    2015-08-01

    A tandem mass spectrometry method combined with an ion-pair chromatographic separation after weak cation exchange solid phase sample extraction for epinephrine (E), norepinephrine (NE) and dopamine (DA) has been developed. Two surrogate matrixes for plasma and urine as well as stable isotope labeled internal standards were utilized for quantitation. The observed dynamic range of E, NE and DA was 0.025-100ng/ml for plasma, and 0.25-1000ng/ml for urine with a r(2) regression coefficient >0.99. Extraction recoveries were greater than 60% and the lower limit of quantitation was 25pg/ml for all three analytes in plasma. This method provided excellent sensitivity and selectivity for use with small sample volumes (≤25uL), enabling high-throughput pharmacodynamic animal model development and screening of adverse effects. PMID:26117309

  18. Enhanced spin-phonon-electronic coupling in a 5d oxide

    DOE PAGESBeta

    Calder, Stuart A.; Yamaura, K.; Tsujimoto, Y.; Sun, Y. S.; Stone, Matthew B.; Shi, Y. G.; Lang, Jonathan; Christianson, Andrew D.; Lumsden, Mark D.; Lee, Jun Hee; et al

    2015-11-26

    Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40 cm 1, the largest measured in any material. The anomalous modes are shown to involve solely Os O interactions and magnetism is revealed as the driving microscopic mechanism formore » the phonon renormalization. The magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials.« less

  19. Enhanced spin-phonon-electronic coupling in a 5d oxide

    PubMed Central

    Calder, S.; Lee, J. H.; Stone, M. B.; Lumsden, M. D.; Lang, J. C.; Feygenson, M.; Zhao, Z.; Yan, J.-Q.; Shi, Y. G.; Sun, Y. S.; Tsujimoto, Y.; Yamaura, K.; Christianson, A. D.

    2015-01-01

    Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metalinsulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40?cm?1, the largest measured in any material. The anomalous modes are shown to involve solely OsO interactions and magnetism is revealed as the driving microscopic mechanism for the phonon renormalization. The magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials. PMID:26608626

  20. Enhanced spin-phonon-electronic coupling in a 5d oxide

    SciTech Connect

    Calder, Stuart A.; Yamaura, K.; Tsujimoto, Y.; Sun, Y. S.; Stone, Matthew B.; Shi, Y. G.; Lang, Jonathan; Christianson, Andrew D.; Lumsden, Mark D.; Lee, Jun Hee; Feygenson, Mikhail; Zhao, Zhiying; Yan, Jiaqiang

    2015-11-26

    Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40 cm 1, the largest measured in any material. The anomalous modes are shown to involve solely Os O interactions and magnetism is revealed as the driving microscopic mechanism for the phonon renormalization. The magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials.

  1. Enhanced spin-phonon-electronic coupling in a 5d oxide.

    PubMed

    Calder, S; Lee, J H; Stone, M B; Lumsden, M D; Lang, J C; Feygenson, M; Zhao, Z; Yan, J-Q; Shi, Y G; Sun, Y S; Tsujimoto, Y; Yamaura, K; Christianson, A D

    2015-01-01

    Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal-insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40?cm(-1), the largest measured in any material. The anomalous modes are shown to involve solely Os-O interactions and magnetism is revealed as the driving microscopic mechanism for the phonon renormalization. The magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials. PMID:26608626

  2. Multi-residue method for the determination of pesticides and pesticide metabolites in honeybees by liquid and gas chromatography coupled with tandem mass spectrometry-Honeybee poisoning incidents.

    PubMed

    Kiljanek, Tomasz; Niewiadowska, Alicja; Semeniuk, Stanisław; Gaweł, Marta; Borzęcka, Milena; Posyniak, Andrzej

    2016-02-26

    A method for the determination of 200 pesticides and pesticide metabolites in honeybee samples has been developed and validated. Almost 98% of compounds included in this method are approved to use within European Union, as active substances of plant protection products or veterinary medicinal products used by beekeepers to control mites Varroa destructor in hives. Many significant metabolites, like metabolites of imidacloprid, thiacloprid, fipronil, methiocarb and amitraz, are also possible to detect. The sample preparation was based on the buffered QuEChERS method. Samples of bees were extracted with acetonitrile containing 1% acetic acid and then subjected to clean-up by dispersive solid phase extraction (dSPE) using a new Z-Sep+ sorbent and PSA. The majority of pesticides, including neonicotionoids and their metabolites, were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) but some of pesticides, especially pyrethroid insecticides, were analyzed by gas chromatography tandem mass spectrometry (GC-MS/MS). The procedure was validated according to the Guidance document SANCO/12571/2013 at four concentration levels: 1, 5, 10 and 100ng/g bees and verified in the international proficiency test. The analysis of bee samples spiked at the limit of quantification (LOQ) showed about 98% mean recovery value (trueness) and 97% of analytes showed recovery in the required range of 70-120% and RSDr (precision) below 20%. Linearity and matrix effects were also established. The LOQs of pesticides were in the range of 1-100ng/g. The developed method allows determination of insecticides at concentrations of 10ng/g or less, except abamectin and tebufenozide. LOQ values are lower than the median lethal doses LD50 for bees. The method was used to investigate more than 70 honeybee poisoning incidents. Data about detected pesticides and their metabolites are included. PMID:26830634

  3. In situ high temperature oxidation analysis of Zircaloy-4 using acoustic emission coupled with thermogravimetry

    NASA Astrophysics Data System (ADS)

    Omar, Al Haj; Vronique, Peres; Eric, Serris; Franois, Grosjean; Jean, Kittel; Franois, Ropital; Michel, Cournil

    2015-06-01

    Zircaloy-4 oxidation behavior at high temperature (900 C), which can be reached in case of severe accidental situations in nuclear pressurised water reactor, was studied using acoustic emission analysis coupled with thermogravimetry. Two different atmospheres were used to study the oxidation of Zircaloy-4: (a) helium and pure oxygen, (b) helium and oxygen combined with slight addition of air. The experiments with 20% of oxygen confirm the dependence on oxygen anions diffusion in the oxide scale. Under a mixture of oxygen and air in helium, an acceleration of the corrosion was observed due to the detrimental effect of nitrogen. The kinetic rate increased significantly after a kinetic transition (breakaway). This acceleration was accompanied by an acoustic emission activity. Most of the acoustic emission bursts were recorded after the kinetic transition (post-transition) or during the cooling of the sample. The characteristic features of the acoustic emission signals appear to be correlated with the different populations of cracks and their occurrence in the ZrO2 layer or in the ?-Zr(O) layer. Acoustic events were recorded during the isothermal dwell time at high temperature under air. They were associated with large cracks in the zirconia porous layer. Acoustic events were also recorded during cooling after oxidation tests both under air or oxygen. For the latter, cracks were observed in the oxygen enriched zirconium metal phase and not in the dense zirconia layer after 5 h of oxidation.

  4. Interchain coupled chain dynamics of poly(ethylene oxide) in blends with poly(methyl methacrylate): Coupling model analysis

    NASA Astrophysics Data System (ADS)

    Ngai, K. L.; Wang, Li-Min

    2011-11-01

    Quasielastic neutron scattering and molecular dynamics simulation data from poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA) blends found that for short times the self-dynamics of PEO chain follows the Rouse model, but at longer times past tc = 1-2 ns it becomes slower and departs from the Rouse model in dependences on time, momentum transfer, and temperature. To explain the anomalies, others had proposed the random Rouse model (RRM) in which each monomer has different mobility taken from a broad log-normal distribution. Despite the success of the RRM, Diddens et al. [Eur. Phys. Lett. 95, 56003 (2011)] extracted the distribution of friction coefficients from the MD simulations of a PEO/PMMA blend and found that the distribution is much narrower than expected from the RRM. We propose a simpler alternative explanation of the data by utilizing alone the observed crossover of PEO chain dynamics at tc. The present problem is just a special case of a general property of relaxation in interacting systems, which is the crossover from independent relaxation to coupled many-body relaxation at some tc determined by the interaction potential and intermolecular coupling/constraints. The generality is brought out vividly by pointing out that the crossover also had been observed by neutron scattering from entangled chains relaxation in monodisperse homopolymers, and from the segmental ?-relaxation of PEO in blends with PMMA. The properties of all the relaxation processes in connection with the crossover are similar, despite the length scales of the relaxation in these systems are widely different.

  5. Electric-induced oxide breakdown of a charge-coupled device under femtosecond laser irradiation.

    PubMed

    Gao, Liuzheng; Zhu, Zhiwu; Shao, Zhengzheng; Cheng, Xiang'ai; Chang, Shengli

    2013-11-01

    A femtosecond laser provides an ideal source to investigate the laser-induced damage of a charge-coupled device (CCD) owing to its thermal-free and localized damage properties. For conventional damage mechanisms in the nanosecond laser regime, a leakage current and degradation of a point spread function or modulation transfer function of the CCD are caused by the thermal damages to the oxide and adjacent electrodes. However, the damage mechanisms are quite different for a femtosecond laser. In this paper, an area CCD was subjected to Ti: sapphire laser irradiation at 800 nm by 100 fs single pulses. Electric-induced oxide breakdown is considered to be the primary mechanism to cause a leakage current, and the injured oxide is between the gate and source in the metal-oxide semiconductor field-effect transistor (MOSFET) structure for one CCD pixel. Optical microscopy and scanning electron microscopy are used to investigate the damaged areas and the results show that the electrodes and the oxide underneath are not directly affected by the femtosecond laser, which helps to get rid of the conventional damage mechanisms. For the primary damage mechanism, direct damage by hot carriers, anode hole injection, and an enlarged electric field in the insulating layer are three possible ways to cause oxide breakdown. The leakage current is proved by the decrease of the resistance of electrodes to the substrate. The output saturated images and the dynamics of an area CCD indicate that the leakage current is from an electrode to a light sensing area (or gate to source for a MOSFET), which proves the oxide breakdown mechanism. PMID:24216654

  6. Toluene derivatives as simple coupling precursors for cascade palladium-catalyzed oxidative C-H bond acylation of acetanilides.

    PubMed

    Wu, Yinuo; Choy, Pui Ying; Mao, Fei; Kwong, Fuk Yee

    2013-01-25

    A palladium-catalyzed cascade cross-coupling of acetanilide and toluene for the synthesis of ortho-acylacetanilide is described. Toluene derivatives can act as effective acyl precursors (upon sp(3)-C-H bond oxidation by a Pd/TBHP system) in the oxidative coupling between two C-H bonds. This dehydrogenative Pd-catalyzed ortho-acylation proceeds under mild reaction conditions. PMID:23230572

  7. Different Sources of Nitric Oxide Mediate Neurovascular Coupling in the Lateral Geniculate Nucleus of the Cat

    PubMed Central

    de Labra, Carmen; Rivadulla, Casto; Espinosa, Nelson; Dasilva, Miguel; Cao, Ricardo; Cudeiro, Javier

    2009-01-01

    Understanding the link between neuronal responses (NRs) and metabolic signals is fundamental to our knowledge of brain function and it is a milestone in our efforts to interpret data from modern non invasive optical techniques such as fMRI, which are based on the close coupling between metabolic demand of active neurons and local changes in blood flow. The challenge is to unravel the link. Here we show, using spectrophotometry to record oxyhaemoglobin and methemoglobin (surrogate markers of cerebral flow and nitric oxide levels respectively) together with extracellular neuronal recordings in vivo and applying a multiple polynomial regression model, that the markers are able to predict up about 80% of variability in NR. Furthermore, we show that the coupling between blood flow and neuronal activity is heavily influenced by nitric oxide (NO). While NRs show the typical saturating response, blood flow shows a linear behaviour during contrast-response curves, with nitric oxide from different sources acting differently for low and high intensity. PMID:19826613

  8. Different sources of nitric oxide mediate neurovascular coupling in the lateral geniculate nucleus of the cat.

    PubMed

    de Labra, Carmen; Rivadulla, Casto; Espinosa, Nelson; Dasilva, Miguel; Cao, Ricardo; Cudeiro, Javier

    2009-01-01

    Understanding the link between neuronal responses (NRs) and metabolic signals is fundamental to our knowledge of brain function and it is a milestone in our efforts to interpret data from modern non invasive optical techniques such as fMRI, which are based on the close coupling between metabolic demand of active neurons and local changes in blood flow. The challenge is to unravel the link. Here we show, using spectrophotometry to record oxyhaemoglobin and methemoglobin (surrogate markers of cerebral flow and nitric oxide levels respectively) together with extracellular neuronal recordings in vivo and applying a multiple polynomial regression model, that the markers are able to predict up about 80% of variability in NR. Furthermore, we show that the coupling between blood flow and neuronal activity is heavily influenced by nitric oxide (NO). While NRs show the typical saturating response, blood flow shows a linear behaviour during contrast-response curves, with nitric oxide from different sources acting differently for low and high intensity. PMID:19826613

  9. Identification and quantification of grapefruit juice furanocoumarin metabolites in urine: an approach based on ultraperformance liquid chromatography coupled to linear ion trap-Orbitrap mass spectrometry and solid-phase extraction coupled to ultraperformance liquid chromatography coupled to triple quadrupole-tandem mass spectrometry.

    PubMed

    Regueiro, Jorge; Vallverdú-Queralt, Anna; Negreira, Noelia; Simal-Gándara, Jesús; Lamuela-Raventós, Rosa M

    2014-03-01

    Grapefruit is a rich source of flavonoids but also contains furanocoumarins, which are known to strongly interact with a variety of medications. Thus, characterization of grapefruit furanocoumarin metabolites may help in a better understanding of grapefruit-drug interactions. In the present work, identification of the main metabolites of grapefruit juice furanocoumarins in urine was performed by ultraperformance liquid chromatography (UPLC) coupled to linear ion trap-Orbitrap mass spectrometry (LTQ-Orbitrap). Glucuronides of 6',7'-dihydroxybergamottin and a hydroxybergamottin-like metabolite were identified for the first time as grapefruit juice metabolites. Afterward, a fast and sensitive method based on solid-phase extraction (SPE) and UPLC coupled to triple quadrupole-tandem mass spectrometry (QqQ-MS/MS) was developed for determination of the identified metabolites in urine. The proposed method was applied to urine samples of five volunteers after intakes of moderate doses of grapefruit, lemon, and orange juices. Furanocoumarin metabolites were only detected in urines after consumption of grapefruit juice. PMID:24568314

  10. Catalytic oxidation of CO by N2O conducted via the neutral oxide cluster couple VO2/VO3.

    PubMed

    Wang, Zhe-Chen; Yin, Shi; Bernstein, Elliot R

    2013-07-01

    Neutral vanadium and cobalt oxide clusters are generated at the same time employing a V-Co mixed target. Experimental results indicate that the reaction VO2 + N2O ? VO3 + N2 occurs in a fast flow reactor. This interpretation is further supported for a gas mixture of CO and N2O in the flow cell: regeneration of VO2 is observed for this case via the reaction VO3 + CO ? VO2 + CO2. A full catalytic cycle for the reaction N2O + CO ? N2 + CO2 is thus complete at room temperature enabled by the VO2/VO3 cluster couple. DFT calculations demonstrate that the entire catalytic process is overall barrierless and reproduce the experimental results quite well. PMID:23685848

  11. Oxidative Coupling of Terminal Alkynes with Aldehydes Leading to Alkynyl Ketones by Using Indium(III) Bromide.

    PubMed

    Ogiwara, Yohei; Kubota, Masahito; Kurogi, Kotaro; Konakahara, Takeo; Sakai, Norio

    2015-12-14

    An indium(III)-promoted direct acylation of terminal alkynes using aldehydes leading to ynones was developed. In contrast to the previous addition reactions of alkynes to aldehydes, which provide propargylic alcohols, the oxidative coupling proceeded exclusively to afford alkynyl ketones. The products were likely generated through an Oppenauer oxidation of the indium propargylic alkoxide species by excess amounts of aldehydes. PMID:26507682

  12. I?-catalyzed oxidative C(sp)-H/S-H coupling: utilizing alkanes and mercaptans as the nucleophiles.

    PubMed

    Yuan, Jiwen; Ma, Xu; Yi, Hong; Liu, Chao; Lei, Aiwen

    2014-11-28

    By using alkanes and mercaptans as the nucleophiles with di-tert-butyl peroxide (DTBP) as the oxidant, I2-catalyzed oxidative C(sp(3))-H/S-H coupling was achieved. This protocol provides a novel process to construct C(sp(3))-S bonds from commercially available hydrocarbons and mercaptans. PMID:25297879

  13. Production of N2 through Anaerobic Ammonium Oxidation Coupled to Nitrate Reduction in Marine Sediments

    PubMed Central

    Thamdrup, Bo; Dalsgaard, Tage

    2002-01-01

    In the global nitrogen cycle, bacterial denitrification is recognized as the only quantitatively important process that converts fixed nitrogen to atmospheric nitrogen gas, N2, thereby influencing many aspects of ecosystem function and global biogeochemistry. However, we have found that a process novel to the marine nitrogen cycle, anaerobic oxidation of ammonium coupled to nitrate reduction, contributes substantially to N2 production in marine sediments. Incubations with 15N-labeled nitrate or ammonium demonstrated that during this process, N2 is formed through one-to-one pairing of nitrogen from nitrate and ammonium, which clearly separates the process from denitrification. Nitrite, which accumulated transiently, was likely the oxidant for ammonium, and the process is thus similar to the anammox process known from wastewater bioreactors. Anaerobic ammonium oxidation accounted for 24 and 67% of the total N2 production at two typical continental shelf sites, whereas it was detectable but insignificant relative to denitrification in a eutrophic coastal bay. However, rates of anaerobic ammonium oxidation were higher in the coastal sediment than at the deepest site and the variability in the relative contribution to N2 production between sites was related to large differences in rates of denitrification. Thus, the relative importance of anaerobic ammonium oxidation and denitrification in N2 production appears to be regulated by the availability of their reduced substrates. By shunting nitrogen directly from ammonium to N2, anaerobic ammonium oxidation promotes the removal of fixed nitrogen in the oceans. The process can explain ammonium deficiencies in anoxic waters and sediments, and it may contribute significantly to oceanic nitrogen budgets. PMID:11872482

  14. Mechanism of the cathodic process coupled to the oxidation of iron monosulfide by dissolved oxygen.

    PubMed

    Duinea, Mădălina I; Costas, Andreea; Baibarac, Mihaela; Chiriță, Paul

    2016-04-01

    This study investigated the mechanism of iron monosulfide (FeS) oxidation by dissolved oxygen (O2(aq)). Synthetic FeS was reacted with O2(aq) for 6days and at 25°C. We have characterized the initial and reacted FeS surface using Scanning Electron Microscopy coupled with Energy Dispersive X-ray (SEM/EDX) analysis, Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). It was found that during the aqueous oxidation of FeS new solid phases (disulfide, polysulfide, elemental sulfur, ferric oxyhydroxides and Fe3O4) develop on the mineral surface. The results of potentiodynamic polarization experiments show that after 2days of FeS electrode immersion in oxygen bearing solution (OBS) at initial pH 5.1 and 25°C the modulus of cathodic Tafel slopes dramatically decreases, from 393mV/dec to 86mV/dec. This decrease is ascribed to the change of the mechanism of electron transfer from cathodic sites to O2 (mechanism of cathodic process). The oxidation current densities (jox) indicate that mineral oxidative dissolution is not inhibited by pH increase up to 6.7. Another conclusion, which emerges from the analysis of jox, is that the dissolved Fe(3+) does not intermediate the aqueous oxidation of FeS. The results of electrochemical impedance spectroscopy (EIS) show that after 2days of contact between electrode and OBS the properties of FeS/water interface change. From the analysis of the EIS, FTIR spectroscopy, Raman spectroscopy and SEM/EDX data we can conclude that the change of FeS/water interface properties accompanies the formation of new solid phases on the mineral surface. The new characteristics of the surface layer and FeS/water interface do not cause the inhibition of mineral oxidation. PMID:26773612

  15. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    USGS Publications Warehouse

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  16. Production of N(2) through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments.

    PubMed

    Thamdrup, Bo; Dalsgaard, Tage

    2002-03-01

    In the global nitrogen cycle, bacterial denitrification is recognized as the only quantitatively important process that converts fixed nitrogen to atmospheric nitrogen gas, N(2), thereby influencing many aspects of ecosystem function and global biogeochemistry. However, we have found that a process novel to the marine nitrogen cycle, anaerobic oxidation of ammonium coupled to nitrate reduction, contributes substantially to N(2) production in marine sediments. Incubations with (15)N-labeled nitrate or ammonium demonstrated that during this process, N(2) is formed through one-to-one pairing of nitrogen from nitrate and ammonium, which clearly separates the process from denitrification. Nitrite, which accumulated transiently, was likely the oxidant for ammonium, and the process is thus similar to the anammox process known from wastewater bioreactors. Anaerobic ammonium oxidation accounted for 24 and 67% of the total N(2) production at two typical continental shelf sites, whereas it was detectable but insignificant relative to denitrification in a eutrophic coastal bay. However, rates of anaerobic ammonium oxidation were higher in the coastal sediment than at the deepest site and the variability in the relative contribution to N(2) production between sites was related to large differences in rates of denitrification. Thus, the relative importance of anaerobic ammonium oxidation and denitrification in N(2) production appears to be regulated by the availability of their reduced substrates. By shunting nitrogen directly from ammonium to N(2), anaerobic ammonium oxidation promotes the removal of fixed nitrogen in the oceans. The process can explain ammonium deficiencies in anoxic waters and sediments, and it may contribute significantly to oceanic nitrogen budgets. PMID:11872482

  17. Pinball liquid phase from Hund's coupling in frustrated transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Ralko, Arnaud; Merino, Jaime; Fratini, Simone

    2015-04-01

    The interplay of nonlocal Coulomb repulsion and Hund's coupling in the d -orbital manifold in frustrated triangular lattices is analyzed by a multiband extended Hubbard model. We find a rich phase diagram with several competing phases, including a robust pinball liquid phase, which is an unconventional metal characterized by threefold charge order, bad metallic behavior, and the emergence of high-spin local moments. Our results naturally explain the anomalous charge-ordered metallic state observed in the triangular layered compound AgNiO2. The potential relevance to other triangular transition-metal oxides is discussed.

  18. Transformation of trace organic compounds in drinking water by enzymatic oxidative coupling

    SciTech Connect

    Maloney, S.W.; Manem, J.; Mallevialle, J.; Fiessinger, F.

    1986-03-01

    Enzymatic methods have shown promise for removing aromatic compounds from (high-strength) industrial wastewater. The removal of these compounds was studied at low levels that might be encountered in surface waters which receive some industrial discharge. The results indicate that enzymatic oxidative coupling using horseradish peroxidase and hydrogen perioxide may be useful in eliminating some aromatics that are not well-removed in biological or physical water treatment, but the nature of the byproducts must be determined to assure that the products are not more undesirable than the initial compounds. 21 references, 4 figures, 2 tables.

  19. Oxidative coupling of phenols on activated carbon: Impact on adsorption equilibrium

    SciTech Connect

    Vidic, R.D.; Suldan, M.T.; Brenner, R.C.

    1994-01-01

    Previously reported results by the authors revealed that the presence of molecular oxygen (oxic conditions) in the test environment can, in some instances, cause an almost threefold increase in the adsorptive capacity of granular activated carbon (GAC) for phenolic compounds. The polymers formed as a result of these oxidative coupling reactions under oxic conditions are very difficult to desorb from the surface of GAC. This led to significant irreversible adsorption in the presence of moolecular oxygen. On the other hand, when the same compounds are adsorbed on the carbon surface under anoxic conditions, essentially all of the adsorbate can be recovered from the carbon surface by solvent extraction.

  20. Assessment of the stoichiometry and efficiency of CO2 fixation coupled to reduced sulfur oxidation

    PubMed Central

    Klatt, Judith M.; Polerecky, Lubos

    2015-01-01

    Chemolithoautotrophic sulfur oxidizing bacteria (SOB) couple the oxidation of reduced sulfur compounds to the production of biomass. Their role in the cycling of carbon, sulfur, oxygen, and nitrogen is, however, difficult to quantify due to the complexity of sulfur oxidation pathways. We describe a generic theoretical framework for linking the stoichiometry and energy conservation efficiency of autotrophic sulfur oxidation while accounting for the partitioning of the reduced sulfur pool between the energy generating and energy conserving steps as well as between the main possible products (sulfate vs. zero-valent sulfur). Using this framework, we show that the energy conservation efficiency varies widely among SOB with no apparent relationship to their phylogeny. Aerobic SOB equipped with reverse dissimilatory sulfite reductase tend to have higher efficiency than those relying on the complete Sox pathway, whereas for anaerobic SOB the presence of membrane-bound, as opposed to periplasmic, nitrate reductase systems appears to be linked to higher efficiency. We employ the framework to also show how limited rate measurements can be used to estimate the primary productivity of SOB without the knowledge of the sulfate-to-zero-valent-sulfur production ratio. Finally, we discuss how the framework can help researchers gain new insights into the activity of SOB and their niches. PMID:26052315

  1. Qualitative screening of veterinary anti-microbial agents in tissues, milk, and eggs of food-producing animals using liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Chen, Dongmei; Yu, Jie; Tao, Yanfei; Pan, Yuanhu; Xie, Shuyu; Huang, Lingli; Peng, Dapeng; Wang, Xu; Wang, Yulian; Liu, Zhenli; Yuan, Zonghui

    2016-04-01

    A method for the analysis of 120 drugs in animal derived food was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). These analytes belong to 12 families of veterinary anti-microbial agents (quinolones, macrolides, β-lactams, nitroimidazoles, sulfonamides, lincomycines, chloramphenicols, quinoxalines, tetracyclines, polypeptides, and antibacterial synergists) as well as other compounds not assigned to a particular drug family. The animal derived food samples include muscle and liver of swine, bovine, sheep, and chicken, as well as hen eggs and dairy milk. The sample preparation included ultrasound-assisted extraction (UAE) with acetonitrile-water and a final clean-up with auto solid-phase extraction (SPE) on HLB cartridges. The detection and quantification of 120 anti-microbial agents was performed using LC-MS/MS in positive and negative ion mode. The chromatographic separation was performed on a C18 column using acetonitrile and 0.1% formic acid as the mobile phase. The limit of detection (LOD) and limit of quantification (LOQ) of all drugs in food-producing animals were 0.5-3.0μg/kg and 1.5-10.0μg/kg, respectively. The developed method was successfully utilized to monitor real samples, which demonstrated that it is a simple, fast, and robust method, and could be used as a regulatory to screen for the presence of residues from veterinary anti-microbial drugs in animal-derived foods. PMID:26950031

  2. Determination of eight artificial sweeteners and common Stevia rebaudiana glycosides in non-alcoholic and alcoholic beverages by reversed-phase liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Kubica, Paweł; Namieśnik, Jacek; Wasik, Andrzej

    2015-02-01

    The method for the determination of acesulfame-K, saccharine, cyclamate, aspartame, sucralose, alitame, neohesperidin dihydrochalcone, neotame and five common steviol glycosides (rebaudioside A, rebaudioside C, steviol, steviolbioside and stevioside) in soft and alcoholic beverages was developed using high-performance liquid chromatography and tandem mass spectrometry with electrospray ionisation (HPLC-ESI-MS/MS). To the best of our knowledge, this is the first work that presents an HPLC-ESI-MS/MS method which allows for the simultaneous determination of all EU-authorised high-potency sweeteners (thaumatin being the only exception) in one analytical run. The minimalistic sample preparation procedure consisted of only two operations; dilution and centrifugation. Linearity, limits of detection and quantitation, repeatability, and trueness of the method were evaluated. The obtained recoveries at three tested concentration levels varied from 97.0 to 105.7%, with relative standard deviations lower than 4.1%. The proposed method was successfully applied for the determination of sweeteners in 24 samples of different soft and alcoholic drinks. PMID:25471292

  3. Analysis of phenolic compounds by high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry in senescent and water-stressed tobacco.

    PubMed

    Torras-Claveria, Laura; Juregui, Olga; Codina, Carles; Tiburcio, Antonio F; Bastida, Jaume; Viladomat, Francesc

    2012-01-01

    Evaluation of a significant part of the phenylpropanoid pathway metabolites is facilitated by the fast high-performance liquid chromatography with electrospray ionization tandem mass spectrometry (LC-MS/MS) analytical method. The technology described was applied in tobacco plants (Nicotiana tabacum L. cv. Wisconsin) to identify 20 phenolic compounds and to detect differences in phenylpropanoid profiles in two types of experiments. In the first one, senescent and non-senescent parts of flowering plants were compared, while in the second, watered plants were compared with water-stressed young plants. The 20 identified phenolic compounds were: seven hydroxycinnamoylquinic acids, seven hydroxycinnamic acid glucosides, one salicylic acid glucoside, two conjugated flavonols with disaccharides, and three hydroxycinnamic acid amides (HCAA) of putrescine. In general, the levels of phenylpropanoid compounds increased under water stress or senescent conditions, with the exception of HCAA, which decreased in senescent samples, and 4-O-p-coumaroylquinic acid and trihydroxycinamic acid-O-glucoside, which did not change in both experiments. The main product in all the samples was 5-O-caffeoylquinic acid (neochlorogenic acid). Another compound, kaempferol-7-O-neohesperidoside, was tentatively identified for the first time in tobacco plants. This method, which can be applied in other plant species, allows a simple and efficient comparative study of metabolite profile variations (qualitative and quantitative) in response to different physiological and/or environmental plant situations. PMID:22118617

  4. Identification of multiple ingredients for a Traditional Chinese Medicine preparation (bu-yang-huan-wu-tang) by liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Shaw, Lee-Hsin; Chen, Wei-Ming; Tsai, Tung-Hu

    2013-01-01

    Bu-yang-huan-wu-tang (BYHWT) is a popular Traditional Chinese Medicine formula consisting of seven herbal medicines (Astragalus membranaceus, Angelica sinensis, Paeonia lactiflora, Ligusticum chuanxiong, Carthamus tinctorius, Amygdalus persica and Pheretima aspergillum), that has been used in China for centuries to overcome stroke-induced disability. To ensure the consistency of quality, a reliable analytical method is required, therefore, we developed a liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for quantitative analysis of the major constituents in BYHWT. The herbal ingredients consisting of the cycloartane-type triterpene glycosides of astragaloside I, astragaloside II and astragaloside IV; isoflavones of formononetin, ononin calycosin, calycosin-7-O-?-d-glucoside; ligustilide and paeoniflorin were separated on a C18 column with gradient elution of methanol/10 mM ammonium acetate buffer-formic acid (100:0.1, v/v). This study was performed by a mass spectrometer using electrospray ionization (ESI) with positive ionization ions monitored in the multiple reaction-monitoring (MRM) mode. The linearity, accuracy, precision, limit of detection (LOD) and lower limit of quantification (LLOQ) were validated for this quantification method, and the sensitivity, reliability and reproducibility were all confirmed. The experiments provided a good method for analyzing BYHWT extracts. This study also quantitated the active components in various brands of commercially available products. The results indicated that the pharmaceutical industrial products of BYHWT exhibited considerable variation in their contents of the herbal compounds. PMID:24036516

  5. High-internal-phase-emulsion polymeric monolith coupled with liquid chromatography-electrospray tandem mass spectrometry for enrichment and sensitive detection of trace cytokinins in plant samples.

    PubMed

    Du, Fuyou; Sun, Lin; Zhen, Xian; Nie, Honggang; Zheng, Yanjie; Ruan, Guihua; Li, Jianping

    2015-08-01

    High-internal-phase-emulsion polymers (polyHIPEs) show great promise as solid-phase-extraction (SPE) materials because of the tremendous porosity and highly interconnected framework afforded by the high-internal-phase-emulsion (HIPE) technique. In this work, polyHIPE monolithic columns as novel SPE materials were prepared and applied to trace enrichment of cytokinins (CKs) from complex plant samples. The polyHIPE monoliths were synthesized via the in-situ polymerization of the continuous phase of a HIPE containing styrene (STY) and divinylbenzene (DVB) in a stainless column, and revealed highly efficient and selective enrichment ability for aromatic compounds. Under the optimized experimental conditions, a method using a monolithic polyHIPE column combined with liquid chromatography-electrospray tandem mass spectrometry (LC-MS-MS) was developed for the simultaneous extraction and sensitive determination of trans-zeatin (tZ), meta-topolin (mT), kinetin (K), and kinetin riboside (KR). The proposed method had good linearity, with correlation coefficients (R (2)) from 0.9957 to 0.9984, and low detection limits (LODs, S/N = 3) in the range 2.4-47 pg mL(-1) for the four CKs. The method was successfully applied to the determination of CKs in real plant samples, and obtained good recoveries ranging from 68.8 % to 103.0 % and relative standard deviations (RSDs) lower than 16 %. PMID:26025552

  6. A validated assay for the simultaneous quantification of six tyrosine kinase inhibitors and two active metabolites in human serum using liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    van Erp, Nielka P; de Wit, Djoeke; Guchelaar, Henk-Jan; Gelderblom, Hans; Hessing, Trees J; Hartigh, Jan den

    2013-10-15

    A sensitive, sophisticated and practical bioanalytical assay for the simultaneous determination of six tyrosine kinase inhibitors (imatinib, sunitinib, nilotinib, dasatinib, pazopanib, regorafenib) and two active metabolites (N-desmethyl imatinib and N-desethyl sunitinib) was developed and validated. For the quantitative assay, a mixture of three stable isotopes as internal standards was added to human serum, standards and controls. Thereafter, samples were pre-treated using protein precipitation with methanol. The supernatant was diluted with water and injected into an ultra pressure liquid chromatographic system with an Acquity TQ tandem mass spectrometry detector. The compounds were separated on an Acquity BEH C18 analytical column (100mm2.1mm ID, 1.7?m particle size) and eluted with a linear gradient system. The ions were detected in the multiple reaction monitoring mode. The lower limit of quantification and the linearity of all compounds generously met with the concentrations that are to be expected in clinical practice. The developed bioanalytical assay can be used for guiding TKI therapy in daily clinical practice as well as for investigator-initiated research. PMID:24013127

  7. Rapid analysis of three ?-agonist residues in food of animal origin by automated on-line solid-phase extraction coupled to liquid chromatography and tandem mass spectrometry.

    PubMed

    Mi, Jiebo; Li, Shujing; Xu, Hong; Liang, Wei; Sun, Tao

    2014-09-01

    An automated online solid-phase extraction with liquid chromatography and tandem mass spectrometry method was developed and validated for the detection of clenbuterol, salbutamol, and ractopamine in food of animal origin. The samples from the food matrix were pretreated with an online solid-phase extraction cartridge by Oasis MCX for <5 min after acid hydrolysis for 30 min. The peak focusing mode was used to elute the target compounds directly onto a C18 column. Chromatographic separation was achieved under gradient conditions using a mobile phase composed of acetonitrile/0.1% formic acid in aqueous solution. Each analyte was detected in two multiple reaction monitoring transitions via an electrospray ionization source in a positive mode. The relative standard deviations ranged from 2.6 to 10.5%, and recovery was between 76.7 and 107.2% at all quality control levels. The limits of quantification of three ?-agonists were in the range of 0.024-0.29 ?g/kg in pork, sausage, and milk powder, respectively. This newly developed method offers high sensitivity and minimum sample pretreatment for the high-throughput analysis of ?-agonist residues. PMID:24916570

  8. Flavonoid profiling in three citrus varieties native to the Republic of Korea using liquid chromatography coupled with tandem mass spectrometry: contribution to overall antioxidant activity.

    PubMed

    Kim, Hae Gyeong; Kim, Gon-Sup; Park, Semin; Lee, Jung Han; Seo, On Nuri; Lee, Soo Jung; Kim, Jae Hoon; Shim, Jae-Han; Abd El-Aty, A M; Jin, Jong Sung; Shin, Sung Chul

    2012-04-01

    A mixture of flavonoid components was isolated from the fruit peel of three varieties of citrus native to Republic of Korea, Citrus leiocarpa Hort. ex Tanaka (CLHT), Citrus aurantium L. (CAL) and Citrus erythrosa Hort. (CEH), via 70% methanol extraction followed by ethyl acetate elution over a silica gel cartridge. The flavonoid components of the mixture were analyzed via high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in positive-ion mode and a comparison of the reported data. Among 17 characterized components, two flavanones, four flavones and two coumarin derivatives in the fruit peel of the three varieties were identified for the first time. The individual characterized components were quantified via HPLC-UV. The flavanones dominated in CAL, whereas the flavones prevailed in CLHT and CEH. The antioxidant activity of the flavonoid mixture of the fruit peel was determined via DPPH, ABTS? and reducing power assays. The antioxidant activity of CEH and CAL was greater than that of CLHT. PMID:21830229

  9. Multi-analyte high performance liquid chromatography coupled to high resolution tandem mass spectrometry method for control of pesticide residues, mycotoxins, and pyrrolizidine alkaloids.

    PubMed

    Dzuman, Zbynek; Zachariasova, Milena; Veprikova, Zdenka; Godula, Michal; Hajslova, Jana

    2015-03-10

    A new reliable and highly sensitive method based on high performance liquid chromatographic (HPLC) separation and high resolution tandem mass spectrometric detection (HRMS/MS) has been developed and validated for determination of 323 pesticide residues, 55 mycotoxins, and 11 plant toxins represented by pyrrolizidine alkaloids. The method was validated for three matrices, leek, wheat, and tea differing in nature/amount of co-extracts that may cause various matrix effects. For target analytes isolation, optimized QuEChERS-based (quick, easy, cheap, effective, rugged, and safe) extraction procedure was employed. Spectral HRMS/MS library has been established providing an entire spectrum of fragment ions for each analyte, which allows unbiased identification and confirmation of target compounds. The limits of quantification (LOQs) of target analytes were below 10 ?g kg(-1) for 82%, 81%, and 61% for matrices leek, wheat, and tea, respectively. Recoveries were in the acceptable range (70-120%) according to SANCO/12571/2013 for most of target analytes, except for highly polar 'masked' mycotoxin deoxynivalenol-3-glucoside with recoveries 35%, 47%, and 42% for matrices leek, wheat, and tea, respectively. The linearities of calibration curves expressed as coefficients of determination were in the range of 0.9661-1.000, and repeatabilities expressed as relative standard deviations (RSDs) at LOQs lied in the range of 0.25-13.51%. The trueness of the method was verified using several certified reference materials (CRMs) and proficiency test samples. PMID:25732310

  10. Determination of ?-glucosidase inhibitors from Scutellaria baicalensis using liquid chromatography with quadrupole time of flight tandem mass spectrometry coupled with centrifugal ultrafiltration.

    PubMed

    Yang, Jun-Ran; Luo, Jian-Guang; Kong, Ling-Yi

    2015-03-01

    The present study aimed at identifying potential lead compounds for diabetes mellitus drug discovery. We developed a novel method involving centrifugal ultrafiltration separation subsequent liquid chromatography with quadrupole time of flight tandem mass spectrometry (LC-Q/TOF-MS/MS) determination to screen ?-glucosidase inhibitors in complex Scutellaria baicalensis Georgi (SBG) extract. By adding a second filter to the screening process, the level of non-specific binding of Compounds 1, 3, 10 and 11 was significantly decreased, and the level of non-specific binding of Compounds 5 and 15 also was reduced. As a result, five flavonoids identified as baicalein, baicalein, wogonin, chrysin, and oroxylin A, were rapidly found to interact with ?-glucosidase and possess potent anti-?-glucosidase activity in vitro. Specific binding of ligands to ?-glucosidase was demonstrated though the proposed method and the ligands could be ranked in order of affinity for ?-glucosidase, which were corresponded to the order of inhibitory activity in vitro. In conclusion, our results indicated that the developed method is a rapid and effective screening method for rat intestinal ?-glucosidase inhibitors from complex herbal medicines such as SBG. PMID:25835365

  11. Rapid identification of synthetic colorants in food samples by using indium oxide nanoparticle-functionalized porous polymer monolith coupled with HPLC-MS/MS.

    PubMed

    Qi, Ruifang; Zhou, Xiao; Li, Xiqian; Ma, Jiutong; Lu, Chunmei; Mu, Jun; Zhang, Xuguang; Jia, Qiong

    2014-12-01

    A synthetic protocol for the preparation of an indium oxide nanoparticle-functionalized poly(methacrylic acid-glycidyl methacrylate-ethylene dimethacrylate-ethanediamine) monolithic column is reported. Various techniques, including scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermal gravimetric analysis-derivative thermogravimetric analysis were employed to characterize the synthesized monolith. The modified monolithic column was coupled with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for determining synthetic colorants in various food samples. Under optimized conditions, good linearity was obtained for all the targets with squared regression coefficients greater than 0.9982. The limits of detection (S/N = 3) for 12 synthetic colorants were in the range of 0.012-2.97 μg kg(-1). The intra-day and inter-day relative standard deviations, ranging from 2.7% to 8.5%, were within the acceptable range. The developed method was successfully applied to the determination of synthetic colorants in food samples (candy, milk, jelly, jam, canned food, juice, and carbonated drink). Target recoveries at different spiked levels ranged from 73.5% to 112.1% with relative standard deviations of less than 10.3%. PMID:25313528

  12. Asymmetric tandem organic solar cells

    NASA Astrophysics Data System (ADS)

    Howells, Thomas J.

    Organic photovoltaics (OPVs) is an area that has attracted much attention recently as a potential low cost, sustainable source of energy with a good potential for full-scale commercialisation. Understanding the factors that determine the efficiency of such cells is therefore a high priority, as well as developing ways to boost efficiency to commercially-useful levels. In addition to an intensive search for new materials, significant effort has been spent on ways to squeeze more performance out of existing materials, such as multijunction cells. This thesis investigates double junction tandem cells in the context of small molecule organic materials. . Two different organic electron donor materials, boron subphthalocyanine chloride (SubPc) and aluminium phthalocyanine chloride (ClAlPc) were used as donors in heterojunctions with C60 to create tandem cells for this thesis. These materials have been previously used for solar cells and the absorption spectra of the donor materials complement each other, making them good candidates for tandem cell architectures. The design of the recombination layer between the cells is considered first, with silver nanoparticles demonstrated to work well as recombination centres for charges from the front and back sub-cells, necessary to avoid a charge build-up at the interface. The growth conditions for the nanoparticles are optimised, with the tandem cells outperforming the single heterojunction architecture. Optical modelling is considered as a method to improve the understanding of thin film solar cells, where interference effects from the reflective aluminium electrode are important in determining the magnitude of absorption a cell can achieve. The use of such modelling is first demonstrated in hybrid solar cells based on a SubPc donor with a titanium oxide (TiOx) acceptor; this system is ideal for observing the effects of interference as only the SubPc layer has significant absorption. The modelling is then applied to tandem cells where it is used to predict the short-circuit current (Jsc) generation of the sub-cells, which is not accessible experimentally. Current-matching is then used to predict the Jsc of the complete tandem device. . As a support to the optical modelling, ellipsometry measurements of thin films of ClAlPc are presented. These films of known thickness are analysed to extract the complex refractive index for use in optical modelling calculations. A dependence of the complex refractive index on film thickness and substrate is also noted. Finally, the external quantum efficiency (EQE) technique is considered as applied to solar cells, and an additional method is proposed to characterise current balancing in asymmetric tandem cells under illumination. This technique is verified experimentally by two separate sets of data..

  13. Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry.

    PubMed

    Gros, Meritxell; Rodrguez-Mozaz, Sara; Barcel, Dami

    2013-05-31

    The present work describes the development of a fast and robust analytical method for the determination of 53 antibiotic residues, covering various chemical groups and some of their metabolites, in environmental matrices that are considered important sources of antibiotic pollution, namely hospital and urban wastewaters, as well as in river waters. The method is based on automated off-line solid phase extraction (SPE) followed by ultra-high-performance liquid chromatography coupled to quadrupole linear ion trap tandem mass spectrometry (UHPLC-QqLIT). For unequivocal identification and confirmation, and in order to fulfill EU guidelines, two selected reaction monitoring (SRM) transitions per compound are monitored (the most intense one is used for quantification and the second one for confirmation). Quantification of target antibiotics is performed by the internal standard approach, using one isotopically labeled compound for each chemical group, in order to correct matrix effects. The main advantages of the method are automation and speed-up of sample preparation, by the reduction of extraction volumes for all matrices, the fast separation of a wide spectrum of antibiotics by using ultra-high-performance liquid chromatography, its sensitivity (limits of detection in the low ng/L range) and selectivity (due to the use of tandem mass spectrometry) The inclusion of ?-lactam antibiotics (penicillins and cephalosporins), which are compounds difficult to analyze in multi-residue methods due to their instability in water matrices, and some antibiotics metabolites are other important benefits of the method developed. As part of the validation procedure, the method developed was applied to the analysis of antibiotics residues in hospital, urban influent and effluent wastewaters as well as in river water samples. PMID:23347979

  14. Simultaneous determination of ceftaroline, daptomycin, linezolid and rifampicin concentrations in human plasma by on-line solid phase extraction coupled to high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Grgoire, M; Leroy, A G; Bouqui, R; Malandain, D; Dailly, E; Boutoille, D; Renaud, C; Jolliet, P; Caillon, J; Deslandes, G

    2016-01-25

    Methicillin-resistant Staphylococcus aureus infection is a serious clinical problem worldwide. Ceftaroline, daptomycin, linezolid in combination with rifampicin are particularly used in this indication. To allow monitoring of these antibiotics, an on-line solid phase extraction coupled to high-performance liquid chromatography-tandem mass spectrometry assay requiring a 100?L aliquot of human plasma has been developed. Besides, significance of 25-O-desacetylrifampicin concentrations was evaluated. Sample pre-treatment is limited to protein precipitation with methanol. After centrifugation 10?L of supernatant are injected into the chromatographic system, which consists of an on-line solid phase extraction followed by a separation on a phenyl-hexyl column and detected by a tandem mass spectrometer. Plasma drug concentrations were determined by multiple reaction monitoring in positive ion mode, and assay performance was evaluated. 25-O-Desacetylrifampicin activity, was compared to rifampicin using a microbiological method. Sample preparation using methanol precipitation followed by solid-phase extraction yielded good recovery and ionization efficiency, with chromatographic separation achieved within 3min per sample. Within-run and between-run precisions ranged respectively from 1.22% to 9.35% and from 1.61% to 9.36%. Lower limits of quantification were 0.04mg/L for linezolid, 0.1mg/L for rifampicin, 0.2mg/L for ceftaroline and 0.5mg/L for daptomycin. It appears that 25-O-desacetylrifampicin displays a substantial intrinsic bactericidal activity against S. aureus. This assay provides simple, rapid, sensitive and accurate quantification of the four antibiotic drugs and one metabolite and can be routinely used to monitor drug concentration in methicillin-resistant S. aureus infected patients. PMID:26512995

  15. Determination of cyromazine and melamine in chicken eggs using quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction coupled with liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Pei-Cheng; Lee, Ren-Jye; Chen, Chung-Yu; Chou, Chi-Chung; Lee, Maw-Rong

    2012-11-01

    A rapid and sensitive method has been developed for the simultaneous detection of cyromazine and melamine in chicken eggs using the quick, easy, cheap, effective, rugged and safe (QuEChERS) method coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The optimal extraction solvent for the liquid-liquid extraction was 5 mL of acetonitrile with a 0.1 M hydrochloric acid aqueous solution (99.5:0.5, v/v). The extract was cleaned with 0.5 g of anhydrous magnesium sulfate and 10 mg of graphitized carbon black. The analysis of cyromazine and melamine was accomplished by combining the use of an anion exchange LC column with tandem mass spectrometry in the positive electrospray ionization mode with selected reaction monitoring mode (SRM). The detection limits were 1.6 ng g(-1) for cyromazine and 8 ng g(-1) for melamine, and the quantitation limits were 5.5 ng g(-1) for cyromazine and 25 ng g(-1) for melamine. The recoveries of cyromazine and melamine in the spiked egg samples were 83.2% and 104.6%, respectively, with an relative standard deviation (RSD) of less than 18.1%. The intra-day and inter-day precisions, represented by the RSD, ranged from 1.5% to 8.8% and 6.8% to 14.3%, respectively. The proposed method was tested by analyzing chicken eggs from the markets and from the veterinary medicine laboratory. The concentrations of cyromazine and melamine detected in these samples were in the range of 20-94 ng g(-1). The results demonstrated that the QuEChERS method combined with LC-MS/MS is a simple, rapid and inexpensive method for the analysis of cyromazine and melamine in eggs. PMID:23101655

  16. A single marker choice strategy in simultaneous characterization and quantification of multiple components by rapid resolution liquid chromatography coupled with triple quadrupole tandem mass spectrometry (RRLC-QqQ-MS).

    PubMed

    Ning, Zhangchi; Liu, Zhenli; Song, Zhiqian; Zhao, Siyu; Dong, Yunzhuo; Zeng, Honglian; Shu, Yisong; Lu, Cheng; Liu, Yuanyan; Lu, Aiping

    2016-05-30

    Single standard to determine multi-components (SSDMC) method has been accepted as an efficient technique for the quality control of Traditional Chinese medicines (TCMs), especially for overcoming the shortage of reference standards. HPLC-UV methods have been applied to establish SSDMC method for quantitative analysis in several plant medicines and Chinese patent medicines, however, no LC-MS methods have been used. The purpose of this study is to put forward an improved strategy for the choice of single marker in SSDMC using rapid resolution liquid chromatography coupled with triple quadrupole tandem mass spectrometry (RRLC-QqQ-MS). Five different Panax genus plants, recorded in the Chinese Pharmacopeia 2015 edition, were used as research subjects. An improved SSDMC strategy for simultaneous characterization and determination of 18 bioactive saponins in five Panax plants was put forward, and which was validated to be more superior. Then, it was fully investigated with respect to linearity, LODs, LOQs, precision and accuracy. Coupling with multivariate statistical analysis, the established and validated SSDMC strategy could be successively used in discrimination of the five Panax genus plants. PMID:26955755

  17. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca(2+) signaling.

    PubMed

    Muoz, Manuel F; Puebla, Mariela; Figueroa, Xavier F

    2015-01-01

    Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca(2+) signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca(2+) signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30) and channels formed by pannexins (Panx-1). The neuronal activity-initiated Ca(2+) waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca(2+) entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO) can activate connexin hemichannel by S-nitrosylation and the Ca(2+)-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS) and neuronal NOS (nNOS) are expressed in astrocytes. Therefore, the astrocytic Ca(2+) signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca(2+) influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca(2+) signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in this process. PMID:25805969

  18. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling

    PubMed Central

    Muoz, Manuel F.; Puebla, Mariela; Figueroa, Xavier F.

    2015-01-01

    Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30) and channels formed by pannexins (Panx-1). The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO) can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS) and neuronal NOS (nNOS) are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in this process. PMID:25805969

  19. The role of Ile87 of CYP158A2 in oxidative coupling reaction

    SciTech Connect

    Zhao, Bin; Bellamine, Aouatef; Lei, Li; Waterman, Michael R.

    2012-05-15

    Both CYP158A1 and CYP158A2 are able to catalyze an oxidative C-C coupling reaction producing biflaviolin or triflaviolin in Streptomyces coelicolor A3(2). The substrate-bound crystal structures of CYP158A2 and CYP158A1 reveal that the side chain of Ile87 in CYP158A2 points to the active site contacting the distal flaviolin molecule, however, the bulkier side chain of Lys90 in CYP158A1 (corresponding to Ile87 in CYP158A2) is toward the distal surface of the protein. These results suggest that these residues could be important in determining product regiospecificity. In order to explore the role of the two residues in catalysis, the reciprocal mutants, Ile87Lys and Lys90Ile, of CYP158A2 and CYP158A1, respectively, were generated and characterized. The mutant Ile87Lys enzyme forms two isomers of biflaviolin instead of three isomers of biflaviolin in wild-type CYP158A2. CYP158A1 containing the substitution of lysine with isoleucine has the same catalytic activity compared with the wild-type CYP158A1. The crystal structure of Ile87Lys showed that the BC loop in the mutant is in a very different orientation compared with the BC loop in both CYP158A1/A2 structures. These results shed light on the mechanism of the oxidative coupling reaction catalyzed by cytochrome P450.

  20. Determination of minocycline by oxidative coupling and diazocoupling reactions in pharmaceutical formulations.

    PubMed

    Prasad, Adapa V S S; Lakshmi, Chilukuri S R; Sastry, Chilukuri S P; Uppuleti, Viplava P

    2002-10-15

    Simple and sensitive spectrophotometric methods (M(1)-M(4)) by the application of oxidative coupling and diazocoupling reactions for the assay of minocycline (MC) in pure form and pharmaceutical formulations have been described. Methods M(1) and M(2) involve the oxidative coupling reactions of MC with 3-methyl-2-benzothiozolinone hydrazone (MBTH) (method M(1), lambda(max) 440 nm) or 4-aminophenazone (4-AP) (method M(2), lambda(max) 520 nm) in the presence of periodate. Methods M(3) and M(4) are based on the formation of diazocoupling products of MC with diazotised p-nitroaniline (DPNA) (method M(3), lambda(max) 420 nm) or diazotised sulfanilic acid (DSAC) (method M(4), lambda(max) 420 nm). Regression analysis of Beer's law plot showed good correlation in the concentration range of 8-48, 20-120, 4-20 and 8-40 microg ml(-1) for methods A, B, C and D, respectively. The molar absorptivities fell within the range of 2.23 x 10(3)-1.51 x 10(4) l mol(-1) cm(-1). The recoveries range from 99.02 to 100.61%. PMID:12367673

  1. Separation of isomeric short-chain acyl-CoAs in plant matrices using ultra-performance liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Purves, Randy W; Ambrose, Stephen J; Clark, Shawn M; Stout, Jake M; Page, Jonathan E

    2015-02-01

    Acyl coenzyme A (acyl-CoA) thioesters are important intermediates in cellular metabolism and being able to distinguish among them is critical to fully understanding metabolic pathways in plants. Although significant advances have been made in the identification and quantification of acyl-CoAs using liquid chromatography tandem mass spectrometry (LC-MS/MS), separation of isomeric species such as isobutyryl- and n-butyrl-CoA has remained elusive. Here we report an ultra-performance liquid chromatography (UPLC)-MS/MS method for quantifying short-chain acyl-CoAs including isomeric species n-butyryl-CoA and isobutyryl-CoA as well as n-valeryl-CoA and isovaleryl-CoA. The method was applied to the analysis of extracts of hop (Humulus lupulus) and provided strong evidence for the existence of an additional structural isomer of valeryl-CoA, 2-methylbutyryl-CoA, as well as an unexpected isomer of hexanoyl-CoA. The results showed differences in the acyl-CoA composition among varieties of Humulus lupulus, both in glandular trichomes and cone tissues. When compared with the analysis of hemp (Cannabis sativa) extracts, the contribution of isobutyryl-CoAs in hop was greater as would be expected based on the downstream polyketide products. Surprisingly, branched chain valeryl-CoAs (isovaleryl-CoA and 2-methylbutyryl-CoA) were the dominant form of valeryl-CoAs in both hop and hemp. The capability to separate these isomeric forms will help to understand biochemical pathways leading to specialized metabolites in plants. PMID:25553535

  2. Multi-residue enantiomeric analysis of human and veterinary pharmaceuticals and their metabolites in environmental samples by chiral liquid chromatography coupled with tandem mass spectrometry detection.

    PubMed

    Camacho-Muoz, Dolores; Kasprzyk-Hordern, Barbara

    2015-12-01

    Enantiomeric profiling of chiral pharmacologically active compounds (PACs) in the environment has hardly been investigated. This manuscript describes, for the first time, a multi-residue enantioselective method for the analysis of human and veterinary chiral PACs and their main metabolites from different therapeutic groups in complex environmental samples such as wastewater and river water. Several analytes targeted in this paper have not been analysed in the environment at enantiomeric level before. These are aminorex, carboxyibuprofen, carprofen, cephalexin, 3-N-dechloroethylifosfamide, 10,11-dihydro-10-hydroxycarbamazepine, dihydroketoprofen, fenoprofen, fexofenadine, flurbiprofen, 2-hydroxyibuprofen, ifosfamide, indoprofen, mandelic acid, 2-phenylpropionic acid, praziquantel and tetramisole. The method is based on chiral liquid chromatography utilising a chiral ?1-acid glycoprotein column and tandem mass spectrometry detection. Excellent chromatographic separation of enantiomers (Rs?1.0) was achieved for chloramphenicol, fexofenadine, ifosfamide, naproxen, tetramisole, ibuprofen and their metabolites: aminorex and dihydroketoprofen (three of four enantiomers), and partial separation (Rs?=?0.7-1.0) was achieved for ketoprofen, praziquantel and the following metabolites: 3-N-dechloroethylifosfamide and 10,11-dihydro-10-hydroxycarbamazepine. The overall performance of the method was satisfactory for most of the compounds targeted. Method detection limits were at low nanogram per litre for surface water and effluent wastewater. Method intra-day precision was on average under 20% and sample pre-concentration using solid phase extraction yielded recoveries >70% for most of the analytes. This novel, selective and sensitive method has been applied for the quantification of chiral PACs in surface water and effluent wastewater providing excellent enantioresolution of multicomponent mixtures in complex environmental samples. It will help with better understanding of the role of individual enantiomers in the environment and will enable more accurate environmental risk assessment. PMID:26462925

  3. Rapid determination of 88 veterinary drug residues in milk using automated TurborFlow online clean-up mode coupled to liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhu, Wei-Xia; Yang, Ji-Zhou; Wang, Zhao-Xing; Wang, Cai-Juan; Liu, Ya-Feng; Zhang, Li

    2016-02-01

    A novel method based on TurborFlow online solid phase extraction (SPE) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been established for simultaneous screening and confirmation of 88 wide-range veterinary drugs belonging to eight families (20 sulfonamides, 7 macrolides, 15 quinolones, 8 penicillins, 13 benzimidazoles, 4 tetracyclines, 2 sedatives, and 19 hormones) in milk. The preparation method consists of sample dilution and ultrasonic extraction, followed by an automated turbulent flow cyclone chromatography sample clean-up system. The detection was achieved in selected reaction monitoring mode (SRM). The total run time was within 39min, including automated extraction, analytical chromatography and re-equilibration of the turboflow system. The optimization of different experimental parameters including extraction, purification, separation, and detection were evaluated separately in this study. The developed method was validated and good performing characteristics were obtained. The linear regression coefficients (R(2)) of matrix-match calibration standard curves established for quantification were higher than 0.9930. The limits of detection (LOD) were in the range of 0.2-2.0μg/kg given by signal-noise ratio ≥3 (S/N) and the limits of quantification (LOQ, S/N≥10) ranged between 0.5μg/kg and 10μg/kg. Average recoveries of spiked target compounds with different levels were between 63.1% and 117.4%, with percentage relative standard deviations (RSD) in the range of 3.3-17.6%. The results indicated that the developed method has great potential for the routine laboratory analysis of large numbers of samples on measuring different classes of compounds. In comparison to traditional procedures, the automated sample clean-up ensures rapid, effective, sensitive analyses of veterinary drugs in milk. PMID:26653466

  4. Rapid analysis of aflatoxin M1 in milk using dispersive liquid-liquid microextraction coupled with ultrahigh pressure liquid chromatography tandem mass spectrometry.

    PubMed

    Campone, Luca; Piccinelli, Anna Lisa; Celano, Rita; Russo, Mariateresa; Rastrelli, Luca

    2013-10-01

    A simple, rapid, and sensitive method based on simultaneous protein precipitation and extraction of aflatoxin M1 (AFM1) followed by dispersive liquid-liquid microextraction (DLLME) and ultrahigh pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) analysis was developed for the determination of AFM1 in milk samples. In order to precipitate the proteins and extract AFM1 from milk, a sample pretreatment using acetonitrile and NaCl as the extraction/denaturant solvent and salting-out agent, respectively, was optimised. Subsequently, the acetonitrile (upper) phase, containing AFM1, was used as the disperser solvent in DLLME, and extractant (chloroform) and water were added in turn to the extract to perform the DLLME process. The main parameters affecting the extraction efficiency of the whole analytical procedure, such as acetonitrile volume, amount of salt, type and volume of extractant and water volume, were carefully optimised by experimental design. Under optimum conditions, the developed method provides an enrichment factor of 33 and detection and quantification limits (0.6 and 2.0 ng kg(-1), respectively) below the maximum levels imposed by current regulations for AFM1 in milk and infant milk formulae. Recoveries (61.3-75.3%) and repeatability (RSD < 10, n = 3), tested in different types of milk at four AFM1 levels, met the performance criteria required by EC Regulation No. 401/2006. Moreover, the matrix effect on the signal intensity of the analyte was negligible. The proposed method provides a rapid extraction and an accurate determination of AFM1 in milk and formula milk using a simple and inexpensive sample preparation procedure. PMID:23942569

  5. Simultaneous targeted analysis of five active compounds in licorice by ultra-fast liquid chromatography coupled to hybrid linear-ion trap tandem mass spectrometry.

    PubMed

    Kong, Weijun; Wen, Jing; Yang, Yinhui; Qiu, Feng; Sheng, Ping; Yang, Meihua

    2014-04-21

    An ultra-fast liquid chromatography with electrospray ionization tandem mass spectrometry (UFLC-ESI-MS/MS) method was developed for targeted analysis of 5 active compounds in licorice for the first time. The sample preparation procedure, chromatographic and mass spectrographic conditions were optimized. By using a Kinetex C18 100A column, the five compounds were separated within 8.0 min by gradient elution using methanol containing 0.1% acetic acid and 0.1% aqueous acetic acid. The precursor and product ions of the analytes were monitored on a hybrid quadrupole/linear ion trap mass spectrometer equipped with a turbo ion spray interface in negative ionization mode (ESI(-)) and were simultaneously characterized and quantified based on the multiple reaction monitoring-information-dependent acquisition-enhanced product ion (MRM-IDA-EPI) mode. All standard calibration curves expressed satisfactory linearity (r ? 0.9954) within a relatively wide range. The precision was evaluated by intra- and inter-day tests, which revealed relative standard deviation (RSD) values within the ranges of 1.15-4.56% and 0.81-3.95%, respectively. The recovery assays for the quantified compounds were between 97.33 and 100.4% with RSD values less than 4.27%. The proposed method was demonstrated to be simple, rapid, specific and reliable and was successfully applied for identification and quantification of 5 active compounds in 10 batches of licorice. The results showed that the contents of the 5 compounds in licorice from different sources were widely varied. PMID:24551874

  6. Determination and occurrence of phenoxyacetic acid herbicides and their transformation products in groundwater using ultra high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    McManus, Sarah-Louise; Moloney, Mary; Richards, Karl G; Coxon, Catherine E; Danaher, Martin

    2014-01-01

    A sensitive method was developed and validated for ten phenoxyacetic acid herbicides, six of their main transformation products (TPs) and two benzonitrile TPs in groundwater. The parent compounds mecoprop, mecoprop-p, 2,4-D, dicamba, MCPA, triclopyr, fluroxypr, bromoxynil, bentazone, and 2,3,6-trichlorobenzoic acid (TBA) are included and a selection of their main TPs: phenoxyacetic acid (PAC), 2,4,5-trichloro-phenol (TCP), 4-chloro-2-methylphenol (4C2MP), 2,4-dichlorophenol (DCP), 3,5,6-trichloro-2-pyridinol (T2P), and 3,5-dibromo-4-hydroxybenzoic acid (BrAC), as well as the dichlobenil TPs 2,6-dichlorobenzamide (BAM) and 3,5-dichlorobenzoic acid (DBA) which have never before been determined in Irish groundwater. Water samples were analysed using an efficient ultra-high performance liquid chromatography (UHPLC) method in an 11.9 min separation time prior to detection by tandem mass spectrometry (MS/MS). The limit of detection (LOD) of the method ranged between 0.00008 and 0.0047 µg·L(-1) for the 18 analytes. All compounds could be detected below the permitted limits of 0.1 µg·L(-1) allowed in the European Union (EU) drinking water legislation. The method was validated according to EU protocols laid out in SANCO/10232/2006 with recoveries ranging between 71% and 118% at the spiked concentration level of 0.06 µg·L(-1). The method was successfully applied to 42 groundwater samples collected across several locations in Ireland in March 2012 to reveal that the TPs PAC and 4C2MP were detected just as often as their parent active ingredients (a.i.) in groundwater. PMID:25514054

  7. Detection of 22 antiepileptic drugs by ultra-performance liquid chromatography coupled with tandem mass spectrometry applicable to routine therapeutic drug monitoring.

    PubMed

    Shibata, Mai; Hashi, Sachiyo; Nakanishi, Haruka; Masuda, Satohiro; Katsura, Toshiya; Yano, Ikuko

    2012-12-01

    The purpose of this study was to develop an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method of 22 antiepileptics for routine therapeutic monitoring. The antiepileptics used in the analyses were carbamazepine, carbamazepine-10,11-epoxide, clobazam, N-desmethylclobazam, clonazepam, diazepam, N-desmethyldiazepam, ethosuximide, felbamate, gabapentin, lamotrigine, levetiracetam, N-desmethylmesuximide, nitrazepam, phenobarbital, phenytoin, primidone, tiagabine, topiramate, valproic acid, vigabatrin and zonisamide. After protein precipitation of 50??L plasma with methanol, the supernatant was diluted with water or was evaporated to dryness and reconstituted with mobile phase in the case of benzodiazepines. Separation was achieved on an Acquity UPLC BEH C?? column with a gradient mobile phase of 10?mm ammonium acetate containing 0.1% formic acid and methanol at a flow rate of 0.4?mL/min. An Acquity TQD instrument in multiple reaction monitoring mode with ion mode switching was used for detection. All antiepileptics were detected and quantified within 10?min, with no endogenous interference. All the calibration curves showed good linearity in the therapeutic range (r ?

  8. Tandem robot control system and method for controlling mobile robots in tandem

    DOEpatents

    Hayward, David R.; Buttz, James H.; Shirey, David L.

    2002-01-01

    A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.

  9. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  10. Thickness dependence of exchange coupling in (111)-oriented perovskite oxide superlattices

    NASA Astrophysics Data System (ADS)

    Jia, Yue; Chopdekar, Rajesh V.; Arenholz, Elke; Liu, Zhiqi; Biegalski, Michael D.; Porter, Zachary D.; Mehta, Apurva; Takamura, Yayoi

    2016-03-01

    Epitaxial L a0.7S r0.3Mn O3(LSMO )/L a0.7S r0.3Fe O3 (LSFO) superlattices on (111)-oriented SrTi O3 substrates with sublayer thicknesses ranging from 3 to 60 unit cells (u.c.) were synthesized and characterized. Detailed analysis of their structural, electronic, and magnetic properties were performed to explore the effect of sublayer thickness on the magnetic structure and exchange coupling at (111)-oriented perovskite oxide interfaces. In the ultrathin limit (3-6 u.c.), we find that the antiferromagnetic (AF) properties of the LSFO sublayers are preserved with an out-of-plane canting of the AF spin axis, while the ferromagnetic (FM) properties of the LSMO sublayers are significantly depressed. For thicker LSFO layers (>9 u.c.), the out-of-plane canting of the AF spin axis is only present in superlattices with thick LSMO sublayers. As a result, exchange coupling in the form of spin-flop coupling exists only in superlattices which display both robust ferromagnetism and out-of-plane canting of the AF spin axis.

  11. The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II.

    PubMed

    Meyer, Thomas J; Huynh, My Hang V; Thorp, H Holden

    2007-01-01

    All higher life forms use oxygen and respiration as their primary energy source. The oxygen comes from water by solar-energy conversion in photosynthetic membranes. In green plants, light absorption in photosystem II (PSII) drives electron-transfer activation of the oxygen-evolving complex (OEC). The mechanism of water oxidation by the OEC has long been a subject of great interest to biologists and chemists. With the availability of new molecular-level protein structures from X-ray crystallography and EXAFS, as well as the accumulated results from numerous experiments and theoretical studies, it is possible to suggest how water may be oxidized at the OEC. An integrated sequence of light-driven reactions that exploit coupled electron-proton transfer (EPT) could be the key to water oxidation. When these reactions are combined with long-range proton transfer (by sequential local proton transfers), it may be possible to view the OEC as an intricate structure that is "wired for protons". PMID:17604381

  12. Possible Superconductivity Induced by Strong Spin-Orbit Coupling in Carrier Doped Iridium Oxides Insulators

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Kazutaka; Shirakawa, Tomonori; Watanabe, Hiroshi; Arita, Ryotaro; Yunoki, Seiji

    2014-03-01

    5 d transition metal oxide Sr2IrO4 and its relevant Iridium oxides have attracted much interest because of exotic properties arising from highly entangled spin and orbital degrees of freedom due to strong spin-orbit coupling (SOC). Sr2IrO4 crystalizes in the layered perovskite structure, similar to cuprates. Five 5 d electrons in Ir occupy its t2 g orbitals which are split by strong SOC, locally inducing an effective total angular momentum Jeff = 1 / 2 , analogous to a S = 1 / 2 state in cuprates. Because of the similarities to cuprates, the possibility of superconductivity (SC) in Iridium oxides has been expected theoretically once mobile carriers are introduced into the Jeff = 1 / 2 antiferromagnetic insulator. To study theoretically possible SC in carrier doped Sr2IrO4, we investigate a three-orbital Hubbard model with SOC. By solving the Eliashberg equation in the random phase approximation, we find that Jeff = 1 / 2 antiferromagnetic fluctuations favor dx2 -y2-wave SC with a mixture of singlet and triplet Cooper pairings. We will also discuss the particle-hole asymmetry of the SC induced by electron and hole doping.

  13. Abcb11 Deficiency Induces Cholestasis Coupled to Impaired β-Fatty Acid Oxidation in Mice*

    PubMed Central

    Zhang, Yuanyuan; Li, Fei; Patterson, Andrew D.; Wang, Yao; Krausz, Kristopher W.; Neale, Geoffrey; Thomas, Sarah; Nachagari, Deepa; Vogel, Peter; Vore, Mary; Gonzalez, Frank J.; Schuetz, John D.

    2012-01-01

    The bile salt export pump (BSEP) is an ATP-binding cassette transporter that serves as the primary system for removing bile salts from the liver. In humans, deficiency of BSEP, which is encoded by the ABCB11 gene, causes severe progressive cholestatic liver disease from early infancy. In previous studies of Abcb11 deficiency in mice generated on a mixed genetic background, the animals did not recapitulate the human disease. We reasoned that ABCB11 deficiency may cause unique changes in hepatic metabolism that are predictive of liver injury. To test this possibility, we first determined that Abcb11 knock-out (KO) C57BL/6J mice recapitulate human deficiency. Before the onset of cholestasis, Abcb11 KO mice have altered hepatic lipid metabolism coupled with reduced expression of genes important in mitochondrial fatty acid oxidation. This was associated with increased serum free-fatty acids, reduced total white adipose, and marked impairment of long-chain fatty acid β-oxidation. Importantly, metabolomic analysis confirmed that Abcb11 KO mice have impaired mitochondrial fatty acid β-oxidation with the elevated fatty acid metabolites phenylpropionylglycine and phenylacetylglycine. These metabolic changes precede cholestasis but may be of relevance to cholestatic disease progression because altered fatty acid metabolism can enhance reactive oxygen species that might exacerbate cholestatic liver damage. PMID:22619174

  14. Abcb11 deficiency induces cholestasis coupled to impaired β-fatty acid oxidation in mice.

    PubMed

    Zhang, Yuanyuan; Li, Fei; Patterson, Andrew D; Wang, Yao; Krausz, Kristopher W; Neale, Geoffrey; Thomas, Sarah; Nachagari, Deepa; Vogel, Peter; Vore, Mary; Gonzalez, Frank J; Schuetz, John D

    2012-07-13

    The bile salt export pump (BSEP) is an ATP-binding cassette transporter that serves as the primary system for removing bile salts from the liver. In humans, deficiency of BSEP, which is encoded by the ABCB11 gene, causes severe progressive cholestatic liver disease from early infancy. In previous studies of Abcb11 deficiency in mice generated on a mixed genetic background, the animals did not recapitulate the human disease. We reasoned that ABCB11 deficiency may cause unique changes in hepatic metabolism that are predictive of liver injury. To test this possibility, we first determined that Abcb11 knock-out (KO) C57BL/6J mice recapitulate human deficiency. Before the onset of cholestasis, Abcb11 KO mice have altered hepatic lipid metabolism coupled with reduced expression of genes important in mitochondrial fatty acid oxidation. This was associated with increased serum free-fatty acids, reduced total white adipose, and marked impairment of long-chain fatty acid β-oxidation. Importantly, metabolomic analysis confirmed that Abcb11 KO mice have impaired mitochondrial fatty acid β-oxidation with the elevated fatty acid metabolites phenylpropionylglycine and phenylacetylglycine. These metabolic changes precede cholestasis but may be of relevance to cholestatic disease progression because altered fatty acid metabolism can enhance reactive oxygen species that might exacerbate cholestatic liver damage. PMID:22619174

  15. Copper-catalyzed difunctionalization of activated alkynes by radical oxidation-tandem cyclization/dearomatization to synthesize 3-trifluoromethyl spiro[4.5]trienones.

    PubMed

    Hua, Hui-Liang; He, Yu-Tao; Qiu, Yi-Feng; Li, Ying-Xiu; Song, Bo; Gao, Pin; Song, Xian-Rong; Guo, Dong-Hui; Liu, Xue-Yuan; Liang, Yong-Min

    2015-01-19

    A copper-catalyzed difunctionalizing trifluoromethylation of activated alkynes with the cheap reagent sodium trifluoromethanesulfinate (NaSO2CF3 or Langlois' reagent) has been developed incorporating a tandem cyclization/dearomatization process. This strategy affords a straightforward route to synthesis of 3-(trifluoromethyl)-spiro[4.5]trienones, and presents an example of difunctionalization of alkynes for simultaneous formation of two carbon-carbon single bonds and one carbon-oxygen double bond. PMID:25452200

  16. Stereoselective synthesis of 1,3-disubstituted isoindolines via Rh(iii)-catalyzed tandem oxidative olefination-cyclization of 4-aryl cyclic sulfamidates.

    PubMed

    Son, Se-Mi; Seo, Yeon Ji; Lee, Hyeon-Kyu

    2016-03-10

    Rh(iii)-catalyzed tandem ortho C-H olefination of cyclic 4-aryl sulfamidates (1) and subsequent intramolecular cyclization are described. This reaction serves as a method for the direct and stereoselective synthesis of 1,3-disubstituted isoindolines (3) starting with enantiomerically enriched 4-aryl cyclic sulfamidates. In this process, the configurational integrity of the stereogenic center in the starting cyclic sulfamidate is completely retained. In addition, the process generates trans-1,3-disubstituted isoindolines exclusively. PMID:26841961

  17. Determination of bisphenols in beverages by mixed-mode solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Regueiro, Jorge; Wenzl, Thomas

    2015-11-27

    Facing growing restrictions on the use of bisphenol A in food contact materials, several bisphenol analogs are arising as major alternatives to replace this chemical in most of its applications. This work reports a simple and robust method based on mixed-mode solid-phase extraction and stable-isotope dilution liquid chromatography-tandem mass spectrometry for the analysis of bisphenol A and its main analogs - bisphenol S, 4,4'-sulfonylbis(2-methylphenol), bisphenol F, bisphenol E, bisphenol B, bisphenol Z, bisphenol AF, bisphenol AP, tetrabromobisphenol A and bisphenol P - in alcoholic and non-alcoholic beverages. Mixed-mode solid-phase extraction, combining cationic exchange and reversed-phase mechanisms, was optimized to provide a selective extraction and purification of the target analytes. Derivatization of bisphenols with pyridine-3-sulfonyl chloride allowed increasing their ionization efficiency by electrospray ionization. Validation of the proposed method was performed in terms of selectivity, matrix effects, linearity, precision, measurement uncertainty, trueness and limits of detection. Satisfactory repeatability and intermediate precision were obtained; the related relative standard deviations were ≤9% and ≤12%, respectively. The relative expanded uncertainty (k=2) was below 20% for all bisphenol analogs and the trueness of the method was demonstrated by recovery experiments. Limits of detection (LOD) ranged from 1.6ngL(-1) to 27.9ngL(-1) for all compounds. Finally, several canned and non-canned beverages were analyzed to demonstrate the applicability of the method. Only bisphenol A and three bisphenol F isomers were detected in any of the samples. Bisphenol A concentration ranged from

  18. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    PubMed Central

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin; Schink, Bernhard

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660–4,890 µmol CH4⋅m−2⋅d−1) and actual rates calculated from microsensor profiles (31–437 µmol CH4⋅m−2⋅d−1) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones. PMID:25472842

  19. Aerobic oxidation of aminoacetone, a threonine catabolite: iron catalysis and coupled iron release from ferritin.

    PubMed

    Dutra, F; Knudsen, F S; Curi, D; Bechara, E J

    2001-09-01

    Aminoacetone (AA) is a threonine and glycine catabolite long known to accumulate in cri-du-chat and threoninemia syndromes and, more recently, implicated as a contributing source of methylglyoxal (MG) in diabetes mellitus. Oxidation of AA to MG, NH(4)(+), and H(2)O(2) has been reported to be catalyzed by a copper-dependent semicarbazide sensitive amine oxidase (SSAO) as well as by Cu(II) ions. We here study the mechanism of AA aerobic oxidation, in the presence and absence of iron ions, and coupled to iron release from ferritin. Aminoacetone (1-7 mM) autoxidizes in Chelex-treated phosphate buffer (pH 7.4) to yield stoichiometric amounts of MG and NH(4)(+). Superoxide radical was shown to propagate this reaction as indicated by strong inhibition of oxygen uptake by superoxide dismutase (SOD) (1-50 units/mL; up to 90%) or semicarbazide (0.5-5 mM; up to 80%) and by EPR spin trapping studies with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), which detected the formation of the DMPO-(*)OH adduct as a decomposition product from the DMPO-O(2)(*)(-) adduct. Accordingly, oxygen uptake by AA is accelerated upon addition of xanthine/xanthine oxidase, a well-known enzymatic source of O(2)(*)(-) radicals. Under Fe(II)EDTA catalysis, SOD (<50 units/mL) had little effect on the oxygen uptake curve or on the EPR spectrum of AA/DMPO, which shows intense signals of the DMPO-(*)OH adduct and of a secondary carbon-centered DMPO adduct, attributable to the AA(*) enoyl radical. In the presence of iron, simultaneous (two) electron transfer from both Fe(II) and AA to O(2), leading directly to H(2)O(2) generation followed by the Fenton reaction is thought to take place. Aminoacetone was also found to induce dose-dependent Fe(II) release from horse spleen ferritin, putatively mediated by both O(2)(*)(-) and AA(*) enoyl radicals, and the co-oxidation of added hemoglobin and myoglobin, which may be viewed as the initial step for potential further iron release. It is thus tempting to propose that AA, accumulated in the blood and other tissues of diabetics, besides being metabolized by SSAO, may release iron and undergo spontaneous and iron-catalyzed oxidation with production of reactive H(2)O(2) and O(2)(*)(-), triggering pathological responses. It is noteworthy that noninsulin-dependent diabetes has been frequently associated with iron overload and oxidative stress. PMID:11559049

  20. Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling oxidation, dissolution, and fracturing

    USGS Publications Warehouse

    Buss, H.L.; Sak, P.B.; Webb, S.M.; Brantley, S.L.

    2008-01-01

    In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers (???2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive ??V of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction. Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion in d (0 0 1) from 10.0 to 10.5 A??, forming 'altered biotite'. Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(II). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 ?? 10-14 mol biotite m-2 s-1. Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 ??m resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone. Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 cm surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 ?? 10-13 mol hornblende m-2 s-1: the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the corestone, biotite oxidation induces spheroidal fracturing, facilitating the influx of fluids that react with other minerals, dissolving plagioclase and chlorite, creating additional porosity, and eventually dissolving hornblende and precipitating secondary minerals. The thickness of the resultant saprolite is maintained at steady state by a positive feedback between the denudation rate and the weathering advance rate driven by the concentration of pore water O2 at the bedrock-saprolite interface. ?? 2008 Elsevier Ltd. All rights reserved.

  1. Weathering of the Rio Blanco Quartz Diorite, Luquillo Mountains, Puerto Rico: Coupling Oxidation, Dissolution, And Fracturing

    SciTech Connect

    Buss, H.L.; Sak, P.B.; Webb, S.M.; Brantley, S.L.

    2009-05-12

    In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers ({approx}2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive {Delta}V of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction. Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion in d (0 0 1) from 10.0 to 10.5 {angstrom}, forming 'altered biotite'. Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(II). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 x 10{sup -14} mol biotite m{sup -2} s{sup -1}. Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 {micro}m resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone. Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 cm surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 x 10{sup -13} mol hornblende m{sup -2} s{sup -1}: the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the corestone, biotite oxidation induces spheroidal fracturing, facilitating the influx of fluids that react with other minerals, dissolving plagioclase and chlorite, creating additional porosity, and eventually dissolving hornblende and precipitating secondary minerals. The thickness of the resultant saprolite is maintained at steady state by a positive feedback between the denudation rate and the weathering advance rate driven by the concentration of pore water O{sub 2} at the bedrock-saprolite interface.

  2. Glaser oxidative coupling on peptides: stabilization of ?-turn structure via a 1,3-butadiyne constraint.

    PubMed

    Auberger, Nicolas; Di Pisa, Margherita; Larregola, Maud; Chassaing, Grard; Peroni, Elisa; Lavielle, Solange; Papini, Anna-Maria; Lequin, Olivier; Mallet, Jean-Maurice

    2014-12-15

    The Glaser-Eglinton reaction between either two C or N propargylglycine (Pra or NPra) amino acids, in the presence of copper(II), led to cyclic hexa- and octapeptides constrained by a butadiyne bridge. The on-resin cyclization conditions were analyzed and optimized. The consequences of this type of constraint on the three dimensional structure of these hexapeptides and octapeptides were analyzed in details by NMR and molecular dynamics. We show that stabilized short cyclic peptides could be readily prepared via the Glaser oxidative coupling either with a chiral (Pra), or achiral (NPra) residue. The 1,3-butadiyne cyclization, along with disulfide bridged and lactam cyclized hexapeptides expands the range of constrained peptides that will allow exploring the breathing of amino acids around a ?-turn structure. PMID:25456082

  3. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode.

    PubMed

    Davids, Paul S; Jarecki, Robert L; Starbuck, Andrew; Burckel, D Bruce; Kadlec, Emil A; Ribaudo, Troy; Shaner, Eric A; Peters, David W

    2015-12-01

    Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification that can only be obtained by direct tunnelling. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxide-semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W(-1) cm(-2) at -0.1 V. PMID:26414194

  4. Selectively Adsorptive Extraction of Phenylarsonic Acids in Chicken Tissue by Carboxymethyl α-Cyclodextrin Immobilized Fe3O4 Magnetic Nanoparticles Followed Ultra Performance Liquid Chromatography Coupled Tandem Mass Spectrometry Detection

    PubMed Central

    Jia, Jing; Zhang, Wei; Wang, Jing; Wang, Peilong; Zhu, Ruohua

    2014-01-01

    Carboxymethyl α-cyclodextrin immobilized Fe3O4 magnetic nanoparticles (CM-α-CD-Fe3O4) were synthesized for the selectively adsorptive extraction of five phenylarsonic acids including p-amino phenylarsonic acid, p-nitro phenylarsonic acid, p-hydroxy phenylarsonic acid, p-acylamino phenylarsonic acid and p-hydroxy-3-nitro phenylarsonic acid in chicken tissue. Using ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS), a highly sensitive analytical method was proposed for the determination of five phenylarsonic acids. It was shown that CM-α-CD-Fe3O4 could extract the five phenylarsonic acids in complex chicken tissue samples with high extraction efficiency. Under the optimal conditions, a high enrichment factor, ranging from 349 to 606 fold, was obtained. The limits of detection (LODs) (at a signal-to-noise ratio of 3) were in the range of 0.05–0.11 µg/kg for the five phenylarsonic acids. The proposed method was applied for the determination of five target phenylarsonic acids in chicken muscle and liver samples. Recoveries for the spiked samples with 0.2 µg/kg, 2.0 µg/kg and 20 µg/kg of each phenylarsonic acids were in the range of 77.2%–110.2%, with a relative standard deviation (RSD) of less than 12.5%. PMID:25215503

  5. Human exposure assessment to a large set of polymer additives through the analysis of urine by solid phase extraction followed by ultra high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Pouech, Charlne; Kiss, Agneta; Lafay, Florent; Lonard, Didier; Wiest, Laure; Cren-Oliv, Ccile; Vulliet, Emmanuelle

    2015-12-01

    Polymer items are extensively present in the human environment. Humans may be consequently exposed to some compounds, such as additives, incorporated in these items. The objective of this work is to assess the human exposure to the main additives such as those authorized in the packaging for pharmaceutical products. The urinary matrix was selected to optimally answer this challenge because it has already been proven that the exposure to chemicals can be revealed by the analysis of this biological matrix. A multi-residue analytical method for the trace analysis at ng/mL in human urine was developed, and consisted of an extraction of analytes from urine by solid phase extraction (SPE) and an analysis by ultra-high performance liquid chromatography coupled to a tandem mass spectrometer (UHPLC-MS/MS). Even if the quantification of these compounds was an analytical challenge because of (i) the presence of these substances in the analytical process, (ii) the diversity of their physicochemical properties, and (iii) the complexity of the matrix, the optimized method exhibited quantification limits lower than 25ng/mL and recoveries between 51% and 120% for all compounds. The method was validated and applied to 52 human urines. To the best of our knowledge, this work presents the first study allowing the assessment of the occurrence of more than twenty polymer additives at ng/mL in human urine. PMID:26554294

  6. Dual ultrasonic-assisted dispersive liquid-liquid microextraction coupled with microwave-assisted derivatization for simultaneous determination of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol by ultra high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhao, Xian-En; Lv, Tao; Zhu, Shuyun; Qu, Fei; Chen, Guang; He, Yongrui; Wei, Na; Li, Guoliang; Xia, Lian; Sun, Zhiwei; Zhang, Shijuan; You, Jinmao; Liu, Shu; Liu, Zhiqiang; Sun, Jing; Liu, Shuying

    2016-03-11

    This paper, for the first time, reported a speedy hyphenated technique of low toxic dual ultrasonic-assisted dispersive liquid-liquid microextraction (dual-UADLLME) coupled with microwave-assisted derivatization (MAD) for the simultaneous determination of 20(S)-protopanaxadiol (PPD) and 20(S)-protopanaxatriol (PPT). The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) detection using multiple-reaction monitoring (MRM) mode. A mass spectrometry sensitizing reagent, 4'-carboxy-substituted rosamine (CSR) with high reaction activity and ionization efficiency was synthesized and firstly used as derivatization reagent. Parameters of dual-UADLLME, MAD and UHPLC-MS/MS conditions were all optimized in detail. Low toxic brominated solvents were used as extractant instead of traditional chlorinated solvents. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect and extremely low limits of detection (LODs, 0.010 and 0.015ng/mL for PPD and PPT, respectively) were achieved. The main advantages were rapid, sensitive and environmentally friendly, and exhibited high selectivity, accuracy and good matrix effect results. The proposed method was successfully applied to pharmacokinetics of PPD and PPT in rat plasma. PMID:26877173

  7. Chemical Profiling of Re-Du-Ning Injection by Ultra-Performance Liquid Chromatography Coupled with Electrospray Ionization Tandem Quadrupole Time-of-Flight Mass Spectrometry through the Screening of Diagnostic Ions in MSE Mode

    PubMed Central

    Wang, Zhenzhong; Geng, Jianliang; Dai, Yi; Xiao, Wei; Yao, Xinsheng

    2015-01-01

    The broad applications and mechanism explorations of traditional Chinese medicine prescriptions (TCMPs) require a clear understanding of TCMP chemical constituents. In the present study, we describe an efficient and universally applicable analytical approach based on ultra-performance liquid chromatography coupled to electrospray ionization tandem quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q/TOF-MS) with the MSE (E denotes collision energy) data acquisition mode, which allowed the rapid separation and reliable determination of TCMP chemical constituents. By monitoring diagnostic ions in the high energy function of MSE, target peaks of analogous compounds in TCMPs could be rapidly screened and identified. Re-Du-Ning injection (RDN), a eutherapeutic traditional Chinese medicine injection (TCMI) that has been widely used to reduce fever caused by viral infections in clinical practice, was studied as an example. In total, 90 compounds, including five new iridoids and one new sesquiterpene, were identified or tentatively characterized by accurate mass measurements within 5 ppm error. This analysis was accompanied by MS fragmentation and reference standard comparison analyses. Furthermore, the herbal sources of these compounds were unambiguously confirmed by comparing the extracted ion chromatograms (EICs) of RDN and ingredient herbal extracts. Our work provides a certain foundation for further studies of RDN. Moreover, the analytical approach developed herein has proven to be generally applicable for profiling the chemical constituents in TCMPs and other complicated mixtures. PMID:25875968

  8. On-line coupling of in-tube boronate affinity solid phase microextraction with high performance liquid chromatography-electrospray ionization tandem mass spectrometry for the determination of cis-diol biomolecules.

    PubMed

    He, Jiangang; Liu, Zhen; Ren, Lianbing; Liu, Yunchun; Dou, Peng; Qian, Kai; Chen, Hong-Yuan

    2010-06-30

    Boronate affinity solid phase microextraction (BA-SPME) is a new format appeared recently with great potential for specific extraction of cis-diol-containing compounds. Unlike conventional SPME, BA-SPME relies on covalent interactions and thereby features with specific selectivity, eliminated matrix effect and manipulable capture/release. However, only on-fiber BA-SPME and its off-line combination with high performance liquid chromatography (HPLC) have been reported so far. In this study, we report on-line coupling of in-tube BA-SPME with HPLC-electrospray ionization tandem mass spectroscopy (in-tube BA-SPME-HPLC-ESI-MS/MS) for the specific and sensitive determination of cis-diol-containing biomolecules. A boronate affinity extraction phase was prepared onto the inner surface of the capillary by copolymerization of vinylphenylboronic acid (VPBA) and ethylene glycol dimethacrylate (EDMA). The extraction conditions were optimized by choosing appropriate extraction/desorption solutions and extraction time. The extraction capacity, linear range, reproducibility and life-time were investigated. The developed method was successfully applied for the determination of dopamine in urine samples. Since many cis-diol-containing compounds are of great biological importance, the in-tube BA-SPME-HPLC method can be a promising tool. PMID:20685466

  9. Characterization of fifty-one flavonoids in a Chinese herbal prescription Longdan Xiegan Decoction by high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry and photodiode array detection.

    PubMed

    Wang, Yun; Yang, Li; He, Yu-Qi; Wang, Chang-Hong; Welbeck, Ed W; Bligh, S W Annie; Wang, Zheng-Tao

    2008-06-01

    High-performance liquid chromatography coupled to electrospray ionization (ESI) tandem mass spectrometry and photodiode array detection (HPLC-DAD-ESI-MS(n)) was developed to identify and characterize the flavonoids in a Chinese formulated preparation, Longdan Xiegan Decoction (LXD). In total, fifty-one flavonoids (27 flavones, 10 flavanones, 7 chalcones, 5 flavonols and 2 isoflavones) were characterized. Eighteen compounds among them including a newly detected flavonoid, naringin, from the ingredient herbs, were unambiguously determined by comparing the retention times (t(R)), UV spectral data and mass fragmentation behaviors with those of the reference compounds. Another thirty-three compounds were tentatively identified by referencing to the reported data of their UV and MS spectra. The ESI-MS/MS fragmentation behavior of flavones (OMe-substituted, O-glycosides, C-glycosides), chalcones, flavonols and their appropriate characteristic pathways were proposed. In negative ion ESI-MS all the flavonoids yielded prominent [M--H](-) ions in the first order mass spectra. Fragmentation with a loss of mass of 15 Da (CH(3)), 18 Da (H(2)O), 28 Da (CO), 44 Da (CO(2)), 56 Da (2CO) and the residues of glucose and glucuronic acid observed in the MS/MS spectra were useful for aiding the structural identification of the flavonoids investigated. PMID:18473331

  10. Automated and sensitive determination of four anabolic androgenic steroids in urine by online turbulent flow solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry: a novel approach for clinical monitoring and doping control.

    PubMed

    Guo, Feng; Shao, Jing; Liu, Qian; Shi, Jian-Bo; Jiang, Gui-Bin

    2014-07-01

    A novel method for automated and sensitive analysis of testosterone, androstenedione, methyltestosterone and methenolone in urine samples by online turbulent flow solid-phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry was developed. The optimization and validation of the method were discussed in detail. The Turboflow C18-P SPE column showed the best extraction efficiency for all the analytes. Nanogram per liter (ng/L) level of AAS could be determined directly and the limits of quantification (LOQs) were 0.01 ng/mL, which were much lower than normally concerned concentrations for these typical anabolic androgenic steroids (AAS) (0.1 ng/mL). The linearity range was from the LOQ to 100 ng/mL for each compound, with the coefficients of determination (r(2)) ranging from 0.9990 to 0.9999. The intraday and interday relative standard deviations (RSDs) ranged from 1.1% to 14.5% (n=5). The proposed method was successfully applied to the analysis of urine samples collected from 24 male athletes and 15 patients of prostate cancer. The proposed method provides an alternative practical way to rapidly determine AAS in urine samples, especially for clinical monitoring and doping control. PMID:24840468

  11. Dispersive micro-solid-phase extraction using mesoporous hybrid materials for simultaneous determination of semivolatile compounds from plant tea by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Cao, Wan; Hu, Shuai-Shuai; Ye, Li-Hong; Cao, Jun

    2014-10-01

    This report described the use of mesoporous hybrid materials (MHM) in a dispersive micro-solid-phase extraction procedure to extract semivolatile compounds from plant tea that were then analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Dihydrotanshinone I, tanshinone I, cryptotanshinone, and tanshinone IIA were selected as the model compounds, and the extraction parameters, including mesoporous concentration, extraction time, sample agitation and desorption solvents, were optimized. The interaction with the analytes and the large surface area of the MHM facilitated the adsorption of analytes. The method showed good linearity, with correlation coefficients >0.9980 in the range 0.25-100 ng/mL, and low limits of detection (0.012-0.046 pg). Finally, the recovery values were 91-103% for Danshen tea, 89-102% for Danshen, and 88-96% for tanshinone capsules. The results showed that the proposed method was suitable for the extraction and determination of tanshinones in complex samples. PMID:25231266

  12. High-speed homogenization coupled with microwave-assisted extraction followed by liquid chromatography-tandem mass spectrometry for the direct determination of alkaloids and flavonoids in fresh Isatis tinctoria L. hairy root cultures.

    PubMed

    Jiao, Jiao; Gai, Qing-Yan; Zhang, Lin; Wang, Wei; Luo, Meng; Zu, Yuan-Gang; Fu, Yu-Jie

    2015-06-01

    A new, simple and efficient analysis method for fresh plant in vitro cultures-namely, high-speed homogenization coupled with microwave-assisted extraction (HSH-MAE) followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-was developed for simultaneous determination of six alkaloids and eight flavonoids in Isatis tinctoria hairy root cultures (ITHRCs). Compared with traditional methods, the proposed HSH-MAE offers the advantages of easy manipulation, higher efficiency, energy saving, and reduced waste. Cytohistological studies were conducted to clarify the mechanism of HSH-MAE at cellular/tissue levels. Moreover, the established LC-MS/MS method showed excellent linearity, precision, repeatability, and reproducibility. The HSH-MAE-LC-MS/MS method was also successfully applied for screening high-productivity ITHRCs. Overall, this study opened up a new avenue for the direct determination of secondary metabolic profiles from fresh plant in vitro cultures, which is valuable for improving quality control of plant cell/organ cultures and sheds light on the metabolomic analysis of biological samples. Graphical Abstract HSH-MAE-LC-MS/MS opened up a new avenue for the direct determination of alkaloids and flavonoids in fresh Isatis tinctoria hairy root cultures. PMID:25893802

  13. Comparative Analysis of Amino Acids, Nucleosides, and Nucleobases in Thais clavigera from Different Distribution Regions by Using Hydrophilic Interaction Ultra-Performance Liquid Chromatography Coupled with Triple Quadrupole Tandem Mass Spectrometry

    PubMed Central

    Ge, Yahui; Tang, Yuping; Guo, Sheng; Liu, Xin; Zhu, Zhenhua; Liu, Pei; Duan, Jin-ao

    2015-01-01

    Thais clavigera, as function food, is distributed widely along the coasts of China. To compare and tap its potentially nutritional and functional values, hydrophilic interaction ultra-performance liquid chromatography coupled with triplequadrupole tandem mass spectrometry (HILIC-UPLC-TQ-MS/MS) was used for simultaneous identification and quantification of amino acids, nucleosides, and nucleobases in the extracts of T. clavigera from 19 sea areas in China, and a PCA was further performed for comparing their content variation in different distribution regions. The total contents of amino acids varied from 116.74 mg/g to 298.58 mg/g being higher than contents of nucleosides and nucleobases that varied from 2.65 mg/g and 20.49 mg/g. Among the habitats, Hainan province had content advantages on others. By PCA, samples collected from different regions were classified into three groups. For specific constituents, lysine accounted for large part of essential amino acids; glycine and taurine also play important roles in the delicate taste and health care function of it. Inosine takes up most of total contents of nucleosides and nucleobases. These results provided good data for establishing quality standard of T. clavigera related products and their further development and utilization. PMID:26290666

  14. Screening for anthocyanins using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry with precursor-ion analysis, product-ion analysis, common-neutral-loss analysis, and selected reaction monitoring.

    PubMed

    Tian, Qingguo; Giusti, M Monica; Stoner, Gary D; Schwartz, Steven J

    2005-10-14

    A systematic method for anthocyanin identification using tandems mass spectrometry (MS/MS) coupled to high-performance liquid chromatography (HPLC) with photo-diode array detection (PDA) was developed. Scan for the precursor ions of commonly found anthocyanidins (cyanidin, delphinidin, malvidin, pelargonidin, petunidin, and peonidin) using LC/MS/MS on a triple quadrupole instrument allows for the specific determination of each category of anthocyanins. Further characterization of each anthocyanin was performed using MS/MS product-ion analysis, common-neutral-loss analysis, and selected reaction monitoring (SRM). The method was demonstrated for analysis of anthocyanins in black raspberries, red raspberries, highbush blueberries, and grapes (Vitis vinifera). Previous reported anthocyanins in black raspberries and red raspberries are confirmed and characterized. Common-neutral-loss analysis allows for the distinction of anthocyanin glucosides or galactoside and arabinosides in highbush blueberries. Separation and identification of anthocyanin glucosides and galactosides were achieved by LC/MS/MS using SRM. Anthocyanin isomers such as cyanidin sophoroside and 3,5-diglucoside were differentiated by their fragmentation pattern during product-ion analysis. Fifteen anthocyanins (all possible combinations of five anthocyanidins and three sugars) were characterized in highbush blueberries. Pelargonidin 3-glucoside and pelargonidin 3,5-diglucoside were detected and characterized for the first time in grapes. The present approach allows mass spectrometry to be used as a highly selective detector for rapid identification and characterization of anthocyanins and can be used as a sensitive procedure for screening anthocyanins in fruits and vegetables. PMID:16395794

  15. Palladium-Catalyzed Construction of Heteroatom-Containing ?-Conjugated Systems by Intramolecular Oxidative C-H/C-H Coupling Reaction.

    PubMed

    Saito, Kenta; Chikkade, Prasanna Kumara; Kanai, Motomu; Kuninobu, Yoichiro

    2015-06-01

    Synthesis of heteroatom-containing ladder-type ?-conjugated molecules was successfully achieved via a palladium-catalyzed intramolecular oxidative C-H/C-H cross-coupling reaction. This reaction provides a variety of ?-conjugated molecules bearing heteroatoms, such as nitrogen, oxygen, phosphorus, and sulfur atoms, and a carbonyl group. The ?-conjugated molecules were synthesized efficiently, even in gram scale, and larger ?-conjugated molecules were also obtained by a double C-H/C-H cross-coupling reaction and successive oxidative cycloaromatization. PMID:25907683

  16. Identification and characterization of the leech CNS cannabinoid receptor: coupling to nitric oxide release.

    PubMed

    Stefano, G B; Salzet, B; Salzet, M

    1997-04-11

    The present study demonstrates that stereoselective binding sites for anandamide, a naturally occurring cannabinoid substance, can be found in leech (Theromyzon tessulatum and Hirudo medicinalis) central nervous system. The anandamide binding site is monophasic and of high affinity exhibiting a Kd of approximately 32 nM with a Bmax of 550 fmol/mg protein in both animals. These sites are highly select as demonstrated by the inability of other types of signaling molecules to displace [3H]anandamide. Furthermore, this binding site is coupled to nitric oxide release. A deduced amino acid sequence (153 residues) analysis from a 480 pb amplified RT-PCR fragment cDNA exhibits a 49.3% and 47.2% sequence identity with human and rat cannabinoid receptors (CB1R), respectively. Thus, the leech cannabinoid receptor may be a G-protein coupled receptor with seven transmembrane domains as in CB1R. Moreover, this sequence exhibits highly conserved regions, particularly in the putative transmembrane domains 1 and 2. The presence of a cannabinoid receptor in these organisms indicates that this signaling system has been conserved during evolution. PMID:9125406

  17. Evolution of the Mlct Band Following Changes in Oxidation State for Highly Coupled Mixed Valence Complexes

    NASA Astrophysics Data System (ADS)

    Lear, Benjamin J.; Chisholm, Malcolm H.

    2009-06-01

    The MLCT band for a series of dimers composed of pairs of quadruply bonded metal-metal units ([MM(CH_3CO_2)_3]_2-?_2-oxalate; where M=Mo or W) is examined in both the neutral and +1 (mixed valence) states. The MLCT band for the neutral state of these complexes exhibits clear vibronic features that are greatly reduced in intensity upon generation of the mixed valence state. Utilizing the time dependent theory of spectroscopy as developed by Eric Heller, these results (together with Raman spectra and TD-DFT calculations) are used in order to draw conclusions concerning the potential energy surfaces involved in the MLCT transition for these complexes. In particular, we are concerned with changes to the offset of the ground and excited state potential energy surfaces that occur along the coordinates involved in the vibronic coupling and which accompany changes in oxidation state. The insight thus gained is used in order to understand the degree of electronic coupling present in mixed valence species and to comment on the classification of mixed valence complexes.

  18. Using ultrashort optical pulses to couple ferroelectric and ferromagnetic order in an oxide heterostructure

    NASA Astrophysics Data System (ADS)

    Sheu, Y. M.; Trugman, S. A.; Yan, L.; Jia, Q. X.; Taylor, A. J.; Prasankumar, R. P.

    2014-12-01

    A new approach to all-optical detection and control of the coupling between electric and magnetic order on ultrafast timescales is achieved using time-resolved second-harmonic generation (SHG) to study a ferroelectric (FE)/ferromagnet (FM) oxide heterostructure. We use femtosecond optical pulses to modify the spin alignment in a Ba0.1Sr0.9TiO3 (BSTO)/La0.7Ca0.3MnO3 (LCMO) heterostructure and selectively probe the ferroelectric response using SHG. In this heterostructure, the pump pulses photoexcite non-equilibrium quasiparticles in LCMO, which rapidly interact with phonons before undergoing spin-lattice relaxation on a timescale of tens of picoseconds. This reduces the spin-spin correlations in LCMO, applying stress on BSTO through magnetostriction. This then modifies the FE polarization through the piezoelectric effect, on a timescale much faster than laser-induced heat diffusion from LCMO to BSTO. We have thus demonstrated an ultrafast indirect magnetoelectric effect in a FE/FM heterostructure mediated through elastic coupling, with a timescale primarily governed by spin-lattice relaxation in the FM layer.

  19. Using ultrashort optical pulses to couple ferroelectric and ferromagnetic order in an oxide heterostructure.

    PubMed

    Sheu, Y M; Trugman, S A; Yan, L; Jia, Q X; Taylor, A J; Prasankumar, R P

    2014-01-01

    A new approach to all-optical detection and control of the coupling between electric and magnetic order on ultrafast timescales is achieved using time-resolved second-harmonic generation (SHG) to study a ferroelectric (FE)/ferromagnet (FM) oxide heterostructure. We use femtosecond optical pulses to modify the spin alignment in a Ba(0.1)Sr(0.9)TiO3 (BSTO)/La(0.7)Ca(0.3)MnO3 (LCMO) heterostructure and selectively probe the ferroelectric response using SHG. In this heterostructure, the pump pulses photoexcite non-equilibrium quasiparticles in LCMO, which rapidly interact with phonons before undergoing spin-lattice relaxation on a timescale of tens of picoseconds. This reduces the spin-spin correlations in LCMO, applying stress on BSTO through magnetostriction. This then modifies the FE polarization through the piezoelectric effect, on a timescale much faster than laser-induced heat diffusion from LCMO to BSTO. We have thus demonstrated an ultrafast indirect magnetoelectric effect in a FE/FM heterostructure mediated through elastic coupling, with a timescale primarily governed by spin-lattice relaxation in the FM layer. PMID:25534775

  20. Tyrosine oxidation in heme oxygenase: examination of long-range proton-coupled electron transfer.

    PubMed

    Smirnov, Valeriy V; Roth, Justine P

    2014-10-01

    Heme oxygenase is responsible for the degradation of a histidine-ligated ferric protoporphyrin IX (Por) to biliverdin, CO, and the free ferrous ion. Described here are studies of tyrosyl radical formation reactions that occur after oxidizing Fe(III)(Por) to Fe(IV)=O(Por(+)) in human heme oxygenase isoform-1 (hHO-1) and the structurally homologous protein from Corynebacterium diphtheriae (cdHO). Site-directed mutagenesis on hHO-1 probes the reduction of Fe(IV)=O(Por(+)) by tyrosine residues within 11 of the prosthetic group. In hHO-1, Y58 is implicated as the most likely site of oxidation, based on the pH and pD dependent kinetics. The absence of solvent deuterium isotope effects in basic solutions of hHO-1 and cdHO contrasts with the behavior of these proteins in the acidic solution, suggesting that long-range proton-coupled electron transfer predominates over electron transfer. PMID:25023856

  1. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence.

    PubMed

    Ding, Long-Jun; An, Xin-Li; Li, Shun; Zhang, Gan-Lin; Zhu, Yong-Guan

    2014-09-16

    Anaerobic ammonium oxidation coupled to iron(III) reduction (termed Feammox) with dinitrogen, nitrite, or nitrate as the end-product is a recently discovered process of nitrogen cycling. However, Feammox has not been described in paddy soils, which are rich in iron(III) oxides and subjected to intensive nitrogen fertilization. Here, evidence for Feammox in a paddy soil chronosequence with a gradient of microbially reducible iron(III) levels was obtained in Southern China using (15)N-labeled ammonium-based isotopic tracing and acetylene inhibition techniques. Our study demonstrated the occurrence of Feammox in the chronosequence, and direct dinitrogen production was shown to be the dominant Feammox pathway. Within the chronosequence, three paddy soils with higher microbially reducible iron(III) levels had higher Feammox rates (ranged from 0.17 to 0.59 mg N kg(-1) d(-1)) compared to an uncultivated soil (0.04 mg N kg(-1) d(-1)). It is estimated that a loss of 7.8-61 kg N ha(-1) year(-1) is associated with Feammox in the examined paddy soils. Overall, we discover that rice cultivation could enrich microbially reducible iron(III), accelerate Feammox reaction and thus fuel nitrogen loss from soils, and suggest that Feammox could be a potentially important pathway for nitrogen loss in paddy soils. PMID:25158120

  2. Determination of cocaine and methadone in urine samples by thin-film solid-phase microextraction and direct analysis in real time (DART) coupled with tandem mass spectrometry.

    PubMed

    Rodriguez-Lafuente, Angel; Mirnaghi, Fatemeh S; Pawliszyn, Janusz

    2013-12-01

    The use of thin-film solid-phase microextraction (SPME) as the sampling preparation step before direct analysis in real time (DART) was evaluated for the determination of two prohibited doping substances, cocaine and methadone, in urine samples. Results showed that thin-film SPME improves the detectability of these compounds: signal-to-blank ratios of 5 (cocaine) and 13 (methadone) were obtained in the analysis of 0.5 ng/ml in human urine. Thin-film SPME also provides efficient sample cleanup, avoiding contamination of the ion source by salt residues from the urine samples. Extraction time was established in 10 min, thus providing relatively short analysis time and high throughput when combined with a 96-well shaker and coupled with DART technique. PMID:23685960

  3. Fast and simultaneous determination of eleven synthetic color additives in flour and meat products by liquid chromatography coupled with diode-array detector and tandem mass spectrometry.

    PubMed

    Qi, Ping; Lin, Zi-hao; Chen, Gui-yun; Xiao, Jian; Liang, Zhi-an; Luo, Li-ni; Zhou, Jun; Zhang, Xue-wu

    2015-08-15

    In this study, an efficient, fast and sensitive method for the simultaneous determination of eleven synthetic color additives (Allura red, Amaranth, Azo rubine, Brilliant blue, Erythrosine, Indigotine, Ponceau 4R, New red, Sunset yellow, Quinoline yellow and Tartrazine) in flour and meat foodstuffs is developed and validated using HPLC coupled with DAD and MS/MS. The color additives were extracted with ammonia-methanol and was further purified with SPE procedure using Strata-AW column in order to reduce matrix interference. This HPLC-DAD method is intended for a comprehensive survey of color additives in foods. HPLC-MS/MS method was used as the further confirmation and identification. Validation data showed the good recoveries in the range of 75.2-113.8%, with relative standard deviations less than 15%. These methods are suitable for the routine monitoring analysis of eleven synthetic color additives due to its sensitivity, reasonable time and cost. PMID:25794727

  4. Analysis of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) and its brominated analogues in chlorine-treated water by gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS).

    PubMed

    Planas, Carles; Ventura, Francesc; Caixach, Josep; Martn, Jordi; Boleda, M Rosa; Paraira, Miquel

    2015-11-01

    A simple, selective and sensitive method for the analysis of the strong mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) and its brominated analogues (BMXs) in chlorine-treated water has been developed. The method is based on gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS), previous liquid-liquid extraction (LLE) of a smaller sample volume compared to other methods and on-line derivatization with a silylation reactive. GC-QqQ-MS/MS has been raised as an alternative easier to perform than gas chromatography coupled to high resolution mass spectrometry (GC-HRMS) for the analysis of MX and BMXs, and it allows to achieve low LODs (0.3 ng/L for MX and 0.4-0.9 ng/L for BMXs). This technique had not been previously described for the analysis of MX and BMXs. Quality parameters were calculated and real samples related to 3 drinking water treatment plants (DWTPs), tap water and both untreated and chlorinated groundwater were analyzed. Concentrations of 0.3-6.6 ng/L for MX and 1.0-7.3 ng/L for BMXs were detected. Results were discussed according to five of the main factors affecting MX and BMXs formation in chlorine-treated water (organic precursors, influence of bromide ions, evolution of MX and BMXs in the drinking water distribution system, groundwater chlorination and infiltration of water coming from chlorination processes in groundwater). PMID:26452804

  5. Analysis of coupled Sr/Ca and 87Sr/ 86Sr variations in enamel using laser-ablation tandem quadrupole-multicollector ICPMS

    NASA Astrophysics Data System (ADS)

    Balter, Vincent; Telouk, Philippe; Reynard, Bruno; Braga, José; Thackeray, Francis; Albarède, Francis

    2008-08-01

    We present in this study results obtained with a laser-ablation coupled with both a quadrupole and a multi-collector ICPMS. The simultaneous in situ Sr/Ca and 87Sr/ 86Sr measurements along growth profiles in enamel allows the concomitant diet and migration patterns in mammals to be reconstructed. Aliquots of the powdered international standard NIST "SRM1400 Bone Ash" with certified Sr and Ca contents, was sintered at high pressure and temperature and was adopted as the reference material for external reproducibility and calibration of the results. A total of 145 coupled elemental and isotopic measurements of herbivores enamel from the Kruger National Park, South Africa, gives intra-tooth Sr/Ca and 87Sr/ 86Sr variations that are well larger than external reproducibility. Sr/Ca profiles systematically decrease from the dentine-enamel junction to the outer enamel whereas 87Sr/ 86Sr profiles exhibit variable patterns. Using a simple geometric model of hypsodont teeth growth, we demonstrate that a continuous recording of the 87Sr/ 86Sr variations can be reconstructed in the tooth length axis. This suggests that the mobility of a mammal can be reconstructed over a period of more than a year with a resolution of a ten of days, by sampling enamel along growth profiles. Our geometric model of hypsodont teeth growth predicts that an optimal distance between two successive profiles is equal to the enamel thickness. However, this model does not apply to the Sr/Ca signal which is likely to be altered during the enamel maturation stage due to differential maturation processes along enamel thickness. Here, the observed constant decreases of the Sr/Ca ratios in the ungulates of Kruger National Park suggests that they did not changed of diet, while some of them were migrating.

  6. Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes.

    PubMed

    Choi, Sung Kyu; Choi, Wonyong; Park, Hyunwoong

    2013-05-01

    A naturally abundant nickel-borate (Ni-Bi) complex is demonstrated to successfully catalyze the photoelectrochemical (PEC) water oxidation of BiVO4 electrodes at 1.23 VRHE with nearly 100% faradaic efficiency for oxygen evolution. Ni-Bi is electrodeposited (ED) and photodeposited (PD) for varying times on BiVO4 electrodes in the 0.1 M borate electrolyte with 1 mM Ni(2+) at pH 9.2. Surprisingly, optimally deposited Ni-Bi films (ED-10 s and PD-30 min) display the same layer thickness of ca. 40 nm. Both Ni-Bi films enhance the photocurrent generation of BiVO4 at 1.23 VRHE by a factor of 3-4 under AM 1.5-light irradiation (100 mW cm(-2)) along with ca. 250% increase in the incident and absorbed photon-to-current efficiencies. Impedance analysis further reveals that the charge transfer resistance at BiVO4 is markedly decreased by Ni-Bi deposits. The primary role of Ni-Bi has been suggested to be a hole-conductor making photogenerated electrons more mobile and catalyzing a four-hole transfer to water through cyclic changes between the lower and higher Ni oxidation states. However, thick Ni-Bi films (>~40 nm) significantly reduce the PEC performance of BiVO4 due to the kinetic bottleneck and charge recombination. Under identical PEC conditions (0.1 M, pH 9.2), the borate electrolyte (good proton acceptor) is found to be better than nitrate (poor proton acceptor), indicative of a proton-coupled electron transfer pathway in PEC water oxidation. PMID:23529529

  7. Accurate quantification of mercapturic acids of styrene (PHEMAs) in human urine with direct sample injection using automated column-switching high-performance liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Reska, M; Ochsmann, E; Kraus, T; Schettgen, T

    2010-08-01

    Styrene is one of the most important industrial chemicals, with an enormously high production volume worldwide. The urinary mercapturic acids of its metabolite styrene-7,8-oxide, namely N-acetyl-S-(2-hydroxy-1-phenylethyl)-L-cysteine (PHEMA 1) and N-acetyl-S-(2-hydroxy-2-phenylethyl)-L-cysteine (PHEMA 2), are specific biomarkers for the determination of individual internal exposure to this highly reactive intermediate of styrene. We have developed and validated a fast, specific and very sensitive method for the accurate determination of the sum of phenylhydroxyethyl mercapturic acids (PHEMAs) in human urine with an automated multidimensional liquid chromatography-tandem mass spectrometry method using (13)C(6)-labelled PHEMAs as internal standards. Analytes were stripped from the urinary matrix by online extraction on a restricted access material, transferred to the analytical column and subsequently determined by tandem mass spectrometry. The limit of quantification (LOQ) for the sum of PHEMAs was 0.3 microg/L urine and allowed us to quantify the background exposure of the (smoking) general population. Precision within series and between series ranged from 1.5 to 6.8% at three concentrations ranging from 3 to 30 microg/L urine; the mean accuracy was between 104 and 110%. We applied the method to spot urine samples from 40 subjects of the general population with no known occupational exposure to styrene. The median levels (range) for the sum of PHEMAs in urine of non-smokers (n = 22) were less than 0.3 microg/L (less than 0.3 to 1.1 microg/L), whereas in urine of smokers (n = 18), the median levels were 0.46 microg/L (less than 0.3 to 2.8 microg/L). Smokers showed a significantly higher excretion of the sum of PHEMAs (p = 0.02). Owing to its automation and high sensitivity, our method is well suited for application in occupational or environmental studies. PMID:20556363

  8. Modification by covalent reaction or oxidation of cysteine residues in the Tandem-SH2 Domains of ZAP-70 and Syk Can Block Phosphopeptide Binding

    PubMed Central

    Visperas, Patrick R.; Winger, Jonathan A.; Horton, Timothy M.; Shah, Neel H.; Aum, Diane J.; Tao, Alyssa; Barros, Tiago; Yan, Qingrong; Wilson, Christopher G.; Arkin, Michelle R.; Weiss, Arthur; Kuriyan, John

    2015-01-01

    Zeta-chain Associated Protein of 70kDa (ZAP-70) and Spleen tyrosine kinase (Syk) are non-receptor tyrosine kinases that are essential for T-cell and B-cell antigen receptor signaling, respectively. They are recruited, via their tandem-SH2 domains, to doubly-phosphorylated Immunoreceptor Tyrosine-based Activation Motifs (ITAMs) on invariant chains of immune antigen receptors. Because of their critical roles in immune signaling, ZAP-70 and Syk are targets for the development of drugs for autoimmune diseases. We show that three thiol-reactive small molecules can prevent the tandem-SH2 domains of ZAP-70 and Syk from binding to phosphorylated ITAMs. We identify a specific cysteine residue in the phosphotyrosine-binding pocket of each protein (Cys 39 in ZAP-70, Cys 206 in Syk) that is necessary for inhibition by two of these compounds. We also find that ITAM binding to ZAP-70 and Syk is sensitive to the presence of hydrogen peroxide, and these two cysteine residues are also necessary for inhibition by hydrogen peroxide. Our findings suggest a mechanism by which the generation of reactive oxygen species generated during responses to antigen could attenuate signaling through these kinases, and may also inform the development of ZAP-70 and Syk inhibitors that bind covalently to their SH2 domains. PMID:25287889

  9. Oxidative Coupling of Aryl Boron Reagents with sp(3) -Carbon Nucleophiles: The Enolate Chan-Evans-Lam Reaction.

    PubMed

    Moon, Patrick J; Halperin, Heather M; Lundgren, Rylan J

    2016-01-01

    Reported is a versatile new oxidative method for the arylation of activated methylene species. Under mild reaction conditions (RT to 40?C), Cu(OTf)2 mediates the selective coupling of functionalized aryl boron species with a variety of stabilized sp(3) -nucleophiles. Tertiary malonates and amido esters can be employed as substrates to generate quaternary centers. Complementing either traditional cross-coupling or SN Ar protocols, the transformation is chemoselective in the presence of halogen electrophiles, including aryl bromides and iodides. Substrates bearing amide, sulfonyl, and phosphonyl groups, which are not amenable to coupling under mild Hurtley-type conditions, are suitable reaction partners. PMID:26732351

  10. Metabolite profiling of licorice (Glycyrrhiza glabra) from different locations using comprehensive two-dimensional liquid chromatography coupled to diode array and tandem mass spectrometry detection.

    PubMed

    Montero, Lidia; Ibáñez, Elena; Russo, Mariateresa; di Sanzo, Rosa; Rastrelli, Luca; Piccinelli, Anna Lisa; Celano, Rita; Cifuentes, Alejandro; Herrero, Miguel

    2016-03-24

    Profiling of the main metabolites from several licorice (Glycyrrhiza glabra) samples collected at different locations is carried out in this work by using comprehensive two-dimensional liquid chromatography (LC × LC) coupled to diode array (DAD) and mass spectrometry (MS) detectors. The optimized method was based on the application of a HILIC-based separation in the first dimension combined with fast RP-based second dimension separation. This set-up was shown to possess powerful separation capabilities allowing separating as much as 89 different metabolites in a single sample. Identification and grouping of metabolites according to their chemical class were achieved using the DAD, MS and MS/MS data. Triterpene saponins were the most abundant metabolites followed by glycosylated flavanones and chalcones, whereas glycyrrhizic acid, as expected, was confirmed as the main component in all the studied samples. LC × LC-DAD-MS/MS was able to resolve these complex licorice samples providing with specific metabolite profiles to the different licorice samples depending on their geographical origin. Namely, from 19 to 50 specific compounds were exclusively determined in the 2D-chromatograms from the different licorice samples depending on their geographical origin, which can be used as a typical pattern that could potentially be related to their geographical location and authentication. PMID:26944999

  11. Fabrication of an on-line enzyme micro-reactor coupled to liquid chromatography-tandem mass spectrometry for the digestion of recombinant human erythropoietin.

    PubMed

    Foo, Hsiao Ching; Smith, Norman W; Stanley, Shawn M R

    2015-04-01

    Our aim was to develop a fast and efficient on-line method using micro-reactors for the digestion and deglycosylation of recombinant human erythropoietin extracted from equine plasma. The trypsin digestion micro reactors were fabricated using fused silica capillaries with either a dextran-modified coating or a porous monolith that was able to immobilise the enzyme. These were both found to be reasonably robust and durable, with the trypsin immobilised on dextran-modified fused silica capillaries offering better reproducibility than the micro-reactor based upon covalent attachment of this enzyme to the polymer. It is also evident that the enzyme attached micro reactors produced some tryptic peptides in a greater yield than in-solution digestion. A peptide-N-glycosidase F reactor was also fabricated and, when coupled with the trypsin reactor, the deaminated peptides T5 DAM and T9 DAM from recombinant human erythropoietin could also be detected by LC-ESI-MS/MS analysis. These results were better than those achieved using off-line digestion plus deglycosylation reactions and the analysis required far less time and effort to complete. The use of this on-line approach improved the sensitivity, efficiency and speed of our confirmation methodology that is based upon detecting the unique peptide segments of recombinant human erythropoietin that has been affinity extracted from positive equine plasma samples. PMID:25640120

  12. Direct aqueous supercritical fluid extraction coupled on-line with liquid chromatography-tandem mass spectrometry for the analysis of polyether ionophore antibiotics in water.

    PubMed

    Ramsey, Edward D; Rees, Anthony T; Wei, Guo; Liu, Jing Y; Wu, Xiu H

    2010-05-14

    A direct aqueous SFE system designed to extract water samples contained in vials has been coupled on-line with a reverse phase LC-MS-MS system using a single 10-port valve. An SFE trap system using C(1) stationary phase connected to a C(18) analytical HPLC column enabled the SFE-LC-MS-MS analysis of three polyether ionophore antibiotics in water using a step gradient. A quantitative SFE-LC-MS-MS method has been developed whereby the progress of SFE can be monitored directly on-line such that ionophore recovery profile data from a single water sample can be obtained. Using a continuous direct aqueous SFE period of 75 min, the SFE-LC-MS-MS recoveries of the ionophores were: monensin 76.2% with RSD 4.1%, lasalocid 84.6% with RSD 3.8% and narasin 91.2% with RSD 3.2%. With positive ion electrospray ionization, the SFE-LC-MS-MS system using a 4 mL water sample provided multiple reaction monitoring (MRM) limits of detection for monensin and lasalocid each equivalent to 90 ng/L whereas 30 ng/L for narasin. A two-way valve controlling carbon dioxide distribution to the SFE vessel has provided a means for the initial investigation of the recovery of ionophore sodium salts from water using static SFE. PMID:20381053

  13. Kinetic Effects Of Increased Proton Transfer Distance On Proton-Coupled Oxidations Of Phenol-Amines

    PubMed Central

    Rhile, Ian J.

    2011-01-01

    To test the effect of varying the proton donor-acceptor distance in proton-coupled electron transfer (PCET) reactions, the oxidation of a bicyclic amino-indanol (2) is compared with that of a closely related phenol with an ortho CPh2NH2 substituent (1). Spectroscopic, structural, thermochemical and computational studies show that the two amino-phenols are very similar, except that the O?N distance (dON) is >0.1 longer in 2 than in 1. The difference in dON is 0.13 0.03 from X-ray crystallography and 0.165 from DFT calculations. Oxidations of these phenols by outer-sphere oxidants yield distonic radical cations OArNH3+ by concerted proton-electron transfer (CPET). Simple tunneling and classical kinetic models both predict that the longer donor-acceptor distance in 2 should lead to slower reactions, by ca. two orders of magnitude, as well as larger H/D kinetic isotope effects (KIEs). However, kinetic studies show that the compound with the longer proton-transfer distance, 2, exhibits smaller KIEs and has rate constants that are quite close to those of 1. For example, the oxidation of 2 by the triarylamminium radical cation N(C6H4OMe)3+ (3a+) occurs at (1.4 0.1) 104 M-1 s-1, only a factor of two slower than the closely related reaction of 1 with N(C6H4OMe)2(C6H4Br)+ (3b+). This difference in rate constants is well accounted for by the slightly different free energies of reaction: ?G(2 + 3a+) = +0.078 V vs. ?G(1 + 3b+) = +0.04 V. The two phenol-amines do display some subtle kinetic differences: for instance, compound 2 has a shallower dependence of CPET rate constants on driving force (Brnsted ?, ?ln(k)/?ln(Keq)). These results show that the simple tunneling model is not a good predictor of the effect of proton donor-acceptor distance on concerted-electron transfer reactions involving strongly hydrogen-bonded systems. Computational analysis of the observed similarity of the two phenols emphasizes the importance of the highly anharmonic O?H?N potential energy surface and the influence of proton vibrational excited states. PMID:21919508

  14. Iodine-mediated oxidative annulation for one-pot synthesis of pyrazines and quinoxalines using a multipathway coupled domino strategy.

    PubMed

    Viswanadham, K K Durga Rao; Prathap Reddy, Muktapuram; Sathyanarayana, Pochampalli; Ravi, Owk; Kant, Ruchir; Bathula, Surendar Reddy

    2014-11-14

    An efficient iodine-mediated oxidative annulation of aryl acetylenes-arylethenes-aromatic ketones with 1,2-diamines for the synthesis of pyrazines and regioselective synthesis of quinoxalines is presented. A multipathway coupled domino approach has been developed for the one-pot synthesis of 1,4-diazines with high functional group compatibility. PMID:25238170

  15. Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH.

    PubMed

    Yamaguchi, Akira; Inuzuka, Riko; Takashima, Toshihiro; Hayashi, Toru; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2014-01-01

    Manganese oxides have been extensively investigated as model systems for the oxygen-evolving complex of photosystem II. However, most bioinspired catalysts are inefficient at neutral pH and functional similarity to the oxygen-evolving complex has been rarely achieved with manganese. Here we report the regulation of proton-coupled electron transfer involved in water oxidation by manganese oxides. Pyridine and its derivatives, which have pKa values intermediate to the water ligand bound to manganese(II) and manganese(III), are used as proton-coupled electron transfer induction reagents. The induction of concerted proton-coupled electron transfer is demonstrated by the detection of deuterium kinetic isotope effects and compliance of the reactions with the libido rule. Although proton-coupled electron transfer regulation is essential for the facial redox change of manganese in photosystem II, most manganese oxides impair these regulatory mechanisms. Thus, the present findings may provide a new design rationale for functional analogues of the oxygen-evolving complex for efficient water splitting at neutral pH. PMID:24977746

  16. Indolizine Synthesis via Oxidative Cross-Coupling/Cyclization of Alkenes and 2-(Pyridin-2-yl)acetate Derivatives.

    PubMed

    Liu, Ren-Rong; Hong, Jian-Jun; Lu, Chuan-Jun; Xu, Meng; Gao, Jian-Rong; Jia, Yi-Xia

    2015-06-19

    A novel copper/I2-mediated oxidative cross-coupling/cyclization of 2-(pyridin-2-yl)acetate derivatives and simple olefins is developed, which provides a straightforward and efficient access to structural diversely indolizines. A series of 1,3-di- and 1,2,3-trisubstituted indolizines are easily synthesized in modest to excellent yields. PMID:26067488

  17. Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Akira; Inuzuka, Riko; Takashima, Toshihiro; Hayashi, Toru; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2014-06-01

    Manganese oxides have been extensively investigated as model systems for the oxygen-evolving complex of photosystem II. However, most bioinspired catalysts are inefficient at neutral pH and functional similarity to the oxygen-evolving complex has been rarely achieved with manganese. Here we report the regulation of proton-coupled electron transfer involved in water oxidation by manganese oxides. Pyridine and its derivatives, which have pKa values intermediate to the water ligand bound to manganese(II) and manganese(III), are used as proton-coupled electron transfer induction reagents. The induction of concerted proton-coupled electron transfer is demonstrated by the detection of deuterium kinetic isotope effects and compliance of the reactions with the libido rule. Although proton-coupled electron transfer regulation is essential for the facial redox change of manganese in photosystem II, most manganese oxides impair these regulatory mechanisms. Thus, the present findings may provide a new design rationale for functional analogues of the oxygen-evolving complex for efficient water splitting at neutral pH.

  18. Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH

    PubMed Central

    Yamaguchi, Akira; Inuzuka, Riko; Takashima, Toshihiro; Hayashi, Toru; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2014-01-01

    Manganese oxides have been extensively investigated as model systems for the oxygen-evolving complex of photosystem II. However, most bioinspired catalysts are inefficient at neutral pH and functional similarity to the oxygen-evolving complex has been rarely achieved with manganese. Here we report the regulation of proton-coupled electron transfer involved in water oxidation by manganese oxides. Pyridine and its derivatives, which have pKa values intermediate to the water ligand bound to manganese(II) and manganese(III), are used as proton-coupled electron transfer induction reagents. The induction of concerted proton-coupled electron transfer is demonstrated by the detection of deuterium kinetic isotope effects and compliance of the reactions with the libido rule. Although proton-coupled electron transfer regulation is essential for the facial redox change of manganese in photosystem II, most manganese oxides impair these regulatory mechanisms. Thus, the present findings may provide a new design rationale for functional analogues of the oxygen-evolving complex for efficient water splitting at neutral pH. PMID:24977746

  19. Characterization and evaluation of two-dimensional microfluidic chip-HPLC coupled to tandem mass spectrometry for quantitative analysis of 7-aminoflunitrazepam in human urine.

    PubMed

    Bai, Hsin-Yu; Lin, Shu-Ling; Chan, Shen-An; Fuh, Ming-Ren

    2010-10-01

    Microfluidic chip-based high-performance-liquid-chromatography coupled to mass spectrometry (chip-HPLC-MS) has been widely used in proteomic research due to its enhanced sensitivity. We employed a chip-HPLC-MS system for determining small molecules such as drug metabolites in biological fluids. This chip-HPLC-MS system integrates a microfluidic switch, a 2-dimensional column design including an enrichment column (160 nL) for sample pre-concentration and an analytical column for chromatographic separation, as well as a nanospray emitter on a single polyimide chip. In this study, a relatively large sample volume (500 nL) was injected into the enrichment column for pre-concentration and an additional 4 μL of the initial mobile phase was applied to remove un-retained components from the sample matrix prior to chromatographic separation. The 2-dimensional column design provides the advantages of online sample concentration and reducing matrix influence on MS detection. 7-Aminoflunitrazepam (7-aminoFM2), a major metabolite of flunitrazepam (FM2), was determined in urine samples using the integrated chip-HPLC-MS system. The linear range was 0.1-10 ng mL(-1) and the method detection limit (signal-to-noise ratio of 3) was 0.05 ng mL(-1) for 7-aminoFM2. After consecutive liquid-liquid extraction (LLE) and solid-phase extraction (SPE), the chip-HPLC-MS exhibited high correlation between 7-aminoFM2 spiked Milli-Q water and 7-aminoFM2 spiked urine samples. This system also showed good precision (n = 5) and recovery for spiked urine samples at the levels of 0.1, 1.0, and 10 ng mL(-1). Intra-day and inter-day precision were 2.0-7.1% and 4.3-6.0%, respectively. Clinical urine samples were also analyzed by this chip-HPLC-MS system and acceptable relative differences (-1.3 to -13.0%) compared with the results using a GC-MC method were determined. Due to its high sensitivity and ease of operation, the chip-HPLC-MS system can be utilized for the determination of small molecules such as drug metabolites and neurotransmitters in biological fluids for clinical diagnosis. PMID:20820494

  20. A novel validated procedure for the determination of nicotine, eight nicotine metabolites and two minor tobacco alkaloids in human plasma or urine by solid-phase extraction coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry.

    PubMed

    Miller, Eleanor I; Norris, Hye-Ryun K; Rollins, Douglas E; Tiffany, Stephen T; Wilkins, Diana G

    2010-03-15

    A novel validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) procedure was developed and fully validated for the simultaneous determination of nicotine-N-beta-D-glucuronide, cotinine-N-oxide, trans-3-hydroxycotinine, norcotinine, trans-nicotine-1'-oxide, cotinine, nornicotine, nicotine, anatabine, anabasine and cotinine-N-beta-D-glucuronide in human plasma or urine. Target analytes and corresponding deuterated internal standards were extracted by solid-phase extraction and analyzed by LC-MS/MS with electrospray ionization (ESI) using multiple reaction monitoring (MRM) data acquisition. Calibration curves were linear over the selected concentration ranges for each analyte, with calculated coefficients of determination (R(2)) of greater than 0.99. The total extraction recovery (%) was concentration dependent and ranged between 52-88% in plasma and 51-118% in urine. The limits of quantification for all analytes in plasma and urine were 1.0 ng/mL and 2.5 ng/mL, respectively, with the exception of cotinine-N-beta-D-glucuronide, which was 50 ng/mL. Intra-day and inter-day imprecision were < or = 14% and < or = 17%, respectively. Matrix effect (%) was sufficiently minimized to < or = 19% for both matrices using the described sample preparation and extraction methods. The target analytes were stable in both matrices for at least 3 freeze-thaw cycles, 24 h at room temperature, 24 h in the refrigerator (4 degrees C) and 1 week in the freezer (-20 degrees C). Reconstituted plasma and urine extracts were stable for at least 72 h storage in the liquid chromatography autosampler at 4 degrees C. The plasma procedure has been successfully applied in the quantitative determination of selected analytes in samples collected from nicotine-abstinent human participants as part of a pharmacokinetic study investigating biomarkers of nicotine use in plasma following controlled low dose (7 mg) transdermal nicotine delivery. Nicotine, cotinine, trans-3-hydroxycotinine and trans-nicotine-1'-oxide were detected in the particular sample presented herein. The urine procedure has been used to facilitate the monitoring of unauthorized tobacco use by clinical study participants at the time of physical examination (before enrollment) and on the pharmacokinetic study day. PMID:20097626

  1. A novel validated procedure for the determination of nicotine, eight nicotine metabolites and two minor tobacco alkaloids in human plasma or urine by solid-phase extraction coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry

    PubMed Central

    Miller, Eleanor I; Norris, Hye-Ryun K; Rollins, Douglas E; Tiffany, Stephen T; Wilkins, Diana G

    2010-01-01

    A novel validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) procedure was developed and fully validated for the simultaneous determination of nicotine-N-β-D-glucuronide, cotinine-N-oxide, trans-3-hydroxycotinine, norcotinine, trans-nicotine-1′-oxide, cotinine, nornicotine, nicotine, anatabine, anabasine and cotinine-N-β-D-glucuronide in human plasma or urine. Target analytes and corresponding deuterated internal standards were extracted by solid-phase extraction and analyzed by LC-MS/MS with electrospray ionization (ESI) using multiple reaction monitoring (MRM) data acquisition. Calibration curves were linear over the selected concentration ranges for each analyte, with calculated coefficients of determination (R2) of greater than 0.99. The total extraction recovery (%) was concentration dependent and ranged from 52–88 % in plasma and 51–118 % in urine. The limit of quantification for all analytes in plasma and urine were 1.0 ng/mL and 2.5 ng/mL respectively with the exception of cotinine-N-β-D-glucuronide which was 50 ng/mL. Intra-day and inter-day imprecision were ≤14 % and ≤17 % respectively. Matrix effect (%) was sufficiently minimized to ≤19 % for both matrices using the described sample preparation and extraction methods. The target analytes were stable in both matrices for at least 3 freeze thaw cycles, 24 hours at room temperature, 24 hours in the refrigerator (4 °C) and 1 week in the freezer (−20 °C). Reconstituted plasma and urine extracts were stable for at least 72 hours storage in the liquid chromatography autosampler at 4 °C. The plasma procedure has been successfully applied in the quantitative determination of selected analytes in samples collected from nicotine-abstinent human participants as part of a pharmacokinetic study investigating biomarkers of nicotine use in plasma following controlled low dose (7 mg) transdermal nicotine delivery. Nicotine, cotinine, trans-3-hydroxycotinine and trans-nicotine-1′-oxide were detected in the particular sample presented herein. The urine procedure has been used to facilitate the monitoring of unauthorized tobacco use by clinical study participants at the time of physical examination (before enrolment) and on the pharmacokinetic study day. PMID:20097626

  2. Analysis of the Benzene Oxide-DNA Adduct 7-Phenylguanine by Liquid Chromatography-Nanoelectrospray Ionization-High Resolution Tandem Mass Spectrometry-Parallel Reaction Monitoring: Application to DNA from Exposed Mice and Humans

    PubMed Central

    Zarth, Adam; Cheng, Guang; Zhang, Zhaobin; Wang, Mingyao; Villalta, Peter W.; Balbo, Silvia; Hecht, Stephen S.

    2014-01-01

    Benzene oxide, the initial metabolite of the human carcinogen benzene, reacts with DNA producing 7-phenylguanine (7-PhG) and other products. We developed a highly sensitive liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry-parallel reaction monitoring method for the analysis of 7-PhG in DNA. Accuracy and precision of the method were established and the detection limit was about 8 amol of 7-PhG injected on the column and less than 1 adduct per 109 nucleotides in DNA. 7-PhG was detected in calf thymus DNA reacted with 1 ?M to 10 mM benzene oxide. The method was applied for the analysis of DNA isolated from bone marrow, lung, and liver of B6C3F1 mice treated by gavage with 50 mg/kg benzene in corn oil 5 times weekly for 4 weeks. 7-PhG was not detected in any of these DNA samples. The method was applied to DNA from mouse hepatocytes exposed to 100 ?M benzene oxide and human TK-6 lymphoblasts exposed to 100 ?M, 1 mM, and 10 mM benzene oxide. 7-PhG was only detected in TK-6 cell DNA from the 10 mM exposure. The method was also applied to leukocyte DNA from 10 smokers and 10 nonsmokers. 7-PhG was detected in only one DNA sample, from a nonsmoker. The results of this study do not support the hypothesis that the benzene oxide-DNA adduct 7-PhG is involved in carcinogenesis by benzene. PMID:24632417

  3. A novel mechanism of bisphenol A removal during electro-enzymatic oxidative process: chain reactions from self-polymerization to cross-coupling oxidation.

    PubMed

    Li, Haitao; Zhao, He; Liu, Chenming; Li, Yuping; Cao, Hongbin; Zhang, Yi

    2013-08-01

    The catalyzed removal of bisphenol A (BPA) by a horseradish peroxidase (HRP) cathode in the presence of humic acid (HA) was investigated. At an optimal condition, the removal of BPA achieved 100% within 2min reaction. In the electro-enzymatic process, products were analyzed by high performance liquid chromatography with diode array detector (HPLC-DAD) and high performance size exclusion chromatography (HPSEC). HPLC-DAD results showed that BPA was oxidized into self-polymers and then self-polymers as important intermediate products decreased and disappeared. HPSEC results showed the order of molecular weight (MW): HA+BPA cross-coupling products>HA self-coupling products>initial HA. According to above results, a novel mechanism of BPA transformation in the presence of HA was proposed in electro-enzymatic process. In summary, under oxidation of in situ hydrogen peroxide on HRP electrode, the BPA first are polymerized into self-polymers, and then, the polymers may be incorporated into HA matrix and finally larger MW of BPAn-HA might be formed. The presence of HA can provide chain reactions from BPA self-polymerization to cross-coupling oxidation. Therefore, in the presence of HA, the electro-enzymatic oxidation is an effective way to improve BPA removal. PMID:23732003

  4. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode

    NASA Astrophysics Data System (ADS)

    Davids, Paul S.; Jarecki, Robert L.; Starbuck, Andrew; Burckel, D. Bruce; Kadlec, Emil A.; Ribaudo, Troy; Shaner, Eric A.; Peters, David W.

    2015-12-01

    Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification that can only be obtained by direct tunnelling. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon–phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal–oxide–semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W–1 cm–2 at ‑0.1 V.

  5. Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production

    PubMed Central

    Horvath, Samantha; Fernandez, Laura E.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2012-01-01

    The design of molecular electrocatalysts for H2 oxidation and production is important for the development of alternative renewable energy sources that are abundant, inexpensive, and environmentally benign. Recently, nickel-based molecular electrocatalysts with pendant amines that act as proton relays for the nickel center were shown to effectively catalyze H2 oxidation and production. We developed a quantum mechanical approach for studying proton-coupled electron transfer processes in these types of molecular electrocatalysts. This theoretical approach is applied to a nickel-based catalyst in which phosphorous atoms are directly bonded to the nickel center, and nitrogen atoms of the ligand rings act as proton relays. The catalytic step of interest involves electron transfer between the nickel complex and the electrode as well as intramolecular proton transfer between the nickel and nitrogen atoms. This process can occur sequentially, with either the electron or proton transferring first, or concertedly, with the electron and proton transferring simultaneously without a stable intermediate. The electrochemical rate constants are calculated as functions of overpotential for the concerted electron-proton transfer reaction and the two electron transfer reactions in the sequential mechanisms. Our calculations illustrate that the concerted electron-proton transfer standard rate constant will increase as the equilibrium distance between the nickel and nitrogen atoms decreases and as the pendant amines become more flexible to facilitate the contraction of this distance with a lower energy penalty. This approach identifies the favored mechanisms under various experimental conditions and provides insight into the impact of substituents on the nitrogen and phosphorous atoms. PMID:22529352

  6. Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production

    SciTech Connect

    Horvath, Samantha; Fernandez, Laura; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2012-09-25

    The design of molecular electrocatalysts for H2 oxidation and production is important for the development of alternative renewable energy sources that are abundant, inexpensive, and environmentally benign. Recently nickel-based molecular electrocatalysts with pendant amines that act as proton relays for the nickel center were shown to effectively catalyze H2 oxidation and production. We developed a quantum mechanical approach for studying proton-coupled electron transfer processes in these types of molecular electrocatalysts. This theoretical approach is applied to a nickel-based catalyst in which phosphorous atoms are directly bonded to the nickel center and nitrogen atoms of the ligand rings act as proton relays. The cataly c step of interest involves electron transfer between the nickel complex and the electrode as well as intramolecular proton transfer between the nickel and nitrogen atoms. This process can occur sequentially, with either the electron or proton transferring first, or concertedly, with the electron and proton transferring simultaneously without a stable intermediate. The heterogeneous rate constants are calculated as functions of overpotential for the concerted electron-proton transfer reaction and the two electron transfer reactions in the sequential mechanisms. Our calculations illustrate that the concerted electron-proton transfer standard rate constant will increase as the equilibrium distance between the nickel and nitrogen atoms decreases and as the nitrogen atoms become more mobile to facilitate the contraction of this distance. This approach assists in the identification of the favored mechanisms under various experimental conditions and provides insight into the qualitative impact of substituents on the nitrogen and phosphorous atoms. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under FWP 56073.

  7. NON-ENZYMATIC REDUCTION OF QUINONE METHIDES DURING OXIDATIVE COUPLING OF MONOLIGNOLS: IMPLICATIONS FOR THE ORIGIN OF BENZYL STRUCTURES IN LIGNINS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignin is believed to be synthesized by oxidative coupling of 4-hydroxyphenylpropanoids. In native lignin there are some types of reduced structures that cannot be explained by oxidative coupling. In the present work we showed via biomimetic model experiments that nicotinamide adenine dinucleotide (...

  8. A rapid and simple method for the simultaneous determination of four endogenous monoamine neurotransmitters in rat brain using hydrophilic interaction liquid chromatography coupled with atmospheric-pressure chemical ionization tandem mass spectrometry.

    PubMed

    Zhou, Wenbin; Zhu, Bangjie; Liu, Feng; Lyu, Chunming; Zhang, Shen; Yan, Chao; Cheng, Yu; Wei, Hai

    2015-10-01

    Endogenous monoamine neurotransmitters play an essential role in neural communication in mammalians. Many quantitative methods for endogenous monoamines have been developed during recent decades. Yet, matrix effect was usually a challenge in the quantification, in many cases asking for tedious sample preparation or sacrificing sensitivity. In this work, a simple, fast and sensitive method with no matrix effect was developed to simultaneously determine four endogenous monoamines including serotonin, dopamine, epinephrine and norepinephrine in rat brain tissues, using hydrophilic interaction liquid chromatography coupled with atmospheric-pressure chemical ionization tandem mass spectrometry. Various conditions, including columns, chromatographic conditions, ion source, MS/MS conditions, and brain tissue preparation methods, were optimized and validated. Pre-weighed 20mg brain sample could be effectively and reproducibly homogenized and protein-precipitated by 20 times value of 0.2% formic acid in cold organic solvents (methanol-acetonitrile, 10:90, v/v). This method exhibited excellent linearity for all analytes (regression coefficients>0.998 or 0.999). The precision, expressed as coefficients of variation, was less than 3.43% for intra-day analyses and ranged from 4.17% to 15.5% for inter-day analyses. Good performance was showed in limit of detection (between 0.3nM and 3.0nM for all analytes), recovery (90.8-120%), matrix effect (84.4-107%), accuracy (89.8-100%) and stability (88.3-104%). The validated method was well applied to simultaneously determine the endogenous serotonin, dopamine, epinephrine and norepinephrine in four brain sections of 18 Wistar rats. The quantification of four endogenous monoamines in rat brain performed excellently in the sensitivity, high throughput, simple sample preparation and matrix effect. PMID:26363373

  9. [Determination of L-dopa and dopamine in rat brain microdialysate by ultra high performance liquid chromatography-tandem mass spectrometry using stable isotope-coded derivatization coupled with dispersive liquid-liquid microextraction].

    PubMed

    Qi, Weimei; Zhao, Xian-en; Qi, Yong; Sun, Zhiwei; Chen, Guang; You, Jinmao; Suo, Yourui

    2015-09-01

    The sensitive detection method of levodopa (L-DOPA) and dopamine (DA) in rat brain microdialysate of Parkinson's disease (PD) is an essential tool for the clinical study and attenuated synergistic drug screening for L-DOPA from traditional Chinese medicines. Using d0/d3-10-methyl-acridone-2-sulfonyl chloride (d0/d3-MASC) as stable isotope derivatization reagent, a novel ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for L-DOPA and DA by stable isotope- coded derivatization coupled with ultrasonic-assisted dispersive liquid-liquid microextraction (UA-DLLME). d3-MASC (light) and d3-MASC (heavy) were used as derivatization reagents for microdialysate samples and standards, respectively. Mixtures of the two solutions were prepared by UA-DLLME for UHPLC-MS/MS analysis with multiple reaction monitoring (MRM) mode. With d3-MASC heavy derivatives as internal standards for corresponding light derivatives from samples, the stable isotope internal standard quantification for L-DOPA and DA was carried out. The stable derivatives were obtained in aqueous acetonitrile (pH 10.8 sodium carbonate-sodium bicarbonate buffer) at 37 C for 3.0 min, and then were separated within 2.0 min using gradient elution. Linear range was 0.20-1500.0 nmol/L (R > 0.994). LODs were 0.005 and 0.009 nmol/L for DA and L-DOPA (S/N = 3), respectively. This method was validated, and it showed obvious advantages in comparing with the reported methods in terms of sensitivity, analysis speed and anti-matrix interference. This method has been successfully applied to the study of effect of Shouwu Fang on L-DOPA and DA concentration fluctuations in PD rat brain microdialysate. PMID:26753287

  10. Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Huntscha, Sebastian; Singer, Heinz P; McArdell, Christa S; Frank, Carolin E; Hollender, Juliane

    2012-12-14

    An automated multiresidue method consisting of an online solid-phase extraction step coupled to a high performance liquid chromatography-tandem mass spectrometer (online-SPE-HPLC-MS/MS method) was developed for the determination of 88 polar organic micropollutants with a broad range of physicochemical properties (logD(OW) (pH 7): -4.2 to 4.2). Based on theoretical considerations, a single mixed-bed multilayer cartridge containing four different extraction materials was composed for the automated enrichment of water samples. This allowed the simultaneous analysis of pesticides, biocides, pharmaceuticals, corrosion inhibitors, many of their transformation products, and the artificial sweetener sucralose in three matrices groundwater, surface water, and wastewater. Limits of quantification (LOQs) were in the environmentally relevant concentration range of 0.1-87 ng/L for groundwater and surface water, and 1.5-206 ng/L for wastewater. The majority of the compounds could be quantified below 10 ng/L in groundwater (82%) and surface water (80%) and below 100 ng/L in wastewater (80%). Relative recoveries were largely between 80 and 120%. Intraday and inter-day precision, expressed as relative standard deviation, were generally better than 10% and 20%, respectively. 50 isotope labeled internal standards were used for quantification and accordingly, relative recoveries as well as intraday and inter-day precision were better for compounds with corresponding internal standard. The applicability of this method was shown during a sampling campaign at a riverbank filtration site for drinking water production with travel times of up to 5 days. 36 substances of all compound classes investigated could be found in concentrations between 0.1 and 600 ng/L. The results revealed the persistence of carbamazepine and sucralose in the groundwater aquifer as well as degradation of the metamizole metabolite 4-acetamidoantipyrine. PMID:23137864

  11. Identification and fragmentation pathways of caffeine metabolites in urine samples via liquid chromatography with positive electrospray ionization coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry.

    PubMed

    Bianco, Giuliana; Abate, Salvatore; Labella, Cristiana; Cataldi, Tommaso R I

    2009-04-01

    Liquid chromatography (LC) with positive ion electrospray ionization (ESI+) coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) was employed for the simultaneous determination of caffeine and its metabolites in human urine within a single chromatographic run. LC/ESI-FTICRMS led to the unambiguous determination of the molecular masses of the studied compounds without interference from other biomolecules. A systematic and comprehensive study of the mass spectral behaviour of caffeine and its fourteen metabolites by tandem mass spectrometry (MS/MS) was performed, through in-source ion trap collision-induced dissociation (CID) of the protonated molecules, [M+H](+). A retro-Diels-Alder (RDA) process along with ring-contraction reactions were the major fragmentation pathways observed during CID. The base peak of xanthine precursors originates from the loss of methyl isocyanate (CH(3)NCO, 57 Da) or isocyanic acid (HNCO, 43 Da), which in turn lose a CO unit. Also uric acid derivatives shared a RDA rearrangement as a common fragmentation process and a successive loss of CO(2) or CO. The uracil derivatives showed a loss of a ketene unit (CH(2)CO, 42 Da) from the protonated molecule along with the loss of H(2)O or CO. To assess the potential of the present method three established metabolite ratios to measure P450 CYP1A2, N-acetyltransferase and xanthine oxidase activities were evaluated by a number of identified metabolites from healthy human urine samples after caffeine intake. PMID:19260028

  12. Quantification of endogenous brassinosteroids in plant by on-line two-dimensional microscale solid phase extraction-on column derivatization coupled with high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Wu, Qian; Wu, Dapeng; Shen, Zheng; Duan, Chunfeng; Guan, Yafeng

    2013-07-01

    An on-line two-dimensional microscale solid phase extraction (2D?SPE)-on column derivatization (OCD)-high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) method was developed for quantification of brassinosteroids (BRs) in plant tissues. Five BRs with widest distribution in plant species and high bioactivity (24-epibrassinolide, 24-epicastasterone, 6-deoxo-24-epicastasterone, teasterone and typhastero) were selected as target analytes. 2D?SPE column packed sequentially with phenyl boronic acid silica sorbent (the first dimension) and C18 silica sorbent (the second dimension) was used to selectively extract and enrich BRs by 110-146 times. OCD was carried out on the second dimension of 2D?SPE column with m-aminophenylboronic acid (m-APBA) as a derivatization reagent, enhancing the sensitivity of MS/MS to BRs by 13-8437 times. It was also found that pre-trap of derivatization reagent on the C18 section of 2D?SPE column could increase reaction efficiency by 3-10 times. The whole process time of the on-line system was less than 30min. The detection limits of the method for five BRs were between 1.4 and 6.6pg with RSDs less than 10%. Endogeneous BRs in tomato leaves were analyzed by using this method. Owing to the high selectivity of this on-line 2D?SPE system, BRs in plant extracts could be quantified using matrix-free standard calibration method with relative recoveries in the range of 80-124%. PMID:23702098

  13. Direct determination of glyphosate and its major metabolite, aminomethylphosphonic acid, in fruits and vegetables by mixed-mode hydrophilic interaction/weak anion-exchange liquid chromatography coupled with electrospray tandem mass spectrometry.

    PubMed

    Chen, Ming-Xue; Cao, Zhao-Yun; Jiang, Yan; Zhu, Zhi-Wei

    2013-01-11

    A novel method was developed for the direct, sensitive, and rapid determination of glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), in fruit and vegetable samples by mixed-mode hydrophilic interaction/weak anion-exchange liquid chromatography (HILIC/WAX) coupled with electrospray tandem mass spectrometry (ESI-MS/MS). Homogenized samples were extracted with water, without derivatization or further clean-up, and the extracts were injected directly onto the Asahipak NH2P-50 4E column (250 mm 4.6 mm i.d., 5 ?m). The best results were obtained when the column was operated under mixed-mode HILIC/WAX elution conditions. An initial 10-min washing step with acetonitrile/water (10:90, v/v) in HILIC mode was used to remove potentially interfering compounds, and then the analytes were eluted in WAX mode with acetonitrile and water containing 0.1 molL(-1) ammonium hydroxide under gradient elution for the ESI analysis in negative ion mode. Limits of quantification of glyphosate and AMPA were 5 ?gkg(-1) and 50 ?gkg(-1), respectively, with limits of detection as low as 1.2 ?gkg(-1) for glyphosate and 15 ?gkg(-1) for AMPA. The linearity was satisfactory, with correlation coefficients (r)>0.9966. Recovery studies were carried out on spiked matrices (6 vegetables, 3 fruits) with glyphosate at four concentrations and AMPA at three concentrations. The mean recoveries for glyphosate and AMPA were 75.3-110% and 76.1-110%, respectively, with relative standard deviations in the range of 1.1-13.8%. The intra-day precision (n=7) for glyphosate and AMPA in vegetable and fruit samples spiked at an intermediate level between 5.9% and 7.5%, and the inter-day precision over 11 days (n=11) was between 7.0% and 13%. PMID:23261284

  14. Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent.

    PubMed

    Zhang, Xiao; Zhu, Mingshan; Chen, Penglei; Li, Yongjun; Liu, Huibiao; Li, Yuliang; Liu, Minghua

    2015-01-14

    Advanced functional hybrids based on carbon materials (CMs) represent one of the main achievements of scientific communities. To achieve the hybridization, pristine CMs have to be chemically modified, or surfactants, which are nonfunctional for the performances of the hybrids, have to be employed as a cross-linkage. The construction of pristine CM-based hybrids using dual-functional coupling reagents, which work not only as a glue for hybridization but also as a functional component for enhanced performance, is strongly desired. Here, we report that pristine graphdiyne (GD), a recently synthesized new carbon allotrope, can be facilely hybridized with Ag/AgBr using graphene oxide (GO) as a cross-linkage. We demonstrate that compared to Ag/AgBr, Ag/AgBr/GO, and Ag/AgBr/GD, our Ag/AgBr/GO/GD exhibits an enhanced photocatalytic performance toward the degradation of methyl orange (MO) pollutant under visible light irradiation. In our Ag/AgBr/GO/GD, GO serves not only as a glue for a successful hybridization, but also as a functional component for enhanced catalytic performance. Beyond GD, our work likely paves a new avenue for the fabrication of advanced functional hybrids based on pristine carbon allotropes, wherein desired functions or properties might be achieved by choosing desired CMs and desired hybridized components. PMID:25418916

  15. Simvastatin Re-Couples Dysfunctional Endothelial Nitric Oxide Synthase in Experimental Subarachnoid Hemorrhage

    PubMed Central

    Sabri, Mohammed; Ai, Jinglu; Marsden, Philip A.; Macdonald, R. Loch

    2011-01-01

    Reduced endothelial nitric oxide synthase (eNOS) function has been linked to secondary complications of subarachnoid hemorrhage (SAH). We previously found that there is increased eNOS function after SAH but that it is uncoupled, leading to secondary complications such as vasospasm, microthromboembolism and neuronal apoptosis. Here we test the hypothesis that recoupling eNOS with simvastatin can prevent these complications. SAH was created in mice that were treated with vehicle or simvastatin starting 2 weeks before or 30 minutes after SAH. SAH increased phosphorylated eNOS which was prevented by pre- or post-treatment with simvastatin. Simvastatin pre-treatment also prevented the increase in eNOS monomer formation that was associated with SAH, decreased superoxide anion radical production and increased NO. These changes were associated with decreased vasospasm, microthromboemboli and neuronal injury. The data suggest that simvastatin re-couples eNOS after SAH, leading to decreased secondary complications such as vasospasm, microthromboemboli and neuronal injury. PMID:21373645

  16. Defect healing of reduced graphene oxide via intramolecular cross-dehydrogenative coupling.

    PubMed

    Park, Ok-Kyung; Choi, Yong-Mun; Hwang, Jun Yeon; Yang, Cheol-Min; Kim, Tea-Wook; You, Nam-Ho; Koo, Hye Young; Lee, Joong Hee; Ku, Bon-Cheol; Goh, Munju

    2013-05-10

    A chemical defect healing of reduced graphene oxide (RGO) was carried out via intramolecular cross-dehydrogenative coupling (ICDC) with FeCl3 at room temperature. The Raman intensity ratio of the G-band to the D-band, the IG/ID ratio, of the RGO was increased from 0.77 to 1.64 after the ICDC reaction. From XPS measurements, the AC=C/AC-C ratio, where the peak intensities from the C=C and C-C bonds are abbreviated as AC=C and AC-C, of the RGO was increased from 2.88 to 3.79. These results demonstrate that the relative amount of sp(2)-hybridized carbon atoms is increased by the ICDC reaction. It is of great interest that after the ICDC reaction the electrical conductivity of the RGO was improved to 71 S cm(-1), which is 14 times higher than that of as-prepared RGO (5 S cm(-1)). PMID:23579433

  17. Utilization of the dilute acidic sulfate effluent as resources by coupling solvent extraction-oxidation-hydrolysis.

    PubMed

    Ren, Xiulian; Wei, Qifeng; Chen, Yongxing; Guo, Jingjing; Wei, Sijie; Wang, Xiaofei

    2015-12-15

    The pollution risk of dilute acidic sulfate effluent (DASE),which is discharged from titanium dioxide factories heavily every year, has sparked the recycling of sulfuric acid, iron and water. In this study, a new green recovery process for the DASE is proposed based on coupling solventextraction-oxidation-hydrolysis. Compared to the conventional ways, this innovative method allows the effective extraction of sulfuric acid and the precipitation of FexOy·nH2O in onestep without adding inorganic neutralizer or precipitant. Trioctylamine (TOA) in kerosene (20-50%) was used as an organic phase for solvent extraction. The hydrolytic productions and the raffinate purified by a cation exchange were evaluated using XRD and ICP-OES, respectively. The initial pH of 0.63 and Fe(II) concentration of 0.1mol/L in the DASE, the volume ratio of organic toaqueous phase (O/A) of 3/1, and reaction temperature of 25°C were determined as the optimal conditions. Under this conditions, Fe(II) was transformed as yellow precipitation which was characterized as α-FeOOH, and pH of raffinate was in the range of 3.6-3.8. PMID:26282088

  18. Oxidative coupling of phenols on activated carbon. Impact on adsorption equilibrium

    SciTech Connect

    Vidic, R.D. ); Suldan, M.T. ); Brenner, R.C. )

    1993-10-01

    Previously reported results by the authors revealed that the presence of molecular oxygen (oxic conditions) in the test environment can, in some instances, cause up to a 3-fold increase in the adsorptive capacity of granular activated carbon (GAC) for phenolic compounds. It was discovered that these compounds undergo oxidative coupling on the carbon surface under oxic conditions. The polymers formed as a result of these chemical reactions are very difficult to desorb from the surface of GAC. This led to significant irreversible adsorption in the presence of molecular oxygen. On the other hand, when the same compounds are adsorbed on the carbon surface under anoxic conditions, essentially all of the adsorbate can be recovered from the carbon surface by solvent extraction. The ionized species of phenolic compounds showed even higher susceptibility toward polymerization on the surface of GAC than the parent neutral molecules. GAC particle size did not influence the extent of polymerization. Oxygen uptake measurements revealed significant consumption of molecular oxygen during the adsorption of phenolic compounds. The amount of molecular oxygen consumed in these experiments was found to be linearly proportional to the amount of irreversibly adsorbed compound. 36 refs., 13 figs., 1 tab.

  19. Biological oxidation of Fe(II) in reduced nontronite coupled with nitrate reduction by Pseudogulbenkiania sp. Strain 2002

    NASA Astrophysics Data System (ADS)

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi; Agrawal, Abinash; Liu, Deng; Zhang, Jing; Edelmann, Richard E.

    2013-10-01

    The importance of microbial nitrate-dependent Fe(II) oxidation to iron biogeochemistry is well recognized. Past research has focused on oxidation of aqueous Fe2+ and structural Fe(II) in oxides, carbonates, and phosphate, but the importance of structural Fe(II) in phyllosilicates in this reaction is only recently studied. However, the effect of clay mineralogy on the rate and the mechanism of the reaction, and subsequent mineralogical end products are still poorly known. The objective of this research was to study the coupled process of microbial oxidation of Fe(II) in clay mineral nontronite (NAu-2), and nitrate reduction by Pseudogulbenkiania species strain 2002, and to determine mineralogical changes associated with this process. Bio-oxidation experiments were conducted using Fe(II) in microbially reduced nontronite as electron donor and nitrate as electron acceptor in bicarbonate-buffered medium under both growth and nongrowth conditions to investigate cell growth on this process. The extents of Fe(II) oxidation and nitrate reduction were measured by wet chemical methods. X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and 57Fe-Mössbauer spectroscopy were used to observe mineralogical changes associated with Fe(III) reduction and Fe(II) oxidation in NAu-2. The bio-oxidation extent under growth and nongrowth conditions reached 67% and 57%, respectively. Over the same time period, nitrate was completely reduced under both conditions to nitrogen gas (N2), via an intermediate product nitrite. Abiotic oxidation by nitrite partly accelerated Fe(II) oxidation rate under the growth condition. The oxidized Fe(III) largely remained in the nontronite structure, but secondary minerals such as vivianite, ferrihydrite, and magnetite formed depending on specific experimental conditions. The results of this study highlight the importance of iron-bearing clay minerals in the global nitrogen cycle with potential applications in nitrate removal in natural environments.

  20. Characterization of procyanidin B2 oxidation products in an apple juice model solution and confirmation of their presence in apple juice by high-performance liquid chromatography coupled to electrospray ion trap mass spectrometry.

    PubMed

    Poupard, Pascal; Sanoner, Philippe; Baron, Alain; Renard, Catherine M G C; Guyot, Sylvain

    2011-11-01

    Procyanidins (i.e. condensed tannins) are polyphenols commonly found in fruits. During juice and cider making, apple polyphenol oxidase catalyzes the oxidation of caffeoylquinic acid (CQA) into its corresponding o-quinone which further reacts with procyanidins and other polyphenols, leading to the formation of numerous oxidation products. However, the structure and the reaction pathways of these neoformed phenolic compounds are still largely unknown. Experiments were carried out on a model system to gain insights into the chemical processes occurring during the initial steps of fruit processing. Procyanidin B2 was oxidized by caffeoylquinic acid o-quinone (CQAoq) in an apple juice model solution. The reaction products were monitored using high performance liquid chromatography (HPLC) coupled to ultraviolet (UV)-visible and electrospray tandem mass spectrometry (ESI-MS/MS) in the negative mode. Oxidative conversion of procyanidin B2 ([M-H](-) at m/z 577) into procyanidin A2 at m/z 575 was unambiguously confirmed. In addition, several classes of products were characterized by their deprotonated molecules ([M-H](-)) and their MS/MS fragmentation patterns: hetero-dimers (m/z 929) and homo-dimers (m/z 1153 and 705) resulting from dimerization involving procyanidin and CQA molecules; intramolecular addition products at m/z 575, 573, 927, 1151 and 703. Interestingly, no extensive polymerization was observed. Analysis of a cider apple juice enabled comparison with the results obtained on a biosynthetic model solution. However, procyanidin A2 did not accumulate but seemed to be an intermediate in the formation of an end-product at m/z 573 for which two structural hypotheses are given. These structural modifications of native polyphenols as a consequence of oxidation probably have an impact on the organoleptic and nutritional properties of apple juices and other apple-derived foods. PMID:22124992

  1. Rapid and automated analysis of aflatoxin M1 in milk and dairy products by online solid phase extraction coupled to ultra-high-pressure-liquid-chromatography tandem mass spectrometry.

    PubMed

    Campone, Luca; Piccinelli, Anna Lisa; Celano, Rita; Pagano, Imma; Russo, Mariateresa; Rastrelli, Luca

    2016-01-01

    This study reports a fast and automated analytical procedure for the analysis of aflatoxin M1 (AFM1) in milk and dairy products. The method is based on the simultaneous protein precipitation and AFM1 extraction, by salt-induced liquid-liquid extraction (SI-LLE), followed by an online solid-phase extraction (online SPE) coupled to ultra-high-pressure-liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis to the automatic pre-concentration, clean up and sensitive and selective determination of AFM1. The main parameters affecting the extraction efficiency and accuracy of the analytical method were studied in detail. In the optimal conditions, acetonitrile and NaCl were used as extraction/denaturant solvent and salting-out agent in SI-LLE, respectively. After centrifugation, the organic phase (acetonitrile) was diluted with water (1:9 v/v) and purified (1mL) by online C18 cartridge coupled with an UHPLC column. Finally, selected reaction monitoring (SRM) acquisition mode was applied to the detection of AFM1. Validation studies were carried out on different dairy products (whole and skimmed cow milk, yogurt, goat milk, and powder infant formula), providing method quantification limits about 25 times lower than AFM1 maximum levels permitted by EU regulation 1881/2006 in milk and dairy products for direct human consumption. Recoveries (86-102%) and repeatability (RSD<3, n=6) meet the performance criteria required by EU regulation N. 401/2006 for the determination of the levels of mycotoxins in foodstuffs. Moreover, no matrix effects were observed in the different milk and dairy products studied. The proposed method improves the performance of AFM1 analysis in milk samples as AFM1 determination is performed with a degree of accuracy higher than the conventional methods. Other advantages are the reduction of sample preparation procedure, time and cost of the analysis, enabling high sample throughput that meet the current concerns of food safety and the public health protection. PMID:26589945

  2. Controls on N2 production via iron reduction coupled to anaerobic ammonium oxidation

    NASA Astrophysics Data System (ADS)

    Yang, W. H.; Weber, K.; Silver, W. L.

    2011-12-01

    Iron (Fe) reduction coupled to anaerobic ammonium (NH4+) oxidation is a novel nitrogen (N) cycling pathway that can lead to ecosystem N loss via production of dinitrogen (N2), nitrate (NO3-), or nitrite (NO2-). This pathway, termed Feammox, can short circuit the N cycle via direct N2 production or lead to N2O and N2 production via denitrification of Feammox-generated NO2- and NO3-. Theoretically, Feammox becomes less thermodynamically favorable as pH increases, with pH 6.5 as the threshold for favorability of Feammox to NO2- or NO3-. Availability of iron oxides may also limit Feammox rates because high labile C availability drives high Fe reduction rates under anaerobic soil conditions. In contrast, NH4+ availability may not be a strong control on Feammox rates if gross mineralization and/or dissimilatory NO3- reduction to NH4+ continue to produce NH4+ under anaerobic conditions. We performed laboratory experiments using surface soils (0-10 cm depth) from the Luquillo Experimental Forest, Puerto Rico to investigate the controls on Feammox rates. Soil slurries were pre-incubated in an oxygen (O2)-free glove box for 6 days to deplete background O2, NO2-, and NO3-. We measured the 30N2 mole fraction of produced N2 at 24 hours after the addition of either 15NH4+ alone or 15NH4+ in stoichiometric equivalency with an amorphous Fe(III) gel (HFO) to the soil slurries (n = 8). Feammox rates were conservatively estimated from 30N2 alone because 30N2 production could result only from Feammox of 15NH4+ whereas 29N2 production could result from a variety of pathways. In soils at pH 4.27 0.02, we measured rates of Feammox ranging from 0.32 0.13 ?g N g-1 d-1 ( SE), following 15NH4+ addition alone, to 1.20 0.28 ?g N g-1 d-1 with the addition of both 15NH4+ and Fe(III). In soils at pH 6.12 0.03, Feammox rates ranged from 0.03 0.01 ?g N g-1 d-1, following 15NH4+ addition alone, to 0.02 0.01 ?g N g-1 d-1 with the addition of both 15NH4+ and Fe(III). Our data suggest that the threshold for thermodynamic favorability of Feammox may be lower than calculated (~6.2) and that the Fe oxide limitation of Feammox rates is less important at high pH. Feammox is most likely to occur in highly weathered soils rich in poorly crystalline Fe that experience fluctuating redox conditions so that Fe oxides are replenished and relatively low pH conditions are restored during oxic periods.

  3. A dual-cathode electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation.

    PubMed

    Chu, Y Y; Qian, Y; Wang, W J; Deng, X L

    2012-01-15

    The degradation of 4-nitrophenol was investigated using a novel electrochemical oxidation system, in which the anodic oxidation at Ti/SnO(2)-Sb(2)O(5)-IrO(2) electrode and the electro-Fenton oxidation with two cathodes were involved. In this system, gas diffusion electrode (GDE) was used to generate H(2)O(2) by O(2) reduction and graphite electrode was employed for the reduction of Fe(3+) regenerating Fe(2+). When the potential values of GDE and graphite cathode were controlled at -0.80 and -0.10 V/SCE respectively, the optimum Fe(2+) concentration for 4-nitrophenol degradation was about 0.10mM, much lower than the concentration of 0.25 mM obtained in the single-cathode system. Due to the combination of electro-Fenton oxidation and anodic oxidation, an effective degradation and a high mineralization current efficiency (MCE) were achieved. After 600 min treatment, 74.5% of the original TOC was removed by the dual-cathode oxidation system. Moreover, it was confirmed that 57.0% of the original nitrogen could be removed in gaseous form from the simulated wastewater. These results indicate that this electrochemical oxidation process might provide an alternative for the degradation of organic pollutants. PMID:22104767

  4. Tuning the Reactivity of Radical through a Triplet Diradical Cu(II) Intermediate in Radical Oxidative Cross-Coupling

    NASA Astrophysics Data System (ADS)

    Zhou, Liangliang; Yi, Hong; Zhu, Lei; Qi, Xiaotian; Jiang, Hanpeng; Liu, Chao; Feng, Yuqi; Lan, Yu; Lei, Aiwen

    2015-11-01

    Highly selective radical/radical cross-coupling is paid more attention in bond formations. However, due to their intrinsic active properties, radical species are apt to achieve homo-coupling instead of cross-coupling, which makes the selective cross-coupling as a great challenge and almost untouched. Herein a notable strategy to accomplish direct radical/radical oxidative cross-coupling has been demonstrated, that is metal tuning a transient radical to a persistent radical intermediate followed by coupling with another transient radical. Here, a transient nitrogen-centered radical is tuned to a persistent radical complex by copper catalyst, followed by coupling with a transient allylic carbon-centered radical. Firstly, nitrogen-centered radical generated from N-methoxybenzamide stabilized by copper catalyst was successfully observed by EPR. Then DFT calculations revealed that a triplet diradical Cu(II) complex formed from the chelation N-methoxybenzamide nitrogen-centered radical to Cu(II) is a persistent radical species. Moreover, conceivable nitrogen-centered radical Cu(II) complex was observed by high-resolution electrospray ionization mass spectrometry (ESI-MS). Ultimately, various allylic amides derivatives were obtained in good yields by adopting this strategy, which might inspire a novel and promising landscape in radical chemistry.

  5. Tuning the Reactivity of Radical through a Triplet Diradical Cu(II) Intermediate in Radical Oxidative Cross-Coupling

    PubMed Central

    Zhou, Liangliang; Yi, Hong; Zhu, Lei; Qi, Xiaotian; Jiang, Hanpeng; Liu, Chao; Feng, Yuqi; Lan, Yu; Lei, Aiwen

    2015-01-01

    Highly selective radical/radical cross-coupling is paid more attention in bond formations. However, due to their intrinsic active properties, radical species are apt to achieve homo-coupling instead of cross-coupling, which makes the selective cross-coupling as a great challenge and almost untouched. Herein a notable strategy to accomplish direct radical/radical oxidative cross-coupling has been demonstrated, that is metal tuning a transient radical to a persistent radical intermediate followed by coupling with another transient radical. Here, a transient nitrogen-centered radical is tuned to a persistent radical complex by copper catalyst, followed by coupling with a transient allylic carbon-centered radical. Firstly, nitrogen-centered radical generated from N-methoxybenzamide stabilized by copper catalyst was successfully observed by EPR. Then DFT calculations revealed that a triplet diradical Cu(II) complex formed from the chelation N-methoxybenzamide nitrogen-centered radical to Cu(II) is a persistent radical species. Moreover, conceivable nitrogen-centered radical Cu(II) complex was observed by high-resolution electrospray ionization mass spectrometry (ESI-MS). Ultimately, various allylic amides derivatives were obtained in good yields by adopting this strategy, which might inspire a novel and promising landscape in radical chemistry. PMID:26525888

  6. Acetaldehyde partial oxidation on the Au(111) model catalyst surface: C-C bond activation and formation of methyl acetate as an oxidative coupling product

    NASA Astrophysics Data System (ADS)

    Karatok, Mustafa; Vovk, Evgeny I.; Shah, Asad A.; Turksoy, Abdurrahman; Ozensoy, Emrah

    2015-11-01

    Partial oxidation of acetaldehyde (CH3CHO) on the oxygen pre-covered Au(111) single crystal model catalyst was investigated via Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction Spectroscopy (TPRS) techniques, where ozone (O3) was utilized as the oxygen delivery agent providing atomic oxygen to the reacting surface. We show that for low exposures of O3 and small surface oxygen coverages, two partial oxidation products namely, methyl acetate (CH3COOCH3) and acetic acid (CH3COOH) can be generated without the formation of significant quantities of carbon dioxide. The formation of methyl acetate as the oxidative coupling reaction product implies that oxygen pre-covered Au(111) single crystal model catalyst surface can activate C-C bonds. In addition to the generation of these products; indications of the polymerization of acetaldehyde on the gold surface were also observed as an additional reaction route competing with the partial and total oxidation pathways. The interplay between the partial oxidation, total oxidation and polymerization pathways reveals the complex catalytic chemistry associated with the interaction between the acetaldehyde and atomic oxygen on catalytic gold surfaces.

  7. Alpha-ketoglutarate dehydrogenase and glutamate dehydrogenase work in tandem to modulate the antioxidant alpha-ketoglutarate during oxidative stress in Pseudomonas fluorescens.

    PubMed

    Mailloux, Ryan J; Singh, Ranji; Brewer, Guy; Auger, Christopher; Lemire, Joseph; Appanna, Vasu D

    2009-06-01

    Alpha-ketoglutarate (KG) is a crucial metabolite in all living organisms, as it participates in a variety of biochemical processes. We have previously shown that this keto acid is an antioxidant and plays a key role in the detoxification of reactive oxygen species (ROS). In an effort to further confirm this intriguing phenomenon, Pseudomonas fluorescens was exposed to menadione-containing media, with various amino acids as the sources of nitrogen. Here, we demonstrate that KG dehydrogenase (KGDH) and NAD-dependent glutamate dehydrogenase (GDH) work in tandem to modulate KG homeostasis. While KGDH was sharply decreased in cells challenged with menadione, GDH was markedly increased in cultures containing arginine (Arg), glutamate (Glu), and proline (Pro). When ammonium (NH(4)) was utilized as the nitrogen source, both KGDH and GDH levels were diminished. These enzymatic profiles were reversed when control cells were incubated in menadione media. (13)C nuclear magnetic resonance and high-performance liquid chromatography studies revealed how KG was utilized to eliminate ROS with the concomitant formation of succinate. The accumulation of KG in the menadione-treated cells was dependent on the redox status of the lipoic acid residue in KGDH. Indeed, the treatment of cellular extracts from the menadione-exposed cells with dithiothreitol, a reducing agent, partially restored the activity of KGDH. Taken together, these data reveal that KG is pivotal to the antioxidative defense strategy of P. fluorescens and also point to the ROS-sensing role for KGDH. PMID:19376872

  8. Coupling between crystal structure and magnetism in transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Barton, Phillip Thomas

    Transition-metal oxides exhibit a fascinating array of phenomena ranging from superconductivity to negative thermal expansion to catalysis. This dissertation focuses on magnetism, which is integral to engineering applications such as data storage, electric motors/generators, and transformers. The investigative approach follows structure-property relationships from materials science and draws on intuition from solid-state chemistry. The interplay between crystal structure and magnetic properties is studied experimentally in order to enhance the understanding of magnetostructural coupling mechanisms and provide insight into avenues for tuning behavior. A combination of diffraction and physical property measurements were used to study structural and magnetic phase transitions as a function of chemical composition, temperature, and magnetic field. The systems examined are of importance in Li-ion battery electrochemistry, condensed-matter physics, solid-state chemistry, and p-type transparent conducting oxides. The materials were prepared by solid-state reaction of powder reagents at high temperatures for periods lasting tens of hours. The first project discussed is of a solid solution between NiO, a correlated insulator, and LiNiO2, a layered battery cathode. Despite the deceptive structural and compositional simplicity of this system, a complete understanding of its complex magnetic properties has remained elusive. This study shows that nanoscale domains of chemical order form at intermediate compositions, creating interfaces between antiferromagnetism and ferrimagnetism that give rise to magnetic exchange bias. A simple model of the magnetism is presented along with a comprehensive phase diagram. The second set of investigations focus on the Ge-Co-O system where the spin-orbit coupling of Co(II) plays a significant role. GeCo2O 4 is reported to exhibit unusual magnetic behavior that arises from Ising spin in its spinel crystal structure. Studies by variable-temperature synchrotron X-ray diffraction reveal a magnetostructural transition and capacitance measurements show evidence for magnetodielectric behavior. The above work uncovered a Co10Ge3O16 phase that had a known structure but whose physical properties were largely uncharacterized. This project examined its metamagnetic properties using detailed magnetometry experiments. Upon the application of a magnetic field, this material goes through a first-order phase transition from a noncollinear antiferromagnet to an unknown ferrimagnetic state. Lastly, this thesis explored the chemical dilution of magnetism in some perovskite and delafossite solid solutions. In the perovskite structure, compositions intermediate to the endmembers SrRuO3, a ferromagnetic metal, and LaRhO3, a diamagnetic semiconductor, were investigated. While the magnetism of this system is poised between localized and itinerant behavior, a compositionally-driven metal to insulator transition, revealed by electrical resistivity measurements, did not strongly impact the magnetic properties. Instead, both octahedral tilting and magnetic dilution had strong effects, and comparison of this characterization to Sr1-- x CaxRuO3 reinforces the important role of structural distortions in determining magnetic ground state. The final materials studied were of composition CuAl1-- xCrxO2 (0 < x < 1) in the delafossite structure. The primary interest was the geometric frustration of antiferromagnetism in CuCrO 2 and significant short-range correlations were observed above TN. The analysis found that reducing the number of degenerate states through Al substitution did not enhance magnetic ordering because of the weakening of magnetic exchange.

  9. Catalytic properties of oxygen semipermeable perovskite-type ceramic membrane materials for oxidative coupling of methane

    SciTech Connect

    Lin, Y.S.; Zeng, Y.

    1996-11-01

    The catalytic properties for the oxidative coupling of methane (OCM) of La{sub 0.8}Sr{sub 0.2}CoO{sub 3} (LSC) and SrCo{sub 0.8}Fe{sub 0.2}O{sub 3}(SCF) in solid solution were studied and compared with those of 5 wt% Li/MgO, using a steady/unsteady state packed-bed reactor and a transient microbalance. The results of the steady-state cofeed experiments show that LSC possesses OCM catalytic properties similar to those of Li/MgO in terms of C{sub 2} yield and selectivity at temperatures of around 800 C. The former gives a larger C{sub 2} space time yield than the latter. SCF exhibits poor OCM catalytic properties at 700-850{degrees}C. To further examine the suitability of LSC as a membrane material for use in a dense membrane reactor for OCM, the instant OCM selectivity and activity and oxygen consumption rate for LSC and 5% Li/MgO on exposure to pure methane in cyclic feed mode were measured respectively at 850{degrees}C and 800{degrees}C. For both materials, the unsteady-state cyclic feed operation gives a smaller initial OCM activity and larger initial C{sub 2} selectivity than the cofeed steady state operation. Li/MgO quickly loses its OCM activity and selectivity in the unsteady state operation due to rapid consumption of the active sites. Up to 5 min of methane run time, LSC maintains appreciable OCM activity with poorer C{sub 2} selectivity as compared to the steady state cofeed operation. The surface of LSC membrane at low oxygen partial pressure may become nonselective for OCM in membrane reactor applications. 48 refs., 12 figs., 4 tabs.

  10. Pd-Catalyzed Aerobic Oxidative Coupling of Arenes: Evidence for Transmetalation between Two Pd(II)-Aryl Intermediates

    PubMed Central

    2015-01-01

    Pd-catalyzed aerobic oxidative coupling of arenes provides efficient access to biaryl compounds. The biaryl product forms via CH activation of two arenes to afford a PdIIArAr? intermediate, which then undergoes CC reductive elimination. The key PdIIArAr? intermediate could form via a monometallic pathway involving sequential CH activation at a single PdII center, or via a bimetallic pathway involving parallel CH activation at separate PdII centers, followed by a transmetalation step between two PdIIaryl intermediates. Here, we investigate the oxidative coupling of o-xylene catalyzed by a PdX2/2-fluoropyridine catalyst (X = trifluoroacetate, acetate). Kinetic studies, H/D exchange experiments, and kinetic isotope effects provide clear support for a bimetallic/transmetalation mechanism. PMID:24965384

  11. Self-assembly of a superparamagnetic raspberry-like silica/iron oxide nanocomposite using epoxy-amine coupling chemistry.

    PubMed

    Cano, Manuel; de la Cueva-Mndez, Guillermo

    2015-02-28

    The fabrication of colloidal nanocomposites would benefit from controlled hetero-assembly of ready-made particles through covalent bonding. Here we used epoxy-amine coupling chemistry to promote the self-assembly of superparamagnetic raspberry-like nanocomposites. This adaptable method induced the covalent attachment of iron oxide nanoparticles sparsely coated with amine groups onto epoxylated silica cores in the absence of other reactants. PMID:25635377

  12. Source of Selectivity in Oxidative Cross-Coupling of Aryls by Solvent Effect of 1,1,1,3,3,3-Hexafluoropropan-2-ol.

    PubMed

    Elsler, Bernd; Wiebe, Anton; Schollmeyer, Dieter; Dyballa, Katrin M; Franke, Robert; Waldvogel, Siegfried R

    2015-08-24

    Solvents such as 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) with a high capacity for donating hydrogen bonds generate solvates that enter into selective cross-coupling reactions of aryls upon oxidation. When electric current is employed for oxidation, reagent effects can be excluded and a decoupling of nucleophilicity from oxidation potential can be achieved. The addition of water or methanol to the electrolyte allows a shift of oxidation potentials in a specific range, creating suitable systems for selective anodic cross-coupling reactions. The shift in the redox potentials depends on the substitution pattern of the substrate employed. The concept has been expanded from arene-phenol to phenol-phenol as well as phenol-aniline cross-coupling. This driving force for selectivity in oxidative coupling might also explain previous findings using HFIP and hypervalent iodine reagents. PMID:26189655

  13. Recruitment of the adaptor protein Nck to PECAM-1 couples oxidant stress to canonical NF-?B signaling and inflammation

    PubMed Central

    Chen, Jie; Leskov, Igor L.; Yurdagul, Arif; Thiel, Bonnie; Kevil, Christopher G.; Stokes, Karen Y.; Orr, A. Wayne

    2015-01-01

    Oxidant stress drives nuclear factor ?B (NF-?B) activation and NF-?B-dependent proinflammatory gene expression in endothelial cells during several pathological conditions, including ischemia/reperfusion injury. We showed that the Nck family of adaptor proteins linked tyrosine kinase signaling to oxidant stress-induced activation of NF-?B through the classic I?B kinase (IKK)-dependent pathway. Depletion of Nck prevented oxidant stress induced by exogenous peroxide or hypoxia/reoxygenation injury from triggering the activation of NF-?B in endothelial cells, increases in the abundance of the pro-inflammatory molecules ICAM-1 (intracellular adhesion molecule 1) and VCAM-1 (vascular cell adhesion molecule 1), and leukocyte recruitment. Nck depletion also attenuated endothelial cell expression of genes encoding proinflammatory factors, but not those encoding antioxidants. We further showed that Nck promoted oxidant stress-induced activation of NF-?B by coupling the tyrosine phosphorylation of platelet-endothelial cell adhesion molecule-1 (PECAM-1) to the activation of p21 activated kinase, which mediates oxidant stress-induced NF-?B signaling. Consistent with this model, treatment of mice subjected to ischemia/reperfusion injury in the cremaster muscle with a Nck inhibitory peptide inhibited leukocyte adhesion and emigration and the accompanying vascular leak. Together, these data identify Nck as an important mediator of oxidant stress-induced inflammation and a potential therapeutic target for ischemia/reperfusion injury. PMID:25714462

  14. Biological Oxidation of Fe(II) in Reduced Nontronite Coupled with Nitrate Reduction by Pseudogulbenkiania sp. Strain 2002

    SciTech Connect

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.; Agrawal, A.; Liu, Deng; Zhang, Jing; Edelmann, Richard E.

    2013-10-15

    Nitrate contamination in soils, sediments, and water bodies is a significant issue. Although much is known about nitrate degradation in these environments, especially via microbial pathways, a complete understanding of all degradation processes, especially in clay mineral-rich soils, is still lacking. The objective of this study was to study the potential of removing nitrate contaminant using structural Fe(II) in clay mineral nontronite. Specifically, the coupled processes of microbial oxidation of Fe(II) in microbially reduced nontronite (NAu-2) and nitrate reduction by Pseudogulbenkiania species strain 2002 was investigated. Bio-oxidation experiments were conducted in bicarbonate-buffered medium under both growth and nongrowth conditions. The extents of Fe(II) oxidation and nitrate reduction were measured by wet chemical methods. X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and 57Fe-Mössbauer spectroscopy were used to observe mineralogical changes associated with Fe(III) reduction and Fe(II) oxidation in nontronite. The bio-oxidation extent under growth and nongrowth conditions reached 93% and 57%, respectively. Over the same time period, nitrate was completely reduced under both conditions to nitrogen gas (N2), via an intermediate product nitrite. Magnetite was a mineral product of nitrate-dependent Fe(II) oxidation, as evidenced by XRD data and TEM diffraction patterns. The results of this study highlight the importance of iron-bearing clay minerals in the global nitrogen cycle with potential applications in nitrate removal in soils.

  15. Controlled surface modification of Ti-40Nb implant alloy by electrochemically assisted inductively coupled RF plasma oxidation.

    PubMed

    Gttlicher, Markus; Rohnke, Marcus; Helth, Arne; Leichtwei, Thomas; Gemming, Thomas; Gebert, Annett; Eckert, Jrgen; Janek, Jrgen

    2013-11-01

    Low temperature metal oxidation induced by plasma in the absence of liquid electrolytes can be useful for the surface preparation of orthopedic devices since residues from these may be harmful and need to be removed before implantation. In this study the oxidation of Ti-40Nb for biomedical application was achieved by employing an inductively coupled radio frequency oxygen plasma. The correlation between the growth mode of the surface oxide and the electric conductivity ratio of the plasma and the oxide phase were studied by varying the sample temperature, oxygen gas pressure and additional bias potential. The plasma treated samples were characterised by confocal laser microscopy, SEM, EBSD, XPS, TEM and ToF-SIMS. The surface energy was determined by contact angle measurements using the Owens-Wendt-Rabel-Kaelble method. Well adhering oxide layers consisting of TiO2 and Nb2O5 with thicknesses between 50 and 150 nm were obtained. Surface roughness values and microstructure indicate that the growth mode of the oxide can be well controlled by the sample temperature and oxygen gas pressure. At temperatures above 450C a migration of Ti ions towards the surface controls the growth process. A bias potential higher than +50 V causes rough and defective surfaces with high surface energies. PMID:23891813

  16. Mitochondrial coupling and capacity of oxidative phosphorylation in skeletal muscle of Inuit and Caucasians in the arctic winter.

    PubMed

    Gnaiger, E; Boushel, R; Søndergaard, H; Munch-Andersen, T; Damsgaard, R; Hagen, C; Díez-Sánchez, C; Ara, I; Wright-Paradis, C; Schrauwen, P; Hesselink, M; Calbet, J A L; Christiansen, M; Helge, J W; Saltin, B

    2015-12-01

    During evolution, mitochondrial DNA haplogroups of arctic populations may have been selected for lower coupling of mitochondrial respiration to ATP production in favor of higher heat production. We show that mitochondrial coupling in skeletal muscle of traditional and westernized Inuit habituating northern Greenland is identical to Danes of western Europe haplogroups. Biochemical coupling efficiency was preserved across variations in diet, muscle fiber type, and uncoupling protein-3 content. Mitochondrial phenotype displayed plasticity in relation to lifestyle and environment. Untrained Inuit and Danes had identical capacities to oxidize fat substrate in arm muscle, which increased in Danes during the 42 days of acclimation to exercise, approaching the higher level of the Inuit hunters. A common pattern emerges of mitochondrial acclimatization and evolutionary adaptation in humans at high latitude and high altitude where economy of locomotion may be optimized by preservation of biochemical coupling efficiency at modest mitochondrial density, when submaximum performance is uncoupled from VO2max and maximum capacities of oxidative phosphorylation. PMID:26589126

  17. Control of sulfidogenesis through bio-oxidation of H2S coupled to (per)chlorate reduction.

    PubMed

    Gregoire, Patrick; Engelbrektson, Anna; Hubbard, Christopher G; Metlagel, Zoltan; Csencsits, Roseann; Auer, Manfred; Conrad, Mark E; Thieme, Jrgen; Northrup, Paul; Coates, John D

    2014-12-01

    We investigated H2S attenuation by dissimilatory perchlorate-reducing bacteria (DPRB). All DPRB tested oxidized H2S coupled to (per)chlorate reduction without sustaining growth. H2S was preferentially utilized over organic electron donors resulting in an enriched (34S)-elemental sulfur product. Electron microscopy revealed elemental sulfur production in the cytoplasm and on the cell surface of the DPRB Azospira suillum. Based on our results, we propose a novel hybrid enzymatic-abiotic mechanism for H2S oxidation similar to that recently proposed for nitrate-dependent Fe(II) oxidation. The results of this study have implications for the control of biosouring and biocorrosion in a range of industrial environments. PMID:25756108

  18. High throughput sample preparation in combination with gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-MS/MS): a smart procedure for (ultra)trace analysis of brominated flame retardants in fish.

    PubMed

    Kalachova, Kamila; Cajka, Tomas; Sandy, Chris; Hajslova, Jana; Pulkrabova, Jana

    2013-02-15

    In this study, gas chromatography (GC) coupled to triple quadrupole tandem mass spectrometry (MS/MS) operated in electron ionisation mode (EI) has been shown to be an effective tool for the (ultra)trace analysis of several representative brominated flame retardants (BFRs) including polybrominated diphenyl ethers (PBDEs), pentabromotoluene (PBT), pentabromoethylbenzene (PBEB), etc. in complex food and environmental matrices. Using this type of instrumentation, improved selectivity and sensitivity of the instrumental analysis was achieved. In addition to GC-MS/MS (EI), a GC-MS method employing QqQ as a single quadrupole in negative chemical ionisation (NCI) mode was also developed, as this technique might be preferred for those compounds where EI did not provide suitable (intensive enough) mass transitions (e.g., decabromodiphenyl ethane). Following the development of the GC-MS/MS method, a substantial simplification of the sample preparation method was achieved by employing an ethyl acetate QuEChERS-based extraction followed by silica minicolumn clean-up. Using this novel approach, six samples may be prepared in approx. one hour, thus significant time savings were achieved compared to routinely used methods. In addition, the method employs the reduced amounts of organic solvent and other chemicals. Under the optimised conditions, recoveries of all target analytes using both GC-MS/MS (EI) and GC-MS (NCI) were within the range of 70-119% and repeatabilities of the analytical procedure were ? 16% at all three spiking levels (0.1, 1 and 5 ?g kg(-1)). Regarding quantification limits (LOQs), as expected, a single quadruple operated in NCI provided significantly lower LOQs compared to EI. However, using the triple quadrupole mass analyser, comparable LOQs were achieved for both methods (0.005-1 ?g kg(-1) and 0.005-0.1 ?g kg(-1) for GC-MS/MS (EI) and GC-MS (NCI), respectively). Moreover, when highly selective mass transitions in GC-MS/MS (EI) were used for identification and quantification, a significant decrease of problematic interferences was observed compared to NCI where most of the compounds were quantified according to the less selective m/z 79 corresponding to a bromine atom. PMID:23597996

  19. High-throughput hydrophilic interaction chromatography coupled to tandem mass spectrometry for the optimized quantification of the anti-Gram-negatives antibiotic colistin A/B and its pro-drug colistimethate.

    PubMed

    Mercier, Thomas; Tissot, Frderic; Gardiol, Cline; Corti, Natascia; Wehrli, Stphane; Guidi, Monia; Csajka, Chantal; Buclin, Thierry; Couet, William; Marchetti, Oscar; Decosterd, Laurent A

    2014-11-21

    Colistin is a last resort's antibacterial treatment in critically ill patients with multi-drug resistant Gram-negative infections. As appropriate colistin exposure is the key for maximizing efficacy while minimizing toxicity, individualized dosing optimization guided by therapeutic drug monitoring is a top clinical priority. Objective of the present work was to develop a rapid and robust HPLC-MS/MS assay for quantification of colistin plasma concentrations. This novel methodology validated according to international standards simultaneously quantifies the microbiologically active compounds colistin A and B, plus the pro-drug colistin methanesulfonate (colistimethate, CMS). 96-well micro-Elution SPE on Oasis Hydrophilic-Lipophilic-Balanced (HLB) followed by direct analysis by Hydrophilic Interaction Liquid Chromatography (HILIC) with Ethylene Bridged Hybrid--BEH--Amide phase column coupled to tandem mass spectrometry allows a high-throughput with no significant matrix effect. The technique is highly sensitive (limit of quantification 0.014 and 0.006 ?g/mL for colistin A and B), precise (intra-/inter-assay CV 0.6-8.4%) and accurate (intra-/inter-assay deviation from nominal concentrations -4.4 to +6.3%) over the clinically relevant analytical range 0.05-20 ?g/mL. Colistin A and B in plasma and whole blood samples are reliably quantified over 48 h at room temperature and at +4C (<6% deviation from nominal values) and after three freeze-thaw cycles. Colistimethate acidic hydrolysis (1M H2SO4) to colistin A and B in plasma was completed in vitro after 15 min of sonication while the pro-drug hydrolyzed spontaneously in plasma ex vivo after 4 h at room temperature: this information is of utmost importance for interpretation of analytical results. Quantification is precise and accurate when using serum, citrated or EDTA plasma as biological matrix, while use of heparin plasma is not appropriate. This new analytical technique providing optimized quantification in real-life conditions of the microbiologically active compounds colistin A and B offers a highly efficient tool for routine therapeutic drug monitoring aimed at individualizing drug dosing against life-threatening infections. PMID:25441071

  20. Tandem mirror fusion research

    SciTech Connect

    Baldwin, D.E.

    1983-12-02

    The tandem mirror program has evolved considerably in the last decade. Of significance is the viable reactor concept embodied in the MARS design. An aggressive experimental program, culminating in the operation of MFTF-B in late 1986, will provide a firm basis for refining the MARS design as necessary for constructing a reactor prototype in the 1990s.

  1. Peroxidase-Catalyzed Oxidative Coupling of Phenols in the Presence of Geosorbents

    SciTech Connect

    Huang, Qingguo; Weber, Walter J., Jr.

    2003-03-26

    This study focuses on elucidation of the reaction behaviors of peroxidase-mediated phenol coupling in the presence of soil/sediment materials. Our goal is a mechanistic understanding of the influences of geosorbent materials on enzymatic coupling reactions in general and the development of methods for predicting such influences. Extensive experimental investigations of coupling reactions were performed under strategically selected conditions in systems containing model geosorbents having different properties and chemical characteristics. The geosorbents tested were found to influence peroxidase-mediated phenol coupling through one or both of two principal mechanisms; i.e., (1) mitigation of enzyme inactivation and/or (2) participation in cross-coupling reactions. Such influences were found to correlate with the chemical characteristics of the sorbent materials and to be simulated well by a modeling approach designed in this paper. The results of the study have important implications for potential engineering implementation and enhancement of enzymatic coupling reactions in soil/subsurface remediation practice.

  2. Remobilization of Cr(VI) from Cr(OH)3(s) coupled with heterogeneous Mn(II) oxidation

    NASA Astrophysics Data System (ADS)

    Lee, G.; Namgung, S.; Um, W.

    2011-12-01

    Chromium(VI) is known to be the 2nd most common inorganic contaminant due to the wide range of applications of chromium in the industry. The most effective way to remove toxic Cr(VI) under natural conditions as well as in the engineered systems is to reduce it to less toxic Cr(III) using various reductants. Under circumneutral pH conditions, Cr(III) readily precipitates as sparingly soluble Cr(OH)3(s). This solid phase is generally considered as one of the most desirable remediation product of soil and groundwater contaminated by Cr(VI) because it is less toxic and less mobile form of chromium. In addition, this solid is usually believed to be relatively inert to natural oxidants such as dissolved oxygen and Mn oxides. The oxidation of Cr(III) by dissolved oxygen is known to be kinetically sluggish. Previous studies showed that dissolved Cr(III) could easily be oxidized by Mn oxides under acidic conditions but the oxidation became ineffective under neutral or higher pH conditions as a result of Cr(OH)3(s) precipitation. This study examines the potential remobilization of Cr(VI) from this solid by oxidation coupled with heterogeneous oxidation of Mn(II) by dissolved oxygen. 1.0 g/L Cr(OH)3(s) was reacted with 50 ?M Mn(II) in 50 mM NaNO3 at pH 7 to 9 in the presence or absence of dissolved oxygen. The pH was maintained with 10 or 50 mM buffers (MOPS for pH 7 and 8; CHES for pH 9). For the anaerobic conditions, the solutions were purged with N2 in sealed serum bottles. In the absence of dissolved oxygen, the oxidation of Cr(OH)3(s) did not occur either with or without dissolved Mn(II). When the solutions were open to atmosphere, by contrast, the oxidation of the solid did occur both in the presence and absence of Mn(II) when the pH was higher or at 8.0. The amounts of Cr(VI) released increased with increasing pH and were higher in the presence than the absence of Mn(II). At pH 9, Cr(VI) concentration rapidly increased for the first 130 hr and reached up to 300 ppb in the presence of Mn(II). The results of this study show that Cr(OH)3(s) can be oxidized by the product of heterogeneous Mn(II) oxidation and thereby would possibly become a source of toxic Cr(VI).

  3. Distant electric coupling between nitrate reduction and sulphide oxidation investigated by an improved nitrate microscale biosensor

    NASA Astrophysics Data System (ADS)

    Marzocchi, U.; Revsbech, N. P.; Nielsen, L. P.; Risgaard-Petersen, N.

    2012-04-01

    Bacteria are apparently able to transmit electrons to other bacteria (Summers et al. 2010) or to electrodes (Malvankar et al. 2011) by some kind of nanowires (Reguera et al. 2005, Gorbi et al. 2006). Lately it has been shown that such transfer may occur over distances of centimetres in sediments, thereby coupling sulphide oxidation in deeper layers with oxygen reduction near the surface (Nielsen 2011). The finding of these long-distance electrical connections originated from analysis of O2, H2S, and pH profiles measured with microsensors. Nitrate is thermodynamically almost as good an electron acceptor as O2, and we therefore set up an experiment to investigate whether long-distance electron transfer also happens with NO3-. Aquaria were filled with sulphidic marine sediment from Aarhus Bay that was previously used to show long-distance electron transfer to O2. The aquaria were equipped with a lid so that they could be completely filled without a gas phase. Anoxic seawater with 300 ?M NO3- was supplied at a constant rate resulting in a steady state concentration in the aquatic phase of 250 ?M NO3-. The reservoir with the nitrate-containing water was kept anoxic by bubbling it with a N2/CO2 mixture and was kept at an elevated temperature. The water was cooled on the way to the aquaria to keep the water in the aquaria undersaturated with gasses, so that bubble formation by denitrification in the sediment could be minimised. Profiles of NO3-, H2S, and pH were measured as a function of time (2 months) applying commercial sensors for H2S and pH and an improved microscale NO3- biosensor developed in our laboratory. The penetration of NO3- in the sediment was 4-5 mm after 2 months, whereas sulphide only could be detected below 8-9 mm depth. The electron acceptor and electron donor were thus separated by 4-5 mm, indicating long distance electron transfer. A pH maximum of about 8.6 pH units at the NO3- reduction zone similar to a pH maximum observed in the O2 reduction zone of electro-active sediments could be observed. This pH maximum was the strongest evidence for long-distance electron transfer in oxic sediments, but cannot be taken as proof in denitrifying sediments as conventional denitrification may also produce elevated pH. We are now searching for the NO3- reducing bacteria that may be active in long-distance electron transfer in our sediment. Gorby, Y. A., S. Yanina, et al. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America 103(30): 11358-11363. Malvankar, N. S., M. Vargas, et al. (2011). Tunable metallic-like conductivity in microbial nanowire networks. Nature Nanotechnology 6(9): 573-579. Nielsen, L. P., N. Risgaard-Petersen, et al. (2010). Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463(7284): 1071-1074. Reguera, G., K. D. McCarthy, et al. (2005). Extracellular electron transfer via microbial nanowires. Nature 435(7045): 1098-1101. Summers, Z. M., H. E. Fogarty, et al. (2010). Direct Exchange of Electrons Within Aggregates of an Evolved Syntrophic Coculture of Anaerobic Bacteria. Science 330(6009): 1413-1415.

  4. Oxidative Cross-Coupling of sp(3)- and sp(2)-Hybridized C-H Bonds: Vanadium-Catalyzed Aminomethylation of Imidazo[1,2-a]pyridines.

    PubMed

    Kaswan, Pinku; Porter, Ashley; Pericherla, Kasiviswanadharaju; Simone, Marissa; Peters, Sean; Kumar, Anil; DeBoef, Brenton

    2015-11-01

    The vanadium-catalyzed oxidative coupling of substituted 2-arylimidiazo[1,2-a]pyridines to N-methylmorpholine oxide, which acts as both a coupling partner and an oxidant, has been achieved. This reaction was applied to various substituted imidiazo[1,2-a]pyridine and indole substrates, resulting in yields as high as 90%. Mechanistic investigations indicate that the reaction may proceed via a Mannich-type process. This work demonstrates how oxidative aminomethylation can be used as a useful method to introduce tertiary amines into heterocycles, thus providing an alternative method for conventional Mannich-type reactions. PMID:26479446

  5. Measurements of kinetic isotope effects and hydrogen/deuterium distributions over methane oxidative coupling catalysts

    SciTech Connect

    Nelson, P.F.; Lukey, C.A. ); Cant, N.W. )

    1989-11-01

    The kinetic isotope effect for CH{sub 4} compared to that for CD{sub 4} has been measured for the oxidative coupling reaction of methane over Li/MgO, SrCO{sub 3}, and Sm{sub 2}O{sub 3} catalysts in a flow reactor. Each catalyst gave results consistent with C-H bond breaking being the slow step. For temperatures between 680-780 C over Li/MgO, k{sub H}/k{sub D} decreased slightly with temperature. The isotope effect for ethane production was more sensitive to the level of conversion and declined from 1.8 at low conversion to near unity under conditions where the ethylene to ethane ratio was high ({approximately}1). Selectivities to hydrocarbons were lower with CD{sub 4} and did not change with decreased flow rates, implying that either CO{sub x} and C{sub 2} products arise by totally separate slow steps or, if a common step with CH{sub 3} radicals is involved, then CO{sub x} formation occurs on the catalyst. Experiments with CH{sub 4}/CD{sub 4} mixtures showed that CH{sub 3}CD{sub 3} and CH{sub 2}CD{sub 2} were the dominant mixed products. The distribution of the ethanes always reflected the relative concentrations of CH{sub 3} and CD{sub 3} determined by the kinetic isotope effect. At low ethylene to total C{sub 2} ratios ({approximately}0.2) this was also true for ethylene; but at higher ratios substantial exchange to produce ethylenes other than C{sub 2}H{sub 4}, CH{sub 2}CD{sub 2}, and C{sub 2}D{sub 4} occurred. The concentration of the exchanged methanes correlated with total methane conversion but was dependent on the surface. Exchange in the ethylenes also correlated with exchange in the methanes and purely gas phase processes appear at least partially responsible. H{sub 2}:HD:D{sub 2} ratios are always at equilibrium and exchange also occurs between CD{sub 4} and H{sub 2}.

  6. Fast throughput determination of 21 allergenic disperse dyes from river water using reusable three-dimensional interconnected magnetic chemically modified graphene oxide followed by liquid chromatography-tandem quadrupole mass spectrometry.

    PubMed

    Zhao, Yong-Gang; Li, Xiao-Ping; Yao, Shan-Shan; Zhan, Ping-Ping; Liu, Jun-Chao; Xu, Chang-Ping; Lu, Yi-Yu; Chen, Xiao-Hong; Jin, Mi-Cong

    2016-01-29

    We report the template-free fabrication of three-dimensional hierarchical nanostructures, i.e., three-dimensional interconnected magnetic chemically modified graphene oxide (3D-Mag-CMGO), through a simple and low-cost self-assembly process using one-pot reaction based on solvothermal method. The excellent properties of the 3D-Mag-CMGO are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), FTIR, elementary analyzer (EA) and X-ray photoelectron spectroscopy (XPS). The easiness-to-handle of the magnetic dispersive solid phase extraction (Mag-dSPE) procedure is developed for preconcentration of 21 allergenic disperse dyes from river water. The obtained results show the higher extraction capacity of 3D-Mag-CMGO with recoveries between 80.0-112.0%. Furthermore, an ultra-fast liquid chromatography-tandem quadrupole mass spectrometry (UFLC-MS/MS) method for determination of 21 allergenic disperse dyes in river at sub-ppt levels has been developed with pretreatment of the samples by Mag-dSPE. The limits of quantification (LOQs) for the allergenic disperse dyes are between 0.57-34.05ng/L. Validation results on linearity, specificity, trueness and precision, as well as on application to the analysis of 21 allergenic disperse dyes in fifty real samples demonstrate the applicability to environment monitoring analysis. PMID:26777090

  7. Application of a highly sensitive magnetic solid phase extraction for phytochemical compounds in medicinal plant and biological fluids by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Cao, Wan; Yi, Ling; Ye, Li-Hong; Cao, Jun; Hu, Shuai-Shuai; Xu, Jing-Jing; Peng, Li-Qing; Zhu, Qiong-Yao; Zhang, Qian-Yun

    2015-10-01

    A highly sensitive method using reduced graphene oxide with iron oxide (rGO/Fe3 O4 ) as the sorbent in magnetic SPE has been developed for the purification of five anthraquinones (emodin, rhein, aloeemodin, physcion, and chrysophanol) in rhubarb and rat urine by ultra-HPLC coupled with quadrupole TOF/MS. The extraction was accomplished by adding trace amount rGO/Fe3 O4 suspension to 200 mL of aqueous mixture, and the excellent adsorption capacity of the nanoparticles was fully demonstrated in this procedure. Under the optimized conditions, the calibration curves were linear in the concentration range of 0.05-27.77 ng/mL with correlation coefficients varying from 0.9902 to 0.9978. The LODs ranged from 0.28 to 58.99 pg/mL. The experimental results indicated that the proposed method was feasible for the analysis of anthraquinones in rhubarb and urine samples. PMID:26084454

  8. Determination of lanthanides in rock samples by inductively coupled plasma mass spectrometry using thorium as oxide and hydroxide correction standard

    NASA Astrophysics Data System (ADS)

    Raut, Narendra M.; Huang, Li-Shing; Aggarwal, Suresh K.; Lin, King-Chuen

    2003-05-01

    Determination of lanthanides by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) using modified mathematical correction method has been studied. Normally, the ICP-MS analysis of middle and heavier lanthanides becomes difficult by severe spectroscopic overlap of M +, MO + or MOH + ions from lighter lanthanides and Ba. A correction method based on a single element oxide yield measurement, is a simple approach to correct for the above spectroscopic overlaps. But the uncertainty in the oxide and hydroxide yields measurement of lanthanides and barium over a long period of time can lead to inaccurate results even under fixed plasma conditions. To correct this, thorium was adopted as an oxide and hydroxide correction standard. Using a ratio of lanthanide oxide yield to thorium oxide yield, the lanthanide correction factors (LCF) were established and incorporated in the mathematical correction scheme. The same factors were also established for hydroxide correction. The proposed modified correction scheme was applied to the determination of lanthanides by ICP-MS from the USGS Standard Rock samples AGV-1 and G-2. The results are in good agreement with the reported values. The method also proved to be useful in isotopic ratio measurement of lanthanides having severe isobaric overlaps.

  9. Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and quinolone antibiotics by laccase-mediated oxidation coupled with soil adsorption.

    PubMed

    Ding, Huijun; Wu, Yixiao; Zou, Binchun; Lou, Qian; Zhang, Weihao; Zhong, Jiayou; Lu, Lei; Dai, Guofei

    2016-04-15

    The uses of laccase in the degradation and removal of antibiotics have recently been reported because of the high efficiency and environmental friendliness of laccase. However, these removal studies mostly refer to a limited number of antibiotics. In this study, soil adsorption was introduced into the laccase-oxidation system to assist the simultaneous removal of 14 kinds of sulfonamide, tetracycline, and quinolone antibiotics, which differed in structures and chemical properties. The complementary effects of laccase-mediated oxidation and soil adsorption enabled the simultaneous removal. Removal characteristics were determined by a comprehensive consideration of the separate optimum conditions for laccase oxidation and soil adsorption removal experiments. With concentrations of laccase, syringaldehyde (SA), and soil of 0.5mg/mL, 0.5mmol/L, and 50g/L, respectively, and at pH 6 and 25°C, the removal rates of each antibiotic exceeded 70% in 15min and were close to 100% in 180min. Sulfonamide antibiotics (SAs) were removed mainly by laccase oxidation and quinolone antibiotics (QUs) mainly by soil adsorption. Tetracycline antibiotics (TCs) were removed by both treatments in the coupled system, but laccase oxidation dominated. Electrostatic adsorption was speculated to be one of the adsorption mechanisms in soil adsorption with QUs and TCs. PMID:26826938

  10. Indium-zinc-oxide electric-double-layer thin-film transistors gated by silane coupling agents 3-triethoxysilylpropylamine-graphene oxide solid electrolyte

    NASA Astrophysics Data System (ADS)

    Guo, Liqiang; Huang, Yukai; Shi, Yangyang; Cheng, Guanggui; Ding, Jianning

    2015-07-01

    Silane coupling agents 3-triethoxysilylpropyla-mine-graphene oxide (KH550-GO) solid electrolyte are prepared by spin coating process. A high proton conductivity of ~1.2??????10-3 Scm-1 is obtained at room temperature. A strong electric-double-layer (EDL) effect is observed due to the accumulation of protons at KH550-GO/IZO interface. Indium-Zinc-Oxide thin film transistors gated by KH550-GO solid electrolyte are self-assembled on ITO glass substrates. Good electrical performances are obtained, such as a low subthreshold swing of ~140?mV/dec., a high current on/off ratio of ~2.9??????107 and a high field-effect mobility of ~13.2?cm2 V-1 S-1, respectively.

  11. Evolution of the Total Synthesis of (-)-Okilactomycin Exploiting a Tandem Oxy-Cope Rearrangement/Oxidation, the Petasis-Ferrier Union/Rearrangement and Ring Closing Metathesis

    PubMed Central

    Smith, Amos B.; Bosanac, Todd; Basu, Kallol

    2009-01-01

    An effective, asymmetric total synthesis of the antitumor antibiotic (-)-okilactomycin (1) and assignment of the absolute configuration, has been achieved exploiting a convergent strategy. Highlights of the synthesis include: a diastereoselective oxy-Cope rearrangement/oxidation sequence to install the C(1) and C(13) stereogenic centers; a Petasis-Ferrier union/rearrangement to construct the highly functionalized tetrahydropyranone inscribed within the thirteen membered macrocycle ring, employing for the first time a sterically demanding acetal; an intramolecular chemoselective acylation to access an embedded bicyclic lactone; and an efficient ring closing metathesis (RCM) reaction to generate the macrocyclic ring. PMID:19170499

  12. Lateral-coupled oxide electric-double-layer transistors gated by scandia-ceria-stabilized zirconia electrolyte

    NASA Astrophysics Data System (ADS)

    Zhu, Li Qiang; Xiao, Hui; Wang, Jian Xin

    2016-01-01

    Scandia-ceria-stabilized zirconia (ScCeSZ) is one of the most important electrolytes used for solid oxide fuel cells. However, it has not been reported for applications in electrolyte gated transistors. Here, a high room-temperature proton conductivity of ~8  ×  10‑3 S cm‑1 and a large electric-double-layer capacitance of ~1.5 μF cm‑2 are observed for a tape-casted water-infiltrated ScCeSZ electrolyte. A laterally coupled indium-tin oxide transistor gated by such an electrolyte exhibits good electric performances at a low voltage of 1.5 V, such as the on/off ratio of above 1  ×  105, mobility of 2.2 cm2 Vs‑1 and subthreshold swing of ~160 mV/dec. Furthermore, unique synergic proton modulation behaviors are observed and AND logic operation is demonstrated. The laterally-coupled oxide transistors with synergic proton gating effects may find potential applications in chemical sensors and artificial neuromorphic devices.

  13. Evidence of Nitrogen Loss from Anaerobic Ammonium Oxidation Coupled with Ferric Iron Reduction in an Intertidal Wetland.

    PubMed

    Li, Xiaofei; Hou, Lijun; Liu, Min; Zheng, Yanling; Yin, Guoyu; Lin, Xianbiao; Cheng, Lv; Li, Ye; Hu, Xiaoting

    2015-10-01

    Anaerobic ammonium oxidation coupled with nitrite reduction is an important microbial pathway of nitrogen removal in intertidal wetlands. However, little is known about the role of anaerobic ammonium oxidation coupled with ferric iron reduction (termed Feammox) in intertidal nitrogen cycling. In this study, sediment slurry incubation experiments were combined with an isotope-tracing technique to examine the dynamics of Feammox and its association with tidal fluctuations in the intertidal wetland of the Yangtze Estuary. Feammox was detected in the intertidal wetland sediments, with potential rates of 0.24-0.36 mg N kg(-1) d(-1). The Feammox rates in the sediments were generally higher during spring tides than during neap tides. The tidal fluctuations affected the growth of iron-reducing bacteria and reduction of ferric iron, which mediated Feammox activity and the associated nitrogen loss from intertidal wetlands to the atmosphere. An estimated loss of 11.5-18 t N km(-2) year(-1) was linked to Feammox, accounting for approximately 3.1-4.9% of the total external inorganic nitrogen transported into the Yangtze Estuary wetland each year. Overall, the co-occurrence of ferric iron reduction and ammonium oxidation suggests that Feammox can act as an ammonium removal mechanism in intertidal wetlands. PMID:26360245

  14. Identification and quantification of adducts between oxidized rosmarinic acid and thiol compounds by UHPLC-LTQ-Orbitrap and MALDI-TOF/TOF tandem mass spectrometry.

    PubMed

    Tang, Chang-bo; Zhang, Wan-gang; Dai, Chen; Li, Hui-xia; Xu, Xing-lian; Zhou, Guang-hong

    2015-01-28

    LTQ Orbitrap MS/MS was used to identify the adducts between quinones derived from rosmarinic acid (RosA) and thiol compounds, including cysteine (Cys), glutathione (GSH), and peptides digested from myosin. Two adducts of quinone-RosA/Cys and quinone-RosA/2Cys, one quinone-RosA/GSH adduct, and three quinone-RosA/peptide adducts were identified by extracted ion and MS(2) fragment ion chromatograms. By using MALDI-TOF/TOF MS, the adduction reaction between RosA and myosin in myofibrillar protein isolates was determined, demonstrating that the accurate reaction site was at Cys949 of myosin. The effect of reaction conditions, including stirring time, temperature, and oxidative stress, on the formation of adducts was further investigated. The formation of quinone-RosA/Cys and quinone-RosA/GSH increased with stirring time. Both adducts increased with temperature, whereas the reactivity of the addition reaction of GSH was higher than that of Cys. With increasing oxidation stress, the formation of quinone-RosA/GSH adduct increased and that of quinone-RosA/Cys adduct decreased. PMID:25541907

  15. Rapid liquid chromatography-tandem mass spectrometry analysis of 4-hydroxynonenal for the assessment of oxidative degradation and safety of vegetable oils.

    PubMed

    Gabbanini, Simone; Matera, Riccardo; Valvassori, Alice; Valgimigli, Luca

    2015-04-15

    A novel method for the UHPLC-MS/MS analysis of (E)-4-hydroxynonenal (4-HNE) is described. The method is based on derivatization of 4-HNE with pentafluorophenylhydrazine (1) or 4-trifluoromethylphenylhydrazine (2) in acetonitrile in the presence of trifluoroacetic acid as catalyst at room temperature and allows complete analysis of one sample of vegetable oil in only 21 min, including sample preparation and chromatography. The method involving hydrazine 1, implemented in an ion trap instrument with analysis of the transition m/z 337→154 showed LOD=10.9 nM, average accuracy of 101% and precision ranging 2.5-4.0% RSD intra-day (2.7-4.1% RSD inter-day), with 4-HNE standard solutions. Average recovery from lipid matrices was 96.3% from vaseline oil, 91.3% from sweet almond oil and 105.3% from olive oil. The method was tested on the assessment of safety and oxidative degradation of seven samples of dietary oil (soybean, mixed seeds, corn, peanut, sunflower, olive) and six cosmetic-grade oils (avocado, blackcurrant, apricot kernel, echium, sesame, wheat germ) and effectively detected increased 4-HNE levels in response to chemical (Fenton reaction), photochemical, or thermal stress and aging, aimed at mimicking typical oxidation associated with storage or industrial processing. The method is a convenient, cost-effective and reliable tool to assess quality and safety of vegetable oils. PMID:25818139

  16. Coupling Ferroelectricity with Spin-Valley Physics in Oxide-Based Heterostructures

    NASA Astrophysics Data System (ADS)

    Yamauchi, Kunihiko; Barone, Paolo; Shishidou, Tatsuya; Oguchi, Tamio; Picozzi, Silvia

    2015-07-01

    The coupling of spin and valley physics is nowadays regarded as a promising route toward next-generation spintronic and valleytronic devices. In the aim of engineering functional properties for valleytronic applications, we focus on the ferroelectric heterostructure BiAlO3/BiIrO3 , where the complex interplay among a trigonal crystal field, layer degrees of freedom, and spin-orbit coupling mediates a strong spin-valley coupling. Furthermore, we show that ferroelectricity provides a nonvolatile handle to manipulate and switch the emerging valley-contrasting spin polarization.

  17. Coupling Ferroelectricity with Spin-Valley Physics in Oxide-Based Heterostructures.

    PubMed

    Yamauchi, Kunihiko; Barone, Paolo; Shishidou, Tatsuya; Oguchi, Tamio; Picozzi, Silvia

    2015-07-17

    The coupling of spin and valley physics is nowadays regarded as a promising route toward next-generation spintronic and valleytronic devices. In the aim of engineering functional properties for valleytronic applications, we focus on the ferroelectric heterostructure BiAlO3/BiIrO3, where the complex interplay among a trigonal crystal field, layer degrees of freedom, and spin-orbit coupling mediates a strong spin-valley coupling. Furthermore, we show that ferroelectricity provides a nonvolatile handle to manipulate and switch the emerging valley-contrasting spin polarization. PMID:26230826

  18. Metal-Free Oxidation of Primary Amines to Nitriles through Coupled Catalytic Cycles.

    PubMed

    Lambert, Kyle M; Bobbitt, James M; Eldirany, Sherif A; Kissane, Liam E; Sheridan, Rose K; Stempel, Zachary D; Sternberg, Francis H; Bailey, William F

    2016-04-01

    Synergism among several intertwined catalytic cycles allows for selective, room temperature oxidation of primary amines to the corresponding nitriles in 85-98 % isolated yield. This metal-free, scalable, operationally simple method employs a catalytic quantity of 4-acetamido-TEMPO (ACT; TEMPO=2,2,6,6-tetramethylpiperidine N-oxide) radical and the inexpensive, environmentally benign triple salt oxone as the terminal oxidant under mild conditions. Simple filtration of the reaction mixture through silica gel affords pure nitrile products. PMID:26868873

  19. Lanthanide-Catalyzed Oxyfunctionalization of 1,3-Diketones, Acetoacetic Esters, And Malonates by Oxidative C-O Coupling with Malonyl Peroxides.

    PubMed

    Terent'ev, Alexander O; Vil', Vera A; Gorlov, Evgenii S; Nikishin, Gennady I; Pivnitsky, Kasimir K; Adam, Waldemar

    2016-02-01

    The lanthanide-catalyzed oxidative C-O coupling of 1,3-dicarbonyl compounds with diacyl peroxides, specifically the cyclic malonyl peroxides, has been developed. An important feature of this new reaction concerns the advantageous role of the peroxide acting both as oxidant and reagent for C-O coupling. It is shown that lanthanide salts may be used in combination with peroxides for selective oxidative transformations. The vast range of lanthanide salts (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Y) catalyzes oxidative C-O coupling much more efficiently than other used Lewis and Bronsted acids. This oxidative cross-coupling protocol furnishes mono and double C-O coupling products chemo-selectively in high yields with a broad substrate scope. The double C-O coupling products may be hydrolyzed to vicinal tricarbonyl compounds, which are otherwise cumbersome to prepare. Based on the present experimental results, a nucleophilic substitution mechanism is proposed for the C-O coupling process in which the lanthanide metal ion serves as Lewis acid to activate the enol of the 1,3-dicarbonyl substrate. The side reactions-chlorination and hydroxylation of the 1,3-dicarbonyl partners-may be minimized under proper conditions. PMID:26745010

  20. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, Ian J. (Albuquerque, NM); Wendt, Joel R. (Albuquerque, NM)

    1994-01-01

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

  1. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  2. Solar-to-Chemical Energy Conversion with Photoelectrochemical Tandem Cells.

    PubMed

    Sivula, Kevin

    2013-01-01

    Efficiently and inexpensively converting solar energy into chemical fuels is an important goal towards a sustainable energy economy. An integrated tandem cell approach could reasonably convert over 20% of the sun's energy directly into chemical fuels like H2 via water splitting. Many different systems have been investigated using various combinations of photovoltaic cells and photoelectrodes, but in order to be economically competitive with the production of H2 from fossil fuels, a practical water splitting tandem cell must optimize cost, longevity and performance. In this short review, the practical aspects of solar fuel production are considered from the perspective of a semiconductor-based tandem cell and the latest advances with a very promising technology - metal oxide photoelectrochemical tandem cells - are presented. PMID:23574955

  3. Demonstrating Advanced Oxidation Coupled with Biodegradation for Removal of Carbamazepine (WERF Report INFR6SG09)

    EPA Science Inventory

    Carbamazepine is an anthropogenic pharmaceutical found in wastewater effluents that is quite resistant to removal by conventional wastewater treatment processes. Hydroxyl radical-based advanced oxidation processes can transform carbamazepine into degradation products but cannot m...

  4. Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions.

    EPA Science Inventory

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; catalyst can be used for oxidation of alcohols, amination reaction and arylation of aryl halides (cross coupli...

  5. Real-time Measurement of Secondary Organic Aerosols From The Photo-oxidation of Toluene Using Atmospheric Pressure Chemical Ionisation Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Collin, F.; Arias, M. C.; Merritt, J. V.; Hastie, D. R.

    A system has been developed to study the chemical composition of secondary or- ganic aerosol (SOA) from the photo-oxidation of hydrocarbons using real-time atmo- spheric pressure chemical ionisation triple quadrupole mass spectrometry (APCI/MS- MS) analysis. To complement existing work with a smog chamber, a two-litre dynamic reaction cell has been built. This has a residence time of around two minutes (instead of several hours for smog chamber experiments), thus permitting on-line analysis. Sample gases are introduced into the air stream and irradiated by a 1000 W xenon arc lamp. Af- ter dilution, some of the mixture from the reaction cell is introduced in the MS ion source via a heated probe, with the particle number density being determined by a condensation nucleus counter on the remainder. The focus so far has been on SOA from the photo-oxidation of toluene by HO radicals in presence of NO, with the HO radicals being generated by the photolysis of Isopy- lNitrite (IPN). Prior to performing analyses on the SOA, target compounds (detected in the particulate phase in other studies) were selected and three ions designated to make a fingerprint for each compound. Finally, by using either a denuder, a granu- lar bed diffusion battery or a filter, both gas and particulate phases have been studied independently and compared. Preliminary results show that a number of target compounds, such as methylglyoxylic acid, benzaldehyde or cresol, have been detected in both gas and particulate phases. Most of these compounds appear to be present mainly in the gas phase. An exhaustive identification of organic compounds is a part of the on-going work.

  6. Photoelectrocatalytic/photoelectro-Fenton coupling system using a nanostructured photoanode for the oxidation of a textile dye: Kinetics study and oxidation pathway.

    PubMed

    Almeida, Lucio C; Silva, Bianca F; Zanoni, Maria V B

    2015-10-01

    In this study, a coupled photoelectrocatalytic/photoelectro-Fenton reactor was designed to enhance the degradation efficiency of organic pollutants and tested using the azo dye Orange G as a model compound. Pt-decorated TiO2 nanotubes were used as a photoanode with an air-diffusion polytetrafluoroethylene cathode for H2O2 generation. The sum of individual effects of coupling the photoelectrocatalytic and photoelectro-Fenton processes was evaluated as a function of the decolorization and mineralization of Orange G solutions. The dye solutions were only completely decolorized in more acidic conditions (pH 3.0). The mineralization of the Orange G solutions increased in the sequence photoelectrocatalyticcoupled photoelectrocatalytic/photoelectro-Fenton due to the gradual increase in the production of OH radicals. Total organic carbon reductions of 80% for photoelectrocatalysis, 87% for electro-Fenton and 97% for the coupled processes were obtained when using an applied electric charge per unit volume of electrolyzed solution of 200 mA h L(-1). The Orange G decays for all treatments followed pseudo-first-order kinetics, suggesting the attack of a constant concentration of OH radicals. Aromatics such as naphthalenic and benzenic compounds were formed as by-products and were identified using LC-MS/MS analysis. In addition, the generated aliphatic acids were identified using ion-exclusion high-performance liquid chromatography. The final by-products of oxalic and formic acid were identified as ultimate by-products and formed Fe(III) complexes that were rapidly mineralized to CO2 by UV-Vis irradiation. Then, according to the identified oxidation by-products, a plausible pathway was proposed for the degradation of Orange G dye by the coupled process. PMID:25935699

  7. The Efficacy of Oxidative Coupling for Promoting In-Situ Immobilization of Hydroxylated Aromatics in Contaminated Soil and Sediments Systems - Final Report

    SciTech Connect

    Weber Jr., W. J.

    2000-10-01

    The study clearly shows that the structure and composition of the organic matter of soils and sediments are essential considerations for the selection of materials for engineered applications of oxidative coupling processes. A rate model was developed to facilitate quantitative evaluation and mechanistic interpretation of these fairly complex coupling processes.

  8. Hydrogen Evolution from Water Coupled with the Oxidation of As(III) in a Photocatalytic System.

    PubMed

    Zou, Jian-Ping; Wu, Dan-Dan; Bao, Shao-Kui; Luo, Jinming; Luo, Xu-Biao; Lei, Si-Liang; Liu, Hui-Long; Du, Hong-Mei; Luo, Sheng-Lian; Au, Chak-Tong; Suib, Steven L

    2015-12-30

    A series of heterostructured CdS/Sr2(Nb17/18Zn1/18)2O7-δ composites with excellent photocatalytic ability for simultaneous hydrogen evolution and As(III) oxidation under simulated sunlight were synthesized and characterized. Among them, 30% CdS/Sr2(Nb17/18Zn1/18)2O7-δ (30CSNZO) has the highest in activity, exhibiting a H2 production rate of 1669.1 μmol·h(-1)·g(-1) that is higher than that of many photocatalysts recently reported in the literature. At pH 9, As(III) is completely oxidized to As(V) over 30CSNZO in 30 min of irradiation of simulated sunlight. In the photocatalytic system, H2 production rate decreases with the increase of As(III) concentration, and the recycle experiments show that 30CSNZO exhibits excellent stability, durability, and recyclability for photocatalytic hydrogen evolution and As(III) oxidation. We propose a mechanism in which superoxide radical (·O2(-)) is the active species for As(III) oxidation and the oxidation of As(III) has an effect on hydrogen evolution. For the first time, it is demonstrated that simultaneous hydrogen evolution and arsenite oxidation is possible in a photocatalytic system. PMID:26650610

  9. Determination of selenomethionine by high-performance liquid chromatography-fluorescence detection coupled with on-line oxidation.

    PubMed

    Aoyama, Chiaki; Tsunoda, Makoto; Funatsu, Takashi

    2009-01-01

    A simple and sensitive determination method for selenomethionine (Se-Met) using an HPLC-fluorescence detection system coupled with an on-line electrochemical reactor has been developed. NBD-F (4-fluoro-7-nitro-2,1,3-benzoxadiazole) was used as the fluorescent derivatization reagent for Se-Met. NBD-Se-Met was separated from NBD-derivatives of 22 other amino acids within 35 min. Applying an optimized oxidation potential enhanced the fluorescence intensity of NBD-Se-Met 10-fold. The calibration curve was linear in the range of 300 fmol to 30 pmol with a correlation coefficient of 0.997. Detection limit (S/N = 3) was calculated to be 50 fmol, which is comparable to that of inductively coupled plasma mass spectrometry. This simple and sensitive method should be useful for the determination of Se-Met in physiological samples, such as serum or urine. PMID:19139574

  10. Three-dimensional fully-coupled electrical and thermal transport model of dynamic switching in oxide memristors

    SciTech Connect

    Gao, Xujiao; Mamaluy, Denis; Mickel, Patrick R.; Marinella, Matthew

    2015-09-08

    In this paper, we present a fully-coupled electrical and thermal transport model for oxide memristors that solves simultaneously the time-dependent continuity equations for all relevant carriers, together with the time-dependent heat equation including Joule heating sources. The model captures all the important processes that drive memristive switching and is applicable to simulate switching behavior in a wide range of oxide memristors. The model is applied to simulate the ON switching in a 3D filamentary TaOx memristor. Simulation results show that, for uniform vacancy density in the OFF state, vacancies fill in the conduction filament till saturation, and then fill out a gap formed in the Ta electrode during ON switching; furthermore, ON-switching time strongly depends on applied voltage and the ON-to-OFF current ratio is sensitive to the filament vacancy density in the OFF state.

  11. Three-dimensional fully-coupled electrical and thermal transport model of dynamic switching in oxide memristors

    DOE PAGESBeta

    Gao, Xujiao; Mamaluy, Denis; Mickel, Patrick R.; Marinella, Matthew

    2015-09-08

    In this paper, we present a fully-coupled electrical and thermal transport model for oxide memristors that solves simultaneously the time-dependent continuity equations for all relevant carriers, together with the time-dependent heat equation including Joule heating sources. The model captures all the important processes that drive memristive switching and is applicable to simulate switching behavior in a wide range of oxide memristors. The model is applied to simulate the ON switching in a 3D filamentary TaOx memristor. Simulation results show that, for uniform vacancy density in the OFF state, vacancies fill in the conduction filament till saturation, and then fill outmore » a gap formed in the Ta electrode during ON switching; furthermore, ON-switching time strongly depends on applied voltage and the ON-to-OFF current ratio is sensitive to the filament vacancy density in the OFF state.« less

  12. Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese

    PubMed Central

    Lovley, Derek R.; Phillips, Elizabeth J. P.

    1988-01-01

    A dissimilatory Fe(III)- and Mn(IV)-reducing microorganism was isolated from freshwater sediments of the Potomac River, Maryland. The isolate, designated GS-15, grew in defined anaerobic medium with acetate as the sole electron donor and Fe(III), Mn(IV), or nitrate as the sole electron acceptor. GS-15 oxidized acetate to carbon dioxide with the concomitant reduction of amorphic Fe(III) oxide to magnetite (Fe3O4). When Fe(III) citrate replaced amorphic Fe(III) oxide as the electron acceptor, GS-15 grew faster and reduced all of the added Fe(III) to Fe(II). GS-15 reduced a natural amorphic Fe(III) oxide but did not significantly reduce highly crystalline Fe(III) forms. Fe(III) was reduced optimally at pH 6.7 to 7 and at 30 to 35C. Ethanol, butyrate, and propionate could also serve as electron donors for Fe(III) reduction. A variety of other organic compounds and hydrogen could not. MnO2 was completely reduced to Mn(II), which precipitated as rhodochrosite (MnCO3). Nitrate was reduced to ammonia. Oxygen could not serve as an electron acceptor, and it inhibited growth with the other electron acceptors. This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe(III) or Mn(IV) reduction can yield energy for microbial growth. GS-15 provides a model for how enzymatically catalyzed reactions can be quantitatively significant mechanisms for the reduction of iron and manganese in anaerobic environments. Images PMID:16347658

  13. A dramatic enhancing effect of InBr3 towards the oxidative Sonogashira cross-coupling reaction of 2-ethynylanilines.

    PubMed

    Ikeda, A; Omote, M; Kusumoto, K; Komori, M; Tarui, A; Sato, K; Ando, A

    2016-02-01

    The addition of InBr3 to the oxidative Sonogashira cross-coupling reaction of 2-ethynylaniline with (E)-trimethyl(3,3,3-trifluoroprop-1-enyl)silane led to a dramatic increase in the reactivity to afford the corresponding 1,3-enynes bearing a trifluoromethyl group on their terminal sp(2) carbon. The subsequent cyclization of these 1,3-enynes under palladium catalysis provides access to the corresponding indoles bearing a 3,3,3-trifluoroprop-1-enyl group at their 2-position. PMID:26782816

  14. Gram-scale enantioselective formal synthesis of morphine through an ortho-para oxidative phenolic coupling strategy.

    PubMed

    Tissot, Matthieu; Phipps, Robert J; Lucas, Catherine; Leon, Rafael M; Pace, Robert D M; Ngouansavanh, Tifelle; Gaunt, Matthew J

    2014-12-01

    A gram-scale catalytic enantioselective formal synthesis of morphine is described. The key steps of the synthesis involve an ortho-para oxidative phenolic coupling and a highly diastereoselective "desymmetrization" of the resulting cyclohexadienone that generates three of the four morphinan ring junction stereocenters in one step. The stereochemistry is controlled from a single carbinol center installed through catalytic enantioselective hydrogenation. These transformations enabled the preparation of large quantities of key intermediates and could support a practical and scalable synthesis of morphine and related derivatives. PMID:25288124

  15. ?-Allenyl Ethers as Starting Materials for Palladium Catalyzed Suzuki-Miyaura Couplings of Allenylphosphine Oxides with Arylboronic Acids.

    PubMed

    Chen, Yao-Zhong; Zhang, Ling; Lu, Ai-Min; Yang, Fang; Wu, Lei

    2015-01-01

    We disclose here the first palladium-catalyzed Suzuki-Miyaura couplings of aryl ethers functionalized allenylphosphine oxides with arylboronic acids. This new methodology with ?-allenyl ethers as starting materials provides a novel approach to generate phosphinoyl 1,3-butadienes and derivatives with medium to excellent yields. The reaction tolerates a variety of functional groups to afford ranges of structurally diverse substituted phosphionyl 1,3-butadienes. For unsymmetrical allene substrates, high stereospecific additions to give E-isomers are usually observed. On the basis of the known palladium and allene chemistry, a mechanism is proposed. PMID:25457441

  16. Surface concentrations and residence times of intermediates on Sm sub 2 O sub 3 during the oxidative coupling of methane

    SciTech Connect

    Peil, K.P.; Goodwin, J.G. Jr.; Marcelin, G. )

    1990-08-01

    The use of Sm{sub 2}O{sub 3} as a catalyst for the oxidative coupling of methane has been well studied and documented. However, detailed information on the surface of a working Sm{sub 2}O{sub 3} catalyst and the overall carbon reaction pathway is unknown. This communication presents results that delineate completely for the first time the nature of the surface-reaction steps of Sm{sub 2}O{sub 3} and quantifies the working surface under steady-state reaction conditions.

  17. Extractive chromatographic separation and inductively coupled plasma atomic emission spectrometric determination of trace impurities in high purity europium oxide.

    PubMed

    Yang, X J

    1994-11-01

    An easily applicable separation method has been developed for the accurate and simultaneous determination of trace amounts of Al, Ca, Co, Cr, Cu, Mg, Mn, Ni, Pb and Zn in high purity europium oxide by inductively coupled plasma atomic emission spectrometry (ICP-AES) combined with extraction chromatography. Spectral interferences and europium matrix effects were examined. The chromatographic separation procedure was carried out with a di-(2-ethylhexyl) phosphoric acid (HDEHP)-Levextrel resin as the stationary phase, which retained the matrix europium, and dilute nitric acid as the mobile phase, which eluted the analyte of interest. The effect of nitric acid concentration on the adsorption of europium and the analyte ions on the resin, the eluting behaviour of these elements on the chromatographic column, and the capacity of the resin for europium oxide were investigated. The quantitative limits for determination (10 sigma), based on a 0.5-g amount of europium oxide, are between 0.36 microg/g for Mn and 6.4 microg/g for Pb. The method was applied to two spiked samples and a high purity europium oxide certified reference material. Results were obtained for recoveries of 93.2-112% and precision of 4-13%, expressed as the relative standard deviation and excellent agreement with the certified value with a relative error of <4%. PMID:18966136

  18. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    PubMed

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking water and groundwater, bottlenecks and potential issues are also discussed. PMID:26734780

  19. Rapid Mobilization of Noncrystalline U(IV) Coupled with FeS Oxidation.

    PubMed

    Bi, Yuqiang; Stylo, Malgorzata; Bernier-Latmani, Rizlan; Hayes, Kim F

    2016-02-01

    The reactivity of disordered, noncrystalline U(IV) species remains poorly characterized despite their prevalence in biostimulated sediments. Because of the lack of crystalline structure, noncrystalline U(IV) may be susceptible to oxidative mobilization under oxic conditions. The present study investigated the mechanism and rate of oxidation of biogenic noncrystalline U(IV) by dissolved oxygen (DO) in the presence of mackinawite (FeS). Previously recognized as an effective reductant and oxygen scavenger, nanoparticulate FeS was evaluated for its role in influencing U release in a flow-through system as a function of pH and carbonate concentration. The results demonstrated that noncrystalline U(IV) was more susceptible to oxidation than uraninite (UO2) in the presence of dissolved carbonate. A rapid release of U occurred immediately after FeS addition without exhibiting a temporary inhibition stage, as was observed during the oxidation of UO2, although FeS still kept DO levels low. X-ray photoelectron spectroscopy (XPS) characterized a transient surface Fe(III) species during the initial FeS oxidation, which was likely responsible for oxidizing noncrystalline U(IV) in addition to oxygen. In the absence of carbonate, however, the release of dissolved U was significantly hindered as a result of U adsorption by FeS oxidation products. This study illustrates the strong interactions between iron sulfide and U(IV) species during redox transformation and implies the lability of biogenic noncrystalline U(IV) species in the subsurface environment when subjected to redox cycling events. PMID:26695098

  20. Nitrogen isotope fractionation during archaeal ammonia oxidation: Coupled estimates from isotopic measurements of ammonium and nitrite

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Stieglmeier, Michaela; Bayer, Barbara; Jochum, Lara; Melcher, Michael; Wanek, Wolfgang

    2014-05-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous in marine and terrestrial environments and knowledge about the nitrogen (N) isotope effect associated with their ammonia oxidation activity will allow a better understanding of natural abundance isotope ratios, and therefore N transformation processes, in the environment. Here we examine the kinetic isotope effect for ammonia oxidation in a pure soil AOA culture (Ca. Nitrososphaera viennensis) and a marine AOA enrichment culture. We estimated the isotope effect from both isotopic signatures of ammonium and nitrite over the course of ammonia oxidation. Estimates of the isotope effect based on the change in the isotopic signature of ammonium give valuable insight, because these estimates are not subject to the same concerns (e.g., accumulation of an intermediate) as estimates based on isotopic measurements of nitrite. Our results show that both the pure soil AOA culture and a marine AOA enrichment culture have similar but substantial isotope effect during ammonia consumption (31-34 per mill; based on ammonium) and nitrite production (43-45 per mill; based on nitrite). The 15N fractionation factors of both cultures tested fell in the upper range of the reported isotope effects for archaeal and bacterial ammonia oxidation (10-41 per mill) or were even higher than those. The isotope fractionation for nitrite production was significantly larger than for ammonium consumption, indicating that (1) some intermediate (e.g., hydroxylamine) of ammonia oxidation accumulates, allowing for a second 15N fractionation step to be expressed, (2) a fraction of ammonia oxidized is lost via gaseous N forms (e.g., NO or N2O), which is 15N-enriched or (3) a fraction of ammonium is assimilated into AOA biomass, biomass becoming 15N-enriched. The significance of these mechanisms will be explored in more detail for the soil AOA culture, based on isotope modeling and isotopic measurements of biomass and N2O.

  1. A flow injection electrospray ionization tandem mass spectrometric method for the simultaneous measurement of trimethylamine and trimethylamine N-oxide in urine.

    PubMed

    Johnson, David W

    2008-04-01

    Key metabolites for the diagnosis of the genetic disorder trimethylaminuria are trimethylamine (TMA) and trimethylamine N-oxide (TMAO). A rapid, automatable flow injection ESI-MS/MS method for their measurement in urine has been developed. The TMA was derivatized with ethyl bromoacetate to form ethyl betaine bromide. The 2 min ESI-MS/MS analysis employed four multiple reaction monitoring (MRM) ion pairs for derivatized TMA (146.1, 118.1), derivatized (2)H(9)-TMA (155.1, 127.1), TMAO (76.1, 58.1) and (2)H(9)-TMAO (85.1, 66.1). In control urine samples (n = 27) referred for suspected metabolic problems TMA was 0.11-1.19 mmol/mol creatinine, TMAO was 13.5-181 mmol/mol creatinine and the TMA/TMAO ratio was 0.0025-0.055. In five patients with diagnosed trimethylaminuria, TMA was 5.3-230 mmol/mol creatinine, TMAO was 0.36-607 mmol/mol creatinine and the TMA/TMAO ratio was 0.20-134. PMID:17975851

  2. Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1

    SciTech Connect

    Zhang, T; Bain, TS; Barlett, MA; Dar, SA; Snoeyenbos-West, OL; Nevin, KP; Lovley, DR

    2014-01-02

    Microbial oxidation of elemental sulfur with an electrode serving as the electron acceptor is of interest because this may play an important role in the recovery of electrons from sulfidic wastes and for current production in marine benthic microbial fuel cells. Enrichments initiated with a marine sediment inoculum, with elemental sulfur as the electron donor and a positively poised (+300 mV versus Ag/AgCl) anode as the electron acceptor, yielded an anode biofilm with a diversity of micro-organisms, including Thiobacillus, Sulfurimonas, Pseudomonas, Clostridium and Desulfuromonas species. Further enrichment of the anode biofilm inoculum in medium with elemental sulfur as the electron donor and Fe(III) oxide as the electron acceptor, followed by isolation in solidified sulfur/Fe(III) medium yielded a strain of Desulfuromonas, designated strain TZ1. Strain TZ1 effectively oxidized elemental sulfur to sulfate with an anode serving as the sole electron acceptor, at rates faster than Desulfobulbus propionicus, the only other organism in pure culture previously shown to oxidize S with current production. The abundance of Desulfuromonas species enriched on the anodes of marine benthic fuel cells has previously been interpreted as acetate oxidation driving current production, but the results presented here suggest that sulfur-driven current production is a likely alternative.

  3. Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1.

    PubMed

    Zhang, Tian; Bain, Timothy S; Barlett, Melissa A; Dar, Shabir A; Snoeyenbos-West, Oona L; Nevin, Kelly P; Lovley, Derek R

    2014-01-01

    Microbial oxidation of elemental sulfur with an electrode serving as the electron acceptor is of interest because this may play an important role in the recovery of electrons from sulfidic wastes and for current production in marine benthic microbial fuel cells. Enrichments initiated with a marine sediment inoculum, with elemental sulfur as the electron donor and a positively poised (+300 mV versus Ag/AgCl) anode as the electron acceptor, yielded an anode biofilm with a diversity of micro-organisms, including Thiobacillus, Sulfurimonas, Pseudomonas, Clostridium and Desulfuromonas species. Further enrichment of the anode biofilm inoculum in medium with elemental sulfur as the electron donor and Fe(III) oxide as the electron acceptor, followed by isolation in solidified sulfur/Fe(III) medium yielded a strain of Desulfuromonas, designated strain TZ1. Strain TZ1 effectively oxidized elemental sulfur to sulfate with an anode serving as the sole electron acceptor, at rates faster than Desulfobulbus propionicus, the only other organism in pure culture previously shown to oxidize S with current production. The abundance of Desulfuromonas species enriched on the anodes of marine benthic fuel cells has previously been interpreted as acetate oxidation driving current production, but the results presented here suggest that sulfur-driven current production is a likely alternative. PMID:24169815

  4. Application of magnetic iron oxide nanoparticles for the analysis of PCBs in water and soil leachates by gas chromatography-tandem mass spectrometry.

    PubMed

    Pérez, Rosa Ana; Albero, Beatriz; Tadeo, José Luis; Molero, Encarnación; Sánchez-Brunete, Consuelo

    2015-03-01

    Two magnetic solid-phase extraction methods (mSPE) were developed and compared for the extraction and preconcentration of polychlorinated biphenyls (PCBs) from water and soil leachates. Analyses were carried out by gas chromatography coupled to triple quadrupole mass spectrometry. The mSPE extraction parameters were optimised using Fe3O4 nanoparticles coated with palmitate or oleate. Differences were found between the developed mSPE methods depending on the magnetic nanoparticle coating. The extraction efficiency of both sorbents was studied by spiking soil leachates at three concentration levels (from 0.6 to 0.18 ng ml(-1) and from 0.4 to 0.04 ng ml(-1) using palmitate or oleate coated nanoparticles, respectively) and recoveries from 86 to 109 % were obtained. The developed method provided a preconcentration factor of 250. The detection limits were about 29 times lower with the oleate-coated nanoparticles. Although both mSPE procedures could be used for the extraction of PCBs from water and soil leachates, oleate-coated nanoparticles gave the best extractive conditions and lower quantifications limits. Finally, the mSPE using oleate-coated nanoparticles was applied to the analysis of PCBs in river waters and in soil leachates obtained from soil with different physico-chemical characteristics. The levels of PCBs present in the leachates depended on the soil sample. The present work demonstrates the applicability of both mSPE methods to the determination of PCBs in water and soil leachates, which is of interest for mobility and bioavailability studies of these compounds in soil. PMID:25644520

  5. Double-sided magnetic molecularly imprinted polymer modified graphene oxide for highly efficient enrichment and fast detection of trace-level microcystins from large-volume water samples combined with liquid chromatography-tandem mass spectrometry.

    PubMed

    Pan, Sheng-Dong; Chen, Xiao-Hong; Li, Xiao-Ping; Cai, Mei-Qiang; Shen, Hao-Yu; Zhao, Yong-Gang; Jin, Mi-Cong

    2015-11-27

    Microcystins (MCs), a group of cyclic heptapeptide heaptoxins and tumor promoters, are generated by cyanobacteria occurring in surface waters, such as eutrophic lakes, rivers, and reservoirs. In this present study, a novel double-sided magnetic molecularly imprinted polymer modified graphene oxide (DS-MMIP@GO) based magnetic solid-phase extraction (MSPE) method was developed for fast, effective and selective enrichment, and recognition of trace MCs in environmental water samples combined with high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The synthesized novel DS-MMIP@GO was used as the adsorbents in this work and was carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectra. The adsorption and desorption conditions of DS-MMIP@GO toward MCs were optimized in detail to obtain the highest binding capacity, selectivity, and release efficiency. Under the optimum conditions, the enrichment factors of the method for eight target MCs were found to be 2000. The limits of quantitation (LOQs) of the method for eight MCs were in range of 0.1-2.0ngL(-1). The double-sided MMIP modified structure provided DS-MMIP@GO with abundant adsorption sites and permitted it to exhibit excellent enrichment and selectivity toward trace-level MCs. The proposed method was successfully applied for the analysis of environmental water samples with recoveries ranging from 84.1 to 98.2%. Compared to conventional methods for MCs detection reported in literatures, the one developed in this work based on DS-MMIP@GO and LC-MS/MS showed much faster, more sensitive, and more convenient. PMID:26477521

  6. A metalloenzyme-like catalytic system for the chemoselective oxidative cross-coupling of primary amines to imines under ambient conditions.

    PubMed

    Largeron, Martine; Fleury, Maurice-Bernard

    2015-02-23

    The direct oxidative cross-coupling of primary amines is a challenging transformation as homocoupling is usually preferred. We report herein the chemoselective preparation of cross-coupled imines through the synergistic combination of low loadings of Cu(II) metal-catalyst and o-iminoquinone organocatalyst under ambient conditions. This homogeneous cooperative catalytic system has been inspired by the reaction of copper amine oxidases, a family of metalloenzymes with quinone organic cofactors that mediate the selective oxidation of primary amines to aldehydes. After optimization, the desired cross-coupled imines are obtained in high yields with broad substrate scope through a transamination process that leads to the homocoupled imine intermediate, followed by dynamic transimination. The ability to carry out the reactions at room temperature and with ambient air, rather than molecular oxygen as the oxidant, and equimolar amounts of each coupling partner is particularly attractive from an environmentally viewpoint. PMID:25643811

  7. A redox series of aluminum complexes: characterization of four oxidation states including a ligand biradical state stabilized via exchange coupling.

    PubMed

    Myers, Thomas W; Kazem, Nasrin; Stoll, Stefan; Britt, R David; Shanmugam, Maheswaran; Berben, Louise A

    2011-06-01

    Electrophilic activation and subsequent reduction of substrates is in general not possible because highly Lewis acidic metals lack access to multiple redox states. Herein, we demonstrate that transition metal-like redox processes and electronic structure and magnetic properties can be imparted to aluminum(III). Bis(iminopyridine) complexes containing neutral, monoanionic, and dianionic iminopyridine ligands (IP) have been characterized structurally and electronically; yellow (IP)AlCl(3) (1), deep green (IP(-))(2)AlCl (2) and (IP(-))(2)Al(CF(3)SO(3)) (3), and deep purple [(IP(2-))Al](-) (5) are presented. The mixed-valent, monoradical complex (IP(-))(IP(2-))Al is unstable toward C-C coupling, and [(IP(2-))Al](2-)(?-IP-IP)(2-) (4) has been isolated. Variable-temperature magnetic susceptibility and EPR spectroscopy measurements indicate that the biradical character of the ligand-based triplet in 2 is stabilized by strong antiferromagnetic exchange coupling mediated by aluminum(III): J = -230 cm(-1) for ? = -2J(?(L(1))?(L(2))). Coordination geometry-dependent (IP(-))-(IP(-)) communication through aluminum(III) is observed electrochemically. The cyclic voltammogram of trigonal bipyramidal 2 displays successive ligand-based oxidation events for the two IP(1-/0) processes, at -0.86 and -1.20 V vs SCE. The 0.34 V spacing between redox couples corresponds to a conproportionation constant of K(c) = 10(5.8) for the process (IP(-))(2)AlCl + (IP)(2)AlCl ? 2(IP(-))(IP)AlCl consistent with Robin and Day Class II mixed-valent behavior. Tetrahedral 5 displays localized, Class I behavior as indicated by closely spaced redox couples. Furthermore, CV's of 2 and 5 indicate that changes in the coordination environment of the aluminum center shift the potentials for the IP(1-/0) and IP(2-/1-) redox couples by up to 0.9 V. PMID:21568319

  8. Convergence of G Protein-Coupled Receptor and Nitric Oxide Pathways Determines the Outcome to Cardiac Ischemic Injury

    PubMed Central

    Huang, Z. Maggie; Gao, Erhe; Fonseca, Fabio; Hayashi, Hiroki; Shang, Xiying; Hoffman, Nicholas E.; Chuprun, J. Kurt; Tian, Xufan; Tilley, Doug G.; Madesh, Muniswamy; Lefer, David J.; Stamler, Jonathan S.; Koch, Walter J.

    2014-01-01

    Heart failure caused by ischemic heart disease is a leading cause of death in the developed world. Treatment is currently centered on regimens involving G protein-coupled receptors (GPCRs) or nitric oxide (NO). These regimens are thought to target distinct molecular pathways. We showed that these pathways were interdependent and converged on the effector GRK2 (GPCR kinase 2) to regulate myocyte survival and function. Ischemic injury coupled to GPCR activation, including GPCR desensitization and myocyte loss, requires GRK2 activation, and we found that cardioprotection mediated by S-nitrosylation and inhibition of GRK2 depended on endothelial nitric oxide synthase (eNOS). Conversely, the cardioprotective effects of NO bioactivity were absent in a knock-in mouse with a form of GRK2 that cannot be S-nitrosylated. Because GRK2 and eNOS inhibit each other, the balance of the activities these enzymes in the myocardium determined the outcome to ischemic injury. Our findings suggest new insights into the mechanism of action of classic drugs used to treat heart failure and new therapeutic approaches to ischemic heart disease. PMID:24170934

  9. Enantioselective synthesis of arylglycine derivatives by direct C-H oxidative cross-coupling.

    PubMed

    Wei, Xiao-Hong; Wang, Gang-Wei; Yang, Shang-Dong

    2015-01-18

    A new method for the synthesis of chiral ?-amino acid derivatives by enantioselective C-H arylation of N-aryl glycine esters with aryl boric acids in the presence of a chiral Pd(II)-catalyst has been developed. This work successfully integrates the direct C-H oxidation with asymmetric arylation and exhibits excellent enantioselectivity. PMID:25348347

  10. Photoinduced Cross-Linking of Dynamic Poly(disulfide) Films via Thiol Oxidative Coupling.

    PubMed

    Feillée, Noémi; Chemtob, Abraham; Ley, Christian; Croutxé-Barghorn, Céline; Allonas, Xavier; Ponche, Arnaud; Le Nouen, Didier; Majjad, Hicham; Jacomine, Léandro

    2016-01-01

    Initially developed as an elastomer with an excellent record of barrier and chemical resistance properties, poly(disulfide) has experienced a revival linked to the dynamic nature of the S-S covalent bond. A novel photobase-catalyzed oxidative polymerization of multifunctional thiols to poly(disulfide) network is reported. Based solely on air oxidation, the single-step process is triggered by the photodecarboxylation of a xanthone acetic acid liberating a strong bicyclic guanidine base. Starting with a 1 μm thick film based on trithiol poly(ethylene oxide) oligomer, the UV-mediated oxidation of thiols to disulfides occurs in a matter of minutes both selectively, i.e., without overoxidation, and quantitatively as assessed by a range of spectroscopic techniques. Thiolate formation and film thickness determine the reaction rates and yield. Spatial control of the photopolymerization serves to generate robust micropatterns, while the reductive cleavage of S-S bridges allows the recycling of 40% of the initial thiol groups. PMID:26502361

  11. Size determination and quantification of engineered cerium oxide nanoparticles by flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry.

    PubMed

    Sánchez-García, L; Bolea, E; Laborda, F; Cubel, C; Ferrer, P; Gianolio, D; da Silva, I; Castillo, J R

    2016-03-18

    Facing the lack of studies on characterization and quantification of cerium oxide nanoparticles (CeO2 NPs), whose consumption and release is greatly increasing, this work proposes a method for their sizing and quantification by Flow Field-flow Fractionation (FFFF) coupled to Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Two modalities of FFFF (Asymmetric Flow- and Hollow Fiber-Flow Field Flow Fractionation, AF4 and HF5, respectively) are compared, and their advantages and limitations discussed. Experimental conditions (carrier composition, pH, ionic strength, crossflow and carrier flow rates) are studied in detail in terms of NP separation, recovery, and repeatability. Size characterization of CeO2 NPs was addressed by different approaches. In the absence of feasible size standards of CeO2 NPs, suspensions of Ag, Au, and SiO2 NPs of known size were investigated. Ag and Au NPs failed to show a comparable behavior to that of the CeO2 NPs, whereas the use of SiO2 NPs provided size estimations in agreement to those predicted by the theory. The latter approach was thus used for characterizing the size of CeO2 NPs in a commercial suspension. Results were in adequate concordance with those achieved by transmission electron microscopy, X-ray diffraction and dynamic light scattering. The quantification of CeO2 NPs in the commercial suspension by AF4-ICP-MS required the use of a CeO2 NPs standards, since the use of ionic cerium resulted in low recoveries (99±9% vs. 73±7%, respectively). A limit of detection of 0.9μgL(-1) CeO2 corresponding to a number concentration of 1.8×1012L(-1) for NPs of 5nm was achieved for an injection volume of 100μL. PMID:26903472

  12. Advancing tandem solar cells by spectrally selective multilayer intermediate reflectors.

    PubMed

    Hoffmann, Andre; Paetzold, Ulrich W; Zhang, Chao; Merdzhanova, Tsvetelina; Lambertz, Andreas; Ulbrich, Carolin; Bittkau, Karsten; Rau, Uwe

    2014-08-25

    Thin-film silicon tandem solar cells are composed of an amorphous silicon top cell and a microcrystalline silicon bottom cell, stacked and connected in series. In order to match the photocurrents of the top cell and the bottom cell, a proper photon management is required. Up to date, single-layer intermediate reflectors of limited spectral selectivity are applied to match the photocurrents of the top and the bottom cell. In this paper, we design and prototype multilayer intermediate reflectors based on aluminum doped zinc oxide and doped microcrystalline silicon oxide with a spectrally selective reflectance allowing for improved current matching and an overall increase of the charge carrier generation. The intermediate reflectors are successfully integrated into state-of-the-art tandem solar cells resulting in an increase of overall short-circuit current density by 0.7 mA/cm(2) in comparison to a tandem solar cell with the standard single-layer intermediate reflector. PMID:25322181

  13. Advanced oxidation processes coupled with electrocoagulation for the exhaustive abatement of Cr-EDTA.

    PubMed

    Durante, Christian; Cuscov, Marco; Isse, Abdirisak Ahmed; Sandon, Giancarlo; Gennaro, Armando

    2011-02-01

    Using Cr-EDTA as a model system, a two-step method has been investigated for the abatement of persistent chromium complexes in water. The treatment consists of an oxidative decomposition of the organic ligands by means of ozonization or electrochemical oxidation at a boron doped diamond (BDD) electrode, followed by removal of the metal via electrochemical coagulation. In the designed synthetic waste, EDTA has been used both as a chelating agent and as a mimic of the organic content of a typical wastewater provided by a purification leather plant. A crucial point evaluated is the influence of the oxidative pretreatment on the chemical modification of the synthetic waste and hence on the electrocoagulation efficacy. Because of the great stability of Cr complexes, such as Cr-EDTA, the classical coagulation methods, based on ligand exchange between Cr(III) and Fe(II) or Fe(III), are ineffective toward Cr abatement in the presence of organic substances. On the contrary, when advanced oxidation processes (AOPs), such as ozonization or electrooxidation at a BDD anode are applied in series with electrocoagulation (EC), complete abatement of the recalcitrant Cr fraction can be achieved. ECs have been carried out by using Fe sacrificial anodes, with alternating polarization and complete Cr abatement (over 99%) has been obtained with modest charge consumption. It has been found that Cr(III) is first oxidized to Cr(VI) in the AOP preceding EC. Then, during EC, Cr(VI) is mainly reduced back to Cr(III) by electrogenerated Fe(II). Thus, Cr is mainly eliminated as Cr(III). However, a small fraction of Cr(VI) goes with the precipitate as confirmed by XPS analysis of the sludge. PMID:21255817

  14. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W. (Golden, CO)

    1994-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

  15. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W.

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  16. Monolithic tandem solar cell

    DOEpatents

    Wanlass, M.W.

    1994-06-21

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.

  17. Light induced carbon dioxide reduction by water at binuclear ZrOCo(II) unit coupled to Ir oxide nanocluster catalyst.

    PubMed

    Kim, Wooyul; Yuan, Guangbi; McClure, Beth Anne; Frei, Heinz

    2014-08-01

    An all-inorganic polynuclear unit consisting of an oxo-bridged binuclear ZrOCo(II) group coupled to an iridium oxide nanocluster (IrO(x)) was assembled on an SBA-15 silica mesopore surface. A photodeposition method was developed that affords coupling of the IrO(x) water oxidation catalyst with the Co donor center. The approach consists of excitation of the ZrOCo(II) metal-to-metal charge-transfer (MMCT) chromophore with visible light in the presence of [Ir(acac)3] (acac: acetylacetonate) precursor followed by calcination under mild conditions, with each step monitored by optical and infrared spectroscopy. Illumination of the MMCT chromophore of the resulting ZrOCo(II)-IrO(x) units in the SBA-15 pores loaded with a mixture of (13)CO2 and H2O vapor resulted in the formation of (13)CO and O2 monitored by FT-IR and mass spectroscopy, respectively. Use of (18)O labeled water resulted in the formation of (18)O2 product. This is the first example of a closed photosynthetic cycle of carbon dioxide reduction by water using an all-inorganic polynuclear cluster featuring a molecularly defined light absorber. The observed activity implies successful competition of electron transfer between the IrO(x) catalyst cluster and the transient oxidized Co donor center with back electron transfer of the ZrOCo light absorber, and is further aided by the instant desorption of the CO and O2 product from the silica pores. PMID:25033315

  18. Pd loaded amphiphilic COF as catalyst for multi-fold Heck reactions, C-C couplings and CO oxidation

    PubMed Central

    Mullangi, Dinesh; Nandi, Shyamapada; Shalini, Sorout; Sreedhala, Sheshadri; Vinod, Chathakudath P.; Vaidhyanathan, Ramanathan

    2015-01-01

    COFs represent a class of polymers with designable crystalline structures capable of interacting with active metal nanoparticles to form excellent heterogeneous catalysts. Many valuable ligands/monomers employed in making coordination/organic polymers are prepared via Heck and C-C couplings. Here, we report an amphiphilic triazine COF and the facile single-step loading of Pd0 nanoparticles into it. An 1820% nano-Pd loading gives highly active composite working in open air at low concentrations (Conc. Pd(0) <0.05?mol%, average TON 1500) catalyzing simultaneous multiple site Heck couplings and C-C couplings using non-boronic acid substrates, and exhibits good recyclability with no sign of catalyst leaching. As an oxidation catalyst, it shows 100% conversion of CO to CO2 at 150?C with no loss of activity with time and between cycles. Both vapor sorptions and contact angle measurements confirm the amphiphilic character of the COF. DFT-TB studies showed the presence of Pd-triazine and Pd-Schiff bond interactions as being favorable. PMID:26057044

  19. Pd loaded amphiphilic COF as catalyst for multi-fold Heck reactions, C-C couplings and CO oxidation

    NASA Astrophysics Data System (ADS)

    Mullangi, Dinesh; Nandi, Shyamapada; Shalini, Sorout; Sreedhala, Sheshadri; Vinod, Chathakudath P.; Vaidhyanathan, Ramanathan

    2015-06-01

    COFs represent a class of polymers with designable crystalline structures capable of interacting with active metal nanoparticles to form excellent heterogeneous catalysts. Many valuable ligands/monomers employed in making coordination/organic polymers are prepared via Heck and C-C couplings. Here, we report an amphiphilic triazine COF and the facile single-step loading of Pd0 nanoparticles into it. An 18-20% nano-Pd loading gives highly active composite working in open air at low concentrations (Conc. Pd(0) <0.05 mol%, average TON 1500) catalyzing simultaneous multiple site Heck couplings and C-C couplings using ‘non-boronic acid’ substrates, and exhibits good recyclability with no sign of catalyst leaching. As an oxidation catalyst, it shows 100% conversion of CO to CO2 at 150 °C with no loss of activity with time and between cycles. Both vapor sorptions and contact angle measurements confirm the amphiphilic character of the COF. DFT-TB studies showed the presence of Pd-triazine and Pd-Schiff bond interactions as being favorable.

  20. Hydrophobic monolayered nanoflakes of tungsten oxide: coupled exfoliation and fracture in a nonpolar organic medium.

    PubMed

    Honda, Masashi; Oaki, Yuya; Imai, Hiroaki

    2015-06-21

    Coupled exfoliation and fracture induced formation of hydrophobic monolayered nanoflakes in a nonpolar organic medium. The hydrophobic monolayered nanoflakes 5-20 nm in lateral size consisted of a tungstate layer with surface modification by stearylammonium ions (C18H37NH3)0.397 H0.603Cs3W11O35xH2O (x < 0.625). PMID:26009313

  1. Activated carbon electrodes: electrochemical oxidation coupled with desalination for wastewater treatment.

    PubMed

    Duan, Feng; Li, Yuping; Cao, Hongbin; Wang, Yi; Crittenden, John C; Zhang, Yi

    2015-04-01

    The wastewater usually contains low-concentration organic pollutants and some inorganic salts after biological treatment. In the present work, the possibility of simultaneous removal of them by combining electrochemical oxidation and electrosorption was investigated. Phenol and sodium chloride were chosen as representative of organic pollutants and inorganic salts and a pair of activated carbon plate electrodes were used as anode and cathode. Some important working conditions such as oxygen concentration, applied potential and temperature were evaluated to reach both efficient phenol removal and desalination. Under optimized 2.0 V of applied potential, 38C of temperature, and 500 mL min(-1) of oxygen flow, over 90% of phenol, 60% of TOC and 20% of salinity were removed during 300 min of electrolysis time. Phenol was removed by both adsorption and electrochemical oxidation, which may proceed directly or indirectly by chlorine and hypochlorite oxidation. Chlorophenols were detected as degradation intermediates, but they were finally transformed to carboxylic acids. Desalination was possibly attributed to electrosorption of ions in the pores of activated carbon electrodes. The charging/regeneration cycling experiment showed good stability of the electrodes. This provides a new strategy for wastewater treatment and recycling. PMID:25585871

  2. Tandems as injectors for synchrotrons

    SciTech Connect

    Ruggiero, A.G.

    1992-01-01

    This is a review on the use of Tandem electrostatic accelerators for injection and filling of synchrotrons to accelerate intense beams of heavy-ions to relativistic energies. The paper emphasizes the need of operating the Tandems in pulsed mode for this application. It has been experimentally demonstrated that at the present this type of accelerators still provides the most reliable and best performance.

  3. Tandems as injectors for synchrotrons

    SciTech Connect

    Ruggiero, A.G.

    1992-08-01

    This is a review on the use of Tandem electrostatic accelerators for injection and filling of synchrotrons to accelerate intense beams of heavy-ions to relativistic energies. The paper emphasizes the need of operating the Tandems in pulsed mode for this application. It has been experimentally demonstrated that at the present this type of accelerators still provides the most reliable and best performance.

  4. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    SciTech Connect

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  5. Conjugated Microporous Poly(Benzochalcogenadiazole)s for Photocatalytic Oxidative Coupling of Amines under Visible Light.

    PubMed

    Wang, Zi Jun; Garth, Kim; Ghasimi, Saman; Landfester, Katharina; Zhang, Kai A I

    2015-10-26

    Metal-free visible-light photocatalysts offer a clean, sustainable solution to many pressing environmental issues. Herein, we present a molecular design strategy to fine-tune the valence and conduction band levels of a series of conjugated microporous polymer networks based on poly(benzochalcogenadiazole) for heterogeneous photocatalysis. Enhanced photocatalytic efficiency was observed by altering the chalcogene moieties in the electron-accepting benzochalcogenadiazole unit of the polymer backbone structure. Photooxidative coupling of benzylamines was chosen as a model reaction. This design strategy leading to enhanced efficiency could potentially improve a wide range of photoredox reactions. PMID:26350332

  6. Synthesis of Oxazolidin-2-ones by Oxidative Coupling of Isonitriles, Phenyl Vinyl Selenone, and Water.

    PubMed

    Buyck, Thomas; Pasche, Delphine; Wang, Qian; Zhu, Jieping

    2016-02-01

    Reaction of alkyl isocyanides, phenyl vinyl selenone, and water in the presence of a catalytic amount of Cs2 CO3 afforded oxazolidin-2-ones in good yields. This unprecedented heteroannulation process created four chemical bonds in a single operation with the isocyano group acting formally as a polarized double bond and phenyl vinyl selenone as a latent 1,3-dipole. The phenylselenonyl group played a triple role as an electron-withdrawing group to activate the 1,4-addition, a leaving group, and a latent oxidant in this transformation. PMID:26683868

  7. Inorganic proton conducting electrolyte coupled oxide-based dendritic transistors for synaptic electronics.

    PubMed

    Wan, Chang Jin; Zhu, Li Qiang; Zhou, Ju Mei; Shi, Yi; Wan, Qing

    2014-05-01

    Ionic/electronic hybrid devices with synaptic functions are considered to be the essential building blocks for neuromorphic systems and brain-inspired computing. Here, artificial synapses based on indium-zinc-oxide (IZO) transistors gated by nanogranular SiO2 proton-conducting electrolyte films are fabricated on glass substrates. Spike-timing dependent plasticity and paired-pulse facilitation are successfully mimicked in an individual bottom-gate transistor. Most importantly, dynamic logic and dendritic integration established by spatiotemporally correlated spikes are also mimicked in dendritic transistors with two in-plane gates as the presynaptic input terminals. PMID:24643320

  8. Nitrous Oxide as a Hydrogen Acceptor for the Dehydrogenative Coupling of Alcohols.

    PubMed

    Gianetti, Thomas L; Annen, Samuel P; Santiso-Quinones, Gustavo; Reiher, Markus; Driess, Matthias; Grtzmacher, Hansjrg

    2016-01-01

    The oxidation of alcohols with N2 O as the hydrogen acceptor was achieved with low catalyst loadings of a rhodium complex that features a cooperative bis(olefin)amido ligand under mild conditions. Two different methods enable the formation of either the corresponding carboxylic acid or the ester. N2 and water are the only by-products. Mechanistic studies supported by DFT calculations suggest that the oxygen atom of N2 O is transferred to the metal center by insertion into the Rh-H bond of a rhodium amino hydride species, generating a rhodium hydroxy complex as a key intermediate. PMID:26693955

  9. Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability

    NASA Astrophysics Data System (ADS)

    Cazzola, Martina; Corazzari, Ingrid; Prenesti, Enrico; Bertone, Elisa; Vernè, Enrica; Ferraris, Sara

    2016-03-01

    Polyphenols are actually achieving an increasing interest due to their potential health benefits, such as antioxidant, anticancer, antibacterial and bone stimulation abilities. However their poor bioavailability and stability hamper an effective clinical application as therapeutic principles. The opportunity to couple these biomolecules with synthetic biomaterials, in order to obtain local delivery at the site of interest, improve their bioavailability and stability and combine their properties with the ones of the substrate, is a challenging opportunity for the biomedical research. A silica based bioactive glass, CEL2, has been successfully coupled with gallic acid and natural polyphenols extracted from red grape skins and green tea leaves. The effectiveness of grafting has been verified by means of XPS analyses and the Folin&Ciocalteu tests. In vitro bioactivity has been investigated by soaking in simulated body fluid (SBF). Surface modification after functionalization and early stage reactivity in SBF have been studied by means of zeta potential electrokinetic measurements in KCl and SBF. Finally the antioxidant properties of bare and modified bioactive glasses has been investigated by means of the evaluation of free radical scavenging activity by Electron Paramagnetic Resonance (EPR)/spin trapping technique after UV photolysis of H2O2 highlighting scavenging activity of the bioactive glass.

  10. Inorganic proton conducting electrolyte coupled oxide-based dendritic transistors for synaptic electronics

    NASA Astrophysics Data System (ADS)

    Wan, Chang Jin; Zhu, Li Qiang; Zhou, Ju Mei; Shi, Yi; Wan, Qing

    2014-04-01

    Ionic/electronic hybrid devices with synaptic functions are considered to be the essential building blocks for neuromorphic systems and brain-inspired computing. Here, artificial synapses based on indium-zinc-oxide (IZO) transistors gated by nanogranular SiO2 proton-conducting electrolyte films are fabricated on glass substrates. Spike-timing dependent plasticity and paired-pulse facilitation are successfully mimicked in an individual bottom-gate transistor. Most importantly, dynamic logic and dendritic integration established by spatiotemporally correlated spikes are also mimicked in dendritic transistors with two in-plane gates as the presynaptic input terminals.Ionic/electronic hybrid devices with synaptic functions are considered to be the essential building blocks for neuromorphic systems and brain-inspired computing. Here, artificial synapses based on indium-zinc-oxide (IZO) transistors gated by nanogranular SiO2 proton-conducting electrolyte films are fabricated on glass substrates. Spike-timing dependent plasticity and paired-pulse facilitation are successfully mimicked in an individual bottom-gate transistor. Most importantly, dynamic logic and dendritic integration established by spatiotemporally correlated spikes are also mimicked in dendritic transistors with two in-plane gates as the presynaptic input terminals. Electronic supplementary information (ESI) available: The structures and transfer characteristics of the IZO junctionless transistor working in bottom-gate mode and in-plane gate mode. See DOI: 10.1039/c3nr05882d

  11. Korean red ginseng inhibits arginase and contributes to endotheliumdependent vasorelaxation through endothelial nitric oxide synthase coupling.

    PubMed

    Shin, Woosung; Yoon, Jeongyeon; Oh, Goo Taeg; Ryoo, Sungwoo

    2013-03-01

    Korean red ginseng water extract (KG-WE) has known beneficial effects on the cardiovascular system via inducting nitric oxide (NO) production in endothelium. Endothelial arginase inhibits the activity of endothelial nitric oxide synthase (eNOS) by substrate depletion, thereby reducing NO bioavailability and contributing to vascular diseases including hypertension, aging, and atherosclerosis. In the present study, we demonstrate that KG-WE inhibits arginase activity and negatively regulates NO production and reactive oxygen species generation in endothelium. This is associated with increased dimerization of eNOS without affecting the protein expression levels of either arginase or eNOS. In a vascular tension assay, when aortas isolated from wild type mice were incubated with KG-WE, NO-dependent enhanced vasorelaxation was observed. Furthermore, KG-WE administered via by drinking water to atherogenic model mice being fed high cholesterol diet improved impaired vascular function. Taken together, these results suggest that KG-WE may exert vasoprotective effects through augmentation of NO signaling by inhibiting arginase. Therefore, KG-WE may be useful in the treatment of vascular diseases derived from endothelial dysfunction, such as atherosclerosis. PMID:23717158

  12. Glutamate Utilization Couples Oxidative Stress Defense and the Tricarboxylic Acid Cycle in Francisella Phagosomal Escape

    PubMed Central

    Ramond, Elodie; Gesbert, Gael; Rigard, Mlanie; Dairou, Julien; Dupuis, Marion; Dubail, Iharilalao; Meibom, Karin; Henry, Thomas; Barel, Monique; Charbit, Alain

    2014-01-01

    Intracellular bacterial pathogens have developed a variety of strategies to avoid degradation by the host innate immune defense mechanisms triggered upon phagocytocis. Upon infection of mammalian host cells, the intracellular pathogen Francisella replicates exclusively in the cytosolic compartment. Hence, its ability to escape rapidly from the phagosomal compartment is critical for its pathogenicity. Here, we show for the first time that a glutamate transporter of Francisella (here designated GadC) is critical for oxidative stress defense in the phagosome, thus impairing intra-macrophage multiplication and virulence in the mouse model. The gadC mutant failed to efficiently neutralize the production of reactive oxygen species. Remarkably, virulence of the gadC mutant was partially restored in mice defective in NADPH oxidase activity. The data presented highlight links between glutamate uptake, oxidative stress defense, the tricarboxylic acid cycle and phagosomal escape. This is the first report establishing the role of an amino acid transporter in the early stage of the Francisella intracellular lifecycle. PMID:24453979

  13. Mechanism of Nickel(II)-Catalyzed Oxidative C(sp)-H/C(sp)-H Coupling of Benzamides and Toluene Derivatives.

    PubMed

    Xu, Zheng-Yang; Jiang, Yuan-Ye; Yu, Hai-Zhu; Fu, Yao

    2015-11-01

    The Ni-catalyzed C(sp(2))-H/C(sp(3))-H coupling of benzamides with toluene derivatives was recently successfully achieved with mild oxidant iC3F7I. Herein, we employ density functional theory (DFT) methods to resolve the mechanistic controversies. Two previously proposed mechanisms are excluded, and our proposed mechanism involving iodine-atom transfer (IAT) between iC3F7I and the Ni(II) intermediate was found to be more feasible. With this mechanism, the presence of a carbon radical is consistent with the experimental observation that (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) completely quenches the reaction. Meanwhile, the hydrogen-atom abstraction of toluene is irreversible and the activation of the C(sp(2))-H bond of benzamides is reversible. Both of these conclusions are in good agreement with Chatani's deuterium-labeling experiments. PMID:26307522

  14. An Alignment Medium for Measuring Residual Dipolar Couplings in Pure DMSO: Liquid Crystals from Graphene Oxide Grafted with Polymer Brushes.

    PubMed

    Zong, Wen; Li, Gao-Wei; Cao, Jiang-Ming; Lei, Xinxiang; Hu, Mao-Lin; Sun, Han; Griesinger, Christian; Tan, Ren Xiang

    2016-03-01

    Residual dipolar couplings (RDCs) have attracted attention in light of their great impact on the structural elucidation of organic molecules. However, the effectiveness of RDC measurements is limited by the shortage of alignment media compatible with widely used organic solvents, such as DMSO. Herein, we present the first liquid crystal (LC) based alignment medium that is compatible with pure DMSO, thus enabling RDC measurements of polar and intermediate polarity molecules. The liquid crystals were obtained by grafting polymer brushes onto graphene oxide (GO) using free radical polymerization. The resulting new medium offers several advantages, such as absence of background signals, narrow line shapes, and tunable alignment. Importantly, this medium is compatible with π-conjugated molecules. Moreover, sonication-induced fragmentation can reduce the size of GO sheets. The resulting anisotropic medium has moderate alignment strength, which is a prerequisite for an accurate RDC measurement. PMID:26890579

  15. Imaging the nanomolar range of nitric oxide with an amplifier-coupled fluorescent indicator in living cells

    NASA Astrophysics Data System (ADS)

    Sato, Moritoshi; Hida, Naoki; Umezawa, Yoshio

    2005-10-01

    Nitric oxide (NO) is a small uncharged free radical that is involved in diverse physiological and pathophysiological mechanisms. NO is generated by three isoforms of NO synthase, endothelial, neuronal, and inducible ones. When generated in vascular endothelial cells, NO plays a key role in vascular tone regulation, in particular. Here, we describe an amplifier-coupled fluorescent indicator for NO to visualize physiological nanomolar dynamics of NO in living cells (detection limit of 0.1 nM). This genetically encoded high-sensitive indicator revealed that 1 nM of NO, which is enough to relax blood vessels, is generated in vascular endothelial cells even in the absence of shear stress. The nanomolar range of basal endothelial NO thus revealed appears to be fundamental to vascular homeostasis. fluorescence resonance energy transfer | genetic encoding

  16. Doped Mott Insulators in (111) Bilayers of Perovskite Transition-Metal Oxides with a Strong Spin-Orbit Coupling

    SciTech Connect

    Okamoto, Satoshi

    2013-01-01

    The electronic properties of Mott insulators realized in (111) bilayers of perovskite transition-metal oxides are studied. The low-energy effective Hamiltonians for such Mott insulators are derived in the presence of a strong spin-orbit coupling. These models are characterized by the antiferromagnetic Heisenberg interaction and the anisotropic interaction whose form depends on the $d$ orbital occupancy. From exact diagonalization analyses on finite clusters, the ground state phase diagrams are derived, including a Kitaev spin liquid phase in a narrow parameter regime for $t_{2g}$ systems. Slave-boson mean-field analyses indicate the possibility of novel superconducting states induced by carrier doping into the Mott-insulating parent systems, suggesting the present model systems as unique playgrounds for studying correlation-induced novel phenomena. Possible experimental realizations are also discussed.

  17. High-temperature catalytic oxidative conversion of propane to propylene and ethylene involving coupling of exothermic and endothermic reactions

    SciTech Connect

    Choudhary, V.R.; Rane, V.H.; Rajput, A.M.

    2000-04-01

    Coupling of the exothermic catalytic oxidative conversion and endothermic thermal cracking (noncatalytic) reactions of propane to propylene and ethylene over the SrO/La{sub 2}O{sub 3}/SA5205 catalyst in the presence of steam and limited oxygen was investigated at different process conditions (temperature, 700--850 C; C{sub 3}H{sub 8}/O{sub 2} ratio in feed, 2.0--8.0; H{sub 2}O/C{sub 3}H{sub 8} ratio, 0.5--2.5; space velocity, 2,000--15,000 cm{sup 3}/g h). In the presence of steam and limited O{sub 2}, the endothermic thermal cracking and exothermic oxidative conversion reactions occur simultaneously and there is no coke formation on the catalyst. Because of the direct coupling of exothermic and endothermic reactions, this process occurs in a most energy efficient and safe manner. The propane conversion, selectivity for propylene, and net heat of reaction ({Delta}H{sub r}) in the process are strongly influenced by the temperature and concentration of O{sub 2} relative to the propane in the feed. The C{sub 3}H{sub 6}/C{sub 2}H{sub 4} product ratio is also strongly influenced by the temperature, C{sub 3}H{sub 8}/O{sub 2} feed ratio, and space velocity. The net heat of reaction can be controlled by manipulating the reaction temperature and C{sub 3}H{sub 8}/O{sub 2} ratio in the feed; the process exothermicity is reduced drastically with increasing the temperature and/or C{sub 3}H{sub 8}/O{sub 2} feed ratio.

  18. A Hafnium-Based Metal-Organic Framework as a Nature-Inspired Tandem Reaction Catalyst.

    PubMed

    Beyzavi, M Hassan; Vermeulen, Nicolaas A; Howarth, Ashlee J; Tussupbayev, Samat; League, Aaron B; Schweitzer, Neil M; Gallagher, James R; Platero-Prats, Ana E; Hafezi, Nema; Sarjeant, Amy A; Miller, Jeffrey T; Chapman, Karena W; Stoddart, J Fraser; Cramer, Christopher J; Hupp, Joseph T; Farha, Omar K

    2015-10-28

    Tandem catalytic systems, often inspired by biological systems, offer many advantages in the formation of highly functionalized small molecules. Herein, a new metal-organic framework (MOF) with porphyrinic struts and Hf6 nodes is reported. This MOF demonstrates catalytic efficacy in the tandem oxidation and functionalization of styrene utilizing molecular oxygen as a terminal oxidant. The product, a protected 1,2-aminoalcohol, is formed selectively and with high efficiency using this recyclable heterogeneous catalyst. Significantly, the unusual regioselective transformation occurs only when an Fe-decorated Hf6 node and the Fe-porphyrin strut work in concert. This report is an example of concurrent orthogonal tandem catalysis. PMID:26434603

  19. FEM simulation of oxidation induced stresses with a coupled crack propagation in a TBC model system

    NASA Astrophysics Data System (ADS)

    Seiler, P.; Bker, M.; Rsier, J.

    2010-06-01

    Plasma sprayed thermal barrier coating systems are used on top of highly stressed components, e.g. on gas turbine blades, to protect the underlying substrate from the high surrounding temperatures. A typical coating system consists of the bond-coat (BC), the thermal barrier coating (TBC), and the thermally grown oxide (TGO) between the BC and the TBC. This study examines the failure mechanisms which are caused by the diffusion of oxygen through the TBC and the resulting growth of the TGO. To study the behaviour of the complex failure mechanisms in thermal barrier coatings, a simplified model system is used to reduce the number of system parameters. The model system consists of a bond-coat material (fast creeping Fecralloy or slow creeping MA956) as the substrate with a Y2O3 partially stabilised plasma sprayed zircon oxide TBC on top and a TGO between the two layers. Alongside the experimental studies a FEM simulation was developed to calculate the stress distribution inside the simplified coating system [1]. The simulation permits the identification of compression and tension areas which are established by the growth of the oxide layer. Furthermore a 2-dimensional finite element model of crack propagation was developed in which the crack direction is calculated by using short trial cracks in different directions. The direction of the crack in the model system is defined as the crack direction with the maximum energy release rate [2,3]. The simulated stress distributions and the obtained crack path provide an insight into the possible failure mechanisms in the coating and allow to draw conclusions for optimising real thermal barrier coating systems. The simulated growth stresses of the TGO show that a slow creeping BC may reduce lifetime. This is caused by stress concentration and cracks under the TGO. A slow creeping BC on the other hand reduces the stresses in the TBC. The different failure mechanisms emphasise the existence of a lifetime optimum which depends on the creep properties of the used bond-coat material. Experimental results show a good agreement with the predicted failure mechanisms.

  20. Multiplex Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Simultaneous Quantification in Human Plasma of Fluconazole, Itraconazole, Hydroxyitraconazole, Posaconazole, Voriconazole, Voriconazole-N-Oxide, Anidulafungin, and Caspofungin▿ †

    PubMed Central

    Decosterd, Laurent Arthur; Rochat, Bertrand; Pesse, Benoît; Mercier, Thomas; Tissot, Frédéric; Widmer, Nicolas; Bille, Jacques; Calandra, Thierry; Zanolari, Boris; Marchetti, Oscar

    2010-01-01

    Therapeutic drug monitoring (TDM) may contribute to optimizing the efficacy and safety of antifungal therapy because of the large variability in drug pharmacokinetics. Rapid, sensitive, and selective laboratory methods are needed for efficient TDM. Quantification of several antifungals in a single analytical run may best fulfill these requirements. We therefore developed a multiplex ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method requiring 100 μl of plasma for simultaneous quantification within 7 min of fluconazole, itraconazole, hydroxyitraconazole, posaconazole, voriconazole, voriconazole-N-oxide, caspofungin, and anidulafungin. Protein precipitation with acetonitrile was used in a single extraction procedure for eight analytes. After reverse-phase chromatographic separation, antifungals were quantified by electrospray ionization-triple-quadrupole mass spectrometry by selected reaction monitoring detection using the positive mode. Deuterated isotopic compounds of azole antifungals were used as internal standards. The method was validated based on FDA recommendations, including assessment of extraction yields, matrix effect variability (<9.2%), and analytical recovery (80.1 to 107%). The method is sensitive (lower limits of azole quantification, 0.01 to 0.1 μg/ml; those of echinocandin quantification, 0.06 to 0.1 μg/ml), accurate (intra- and interassay biases of −9.9 to +5% and −4.0 to +8.8%, respectively), and precise (intra- and interassay coefficients of variation of 1.2 to 11.1% and 1.2 to 8.9%, respectively) over clinical concentration ranges (upper limits of quantification, 5 to 50 μg/ml). Thus, we developed a simple, rapid, and robust multiplex UPLC-MS/MS assay for simultaneous quantification of plasma concentrations of six antifungals and two metabolites. This offers, by optimized and cost-effective lab resource utilization, an efficient tool for daily routine TDM aimed at maximizing the real-time efficacy and safety of different recommended single-drug antifungal regimens and combination salvage therapies, as well as a tool for clinical research. PMID:20855739

  1. Catalytic Alkene Carboaminations Enabled by Oxidative Proton-Coupled Electron Transfer

    PubMed Central

    Choi, Gilbert J.; Knowles, Robert R.

    2015-01-01

    Here we describe a dual catalyst system comprised of an iridium photocatalyst and weak phosphate base that is capable of both selectively homolyzing the NH bonds of N-arylamides (bond dissociation free energies ~ 100 kcal/mol) via concerted proton-coupled electron transfer (PCET) and mediating efficient carboamination reactions of the resulting amidyl radicals. This manner of PCET activation, which finds its basis in numerous biological redox processes, enables the formal homolysis of a stronger amide NH bond in the presence of weaker allylic CH bonds, a selectivity that is uncommon in conventional molecular H atom acceptors. Moreover, this transformation affords access to a broad range of structurally complex heterocycles from simple amide starting materials. The design, synthetic scope, and mechanistic evaluation of the PCET process are described. PMID:26166022

  2. A Critical Test of the Tunneling and Coupled Motion Concept in Enzymatic Alcohol Oxidation

    PubMed Central

    Roston, Daniel; Kohen, Amnon

    2013-01-01

    The physical mechanism of C-H bond activation by enzymes is the subject of intense study and we have tested the predictions of two competing models for C-H activation in the context of alcohol dehydrogenase. The kinetic isotope effects (KIEs) in this enzyme have previously suggested a model of quantum mechanical tunneling and coupled motion of primary (1) and secondary (2) hydrogens. Here we measure the 2 H/T KIEs with both and H and D at the 1 position and find that the 2 KIE is significantly deflated with D-transfer, consistent with the predictions of recent Marcus-like models of H-transfer. The results suggest that the fast dynamics of H-tunneling result in a 1 isotope effect on the structure of the tunneling ready state: the trajectory of D-transfer goes through a shorter donor-acceptor distance than that of H-transfer. PMID:24020836

  3. Manifold, bus support and coupling arrangement for solid oxide fuel cells

    DOEpatents

    Parry, G.W.

    1988-04-21

    Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperature resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC. 11 figs.

  4. Electro-optic switching in iron oxide nanoparticle embedded paramagnetic chiral liquid crystal via magneto-electric coupling

    SciTech Connect

    Goel, Puja; Arora, Manju; Biradar, Ashok M.

    2014-03-28

    The variation in optical texture, electro-optic, and dielectric properties of iron oxide nanoparticles (NPs) embedded ferroelectric liquid crystal (FLC) with respect to change in temperature and electrical bias conditions are demonstrated in the current investigations. Improvement in spontaneous polarization and response time in nanocomposites has been attributed to magneto-electric (ME) coupling resulting from the strong interaction among the ferromagnetic nanoparticle's exchange field (due to unpaired e{sup ?}) and the field of liquid crystal molecular director. Electron paramagnetic resonance spectrum of FLC material gives a broad resonance signal with superimposed components indicating the presence of a source of spin. This paramagnetic behavior of host FLC material had been a major factor in strengthening the guest host interaction by giving an additional possibility of (a) spin-spin interaction and (b) interactions between magnetic-dipole and electric-dipole moments (ME effects) in the composite materials. Furthermore, the phenomenon of dielectric and static memory effect in these composites are also observed which yet again confirms the coupling of magnetic NP's field with FLC's director orientation. We therefore believe that such advanced soft materials holding the optical and electrical properties of conventional LCs with the magnetic and electronic properties of ferromagnetic nanoparticles are going to play a key role in the development of futuristic multifunctional optical devices.

  5. Thickness-dependent crossover from charge- to strain-mediated magnetoelectric coupling in ferromagnetic/piezoelectric oxide heterostructures.

    PubMed

    Spurgeon, Steven R; Sloppy, Jennifer D; Kepaptsoglou, Despoina Maria Demie; Balachandran, Prasanna V; Nejati, Siamak; Karthik, J; Damodaran, Anoop R; Johnson, Craig L; Ambaye, Hailemariam; Goyette, Richard; Lauter, Valeria; Ramasse, Quentin M; Idrobo, Juan Carlos; Lau, Kenneth K S; Lofland, Samuel E; Rondinelli, James M; Martin, Lane W; Taheri, Mitra L

    2014-01-28

    Magnetoelectric oxide heterostructures are proposed active layers for spintronic memory and logic devices, where information is conveyed through spin transport in the solid state. Incomplete theories of the coupling between local strain, charge, and magnetic order have limited their deployment into new information and communication technologies. In this study, we report direct, local measurements of strain- and charge-mediated magnetization changes in the La0.7Sr0.3MnO3/PbZr0.2Ti0.8O3 system using spatially resolved characterization techniques in both real and reciprocal space. Polarized neutron reflectometry reveals a graded magnetization that results from both local structural distortions and interfacial screening of bound surface charge from the adjacent ferroelectric. Density functional theory calculations support the experimental observation that strain locally suppresses the magnetization through a change in the Mn-eg orbital polarization. We suggest that this local coupling and magnetization suppression may be tuned by controlling the manganite and ferroelectric layer thicknesses, with direct implications for device applications. PMID:24313563

  6. Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions

    PubMed Central

    Liu, Jingjing; Sun, Faqian; Wang, Liang; Ju, Xi; Wu, Weixiang; Chen, Yingxu

    2014-01-01

    Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro-aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and nirK phylogeny of denitrifiers were analysed to reveal the dominant microbial populations and functional microorganisms. Real-time quantitative polymerase chain reaction results showed high numbers of methanotrophs and denitrifiers in the enriched consortium. The 16S rRNA gene clone library revealed that Methylococcaceae and Methylophilaceae were the dominant populations in the MOD ecosystem. Phylogenetic analyses of pmoA gene clone libraries indicated that all methanotrophs belonged to Methylococcaceae, a type I methanotroph employing the ribulose monophosphate pathway for methane oxidation. Methylotrophic denitrifiers of the Methylophilaceae that can utilize organic intermediates (i.e. formaldehyde, citrate and acetate) released from the methanotrophs played a vital role in aerobic denitrification. This study is the first report to confirm micro-aerobic denitrification and to make phylogenetic and functional assignments for some members of the microbial assemblages involved in MOD. PMID:24245852

  7. Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress.

    PubMed

    Yin, Nuoya; Liu, Qian; Liu, Jiyan; He, Bin; Cui, Lin; Li, Zhuona; Yun, Zhaojun; Qu, Guangbo; Liu, Sijin; Zhou, Qunfang; Jiang, Guibin

    2013-05-27

    The impact of silver nanoparticles (AgNPs) on the central nervous system is a topic with mounting interest and concern and the facts remain elusive. In the current study, the neurotoxicity of commercial AgNPs to rat cerebellum granule cells (CGCs) and the corresponding molecular mechanism are closely investigated. It is demonstrated that AgNPs induce significant cellular toxicity to CGCs in a dose-dependent manner without damaging the cell membrane. Flow cytometry analysis with the Annexin V/propidium iodide (PI) staining indicates that the apoptotic proportion of CGCs upon treatment with AgNPs is greatly increased compared to the negative control. Moreover, the activity of caspase-3 is largely elevated in AgNP-treated cells compared to the negative control. AgNPs are demonstrated to induce oxidative stress, reflected by the massive generation of reactive oxygen species (ROS), the depletion of antioxidant glutathione (GSH), and the increase of intracellular calcium. Histological examination suggests that AgNPs provoke destruction of the cerebellum granular layer in rats with concomitant activation of caspase-3, in parallel to the neurotoxicity of AgNPs observed in vitro. Taken together, it is demonstrated for the first time that AgNPs substantially impair the survival of primary neuronal cells through apoptosis coupled to oxidative stress, depending on the caspase activation-mediated signaling. PMID:23427069

  8. Aligning electronic and protonic energy levels of proton-coupled electron transfer in water oxidation on aqueous TiO₂.

    PubMed

    Cheng, Jun; Liu, Xiandong; Kattirtzi, John A; VandeVondele, Joost; Sprik, Michiel

    2014-11-01

    The high overpotential in water oxidation on anodes is a limiting factor for the large-scale application of photoelectrochemical cells. To overcome this limitation, it is essential to understand the four proton-coupled electron transfer (PCET) steps in the reaction mechanism and their implications to the overpotential. Herein, a simple scheme to compute the energies of the PCET steps in water oxidation on the aqueous TiO2 surface using a hybrid density functional is described. An energy level diagram for fully decoupled electron- and proton-transfer reactions in which both electronic and protonic levels are placed on the same potential scale is also described. The level diagram helps to visualize the electronic and protonic components of the overpotential, and points out what are needed to improve. For TiO2, it is found that its catalytic activity is due to aligning the protonic energy levels in the PCET steps, while improving the activity requires also aligning the electronic levels. PMID:25056713

  9. Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus.

    PubMed

    Gong, Changxiu; Jiang, Jianguo; Li, De'an

    2015-11-01

    We focused on the effects of ultrasound and Fenton reagent in ultrasonic coupling Fenton oxidation (U + F) pre-treatment processes on the disintegration of wastewater treatment plant sludge. The results demonstrated that U + F treatment could significantly increase soluble COD, TOC, total N, proteins, total P and PO4(3-) concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U + F treatment increased the soluble COD by 2.1- and 1.4-fold compared with U and F alone, respectively. U + F treatment increased the total N and P by 1.7- and 2.2-fold, respectively, compared with F alone. After U + F treatment, sludge showed a considerably finer particle size and looser microstructure based on scanning electron microscopy, and the highest OH signal intensity increased from 568.7 by F treatment to 1106.3 using electron spin resonance. This demonstrated that U+F treatment induces disintegration of sludge and release of organic carbon, nitrogen and phosphorus better. PMID:26100728

  10. Antiferromagnetic Layer Structure Effects on Exchange Coupling Strength in Ion-Beam Deposited Ni80Fe20/Cobalt Oxide Bilayers

    NASA Astrophysics Data System (ADS)

    Lin, Ko-Wei; Lin, Fu-Tai; Tzeng, Yi-Min

    2005-06-01

    A series of Ni80Fe20/Cobalt oxide bilayers were prepared by a dual ion-beam deposition technique that produced a layer composition that varied from rock-salt CoO (a=4.27 ) to spinel Co3O4 (a=8.21 ) with increasing O2 content in the assist beam. Each polycrystalline layer (20 nm) exhibited a columnar structure perpendicular to the film surface. A strong temperature dependence of coercivity Hc and exchange bias field Hex was found in these Ni80Fe20/cobalt oxide bilayers. At T=10 K, films prepared with 34% O2 in the assist beam exhibited an exchange shift Hex -200 Oe that persisted at temperatures higher than 30 K. The variations in Hc and Hex as a function of %O2 are related to the interfacial roughness and magnetic state of CoO or Co3O4. The transition temperature of Co3O4 has increased above the bulk value via exchange coupling with the permalloy.

  11. Steady-state vs non-steady-state transient kinetic analysis of surface coverages during the oxidative coupling of methane

    SciTech Connect

    Peil, K.P.; Goodwin, J.G. Jr.; Marcelin, G. )

    1991-12-01

    Because of its greater simplicity and lower cost, non-steady-state transient kinetic analysis has been used by a number of workers in the study of methane oxidation. With the non-steady-state technique, the concentration level of one of the reactants is put through a step change and the resulting transients in product and reactant concentrations are obtained. The quantity of surface intermediates detected during this real transient may or may not relate to those existing under steady-state reaction since the surface is experiencing major changes. Examination of reactive surface intermediates under steady-state isotopic transient kinetic analysis. This technique entails an abrupt switch in the isotopic composition of one of the reactants, which does not disturb the steady-state condition, accompanied by the continuous monitoring (e.g., by mass spectrometry) of the relaxation and evolution of labeled reactants and products. The main difference between these two techniques is the unavoidable perturbation of the reaction environment with non-steady-state isotopic transient techniques. Results are presented that detail for the first time some of the problems with trying to relate amounts of surface species measured under non-steady-state conditions to concentrations of surface reaction intermediates existing during the steady-state oxidative coupling of methane.

  12. Oxidatively generated base damage to cellular DNA by hydroxyl radical and one-electron oxidants: similarities and differences.

    PubMed

    Cadet, Jean; Wagner, J Richard

    2014-09-01

    Hydroxyl radical (OH) and one-electron oxidants that may be endogenously formed through oxidative metabolism, phagocytosis, inflammation and pathological conditions constitute the main sources of oxidatively generated damage to cellular DNA. It is worth mentioning that exposure of cells to exogenous physical agents (UV light, high intensity UV laser, ionizing radiation) and chemicals may also induce oxidatively generated damage to DNA. Emphasis is placed in this short review article on the mechanistic aspects of OH and one-electron oxidant-mediated formation of single and more complex damage (tandem lesions, intra- and interstrand cross-links, DNA-protein cross-links) in cellular DNA arising from one radical hit. This concerns DNA modifications that have been accurately measured using suitable analytical methods such as high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Evidence is provided that OH and one-electron oxidants after generating neutral radicals and base radical cations respectively may partly induce common degradation pathways. In addition, selective oxidative reactions giving rise to specific degradation products of OH and one-electron oxidation reactions that can be used as representative biomarkers of these oxidants have been identified. PMID:24820329

  13. Fueling of tandem mirror reactors

    SciTech Connect

    Gorker, G.E.; Logan, B.G.

    1985-01-01

    This paper summarizes the fueling requirements for experimental and demonstration tandem mirror reactors (TMRs), reviews the status of conventional pellet injectors, and identifies some candidate accelerators that may be needed for fueling tandem mirror reactors. Characteristics and limitations of three types of accelerators are described; neutral beam injectors, electromagnetic rail guns, and laser beam drivers. Based on these characteristics and limitations, a computer module was developed for the Tandem Mirror Reactor Systems Code (TMRSC) to select the pellet injector/accelerator combination which most nearly satisfies the fueling requirements for a given machine design.

  14. Isolation and Characterization of Microbes Mediating Thermodynamically Favorable Coupling of Anaerobic Oxidation of Methane and Metal Reduction

    NASA Astrophysics Data System (ADS)

    Glass, J. B.; Reed, B. C.; Sarode, N. D.; Kretz, C. B.; Bray, M. S.; DiChristina, T. J.; Stewart, F. J.; Fowle, D. A.; Crowe, S.

    2014-12-01

    Methane is the third most reduced environmentally relevant electron donor for microbial metabolisms after organic carbon and hydrogen. In anoxic ecosystems, the major sink for methane is anaerobic oxidation of methane (AOM) mediated by syntrophic microbial consortia that couple AOM to reduction of an oxidized electron acceptor to yield free energy. In marine sediments, AOM is generally coupled to reduction of sulfate despite an extremely small amount of free energy yield because sulfate is the most abundant electron acceptor in seawater. While AOM coupled to Fe(III) and Mn(IV) reduction (Fe- and Mn-AOM) is 10-30x more thermodynamically favorable than sulfate-AOM, and geochemical data suggests that it occurs in diverse environments, the microorganisms mediating Fe- and Mn-AOM remain unknown. Lake Matano, Indonesia is an ideal ecosystem to enrich for Fe- and Mn-AOM microbes because its anoxic ferruginous deep waters and sediments contain abundant Fe(III), Mn(IV) and methane, and extremely low sulfate and nitrate. Our research aims to isolate and characterize the microbes mediating Fe- and Mn-AOM from three layers of Lake Matano sediments through serial enrichment cultures in minimal media lacking nitrate and sulfate. 16S rRNA amplicon sequencing of sediment inoculum revealed the presence of the Fe(III)-reducing bacterium Geobacter (5-10% total microbial community in shallow sediment and 35-60% in deeper sediment) as well as 1-2% Euryarchaeota implicated in methane cycling, including ANME-1 and 2d and Methanosarcinales. After 90 days of primary enrichment, all three sediment layers showed high levels of Fe(III) reduction (60-90 ?M Fe(II) d-1) in the presence of methane compared to no methane and heat-killed controls. Treatments with added Fe(III) as goethite contained higher abundances of Geobacter than the inoculum (60-80% in all layers), suggesting that Geobacter may be mediating Fe(III) reduction in these enrichments. Quantification of AOM rates is underway, and will be used to estimate the plausibility of metal-AOM as a thermodynamically favorable methane sink in anoxic ecosystems of both the modern and ancient Earth.

  15. New developments in the analysis of fragrances and earthy-musty compounds in water by solid-phase microextraction (metal alloy fibre) coupled with gas chromatography-(tandem) mass spectrometry.

    PubMed

    Machado, S; Gonalves, C; Cunha, E; Guimares, A; Alpendurada, M F

    2011-05-30

    Fragrances are widespread aquatic contaminants due to their presence in many personal care products used daily in developed countries. Levels of galaxolide and tonalide are commonly found in surface waters, urban wastewaters and river sediments. On the other hand, earthy-musty compounds confer bad odour to drinking water at levels that challenge the analytical capabilities. The combined determination of earthy-musty compounds and fragrances in water would be a breakthrough to make the traditional organoleptic evaluation of the water quality stricter and safer for the analyst. Two approaches were attempted to improve the analytical capabilities: analyte pre-concentration with a newly developed PDMS-DVB solid-phase microextraction fibre on metal alloy core and sensitive detection by tandem mass spectrometry (MS/MS). The optimization of SPME parameters was carried out using a central composite design and desirability functions. The final optimum extraction conditions were: headspace extraction at 70C during 40 min adding 200 g L(-1) of NaCl. The detection limits in tandem MS (0.02-20 ng L(-1)) were marginally lower compared to full scan except for geosmin and trichloroanisol which go down to 0.1 and 0.02 ng L(-1), respectively. The analysis of different water matrices revealed that fragrances and earthy-musty compounds were absent from ground- and drinking waters. Surface waters of river Lea contained levels of galaxolide around 250 ng L(-1) in the 4 terminal sampling stations, which are downstream of WWTPs and polluted tributaries. Geosmine was ubiquitously distributed in natural waters similarly in rivers Lea and Douro at concentrations <7 ng L(-1). PMID:21530789

  16. Immobilization of strontium during iron biomineralization coupled to dissimilatory hydrous ferric oxide reduction

    NASA Astrophysics Data System (ADS)

    Roden, Eric E.; Leonardo, Michael R.; Ferris, F. Grant

    2002-09-01

    The potential for incorporation of strontium (Sr) into biogenic Fe(II)-bearing minerals formed during microbial reduction of synthetic hydrous ferric oxide (HFO) was investigated in circumneutral bicarbonate-buffered medium containing SrCl 2 at concentrations of 10 ?M, 100 ?M, or 1.0 mM. CaCl 2 (10 mM) was added to some experiments to simulate a Ca-rich groundwater. In Ca-free systems, 89 to 100% of total Sr was captured in solid-phase compounds formed during reduction of 30 to 40 mmol Fe(III) L -1 over a 1-month period. A smaller fraction of total Sr (25 to 34%) was incorporated into the solid phase in cultures amended with 10 mM CaCl 2. X-ray diffraction identified siderite and ferroan ankerite as major end products of HFO reduction in Ca-free and Ca-amended cultures, respectively. Scanning electron microscopy-energy dispersive x-ray spectroscopy revealed the presence of Sr associated with carbonate phases. Selective extraction of HFO reduction end products indicated that 46 to 100% of the solid-phase Sr was associated with carbonates. The sequestration of Sr into carbonate phases in the Ca-free systems occurred systematically according to a heterogeneous (Doerner-Hoskins) partition coefficient (D D-H) of 1.81 0.15. This D D-H value was 2 to 10 times higher than values determined for incorporation of Sr (10 ?M) into FeCO 3(s) precipitated abiotically at rates comparable to or greater than rates observed during HFO reduction, and fivefold higher than theoretical partition coefficients for equilibrium Fe(Sr)CO 3 solid solution formation. Surface complexation and entrapment of Sr by rapidly growing siderite crystals (and possibly other biogenic Fe(II) solids) provides an explanation for the intensive scavenging of Sr in the Ca-free systems. The results of abiotic siderite precipitation experiments in the presence and absence of excess Ca indicate that substitution of Ca for Sr at foreign element incorporation sites (mass action effect) on growing FeCO 3(s) surfaces can account for the inhibition of Sr incorporation into the siderite component of ankerite formed in the Ca-amended HFO reduction experiments. Likewise, substitution of Fe(II) for Sr may explain the absence of major Sr partitioning into the calcite component of ankerite. The findings indicate that under appropriate conditions, sequestration of metals in siderite produced during bacterial Fe(III) oxide reduction may provide a mechanism for retarding the migration of Sr and other divalent metal contaminants in anaerobic, carbonate-rich sedimentary environments.

  17. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Tandem-switched transport and tandem charge. 69... SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges § 69.111 Tandem-switched transport and tandem...-switched transport shall consist of two rate elements, a transmission charge and a tandem switching...

  18. Dye Sensitized Tandem Photovoltaic Cells

    SciTech Connect

    Barber, Greg D.

    2009-12-21

    This work provided a new way to look at photoelectrochemical cells and their performance. Although thought of as low efficiency, a the internal efficiency of a 9% global efficiency dye sensitized solar cell is approximately equal to an 18% efficient silicon cell when each is compared to their useful spectral range. Other work undertaken with this contract also reported the first growth oriented titania and perovskite columns on a transparent conducting oxide. Other work has shown than significant performance enhancement in the performance of dye sensitized solar cells can be obtained through the use of coupling inverse opal photonic crystals to the nanocrystalline dye sensitized solar cell. Lastly, a quick efficient method was developed to bond titanium foils to transparent conducting oxide substrates for anodization.

  19. Proton conducting sodium alginate electrolyte laterally coupled low-voltage oxide-based transistors

    SciTech Connect

    Liu, Yang Hui; Wan, Qing; Qiang Zhu, Li; Shi, Yi

    2014-03-31

    Solution-processed sodium alginate electrolyte film shows a high proton conductivity of ∼5.5 × 10{sup −3} S/cm and a high lateral electric-double-layer (EDL) capacitance of ∼2.0 μF/cm{sup 2} at room temperature with a relative humidity of 57%. Low-voltage in-plane-gate indium-zinc-oxide-based EDL transistors laterally gated by sodium alginate electrolytes are fabricated on glass substrates. The field-effect mobility, current ON/OFF ratio, and subthreshold swing of such EDL transistors are estimated to be 4.2 cm{sup 2} V{sup −1} s{sup −1}, 2.8 × 10{sup 6}, and 130 mV/decade, respectively. At last, a low-voltage driven resistor-load inverter is also demonstrated. Such in-plane-gate EDL transistors have potential applications in portable electronics and low-cost biosensors.

  20. Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism

    USGS Publications Warehouse

    Coates, J.D.; Councell, T.; Ellis, D.J.; Lovley, D.R.

    1998-01-01

    An isolate, designated GC-29, that could incompletely oxidize glucose to acetate and carbon dioxide with Fe(III) serving as the electron acceptor was recovered from freshwater sediments of the Potomac River, Maryland. This metabolism yielded energy to support cell growth. Strain GC-29 is a facultatively anaerobic, Gram-negative motile rod which, in addition to glucose, also used sucrose, lactate, pyruvate, yeast extract, casamino acids or H2 as alternative electron donors for Fe(III) reduction. Stain GC-29 could reduce NO-3, Mn(IV), U(VI), fumarate, malate, S2O32-, and colloidal S0 as well as the humics analog, 2,6-anthraquinone disulfonate. Analysis of the almost complete 16S rRNA sequence indicated that strain GC-29 belongs in the Shewanella genus in the epsilon subdivision of the Proteobacteria. The name Shewanella saccharophilia is proposed. Shewanella saccharophilia differs from previously described fermentative microorganisms that metabolize glucose with the reduction of Fe(III) because it transfers significantly more electron equivalents to Fe(III); acetate and carbon dioxide are the only products of glucose metabolism; energy is conserved from Fe(III) reduction; and glucose is not metabolized in the absence of Fe(III). The metabolism of organisms like S. saccharophilia may account for the fact that glucose is metabolized primarily to acetate and carbon dioxide in a variety of sediments in which Fe(III) reduction is the terminal electron accepting process.

  1. Coupled molecular-dynamics and first-principle transport calculations of metal/oxide/metal heterostructures

    NASA Astrophysics Data System (ADS)

    Zapol, Peter; Karpeyev, Dmitry; Maheshwari, Ketan; Zhong, Xiaoliang; Narayanan, Badri; Sankaranarayanan, Subramanian; Wilde, Michael; Heinonen, Olle; Rungger, Ivan

    2015-03-01

    The electronic conduction in Hf-oxide heterostructures for use in, e.g., resistive switching devices, depends sensitively on local oxygen stoichiometry and interactions at interfaces with metal electrodes. In order to model the electronic structure of different disordered configurations near interfaces, we have combined molecular dynamics (MD) simulations with first-principle based non-equilibrium Green's functions (NEGF) methods, including self-interaction corrections. We have developed an approach to generating automated workflows that combine MD and NEGF computations over many parameter values using the Swift parallel scripting language. A sequence of software tools transforms the result of one calculation into the input of the next allowing for a high-throughput concurrent parameter sweep. MD simulations generate systems with quenched disorder, which are then directly fed to NEGF and on to postprocessing. Different computations can be run on different computer platforms matching the computational load to the hardware resources. We will demonstrate results for metal-HfO2-metal heterostructures obtained using this workflow. Argonne National Laboratory's work was supported under U.S. Department of Energy Contract DE-AC02-06CH11357.

  2. Using Coupled Mesoscale Experiments and Simulations to Investigate High Burn-Up Oxide Fuel Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.

    2014-12-01

    Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.

  3. Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism.

    PubMed

    Coates, J D; Councell, T; Ellis, D J; Lovley, D R

    1998-12-01

    An isolate, designated GC-29, that could incompletely oxidize glucose to acetate and carbon dioxide with Fe(III) serving as the electron acceptor was recovered from freshwater sediments of the Potomac River, Maryland. This metabolism yielded energy to support cell growth. Strain GC-29 is a facultatively anaerobic, gram-negative motile rod which, in addition to glucose, also used sucrose, lactate, pyruvate, yeast extract, casamino acids or H2 as alternative electron donors for Fe(III) reduction. Stain GC-29 could reduce NO3(-), Mn(IV), U(VI), fumarate, malate, S2O3(2-), and colloidal S0 as well as the humics analog, 2,6-anthraquinone disulfonate. Analysis of the almost complete 16S rRNA sequence indicated that strain GC-29 belongs in the Shewanella genus in the epsilon subdivision of the Proteobacteria. The name Shewanella saccharophilia is proposed. Shewanella saccharophilia differs from previously described fermentative microorganisms that metabolize glucose with the reduction of Fe(III) because it transfers significantly more electron equivalents to Fe(III); acetate and carbon dioxide are the only products of glucose metabolism; energy is conserved from Fe(III) reduction; and glucose is not metabolized in the absence of Fe(III). The metabolism of organisms like S. saccharophilia may account for the fact that glucose is metabolized primarily to acetate and carbon dioxide in a variety of sediments in which Fe(III) reduction is the terminal electron accepting process. PMID:16887653

  4. Coupling of propylene oxide and lactide at a porphyrin chromium(III) center.

    PubMed

    Balasanthiran, Vagulejan; Chatterjee, Chandrani; Chisholm, Malcolm H; Harrold, Nicole D; RajanBabu, T V; Warren, Grant A

    2015-02-11

    5,10,15,20-Tetraphenylporphyrin chromium chloride (TPPCrCl) with added [Ph3P?N?PPh3](+)Cl(-) (PPN(+)Cl(-)) selectively polymerizes lactide (L and rac) dissolved in neat propylene oxide (PO) to yield polylactide (PLA) terminated by the -OCHMeCH2Cl group. At 0 C and below, rac-LA yields polymers highly enriched in isotactic tetrads (iii). At 25 C, some stereoselectivity is lost as transesterification becomes significant, and at 60 C and above, enchainment of PO leads to the formation of 3,6-dimethyl-1,4-dioxan-2-one by a backbiting mechanism. At 0 C, after the enchainment of L-(S,S)-LA in neat (R)-(+)-PO, the formation of (3S,6R)-3,6-dimethyl-1,4-dioxan-2-one occurs, while at higher temperatures the ratio of (3S,6R)-3,6-dimethyl-1,4-dioxan-2-one to (3R,6R)-3,6-dimethyl-1,4-dioxan-2-one falls to 3:2. PMID:25629656

  5. Manifold, bus support and coupling arrangement for solid oxide fuel cells

    DOEpatents

    Parry, Gareth W. (East Windsor, CT)

    1989-01-01

    Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperture resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. The piping thus forms a manfold for directing fuel and air to each module in a string and makes electrical contact with the module's anode and cathode to conduct the DC power generated by the SOFC. The piping also provides structureal support for each individual module and maintains each string of modules as a structurally integral unit for ensuring high strength in a large 3-dimensional array of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC.

  6. Oxidant-Controlled Catalytic Transformations of Phenols with Unexpected Cleavage of Aromatic Rings.

    PubMed

    Li, Wei; Song, Feijie; You, Jingsong

    2015-09-28

    Oxidative transformations of phenols have attracted significant attention of chemists due to their importance in biological process and organic synthesis. In contrast to the relatively well-developed oxygenation and coupling reactions of phenols, the highly efficient and selective oxidative ring cleavage of phenols is under-represented. This work describes a novel CuCl-catalyzed tandem homocoupling/skeletal rearrangement of phenols that realizes the cleavage of the phenol ring by using air or Ag2CO3 as the oxidant. Interestingly, simply changing the oxidant to K2S2O8 results in the oxidative coupling/cyclization of phenols to give dibenzofurans. These results set an important precedent of oxidant-controlled catalytic transformations of phenols. PMID:26286529

  7. Reversal of Cardiac Hypertrophy and Fibrosis from Pressure-Overload by Tetrahydrobiopterin: Efficacy of re-coupling nitric oxide synthase as a therapeutic strategy

    PubMed Central

    Moens, An L.; Takimoto, Eiki; Tocchetti, Carlo G.; Chakir, Khalid; Bedja, Djahida; Cormaci, Gianfranco; Ketner, Elizabeth A.; Majmudar, Maulik; Gabrielson, Kathleen; Halushka, Marc K.; Mitchell, James B.; Biswal, Shyam; Channon, Keith M.; Wolin, Mike S.; Alp, Nicholas J.; Paolocci, Nazareno; Champion, Hunter C.; Kass, David A.

    2008-01-01

    Background Sustained pressure-overload induces pathologic cardiac hypertrophy and dysfunction. Oxidative stress linked to nitric oxide synthase (NOS) uncoupling may play an important role. We tested whether tetrahydrobiopterin (BH4) can re-couple NOS and reverse pre-established advanced hypertrophy, fibrosis, and dysfunction. Methods and Findings C57/Bl6 mice underwent transverse aortic constriction (TAC) for 4-wks increasing cardiac mass (+190%) and diastolic dimension (144%), lowering ejection fraction (?46%), and triggering NOS uncoupling and oxidative stress. Oral BH4 was then administered for five additional weeks of pressure-overload. Without reducing loading, BH4 reversed hypertrophy and fibrosis, re-coupled eNOS, lowered oxidant stress, and improved chamber and myocyte function, whereas untreated hearts worsened further. If BH4 was started at the onset of pressure-overload, it did not suppress hypertrophy after 1wk when NOS activity remained preserved even in untreated TAC hearts. However, BH4 stopped subsequent remodeling, when NOS activity was otherwise declining. A broad anti-oxidant Tempol also reduced oxidant stress, yet did not re-couple NOS nor reverse worsened hypertrophy/fibrosis from sustained TAC. Microarray analysis revealed very different gene expression profiles for both treatments. BH4 did not enhance net protein kinase G activity. Lastly, transgenic mice with enhanced BH4 synthesis confined to endothelial cells were unprotected against pressure-overload, indicating exogenous BH4 targeted myocytes and fibroblasts. Conclusions NOS re-coupling by exogenous BH4 ameliorates pre-existing advanced cardiac hypertrophy/fibrosis, and is more effective than a less targeted anti-oxidant approach (Tempol). These data highlight the importance of myocyte NOS uncoupling in hypertrophic heart disease, and support BH4 as potentially new approach to treat this disorder. PMID:18474817

  8. Laboratory Studies of the Atmospheric Oxidation of Dimethyl Sulfide Using Laser Flash Photolysis Coupled with Tunable Diode Laser Absorption Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Zhao, Zhizhong

    1995-01-01

    The oxidation of dimethyl sulfide (DMS) plays an important role in modifying or regulating global climate via the formation of H_2SO _4(g) and, subsequently, new cloud condensation nuclei. Laser flash photolysis coupled with tunable diode laser absorption spectroscopy was employed to study the kinetics and mechanisms of photochemical oxidation of DMS under laboratory conditions. Quantitative determinations of end products from elementary steps were emphasized to elucidate the detailed reaction mechanism. The yields of HX (X = OD, Cl or Br) from the reactions of X with DMS (and EMS in case of OD) in the absence of O_2 were quantitatively determined. Our results have clearly demonstrated that hydrogen abstraction is the dominant pathway in the oxidation of DMS and EMS initiated by OH. The HCl yield from the Cl + DMS reaction is strongly pressure dependent and approaches unity as P to 0. HBr yields from the Br + DMS reaction were found to be substantial. H_2CO formation was observed from the subsequent oxidation of the methylthiolmethyl radical in the presence of O_2 and in the absence or presence of NO. Under the appropriately established experimental conditions, the mechanism leading to the formation of H_2CO was evaluated. The rate coefficients for the CH_3SCH _2O_2 self reaction and the reaction of CH_3SCH _2O_2 with NO were determined. In addition, the H_2 CO yield from the CH_3SCH _2O_2 + NO reaction pathway was examined. The CH_3 yields from the reaction of DMS with Cl and OH were studied. These results show that radical addition to DMS followed by CH _3 elimination is an extremely minor channel for the radical + DMS reactions. The CO quantum yield from OCS photodissociation at 248 nm has been measured. Measurements at 297 K and total pressure from 4 to 100 Torr N_2 + N_2O show the CO yield to be greater than 0.95 and more likely unity. This result suggests that the contribution of OCS as the source of stratospheric sulfate aerosol is actually larger than previously thought.

  9. A versatile approach to flavones via a one-pot Pd(ii)-catalyzed dehydrogenation/oxidative boron-Heck coupling sequence of chromanones.

    PubMed

    Lee, Jun; Yu, Jihyun; Son, Seung Hwan; Heo, Jinyuk; Kim, Taelim; An, Ji-Young; Inn, Kyung-Soo; Kim, Nam-Jung

    2015-12-23

    A variety of flavones were expediently synthesized from readily accessible chromanones via a one-pot sequence involving Pd(ii)-catalyzed dehydrogenation and oxidative boron-Heck coupling with arylboronic acid pinacol esters. In particular, the use of arylboronic acid pinacol esters was found to significantly improve the yield of the reaction. PMID:26592753

  10. A Facile FeCl3/I2-Catalyzed Aerobic Oxidative Coupling Reaction: Synthesis of Tetrasubstituted Imidazoles from Amidines and Chalcones.

    PubMed

    Zhu, Yuelu; Li, Cheng; Zhang, Jidong; She, Mengyao; Sun, Wei; Wan, Kerou; Wang, Yaqi; Yin, Bin; Liu, Ping; Li, Jianli

    2015-08-01

    A facile and efficient route for the synthesis of tetrasubstituted imidazoles from amidines and chalcones via FeCl3/I2-catalyzed aerobic oxidative coupling has been developed. This new strategy is featured by high regioselectivity and yields, good functional group tolerance, and mild reaction conditions. PMID:26196356

  11. Synthesis of functionalized alpha-pyrone and butenolide derivatives by rhodium-catalyzed oxidative coupling of substituted acrylic acids with alkynes and alkenes.

    PubMed

    Mochida, Satoshi; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2009-08-21

    The straightforward and efficient synthesis of alpha-pyrone and butenolide derivatives has been achieved by the rhodium-catalyzed oxidative coupling reactions of substituted acrylic acids with alkynes and alkenes, respectively. Some alpha-pyrones obtained exhibit solid-state fluorescence. PMID:19572577

  12. Access to biaryl sulfonamides by palladium-catalyzed intramolecular oxidative coupling and subsequent nucleophilic ring opening of heterobiaryl sultams with amines.

    PubMed

    Laha, Joydev K; Dayal, Neetu; Jethava, Krupal P; Prajapati, Dilip V

    2015-03-01

    The installation of sulfonamide pharmacophores on heterobiaryls has successfully been executed by a previously unknown palladium-catalyzed intramolecular oxidative coupling in N-arylsulfonyl heterocycles followed by novel ring opening of heterobiaryl sultams with amine nucleophiles. The protocol has a wide scope of substrates warranting broad applications in the synthesis of heterobiaryls containing an o-sulfonyl or carboxyl functional group. PMID:25710285

  13. Tandem Terminal Ion Source

    SciTech Connect

    2000-10-23

    OAK-B135 Tandem Terminal Ion Source. The terminal ion source (TIS) was used in several experiments during this reporting period, all for the {sup 7}Be({gamma}){sup 8}B experiment. Most of the runs used {sup 1}H{sup +} at terminal voltages from 0.3 MV to 1.5 MV. One of the runs used {sup 2}H{sup +} at terminal voltage of 1.4 MV. The other run used {sup 4}He{sup +} at a terminal voltage of 1.37 MV. The list of experiments run with the TIS to date is given in table 1 below. The tank was opened four times for unscheduled source repairs. On one occasion the tank was opened to replace the einzel lens power supply which had failed. The 10 kV unit was replaced with a 15 kV unit. The second time the tank was opened to repair the extractor supply which was damaged by a tank spark. On the next occasion the tank was opened to replace a source canal which had sputtered away. Finally, the tank was opened to replace the discharge bottle which had been coated with aluminum sputtered from the exit canal.

  14. New Effective Material Couple--Oxide Ceramic and Carbon Nanotube-- Developed for Aerospace Microsystem and Micromachine Technologies

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; VanderWal, Randall L.; Tomasek, Aaron J.; Sayir, Ali; Farmer, Serene C.

    2004-01-01

    The prime driving force for using microsystem and micromachine technologies in transport vehicles, such as spacecraft, aircraft, and automobiles, is to reduce the weight, power consumption, and volume of components and systems to lower costs and increase affordability and reliability. However, a number of specific issues need to be addressed with respect to using microsystems and micromachines in aerospace applications--such as the lack of understanding of material characteristics; methods for producing and testing the materials in small batches; the limited proven durability and lifetime of current microcomponents, packaging, and interconnections; a cultural change with respect to system designs; and the use of embedded software, which will require new product assurance guidelines. In regards to material characteristics, there are significant adhesion, friction, and wear issues in using microdevices. Because these issues are directly related to surface phenomena, they cannot be scaled down linearly and they become increasingly important as the devices become smaller. When microsystems have contacting surfaces in relative motion, the adhesion and friction affect performance, energy consumption, wear damage, maintenance, lifetime and catastrophic failure, and reliability. Ceramics, for the most part, do not have inherently good friction and wear properties. For example, coefficients of friction in excess of 0.7 have been reported for ceramics and ceramic composite materials. Under Alternate Fuels Foundation Technologies funding, two-phase oxide ceramics developed for superior high-temperature wear resistance in NASA's High Operating Temperature Propulsion Components (HOTPC) project and new two-layered carbon nanotube (CNT) coatings (CNT topcoat/iron bondcoat/quartz substrate) developed in NASA's Revolutionary Aeropropulsion Concepts (RAC) project have been chosen as a materials couple for aerospace applications, including micromachines, in the nanotechnology lubrication task because of their potential for superior friction and wearf properties in air and in an ultrahigh vacuum, spacelike environment. At the NASA Glenn Research Center, two-phase oxide ceramic eutectics, Al2O3/ZrO2(Y2O3), were directionally solidified using the laser-float-zone process, and carbon nanotubes were synthesized within a high-temperature tube furnace at 800 C. Physical vapor deposition was used to coat all quartz substrates with 5-nm-thick iron as catalyst and bondcoat, which formed iron islands resembling droplets and serving as catalyst particles on the quartz. A series of scanning electron micrographs showing multiwalled carbon nanotubes directionally grown as aligned "nanograss" on quartz is presented. Unidirectional sliding friction eperiments were conducted at Glenn with the two-layered CNT coatings in contact with the two-phase Al2O3/ZrO2(Y2O3) eutectics in air and in ultrachigh vacuum. The main criteria for judging the performance of the materials couple for solid lubrication and antistick applications in a space environment were the coefficient of friction and the wear resistance (reciprocal of wear rate), which had to be less than 0.2 and greater than 10(exp 5) N(raised dot)/cubic millimetes, respectively, in ultrahigh vacuum. In air, the coefficient of friction for the CNT coatings in contact with Al2O3/ZrO2 (Y2O3) eutectics was 0.04, one-fourth of that for quartz. In an ultrahigh vacuum, the coefficient of friction for CNT coatings in contact with Al2O3/ZrO2 (Y2O3) was one-third of that for quartz. The two-phase Al2O3/ZrO2 (Y2O3) eutectic coupled with the two-layered CNT coating met the coefficient of friction and wear resistance criteria both in air and in an ultrahigh vacuum, spacelike environment. This material's couple can dramatically improve the stiction (or adhesion), friction, and wear resistance of the contacting surfaces, which are major issues for microdevices and micromachines.

  15. Development of high band gap materials for tandem solar cells and simulation studies on mechanical tandem solar cells

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Vishnuvardhanan

    Development of low cost, high efficiency tandem solar cells is essential for large scale adoption of solar energy especially in densely populated regions of the world. In this thesis four-terminal mechanical (stack like) tandem solar cells were evaluated using detailed simulation models and design criteria for selecting candidate materials were established. Since silicon solar cells are low cost and have a multi-giga watt global manufacturing and supply chain capacity already in place then only tandem stacks incorporating silicon as one of the layers in the device was investigated. Two candidate materials which have high band gaps that could be used as top cells in the mechanical tandem device were explored as part of the thesis. Dye-sensitized solar cells (DSSC) sensitized with N719 dye (one of the candidates for the top cell) were fabricated with the goal of enabling a flexible processing path to lower cost. Stainless steel (SS) mesh substrates were used to fabricate anodes for flexible DSSC in order to evaluate them as replacements for more expensive Transparent Conducting Oxides (TCO's). Loss mechanisms in DSSC's due to SS mesh oxidation were quantified and protective coatings to prevent oxidation of SS mesh were developed. The second material which was evaluated for use as the top cell was copper zinc tin sulfide (CZTS). CZTS was deposited through a solution deposition route. Detailed investigations were done on the deposited films to understand the chemistry, crystal structure and its opto-electronic properties. Deposited CZTS films were found to be highly crystalline in <112> direction. The films had a direct band gap of 1.5 eV with absorption coefficient greater than 104 cm -1 in agreement with published values. In the second part of the thesis detailed electrical and optical simulation models of the mechanical tandem solar cells were developed based on the most up-to-date materials physical constants available for each layer. The modeling was used to quantify the various theoretical and practical loss mechanisms in tandem devices. Two configurations were evaluated, first was silicon / germanium tandem cell and the second was gallium arsenide / silicon tandem cell. The simulation models were validated by their close match to the performance of experimental standalone solar cells devices reported in the literature. Finally the efficiency limits of the present generation of high band gap solar cells were discussed. Voltage and current loss of the high band gap solar cells were compared with present generation silicon solar cells and challenges in improving their efficiencies were described.

  16. Over-Oxidation as the Key Step in the Mechanism of the MoCl5 -Mediated Dehydrogenative Coupling of Arenes.

    PubMed

    Schubert, Moritz; Franzmann, Peter; Wnsche von Leupoldt, Anica; Koszinowski, Konrad; Heinze, Katja; Waldvogel, Siegfried R

    2016-01-01

    Molybdenum pentachloride is an unusually powerful reagent for the dehydrogenative coupling of arenes. Owing to the high reaction rate using MoCl5 , several labile moieties are tolerated in this transformation. The mechanistic course of the reaction was controversially discussed although indications for a single electron transfer as the initial step were found recently. Herein, based on a combined study including synthetic investigations, electrochemical measurements, EPR spectroscopy, DFT calculations, and mass spectrometry, we deduct a highly consistent mechanistic scenario: MoCl5 acts as a one-electron oxidant in the absence of TiCl4 and as two-electron oxidant in the presence of TiCl4 , but leads to an over-oxidized intermediate in both cases, which protects it from side reactions. In the course of aqueous work-up the reagent waste (Mo(III/IV) species) acts as reducing agent generating the desired organic C-C coupling product. PMID:26473303

  17. Developmental competence of bovine early embryos depends on the coupled response between oxidative and endoplasmic reticulum stress.

    PubMed

    Yoon, Seung-Bin; Choi, Seon-A; Sim, Bo-Woong; Kim, Ji-Su; Mun, Seong-Eun; Jeong, Pil-Soo; Yang, Hae-Jun; Lee, Youngjeon; Park, Young-Ho; Song, Bong-Seok; Kim, Young-Hyun; Jeong, Kang-Jin; Huh, Jae-Won; Lee, Sang-Rae; Kim, Sun-Uk; Chang, Kyu-Tae

    2014-05-01

    The stress produced by the coupling of reactive oxygen species (ROS) and endoplasmic reticulum (ER) has been explored extensively, but little is known regarding their roles in the early development of mammalian embryos. Here, we demonstrated that the early development of in vitro-produced (IVP) bovine embryos was governed by the cooperative action between ROS and ER stress. Compared with the tension produced by 5% O2, 20% O2 significantly decreased the blastocyst formation rate and cell survival, which was accompanied by increases in ROS and in levels of sXBP-1 transcript, which is an ER stress indicator. In addition, treatment with glutathione (GSH), a ROS scavenger, decreased ROS levels, which resulted in increased blastocyst formation and cell survival rates. Importantly, levels of sXBP-1 and ER stress-associated transcripts were reduced by GSH treatment in developing bovine embryos. Consistent with this observation, tauroursodeoxycholate (TUDCA), an ER stress inhibitor, improved blastocyst developmental rate, trophectoderm proportion, and cell survival. Moreover, ROS and sXBP-1 transcript levels were markedly decreased by supplementation with TUDCA, suggesting a possible mechanism governing the mutual regulation between ROS and ER stress. Interestingly, knockdown of XBP-1 transcripts resulted in both elevation of ROS and decrease of antioxidant transcripts, which ultimately reduced in vitro developmental competence of bovine embryos. Based on these results, in vitro developmental competence of IVP bovine embryos was highly dependent on the coupled response between oxidative and ER stresses. These results increase our understanding of the mechanism(s) governing early embryonic development and may improve strategies for the generation of IVP embryos with high developmental competence. PMID:24695629

  18. Neuronal-Derived Nitric Oxide and Somatodendritically Released Vasopressin Regulate Neurovascular Coupling in the Rat Hypothalamic Supraoptic Nucleus

    PubMed Central

    Du, Wenting; Stern, Javier E.

    2015-01-01

    The classical model of neurovascular coupling (NVC) implies that activity-dependent axonal glutamate release at synapses evokes the production and release of vasoactive signals from both neurons and astrocytes, which dilate arterioles, increasing in turn cerebral blood flow (CBF) to areas with increased metabolic needs. However, whether this model is applicable to brain areas that also use less conventional neurotransmitters, such as neuropeptides, is currently unknown. To this end, we studied NVC in the rat hypothalamic magnocellular neurosecretory system (MNS) of the supraoptic nucleus (SON), in which dendritic release of neuropeptides, including vasopressin (VP), constitutes a key signaling modality influencing neuronal and network activity. Using a multidisciplinary approach, we investigated vasopressin-mediated vascular responses in SON arterioles of hypothalamic brain slices of Wistar or VP-eGFP Wistar rats. Bath-applied VP significantly constricted SON arterioles (??41 7%) via activation of the V1a receptor subtype. Vasoconstrictions were also observed in response to single VP neuronal stimulation (??18 2%), an effect prevented by V1a receptor blockade (V2255), supporting local dendritic VP release as the key signal mediating activity-dependent vasoconstrictions. Conversely, osmotically driven magnocellular neurosecretory neuronal population activity leads to a predominant nitric oxide-mediated vasodilation (?19 2%). Activity-dependent vasodilations were followed by a VP-mediated vasoconstriction, which acted to limit the magnitude of the vasodilation and served to reset vascular tone following activity-dependent vasodilation. Together, our results unveiled a unique and complex form of NVC in the MNS, supporting a competitive balance between nitric oxide and activity-dependent dendritic released VP, in the generation of proper NVC responses. PMID:25834057

  19. Neuronal-derived nitric oxide and somatodendritically released vasopressin regulate neurovascular coupling in the rat hypothalamic supraoptic nucleus.

    PubMed

    Du, Wenting; Stern, Javier E; Filosa, Jessica A

    2015-04-01

    The classical model of neurovascular coupling (NVC) implies that activity-dependent axonal glutamate release at synapses evokes the production and release of vasoactive signals from both neurons and astrocytes, which dilate arterioles, increasing in turn cerebral blood flow (CBF) to areas with increased metabolic needs. However, whether this model is applicable to brain areas that also use less conventional neurotransmitters, such as neuropeptides, is currently unknown. To this end, we studied NVC in the rat hypothalamic magnocellular neurosecretory system (MNS) of the supraoptic nucleus (SON), in which dendritic release of neuropeptides, including vasopressin (VP), constitutes a key signaling modality influencing neuronal and network activity. Using a multidisciplinary approach, we investigated vasopressin-mediated vascular responses in SON arterioles of hypothalamic brain slices of Wistar or VP-eGFP Wistar rats. Bath-applied VP significantly constricted SON arterioles (?-41 7%) via activation of the V1a receptor subtype. Vasoconstrictions were also observed in response to single VP neuronal stimulation (?-18 2%), an effect prevented by V1a receptor blockade (V2255), supporting local dendritic VP release as the key signal mediating activity-dependent vasoconstrictions. Conversely, osmotically driven magnocellular neurosecretory neuronal population activity leads to a predominant nitric oxide-mediated vasodilation (?19 2%). Activity-dependent vasodilations were followed by a VP-mediated vasoconstriction, which acted to limit the magnitude of the vasodilation and served to reset vascular tone following activity-dependent vasodilation. Together, our results unveiled a unique and complex form of NVC in the MNS, supporting a competitive balance between nitric oxide and activity-dependent dendritic released VP, in the generation of proper NVC responses. PMID:25834057

  20. Determination of chloramphenicol, thiamphenicol and florfenicol in milk and honey using modified QuEChERS extraction coupled with polymeric monolith-based capillary liquid chromatography tandem mass spectrometry.

    PubMed

    Liu, Hsiang-Yu; Lin, Shu-Ling; Fuh, Ming-Ren

    2016-04-01

    A poly(lauryl methacrylate-co-methacrylic acid-co-ethylene glycol dimethacrylate) [LMA-MAA-EDMA] monolithic column was used to simultaneously determine amphenicol antibiotics (chloramphenicol/CAP, thiamphenicol/TAP, and florfenicol/FF) in milk and honey samples by capillary liquid chromatography tandem mass spectrometry (LC-MS/MS). QuEChERS (quick, easy, cheap, effective, rugged, and safe) method was optimized for sample pretreatment. Good linearity (0.1-15ngg(-1)) and extraction recoveries (95.8-100.2% and 95.6-99.3% for milk and honey samples, respectively; n=3) with minor matrix effect (≦5% ion suppression) were obtained. Limits of detection were estimated at 0.02-0.045ngg(-1). Good intra-day/inter-day precision (0.2-9.1%/0.3-8.7%) and accuracy (90.5-110.0%/93.4-109.3%) were achieved. With more than 200 analyses of real samples, no noticeable carry-over and deterioration of separation efficiency were observed using the monolithic column. The applicability of the developed QuEChERS-capillary LC-MS/MS method was demonstrated by determining the occurrence of CAP, TAP, and FF in various milk and honey samples. PMID:26838404