Sample records for tandem white organic

  1. White-emissive tandem-type hybrid organic/polymer diodes with (0.33, 0.33) chromaticity coordinates.

    PubMed

    Guo, Tzung-Fang; Wen, Ten-Chin; Huang, Yi-Shun; Lin, Ming-Wei; Tsou, Chuan-Cheng; Chung, Chia-Tin

    2009-11-09

    This study reports fabrication of white-emissive, tandem-type, hybrid organic/polymer light-emitting diodes (O/PLED). The tandem devices are made by stacking a blue-emissive OLED on a yellow-emissive phenyl-substituted poly(para-phenylene vinylene) copolymer-based PLED and applying an organic oxide/Al/molybdenum oxide (MoO(3)) complex structure as a connecting structure or charge-generation layer (CGL). The organic oxide/Al/MoO(3) CGL functions as an effective junction interface for the transport and injection of opposite charge carriers through the stacked configuration. The electroluminescence (EL) spectra of the tandem-type devices can be tuned by varying the intensity of the emission in each emissive component to yield the visible-range spectra from 400 to 750 nm, with Commission Internationale de l'Eclairage chromaticity coordinates of (0.33, 0.33) and a high color rendering capacity as used for illumination. The EL spectra also exhibit good color stability under various bias conditions. The tandem-type device of emission with chromaticity coordinates, (0.30, 0.31), has maximum brightness and luminous efficiency over 25,000 cd/m(2) and approximately 4.2 cd/A, respectively.

  2. Two stacked tandem white organic light-emitting diodes employing WO3 as a charge generation layer

    NASA Astrophysics Data System (ADS)

    Bin, Jong-Kwan; Lee, Na Yeon; Lee, SeungJae; Seo, Bomin; Yang, JoongHwan; Kim, Jinook; Yoon, Soo Young; Kang, InByeong

    2016-09-01

    Recently, many studies have been conducted to improve the electroluminescence (EL) performance of organic lightemitting diodes (OLEDs) by using appropriate organic or inorganic materials as charge generation layer (CGL) for their application such as full color displays, backlight units, and general lighting source. In a stacked tandem white organic light-emitting diodes (WOLEDs), a few emitting units are electrically interconnected by a CGL, which plays the role of generating charge carriers, and then facilitate the injection of it into adjacent emitting units. In the present study, twostacked WOLEDs were fabricated by using tungsten oxide (WO3) as inorganic charge generation layer and 1,4,5,8,9,11- hexaazatriphenylene hexacarbonitrile (HAT-CN) as organic charge generation layer (P-CGL). Organic P-CGL materials were used due to their ease of use in OLED fabrication as compared to their inorganic counterparts. To obtain high efficiency, we demonstrate two-stacked tandem WOLEDs as follows: ITO/HIL/HTL/HTL'/B-EML/ETL/N-CGL/P-CGL (WO3 or HAT-CN)/HTL″/YG-EML/ETL/LiF/Al. The tandem devices with blue- and yellow-green emitting layers were sensitive to the thickness of an adjacent layer, hole transporting layer for the YG emitting layer. The WOLEDs containing the WO3 as charge generation layer reach a higher power efficiency of 19.1 lm/W and the current efficiency of 51.2 cd/A with the white color coordinate of (0.316, 0.318) than the power efficiency of 13.9 lm/W, and the current efficiency of 43.7 cd/A for organic CGL, HAT-CN at 10 mA/cm2, respectively. This performance with inserting WO3 as CGL exhibited the highest performance with excellent CIE color coordinates in the two-stacked tandem OLEDs.

  3. High-efficiency orange and tandem white organic light-emitting diodes using phosphorescent dyes with horizontally oriented emitting dipoles.

    PubMed

    Lee, Sunghun; Shin, Hyun; Kim, Jang-Joo

    2014-09-03

    Tandem white organic light-emitting diodes (WOLEDs) using horizontally oriented phosphorescent dyes in an exciplex-forming co-host are presented, along with an orange OLED. A high external quantum efficiency of 32% is achieved for the orange OLED at 1000 cd m(-2) and the tandem WOLEDs exhibit a high maximum EQE of 54.3% (PE of 63 lm W(-1)). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture.

    PubMed

    Höfle, Stefan; Schienle, Alexander; Bernhard, Christoph; Bruns, Michael; Lemmer, Uli; Colsmann, Alexander

    2014-08-13

    Fully solution processed monochromatic and white-light emitting tandem or multi-photon polymer OLEDs with an inverted device architecture have been realized by employing WO3 /PEDOT:PSS/ZnO/PEI charge carrier generation layers. The luminance of the sub-OLEDs adds up in the stacked device indicating multi-photon emission. The white OLEDs exhibit a CRI of 75. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electron-transporting layer doped with cesium azide for high-performance phosphorescent and tandem white organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Yu, Yaoyao; Chen, Xingming; Jin, Yu; Wu, Zhijun; Yu, Ye; Lin, Wenyan; Yang, Huishan

    2017-07-01

    Cesium azide was employed as an effective n-dopant in the electron-transporting layer (ETL) of organic light-emitting devices (OLEDs) owing to its low deposition temperature and high ambient stability. By doping cesium azide onto 4,7-diphenyl-1,10-phenanthroline, a green phosphorescent OLED having best efficiencies of 66.25 cd A-1, 81.22 lm W-1 and 18.82% was realized. Moreover, the efficiency roll-off from 1000 cd m-2 to 10 000 cd m-2 is only 12.9%, which is comparable with or even lower than that of devices utilizing the co-host system. Physical mechanisms for the improvement of device performance were studied in depth by analyzing the current density-voltage (J-V) characteristics of the electron-only devices. In particular, by comparing the J-V characteristics of the electron-only devices instead of applying the complicated ultraviolet photoelectron spectrometer measurements, we deduced the decrease in barrier height for electron injection at the ETL/cathode contact. Finally, an efficient tandem white OLED utilizing the n-doped layer in the charge generation unit (CGU) was constructed. As far as we know, this is the first report on the application of this CGU for fabricating tandem white OLEDs. The emissions of the tandem device are all in the warm white region from 1213 cd m-2 to 10870 cd m-2, as is beneficial to the lighting application.

  6. Highly efficient tandem organic light-emitting devices employing an easily fabricated charge generation unit

    NASA Astrophysics Data System (ADS)

    Yang, Huishan; Yu, Yaoyao; Wu, Lishuang; Qu, Biao; Lin, Wenyan; Yu, Ye; Wu, Zhijun; Xie, Wenfa

    2018-02-01

    We have realized highly efficient tandem organic light-emitting devices (OLEDs) employing an easily fabricated charge generation unit (CGU) combining 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile with ultrathin bilayers of CsN3 and Al. The charge generation and separation processes of the CGU have been demonstrated by studying the differences in the current density-voltage characteristics of external-carrier-excluding devices. At high luminances of 1000 and 10000 cd/m2, the current efficiencies of the phosphorescent tandem device are about 2.2- and 2.3-fold those of the corresponding single-unit device, respectively. Simultaneously, an efficient tandem white OLED exhibiting high color stability and warm white emission has also been fabricated.

  7. Tandem Organic Light-Emitting Diodes.

    PubMed

    Fung, Man-Keung; Li, Yan-Qing; Liao, Liang-Sheng

    2016-12-01

    A tandem organic light-emitting diode (OLED) is an organic optoelectronic device that has two or more electroluminescence (EL) units connected electrically in series with unique intermediate connectors within the device. Researchers have studied this new OLED architecture with growing interest and have found that the current efficiency of a tandem OLED containing N EL units (N > 1) should be N times that of a conventional OLED containing only a single EL unit. Therefore, this new architecture is potentially useful for constructing high-efficiency, high-luminance, and long-lifetime OLED displays and organic solid-state lighting sources. In a tandem OLED, the intermediate connector plays a crucial role in determining the effectiveness of the stacked EL units. The interfaces in the connector control the inner charge generation and charge injection into the adjacent EL units. Meanwhile, the transparency and the thickness of the connector affect the light output of the device. Therefore, the intermediate connector should be made to meet both the electrical and optical requirements for achieving optimal performance. Here, recent advances in the research of the tandem OLEDs is discussed, with the main focus on material selection and interface studies in the intermediate connectors, as well as the optical design of the tandem OLEDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electrical and optical analyses of tandem organic light-emitting diodes with organic charge-generation layer

    NASA Astrophysics Data System (ADS)

    Kim, Bong Sung; Chae, Heeyeop; Chung, Ho Kyoon; Cho, Sung Min

    2018-06-01

    The electrical and optical properties of tandem organic light-emitting diodes (OLEDs), in which a fluorescent and phosphorescent emitting units are connected by an organic charge-generation layer (CGL), were experimentally analyzed. To investigate the internal properties of the tandem OLEDs, we fabricated and compared two single, two homo-tandem, and two hetero-tandem OLEDs using the fluorescent and phosphorescent units. From the experimental results of the OLEDs obtained at the same current density, the voltage across the CGL as well as the individual emission spectra and luminance of each unit of tandem OLEDs were obtained and compared with the theoretical simulation results. The analysis method proposed in this study can be utilized as a method to verify the accuracy of optical or electrical computer simulation of tandem OLED and it will be useful to understand the overall electrical and optical characteristics of tandem OLEDs.

  9. Stacking multiple connecting functional materials in tandem organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong

    2017-02-01

    Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency.

  10. Tandem organic light-emitting diodes with KBH4 doped 9,10-bis(3-(pyridin-3-yl)phenyl) anthracene connected to the charge generation layer.

    PubMed

    Duan, Lian; Tsuboi, Taiju; Qiu, Yong; Li, Yanrui; Zhang, Guohui

    2012-06-18

    Tandem organic light emitting diodes (OLEDs) are ideal for lighting applications due to their low working current density at high brightness. In this work, we have studied an efficient electron transporting layer of KBH(4) doped 9,10-bis(3-(pyridin-3-yl)phenyl)anthracene (DPyPA) which is located adjacent to charge generation layer of MoO(3)/NPB. The excellent transporting property of the DPyPA:KBH(4) layer helps the tandem OLED to achieve a lower voltage than the tandem device with the widely used tris-(8-hydroxyquinoline)aluminum:Li. For the tandem white OLED with a fluorescent blue unit and a phosphorescent yellow unit, we've achieved a high current efficiency of 75 cd/A, which can be further improved to 120 cd/A by attaching a diffuser layer.

  11. Stacking multiple connecting functional materials in tandem organic light-emitting diodes

    PubMed Central

    Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong

    2017-01-01

    Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency. PMID:28225028

  12. Monolithic Parallel Tandem Organic Photovoltaic Cell with Transparent Carbon Nanotube Interlayer

    NASA Technical Reports Server (NTRS)

    Tanaka, S.; Mielczarek, K.; Ovalle-Robles, R.; Wang, B.; Hsu, D.; Zakhidov, A. A.

    2009-01-01

    We demonstrate an organic photovoltaic cell with a monolithic tandem structure in parallel connection. Transparent multiwalled carbon nanotube sheets are used as an interlayer anode electrode for this parallel tandem. The characteristics of front and back cells are measured independently. The short circuit current density of the parallel tandem cell is larger than the currents of each individual cell. The wavelength dependence of photocurrent for the parallel tandem cell shows the superposition spectrum of the two spectral sensitivities of the front and back cells. The monolithic three-electrode photovoltaic cell indeed operates as a parallel tandem with improved efficiency.

  13. Optical enhancement of a printed organic tandem solar cell using diffractive nanostructures.

    PubMed

    Mayer, Jan A; Offermans, Ton; Chrapa, Marek; Pfannmöller, Martin; Bals, Sara; Ferrini, Rolando; Nisato, Giovanni

    2018-03-19

    Solution processable organic tandem solar cells offer a promising approach to achieve cost-effective, lightweight and flexible photovoltaics. In order to further enhance the efficiency of optimized organic tandem cells, diffractive light-management nanostructures were designed for an optimal redistribution of the light as function of both wavelength and propagation angles in both sub-cells. As the fabrication of these optical structures is compatible with roll-to-roll production techniques such as hot-embossing or UV NIL imprinting, they present an optimal cost-effective solution for printed photovoltaics. Tandem cells with power conversion efficiencies of 8-10% were fabricated in the ambient atmosphere by doctor blade coating, selected to approximate the conditions during roll-to-roll manufacturing. Application of the light management structure onto an 8.7% efficient encapsulated tandem cell boosted the conversion efficiency of the cell to 9.5%.

  14. HATCN-based charge recombination layers as effective interconnectors for tandem organic solar cells.

    PubMed

    Wang, Rong-Bin; Wang, Qian-Kun; Xie, Hao-Jun; Xu, Lu-Hai; Duhm, Steffen; Li, Yan-Qing; Tang, Jian-Xin

    2014-09-10

    A comprehensive understanding of the energy-level alignment at the organic heterojunction interfaces is of paramount importance to optimize the performance of organic solar cells (OSCs). Here, the detailed electronic structures of organic interconnectors, consisting of cesium fluoride-doped 4,7-diphenyl-1,10-phenanthroline and hexaazatriphenylene-hexacarbonitrile (HATCN), have been investigated via in situ photoemission spectroscopy, and their impact on the charge recombination process in tandem OSCs has been identified. The experimental determination shows that the HATCN interlayer plays a significant role in the interface energetics with a dramatic decrease in the reverse built-in potential for electrons and holes from stacked subcells, which is beneficial to the charge recombination between HATCN and the adjacent layer. In accordance with the energy-level alignments, the open-circuit voltage of tandem OSC incorporating a HATCN-based interconnector is almost 2 times that of a single-cell OSC, revealing the effectiveness of the HATCN-based interconnectors in tandem organic devices.

  15. Enhancement of efficiencies for tandem green phosphorescent organic light-emitting devices with a p-type charge generation layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Byung Soo; Jeon, Young Pyo; Lee, Dae Uk

    2014-10-15

    The operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the organic light-emitting device with a molybdenum trioxide layer. The maximum brightness of the tandem green phosphorescent organic light-emitting device at 21.9 V was 26,540 cd/m{sup 2}. The dominant peak of the electroluminescence spectra for the devices was related to the fac-tris(2-phenylpyridine) iridium emission. - Highlights: • Tandem OLEDs with CGL were fabricated to enhance their efficiency. • The operating voltage of the tandem OLED with a HAT-CN layer was improved by 3%. • The efficiency and brightnessmore » of the tandem OLED were 13.9 cd/A and 26,540 cd/m{sup 2}. • Efficiency of the OLED with a HAT-CN layer was lower than that with a MoO{sub 3} layer. - Abstract: Tandem green phosphorescent organic light-emitting devices with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile or a molybdenum trioxide charge generation layer were fabricated to enhance their efficiency. Current density–voltage curves showed that the operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the corresponding organic light-emitting device with a molybdenum trioxide layer. The efficiency and the brightness of the tandem green phosphorescent organic light-emitting device were 13.9 cd/A and 26,540 cd/m{sup 2}, respectively. The current efficiency of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was lower by 1.1 times compared to that of the corresponding organic light-emitting device with molybdenum trioxide layer due to the decreased charge generation and transport in the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer resulting from triplet–triplet exciton annihilation.« less

  16. Flexible organic tandem solar modules: a story of up-scaling

    NASA Astrophysics Data System (ADS)

    Spyropoulos, George D.; Kubis, Peter; Li, Ning; Lucera, Luca; Salvador, Michael; Baran, Derya; Machui, Florian; Ameri, Tayebeh; Voigt, Monika M.; Brabec, Christoph J.

    2014-10-01

    The competition in the field of solar energy between Organic Photovoltaics (OPVs) and several Inorganic Photovoltaic technologies is continuously increasing to reach the ultimate purpose of energy supply from inexpensive and easily manufactured solar cell units. Solution-processed printing techniques on flexible substrates attach a tremendous opportunity to the OPVs for the accomplishment of low-cost and large area applications. Furthermore, tandem architectures came to boost up even more OPVs by increasing the photon-harvesting properties of the device. In this work, we demonstrate the road of realizing flexible organic tandem solar modules constructed by a fully roll-to-roll compatible processing. The modules exhibit an efficiency of 5.4% with geometrical fill factors beyond 80% and minimized interconnection-resistance losses. The processing involves low temperature (<70 °C), coating methods compatible with slot die coating and high speed and precision laser patterning.

  17. Transcription of highly repetitive tandemly organized DNA in amphibians and birds: A historical overview and modern concepts.

    PubMed

    Trofimova, Irina; Krasikova, Alla

    2016-12-01

    Tandemly organized highly repetitive DNA sequences are crucial structural and functional elements of eukaryotic genomes. Despite extensive evidence, satellite DNA remains an enigmatic part of the eukaryotic genome, with biological role and significance of tandem repeat transcripts remaining rather obscure. Data on tandem repeats transcription in amphibian and avian model organisms is fragmentary despite their genomes being thoroughly characterized. Review systematically covers historical and modern data on transcription of amphibian and avian satellite DNA in somatic cells and during meiosis when chromosomes acquire special lampbrush form. We highlight how transcription of tandemly repetitive DNA sequences is organized in interphase nucleus and on lampbrush chromosomes. We offer LTR-activation hypotheses of widespread satellite DNA transcription initiation during oogenesis. Recent explanations are provided for the significance of high-yield production of non-coding RNA derived from tandemly organized highly repetitive DNA. In many cases the data on the transcription of satellite DNA can be extrapolated from lampbrush chromosomes to interphase chromosomes. Lampbrush chromosomes with applied novel technical approaches such as superresolution imaging, chromosome microdissection followed by high-throughput sequencing, dynamic observation in life-like conditions provide amazing opportunities for investigation mechanisms of the satellite DNA transcription.

  18. Transcription of highly repetitive tandemly organized DNA in amphibians and birds: A historical overview and modern concepts

    PubMed Central

    Krasikova, Alla

    2016-01-01

    ABSTRACT Tandemly organized highly repetitive DNA sequences are crucial structural and functional elements of eukaryotic genomes. Despite extensive evidence, satellite DNA remains an enigmatic part of the eukaryotic genome, with biological role and significance of tandem repeat transcripts remaining rather obscure. Data on tandem repeats transcription in amphibian and avian model organisms is fragmentary despite their genomes being thoroughly characterized. Review systematically covers historical and modern data on transcription of amphibian and avian satellite DNA in somatic cells and during meiosis when chromosomes acquire special lampbrush form. We highlight how transcription of tandemly repetitive DNA sequences is organized in interphase nucleus and on lampbrush chromosomes. We offer LTR-activation hypotheses of widespread satellite DNA transcription initiation during oogenesis. Recent explanations are provided for the significance of high-yield production of non-coding RNA derived from tandemly organized highly repetitive DNA. In many cases the data on the transcription of satellite DNA can be extrapolated from lampbrush chromosomes to interphase chromosomes. Lampbrush chromosomes with applied novel technical approaches such as superresolution imaging, chromosome microdissection followed by high-throughput sequencing, dynamic observation in life-like conditions provide amazing opportunities for investigation mechanisms of the satellite DNA transcription. PMID:27763817

  19. The First Tandem, All-exciplex-based WOLED

    NASA Astrophysics Data System (ADS)

    Hung, Wen-Yi; Fang, Guan-Cheng; Lin, Shih-Wei; Cheng, Shuo-Hsien; Wong, Ken-Tsung; Kuo, Ting-Yi; Chou, Pi-Tai

    2014-06-01

    Exploiting our recently developed bilayer interface methodology, together with a new wide energy-gap, low LUMO acceptor (A) and the designated donor (D) layers, we succeeded in fabricating an exciplex-based organic light-emitting diode (OLED) systematically tuned from blue to red. Further optimization rendered a record-high blue exciplex OLED with ηext of 8%. We then constructed a device structure configured by two parallel blend layers of mCP/PO-T2T and DTAF/PO-T2T, generating blue and yellow exciplex emission, respectively. The resulting device demonstrates for the first time a tandem, all-exciplex-based white-light OLED (WOLED) with excellent efficiencies ηext: 11.6%, ηc: 27.7 cd A-1, and ηp: 15.8 ml W-1 with CIE(0.29, 0.35) and CRI 70.6 that are nearly independent of EL intensity. The tandem architecture and blend-layer D/A (1:1) configuration are two key elements that fully utilize the exciplex delay fluorescence, providing a paragon for the use of low-cost, abundant organic compounds en route to commercial WOLEDs.

  20. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

    NASA Astrophysics Data System (ADS)

    Kim, Taesoo; Palmiano, Elenita; Liang, Ru-Ze; Hu, Hanlin; Murali, Banavoth; Kirmani, Ahmad R.; Firdaus, Yuliar; Gao, Yangqin; Sheikh, Arif; Yuan, Mingjian; Mohammed, Omar F.; Hoogland, Sjoerd; Beaujuge, Pierre M.; Sargent, Edward H.; Amassian, Aram

    2017-05-01

    Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies have not been demonstrated to date. In this work, we demonstrate hybrid tandem cells with a low bandgap PbS CQD subcell harvesting the visible and near-infrared photons and a polymer:fullerene—poly (diketopyrrolopyrrole-terthiophene) (PDPP3T):[6,6]-phenyl-C60-butyric acid methyl ester (PC61BM)—top cell absorbing effectively the red and near-infrared photons of the solar spectrum in a complementary fashion. The two subcells are connected in series via an interconnecting layer (ICL) composed of a metal oxide layer, a conjugated polyelectrolyte, and an ultrathin layer of Au. The ultrathin layer of Au forms nano-islands in the ICL, reducing the series resistance, increasing the shunt resistance, and enhancing the device fill-factor. The hybrid tandems reach a power conversion efficiency (PCE) of 7.9%, significantly higher than the PCE of the corresponding individual single cells, representing one of the highest efficiencies reported to date for hybrid tandem solar cells based on CQD and polymer subcells.

  1. Progress in Tandem Solar Cells Based on Hybrid Organic-Inorganic Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bo; Zheng, Xiaopeng; Bai, Yang

    Owing to their high efficiency, low-cost solution-processability, and tunable bandgap, perovskite solar cells (PSCs) made of hybrid organic-inorganic perovskite (HOIP) thin films are promising top-cell candidates for integration with bottom-cells based on Si or other low-bandgap solar-cell materials to boost the power conversion efficiency (PCE) beyond the Shockley-Quiesser (S-Q) limit. In this review, recent progress in such tandem solar cells based on the emerging PSCs is summarized and reviewed critically. Notable achievements for different tandem solar cell configurations including mechanically-stacked, optical coupling, and monolithically-integrated with PSCs as top-cells are described in detail. Highly-efficient semitransparent PSC top-cells with high transmittance inmore » near-infrared (NIR) region are critical for tandem solar cells. Different types of transparent electrodes with high transmittance and low sheet-resistance for PSCs are reviewed, which presents a grand challenge for PSCs. The strategies to obtain wide-bandgap PSCs with good photo-stability are discussed. In conclusion, the PCE reduction due to reflection loss, parasitic absorption, electrical loss, and current mismatch are analyzed to provide better understanding of the performance of PSC-based tandem solar cells.« less

  2. Progress in Tandem Solar Cells Based on Hybrid Organic-Inorganic Perovskites

    DOE PAGES

    Chen, Bo; Zheng, Xiaopeng; Bai, Yang; ...

    2017-03-06

    Owing to their high efficiency, low-cost solution-processability, and tunable bandgap, perovskite solar cells (PSCs) made of hybrid organic-inorganic perovskite (HOIP) thin films are promising top-cell candidates for integration with bottom-cells based on Si or other low-bandgap solar-cell materials to boost the power conversion efficiency (PCE) beyond the Shockley-Quiesser (S-Q) limit. In this review, recent progress in such tandem solar cells based on the emerging PSCs is summarized and reviewed critically. Notable achievements for different tandem solar cell configurations including mechanically-stacked, optical coupling, and monolithically-integrated with PSCs as top-cells are described in detail. Highly-efficient semitransparent PSC top-cells with high transmittance inmore » near-infrared (NIR) region are critical for tandem solar cells. Different types of transparent electrodes with high transmittance and low sheet-resistance for PSCs are reviewed, which presents a grand challenge for PSCs. The strategies to obtain wide-bandgap PSCs with good photo-stability are discussed. In conclusion, the PCE reduction due to reflection loss, parasitic absorption, electrical loss, and current mismatch are analyzed to provide better understanding of the performance of PSC-based tandem solar cells.« less

  3. Low driving voltage simplified tandem organic light-emitting devices by using exciplex-forming hosts

    NASA Astrophysics Data System (ADS)

    Zhou, Dong-Ying; Cui, Lin-Song; Zhang, Ying-Jie; Liao, Liang-Sheng; Aziz, Hany

    2014-10-01

    Tandem organic light-emitting devices (OLEDs), i.e., OLEDs containing multiple electroluminescence (EL) units that are vertically stacked, are attracting significant interest because of their ability to realize high current efficiency and long operational lifetime. However, stacking multiple EL units in tandem OLEDs increases driving voltage and complicates fabrication process relative to their standard single unit counterparts. In this paper, we demonstrate low driving voltage tandem OLEDs via utilizing exciplex-forming hosts in the EL units instead of conventional host materials. The use of exciplex-forming hosts reduces the charge injection barriers and the trapping of charges on guest molecules, resulting in the lower driving voltage. The use of exciplex-forming hosts also allows using fewer layers, hence simpler EL configuration which is beneficial for reducing the fabrication complexity of tandem OLEDs.

  4. The first tandem, all-exciplex-based WOLED.

    PubMed

    Hung, Wen-Yi; Fang, Guan-Cheng; Lin, Shih-Wei; Cheng, Shuo-Hsien; Wong, Ken-Tsung; Kuo, Ting-Yi; Chou, Pi-Tai

    2014-06-04

    Exploiting our recently developed bilayer interface methodology, together with a new wide energy-gap, low LUMO acceptor (A) and the designated donor (D) layers, we succeeded in fabricating an exciplex-based organic light-emitting diode (OLED) systematically tuned from blue to red. Further optimization rendered a record-high blue exciplex OLED with η(ext) of 8%. We then constructed a device structure configured by two parallel blend layers of mCP/PO-T2T and DTAF/PO-T2T, generating blue and yellow exciplex emission, respectively. The resulting device demonstrates for the first time a tandem, all-exciplex-based white-light OLED (WOLED) with excellent efficiencies η(ext): 11.6%, η(c): 27.7 cd A(-1), and η(p): 15.8 ml W(-1) with CIE(0.29, 0.35) and CRI 70.6 that are nearly independent of EL intensity. The tandem architecture and blend-layer D/A (1:1) configuration are two key elements that fully utilize the exciplex delay fluorescence, providing a paragon for the use of low-cost, abundant organic compounds en route to commercial WOLEDs.

  5. The First Tandem, All-exciplex-based WOLED

    PubMed Central

    Hung, Wen-Yi; Fang, Guan-Cheng; Lin, Shih-Wei; Cheng, Shuo-Hsien; Wong, Ken-Tsung; Kuo, Ting-Yi; Chou, Pi-Tai

    2014-01-01

    Exploiting our recently developed bilayer interface methodology, together with a new wide energy-gap, low LUMO acceptor (A) and the designated donor (D) layers, we succeeded in fabricating an exciplex-based organic light-emitting diode (OLED) systematically tuned from blue to red. Further optimization rendered a record-high blue exciplex OLED with ηext of 8%. We then constructed a device structure configured by two parallel blend layers of mCP/PO-T2T and DTAF/PO-T2T, generating blue and yellow exciplex emission, respectively. The resulting device demonstrates for the first time a tandem, all-exciplex-based white-light OLED (WOLED) with excellent efficiencies ηext: 11.6%, ηc: 27.7 cd A−1, and ηp: 15.8 ml W−1 with CIE(0.29, 0.35) and CRI 70.6 that are nearly independent of EL intensity. The tandem architecture and blend-layer D/A (1:1) configuration are two key elements that fully utilize the exciplex delay fluorescence, providing a paragon for the use of low-cost, abundant organic compounds en route to commercial WOLEDs. PMID:24895098

  6. Tandem organic light-emitting diodes with buffer-modified C60/pentacene as charge generation layer

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Zheng, Xin; Liu, Fei; Wang, Pei; Gan, Lin; Wang, Jing-jing

    2017-09-01

    Buffer-modified C60/pentacene as charge generation layer (CGL) is investigated to achieve effective performance of charge generation. Undoped green electroluminescent tandem organic light-emitting diodes (OLEDs) with multiple identical emissive units and using buffer-modified C60/pentacene organic semiconductor heterojunction (OHJ) as CGL are demonstrated to exhibit better current density and brightness, compared with conventional single-unit devices. The current density and brightness both can be significantly improved with increasing the thickness of Al. However, excessive thickness of Al seriously decreases the transmittance of films and damages the interface. As a result, the maximum current efficiency of 1.43 cd·A-1 at 30 mA·cm-2 can be achieved for tandem OLEDs with optimal thickness of Al. These results clearly demonstrate that Cs2CO3/Al is an effective buffer for C60/pentacene-based tandem OLEDs.

  7. Organic Weed Control in White Lupin (Lupinus albus L.)

    USDA-ARS?s Scientific Manuscript database

    Legumes such as white lupin (Lupinus albus L.) provide a valuable nitrogen source in organic agriculture. With organic farming becoming an increasing sector of US agriculture and white lupin interest increasing in the southeastern USA because winter hardy cultivars are available, non-chemical weed c...

  8. Tunable color parallel tandem organic light emitting devices with carbon nanotube and metallic sheet interlayers

    NASA Astrophysics Data System (ADS)

    Oliva, Jorge; Papadimitratos, Alexios; Desirena, Haggeo; De la Rosa, Elder; Zakhidov, Anvar A.

    2015-11-01

    Parallel tandem organic light emitting devices (OLEDs) were fabricated with transparent multiwall carbon nanotube sheets (MWCNT) and thin metal films (Al, Ag) as interlayers. In parallel monolithic tandem architecture, the MWCNT (or metallic films) interlayers are an active electrode which injects similar charges into subunits. In the case of parallel tandems with common anode (C.A.) of this study, holes are injected into top and bottom subunits from the common interlayer electrode; whereas in the configuration of common cathode (C.C.), electrons are injected into the top and bottom subunits. Both subunits of the tandem can thus be monolithically connected functionally in an active structure in which each subunit can be electrically addressed separately. Our tandem OLEDs have a polymer as emitter in the bottom subunit and a small molecule emitter in the top subunit. We also compared the performance of the parallel tandem with that of in series and the additional advantages of the parallel architecture over the in-series were: tunable chromaticity, lower voltage operation, and higher brightness. Finally, we demonstrate that processing of the MWCNT sheets as a common anode in parallel tandems is an easy and low cost process, since their integration as electrodes in OLEDs is achieved by simple dry lamination process.

  9. Nonfullerene Tandem Organic Solar Cells with High Open-Circuit Voltage of 1.97 V.

    PubMed

    Liu, Wenqing; Li, Shuixing; Huang, Jiang; Yang, Shida; Chen, Jiehuan; Zuo, Lijian; Shi, Minmin; Zhan, Xiaowei; Li, Chang-Zhi; Chen, Hongzheng

    2016-11-01

    Small-molecule nonfullerene-based tandem organic solar cells (OSCs) are fabricated for the first time by utilizing P3HT:SF(DPPB) 4 and PTB7-Th:IEIC bulk heterojunctions as the front and back subcells, respectively. A power conversion efficiency of 8.48% is achieved with an ultrahigh open-circuit voltage of 1.97 V, which is the highest voltage value reported to date among efficient tandem OSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Tandem repeated application of organic solvents and sodium lauryl sulphate enhances cumulative skin irritation.

    PubMed

    Schliemann, Sibylle; Schmidt, Christina; Elsner, Peter

    2014-01-01

    The objective of our study was to investigate the tandem irritation potential of two organic solvents with concurrent exposure to the hydrophilic detergent irritant sodium lauryl sulphate (SLS). A tandem repeated irritation test was performed with two undiluted organic solvents, cumene (C) and octane (O), with either alternating application with SLS 0.5% or twice daily application of each irritant alone in 27 volunteers on the skin of the back. The cumulative irritation induced over 4 days was quantified using visual scoring and non-invasive bioengineering measurements (skin colour reflectance, skin hydration and transepidermal water loss). Repeated application of C/SLS and O/SLS induced more decline of stratum corneum hydration and higher degrees of clinical irritation and erythema compared to each irritant alone. Our results demonstrate a further example of additive harmful skin effects induced by particular skin irritants and indicate that exposure to organic solvents together with detergents may increase the risk of acquiring occupational contact dermatitis. © 2014 S. Karger AG, Basel.

  11. Effective analysis of rotundone at below-threshold levels in red and white wines using solid-phase microextraction gas chromatography/tandem mass spectrometry.

    PubMed

    Mattivi, F; Caputi, L; Carlin, S; Lanza, T; Minozzi, M; Nanni, D; Valenti, L; Vrhovsek, U

    2011-02-28

    Rotundone is an oxygenated sesquiterpene belonging to the family of guaianes, giving the 'peppery' aroma to white and black pepper and to red wines. Here we describe a novel, convenient protocol for the synthesis of rotundone, starting from a commercially available compound and requiring only two reaction steps, and an improved, faster method of GC separation (30 min) with selective quantisation of rotundone using tandem mass spectrometry in multiple reaction monitoring (MRM) mode with d(5)-rotundone as internal standard. With limits of detection (LODs) of 1.5 ng/L in white wine and 2.0 ng/L in red wine, intraday repeatability CV values of 6% and 5% at 50 ng/L and 500 ng/L and interday repeatability CV values of 13% and 6% at 50 ng/L and 500 ng/L, respectively, the improved protocol provides the desired sensitivity and selectivity for routine analysis of rotundone in both white and red wines. Initial application of this method highlighted the presence of unexpectedly high concentrations of rotundone, thus explaining the origin of the distinctive peppery aroma in Schioppettino and Vespolina red wines and in Gruener Veltliner white wines. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Charge generation layers for solution processed tandem organic light emitting diodes with regular device architecture.

    PubMed

    Höfle, Stefan; Bernhard, Christoph; Bruns, Michael; Kübel, Christian; Scherer, Torsten; Lemmer, Uli; Colsmann, Alexander

    2015-04-22

    Tandem organic light emitting diodes (OLEDs) utilizing fluorescent polymers in both sub-OLEDs and a regular device architecture were fabricated from solution, and their structure and performance characterized. The charge carrier generation layer comprised a zinc oxide layer, modified by a polyethylenimine interface dipole, for electron injection and either MoO3, WO3, or VOx for hole injection into the adjacent sub-OLEDs. ToF-SIMS investigations and STEM-EDX mapping verified the distinct functional layers throughout the layer stack. At a given device current density, the current efficiencies of both sub-OLEDs add up to a maximum of 25 cd/A, indicating a properly working tandem OLED.

  13. Harmonized Collaborative Validation of Aflatoxins and Sterigmatocystin in White Rice and Sorghum by Liquid Chromatography Coupled to Tandem Mass Spectrometry

    PubMed Central

    Ok, Hyun Ee; Tian, Fei; Hong, Eun Young; Paek, Ockjin; Kim, Sheen-Hee; Kim, Dongsul; Chun, Hyang Sook

    2016-01-01

    An interlaboratory study was performed in eight laboratories to validate a liquid chromatography–tandem mass spectrometry (LC/MS/MS) method for the simultaneous determination of aflatoxins and sterigmatocystin (STC) in white rice and sorghum (Sorghum bicolor). Fortified samples (at three different levels) of white rice and sorghum were extracted, purified through a solid-phase extraction (SPE) column, and then analyzed by LC/MS/MS. The apparent recoveries (ARs) ranged from 78.8% to 95.0% for aflatoxins and from 85.3% to 96.7% for STC. The relative standard deviations for repeatability (RSDr) and reproducibility (RSDR) of aflatoxins were in the ranges 7.9%–33.8% and 24.4%–81.0%, respectively. For STC, the RSDr ranged from 7.1% to 40.2% and the RSDR ranged from 28.1% to 99.2%. The Horwitz ratio values for the aflatoxins and STC ranged from 0.4 to 1.2 in white rice and from 0.3 to 1.0 in sorghum, respectively. These results validated this method for the simultaneous determination of aflatoxins and STC by LC/MS/MS after SPE column cleanup. The percentages of satisfactory Z-score values (|Z| ≤ 2) were the following: for white rice, 100% for aflatoxins and STC; for sorghum, 100%, except in data from two laboratories for STC (0.3 μg/kg). This validated that the LC/MS/MS method was successfully applied for the determination of aflatoxins and STC in 20 white rice and 20 sorghum samples sourced from Korean markets. PMID:27983588

  14. Pure white-light emitting ultrasmall organic-inorganic hybrid perovskite nanoclusters.

    PubMed

    Teunis, Meghan B; Lawrence, Katie N; Dutta, Poulami; Siegel, Amanda P; Sardar, Rajesh

    2016-10-14

    Organic-inorganic hybrid perovskites, direct band-gap semiconductors, have shown tremendous promise for optoelectronic device fabrication. We report the first colloidal synthetic approach to prepare ultrasmall (∼1.5 nm diameter), white-light emitting, organic-inorganic hybrid perovskite nanoclusters. The nearly pure white-light emitting ultrasmall nanoclusters were obtained by selectively manipulating the surface chemistry (passivating ligands and surface trap-states) and controlled substitution of halide ions. The nanoclusters displayed a combination of band-edge and broadband photoluminescence properties, covering a major part of the visible region of the solar spectrum with unprecedentedly large quantum yields of ∼12% and photoluminescence lifetime of ∼20 ns. The intrinsic white-light emission of perovskite nanoclusters makes them ideal and low cost hybrid nanomaterials for solid-state lighting applications.

  15. Approach for ochratoxin A fast screening in spices using clean-up tandem immunoassay columns with confirmation by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS).

    PubMed

    Goryacheva, I Yu; De Saeger, S; Lobeau, M; Eremin, S A; Barna-Vetró, I; Van Peteghem, C

    2006-09-01

    An approach for ochratoxin A (OTA) fast cost-effective screening based on clean-up tandem immunoassay columns was developed and optimized for OTA detection with a cut-off level of 10 microg kg(-1) in spices. Two procedures were tested and applied for OTA detection. Column with bottom detection immunolayer was optimized for OTA determination in Capsicum ssp. spices. A modified clean-up tandem immunoassay procedure with top detection immunolayer was successfully applied for all tested spices. Its main advantages were decreasing of the number of analysis steps and quantity of antibody and also minimizing of matrix effects. The total duration of the extraction and analysis was about 40 min for six samples. Chilli, red pepper, pili-pili, cayenne, paprika, nutmeg, ginger, white pepper and black pepper samples were analyzed for OTA contamination by the proposed clean-up tandem immunoassay procedures. Clean-up tandem immunoassay results were confirmed by HPLC-MS/MS with immunoaffinity column clean-up. Among 17 tested Capsicum ssp. spices, 6 samples (35%) contained OTA in a concentration exceeding the 10 microg kg(-1) limit discussed by the European Commission. All tested nutmeg (n=8), ginger (n=5), white pepper (n=7) and black pepper (n=6) samples did not contain OTA above this action level.

  16. Improved Efficiency and Enhanced Color Quality of Light-Emitting Diodes with Quantum Dot and Organic Hybrid Tandem Structure.

    PubMed

    Zhang, Heng; Feng, Yuanxiang; Chen, Shuming

    2016-10-03

    Light-emitting diodes based on organic (OLEDs) and colloidal quantum dot (QLEDs) are widely considered as next-generation display technologies because of their attractive advantages such as self-emitting and flexible form factor. The OLEDs exhibit relatively high efficiency, but their color saturation is quite poor compared with that of QLEDs. In contrast, the QLEDs show very pure color emission, but their efficiency is lower than that of OLEDs currently. To combine the advantages and compensate for the weaknesses of each other, we propose a hybrid tandem structure which integrates both OLED and QLED in a single device architecture. With ZnMgO/Al/HATCN interconnecting layer, hybrid tandem LEDs are successfully fabricated. The demonstrated hybrid tandem devices feature high efficiency and high color saturation simultaneously; for example, the devices exhibit maximum current efficiency and external quantum efficiency of 96.28 cd/A and 25.90%, respectively. Meanwhile, the full width at half-maximum of the emission spectra is remarkably reduced from 68 to 44 nm. With the proposed hybrid tandem structure, the color gamut of the displays can be effectively increased from 81% to 100% NTSC. The results indicate that the advantages of different LED technologies can be combined in a hybrid tandem structure.

  17. Solution processable inverted structure ZnO-organic hybrid heterojuction white LEDs

    NASA Astrophysics Data System (ADS)

    Bano, N.; Hussain, I.; Soomro, M. Y.; EL-Naggar, A. M.; Albassam, A. A.

    2018-05-01

    Improving luminance efficiency and colour purity are the most important challenges for zinc oxide (ZnO)-organic hybrid heterojunction light emitting diodes (LEDs), affecting their large area applications. If ZnO-organic hybrid heterojunction white LEDs are fabricated by a hydrothermal method, it is difficult to obtain pure and stable blue emission from PFO due to the presence of an undesirable green emission. In this paper, we present an inverted-structure ZnO-organic hybrid heterojunction LED to avoid green emission from PFO, which mainly originates during device processing. With this configuration, each ZnO nanorod (NR) forms a discrete p-n junction; therefore, large-area white LEDs can be designed without compromising the junction area. The configuration used for this novel structure is glass/ZnO NRs/PFO/PEDOT:PSS/L-ITO, which enables the development of efficient, large-area and low-cost hybrid heterojunction LEDs. Inverted-structure ZnO-organic hybrid heterojunction white LEDs offer several improvements in terms of brightness, size, colour, external quantum efficiency and a wider applicability as compared to normal architecture LEDs.

  18. Lithium hydride doped intermediate connector for high-efficiency and long-term stable tandem organic light-emitting diodes.

    PubMed

    Ding, Lei; Tang, Xun; Xu, Mei-Feng; Shi, Xiao-Bo; Wang, Zhao-Kui; Liao, Liang-Sheng

    2014-10-22

    Lithium hydride (LiH) is employed as a novel n-dopant in the intermediate connector for tandem organic light-emitting diodes (OLEDs) because of its easy coevaporation with other electron transporting materials. The tandem OLEDs with two and three electroluminescent (EL) units connected by a combination of LiH doped 8-hydroxyquinoline aluminum (Alq3) and 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile (HAT-CN) demonstrate approximately 2-fold and 3-fold enhancement in current efficiency, respectively. In addition, no extra voltage drop across the intermediate connector is observed. Particularly, the lifetime (T75%) in the tandem OLED with two and three EL units is substantially improved by 3.8 times and 7.4 times, respectively. The doping effect of LiH into Alq3, the charge injection, and transport characteristics of LiH-doped Alq3 are further investigated by ultraviolet photoelectron spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS).

  19. Top-emitting white organic light-emitting devices with down-conversion phosphors: theory and experiment.

    PubMed

    Ji, Wenyu; Zhang, Letian; Gao, Ruixue; Zhang, Liming; Xie, Wenfa; Zhang, Hanzhuang; Li, Bin

    2008-09-29

    White top-emitting organic light-emitting devices (TEOLEDs) with down-conversion phosphors are investigated from theory and experiment. The theoretical simulation was described by combining the microcavity model with the down-conversion model. A White TEOLED by the combination of a blue TEOLED with organic down-conversion phosphor 3-(4-(diphenylamino)phenyl)-1-pheny1prop-2-en-1-one was fabricated to validate the simulated results. It is shown that this approach permits the generation of white light in TEOLEDs. The efficiency of the white TEOLED is twice over the corresponding blue TEOLED. The feasible methods to improve the performance of such white TEOLEDs are discussed.

  20. Fully Solution-Processed Tandem White Quantum-Dot Light-Emitting Diode with an External Quantum Efficiency Exceeding 25.

    PubMed

    Jiang, Congbiao; Zou, Jianhua; Liu, Yu; Song, Chen; He, Zhiwei; Zhong, Zhenji; Wang, Jian; Yip, Hin-Lap; Peng, Junbiao; Cao, Yong

    2018-06-15

    Solution-processed electroluminescent tandem white quantum-dot light-emitting diodes (TWQLEDs) have the advantages of being low-cost and high-efficiency and having a wide color gamut combined with color filters, making this a promising backlight technology for high-resolution displays. However, TWQLEDs are rarely reported due to the challenge of designing device structures and the deterioration of film morphology with component layers that can be deposited from solutions. Here, we report an interconnecting layer with the optical, electrical, and mechanical properties required for fully solution-processed TWQLED. The optimized TWQLEDs exhibit a state-of-the-art current efficiency as high as 60.4 cd/A and an extremely high external quantum efficiency of 27.3% at a luminance of 100 000 cd/m 2 . A high color gamut of 124% NTSC 1931 standard can be achieved when combined with commercial color filters. These results represent the highest performance for solution-processed WQLEDs, unlocking the great application potential of TWQLEDs as backlights for new-generation displays.

  1. C70/C70:pentacene/pentacene organic heterojunction as the connecting layer for high performance tandem organic light-emitting diodes: Mechanism investigation of electron injection and transport

    NASA Astrophysics Data System (ADS)

    Guo, Qingxun; Yang, Dezhi; Chen, Jiangshan; Qiao, Xianfeng; Ahamad, Tansir; Alshehri, Saad M.; Ma, Dongge

    2017-03-01

    A high performance tandem organic light-emitting diode (OLED) is realized by employing a C70/C70:pentacene/pentacene organic heterojunction as the efficient charge generation layer (CGL). Not only more than two time enhancement of external quantum efficiency but also significant improvement in both power efficiency and lifetime are well achieved. The mechanism investigations find that the electron injection from the CGL to the adjacent electron transport layer (ETL) in tandem devices is injection rate-limited due to the high interface energy barrier between the CGL and the ETL. By the capacitance-frequency (C-F) and low temperature current density-voltage (J-V) characteristic analysis, we confirm that the electron transport is a space-charge-limited current process with exponential trap distribution. These traps are localized states below the lowest unoccupied molecular orbital edge inside the gap and would be filled with the upward shift of the Fermi level during the n-doping process. Furthermore, both the trap density (Ht) and the activation energy (Ea) could be carefully worked out through low temperature J-V measurements, which is very important for developing high performance tandem OLEDs.

  2. High work function transparent middle electrode for organic tandem solar cells

    NASA Astrophysics Data System (ADS)

    Moet, D. J. D.; de Bruyn, P.; Blom, P. W. M.

    2010-04-01

    The use of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) in combination with ZnO as middle electrode in solution-processed organic tandem solar cells requires a pH modification of the PEDOT:PSS dispersion. We demonstrate that this neutralization leads to a reduced work function of PEDOT:PSS, which does not affect the performance of polythiophene:fullerene solar cells, but results in a lower open-circuit voltage of devices based on a polyfluorene derivative with a higher ionization potential. The introduction of a thin layer of a perfluorinated ionomer recovers the anode work function and gives an open-circuit voltage of 1.92 V for a double junction polyfluorene-based solar cell.

  3. The Soul of Leadership: African American Students' Experiences in Historically Black and Predominantly White Organizations

    ERIC Educational Resources Information Center

    Hotchkins, Bryan K.

    2013-01-01

    This study addresses African American students' leadership experiences at predominantly White institutions. Findings indicated participants utilized servant leadership in historically Black organizations and transformational leadership in predominantly White organizations. The differences displayed showed that participants' leadership perceptions…

  4. Simple single-emitting layer hybrid white organic light emitting with high color stability

    NASA Astrophysics Data System (ADS)

    Nguyen, C.; Lu, Z. H.

    2017-10-01

    Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.

  5. Improving organic tandem solar cells based on water-processed nanoparticles by quantitative 3D nanoimaging.

    PubMed

    Pedersen, E B L; Angmo, D; Dam, H F; Thydén, K T S; Andersen, T R; Skjønsfjell, E T B; Krebs, F C; Holler, M; Diaz, A; Guizar-Sicairos, M; Breiby, D W; Andreasen, J W

    2015-08-28

    Organic solar cells have great potential for upscaling due to roll-to-roll processing and a low energy payback time, making them an attractive sustainable energy source for the future. Active layers coated with water-dispersible Landfester particles enable greater control of the layer formation and easier access to the printing industry, which has reduced the use of organic solvents since the 1980s. Through ptychographic X-ray computed tomography (PXCT), we image quantitatively a roll-to-roll coated photovoltaic tandem stack consisting of one bulk heterojunction active layer and one Landfester particle active layer. We extract the layered morphology with structural and density information including the porosity present in the various layers and the silver electrode with high resolution in 3D. The Landfester particle layer is found to have an undesired morphology with negatively correlated top- and bottom interfaces, wide thickness distribution and only partial surface coverage causing electric short circuits through the layer. By top coating a polymer material onto the Landfester nanoparticles we eliminate the structural defects of the layer such as porosity and roughness, and achieve the increased performance larger than 1 V expected for a tandem cell. This study highlights that quantitative imaging of weakly scattering stacked layers of organic materials has become feasible by PXCT, and that this information cannot be obtained by other methods. In the present study, this technique specifically reveals the need to improve the coatability and layer formation of Landfester nanoparticles, thus allowing improved solar cells to be produced.

  6. Tandem catalysis: a new approach to polymers.

    PubMed

    Robert, Carine; Thomas, Christophe M

    2013-12-21

    The creation of polymers by tandem catalysis represents an exciting frontier in materials science. Tandem catalysis is one of the strategies used by Nature for building macromolecules. Living organisms generally synthesize macromolecules by in vivo enzyme-catalyzed chain growth polymerization reactions using activated monomers that have been formed within cells during complex metabolic processes. However, these biological processes rely on highly complex biocatalysts, thus limiting their industrial applications. In order to obtain polymers by tandem catalysis, homogeneous and enzyme catalysts have played a leading role in the last two decades. In the following feature article, we will describe selected published efforts to achieve these research goals.

  7. Using self-organizing maps to identify potential halo white dwarfs.

    PubMed

    García-Berro, Enrique; Torres, Santiago; Isern, Jordi

    2003-01-01

    We present the results of an unsupervised classification of the disk and halo white dwarf populations in the solar neighborhood. The classification is done by merging the results of detailed Monte Carlo (MC) simulations, which reproduce very well the characteristics of the white dwarf populations in the solar neighborhood, with a catalogue of real stars. The resulting composite catalogue is analyzed using a competitive learning algorithm. In particular we have used the so-called self-organized map. The MC simulated stars are used as tracers and help in identifying the resulting clusters. The results of such an strategy turn out to be quite satisfactory, suggesting that this approach can provide an useful framework for analyzing large databases of white dwarfs with well determined kinematical, spatial and photometric properties once they become available in the next decade. Moreover, the results are of astrophysical interest as well, since a straightforward interpretation of several recent astronomical observations, like the detected microlensing events in the direction of the Magellanic Clouds, the possible detection of high proper motion white dwarfs in the Hubble Deep Field and the discovery of high velocity white dwarfs in the solar neighborhood, suggests that a fraction of the baryonic dark matter component of our galaxy could be in the form of old and dim halo white dwarfs.

  8. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Tandem-switched transport and tandem charge. 69... SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges § 69.111 Tandem-switched transport and tandem...-switched transport shall consist of two rate elements, a transmission charge and a tandem switching charge...

  9. Ag nanocluster-based color converters for white organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Nishikitani, Yoshinori; Takizawa, Daisuke; Uchida, Soichi; Lu, Yue; Nishimura, Suzushi; Oyaizu, Kenichi; Nishide, Hiroyuki

    2017-11-01

    The authors present Ag nanocluster-based color converters (Ag NC color converters), which convert part of the blue light from a light source to yellow light so as to create white organic light-emitting devices that could be suitable for lighting systems. Ag NCs synthesized by poly(methacrylic acid) template methods have a statistical size distribution with a mean diameter of around 4.5 nm, which is larger than the Fermi wavelength of around 2 nm. Hence, like free electrons in metals, the Ag NC electrons are thought to form a continuous energy band, leading to the formation of surface plasmons by photoexcitation. As for the fluorescence emission mechanism, the fact that the photoluminescence is excitation wavelength dependent suggests that the fluorescence originates from surface plasmons in Ag NCs of different sizes. By using Ag NC color converters and suitable blue light sources, white organic light-emitting devices can be fabricated based on the concept of light-mixing. For our blue light sources, we used polymer light-emitting electrochemical cells (PLECs), which, like organic light-emitting diodes, are area light sources. The PLECs were fabricated with a blue fluorescent π-conjugated polymer, poly[(9,9-dihexylfluoren-2,7-diyl)-co-(anthracen-9,10-diyl)] (PDHFA), and a polymeric solid electrolyte composed of poly(ethylene oxide) and KCF3SO3. In this device structure, the Ag NC color converter absorbs blue light from the PDHFA-based PLEC (PDHFA-PLEC) and then emits yellow light. When the PDHFA-PLEC is turned on by applying an external voltage, pure white light emission can be produced with Commission Internationale de l'Eclairage coordinates of (x = 0.32, y = 0.33) and a color rendering index of 93.6. This study shows that utilization of Ag NC color converters and blue PLECs is a very promising and highly effective method for realizing white organic light-emitting devices.

  10. Transport-related triplet states and hyperfine couplings in organic tandem solar cells probed by pulsed electrically detected magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kraffert, Felix; Bahro, Daniel; Meier, Christoph; Denne, Maximilian; Colsmann, Alexander; Behrends, Jan

    2017-09-01

    Tandem solar cells constitute the most successful organic photovoltaic devices with power conversion efficiencies comparable to thin-film silicon solar cells. Especially their high open-circuit voltage - only achievable by a well-adjusted layer stacking - leads to their high efficiencies. Nevertheless, the microscopic processes causing the lossless recombination of charge carriers within the recombination zone are not well understood yet. We show that advanced pulsed electrically detected magnetic resonance techniques such as electrically detected (ED)-Rabi nutation measurements and electrically detected hyperfine sublevel correlation (ED-HYSCORE) spectroscopy help to understand the role of triplet excitons in these microscopic processes. We investigate fully working miniaturised organic tandem solar cells and detect current-influencing doublet states in different layers as well as triplet excitons located on the fullerene-based acceptor. We apply ED-HYSCORE in order to study the nuclear spin environment of the relevant electron/hole spins and detect a significant amount of the low abundant 13C nuclei coupled to the observer spins.

  11. Changes in functional organization and white matter integrity in the connectome in Parkinson's disease.

    PubMed

    Tinaz, Sule; Lauro, Peter M; Ghosh, Pritha; Lungu, Codrin; Horovitz, Silvina G

    2017-01-01

    Parkinson's disease (PD) leads to dysfunction in multiple cortico-striatal circuits. The neurodegeneration has also been associated with impaired white matter integrity. This structural and functional "disconnection" in PD needs further characterization. We investigated the structural and functional organization of the PD whole brain connectome consisting of 200 nodes using diffusion tensor imaging and resting-state functional MRI, respectively. Data from 20 non-demented PD patients on dopaminergic medication and 20 matched controls were analyzed using graph theory-based methods. We focused on node strength, clustering coefficient, and local efficiency as measures of local network properties; and network modularity as a measure of information flow. PD patients showed reduced white matter connectivity in frontoparietal-striatal nodes compared to controls, but no change in modular organization of the white matter tracts. PD group also showed reduction in functional local network metrics in many nodes distributed across the connectome. There was also decreased functional modularity in the core cognitive networks including the default mode and dorsal attention networks, and sensorimotor network, as well as a lack of modular distinction in the orbitofrontal and basal ganglia nodes in the PD group compared to controls. Our results suggest that despite subtle white matter connectivity changes, the overall structural organization of the PD connectome remains robust at relatively early disease stages. However, there is a breakdown in the functional modular organization of the PD connectome.

  12. A Study on Organic-Metal Halide Perovskite Film Morphology, Interfacial Layers, Tandem Applications, and Encapsulation

    NASA Astrophysics Data System (ADS)

    Fisher, Dallas A.

    Organic-metal halide perovskites have brought about a new wave of research in the photovoltaic community due to their ideally suited optical and electronic parameters. In less than a decade, perovskite solar cell performance has skyrocketed to unprecedented efficiencies with numerous reported methodologies. Perovskites face many challenges with high-quality film morphology, interfacial layers, and long-term stability. In this work, these active areas are explored through a combination of studies. First, the importance of perovskite film precursor ratios is explored with an in-depth study of carrier lifetime and solvent-grain effects. It was found that excess lead iodide precursor greatly improves the film morphology by reducing pinholes in the solar absorber. Dimethyl sulfoxide (DMSO) solvent was found to mend grains, as well as improve carrier lifetime and device performance, possibly by passivation of grain boundary traps. Second, applications of perovskite with tandem cells is investigated, with an emphasis for silicon devices. Perovskites can easily be integrated with silicon, which already has strong market presence. Additionally, both materials' bandgaps are ideally suited for maximum tandem efficiency. The silicon/perovskite tandem device structure necessitated the optimization of inverted (p-i-n) structure devices. PEDOT:PSS, copper oxide, and nickel oxide p-type layers were explored through a combination of photoluminescent, chemical reactivity, and solar simulation results. Results were hindered due to resistive ITO and rough silicon substrates, but tandem devices displayed Voc indicative of proper monolithic performance. Third, replacement of titanium dioxide n-type layer with iron oxide (Fe 2O3, common rust) was studied. Iron oxide experiences less ultraviolet instability than that of titanium dioxide under solar illumination. It was found that current density slightly decreased due to parasitic absorption from the rust, but that open circuit voltage

  13. Differences between white Americans and Asian Americans for social responsibility, individual right and intentions regarding organ donation.

    PubMed

    Hee Sun Park; Yoon Sook Shin; Yun, Doshik

    2009-07-01

    This study examined factors affecting intention to enroll in an organ donor registry and intention to talk to family about organ donation. Participants indicated their views about maintaining body integrity as an individual right and donating organs as a social responsibility. Results showed that the influence of social responsibility on intention to enroll was stronger for white Americans than for Asian Americans. Individual right was negatively associated with intention to enroll among Asian Americans, but not among white Americans. Social responsibility was significant for intention to talk among both white Americans and Asian Americans, but individual right was not significant.

  14. Manganese-Doped One-Dimensional Organic Lead Bromide Perovskites with Bright White Emissions.

    PubMed

    Zhou, Chenkun; Tian, Yu; Khabou, Oussama; Worku, Michael; Zhou, Yan; Hurley, Joseph; Lin, Haoran; Ma, Biwu

    2017-11-22

    Single-component white-emitting phosphors are highly promising to simplify the fabrication of optically pumped white light-emitting diodes. To achieve white emission, precise control of the excited state dynamics is required for a single-component system to generate emissions with different energies in the steady state. Here, we report a new class of white phosphors based on manganese (Mn)-doped one-dimensional (1D) organic lead bromide perovskites. The bright white emission is the combination of broadband blue emission from the self-trapped excited states of the 1D perovskites and red emission from the doped Mn 2+ ions. Because of the indirect nature of the self-trapped excited states in 1D perovskites, there is no energy transfer from these states to the Mn 2+ ions, resulting in an efficient dual emission. As compared to the pristine 1D perovskites with bluish-white emission, these Mn-doped 1D perovskites exhibit much higher color rendering index of up to 87 and photoluminescence quantum efficiency of up to 28%.

  15. Recent advances in light outcoupling from white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gather, Malte C.; Reineke, Sebastian

    2015-01-01

    Organic light-emitting diodes (OLEDs) have been successfully introduced to the smartphone display market and have geared up to become contenders for applications in general illumination where they promise to combine efficient generation of white light with excellent color quality, glare-free illumination, and highly attractive designs. Device efficiency is the key requirement for such white OLEDs, not only from a sustainability perspective, but also because at the high brightness required for general illumination, losses lead to heating and may, thus, cause rapid device degradation. The efficiency of white OLEDs increased tremendously over the past two decades, and internal charge-to-photon conversion can now be achieved at ˜100% yield. However, the extraction of photons remains rather inefficient (typically <30%). Here, we provide an introduction to the underlying physics of outcoupling in white OLEDs and review recent progress toward making light extraction more efficient. We describe how structures that scatter, refract, or diffract light can be attached to the outside of white OLEDs (external outcoupling) or can be integrated close to the active layers of the device (internal outcoupling). Moreover, the prospects of using top-emitting metal-metal microcavity designs for white OLEDs and of tuning the average orientation of the emissive molecules within the OLED are discussed.

  16. High-performance tandem organic light-emitting diodes based on a buffer-modified p/n-type planar organic heterojunction as charge generation layer

    NASA Astrophysics Data System (ADS)

    Wu, Yukun; Sun, Ying; Qin, Houyun; Hu, Shoucheng; Wu, Qingyang; Zhao, Yi

    2017-04-01

    High-performance tandem organic light-emitting diodes (TOLEDs) were realized using a buffer-modified p/n-type planar organic heterojunction (OHJ) as charge generation layer (CGL) consisting of common organic materials, and the configuration of this p/n-type CGL was "LiF/N,N'-diphenyl-N,N'-bis(1-napthyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,7-diphenyl-1,10-phenanthroline (Bphen)/molybdenum oxide (MoOx)". The optimized TOLED exhibited a maximum current efficiency of 77.6 cd/A without any out-coupling techniques, and the efficiency roll-off was greatly improved compared to the single-unit OLED. The working mechanism of the p/n-type CGL was discussed in detail. It is found that the NPB/Bphen heterojunction generated enough charges under a forward applied voltage and the carrier extraction was a tunneling process. These results could provide a new method to fabricate high-performance TOLEDs.

  17. Evidence of Maternal Offloading of Organic Contaminants in White Sharks (Carcharodon carcharias)

    PubMed Central

    Mull, Christopher G.; Lyons, Kady; Blasius, Mary E.; Winkler, Chuck; O’Sullivan, John B.; Lowe, Christopher G.

    2013-01-01

    Organic contaminants were measured in young of the year (YOY) white sharks (Carcharodon carcharias) incidentally caught in southern California between 2005 and 2012 (n = 20) and were found to be unexpectedly high considering the young age and dietary preferences of young white sharks, suggesting these levels may be due to exposure in utero. To assess the potential contributions of dietary exposure to the observed levels, a five-parameter bioaccumulation model was used to estimate the total loads a newborn shark would potentially accumulate in one year from consuming contaminated prey from southern California. Maximum simulated dietary accumulation of DDTs and PCBs were 25.1 and 4.73 µg/g wet weight (ww) liver, respectively. Observed ΣDDT and ΣPCB concentrations (95±91 µg/g and 16±10 µg/g ww, respectively) in a majority of YOY sharks were substantially higher than the model predictions suggesting an additional source of contaminant exposure beyond foraging. Maternal offloading of organic contaminants during reproduction has been noted in other apex predators, but this is the first evidence of transfer in a matrotrophic shark. While there are signs of white shark population recovery in the eastern Pacific, the long-term physiological and population level consequences of biomagnification and maternal offloading of environmental contaminants in white sharks is unclear. PMID:23646154

  18. White organic light-emitting diodes with ultra-thin mixed emitting layer

    NASA Astrophysics Data System (ADS)

    Jeon, T.; Forget, S.; Chenais, S.; Geffroy, B.; Tondelier, D.; Bonnassieux, Y.; Ishow, E.

    2012-02-01

    White light can be obtained from Organic Light Emitting Diodes by mixing three primary colors, (i.e. red, green and blue) or two complementary colors in the emissive layer. In order to improve the efficiency and stability of the devices, a host-guest system is generally used as an emitting layer. However, the color balance to obtain white light is difficult to control and optimize because the spectrum is very sensitive to doping concentration (especially when a small amount of material is used). We use here an ultra-thin mixed emitting layer (UML) deposited by thermal evaporation to fabricate white organic light emitting diodes (WOLEDs) without co-evaporation. The UML was inserted in the hole-transporting layer consisting of 4, 4'-bis[N-(1-naphtyl)-N-phenylamino]biphenyl (α-NPB) instead of using a conventional doping process. The UML was formed from a single evaporation boat containing a mixture of two dipolar starbust triarylamine molecules (fvin and fcho) presenting very similar structures and thermal properties and emitting in complementary spectral regions (orange and blue respectively) and mixed according to their weight ratio. The composition of the UML specifically allows for fine tuning of the emission color despite its very thin thickness down to 1 nm. Competitive energy transfer processes from fcho and the host interface toward fvin are key parameters to control the relative intensity between red and blue emission. White light with very good CIE 1931 color coordinate (0.34, 0.34) was obtained by simply adjusting the UML film composition.

  19. Mapping white-matter functional organization at rest and during naturalistic visual perception.

    PubMed

    Marussich, Lauren; Lu, Kun-Han; Wen, Haiguang; Liu, Zhongming

    2017-02-01

    Despite the wide applications of functional magnetic resonance imaging (fMRI) to mapping brain activation and connectivity in cortical gray matter, it has rarely been utilized to study white-matter functions. In this study, we investigated the spatiotemporal characteristics of fMRI data within the white matter acquired from humans both in the resting state and while watching a naturalistic movie. By using independent component analysis and hierarchical clustering, resting-state fMRI data in the white matter were de-noised and decomposed into spatially independent components, which were further assembled into hierarchically organized axonal fiber bundles. Interestingly, such components were partly reorganized during natural vision. Relative to resting state, the visual task specifically induced a stronger degree of temporal coherence within the optic radiations, as well as significant correlations between the optic radiations and multiple cortical visual networks. Therefore, fMRI contains rich functional information about the activity and connectivity within white matter at rest and during tasks, challenging the conventional practice of taking white-matter signals as noise or artifacts. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. TRedD—A database for tandem repeats over the edit distance

    PubMed Central

    Sokol, Dina; Atagun, Firat

    2010-01-01

    A ‘tandem repeat’ in DNA is a sequence of two or more contiguous, approximate copies of a pattern of nucleotides. Tandem repeats are common in the genomes of both eukaryotic and prokaryotic organisms. They are significant markers for human identity testing, disease diagnosis, sequence homology and population studies. In this article, we describe a new database, TRedD, which contains the tandem repeats found in the human genome. The database is publicly available online, and the software for locating the repeats is also freely available. The definition of tandem repeats used by TRedD is a new and innovative definition based upon the concept of ‘evolutive tandem repeats’. In addition, we have developed a tool, called TandemGraph, to graphically depict the repeats occurring in a sequence. This tool can be coupled with any repeat finding software, and it should greatly facilitate analysis of results. Database URL: http://tandem.sci.brooklyn.cuny.edu/ PMID:20624712

  1. White organic light-emitting diodes with fluorescent tube efficiency.

    PubMed

    Reineke, Sebastian; Lindner, Frank; Schwartz, Gregor; Seidler, Nico; Walzer, Karsten; Lüssem, Björn; Leo, Karl

    2009-05-14

    The development of white organic light-emitting diodes (OLEDs) holds great promise for the production of highly efficient large-area light sources. High internal quantum efficiencies for the conversion of electrical energy to light have been realized. Nevertheless, the overall device power efficiencies are still considerably below the 60-70 lumens per watt of fluorescent tubes, which is the current benchmark for novel light sources. Although some reports about highly power-efficient white OLEDs exist, details about structure and the measurement conditions of these structures have not been fully disclosed: the highest power efficiency reported in the scientific literature is 44 lm W(-1) (ref. 7). Here we report an improved OLED structure which reaches fluorescent tube efficiency. By combining a carefully chosen emitter layer with high-refractive-index substrates, and using a periodic outcoupling structure, we achieve a device power efficiency of 90 lm W(-1) at 1,000 candelas per square metre. This efficiency has the potential to be raised to 124 lm W(-1) if the light outcoupling can be further improved. Besides approaching internal quantum efficiency values of one, we have also focused on reducing energetic and ohmic losses that occur during electron-photon conversion. We anticipate that our results will be a starting point for further research, leading to white OLEDs having efficiencies beyond 100 lm W(-1). This could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.

  2. Lambertian white top-emitting organic light emitting device with carbon nanotube cathode

    NASA Astrophysics Data System (ADS)

    Freitag, P.; Zakhidov, Al. A.; Luessem, B.; Zakhidov, A. A.; Leo, K.

    2012-12-01

    We demonstrate that white organic light emitting devices (OLEDs) with top carbon nanotube (CNT) electrodes show almost no microcavity effect and exhibit essentially Lambertian emission. CNT top electrodes were applied by direct lamination of multiwall CNT sheets onto white small molecule OLED stack. The devices show an external quantum efficiency of 1.5% and high color rendering index of 70. Due to elimination of the cavity effect, the devices show good color stability for different viewing angles. Thus, CNT electrodes are a viable alternative to thin semitransparent metallic films, where the strong cavity effect causes spectral shift and non-Lambertian angular dependence. Our method of the device fabrication is simple yet effective and compatible with virtually any small molecule organic semiconductor stack. It is also compatible with flexible substrates and roll-to-roll fabrication.

  3. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manna, Kuntal; Zhang, Teng; Greene, Francis X.

    2015-02-16

    We report here the synthesis of a series of robust and porous bipyridyl- and phenanthryl-based metal–organic frameworks (MOFs) of UiO topology (BPV-MOF, mBPV-MOF, and mPT-MOF) and their postsynthetic metalation to afford highly active single-site solid catalysts. While BPV-MOF was constructed from only bipyridyl-functionalized dicarboxylate linker, both mBPV- and mPT-MOF were built with a mixture of bipyridyl- or phenanthryl-functionalized and unfunctionalized dicarboxylate linkers. The postsynthetic metalation of these MOFs with [Ir(COD)(OMe)] 2 provided Ir-functionalized MOFs (BPV-MOF-Ir, mBPV-MOF-Ir, and mPT-MOF-Ir), which are highly active catalysts for tandem hydrosilylation of aryl ketones and aldehydes followed by dehydrogenative ortho-silylation of benzylicsilyl ethers as wellmore » as C–H borylation of arenes using B₂pin₂. Both mBPV-MOF-Ir and mPT-MOF-Ir catalysts displayed superior activities compared to BPV-MOF-Ir due to the presence of larger open channels in the mixed-linker MOFs. Impressively, mBPV-MOF-Ir exhibited high TONs of up to 17000 for C–H borylation reactions and was recycled more than 15 times. The mPT-MOF-Ir system is also active in catalyzing tandem dehydrosilylation/dehydrogenative cyclization of N-methylbenzyl amines to azasilolanes in the absence of a hydrogen acceptor. Importantly, MOF-Ir catalysts are significantly more active (up to 95 times) and stable than their homogeneous counterparts for all three reactions, strongly supporting the beneficial effects of active site isolation within MOFs. This work illustrates the ability to increase MOF open channel sizes by using the mixed linker approach and shows the enormous potential of developing highly active and robust single-site solid catalysts based on MOFs containing nitrogen-donor ligands for important organic transformations.« less

  4. MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services.

    PubMed

    Pratt, Brian; Howbert, J Jeffry; Tasman, Natalie I; Nilsson, Erik J

    2012-01-01

    MR-Tandem adapts the popular X!Tandem peptide search engine to work with Hadoop MapReduce for reliable parallel execution of large searches. MR-Tandem runs on any Hadoop cluster but offers special support for Amazon Web Services for creating inexpensive on-demand Hadoop clusters, enabling search volumes that might not otherwise be feasible with the compute resources a researcher has at hand. MR-Tandem is designed to drop in wherever X!Tandem is already in use and requires no modification to existing X!Tandem parameter files, and only minimal modification to X!Tandem-based workflows. MR-Tandem is implemented as a lightly modified X!Tandem C++ executable and a Python script that drives Hadoop clusters including Amazon Web Services (AWS) Elastic Map Reduce (EMR), using the modified X!Tandem program as a Hadoop Streaming mapper and reducer. The modified X!Tandem C++ source code is Artistic licensed, supports pluggable scoring, and is available as part of the Sashimi project at http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans_proteomic_pipeline/extern/xtandem/. The MR-Tandem Python script is Apache licensed and available as part of the Insilicos Cloud Army project at http://ica.svn.sourceforge.net/viewvc/ica/trunk/mr-tandem/. Full documentation and a windows installer that configures MR-Tandem, Python and all necessary packages are available at this same URL. brian.pratt@insilicos.com

  5. Tandem internal models execute motor learning in the cerebellum.

    PubMed

    Honda, Takeru; Nagao, Soichi; Hashimoto, Yuji; Ishikawa, Kinya; Yokota, Takanori; Mizusawa, Hidehiro; Ito, Masao

    2018-06-25

    In performing skillful movement, humans use predictions from internal models formed by repetition learning. However, the computational organization of internal models in the brain remains unknown. Here, we demonstrate that a computational architecture employing a tandem configuration of forward and inverse internal models enables efficient motor learning in the cerebellum. The model predicted learning adaptations observed in hand-reaching experiments in humans wearing a prism lens and explained the kinetic components of these behavioral adaptations. The tandem system also predicted a form of subliminal motor learning that was experimentally validated after training intentional misses of hand targets. Patients with cerebellar degeneration disease showed behavioral impairments consistent with tandemly arranged internal models. These findings validate computational tandemization of internal models in motor control and its potential uses in more complex forms of learning and cognition. Copyright © 2018 the Author(s). Published by PNAS.

  6. MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services

    PubMed Central

    Pratt, Brian; Howbert, J. Jeffry; Tasman, Natalie I.; Nilsson, Erik J.

    2012-01-01

    Summary: MR-Tandem adapts the popular X!Tandem peptide search engine to work with Hadoop MapReduce for reliable parallel execution of large searches. MR-Tandem runs on any Hadoop cluster but offers special support for Amazon Web Services for creating inexpensive on-demand Hadoop clusters, enabling search volumes that might not otherwise be feasible with the compute resources a researcher has at hand. MR-Tandem is designed to drop in wherever X!Tandem is already in use and requires no modification to existing X!Tandem parameter files, and only minimal modification to X!Tandem-based workflows. Availability and implementation: MR-Tandem is implemented as a lightly modified X!Tandem C++ executable and a Python script that drives Hadoop clusters including Amazon Web Services (AWS) Elastic Map Reduce (EMR), using the modified X!Tandem program as a Hadoop Streaming mapper and reducer. The modified X!Tandem C++ source code is Artistic licensed, supports pluggable scoring, and is available as part of the Sashimi project at http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans_proteomic_pipeline/extern/xtandem/. The MR-Tandem Python script is Apache licensed and available as part of the Insilicos Cloud Army project at http://ica.svn.sourceforge.net/viewvc/ica/trunk/mr-tandem/. Full documentation and a windows installer that configures MR-Tandem, Python and all necessary packages are available at this same URL. Contact: brian.pratt@insilicos.com PMID:22072385

  7. Qualitative and Quantitative Drug residue analyses: Florfenicol in white-tailed deer (Odocoileus virginianus) and supermarket meat by liquid chromatography tandem-mass spectrometry.

    PubMed

    Anderson, Shanoy C; Subbiah, Seenivasan; Gentles, Angella; Austin, Galen; Stonum, Paul; Brooks, Tiffanie A; Brooks, Chance; Smith, Ernest E

    2016-10-15

    A method for confirmation and detection of Florfenicol amine residues in white-tailed deer tissues was developed and validated in our laboratory. Tissue samples were extracted with ethyl acetate and cleaned up on sorbent (Chem-elut) cartridges. Liguid chromatography (LC) separation was achieved on a Zorbax Eclipse plus C18 column with gradient elution using a mobile phase composed of ammonium acetate in water and methanol at a flow rate of 300μL/min. Qualitative and quantitative analyses were carried out using liquid chromatography - heated electrospray ionization(HESI) and atmospheric pressure chemical ionization (APCI)-tandem mass spectrometry in the multiple reaction monitoring (MRM) interface. The limits of detection (LODs) for HESI and APCI probe were 1.8ng/g and 1.4ng/g respectively. Limits of quantitation (LOQs) for HESI and APCI probe were 5.8ng/g and 3.4ng/g respectively. Mean recovery values ranged from 79% to 111% for APCI and 30% to 60% for HESI. The validated method was used to determine white-tailed deer florfenicol tissue residue concentration 10-days after exposure. Florfenicol tissue residues concentration ranged from 0.4 to 0.6μg/g for liver and 0.02-0.05μg/g for muscle and a trace in blood samples. The concentration found in the tested edible tissues were lower than the maximum residual limit (MRL) values established by the federal drug administration (FDA) for bovine tissues. In summary, the resulting optimization procedures using the sensitivity of HESI and APCI probes in the determination of florfenicol in white-tailed deer tissue are the most compelling conclusions in this study, to the extent that we have applied this method in the evaluation of supermarket samples drug residue levels as a proof of principle. Copyright © 2016. Published by Elsevier B.V.

  8. Tandem catalysis by palladium nanoclusters encapsulated in metal–organic frameworks

    DOE PAGES

    Li, Xinle; Guo, Zhiyong; Xiao, Chaoxian; ...

    2014-08-25

    A bifunctional Zr-MOF catalyst containing palladium nanoclusters (NCs) has been developed. The formation of Pd NCs was confirmed by transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS). Combining the oxidation activity of Pd NCs and the acetalization activity of the Lewis acid sites in UiO-66-NH 2, this catalyst (Pd@UiO-66-NH 2) exhibits excellent catalytic activity and selectivity in a one-pot tandem oxidation-acetalization reaction. This catalyst shows 99.9% selectivity to benzaldehyde ethylene acetal in the tandem reaction of benzyl alcohol and ethylene glycol at 99.9% conversion of benzyl alcohol. We also examined various substituted benzyl alcohols and found thatmore » alcohols with electron-donating groups showed better conversion and selectivity compared to those with electron-withdrawing groups. As a result, we further proved that there was no leaching of active catalytic species during the reaction and the catalyst can be recycled at least five times without significant deactivation.« less

  9. Simple process of hybrid white quantum dot/organic light-emitting diodes by using quantum dot plate and fluorescence

    NASA Astrophysics Data System (ADS)

    Lee, Ho Won; Lee, Ki-Heon; Lee, Jae Woo; Kim, Jong-Hoon; Yang, Heesun; Kim, Young Kwan

    2015-02-01

    In this work, the simple process of hybrid quantum dot (QD)/organic light-emitting diode (OLED) was proposed to apply a white illumination light by using QD plate and organic fluorescence. Conventional blue fluorescent OLEDs were firstly fabricated and then QD plates of various concentrations, which can be controlled of UV-vis absorption and photoluminescence spectrum, were attached under glass substrate of completed blue devices. The suggested process indicates that we could fabricate the white device through very simple process without any deposition of orange or red organic emitters. Therefore, this work would be demonstrated that the potential simple process for white applications can be applied and also can be extended to additional research on light applications.

  10. Color stable white phosphorescent organic light emitting diodes with red emissive electron transport layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin

    2015-06-28

    We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (−0.030, +0.001) shifting only from 1000 to 10 000 cd/m{sup 2}. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq){submore » 3} as phosphorescent red dopant in electron transport layer.« less

  11. Phytochemical Profiles of New Red-Fleshed Apple Varieties Compared with Traditional and New White-Fleshed Varieties.

    PubMed

    Bars-Cortina, David; Macià, Alba; Iglesias, Ignasi; Romero, Maria Paz; Motilva, Maria José

    2017-03-01

    This study is an exhaustive chemical characterization of the phenolic compounds, triterpenes, and organic and ascorbic acids in red-fleshed apple varieties obtained by different breeding programs and using five traditional and new white-fleshed apple cultivars as reference. To carry out these analyses, solid-liquid extraction (SLE) and ultraperformance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) were used. The results showed that the red-fleshed apples contained, in either the flesh or peel, higher amounts of phenolic acids (chlorogenic acid), anthocyanins (cyanidin-3-O-galactoside), dihydrochalcones (phloretin xylosyl glucoside), and organic acids (malic acid) but a lower amount of flavan-3-ols than the white-fleshed apples. These quantitative differences could be related to an up-regulation of anthocyanins, dihydrochalcones, and malic acid and a down-regulation of flavan-3-ols (anthocyanin precursors) in both the flesh and peel of the red-fleshed apple varieties. The reported results should be considered preliminary because the complete phytochemical characterization of the red-fleshed apple cultivars will be extended to consecutive harvest seasons.

  12. Spectral broadening in electroluminescence of white organic light-emitting diodes based on complementary colors

    NASA Astrophysics Data System (ADS)

    Kim, Young Min; Park, Young Wook; Choi, Jin Hwan; Ju, Byeong Kwon; Jung, Jae Hoon; Kim, Jai Kyeong

    2007-01-01

    The authors report the optical and electroluminescent (EL) properties of white organic light-emitting diodes (OLEDs) which have two emitters with similar structures: 1, 1, 4, 4-tetraphenyl-1, 3-butadiene and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline have an emission peak of 400nm around the near ultraviolet, and tris-(8-hydroxyquinoline) aluminum doped with 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran has an emission peak of 580nm producing a yellow color. The EL spectra of the white OLED have shown a broadening through visual range from 400to780nm. This spectral broadening is related to an exciplex emission at the organic solid interface.

  13. Quantification of urinary zwitterionic organic acids using weak-anion exchange chromatography with tandem MS detection.

    PubMed

    Bishop, Michael Jason; Crow, Brian S; Kovalcik, Kasey D; George, Joe; Bralley, James A

    2007-04-01

    A rapid and accurate quantitative method was developed and validated for the analysis of four urinary organic acids with nitrogen containing functional groups, formiminoglutamic acid (FIGLU), pyroglutamic acid (PYRGLU), 5-hydroxyindoleacetic acid (5-HIAA), and 2-methylhippuric acid (2-METHIP) by liquid chromatography tandem mass spectrometry (LC/MS/MS). The chromatography was developed using a weak anion-exchange amino column that provided mixed-mode retention of the analytes. The elution gradient relied on changes in mobile phase pH over a concave gradient, without the use of counter-ions or concentrated salt buffers. A simple sample preparation was used, only requiring the dilution of urine prior to instrumental analysis. The method was validated based on linearity (r2>or=0.995), accuracy (85-115%), precision (C.V.<12%), sample preparation stability (organic acids.

  14. High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency

    NASA Astrophysics Data System (ADS)

    Che, Xiaozhou; Li, Yongxi; Qu, Yue; Forrest, Stephen R.

    2018-05-01

    Multijunction solar cells are effective for increasing the power conversion efficiency beyond that of single-junction cells. Indeed, the highest solar cell efficiencies have been achieved using two or more subcells to adequately cover the solar spectrum. However, the efficiencies of organic multijunction solar cells are ultimately limited by the lack of high-performance, near-infrared absorbing organic subcells within the stack. Here, we demonstrate a tandem cell with an efficiency of 15.0 ± 0.3% (for 2 mm2 cells) that combines a solution-processed non-fullerene-acceptor-based infrared absorbing subcell on a visible-absorbing fullerene-based subcell grown by vacuum thermal evaporation. The hydrophilic-hydrophobic interface within the charge-recombination zone that connects the two subcells leads to >95% fabrication yield among more than 130 devices, and with areas up to 1 cm2. The ability to stack solution-based on vapour-deposited cells provides significant flexibility in design over the current, all-vapour-deposited multijunction structures.

  15. Hybrid Structure White Organic Light Emitting Diode for Enhanced Efficiency by Varied Doping Rate.

    PubMed

    Kim, Dong-Eun; Kang, Min-Jae; Park, Gwang-Ryeol; Kim, Nam-Kyu; Lee, Burm-Jong; Kwon, Young-Soo; Shin, Hoon-Kyu

    2016-03-01

    Novel materials based on Zn(HPB)2 and Ir-complexes were synthesized as blue or red emitters, respectively. White organic light emitting diodes were fabricated using the Zn(HPB)2 as a blue emitting layer, Ir-complexes as a red emitting layer and Alq3 as a green emitting layer. The obtained experimental results, were based on white OLEDs fabricated using double emission layers of Zn(HPB)2 and Alq3:Ir-complexes. The doping rate of the Ir-complexes was varied at 0.4%, 0.6%, 0.8% and 1.0%. When the doping rate of the Alq3:Ir-complexes was 0.6%, a white emission was achieved. The Commission Internationale de l'Eclairage coordinates of the device's white emission were (0.316, 0.331) at an applied voltage of 10.75 V.

  16. Tandem Repeated Irritation Test (TRIT) Studies and Clinical Relevance: Post 2006.

    PubMed

    Reddy, Rasika; Maibach, Howard

    2018-06-11

    Single or multiple applications of irritants can lead to occupational contact dermatitis, and most commonly irritant contact dermatitis (ICD). Tandem irritation, the sequential application of two irritants to a target skin area, has been studied using the Tandem Repeated Irritation Test (TRIT) to provide a more accurate representation of skin irritation. Here we present an update to Kartono's review on tandem irritation studies since 2006 [1]. We surveyed the literature available on PubMed, Embase, Google Scholar, and the UCSF Dermatology library databases since 2006. The studies included discuss the tandem effects of common chemical irritants, organic solvents, occlusion as well as clinical relevance - and enlarge our ability to discern whether multiple chemical exposures are more or less likely to enhance irritation.

  17. Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assisted extraction and ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Peng, Xianzhi; Jin, Jiabin; Wang, Chunwei; Ou, Weihui; Tang, Caiming

    2015-03-06

    A sensitive and reliable method was developed for multi-target determination of 13 most widely used organic ultraviolet (UV) absorbents (including UV filters and UV stabilizers) in aquatic organism tissues. The organic UV absorbents were extracted using ultrasonic-assisted extraction, purified via gel permeation chromatography coupled with silica gel column chromatography, and determined by ultra-high performance liquid chromatography-tandem mass spectrometry. Recoveries of the UV absorbents from organism tissues mostly ranged from 70% to 120% from fish filet with satisfactory reproducibility. Method quantification limits were 0.003-1.0ngg(-1) dry weight (dw) except for 2-ethylhexyl 4-methoxycinnamate. This method has been applied to analysis of the UV absorbents in wild and farmed aquatic organisms collected from the Pearl River Estuary, South China. 2-Hydroxy-4-methoxybenzophenone and UV-P were frequently detected in both wild and farmed marine organisms at low ngg(-1)dw. 3-(4-Methylbenzylidene)camphor and most of the benzotriazole UV stabilizers were also frequently detected in maricultured fish. Octocrylene and 2-ethylhexyl 4-methoxycinnamate were not detected in any sample. This work lays basis for in-depth study about bioaccumulation and biomagnification of the UV absorbents in marine environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Tandem microwave waste remediation and decontamination system

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1999-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  19. A randomised tandem colonoscopy trial of narrow band imaging versus white light examination to compare neoplasia miss rates.

    PubMed

    Kaltenbach, T; Friedland, S; Soetikno, R

    2008-10-01

    Colonoscopy, the "gold standard" screening test for colorectal cancer (CRC), has known diagnostic limitations. Advances in endoscope technology have focused on improving mucosal visualisation. In addition to increased angle of view and resolution features, recent colonoscopes have non-white-light optics, such as narrow band imaging (NBI), to enhance image contrast. We aimed to study the neoplasia diagnostic characteristics of NBI, by comparing the neoplasm miss rate when the colonoscopy was performed under NBI versus white light (WL). Randomised controlled trial. US Veterans hospital. Elective colonoscopy adults. We randomly assigned patients to undergo a colonoscopic examination using NBI or WL. All patients underwent a second examination using WL, as the reference standard. The primary end point was the difference in the neoplasm miss rate, and secondary outcome was the neoplasm detection rate. In 276 tandem colonoscopy patients, there was no significant difference of miss or detection rates between NBI or WL colonoscopy techniques. Of the 135 patients in the NBI group, 17 patients (12.6%; 95% confidence interval (CI) 7.5 to 19.4%) had a missed neoplasm, as compared with 17 of the 141 patients (12.1%; 95% CI 7.2 to 18.6%) in the WL group, with a miss rate risk difference of 0.5% (95% CI -7.2 to 8.3). 130 patients (47%) had at least one neoplasm. Missed lesions with NBI showed similar characteristics to those missed with WL. All missed neoplasms were tubular adenomas, the majority (78%) was < or = 5 mm and none were larger than 1 cm (one-sided 95% CI up to 1%). Nonpolypoid lesions represented 35% (13/37) of missed neoplasms. NBI did not improve the colorectal neoplasm miss rate compared to WL; the miss rate for advanced adenomas was less than 1% and for all adenomas was 12%. The neoplasm detection rates were similar high using NBI or WL; almost a half the study patients had at least one adenoma. Clinicaltrials.gov identifier: NCT00628147.

  20. Efficient non-doped phosphorescent orange, blue and white organic light-emitting devices.

    PubMed

    Yin, Yongming; Yu, Jing; Cao, Hongtao; Zhang, Letian; Sun, Haizhu; Xie, Wenfa

    2014-10-24

    Efficient phosphorescent orange, blue and white organic light-emitting devices (OLEDs) with non-doped emissive layers were successfully fabricated. Conventional blue phosphorescent emitters bis [4,6-di-fluorophenyl]-pyridinato-N,C(2')] picolinate (Firpic) and Bis(2,4-difluorophenylpyridinato) (Fir6) were adopted to fabricate non-doped blue OLEDs, which exhibited maximum current efficiency of 7.6 and 4.6 cd/A for Firpic and Fir6 based devices, respectively. Non-doped orange OLED was fabricated utilizing the newly reported phosphorescent material iridium (III) (pbi)₂Ir(biq), of which manifested maximum current and power efficiency of 8.2 cd/A and 7.8 lm/W. The non-doped white OLEDs were achieved by simply combining Firpic or Fir6 with a 2-nm (pbi)₂Ir(biq). The maximum current and power efficiency of the Firpic and (pbi)₂Ir(biq) based white OLED were 14.8 cd/A and 17.9 lm/W.

  1. Efficient non-doped phosphorescent orange, blue and white organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Yin, Yongming; Yu, Jing; Cao, Hongtao; Zhang, Letian; Sun, Haizhu; Xie, Wenfa

    2014-10-01

    Efficient phosphorescent orange, blue and white organic light-emitting devices (OLEDs) with non-doped emissive layers were successfully fabricated. Conventional blue phosphorescent emitters bis [4,6-di-fluorophenyl]-pyridinato-N,C2'] picolinate (Firpic) and Bis(2,4-difluorophenylpyridinato) (Fir6) were adopted to fabricate non-doped blue OLEDs, which exhibited maximum current efficiency of 7.6 and 4.6 cd/A for Firpic and Fir6 based devices, respectively. Non-doped orange OLED was fabricated utilizing the newly reported phosphorescent material iridium (III) (pbi)2Ir(biq), of which manifested maximum current and power efficiency of 8.2 cd/A and 7.8 lm/W. The non-doped white OLEDs were achieved by simply combining Firpic or Fir6 with a 2-nm (pbi)2Ir(biq). The maximum current and power efficiency of the Firpic and (pbi)2Ir(biq) based white OLED were 14.8 cd/A and 17.9 lm/W.

  2. Warm-White-Light-Emitting Diode Based on a Dye-Loaded Metal-Organic Framework for Fast White-Light Communication.

    PubMed

    Wang, Zhiye; Wang, Zi; Lin, Bangjiang; Hu, XueFu; Wei, YunFeng; Zhang, Cankun; An, Bing; Wang, Cheng; Lin, Wenbin

    2017-10-11

    A dye@metal-organic framework (MOF) hybrid was used as a fluorophore in a white-light-emitting diode (WLED) for fast visible-light communication (VLC). The white light was generated from a combination of blue emission of the 9,10-dibenzoate anthracene (DBA) linkers and yellow emission of the encapsulated Rhodamine B molecules. The MOF structure not only prevents dye molecules from aggregation-induced quenching but also efficiently transfers energy to the dye for dual emission. This light-emitting material shows emission lifetimes of 1.8 and 5.3 ns for the blue and yellow components, respectively, which are significantly shorter than the 200 ns lifetime of Y 3 Al 5 O 12 :Ce 3+ in commercial WLEDs. The MOF-WLED device exhibited a modulating frequency of 3.6 MHz for VLC, six times that of commercial WLEDs.

  3. Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient ( ηT * ˜ 33%) solar cell

    NASA Astrophysics Data System (ADS)

    Asadpour, Reza; Chavali, Raghu V. K.; Ryyan Khan, M.; Alam, Muhammad A.

    2015-06-01

    As single junction photovoltaic (PV) technologies, both Si heterojunction (HIT) and perovskite based solar cells promise high efficiencies at low cost. Intuitively, a traditional tandem cell design with these cells connected in series is expected to improve the efficiency further. Using a self-consistent numerical modeling of optical and transport characteristics, however, we find that a traditional series connected tandem design suffers from low J S C due to band-gap mismatch and current matching constraints. Specifically, a traditional tandem cell with state-of-the-art HIT ( η = 24 % ) and perovskite ( η = 20 % ) sub-cells provides only a modest tandem efficiency of η T ˜ 25%. Instead, we demonstrate that a bifacial HIT/perovskite tandem design decouples the optoelectronic constraints and provides an innovative path for extraordinary efficiencies. In the bifacial configuration, the same state-of-the-art sub-cells achieve a normalized output of ηT * = 33%, exceeding the bifacial HIT performance at practical albedo reflections. Unlike the traditional design, this bifacial design is relatively insensitive to perovskite thickness variations, which may translate to simpler manufacture and higher yield.

  4. Trace determination of organophosphate esters in white wine, red wine, and beer samples using dispersive liquid-liquid microextraction combined with ultra-high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Pang, Long; Yang, Huiqiang; Yang, Peijie; Zhang, Hongzhong; Zhao, Jihong

    2017-08-15

    In this study, dispersive liquid-liquid microextraction coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry was developed for the analysis of five representative organophosphate esters (OPEs) in wine samples. Under optimized conditions, the proposed method resulted in good linearity (R 2 >0.9933) over the range of 0.1-100μgL -1 , with limits of detection (LODs, S/N =3) and quantification (LOQs, S/N =10) in the ranges of 0.48-18.8ngL -1 and 1.58-62.5ngL -1 , respectively. Inter- and intra-assay precisions of RSD% ranged from 3.21% to 6.13% and from 1.69% to 7.63%, respectively. The spiked recoveries of target OPEs from white wine, red wine, and beer samples were in the ranges of 80-122%, 76-120%, and 76-110%, respectively, at two different concentration levels. The total concentrations of five OPEs found in white wine, red wine, and beer samples were in the ranges of 0.29-0.85μgL -1 , 1.00-3.05μgL -1 , and 0.86-1.47μgL -1 , respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Efficacy of white mustard and soybean meal as a bioherbicide in organic broccoli and spinach production

    USDA-ARS?s Scientific Manuscript database

    Weed control in organic cropping systems generally rely on mechanical or physical methods because of the lack of reliable organically accepted herbicides. Among the several potential bioherbicides being explored, white mustard (Sinapis alba) seed meal is among those bioherbicides that have been sho...

  6. So It "Became White Activists Fighting for Integration?" Community Organizations, Intersectional Identities, and Education Reform

    ERIC Educational Resources Information Center

    Sampson, Carrie R.

    2017-01-01

    Community-based organizations have long influenced education reforms, and urban areas are especially vulnerable to community work that transcends racial and economic boundaries. The purpose of this study is to explore how The League of Women Voters of Las Vegas Valley, a mostly White, middle-upper-class women's organization, worked to pursue one…

  7. The Process by Which Black Male College Students Become Leaders of Predominantly White Organizations in Higher Education: A Grounded Theory

    ERIC Educational Resources Information Center

    Moschella, Eric J.

    2013-01-01

    This study sought to understand the process by which Black undergraduate men on predominately White college campuses become leaders of predominately White organizations. Using the theoretical frameworks of Black and White racial identity development (Helms, 1990), Critical Race Theory (Delgado & Stefancic, 2001), and Wijeyesinghe's (2001)…

  8. Study on constant-step stress accelerated life tests in white organic light-emitting diodes.

    PubMed

    Zhang, J P; Liu, C; Chen, X; Cheng, G L; Zhou, A X

    2014-11-01

    In order to obtain reliability information for a white organic light-emitting diode (OLED), two constant and one step stress tests were conducted with its working current increased. The Weibull function was applied to describe the OLED life distribution, and the maximum likelihood estimation (MLE) and its iterative flow chart were used to calculate shape and scale parameters. Furthermore, the accelerated life equation was determined using the least squares method, a Kolmogorov-Smirnov test was performed to assess if the white OLED life follows a Weibull distribution, and self-developed software was used to predict the average and the median lifetimes of the OLED. The numerical results indicate that white OLED life conforms to a Weibull distribution, and that the accelerated life equation completely satisfies the inverse power law. The estimated life of a white OLED may provide significant guidelines for its manufacturers and customers. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Achieving 12.8% Efficiency by Simultaneously Improving Open-Circuit Voltage and Short-Circuit Current Density in Tandem Organic Solar Cells.

    PubMed

    Qin, Yunpeng; Chen, Yu; Cui, Yong; Zhang, Shaoqing; Yao, Huifeng; Huang, Jiang; Li, Wanning; Zheng, Zhong; Hou, Jianhui

    2017-06-01

    Tandem organic solar cells (TOSCs), which integrate multiple organic photovoltaic layers with complementary absorption in series, have been proved to be a strong contender in organic photovoltaic depending on their advantages in harvesting a greater part of the solar spectrum and more efficient photon utilization than traditional single-junction organic solar cells. However, simultaneously improving open circuit voltage (V oc ) and short current density (J sc ) is a still particularly tricky issue for highly efficient TOSCs. In this work, by employing the low-bandgap nonfullerene acceptor, IEICO, into the rear cell to extend absorption, and meanwhile introducing PBDD4T-2F into the front cell for improving V oc , an impressive efficiency of 12.8% has been achieved in well-designed TOSC. This result is also one of the highest efficiencies reported in state-of-the-art organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis and Electroluminescent Property of New Orange Iridium Compounds for Flexible White Organic Light Emitting Diodes.

    PubMed

    Lee, Ho Won; Jeong, Hyunjin; Kim, Young Kwan; Ha, Yunkyoung

    2015-10-01

    Recently, white organic light-emitting diodes (OLEDs) have aroused considerable attention because they have the potential of next-generation flexible displays and white illuminated applications. White OLED applications are particularly heading to the industry but they have still many problems both materials and manufacturing. Therefore, we proposed that the new iridium compounds of orange emitters could be demonstrated and also applied to flexible white OLEDs for verification of potential. First, we demonstrated the chemical properties of new orange iridium compounds. Secondly, conventional two kinds of white phosphorescent OLEDs were fabricated by following devices; indium-tin oxide coated glass substrate/4,4'-bis[N-(napthyl)-N-phenylamino]biphenyl/N,N'-dicarbazolyl-3,5-benzene doped with blue and new iridium compounds for orange emitting 8 wt%/1,3,5-tris[N-phenylbenzimidazole-2-yl]benzene/lithium quinolate/aluminum. In addition, we fabricated white OLEDs using these emitters to verify the potential on flexible substrate. Therefore, this work could be proposed that white light applications can be applied and could be extended to additional research on flexible applications.

  11. Quantitative description of charge-carrier transport in a white organic light-emitting diode

    NASA Astrophysics Data System (ADS)

    Schober, M.; Anderson, M.; Thomschke, M.; Widmer, J.; Furno, M.; Scholz, R.; Lüssem, B.; Leo, K.

    2011-10-01

    We present a simulation model for the analysis of charge-carrier transport in organic thin-film devices, and apply it to a three-color white hybrid organic light-emitting diode (OLED) with fluorescent blue and phosphorescent red and green emission. We simulate a series of single-carrier devices, which reconstruct the OLED layer sequence step by step. Thereby, we determine the energy profiles for hole and electron transport, show how to discern bulk from interface limitation, and identify trap states.

  12. Covalently Linked Tandem Lesions in DNA

    PubMed Central

    Patrzyc, Helen B.; Dawidzik, Jean B.; Budzinski, Edwin E.; Freund, Harold G.; Wilton, John H.; Box, Harold C.

    2013-01-01

    Reactive oxygen species (ROS) generate a type of DNA damage called tandem lesions, two adjacent nucleotides both modified. A subcategory of tandem lesions consists of adjacent nucleotides linked by a covalent bond. Covalently linked tandem lesions generate highly characteristic liquid chromotography-tandem mass spectrometry (LC-MS/MS) elution profiles. We have used this property to comprehensively survey X-irradiated DNA for covalently linked tandem lesions. A total of 15 tandem lesions were detected in DNA irradiated in deoxygenated aqueous solution, five tandem lesions were detected in DNA that was irradiated in oxygenated solution. PMID:23106212

  13. Tandem reactions initiated by copper-catalyzed cross-coupling: a new strategy towards heterocycle synthesis.

    PubMed

    Liu, Yunyun; Wan, Jie-Ping

    2011-10-21

    Copper-catalyzed cross-coupling reactions which lead to the formation of C-N, C-O, C-S and C-C bonds have been recognized as one of the most useful strategies in synthetic organic chemistry. During past decades, important breakthroughs in the study of Cu-catalyzed coupling processes demonstrated that Cu-catalyzed reactions are broadly applicable to a variety of research fields related to organic synthesis. Representatively, employing these coupling transformations as key steps, a large number of tandem reactions have been developed for the construction of various heterocyclic compounds. These tactics share the advantages of high atom economics of tandem reactions as well as the broad tolerance of Cu-catalyst systems. Therefore, Cu-catalyzed C-X (X = N, O, S, C) coupling transformation-initiated tandem reactions were quickly recognized as a strategy with great potential for synthesizing heterocyclic compounds and gained worldwide attention. In this review, recent research progress in heterocycle syntheses using tandem reactions initiated by copper-catalyzed coupling transformations, including C-N, C-O, C-S as well as C-C coupling processes are summarized.

  14. Ultrathin nondoped emissive layers for efficient and simple monochrome and white organic light-emitting diodes.

    PubMed

    Zhao, Yongbiao; Chen, Jiangshan; Ma, Dongge

    2013-02-01

    In this paper, highly efficient and simple monochrome blue, green, orange, and red organic light emitting diodes (OLEDs) based on ultrathin nondoped emissive layers (EMLs) have been reported. The ultrathin nondoped EML was constructed by introducing a 0.1 nm thin layer of pure phosphorescent dyes between a hole transporting layer and an electron transporting layer. The maximum external quantum efficiencies (EQEs) reached 17.1%, 20.9%, 17.3%, and 19.2% for blue, green, orange, and red monochrome OLEDs, respectively, indicating the universality of the ultrathin nondoped EML for most phosphorescent dyes. On the basis of this, simple white OLED structures are also demonstrated. The demonstrated complementary blue/orange, three primary blue/green/red, and four color blue/green/orange/red white OLEDs show high efficiency and good white emission, indicating the advantage of ultrathin nondoped EMLs on constructing simple and efficient white OLEDs.

  15. Simulation of two dimensional electrophoresis and tandem mass spectrometry for teaching proteomics.

    PubMed

    Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul

    2012-01-01

    In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations-2D electrophoresis and tandem mass spectrometry. The two simulations are integrated together and are designed to teach the concept of proteome analysis of prokaryotic and eukaryotic organisms. 2DE-Tandem MS can be used as a freestanding simulation, or in conjunction with a wet lab, to introduce proteomics in the undergraduate classroom. 2DE Tandem MS is a free program available on Sourceforge at https://sourceforge.net/projects/jbf/. It was developed using Java Swing and functions in Mac OSX, Windows, and Linux, ensuring that every student sees a consistent and informative graphical user interface no matter the computer platform they choose. Java must be installed on the host computer to run 2DE Tandem MS. Example classroom exercises are provided in the Supporting Information. Copyright © 2012 Wiley Periodicals, Inc.

  16. Linkages between the circulation and distribution of dissolved organic matter in the White Sea, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey K.; Stedmon, Colin A.; Semushin, Andrey V.; Martma, Tõnu; Ivanov, Boris V.; Kowalczuk, Piotr; Granskog, Mats A.

    2016-05-01

    The White Sea is a semi-enclosed Arctic marginal sea receiving a significant loading of freshwater (225-231 km3 yr-1 equaling an annual runoff yield of 2.5 m) and dissolved organic matter (DOM) from river run-off. We report discharge weighed values of stable oxygen isotope ratios (δ18O) of -14.0‰ in Northern Dvina river for the period 10 May-12 October 2012. We found a significant linear relationship between salinity (S) and δ18O (δ18O=-17.66±0.58+0.52±0.02×S; R2=0.96, N=162), which indicates a dominant contribution of river water to the freshwater budget and little influence of sea ice formation or melt. No apparent brine additions from sea-ice formation is evident in the White Sea deep waters as seen from a joint analysis of temperature (T), S, δ18O and aCDOM(350) data, confirming previous suggestions about strong tidal induced vertical mixing in winter being the likely source of the deep waters. We investigated properties and distribution of colored dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in the White Sea basin and coastal areas in summer. We found contrasting DOM properties in the inflowing Barents Sea waters and White Sea waters influenced by terrestrial runoff. Values of absorption by CDOM at 350 nm (aCDOM(350)) and DOC (exceeding 10 m-1 and 550 μmol l-1, respectively) in surface waters of the White Sea basin are higher compared to other river-influenced coastal Arctic domains. Linear relationship between S and CDOM absorption, and S and DOC (DOC=959.21±52.99-25.80±1.79×S; R2=0.85; N=154) concentrations suggests conservative mixing of DOM in the White Sea. The strongest linear correlation between CDOM absorption and DOC was found in the ultraviolet (DOC=56.31±2.76+9.13±0.15×aCDOM(254); R2=0.99; N=155), which provides an easy and robust tool to trace DOC using CDOM absorption measurements as well as remote sensing algorithms. Deviations from this linear relationship in surface waters likely indicate contribution from

  17. Orthogonal tandem catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohr, Tracy L.; Marks, Tobin J.

    2015-05-20

    Tandem catalysis is a growing field that is beginning to yield important scientific and technological advances toward new and more efficient catalytic processes. 'One-pot' tandem reactions, where multiple catalysts and reagents, combined in a single reaction vessel undergo a sequence of precisely staged catalytic steps, are highly attractive from the standpoint of reducing both waste and time. Orthogonal tandem catalysis is a subset of one-pot reactions in which more than one catalyst is used to promote two or more mechanistically distinct reaction steps. This Perspective summarizes and analyses some of the recent developments and successes in orthogonal tandem catalysis, withmore » particular focus on recent strategies to address catalyst incompatibility. We also highlight the concept of thermodynamic leveraging by coupling multiple catalyst cycles to effect challenging transformations not observed in single-step processes, and to encourage application of this technique to energetically unfavourable or demanding reactions.« less

  18. High-efficient and brightness white organic light-emitting diodes operated at low bias voltage

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yu, Junsheng; Yuan, Kai; Jian, Yadong

    2010-10-01

    White organic light-emitting diodes (OLEDs) used for display application and lighting need to possess high efficiency, high brightness, and low driving voltage. In this work, white OLEDs consisted of ambipolar 9,10-bis 2-naphthyl anthracene (ADN) as a host of blue light-emitting layer (EML) doped with tetrabutyleperlene (TBPe) and a thin codoped layer consisted of N, N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB) as a host of yellow light-emitting layer doped with 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) were investigated. With appropriate tuning in the film thickness, position, and dopant concentration of the co-doped layer, a white OLED with a luminance yield of 10.02 cd/A with the CIE coordinates of (0.29, 0.33) has been achieved at a bias voltage of 9 V and a luminance level of over 10,000 cd/m2. By introducing the PIN structure with both HIL and bis(10- hydroxybenzo-quinolinato)-beryllium (BeBq2) ETL, the power efficiency of white OLED was improved.

  19. Organic compounds in White River water used for public supply near Indianapolis, Indiana, 2002-05

    USGS Publications Warehouse

    Lathrop, Tim; Moran, Dan

    2011-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) characterized the occurrence of 277 organic compounds in source water (stream water collected before treatment) and finished water (treated water before distribution) from the White River North treatment plant, one of several community water systems that use the White River as its primary water supply (fig. 1). Samples were collected at least monthly during 2002-05 and included 30 source- and 13 finished-water samples. The samples were analyzed for pesticides and selected pesticide degradates (or 'breakdown products'), solvents, gasoline hydrocarbons, disinfection by-products, personal-care and domestic-use products, and other organic compounds. Community water systems are required to monitor for compounds regulated under the Safe Drinking Water Act. Most of the compounds tested in this study are not regulated under U.S. Environmental Protection Agency (USEPA) federal drinking-water standards (U.S. Environmental Protection Agency, 2007a). The White River study is part of the ongoing Source Water-Quality Assessment (SWQA) investigation of community water systems that withdraw from rivers across the United States. More detailed information and references on the sampling-design methodology, specific compounds monitored, and the national study are described by Carter and others (2007).

  20. A white organic light emitting diode based on anthracene-triphenylamine derivatives

    NASA Astrophysics Data System (ADS)

    Jiang, Quan; Qu, Jianjun; Yu, Junsheng; Tao, Silu; Gan, Yuanyuan; Jiang, Yadong

    2010-10-01

    White organic lighting-diode (WOLED) can be used as flat light sources, backlights for liquid crystal displays and full color displays. Recently, a research mainstream of white OLED is to develop the novel materials and optimize the structure of devices. In this work a WOLED with a structure of ITO/NPB/PAA/Alq3: x% rubrene/Alq3/Mg: Ag, was fabricated. The device has two light-emitting layers. NPB is used as a hole transport layer, PAA as a blue emitting layer, Alq3: rubrene host-guest system as a yellow emitting layer, and Alq3 close to the cathode as an electron transport layer. In the experiment, the doping concentration of rubrene was optimized. WOLED 1 with 4% rubrene achieved a maximum luminous efficiency of 1.80 lm/W, a maximum luminance of 3926 cd/m2 and CIE coordinates of (0.374, 0.341) .WOLED 2 with 2% rubrene achieved a maximum luminous efficiency of 0.65 lm/W, a maximum luminance of 7495cd/m2 and CIE coordinates of (0.365,0.365).

  1. Achieving 15% Tandem Polymer Solar Cells

    DTIC Science & Technology

    2015-06-23

    solar cell structures – both polymer only and hybrid tandem cells to constantly pushing the envelope of solution processed solar cell ...performance – 11.6% polymer tandem cell , 7% transparent tandem polymer cell , and over 10% PCE hybrid tandem solar cells were achieved. In addition, AFOSR’s...final support also enabled us to explore novel hybrid perovskite solar cells in depth. For example, single junction cell efficiency

  2. TANDEM: matching proteins with tandem mass spectra.

    PubMed

    Craig, Robertson; Beavis, Ronald C

    2004-06-12

    Tandem mass spectra obtained from fragmenting peptide ions contain some peptide sequence specific information, but often there is not enough information to sequence the original peptide completely. Several proprietary software applications have been developed to attempt to match the spectra with a list of protein sequences that may contain the sequence of the peptide. The application TANDEM was written to provide the proteomics research community with a set of components that can be used to test new methods and algorithms for performing this type of sequence-to-data matching. The source code and binaries for this software are available at http://www.proteome.ca/opensource.html, for Windows, Linux and Macintosh OSX. The source code is made available under the Artistic License, from the authors.

  3. One-dimensional organic lead halide perovskites with efficient bluish white-light emission

    NASA Astrophysics Data System (ADS)

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-01

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2-]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.

  4. Stable angular emission spectra in white organic light-emitting diodes using graphene/PEDOT:PSS composite electrode.

    PubMed

    Cho, Hyunsu; Lee, Hyunkoo; Lee, Jonghee; Sung, Woo Jin; Kwon, Byoung-Hwa; Joo, Chul-Woong; Shin, Jin-Wook; Han, Jun-Han; Moon, Jaehyun; Lee, Jeong-Ik; Cho, Seungmin; Cho, Nam Sung

    2017-05-01

    In this work, we suggest a graphene/ poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composite as a transparent electrode for stabilizing white emission of organic light-emitting diodes (OLEDs). Graphene/PEDOT:PSS composite electrodes have increased reflectance when compared to graphene itself, but their reflectance is still lower than that of ITO itself. Changes in the reflectance of the composite electrode have the advantage of suppressing the angular spectral distortion of white emission OLEDs and achieving an efficiency of 16.6% for white OLEDs, comparable to that achieved by graphene-only electrodes. By controlling the OLED structure to compensate for the two-beam interference effect, the CIE color coordinate change (Δxy) of OLEDs based on graphene/PEDOT:PSS composite electrodes is 0.018, less than that based on graphene-only electrode, i.e.,0.027.

  5. Detecting long tandem duplications in genomic sequences.

    PubMed

    Audemard, Eric; Schiex, Thomas; Faraut, Thomas

    2012-05-08

    Detecting duplication segments within completely sequenced genomes provides valuable information to address genome evolution and in particular the important question of the emergence of novel functions. The usual approach to gene duplication detection, based on all-pairs protein gene comparisons, provides only a restricted view of duplication. In this paper, we introduce ReD Tandem, a software using a flow based chaining algorithm targeted at detecting tandem duplication arrays of moderate to longer length regions, with possibly locally weak similarities, directly at the DNA level. On the A. thaliana genome, using a reference set of tandem duplicated genes built using TAIR,(a) we show that ReD Tandem is able to predict a large fraction of recently duplicated genes (dS  <  1) and that it is also able to predict tandem duplications involving non coding elements such as pseudo-genes or RNA genes. ReD Tandem allows to identify large tandem duplications without any annotation, leading to agnostic identification of tandem duplications. This approach nicely complements the usual protein gene based which ignores duplications involving non coding regions. It is however inherently restricted to relatively recent duplications. By recovering otherwise ignored events, ReD Tandem gives a more comprehensive view of existing evolutionary processes and may also allow to improve existing annotations.

  6. Controlling the Morphology of BDTT-DPP-Based Small Molecules via End-Group Functionalization for Highly Efficient Single and Tandem Organic Photovoltaic Cells.

    PubMed

    Kim, Ji-Hoon; Park, Jong Baek; Yang, Hoichang; Jung, In Hwan; Yoon, Sung Cheol; Kim, Dongwook; Hwang, Do-Hoon

    2015-11-04

    A series of narrow-band gap, π-conjugated small molecules based on diketopyrrolopyrrole (DPP) electron acceptor units coupled with alkylthienyl-substituted-benzodithiophene (BDTT) electron donors were designed and synthesized for use as donor materials in solution-processed organic photovoltaic cells. In particular, by end-group functionalization of the small molecules with fluorine derivatives, the nanoscale morphologies of the photoactive layers of the photovoltaic cells were successfully controlled. The influences of different fluorine-based end-groups on the optoelectronic and morphological properties, carrier mobilities, and the photovoltaic performances of these materials were investigated. A high power conversion efficiency (PCE) of 6.00% under simulated solar light (AM 1.5G) illumination has been achieved for organic photovoltaic cells based on a small-molecule bulk heterojunction system consisting of a trifluoromethylbenzene (CF3) end-group-containing oligomer (BDTT-(DPP)2-CF3) as the donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor. As a result, the introduction of CF3 end-groups has been found to enhance both the short circuit current density (JSC) and fill factor (FF). A tandem photovoltaic device comprising an inverted BDTT-(DPP)2-CF3:PC71BM cell and a poly(3-hexylthiophene) (P3HT):indene-C60-bisadduct (IC60BA)-based cell as the top and bottom cell components, respectively, showed a maximum PCE of 8.30%. These results provide valuable guidelines for the rational design of conjugated small molecules for applications in high-performance organic photovoltaic cells. Furthermore, to the best of our knowledge, this is the first report on the design of fluorine-functionalized BDTT-DPP-based small molecules, which have been shown to be a viable candidate for use in inverted tandem cells.

  7. White organic light-emitting diodes with 4 nm metal electrode

    NASA Astrophysics Data System (ADS)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Gather, Malte C.; Reineke, Sebastian

    2015-10-01

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  8. White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer

    NASA Astrophysics Data System (ADS)

    Deshpande, R. S.; Bulović, V.; Forrest, S. R.

    1999-08-01

    We demonstrate efficient, molecular organic white-light-emitting devices using vacuum-deposited thin films of red luminescent [2-methyl-6-[2-(2,3,6,7-tetrahydro-1H, 5H-benzo [ij] quinolizin-9-yl) ethenyl]-4H-pyran-4-ylidene] propane-dinitrile (DCM2), doped into blue-emitting 4, 4' bis [N-1-napthyl-N-phenyl-amino]biphenyl (α-NPD), and green-emitting tris-(8-hydroxyquinolinato) aluminum(III) (AlQ3). The luminescent layers are separated by a hole-blocking layer of 2,9-dimethyl, 4,7-diphenyl, 1,10-phenanthroline (BCP), whose thickness is on the order of a typical Förster transfer radius of 30-40 Å. Excitons formed on α-NPD sequentially transfer their energy via a Förster mechanism to AlQ3 across the BCP layer, and from AlQ3 to DCM2. This interlayer sequential energy transfer results in partial excitation of all three molecular species, thereby producing white light emission. The thickness of the blocking layer and the concentration of DCM2 in α-NPD permit the tuning of the device spectrum to achieve a balanced white emission with Commission Internationale d'Eclairage chromaticity coordinates of (0.33, 0.33). The spectrum is largely insensitive to the drive current, and the devices have a maximum luminance of 13 500 cd/m2. At a luminance of 100 cd/m2, the quantum and power efficiencies are 0.5% and 0.35 lm/W, respectively.

  9. Simultaneous Profiling of Lysoglycerophospholipids in Rice (Oryza sativa L.) Using Direct Infusion-Tandem Mass Spectrometry with Multiple Reaction Monitoring.

    PubMed

    Lim, Dong Kyu; Mo, Changyeun; Long, Nguyen Phuoc; Kim, Giyoung; Kwon, Sung Won

    2017-03-29

    White rice is the final product after the hull and bran layers have been removed during the milling process. Although lysoglycerophospholipids (lysoGPLs) only occupy a small proportion in white rice, they are essential for evaluating rice authenticity and quality. In this study, we developed a high-throughput and targeted lipidomics approach that involved direct infusion-tandem mass spectrometry with multiple reaction monitoring to simultaneously profile lysoGPLs in white rice. The method is capable of characterizing 17 lysoGPLs within 1 min. In addition, unsupervised and supervised analyses exhibited a considerably large diversity of lysoGPL concentrations in white rice from different origins. In particular, a classification model was built using identified lysoGPLs that can differentiate white rice from Korea, China, and Japan. Among the discriminatory lysoGPLs, for the lysoPE(16:0) and lysoPE(18:2) compositions, there were relatively small within-group variations, and they were considerably different among the three countries. In conclusion, our proposed method provides a rapid, high-throughput, and comprehensive format for profiling lysoGPLs in rice samples.

  10. What a white shame: race, gender, and white shame in the relational economy of primary health care organizations in England.

    PubMed

    Hunter, Shona

    2010-01-01

    This paper considers the relationship between white shame in contemporary UK health care contexts and historically idealized forms of white pride derived from nineteenth-century British colonialism. It uses excerpts from qualitative interview material to highlight the contemporary figures of the “white worried man” and the “white women savior” and the relationship between them. Through this, it explores how shifts from white pride to white shame reflect shifts in the focus of whiteness away from civilizing the racialized Other to civilizing the white self. Through this analysis, it further complicates shame theory arguing for an understanding of [white] shame as constituted through a relational economy, differentiated through class and gender as well as race.

  11. Development of an advanced spacecraft tandem mass spectrometer

    NASA Astrophysics Data System (ADS)

    Drew, Russell C.

    1992-03-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  12. Development of an advanced spacecraft tandem mass spectrometer

    NASA Technical Reports Server (NTRS)

    Drew, Russell C.

    1992-01-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  13. Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures.

    PubMed

    Raherison, Elie S M; Giguère, Isabelle; Caron, Sébastien; Lamara, Mebarek; MacKay, John J

    2015-07-01

    Transcript profiling has shown the molecular bases of several biological processes in plants but few studies have developed an understanding of overall transcriptome variation. We investigated transcriptome structure in white spruce (Picea glauca), aiming to delineate its modular organization and associated functional and evolutionary attributes. Microarray analyses were used to: identify and functionally characterize groups of co-expressed genes; investigate expressional and functional diversity of vascular tissue preferential genes which were conserved among Picea species, and identify expression networks underlying wood formation. We classified 22 857 genes as variable (79%; 22 coexpression groups) or invariant (21%) by profiling across several vegetative tissues. Modular organization and complex transcriptome restructuring among vascular tissue preferential genes was revealed by their assignment to coexpression groups with partially overlapping profiles and partially distinct functions. Integrated analyses of tissue-based and temporally variable profiles identified secondary xylem gene networks, showed their remodelling over a growing season and identified PgNAC-7 (no apical meristerm (NAM), Arabidopsis transcription activation factor (ATAF) and cup-shaped cotyledon (CUC) transcription factor 007 in Picea glauca) as a major hub gene specific to earlywood formation. Reference profiling identified comprehensive, statistically robust coexpressed groups, revealing that modular organization underpins the evolutionary conservation of the transcriptome structure. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  14. Highly Efficient White Organic Light-Emitting Diodes with Ultrathin Emissive Layers and a Spacer-Free Structure

    PubMed Central

    Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung

    2016-01-01

    Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach. PMID:27170543

  15. Highly Efficient White Organic Light-Emitting Diodes with Ultrathin Emissive Layers and a Spacer-Free Structure.

    PubMed

    Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung

    2016-05-12

    Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.

  16. Highly Efficient White Organic Light-Emitting Diodes with Ultrathin Emissive Layers and a Spacer-Free Structure

    NASA Astrophysics Data System (ADS)

    Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung

    2016-05-01

    Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.

  17. One-dimensional organic lead halide perovskites with efficient bluish white-light emission

    PubMed Central

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-01

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2−]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials. PMID:28051092

  18. One-dimensional organic lead halide perovskites with efficient bluish white-light emission.

    PubMed

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C; van de Burgt, Lambertus J; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-04

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C 4 N 2 H 14 PbBr 4 , in which the edge sharing octahedral lead bromide chains [PbBr 4   2- ] ∞ are surrounded by the organic cations C 4 N 2 H 14   2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.

  19. Efficient Color-Stable Inverted White Organic Light-Emitting Diodes with Outcoupling-Enhanced ZnO Layer.

    PubMed

    Zhao, Xin-Dong; Li, Yan-Qing; Xiang, Heng-Yang; Zhang, Yi-Bo; Chen, Jing-De; Xu, Lu-Hai; Tang, Jian-Xin

    2017-01-25

    Inverted organic light-emitting diode (OLED) has attracted extensive attention due to the demand in active-matrix OLED display panels as its geometry enables the direct connection with n-channel transistor backplane on the substrate. One key challenge of high-performance inverted OLED is an efficient electron-injection layer with superior electrical and optical properties to match the indium tin oxide cathode on substrate. We here propose a synergistic electron-injection architecture using surface modification of ZnO layer to simultaneously promote electron injection into organic emitter and enhance out-coupling of waveguided light. An efficient inverted white OLED is realized by introducing the nanoimprinted aperiodic nanostructure of ZnO for broadband and angle-independent light out-coupling and inserting an n-type doped interlayer for energy level tuning and injection barrier lowering. As a result, the optimized inverted white OLEDs have an external quantum efficiency of 42.4% and a power efficiency of 85.4 lm W 1- , which are accompanied by the superiority of angular color stability over the visible wavelength range. Our results may inspire a promising approach to fabricate high-efficiency inverted OLEDs for large-scale display panels.

  20. [Effects of white organic light-emitting devices using color conversion films on electroluminescence spectra].

    PubMed

    Hou, Qing-Chuan; Wu, Xiao-Ming; Hua, Yu-Lin; Qi, Qing-Jin; Li, Lan; Yin, Shou-Gen

    2010-06-01

    The authors report a novel white organic light-emitting device (WOLED), which uses a strategy of exciting organic/ inorganic color conversion film with a blue organic light-emitting diode (OLED). The luminescent layer of the blue OLED was prepared by use of CBP host blended with a blue highly fluorescent dye N-BDAVBi. The organic/inorganic color conversion film was prepared by dispersing a mixture of red pigment VQ-D25 and YAG : Ce3+ phosphor in PMMA. The authors have achieved a novel WOLED with the high color stability by optimizing the thickness and fluorescent pigment concentration of the color conversion film. When the driving voltage varied between 6 and 14 V, the color coordinates (CIE) varied slightly from (0.354, 0.304) to (0.357, 0.312) and the maximum current efficiency is about 5.8 cd x A(-1) (4.35 mA x cm(-2)), the maximum brightness is 16 800 cd x m(-2) at the operating voltage of 14 V.

  1. Highly efficient phosphor-converted white organic light-emitting diodes with moderate microcavity and light-recycling filters.

    PubMed

    Cho, Sang-Hwan; Oh, Jeong Rok; Park, Hoo Keun; Kim, Hyoung Kun; Lee, Yong-Hee; Lee, Jae-Gab; Do, Young Rag

    2010-01-18

    We demonstrate the combined effects of a microcavity structure and light-recycling filters (LRFs) on the forward electrical efficiency of phosphor-converted white organic light-emitting diodes (pc-WOLEDs). The introduction of a single pair of low- and high-index layers (SiO(2)/TiO(2)) improves the blue emission from blue OLED and the insertion of blue-passing and yellow-reflecting LRFs enhances the forward yellow emission from the YAG:Ce(3+) phosphors layers. The enhancement of the luminous efficacy of the forward white emission is 1.92 times that of a conventional pc-WOLED with color coordinates of (0.34, 0.34) and a correlated color temperature of about 4800 K.

  2. Three-peak standard white organic light-emitting devices for solid-state lighting

    NASA Astrophysics Data System (ADS)

    Guo, Kunping; Wei, Bin

    2014-12-01

    Standard white organic light-emitting device (OLED) lighting provides a warm and comfortable atmosphere and shows mild effect on melatonin suppression. A high-efficiency red OLED employing phosphorescent dopant has been investigated. The device generates saturated red emission with Commission Internationale de l'Eclairage (CIE) coordinates of (0.66, 0.34), characterized by a low driving voltage of 3.5 V and high external quantum efficiency of 20.1% at 130 cd m-2. In addition, we have demonstrated a two-peak cold white OLED by combining with a pure blue emitter with the electroluminescent emission of 464 nm, 6, 12-bis{[N-(3,4-dimethylpheyl)-N-(2,4,5-trimethylphenyl)]} chrysene (BmPAC). It was found that the man-made lighting device capable of yielding a relatively stable color emission within the luminance range of 1000-5000 cd m-2. And the chromaticity coordinates, varying from (0.25, 0.21) to (0.23, 0.21). Furthermore, an ultrathin layer of green-light-emitting tris (2-phenylpyridinato)iridium(Ⅲ) Ir(ppy)3 in the host material was introduced to the emissive region for compensating light. By appropriately controlling the layer thickness, the white light OLED achieved good performance of 1280 cd m-2 at 5.0 V and 5150 cd m-2 at 7.0 V, respectively. The CIE coordinates of the emitted light are quite stable at current densities from 759 cd m-2 to 5150 cd m-2, ranging from (0.34, 0.37) to (0.33, 0.33).

  3. RGB and white-emitting organic lasers on flexible glass.

    PubMed

    Foucher, C; Guilhabert, B; Kanibolotsky, A L; Skabara, P J; Laurand, N; Dawson, M D

    2016-02-08

    Two formats of multiwavelength red, green and blue (RGB) laser on mechanically-flexible glass are demonstrated. In both cases, three all-organic, vertically-emitting distributed feedback (DFB) lasers are assembled onto a common ultra-thin glass membrane substrate and fully encapsulated by a thin polymer overlayer and an additional 50 µm-thick glass membrane in order to improve the performance. The first device format has the three DFB lasers sitting next to each other on the glass substrate. The DFB lasers are simultaneously excited by a single overlapping optical pump, emitting spatially separated red, green and blue laser output with individual thresholds of, respectively, 28 µJ/cm(2), 11 µJ/cm(2) and 32 µJ/cm(2) (for 5 ns pump pulses). The second device format has the three DFB lasers, respectively the red, green and blue laser, vertically stacked onto the flexible glass. This device format emits a white laser output for an optical pump fluence above 42 µJ/cm(2).

  4. Short Tandem Repeat DNA Internet Database

    National Institute of Standards and Technology Data Gateway

    SRD 130 Short Tandem Repeat DNA Internet Database (Web, free access)   Short Tandem Repeat DNA Internet Database is intended to benefit research and application of short tandem repeat DNA markers for human identity testing. Facts and sequence information on each STR system, population data, commonly used multiplex STR systems, PCR primers and conditions, and a review of various technologies for analysis of STR alleles have been included.

  5. Towards maximizing the haze effect of electrodes for high efficiency hybrid tandem solar cell

    NASA Astrophysics Data System (ADS)

    Vincent, Premkumar; Song, Dong-Seok; Kwon, Hyeok Bin; Kim, Do-Kyung; Jung, Ji-Hoon; Kwon, Jin-Hyuk; Choe, Eunji; Kim, Young-Rae; Kim, Hyeok; Bae, Jin-Hyuk

    2018-02-01

    In this study, we executed optical simulations to compute the optimum power conversion efficiency (PCE) of a-Si:H/organic photovoltaic (OPV) hybrid tandem solar cell. The maximum ideal short circuit current density (Jsc,max) of the tandem solar cell is initially obtained by optimizing the thickness of the active layer of the OPV subcell for varying thickness of the a-Si:H bottom subcell. To investigate the effect of Haze parameter on the ideal short-circuit current density (Jsc,ideal) of the solar cells, we have varied the haze ratio for the TCO electrode of the a-Si:H subcell in the tandem structure. The haze ratio was obtained for various root mean square (RMS) roughness of the TCO of the front cell. The effect of haze ratio on the Jsc,ideal on the tandem structured solar cell was studied, and the highest Jsc,ideal was obtained at a haze of 55.5% when the thickness of the OPV subcell was 150 nm and that of the a-Si:H subcell was 500 nm.

  6. Highly efficient blue- and white-organic light emitting diodes base on triple-emitting layer.

    PubMed

    Shin, Hyun Su; Lee, Seok Jae; Lee, Ho Won; Lee, Dong Hyung; Kim, Woo Young; Yoon, Seung Soo; Kim, Young Kwan

    2013-12-01

    We have demonstrated highly efficient blue phosphorescent organic light-emitting diodes (PHOLEDs) using iridium (III) bis[(4,6-di-fluoropheny)-pyridinato-N,C2] picolinate (Flrpic) doped in three kinds of host materials, such as 9-(4-(triphenylsilyl)phenyl)-9H-carbazole (SPC), N,N'-dicarbazolyl-3,5-benzene (mCP), and 2,2',2"-(1,3,5-benzenetriyl)tris-[1-phenyl-1H-benzimidazole] (TPBi) as triple-emitting layer (T-EML). The properties of device with T-EML using the stepwise structure was found to be superior to the other blue PHOLEDs and exhibited a maximum luminous efficiency of 23.02 cd/A, a maximum external quantum efficiency of 11.09%, and a maximum power efficiency of 14.89 lm/W, respectively. An optimal blue device has improving charge balance and triplet excitons confinement within emitting layers (EMLs) each. Additionally, we also fabricated white PHOLED using a phosphorescent red dopant, bis(2-phenylquinolinato)-acetylacetonate iridium III (Ir(pq)2acac) doped in mCP and TPBi between blue EMLs. The properties of white PHOLED showed a maximum luminous efficiency and a maximum external quantum efficiency of 33.03 cd/A and 16.95%, respectively. It also showed the white emission with CIEx,y coordinates of (x = 0.36, y = 0.39) at 10 V.

  7. Microfluidic White Organic Light-Emitting Diode Based on Integrated Patterns of Greenish-Blue and Yellow Solvent-Free Liquid Emitters

    NASA Astrophysics Data System (ADS)

    Kobayashi, Naofumi; Kasahara, Takashi; Edura, Tomohiko; Oshima, Juro; Ishimatsu, Ryoichi; Tsuwaki, Miho; Imato, Toshihiko; Shoji, Shuichi; Mizuno, Jun

    2015-10-01

    We demonstrated a novel microfluidic white organic light-emitting diode (microfluidic WOLED) based on integrated sub-100-μm-wide microchannels. Single-μm-thick SU-8-based microchannels, which were sandwiched between indium tin oxide (ITO) anode and cathode pairs, were fabricated by photolithography and heterogeneous bonding technologies. 1-Pyrenebutyric acid 2-ethylhexyl ester (PLQ) was used as a solvent-free greenish-blue liquid emitter, while 2,8-di-tert-butyl-5,11-bis(4-tert-butylphenyl)-6,12-diphenyltetracene (TBRb)-doped PLQ was applied as a yellow liquid emitter. In order to form the liquid white light-emitting layer, the greenish-blue and yellow liquid emitters were alternately injected into the integrated microchannels. The fabricated electro-microfluidic device successfully exhibited white electroluminescence (EL) emission via simultaneous greenish-blue and yellow emissions under an applied voltage of 100 V. A white emission with Commission Internationale de l’Declairage (CIE) color coordinates of (0.40, 0.42) was also obtained; the emission corresponds to warm-white light. The proposed device has potential applications in subpixels of liquid-based microdisplays and for lighting.

  8. A Comparison of Tandem Walk Performance Between Bed Rest Subjects and Astronauts

    NASA Technical Reports Server (NTRS)

    Miller, Chris; Peters, Brian; Kofman, Igor; Philips, Tiffany; Batson, Crystal; Cerisano, Jody; Fisher, Elizabeth; Mulavara, Ajitkumar; Feiveson, Alan; Reschke, Millard; hide

    2015-01-01

    Astronauts experience a microgravity environment during spaceflight, which results in a central reinterpretation of both vestibular and body axial-loading information by the sensorimotor system. Subjects in bed rest studies lie at 6deg head-down in strict bed rest to simulate the fluid shift and gravity-unloading of the microgravity environment. However, bed rest subjects still sense gravity in the vestibular organs. Therefore, bed rest isolates the axial-unloading component, thus allowing for the direct study of its effects. The Tandem Walk is a standard sensorimotor test of dynamic postural stability. In a previous abstract, we compared performance on a Tandem Walk test between bed rest control subjects, and short- and long-duration astronauts both before and after flight/bed rest using a composite index of performance, called the Tandem Walk Parameter (TWP), that takes into account speed, accuracy, and balance control. This new study extends the previous data set to include bed rest subjects who performed exercise countermeasures. The purpose of this study was to compare performance during the Tandem Walk test between bed rest subjects (with and without exercise), short-duration (Space Shuttle) crewmembers, and long-duration International Space Station (ISS) crewmembers at various time points during their recovery from bed rest or spaceflight.

  9. Strategies to Achieve High-Performance White Organic Light-Emitting Diodes

    PubMed Central

    Zhang, Lirong; Li, Xiang-Long; Luo, Dongxiang; Xiao, Peng; Xiao, Wenping; Song, Yuhong; Ang, Qinshu; Liu, Baiquan

    2017-01-01

    As one of the most promising technologies for next-generation lighting and displays, white organic light-emitting diodes (WOLEDs) have received enormous worldwide interest due to their outstanding properties, including high efficiency, bright luminance, wide viewing angle, fast switching, lower power consumption, ultralight and ultrathin characteristics, and flexibility. In this invited review, the main parameters which are used to characterize the performance of WOLEDs are introduced. Subsequently, the state-of-the-art strategies to achieve high-performance WOLEDs in recent years are summarized. Specifically, the manipulation of charges and excitons distribution in the four types of WOLEDs (fluorescent WOLEDs, phosphorescent WOLEDs, thermally activated delayed fluorescent WOLEDs, and fluorescent/phosphorescent hybrid WOLEDs) are comprehensively highlighted. Moreover, doping-free WOLEDs are described. Finally, issues and ways to further enhance the performance of WOLEDs are briefly clarified. PMID:29194426

  10. High performance flexible top-emitting warm-white organic light-emitting devices and chromaticity shift mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Hongying; Deng, Lingling; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn, E-mail: wei-huang@njupt.edu.cn

    2014-04-15

    Flexible warm-white top-emitting organic light-emitting devices (TEOLEDs) are fabricated onto PET substrates with a simple semi-transparent cathode Sm/Ag and two-color phosphors respectively doped into a single host material TCTA. By adjusting the relative position of the orange-red EML sandwiched between the blue emitting layers, the optimized device exhibits the highest power/current efficiency of 8.07 lm/W and near 13 cd/A, with a correlated color temperature (CCT) of 4105 K and a color rendering index (CRI) of 70. In addition, a moderate chromaticity variation of (-0.025, +0.008) around warm white illumination coordinates (0.45, 0.44) is obtained over a large luminance range ofmore » 1000 to 10000 cd/m{sup 2}. The emission mechanism is discussed via delta-doping method and single-carrier device, which is summarized that the carrier trapping, the exciton quenching, the mobility change and the recombination zone alteration are negative to color stability while the energy transfer process and the blue/red/blue sandwiched structure are contributed to the color stability in our flexible white TEOLEDs.« less

  11. GENETIC VARIATION IN RED RASPBERRIES (RUBUS IDAEUS L.; ROSACEAE) FROM SITES DIFFERING IN ORGANIC POLLUTANTS COMPARED WITH SYNTHETIC TANDEM REPEAT DNA PROBES

    EPA Science Inventory

    Two synthetic tandem repetitive DNA probes were used to compare genetic variation at variable-number-tandem-repeat (VNTR) loci among Rubus idaeus L. var. strigosus (Michx.) Maxim. (Rosaceae) individuals sampled at eight sites contaminated by pollutants (N = 39) and eight adjacent...

  12. High voltage series connected tandem junction solar battery

    DOEpatents

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  13. White spot syndrome virus (WSSV) genome stability maintained over six passages through three different penaeid shrimp species.

    PubMed

    Sindhupriya, M; Saravanan, P; Otta, S K; Amarnath, C Bala; Arulraj, R; Bhuvaneswari, T; Praveena, P Ezhil; Jithendran, K P; Ponniah, A G

    2014-08-21

    White spot syndrome virus (WSSV) replicates rapidly, can be extremely pathogenic and is a common cause of mass mortality in cultured shrimp. Variable number tandem repeat (VNTR) sequences present in the open reading frame (ORF)94, ORF125 and ORF75 regions of the WSSV genome have been used widely as genetic markers in epidemiological studies. However, reports that VNTRs might evolve rapidly following even a single transmission through penaeid shrimp or other crustacean hosts have created confusion as to how VNTR data is interpreted. To examine VNTR stability again, 2 WSSV strains (PmTN4RU and LvAP11RU) with differing ORF94 tandem repeat numbers and slight differences in apparent virulence were passaged sequentially 6 times through black tiger shrimp Penaeus monodon, Indian white shrimp Feneropenaeus indicus or Pacific white leg shrimp Litopenaeus vannamei. PCR analyses to genotype the ORF94, ORF125 and ORF75 VNTRs did not identify any differences from either of the 2 parental WSSV strains after multiple passages through any of the shrimp species. These data were confirmed by sequence analysis and indicate that the stability of the genome regions containing these VNTRs is quite high at least for the WSSV strains, hosts and number of passages examined and that the VNTR sequences thus represent useful genetic markers for studying WSSV epidemiology.

  14. Highly efficient blue and warm white organic light-emitting diodes with a simplified structure

    NASA Astrophysics Data System (ADS)

    Li, Xiang-Long; Ouyang, Xinhua; Chen, Dongcheng; Cai, Xinyi; Liu, Ming; Ge, Ziyi; Cao, Yong; Su, Shi-Jian

    2016-03-01

    Two blue fluorescent emitters were utilized to construct simplified organic light-emitting diodes (OLEDs) and the remarkable difference in device performance was carefully illustrated. A maximum current efficiency of 4.84 cd A-1 (corresponding to a quantum efficiency of 4.29%) with a Commission Internationale de l’Eclairage (CIE) coordinate of (0.144, 0.127) was achieved by using N,N-diphenyl-4″-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1, 1‧:4‧, 1″-terphenyl]-4-amine (BBPI) as a non-doped emission layer of the simplified blue OLEDs without carrier-transport layers. In addition, simplified fluorescent/phosphorescent (F/P) hybrid warm white OLEDs without carrier-transport layers were fabricated by utilizing BBPI as (1) the blue emitter and (2) the host of a complementary yellow phosphorescent emitter (PO-01). A maximum current efficiency of 36.8 cd A-1 and a maximum power efficiency of 38.6 lm W-1 were achieved as a result of efficient energy transfer from the host to the guest and good triplet exciton confinement on the phosphorescent molecules. The blue and white OLEDs are among the most efficient simplified fluorescent blue and F/P hybrid white devices, and their performance is even comparable to that of most previously reported complicated multi-layer devices with carrier-transport layers.

  15. ITO/metal/ITO anode for efficient transparent white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Joo, Chul Woong; Lee, Jonghee; Sung, Woo Jin; Moon, Jaehyun; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik

    2015-02-01

    We report on the characteristics of enhanced and balanced white-light emission of transparent organic light emitting diodes (TOLEDs) by introducing anode that has a stack structure of ITO/metal/ITO (IMI). We have investigated an anode that has a stack structure of IMI. IMI anodes are typically composed of a thin Ag layer (˜15 nm) sandwiched between two ITO layers (˜50 nm). By inserting an Ag layer it was possible to achieve sheet resistance lower than 3 Ω/sq. and transmittance of 86% at a wavelength of 550 nm. The Ag insert can act as a reflective component. With its counterpart, a transparent cathode made of a thin Ag layer (˜15 nm), micro-cavities (MC) can be effectively induced in the OLED, leading to improved performance. Using an IMI anode, it was possible to significantly increase the current efficiencies. The current efficiencies of the top and the bottom of the IMI TOLED increased to 23.0 and 15.6 cd/A, respectively, while those of the white TOLED with the ITO anode were 20.7 and 5.1 cd/A, respectively. A 30% enhancement in the overall current efficiency was achieved by taking advantage of the MC effect and the low sheet resistance.

  16. STRBase: a short tandem repeat DNA database for the human identity testing community

    PubMed Central

    Ruitberg, Christian M.; Reeder, Dennis J.; Butler, John M.

    2001-01-01

    The National Institute of Standards and Technology (NIST) has compiled and maintained a Short Tandem Repeat DNA Internet Database (http://www.cstl.nist.gov/biotech/strbase/) since 1997 commonly referred to as STRBase. This database is an information resource for the forensic DNA typing community with details on commonly used short tandem repeat (STR) DNA markers. STRBase consolidates and organizes the abundant literature on this subject to facilitate on-going efforts in DNA typing. Observed alleles and annotated sequence for each STR locus are described along with a review of STR analysis technologies. Additionally, commercially available STR multiplex kits are described, published polymerase chain reaction (PCR) primer sequences are reported, and validation studies conducted by a number of forensic laboratories are listed. To supplement the technical information, addresses for scientists and hyperlinks to organizations working in this area are available, along with the comprehensive reference list of over 1300 publications on STRs used for DNA typing purposes. PMID:11125125

  17. Phosphorescence white organic light-emitting diodes with single emitting layer based on isoquinolinefluorene-carbazole containing host.

    PubMed

    Koo, Ja Ryong; Lee, Seok Jae; Hyung, Gun Woo; Kim, Bo Young; Shin, Hyun Su; Lee, Kum Hee; Yoon, Seung Soo; Kim, Woo Young; Kim, Young Kwan

    2013-03-01

    We have demonstrated a stable phosphorescent white organic light-emitting diodes (WOLEDs) using an orange emitter, Bis(5-benzoyl-2-(4-fluorophenyl)pyridinato-C,N) iridium(III)acetylacetonate [(Bz4Fppy)2Ir(III)acac] doped into a newly synthesized blue host material, 2-(carbazol-9-yl)-7-(isoquinolin-1-yl)-9,9-diethylfluorene (CzFliq). When 1 wt.% (Bz4Fppy)2Ir(III)acac was doped into emitting layer, it was realized an improved EL performance and a pure white color in the OLED. The optimum WOLED showed maximum values as a luminous efficiency of 10.14 cd/A, a power efficiency of 10.24 Im/W, a peak external quantum efficiency 4.07%, and Commission Internationale de L'Eclairage coordinates of (0.34, 0.39) at 8 V.

  18. Identification of organic hydroperoxides and peroxy acids using atmospheric pressure chemical ionization-tandem mass spectrometry (APCI-MS/MS): application to secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Zhou, Shouming; Rivera-Rios, Jean C.; Keutsch, Frank N.; Abbatt, Jonathan P. D.

    2018-05-01

    Molecules with hydroperoxide functional groups are of extreme importance to both the atmospheric and biological chemistry fields. In this work, an analytical method is presented for the identification of organic hydroperoxides and peroxy acids (ROOH) by direct infusion of liquid samples into a positive-ion atmospheric pressure chemical ionization-tandem mass spectrometer ((+)-APCI-MS/MS). Under collisional dissociation conditions, a characteristic neutral loss of 51 Da (arising from loss of H2O2+NH3) from ammonium adducts of the molecular ions ([M + NH4]+) is observed for ROOH standards (i.e. cumene hydroperoxide, isoprene-4-hydroxy-3-hydroperoxide (ISOPOOH), tert-butyl hydroperoxide, 2-butanone peroxide and peracetic acid), as well as the ROOH formed from the reactions of H2O2 with aldehydes (i.e. acetaldehyde, hexanal, glyoxal and methylglyoxal). This new ROOH detection method was applied to methanol extracts of secondary organic aerosol (SOA) material generated from ozonolysis of α-pinene, indicating a number of ROOH molecules in the SOA material. While the full-scan mass spectrum of SOA demonstrates the presence of monomers (m/z = 80-250), dimers (m/z = 250-450) and trimers (m/z = 450-600), the neutral loss scan shows that the ROOH products all have masses less than 300 Da, indicating that ROOH molecules may not contribute significantly to the SOA oligomeric content. We anticipate this method could also be applied to biological systems with considerable value.

  19. 47 CFR 69.129 - Signalling for tandem switching.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Signalling for tandem switching. 69.129 Section... (CONTINUED) ACCESS CHARGES Computation of Charges § 69.129 Signalling for tandem switching. A charge that is... provision of signalling for tandem switching. [59 FR 32930, June 27, 1994] ...

  20. 47 CFR 69.129 - Signalling for tandem switching.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Signalling for tandem switching. 69.129 Section... (CONTINUED) ACCESS CHARGES Computation of Charges § 69.129 Signalling for tandem switching. A charge that is... provision of signalling for tandem switching. [59 FR 32930, June 27, 1994] ...

  1. 47 CFR 69.129 - Signalling for tandem switching.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Signalling for tandem switching. 69.129 Section... (CONTINUED) ACCESS CHARGES Computation of Charges § 69.129 Signalling for tandem switching. A charge that is... provision of signalling for tandem switching. [59 FR 32930, June 27, 1994] ...

  2. 47 CFR 69.129 - Signalling for tandem switching.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Signalling for tandem switching. 69.129 Section... (CONTINUED) ACCESS CHARGES Computation of Charges § 69.129 Signalling for tandem switching. A charge that is... provision of signalling for tandem switching. [59 FR 32930, June 27, 1994] ...

  3. High color rendering index white organic light-emitting diode using levofloxacin as blue emitter

    NASA Astrophysics Data System (ADS)

    Miao, Yan-Qin; Gao, Zhi-Xiang; Zhang, Ai-Qin; Li, Yuan-Hao; Wang, Hua; Jia, Hu-Sheng; Liu, Xu-Guang; Tsuboi, Taijuf

    2015-05-01

    Levofloxacin (LOFX), which is well-known as an antibiotic medicament, was shown to be useful as a 452-nm blue emitter for white organic light-emitting diodes (OLEDs). In this paper, the fabricated white OLED contains a 452-nm blue emitting layer (thickness of 30 nm) with 1 wt% LOFX doped in CBP (4,4’-bis(carbazol-9-yl)biphenyl) host and a 584-nm orange emitting layer (thickness of 10 nm) with 0.8 wt% DCJTB (4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran) doped in CBP, which are separated by a 20-nm-thick buffer layer of TPBi (2,2’,2”-(benzene-1,3,5-triyl)-tri(1-phenyl-1H-benzimidazole). A high color rendering index (CRI) of 84.5 and CIE chromaticity coordinates of (0.33, 0.32), which is close to ideal white emission CIE (0.333, 0.333), are obtained at a bias voltage of 14 V. Taking into account that LOFX is less expensive and the synthesis and purification technologies of LOFX are mature, these results indicate that blue fluorescence emitting LOFX is useful for applications to white OLEDs although the maximum current efficiency and luminance are not high. The present paper is expected to become a milestone to using medical drug materials for OLEDs. Project supported by the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-13-0927), the International Science & Technology Cooperation Program of China (Grant No. 2012DFR50460), the National Natural Science Foundation of China (Grant Nos. 21101111 and 61274056), and the Shanxi Provincial Key Innovative Research Team in Science and Technology, China (Grant No. 2012041011).

  4. Preterm birth leads to hyper-reactive cognitive control processing and poor white matter organization in adulthood.

    PubMed

    Olsen, Alexander; Dennis, Emily L; Evensen, Kari Anne I; Husby Hollund, Ingrid Marie; Løhaugen, Gro C C; Thompson, Paul M; Brubakk, Ann-Mari; Eikenes, Live; Håberg, Asta K

    2018-02-15

    Individuals born preterm with very low birth weight (VLBW; birth weight ≤ 1500 g) are at high risk for perinatal brain injuries and deviant brain development, leading to increased chances of later cognitive, emotional, and behavioral problems. Here we investigated the neuronal underpinnings of both reactive and proactive cognitive control processes in adults with VLBW. We included 32 adults born preterm with VLBW (before 37th week of gestation) and 32 term-born controls (birth weight ≥10th percentile for gestational age) between 22 and 24 years of age that have been followed prospectively since birth. Participants performed a well-validated Not-X continuous performance test (CPT) adapted for use in a mixed block- and event-related fMRI protocol. BOLD fMRI and DTI data was acquired on a 3T scanner. Performance on the Not-X CPT was highly similar between groups. However, the VLBW group demonstrated hyper-reactive cognitive control processing and disrupted white matter organization. The hyper-reactive brain activation signature in VLBW adults was associated with lower gestational age, lower fluid intelligence score, and anxiety problems. Automated Multi-Atlas Tract Extraction (AutoMATE) analyses revealed that this disruption of normal brain function was accompanied by poorer white matter organization in the anterior thalamic radiation and the cingulum, as reflected in both reduced fractional anisotropy and increased mean diffusivity. These findings show that the preterm behavioral phenotype is associated with predominantly reactive-, rather than proactive cognitive control processing, as well as white matter abnormalities, that may underlie common difficulties that many preterm born individuals experience in everyday life. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Pesticide residues determination in Polish organic crops in 2007-2010 applying gas chromatography-tandem quadrupole mass spectrometry.

    PubMed

    Walorczyk, Stanisław; Drożdżyński, Dariusz; Kowalska, Jolanta; Remlein-Starosta, Dorota; Ziółkowski, Andrzej; Przewoźniak, Monika; Gnusowski, Bogusław

    2013-08-15

    A sensitive, accurate and reliable multiresidue method based on the application of gas chromatography-tandem quadrupole mass spectrometry (GC-QqQ-MS/MS) has been established for screening, identification and quantification of a large number of pesticide residues in produce. The method was accredited in compliance with PN-EN ISO/IEC 17025:2005 standard and it was operated under flexible scope as PB-11 method. The flexible scope of accreditation allowed for minor modifications and extension of the analytical scope while using the same analytical technique. During the years 2007-2010, the method was used for the purpose of verification of organic crop production by multiresidue analysis for the presence of pesticides. A total of 528 samples of differing matrices such as fruits, vegetables, cereals, plant leaves and other green parts were analysed, of which 4.4% samples contained pesticide residues above the threshold value of 0.01 mg/kg. A total of 20 different pesticide residues were determined in the samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Transparent organic light-emitting diodes with balanced white emission by minimizing waveguide and surface plasmonic loss.

    PubMed

    Zhang, Yi-Bo; Ou, Qing-Dong; Li, Yan-Qing; Chen, Jing-De; Zhao, Xin-Dong; Wei, Jian; Xie, Zhong-Zhi; Tang, Jian-Xin

    2017-07-10

    It is challenging in realizing high-performance transparent organic light-emitting diodes (OLEDs) with symmetrical light emission to both sides. Herein, an efficient transparent OLED with highly balanced white emission to both sides is demonstrated by integrating quasi-periodic nanostructures into the organic emitter and the metal-dielectric composite top electrode, which can simultaneously suppressing waveguide and surface plasmonic loss. The power efficiency and external quantum efficiency are raised to 83.5 lm W -1 and 38.8%, respectively, along with a bi-directional luminance ratio of 1.26. The proposed scheme provides a facile route for extending application scope of transparent OLEDs for future transparent displays and lightings.

  7. A Conversation Analysis Approach to Researching eTandems--The Challenges of Data Collection

    ERIC Educational Resources Information Center

    Renner, Julia

    2016-01-01

    This article deals with the challenges of data collection from a Conversation Analysis (CA) perspective to researching synchronous, audio-visual eTandems. Conversation analysis is a research tradition that developed out of ethnomethodology and is concerned with the question of how social interaction in naturally occurring situations is organized.…

  8. High-efficiency white OLEDs based on small molecules

    NASA Astrophysics Data System (ADS)

    Hatwar, Tukaram K.; Spindler, Jeffrey P.; Ricks, M. L.; Young, Ralph H.; Hamada, Yuuhiko; Saito, N.; Mameno, Kazunobu; Nishikawa, Ryuji; Takahashi, Hisakazu; Rajeswaran, G.

    2004-02-01

    Eastman Kodak Company and SANYO Electric Co., Ltd. recently demonstrated a 15" full-color, organic light-emitting diode display (OLED) using a high-efficiency white emitter combined with a color-filter array. Although useful for display applications, white emission from organic structures is also under consideration for other applications, such as solid-state lighting, where high efficiency and good color rendition are important. By incorporating adjacent blue and orange emitting layers in a multi-layer structure, highly efficient, stable white emission has been attained. With suitable host and dopant combinations, a luminance yield of 20 cd/A and efficiency of 8 lm/W have been achieved at a drive voltage of less than 8 volts and luminance level of 1000 cd/m2. The estimated external efficiency of this device is 6.3% and a high level of operational stability is observed. To our knowledge, this is the highest performance reported so far for white organic electroluminescent devices. We will review white OLED technology and discuss the fabrication and operating characteristics of these devices.

  9. Polyp detection rates using magnification with narrow band imaging and white light.

    PubMed

    Gilani, Nooman; Stipho, Sally; Panetta, James D; Petre, Sorin; Young, Michele A; Ramirez, Francisco C

    2015-05-16

    To compare the yield of adenomas between narrow band imaging and white light when using high definition/magnification. This prospective, non-randomized comparative study was performed at the endoscopy unit of veteran affairs medical center in Phoenix, Arizona. Consecutive patients undergoing first average risk colorectal cancer screening colonoscopy were selected. Two experienced gastroenterologists performed all the procedures that were blinded to each other's findings. Demographic details were recorded. Data are presented as mean ± SEM. Proportional data were compared using the χ(2) test and means were compared using the Student's t test. Tandem colonoscopy was performed in a sequential and segmental fashion using one of 3 strategies: white light followed by narrow band imaging [Group A: white light (WL) → narrow band imaging (NBI)]; narrow band imaging followed by white light (Group B: NBI → WL) and, white light followed by white light (Group C: WL → WL). Detection rate of missed polyps and adenomas were evaluated in all three groups. Three hundred patients were studied (100 in each Group). Although the total time for the colonoscopy was similar in the 3 groups (23.8 ± 0.7, 22.2 ± 0.5 and 24.1 ± 0.7 min for Groups A, B and C, respectively), it reached statistical significance between Groups B and C (P < 0.05). The cecal intubation time in Groups B and C was longer than for Group A (6.5 ± 0.4 min and 6.5 ± 0.4 min vs 4.9 ± 0.3 min; P < 0.05). The withdrawal time for Groups A and C was longer than Group B (18.9 ± 0.7 min and 17.6 ± 0.6 min vs 15.7 ± 0.4 min; P < 0.05). Overall miss rate for polyps and adenomas detected in three groups during the second look was 18% and 17%, respectively (P = NS). Detection rate for polyps and adenomas after first look with white light was similar irrespective of the light used during the second look (WL → WL: 13.7% for polyps, 12.6% for adenomas; WL → NBI: 14.2% for polyps, 11.3% for adenomas). Miss rate of

  10. RGB Recombination Zone Tuning to Improve Optical Characteristics of White Organic Light-Emitting Diodes.

    PubMed

    Song, Wook; Meng, Mei; Cheah, KokWai; Zhu, Fu Rong; Kim, WooYoung

    2015-05-01

    White organic light emitting diodes (WOLEDs) were fabricated using blue, green and red emitting layers (EMLs). The device has a structure of ITO/NPB/EML/Alq3/Liq/Al. Here, to control the white color balance, the location of the blue EML in the WOLEDs was fixed and only the thickness of blue EML was changed while both thickness and position of the green and red EMLs were adjusted. When adjusting the thickness of blue EML, the occurrence area of recombination zone was changed to influence the green luminescence. When adjusting the location and thickness of red EML, it could be found that the current density is more sensitive to the location of red EML than its thickness. Furthermore, it was discovered that light was emitted due to the Förster energy transfer even if it was apart from the recombination zone. WOLEDs with a maximum luminance of 17,740 cd/m,2 an external quantum efficiency of 2.12% at 100 cd/m,2 CIE coordinates of (0.328,0.301) and a color temperature of 6,185 K were obtained.

  11. Enhanced fill factor of tandem organic solar cells incorporating a diketopyrrolopyrrole-based low-bandgap polymer and optimized interlayer.

    PubMed

    Wang, Dong Hwan; Kyaw, Aung Ko Ko; Park, Jong Hyeok

    2015-01-01

    We demonstrate that reproducible results can be obtained from tandem solar cells based on the wide-bandgap poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2',1',3'-benzothiadiazole] (PCDTBT) and the diketopyrrolopyrrole (DPP)-based narrow bandgap polymer (DT-PDPP2T-TT) with a decyltetradecyl (DT) and an electron-rich 2,5-di-2-thienylthieno[3,2-b]thiophene (2T-TT) group fabricated using an optimized interlayer (ZnO NPs/ph-n-PEDOT:PSS) [NPs: nanoparticles; ph-n: pH-neutral PEDOT: poly(3,4-ethylenedioxythiophene); PSS: polystyrene sulfonate]. The tandem cells are fabricated by applying a simple process without thermal annealing. The ZnO NP interlayer operates well when the ZnO NPs are dispersed in 2-methoxyethanol, as no precipitation and chemical reactions occur. In addition to the ZnO NP film, we used neutral PEDOT:PSS as a second interlayer which is not affect to the sequential deposited bulk heterojunction (BHJ) active layer of acidification. The power conversion efficiency (PCE) of a tandem device reaches 7.4 % (open-circuit voltage VOC =1.53 V, short-circuit current density JSC =7.3 mA cm(-2) , and fill factor FF=67 %). Furthermore, FF is increased to up to 71 % when another promising large bandgap (bandgap ∼1.94 eV) polymer (PBnDT-FTAZ) is used. The surface of each layer with nanoscale morphology (BHJ1/ZnO NPs film/ph-n-PEDOT:PSS/BHJ2) was examined by means of AFM analysis during sequential processing. The combination of these factors, efficient DPP-based narrow bandgap material and optimized interlayer, leads to the high FF (average approaches 70 %) and reproducibly operating tandem BHJ solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Age-related changes in the topological organization of the white matter structural connectome across the human lifespan.

    PubMed

    Zhao, Tengda; Cao, Miao; Niu, Haijing; Zuo, Xi-Nian; Evans, Alan; He, Yong; Dong, Qi; Shu, Ni

    2015-10-01

    Lifespan is a dynamic process with remarkable changes in brain structure and function. Previous neuroimaging studies have indicated age-related microstructural changes in specific white matter tracts during development and aging. However, the age-related alterations in the topological architecture of the white matter structural connectome across the human lifespan remain largely unknown. Here, a cohort of 113 healthy individuals (ages 9-85) with both diffusion and structural MRI acquisitions were examined. For each participant, the high-resolution white matter structural networks were constructed by deterministic fiber tractography among 1024 parcellation units and were quantified with graph theoretical analyses. The global network properties, including network strength, cost, topological efficiency, and robustness, followed an inverted U-shaped trajectory with a peak age around the third decade. The brain areas with the most significantly nonlinear changes were located in the prefrontal and temporal cortices. Different brain regions exhibited heterogeneous trajectories: the posterior cingulate and lateral temporal cortices displayed prolonged maturation/degeneration compared with the prefrontal cortices. Rich-club organization was evident across the lifespan, whereas hub integration decreased linearly with age, especially accompanied by the loss of frontal hubs and their connections. Additionally, age-related changes in structural connections were predominantly located within and between the prefrontal and temporal modules. Finally, based on the graph metrics of structural connectome, accurate predictions of individual age were obtained (r = 0.77). Together, the data indicated a dynamic topological organization of the brain structural connectome across human lifespan, which may provide possible structural substrates underlying functional and cognitive changes with age. © 2015 Wiley Periodicals, Inc.

  13. Application of passive sorbent tube and canister samplers for volatile organic compounds at refinery fenceline locations in Whiting, Indiana

    EPA Science Inventory

    Select volatile organic compounds (VOCs) in ambient air were measured at four fenceline sites at a petroleum refinery in Whiting, Indiana, USA using modified EPA Method 325 A/B with passive tubes and EPA Compendium Method TO-15 with canister samplers. One-week, time-integrated s...

  14. Three-dimensional photonic crystals as intermediate filter for thin-film tandem solar cells

    NASA Astrophysics Data System (ADS)

    Bielawny, Andreas; Miclea, Paul T.; Wehrspohn, Ralf B.; Lee, Seung-Mo; Knez, Mato; Rockstuhl, Carsten; Lisca, Marian; Lederer, Falk L.; Carius, Reinhard

    2008-04-01

    The concept of a 3D photonic crystal structure as diffractive and spectrally selective intermediate filter within 'micromorphous' (a-Si/μc-Si) tandem solar cells has been investigated numerically and experimentally. Our device aims for the enhancement of the optical pathway of incident light within the amorphous silicon top cell in its spectral region of low absorption. From our previous simulations, we expect a significant improvement of the tandem cell efficiency of about absolutely 1.3%. This increases the efficiency for a typical a-Si / μc-Si tandem cell from 11.1% to 12.4%, as a result of the optical current-matching of the two junctions. We suggest as wavelength-selective optical element a 3D-structured optical thin-film, prepared by self-organized artificial opal templates and replicated with atomic layer deposition. The resulting samples are highly periodic thin-film inverted opals made of conducting and transparent zinc-oxide. We describe the fabrication processes and compare experimental data on the optical properties in reflection and transmission with our simulations and photonic band structure calculations.

  15. Changing Workplaces to Reduce Work-Family Conflict: Schedule Control in a White-Collar Organization

    PubMed Central

    Kelly, Erin L.; Moen, Phyllis; Tranby, Eric

    2011-01-01

    Work-family conflicts are common and consequential for employees, their families, and work organizations. Can workplaces be changed to reduce work-family conflict? Previous research has not been able to assess whether workplace policies or initiatives succeed in reducing work-family conflict or increasing work-family fit. Using longitudinal data collected from 608 employees of a white-collar organization before and after a workplace initiative was implemented, we investigate whether the initiative affects work-family conflict and fit, whether schedule control mediates these effects, and whether work demands, including long hours, moderate the initiative’s effects on work-family outcomes. Analyses clearly demonstrate that the workplace initiative positively affects the work-family interface, primarily by increasing employees’ schedule control. This study points to the importance of schedule control for our understanding of job quality and for management policies and practices. PMID:21580799

  16. Changing Workplaces to Reduce Work-Family Conflict: Schedule Control in a White-Collar Organization.

    PubMed

    Kelly, Erin L; Moen, Phyllis; Tranby, Eric

    2011-04-01

    Work-family conflicts are common and consequential for employees, their families, and work organizations. Can workplaces be changed to reduce work-family conflict? Previous research has not been able to assess whether workplace policies or initiatives succeed in reducing work-family conflict or increasing work-family fit. Using longitudinal data collected from 608 employees of a white-collar organization before and after a workplace initiative was implemented, we investigate whether the initiative affects work-family conflict and fit, whether schedule control mediates these effects, and whether work demands, including long hours, moderate the initiative's effects on work-family outcomes. Analyses clearly demonstrate that the workplace initiative positively affects the work-family interface, primarily by increasing employees' schedule control. This study points to the importance of schedule control for our understanding of job quality and for management policies and practices.

  17. Tandem Translation Classroom: A Case Study

    ERIC Educational Resources Information Center

    Kim, Dohun; Koh, Taejin

    2018-01-01

    The transition to student-centred learning, advances in teleconferencing tools, and active international student exchange programmes have stimulated tandem learning in many parts of the world. This pedagogical model is based on a mutual language exchange between tandem partners, where each student is a native speaker in the language the…

  18. The effect of organic quail egg supplementation on the blood lipid profile of white mice (Rattus Norvegicus L.) during the lactation period

    NASA Astrophysics Data System (ADS)

    lestari purba, Sri; Rini Saraswati, Tyas; Isdadiyanto, Sri

    2018-05-01

    Background: Quail eggs contain a considerable amount of complete nutritional sources such as carbohydrates, proteins, fats, and micronutrients. However, they also have a high cholesterol level, which can potentially cause atherosclerosis and chronic heart diseases. The response of the body to foods containing is influenced by factors such as ethnicity, genetics, and hormonal and nutrient status of the consumer. The cholesterol level of quail eggs can be reduced by manipulating the feed using supplemental organic feed. Organic quail eggs have been believed to correct the lipid profile of white mice during the lactation phase. Purpose: The aim of this study was to analyze the effect of feed containing organic quail eggs on the blood lipid profile of white mice (Rattus norvegicus L.) during the lactation phase. Materials and Methods: This experimental study was conducted using a completely randomized design with four experiments and five repetitions. Experimental mice: T0 mice were used as control; T1 mice were supplemented with quail eggs produced by quails that were fed with standard feed; T2 mice were supplemented with eggs produced by quails fed with standard organic feed; and T3 mice were supplemented with eggs produced by quails fed with organic feed with the addition of cassava leaf flour, mackerel flour, and turmeric powder. Quail egg supplementation was administered to the mice from the early pregnancy period till the end of the lactation phase. The acquired data were analyzed using ANOVA. SPSS version 16.0 software for Windows was used for data analyses. Results and summary: Feeding the white mice with different compositions of organic quail egg supplements had no effect on the consumption of feed and water, body weight, and lipid profile (including total cholesterol, LDL, HDL, and triglyceride) during the lactation phase (P > 0.05).

  19. Thermodynamic characterization of tandem mismatches found in naturally occurring RNA

    PubMed Central

    Christiansen, Martha E.; Znosko, Brent M.

    2009-01-01

    Although all sequence symmetric tandem mismatches and some sequence asymmetric tandem mismatches have been thermodynamically characterized and a model has been proposed to predict the stability of previously unmeasured sequence asymmetric tandem mismatches [Christiansen,M.E. and Znosko,B.M. (2008) Biochemistry, 47, 4329–4336], experimental thermodynamic data for frequently occurring tandem mismatches is lacking. Since experimental data is preferred over a predictive model, the thermodynamic parameters for 25 frequently occurring tandem mismatches were determined. These new experimental values, on average, are 1.0 kcal/mol different from the values predicted for these mismatches using the previous model. The data for the sequence asymmetric tandem mismatches reported here were then combined with the data for 72 sequence asymmetric tandem mismatches that were published previously, and the parameters used to predict the thermodynamics of previously unmeasured sequence asymmetric tandem mismatches were updated. The average absolute difference between the measured values and the values predicted using these updated parameters is 0.5 kcal/mol. This updated model improves the prediction for tandem mismatches that were predicted rather poorly by the previous model. This new experimental data and updated predictive model allow for more accurate calculations of the free energy of RNA duplexes containing tandem mismatches, and, furthermore, should allow for improved prediction of secondary structure from sequence. PMID:19509311

  20. Selecting tandem partners for silicon solar cells [Selecting tandem partners for silicon solar cells using spectral efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhengshan; Leilaeioun, Mehdi; Holman, Zachary

    Combining silicon and other materials in tandem solar cells is one approach to enhancing the overall power conversion efficiency of the cells. Here, we argue that top cell partners for silicon tandem solar cells should be selected on the basis of their spectral efficiency — their efficiency resolved by wavelength.

  1. Selecting tandem partners for silicon solar cells [Selecting tandem partners for silicon solar cells using spectral efficiency

    DOE PAGES

    Yu, Zhengshan; Leilaeioun, Mehdi; Holman, Zachary

    2016-09-26

    Combining silicon and other materials in tandem solar cells is one approach to enhancing the overall power conversion efficiency of the cells. Here, we argue that top cell partners for silicon tandem solar cells should be selected on the basis of their spectral efficiency — their efficiency resolved by wavelength.

  2. Optimizing Algorithm Choice for Metaproteomics: Comparing X!Tandem and Proteome Discoverer for Soil Proteomes

    NASA Astrophysics Data System (ADS)

    Diaz, K. S.; Kim, E. H.; Jones, R. M.; de Leon, K. C.; Woodcroft, B. J.; Tyson, G. W.; Rich, V. I.

    2014-12-01

    The growing field of metaproteomics links microbial communities to their expressed functions by using mass spectrometry methods to characterize community proteins. Comparison of mass spectrometry protein search algorithms and their biases is crucial for maximizing the quality and amount of protein identifications in mass spectral data. Available algorithms employ different approaches when mapping mass spectra to peptides against a database. We compared mass spectra from four microbial proteomes derived from high-organic content soils searched with two search algorithms: 1) Sequest HT as packaged within Proteome Discoverer (v.1.4) and 2) X!Tandem as packaged in TransProteomicPipeline (v.4.7.1). Searches used matched metagenomes, and results were filtered to allow identification of high probability proteins. There was little overlap in proteins identified by both algorithms, on average just ~24% of the total. However, when adjusted for spectral abundance, the overlap improved to ~70%. Proteome Discoverer generally outperformed X!Tandem, identifying an average of 12.5% more proteins than X!Tandem, with X!Tandem identifying more proteins only in the first two proteomes. For spectrally-adjusted results, the algorithms were similar, with X!Tandem marginally outperforming Proteome Discoverer by an average of ~4%. We then assessed differences in heat shock proteins (HSP) identification by the two algorithms by BLASTing identified proteins against the Heat Shock Protein Information Resource, because HSP hits typically account for the majority signal in proteomes, due to extraction protocols. Total HSP identifications for each of the 4 proteomes were approximately ~15%, ~11%, ~17%, and ~19%, with ~14% for total HSPs with redundancies removed. Of the ~15% average of proteins from the 4 proteomes identified as HSPs, ~10% of proteins and spectra were identified by both algorithms. On average, Proteome Discoverer identified ~9% more HSPs than X!Tandem.

  3. .pi.-conjugated heavy-metal polymers for organic white-light-emitting diodes

    DOEpatents

    Vardeny, Zeev Valentine; Wojcik, Leonard; Drori, Tomer

    2016-09-13

    A polymer mixture emits a broad spectrum of visible light that appears white or near-white in the aggregate. The polymer mixture comprises two (or more) components in the active layer. A heavy atom, such as platinum and/or iridium, present in the backbone of the mixture acts via a spin-orbit coupling mechanism to cause the ratio of fluorescent to phosphorescent light emission bands to be of approximately equal strength. These two broad emissions overlap, resulting in an emission spectrum that appears to the eye to be white.

  4. Tandem junction amorphous silicon solar cells

    DOEpatents

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  5. White Supremacists, Oppositional Culture and the World Wide Web

    ERIC Educational Resources Information Center

    Adams, Josh; Roscigno, Vincent J.

    2005-01-01

    Over the previous decade, white supremacist organizations have tapped into the ever emerging possibilities offered by the World Wide Web. Drawing from prior sociological work that has examined this medium and its uses by white supremacist organizations, this article advances the understanding of recruitment, identity and action by providing a…

  6. Highly efficient and stable white organic light emitting diode base on double recombination zones of phosphorescent blue/orange emitters.

    PubMed

    Lee, Seok Jae; Koo, Ja Ryong; Lim, Dong Hwan; Park, Hye Rim; Kim, Young Kwan; Ha, Yunkyoung

    2011-08-01

    We demonstrated efficient and stable white phosphorescent organic light-emitting diodes (OLEDs) with double-emitting layers (D-EMLs), which were comprised of two emissive layers with a hole transport-type host of N,N'-dicarbazolyl-3,5-benzene (mCP) and a electron transport-type host of 2,2',2"-(1,3,5-benzenetryl)tris(1-phenyl)-1H-benzimidazol (TPBi) with blue/orange emitters, respectively. We fabricated two type white devices with single emitting layer (S-EML) and D-EML of orange emitter, maintaining double recombination zone of blue emitter. In addition, the device architecture was developed to confine excitons inside the D-EMLs and to manage triplet excitons by controlling the charge injection. As a result, light-emitting performances of white OLED with D-EMLs were improved and showed the steady CIE coordinates compared to that with S-EML of orange emitter, which demonstrated the maximum luminous efficiency and external quantum efficiency were 21.38 cd/A and 11.09%. It also showed the stable white emission with CIE(x,y) coordinates from (x = 0.36, y = 0.37) at 6 V to (x = 0.33, y = 0.38) at 12 V.

  7. Perovskite Solar Cells for High-Efficiency Tandems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGehee, Michael; Buonassisi, Tonio

    The first monolithic perovskite/silicon tandem was made with a diffused silicon p-n junction, a tunnel junction made of n ++ hydrogenated amorphous silicon, a titania electron transport layer, a methylammonium lead iodide absorber, and a Spiro-OMeTAD hole transport layer (HTL). The power conversion efficiency (PCE) was only 13.7% due to excessive parasitic absorption of light in the HTL, limiting the matched current density to 11.5 mA/cm 2. Werner et al. 15 raised the PCE to a record 21.2% by switching to a silicon heterojunction bottom cell and carefully tuning layer thicknesses to achieve lower optical loss and a higher currentmore » density of 15.9 mA/cm 2. It is clear from these reports that minimizing parasitic absorption in the window layers is crucial to achieving higher current densities and efficiencies in monolithic tandems. To this end, the window layers through which light first passes before entering the perovskite and silicon absorber materials must be highly transparent. The front electrode must also be conductive to carry current laterally across the top of the device. Indium tin oxide (ITO) is widely utilized as a transparent electrode in optoelectronic devices such as flat-panel displays, smart windows, organic light-emitting diodes, and solar cells due to its high conductivity and broadband transparency. ITO is typically deposited through magnetron sputtering; however, the high kinetic energy of sputtered particles can damage underlying layers. In perovskite solar cells, a sputter buffer layer is required to protect the perovskite and organic carrier extraction layers from damage during sputter deposition. The ideal buffer layer should also be energetically well aligned so as to act as a carrier-selective contact, have a wide bandgap to enable high optical transmission, and have no reaction with the halides in the perovskite. Additionally, this buffer layer should act as a diffusion barrier layer to prevent both organic cation evolution and

  8. High-Efficiency Polycrystalline Thin Film Tandem Solar Cells.

    PubMed

    Kranz, Lukas; Abate, Antonio; Feurer, Thomas; Fu, Fan; Avancini, Enrico; Löckinger, Johannes; Reinhard, Patrick; Zakeeruddin, Shaik M; Grätzel, Michael; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-07-16

    A promising way to enhance the efficiency of CIGS solar cells is by combining them with perovskite solar cells in tandem devices. However, so far, such tandem devices had limited efficiency due to challenges in developing NIR-transparent perovskite top cells, which allow photons with energy below the perovskite band gap to be transmitted to the bottom cell. Here, a process for the fabrication of NIR-transparent perovskite solar cells is presented, which enables power conversion efficiencies up to 12.1% combined with an average sub-band gap transmission of 71% for photons with wavelength between 800 and 1000 nm. The combination of a NIR-transparent perovskite top cell with a CIGS bottom cell enabled a tandem device with 19.5% efficiency, which is the highest reported efficiency for a polycrystalline thin film tandem solar cell. Future developments of perovskite/CIGS tandem devices are discussed and prospects for devices with efficiency toward and above 27% are given.

  9. White Ethnics: Their Life in Working Class America.

    ERIC Educational Resources Information Center

    Ryan, Joseph, Ed.

    The contents of this book are organized in four parts. Part 1, "Defining White Ethnicity," consists of three essays: "What is an Ethnic?" Andrew Greeley; "Components of the White Ethnic Movement," Perry Weed; and "Confessions of a White Ethnic," Michael Novak. Part 2, "The Family, Parish, and Neighborhood," consists of six essays: "La Famiglia:…

  10. Achieving high performance polymer tandem solar cells via novel materials design

    NASA Astrophysics Data System (ADS)

    Dou, Letian

    Organic photovoltaic (OPV) devices show great promise in low-cost, flexible, lightweight, and large-area energy-generation applications. Nonetheless, most of the materials designed today always suffer from the inherent disadvantage of not having a broad absorption range, and relatively low mobility, which limit the utilization of the full solar spectrum. Tandem solar cells provide an effective way to harvest a broader spectrum of solar radiation by combining two or more solar cells with different absorption bands. However, for polymer solar cells, the performance of tandem devices lags behind single-layer solar cells mainly due to the lack of suitable low-bandgap polymers (near-IR absorbing polymers). In this dissertation, in order to achieve high performance, we focus on design and synthesis of novel low bandgap polymers specifically for tandem solar cells. In Chapter 3, I demonstrate highly efficient single junction and tandem polymer solar cells featuring a spectrally matched low-bandgap conjugated polymer (PBDTT-DPP: bandgap, ˜1.44 eV). The polymer has a backbone based on alternating benzodithiophene and diketopyrrolopyrrole units. A single-layer device based on the polymer provides a power conversion efficiency of ˜6%. When the polymer is applied to tandem solar cells, a power conversion efficiency of 8.62% is achieved, which was the highest certified efficiency for a polymer solar cell. To further improve this material system, in Chapter 4, I show that the reduction of the bandgap and the enhancement of the charge transport properties of the low bandgap polymer PBDTT-DPP can be accomplished simultaneously by substituting the sulfur atoms on the DPP unit with selenium atoms. The newly designed polymer PBDTT-SeDPP (Eg = 1.38 eV) shows excellent photovoltaic performance in single junction devices with PCEs over 7% and photo-response up to 900 nm. Tandem polymer solar cells based on PBDTT-SeDPP are also demonstrated with a 9.5% PCE, which are more than 10

  11. Age-related effects in the neocortical organization of chimpanzees: gray and white matter volume, cortical thickness, and gyrification.

    PubMed

    Autrey, Michelle M; Reamer, Lisa A; Mareno, Mary Catherine; Sherwood, Chet C; Herndon, James G; Preuss, Todd; Schapiro, Steve J; Hopkins, William D

    2014-11-01

    Among primates, humans exhibit the most profound degree of age-related brain volumetric decline in particular regions, such as the hippocampus and the frontal lobe. Recent studies have shown that our closest living relatives, the chimpanzees, experience little to no volumetric decline in gray and white matter over the adult lifespan. However, these previous studies were limited with a small sample of chimpanzees of the most advanced ages. In the present study, we sought to further test for potential age-related decline in cortical organization in chimpanzees by expanding the sample size of aged chimpanzees. We used the BrainVisa software to measure total brain volume, gray and white matter volumes, gray matter thickness, and gyrification index in a cross-sectional sample of 219 captive chimpanzees (8-53 years old), with 38 subjects being 40 or more years of age. Mean depth and cortical fold opening of 11 major sulci of the chimpanzee brains were also measured. We found that chimpanzees showed increased gyrification with age and a cubic relationship between age and white matter volume. For the association between age and sulcus depth and width, the results were mostly non-significant with the exception of one negative correlation between age and the fronto-orbital sulcus. In short, results showed that chimpanzees exhibit few age-related changes in global cortical organization, sulcus folding and sulcus width. These findings support previous studies and the theory that the age-related changes in the human brain is due to an extended lifespan. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Highly Efficient White Organic Light Emitting Diodes Using New Blue Fluorescence Emitter.

    PubMed

    Kim, Seungho; Kim, Beomjin; Lee, Jaehyun; Yu, Young-Jun; Park, Jongwook

    2015-07-01

    Two different emitting compounds, 1-[1,1';3',1"]Terphenyl-5'-yl-6-(10-[1,1';3',1"]terpheny-5'-yl- anthracen-9-yl)-pyrene (TP-AP-TP) and Poly-phenylene vinylene derivative (PDY 132) were used to white OLED device. By incorporating adjacent blue and yellow emitting layers in a multi-layered structure, highly efficient white emission has been attained. The device was fabricated with a hybrid configuration structure: ITO/PEDOT (40 nm)/PDY-132 (8-50 nm)/ NPB (10 nm)/TP-AP-TP (30 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm). After fixing TP-AP-TP thickness of 30 nm by evaporation, PDY-132 thickness varied with 8, 15, 35, and 50 nm by spin coating in device. The luminance efficiency of the white devices at 10 mA/cm2 were 2.93 cd/A-6.55 cd/A. One of white devices showed 6.55 cd/A and white color of (0.290, 0.331).

  13. White organic light emitting diodes with enhanced internal and external outcoupling for ultra-efficient light extraction and Lambertian emission.

    PubMed

    Bocksrocker, Tobias; Preinfalk, Jan Benedikt; Asche-Tauscher, Julian; Pargner, Andreas; Eschenbaum, Carsten; Maier-Flaig, Florian; Lemme, Uli

    2012-11-05

    White organic light emitting diodes (WOLEDs) suffer from poor outcoupling efficiencies. The use of Bragg-gratings to enhance the outcoupling efficiency is very promising for light extraction in OLEDs, but such periodic structures can lead to angular or spectral dependencies in the devices. Here we present a method which combines highly efficient outcoupling by a TiO(2)-Bragg-grating leading to a 104% efficiency enhancement and an additional high quality microlens diffusor at the substrate/air interface. With the addition of this diffusor, we achieved not only a uniform white emission, but also further increased the already improved device efficiency by another 94% leading to an overall enhancement factor of about 4.

  14. Form-Focused Interaction in Online Tandem Learning

    ERIC Educational Resources Information Center

    O'Rourke, Breffni

    2005-01-01

    Tandem language learning--a configuration involving pairs of learners with complementary target/native languages--is an underexploited but potentially very powerful use of computer-mediated communication (CMC) in second-language pedagogy. Tandem offers the benefits of authentic, culturally grounded interaction, while also promoting a pedagogical…

  15. Polyp detection rates using magnification with narrow band imaging and white light

    PubMed Central

    Gilani, Nooman; Stipho, Sally; Panetta, James D; Petre, Sorin; Young, Michele A; Ramirez, Francisco C

    2015-01-01

    AIM: To compare the yield of adenomas between narrow band imaging and white light when using high definition/magnification. METHODS: This prospective, non-randomized comparative study was performed at the endoscopy unit of veteran affairs medical center in Phoenix, Arizona. Consecutive patients undergoing first average risk colorectal cancer screening colonoscopy were selected. Two experienced gastroenterologists performed all the procedures that were blinded to each other’s findings. Demographic details were recorded. Data are presented as mean ± SEM. Proportional data were compared using the χ2 test and means were compared using the Student’s t test. Tandem colonoscopy was performed in a sequential and segmental fashion using one of 3 strategies: white light followed by narrow band imaging [Group A: white light (WL) → narrow band imaging (NBI)]; narrow band imaging followed by white light (Group B: NBI → WL) and, white light followed by white light (Group C: WL → WL). Detection rate of missed polyps and adenomas were evaluated in all three groups. RESULTS: Three hundred patients were studied (100 in each Group). Although the total time for the colonoscopy was similar in the 3 groups (23.8 ± 0.7, 22.2 ± 0.5 and 24.1 ± 0.7 min for Groups A, B and C, respectively), it reached statistical significance between Groups B and C (P < 0.05). The cecal intubation time in Groups B and C was longer than for Group A (6.5 ± 0.4 min and 6.5 ± 0.4 min vs 4.9 ± 0.3 min; P < 0.05). The withdrawal time for Groups A and C was longer than Group B (18.9 ± 0.7 min and 17.6 ± 0.6 min vs 15.7 ± 0.4 min; P < 0.05). Overall miss rate for polyps and adenomas detected in three groups during the second look was 18% and 17%, respectively (P = NS). Detection rate for polyps and adenomas after first look with white light was similar irrespective of the light used during the second look (WL → WL: 13.7% for polyps, 12.6% for adenomas; WL → NBI: 14.2% for polyps, 11.3% for

  16. High efficiency blue and white phosphorescent organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Eom, Sang-Hyun

    Organic light-emitting devices (OLEDs) have important applications in full-color flat-panel displays and as solid-state lighting sources. Achieving high efficiency deep-blue phosphorescent OLEDs (PHOLEDs) is necessary for high performance full-color displays and white light sources with a high color rendering index (CRI); however it is more challenging compared to the longer wavelength light emissions such as green and red due to the higher energy excitations for the deep-blue emitter as well as the weak photopic response of deep-blue emission. This thesis details several effective strategies to enhancing efficiencies of deep-blue PHOLEDs based on iridium(III) bis(4',6'-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6), which are further employed to demonstrate high efficiency white OLEDs by combining the deep-blue emitter with green and red emitters. First, we have employed 1,1-bis-(di-4-tolylaminophenyl) cyclohexane (TAPC) as the hole transporting material to enhance electron and triplet exciton confinement in Fir6-based PHOLEDs, which increased external quantum efficiency up to 18 %. Second, dual-emissive-layer (D-EML) structures consisting of an N,N -dicarbazolyl-3,5-benzene (mCP) layer doped with 4 wt % FIr6 and a p-bis (triphenylsilyly)benzene (UGH2) layer doped with 25 wt % FIr6 was employed to maximize exciton generation in the emissive layer. Combined with the p-i-n device structure, high power efficiencies of (25 +/- 2) lm/W at 100 cd/m2 and (20 +/- 2) lm/W at 1000 cd/m 2 were achieved. Moreover, the peak external quantum efficiency of (20 +/- 1) % was achieved by employing tris[3-(3-pyridyl)mesityl]borane (3TPYMB) as the electron transporting material, which further improves the exciton confinement in the emissive layer. With Cs2CO3 doping in the 3TPYMB layer to greatly increase its electrical conductivity, a peak power efficiency up to (36 +/- 2) lm/W from the deep-blue PHOLED was achieved, which also maintains Commission Internationale de L

  17. Efficient fluorescence/phosphorescence white organic light-emitting diodes with ultra high color stability and mild efficiency roll-off

    NASA Astrophysics Data System (ADS)

    Du, Xiaoyang; Tao, Silu; Huang, Yun; Yang, Xiaoxia; Ding, Xulin; Zhang, Xiaohong

    2015-11-01

    Efficient fluorescence/phosphorescence hybrid white organic light-emitting diodes (OLEDs) with single doped co-host structure have been fabricated. Device using 9-Naphthyl-10 -(4-triphenylamine)anthrancene as the fluorescent dopant and Ir(ppy)3 and Ir(2-phq)3 as the green and orange phosphorescent dopants show the luminous efficiency of 12.4% (17.6 lm/W, 27.5 cd/A) at 1000 cd/m2. Most important to note that the efficiency-brightness roll-off of the device was very mild. With the brightness rising up to 5000 and 10 000 cd/m2, the efficiency could be kept at 11.8% (14.0 lm/W, 26.5 cd/A) and 11.0% (11.8 lm/W, 25.0 cd/A). The Commission Internationale de L'Eclairage (CIE) coordinates and color rending index (CRI) were measured to be (0.45, 0.48) and 65, respectively, and remained the same in a large range of brightness (1000-10 000 cd/m2), which is scarce in the reported white OLEDs. The performance of the device at high luminance (5000 and 10 000 cd/m2) was among the best reported results including fluorescence/phosphorescence hybrid and all-phosphorescent white OLEDs. Moreover, the CRI of the white OLED can be improved to 83 by using a yellow-green emitter (Ir(ppy)2bop) in the device.

  18. Electronic Tandem Language Learning (eTandem): A Third Approach to Second Language Learning for the 21st Century

    ERIC Educational Resources Information Center

    Cziko, Gary A.

    2004-01-01

    Tandem language learning occurs when two learners of different native languages work together to help each other learn the other language. First used in face-to-face contexts, Tandem is now increasingly being used by language-learning partners located in different countries who are linked via various forms of electronic communication, a context…

  19. FAST TRACK COMMUNICATION Host-free, yellow phosphorescent material in white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Meng-Ting; Chu, Miao-Tsai; Lin, Jin-Sheng; Tseng, Mei-Rurng

    2010-11-01

    A white organic light-emitting diode (WOLED) with a high power efficiency has been demonstrated by dispersing a host-free, yellow phosphorescent material in between double blue phosphorescent emitters. The device performance achieved a comparable value to that of using a complicated host-guest doping system to form the yellow emitter in WOLEDs. Based on this device concept as well as the molecular engineering of blue phosphorescent host material and light-extraction film, a WOLED with a power efficiency of 65 lm W-1 at a practical brightness of 1000 cd m-2 with Commission Internationale d'Echariage coordinates (CIEx,y) of (0.37, 0.47) was achieved.

  20. Molecular characterization and distribution of a 145-bp tandem repeat family in the genus Populus.

    PubMed

    Rajagopal, J; Das, S; Khurana, D K; Srivastava, P S; Lakshmikumaran, M

    1999-10-01

    This report aims to describe the identification and molecular characterization of a 145-bp tandem repeat family that accounts for nearly 1.5% of the Populus genome. Three members of this repeat family were cloned and sequenced from Populus deltoides and P. ciliata. The dimers of the repeat were sequenced in order to confirm the head-to-tail organization of the repeat. Hybridization-based analysis using the 145-bp tandem repeat as a probe on genomic DNA gave rise to ladder patterns which were identified to be a result of methylation and (or) sequence heterogeneity. Analysis of the methylation pattern of the repeat family using methylation-sensitive isoschizomers revealed variable methylation of the C residues and lack of methylation of the A residues. Sequence comparisons between the monomers revealed a high degree of sequence divergence that ranged between 6% and 11% in P. deltoides and between 4.2% and 8.3% in P. ciliata. This indicated the presence of sub-families within the 145-bp tandem family of repeats. Divergence was mainly due to the accumulation of point mutations and was concentrated in the central region of the repeat. The 145-bp tandem repeat family did not show significant homology to known tandem repeats from plants. A short stretch of 36 bp was found to show homology of 66.7% to a centromeric repeat from Chironomus plumosus. Dot-blot analysis and Southern hybridization data revealed the presence of the repeat family in 13 of the 14 Populus species examined. The absence of the 145-bp repeat from P. euphratica suggested that this species is relatively distant from other members of the genus, which correlates with taxonomic classifications. The widespread occurrence of the tandem family in the genus indicated that this family may be of ancient origin.

  1. Evidence for Functional Networks within the Human Brain's White Matter.

    PubMed

    Peer, Michael; Nitzan, Mor; Bick, Atira S; Levin, Netta; Arzy, Shahar

    2017-07-05

    Investigation of the functional macro-scale organization of the human cortex is fundamental in modern neuroscience. Although numerous studies have identified networks of interacting functional modules in the gray-matter, limited research was directed to the functional organization of the white-matter. Recent studies have demonstrated that the white-matter exhibits blood oxygen level-dependent signal fluctuations similar to those of the gray-matter. Here we used these signal fluctuations to investigate whether the white-matter is organized as functional networks by applying a clustering analysis on resting-state functional MRI (RSfMRI) data from white-matter voxels, in 176 subjects (of both sexes). This analysis indicated the existence of 12 symmetrical white-matter functional networks, corresponding to combinations of white-matter tracts identified by diffusion tensor imaging. Six of the networks included interhemispheric commissural bridges traversing the corpus callosum. Signals in white-matter networks correlated with signals from functional gray-matter networks, providing missing knowledge on how these distributed networks communicate across large distances. These findings were replicated in an independent subject group and were corroborated by seed-based analysis in small groups and individual subjects. The identified white-matter functional atlases and analysis codes are available at http://mind.huji.ac.il/white-matter.aspx Our results demonstrate that the white-matter manifests an intrinsic functional organization as interacting networks of functional modules, similarly to the gray-matter, which can be investigated using RSfMRI. The discovery of functional networks within the white-matter may open new avenues of research in cognitive neuroscience and clinical neuropsychiatry. SIGNIFICANCE STATEMENT In recent years, functional MRI (fMRI) has revolutionized all fields of neuroscience, enabling identifications of functional modules and networks in the human

  2. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., geographically averaged on a study-area-wide basis, that the incumbent local exchange carrier experiences based... exchange carrier experiences based on the prior year's annual use. Tandem-switched transport transmission..., geographically averaged on a study-area-wide basis, that the incumbent local exchange carrier experiences based...

  3. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    NASA Astrophysics Data System (ADS)

    Hua, Wang; Du, Xiaogang; Su, Wenming; Lin, Wenjing; Zhang, Dongyu

    2014-02-01

    In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4'-N,N'-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N')iridium(III) (Ir(2-phq)3) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2']picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m2. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.

  4. Device Engineering and Degradation Mechanism Study of All-Phosphorescent White Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Xu, Lisong

    As a possible next-generation solid-state lighting source, white organic light-emitting diodes (WOLEDs) have the advantages in high power efficiency, large area and flat panel form factor applications. Phosphorescent emitters and multiple emitting layer structures are typically used in high efficiency WOLEDs. However due to the complexity of the device structure comprising a stack of multiple layers of organic thin films, ten or more organic materials are usually required, and each of the layers in the stack has to be optimized to produce the desired electrical and optical functions such that collectively a WOLED of the highest possible efficiency can be achieved. Moreover, device degradation mechanisms are still unclear for most OLED systems, especially blue phosphorescent OLEDs. Such challenges require a deep understanding of the device operating principles and materials/device degradation mechanisms. This thesis will focus on achieving high-efficiency and color-stable all-phosphorescent WOLEDs through optimization of the device structures and material compositions. The operating principles and the degradation mechanisms specific to all-phosphorescent WOLED will be studied. First, we investigated a WOLED where a blue emitter was based on a doped mix-host system with the archetypal bis(4,6-difluorophenyl-pyridinato-N,C2) picolinate iridium(III), FIrpic, as the blue dopant. In forming the WOLED, the red and green components were incorporated in a single layer adjacent to the blue layer. The WOLED efficiency and color were optimized through variations of the mixed-host compositions to control the electron-hole recombination zone and the dopant concentrations of the green-red layers to achieve a balanced white emission. Second, a WOLED structure with two separate blue layers and an ultra-thin red and green co-doped layer was studied. Through a systematic investigation of the placement of the co-doped red and green layer between the blue layers and the material

  5. Peptide Analysis Using Tandem Mass Spectrometry

    DTIC Science & Technology

    1989-06-01

    to give pyroglutamic acid during storage, eliminating ammonia. It is almost absent in the spectrum of a freshly-prepared sample and is not seen in...USING TANDEM MASS SPECTROMETRY INTRODUCTION S The objective of the project was to determine the complete amino acid sequence of the large polypeptide...Ubiquitin by use of fast atom bombardment (FAB) ionization and tandem mass spectrometry. The peptide containing 76 amino acid residues was available

  6. Increased Mental Health Treatment Financing, Community-Based Organization's Treatment Programs, and Latino-White Children's Financing Disparities.

    PubMed

    Snowden, Lonnie R; Wallace, Neal; Cordell, Kate; Graaf, Genevieve

    2017-09-01

    expenditures for Whites absent cultural and language-sensitive treatment programs. The programs moderate, but do not overcome, entrenched expenditure disparities. These findings use investment in mental health services for Latino populations to indicate treatment access and utilization, but do not explicitly reflect penetration rates or intensity of services for consumers. New funding, along with an expectation that Latino children's well documented mental health treatment disparities will be addressed, holds potential for improved mental health access and reducing utilization inequities for this population, especially when specialized, culturally and linguistically sensitive mental health treatment programs are present to serve as recipients of funding. To further expand knowledge of how federal or state funding for community based mental health services for low income populations can drive down the longstanding and considerable Latino-White mental health treatment disparities, we must develop and test questions targeting policy drivers which can channel funding to programs and organizations aimed at delivering linguistically and culturally sensitive services to Latino children and their families.

  7. Thermally Stable White Emitting Eu3+ Complex@Nanozeolite@Luminescent Glass Composite with High CRI for Organic-Resin-Free Warm White LEDs.

    PubMed

    Zhang, Jinhui; Gong, Shuming; Yu, Jinbo; Li, Peng; Zhang, Xuejie; He, Yuwei; Zhou, Jianbang; Shi, Rui; Li, Huanrong; Peng, Aiyun; Wang, Jing

    2017-03-01

    Nowadays, it is still a great challenge for lanthanide complexes to be applied in solid state lighting, especially for high-power LEDs because they will suffer severe thermal-induced luminescence quenching and transmittance loss when LEDs are operated at high current. In this paper, we have not only obtained high efficient and thermally chemical stable red emitting hybrid material by introducing europium complex into nanozeolite (NZ) functionalized with the imidazolium-based stopper but also abated its thermal-induced transmittance loss and luminescence quenching behavior via coating it onto a heat-resistant luminescent glass (LG) with high thermal conductivity (1.07 W/mK). The results show that the intensity at 400 K for Eu(PPO) n -C 4 Si@NZ@LG remains 21.48% of the initial intensity at 300 K, which is virtually 153 and 13 times the intensity of Eu(PPO) 3 ·2H 2 O and Eu(PPO) n -C 4 Si@NZ, respectively. Moreover, an organic-resin-free warm white LEDs device with a low CCT of 3994K, a high Ra of 90.2 and R9 of 57.9 was successfully fabricated simply by combining NUV-Chip-On-Board with a warm white emitting glass-film composite (i.e., yellowish-green emitting luminescent glass coated with red emitting hybrid film). Our method and results provide a feasible and promising way for lanthanide complexes to be used for general illumination in the future.

  8. Characterization of crude oil biomarkers using comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Mogollón, Noroska Gabriela Salazar; Prata, Paloma Santana; Dos Reis, Jadson Zeni; Neto, Eugênio Vaz Dos Santos; Augusto, Fabio

    2016-09-01

    Oil samples from Recôncavo basin (NE Brazil), previously analyzed by traditional techniques such as gas chromatography coupled to tandem mass spectrometry, were evaluated using comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry and comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry along with simplified methods of samples preparation to evaluate the differences and advantages of these analytical techniques to better understand the development of the organic matter in this basin without altering the normal distribution of the compounds in the samples. As a result, the geochemical parameters calculated by comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry described better the origin, maturity, and biodegradation of both samples probably by increased selectivity, resolution, and sensitivity inherent of the multidimensional technique. Additionally, the detection of the compounds such as, the C(14α-) homo-26-nor-17α-hopane series, diamoretanes, nor-spergulanes, C19 -C26 A-nor-steranes and 4α-methylsteranes resolved and detected by comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry were key to classify and differentiate these lacustrine samples according to their maturity and deposition conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. White Sands Missile Range Overview & Introduction: Test Capabilities Briefing

    DTIC Science & Technology

    2011-11-07

    PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Army Test and Evaluation Command (ATEC),White Sands Missile Range,White Sands Missile Range,NM,88002...5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR...solar radiation, icing, salt fog, etc. • Instrumented for system performance / diagnostics  Climatics testing capabilities • Fixed and mobile test

  10. White organic light-emitting devices with high color purity and stability

    NASA Astrophysics Data System (ADS)

    Bai, Yajie; Liu, Su; Li, Hairong; Liu, Chunjuan; Wang, Jinshun; Chang, Jinxian

    2014-04-01

    A white organic light-emitting device (WOLED) with dual-emitting layers was presented, in which the blue fluorescent dye 2,5,8,11-terta-tertbutylperylene (TBPe) was doped in 2-methyl-9, 10-di(2-naphthyl)-anthracene (MADN) as a blue-emitting layer, while 5,6,11,12-tetraphenylnaphthacene (rubrene, Rb) was doped in the above-mentioned materials as a yellow-emitting layer. The fabricated monochromatic devices using the blue- and yellow-emitting layer have demonstrated that the direct charge trapping mechanism is the dominant emission mechanism in the yellow OLED. Studies on the WOLEDs with dual-emitting layers have shown that the performances of these devices are strongly susceptible to the thickness of the emitting layer and the stack order of two emitting layers. Structure of ITO(160 nm)/NPB(30 nm)/MADN: 5 wt%TBPe: 3 wt%Rb(10 nm)/MADN: 5 wt%TBPe(20 nm)/BCP (10 nm)/Alq3(20 nm)/Al(100 nm) was determined to be the most favorable WOLED. The maximum luminance of 16 000 cd cm-2 at the applied voltage of 13.4 V and Commission International de 1‧Eclairage (CIE) coordinates of (0.3263, 0.3437) which is closer to the standard white light (CIE (0.33, 0.33)) than the most recent reported WOLEDs were obtained. Moreover, there is just slight variation of CIE coordinates (ΔCIEx, y = 0.0171, 0.0167; corresponding Δu‧v‧ = 0.0119) when the current density increases from 10 to 100 mA cm-2. It reveals that the emissive dopant Rb acts as charge traps to improve electron-hole balance, provides sites for electron-hole recombination and thus makes carriers distribute more evenly in the dual-emitting layers which broaden the recombination zone and improve the stability of the CIE coordinates.

  11. PTGBase: an integrated database to study tandem duplicated genes in plants.

    PubMed

    Yu, Jingyin; Ke, Tao; Tehrim, Sadia; Sun, Fengming; Liao, Boshou; Hua, Wei

    2015-01-01

    Tandem duplication is a wide-spread phenomenon in plant genomes and plays significant roles in evolution and adaptation to changing environments. Tandem duplicated genes related to certain functions will lead to the expansion of gene families and bring increase of gene dosage in the form of gene cluster arrays. Many tandem duplication events have been studied in plant genomes; yet, there is a surprising shortage of efforts to systematically present the integration of large amounts of information about publicly deposited tandem duplicated gene data across the plant kingdom. To address this shortcoming, we developed the first plant tandem duplicated genes database, PTGBase. It delivers the most comprehensive resource available to date, spanning 39 plant genomes, including model species and newly sequenced species alike. Across these genomes, 54 130 tandem duplicated gene clusters (129 652 genes) are presented in the database. Each tandem array, as well as its member genes, is characterized in complete detail. Tandem duplicated genes in PTGBase can be explored through browsing or searching by identifiers or keywords of functional annotation and sequence similarity. Users can download tandem duplicated gene arrays easily to any scale, up to the complete annotation data set for an entire plant genome. PTGBase will be updated regularly with newly sequenced plant species as they become available. © The Author(s) 2015. Published by Oxford University Press.

  12. Analysis of the external and internal quantum efficiency of multi-emitter, white organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Furno, Mauro; Rosenow, Thomas C.; Gather, Malte C.; Lüssem, Björn; Leo, Karl

    2012-10-01

    We report on a theoretical framework for the efficiency analysis of complex, multi-emitter organic light emitting diodes (OLEDs). The calculation approach makes use of electromagnetic modeling to quantify the overall OLED photon outcoupling efficiency and a phenomenological description for electrical and excitonic processes. From the comparison of optical modeling results and measurements of the total external quantum efficiency, we obtain reliable estimates of internal quantum yield. As application of the model, we analyze high-efficiency stacked white OLEDs and comment on the various efficiency loss channels present in the devices.

  13. Transcriptome profiling of the Macrobrachium rosenbergii lymphoid organ under the white spot syndrome virus challenge.

    PubMed

    Cao, Jun; Wu, Lei; Jin, Min; Li, Tingting; Hui, Kaimin; Ren, Qian

    2017-08-01

    Macrobrachium rosenbergii is a crustacean with economic importance, and adult prawns are generally thought to be tolerant to white spot syndrome virus (WSSV) infection. Although certain genes are known to respond to WSSV infection and lymphoid tissue is an important immune organ, the response of lymphoid organ to WSSV infection is unclear. Next-generation sequencing was employed in this study to determine the transcriptome differences between WSSV infection and mock lymphoid organs. A total of 44,606,694 and 40,384,856 clean reads were generated and assembled into 73,658 and 72,374 unigenes from the control sample and the WSSV infection sample, respectively. Based on homology searches, KEGG, GO, and COG analysis, 21,323 unigenes were annotated. Among them, 4951 differential expression genes were identified and categorized into 244 metabolic pathways. Coagulation cascades, and pattern recognition receptor signaling pathways were used as examples to discuss the response of host to WSSV infection. We also identified 12,308 simple sequence repeats, which can be further used as functional markers. Results contribute to a better understanding of the immune response of prawn lymphoid organ to WSSV and provide information for identifying novel genes in the absence of the prawn genome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Hybrid Tandem Solar Cells | Photovoltaic Research | NREL

    Science.gov Websites

    Hybrid Tandem Solar Cells Hybrid Tandem Solar Cells To achieve aggressive cost reductions in photovoltaics (PV) beyond the 6¢/kWh SunShot Initiative 2020 goal, module efficiency must be increased beyond on a silicon platform and that aim to provide viable prototypes for commercialization. PV Research

  15. Matrix effect on the determination of synthetic corticosteroids and diuretics by liquid chromatography-tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dikunets, M. A.; Appolonova, S. A.; Rodchenkov, G. M.

    2009-04-01

    This work presents a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) procedure for selective and reliable screening of corticosteroids and diuretics in human urine. Sample preparation included the extraction, evaporation of the organic extract under nitrogen, and solution of the dry residue. The extract was analyzed by HPLC combined with tandem mass spectrometry using electro-spraying ionization at atmospheric pressure with negative ion recording. The mass spectra of all compounds were recorded, and the characteristic ions, retention times, and detection limits were determined. The procedure was validated by evaluating the degree of the matrix suppression of ionization, extraction of analytes from human biological liquid, and the selectivity and specificity of determination.

  16. Ultra high performance liquid chromatography tandem mass spectrometry for rapid analysis of trace organic contaminants in water

    PubMed Central

    2013-01-01

    Background The widespread utilization of organic compounds in modern society and their dispersion through wastewater have resulted in extensive contamination of source and drinking waters. The vast majority of these compounds are not regulated in wastewater outfalls or in drinking water while trace amounts of certain compounds can impact aquatic wildlife. Hence it is prudent to monitor these contaminants in water sources until sufficient toxicological data relevant to humans becomes available. A method was developed for the analysis of 36 trace organic contaminants (TOrCs) including pharmaceuticals, pesticides, steroid hormones (androgens, progestins, and glucocorticoids), personal care products and polyfluorinated compounds (PFCs) using a single solid phase extraction (SPE) technique with ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The method was applied to a variety of water matrices to demonstrate method performance and reliability. Results UHPLC-MS/MS in both positive and negative electrospray ionization (ESI) modes was employed to achieve optimum sensitivity while reducing sample analysis time (<20 min) compared with previously published methods. The detection limits for most compounds was lower than 1.0 picogram on the column while reporting limits in water ranged from 0.1 to 15 ng/L based on the extraction of a 1 L sample and concentration to 1 mL. Recoveries in ultrapure water for most compounds were between 90-110%, while recoveries in surface water and wastewater were in the range of 39-121% and 38-141% respectively. The analytical method was successfully applied to analyze samples across several different water matrices including wastewater, groundwater, surface water and drinking water at different stages of the treatment. Among several compounds detected in wastewater, sucralose and TCPP showed the highest concentrations. Conclusion The proposed method is sensitive, rapid and robust; hence it can

  17. PREFACE: 16th European White Dwarfs Workshop

    NASA Astrophysics Data System (ADS)

    Garcia-Berro, Enrique; Hernanz, Margarita; Isern, Jordi; Torres, Santiago

    2009-07-01

    thank them. The white dwarf community has been steadily growing since the first white dwarf workshop, held in Kiel (Germany) in 1974. Some of the participants in the first colloquium have already effectively retired; others - although officially retired - continue to attend successive workshops, Professor Weidemann, one of the first organizers, being a leading example. We hope we will be able to continue counting on them for many years. A very graphical view of the evolution of the field can be found in the homepage of Professor Detlev Koester, who has collected pictures of almost all the previous workshops:. Additionally, several astronomers coming from related fields have joined our (not so) small community. Most importantly, several generations of young scientists gave their first talks in these workshops. In summary our community is an active one, and we have close, durable and solid ties of friendship. We are optimistic and we foresee that the spirit of the previous workshops will continue in future editions. We would like to express our deepest gratitude to our sponsors: The Universitat Politècnica de Catalunya (UPC), the Institut de Ciències de l'Espai (CSIC), the Institute for Space Studies of Catalonia (IEEC), the Spanish Ministry of Education and Science, the Generalitat de Catalunya, the Ajuntament de Barcelona, the School of Civil Engineering of Barcelona and UPCnet. Finally, the IEEC staff and our graduate students have enthusiastically supported the organization of the workshop in every single detail; without them we would have not succeeded. We thank them especially. Also, we acknowledge the task of the Scientific Organizing Committee, which gave their full support in all the scientific tasks. Enrique García-Berro, UPC Margarida Hernanz, ICE (CSIC) Jordi Isern, ICE (CSIC) Santiago Torres, UPC Editors Conference photograph

  18. Determination of tryptophan derivatives in kynurenine pathway in fermented foods using liquid chromatography tandem mass spectrometry.

    PubMed

    Yılmaz, Cemile; Gökmen, Vural

    2018-03-15

    This study aimed to develop an analytical method for the determination of tryptophan and its derivatives in kynurenine pathway using tandem mass spectrometry in various fermented food products (bread, beer, red wine, white cheese, yoghurt, kefir and cocoa powder). The method entails an aqueous extraction and reversed phase chromatographic separation using pentafluorophenyl (PFP) column. It allowed quantitation of low ppb levels of tryptophan and its derivatives in different fermented food matrices. It was found that beer samples were found to contain kynurenine within the range of 28.7±0.7μg/L and 86.3±0.5μg/L. Moreover, dairy products (yoghurt, white cheese and kefir) contained kynurenine ranging from 30.3 to 763.8μg/kg d.w. Though bread samples analyzed did not contain kynurenic acid, beer and red wine samples as yeast-fermented foods were found to contain kynurenic acid. Among foods analyzed, cacao powder had the highest amounts of kynurenic acid (4486.2±165.6μg/kgd.w), which is a neuroprotective compound. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Inverted Three-Junction Tandem Thermophotovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven

    2012-01-01

    An InGaAs-based three-junction (3J) tandem thermophotovoltaic (TPV) cell has been investigated to utilize more of the blackbody spectrum (from a 1,100 C general purpose heat source GPHS) efficiently. The tandem consists of three vertically stacked subcells, a 0.74-eV InGaAs cell, a 0.6- eV InGaAs cell, and a 0.55-eV InGaAs cell, as well as two interconnecting tunnel junctions. A greater than 20% TPV system efficiency was achieved by another group with a 1,040 C blackbody using a single-bandgap 0.6- eV InGaAs cell MIM (monolithic interconnected module) (30 lateral junctions) that delivered about 12 V/30 or 0.4 V/junction. It is expected that a three-bandgap tandem MIM will eventually have about 3 this voltage (1.15 V) and about half the current. A 4 A/cm2 would be generated by a single-bandgap 0.6-V InGaAs MIM, as opposed to the 2 A/cm2 available from the same spectrum when split among the three series-connected junctions in the tandem stack. This would then be about a 50% increase (3xVoc, 0.5xIsc) in output power if the proposed tandem replaced the single- bandgap MIM. The advantage of the innovation, if successful, would be a 50% increase in power conversion efficiency from radioisotope heat sources using existing thermophotovoltaics. Up to 50% more power would be generated for radioisotope GPHS deep space missions. This type of InGaAs multijunction stack could be used with terrestrial concentrator solar cells to increase efficiency from 41 to 45% or more.

  20. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Wang, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Du, Xiaogang; Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024

    2014-02-15

    In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4{sup ′}-N,N{sup ′}-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N{sup ′})iridium(III) (Ir(2-phq){sub 3}) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2{sup ′}]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m{sup 2}. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37)more » as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.« less

  1. Stabilization of perfect and imperfect tandem repeats by single-strand DNA exonucleases

    PubMed Central

    Feschenko, Vladimir V.; Rajman, Luis A.; Lovett, Susan T.

    2003-01-01

    Rearrangements between tandemly repeated DNA sequences are a common source of genetic instability. Such rearrangements underlie several human genetic diseases. In many organisms, the mismatch-repair (MMR) system functions to stabilize repeats when the repeat unit is short or when sequence imperfections are present between the repeats. We show here that the action of single-stranded DNA (ssDNA) exonucleases plays an additional, important role in stabilizing tandem repeats, independent of their role in MMR. For perfect repeats of ≈100 bp in Escherichia coli that are not susceptible to MMR, exonuclease (Exo)-I, ExoX, and RecJ exonuclease redundantly inhibit deletion. Our data suggest that >90% of potential deletion events are avoided by the combined action of these three exonucleases. Imperfect tandem repeats, less prone to rearrangements, are stabilized by both the MMR-pathway and ssDNA-specific exonucleases. For 100-bp repeats containing four mispairs, ExoI alone aborts most deletion events, even in the presence of a functional MMR system. By genetic analysis, we show that the inhibitory effect of ssDNA exonucleases on deletion formation is independent of the MutS and UvrD proteins. Exonuclease degradation of DNA displaced during the deletion process may abort slipped misalignment. Exonuclease action is therefore a significant force in genetic stabilization of many forms of repetitive DNA. PMID:12538867

  2. Performance of a tandem-rotor/tandem-stator conical-flow compressor designed for a pressure ratio of 3

    NASA Technical Reports Server (NTRS)

    Wood, J. R.; Owen, A. K.; Schumann, L. F.

    1982-01-01

    A conical-flow compressor stage with a large radius change through the rotor was tested at three values of rotor tip clearance. The stage had a tandem rotor and a tandem stator. Peak efficiency at design speed was 0.774 at a pressure ratio of 2.613. The rotor was tested without the stator, and detailed survey data were obtained for each rotor blade row. Overall peak rotor efficiency was 0.871 at a pressure ratio of 2.952.

  3. A tandem-based compact dual-energy gamma generator.

    PubMed

    Persaud, A; Kwan, J W; Leitner, M; Leung, K-N; Ludewigt, B; Tanaka, N; Waldron, W; Wilde, S; Antolak, A J; Morse, D H; Raber, T

    2010-02-01

    A dual-energy tandem-type gamma generator has been developed at E. O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications. Both positively charged ions and atoms of hydrogen are created from negative ions via a gas stripper. In this paper, we show first results of the working tandem-based gamma generator and that a gas stripper can be utilized in a compact source design. Preliminary results of monoenergetic gamma production are shown.

  4. Solar-to-Chemical Energy Conversion with Photoelectrochemical Tandem Cells.

    PubMed

    Sivula, Kevin

    2013-01-01

    Efficiently and inexpensively converting solar energy into chemical fuels is an important goal towards a sustainable energy economy. An integrated tandem cell approach could reasonably convert over 20% of the sun's energy directly into chemical fuels like H2 via water splitting. Many different systems have been investigated using various combinations of photovoltaic cells and photoelectrodes, but in order to be economically competitive with the production of H2 from fossil fuels, a practical water splitting tandem cell must optimize cost, longevity and performance. In this short review, the practical aspects of solar fuel production are considered from the perspective of a semiconductor-based tandem cell and the latest advances with a very promising technology - metal oxide photoelectrochemical tandem cells - are presented.

  5. White OLED with a single-component europium complex.

    PubMed

    Law, Ga-Lai; Wong, Ka-Leung; Tam, Hoi-Lam; Cheah, Kok-Wai; Wong, Wing-Tak

    2009-11-16

    A new direction for white organic light-emitting devices is shown, fabricated from a novel europium complex; this single component contains a double emission center of bluish-green and red, combined to a give a pure white emission (CIE x = 0.34 and y = 0.35).

  6. TRAP: automated classification, quantification and annotation of tandemly repeated sequences.

    PubMed

    Sobreira, Tiago José P; Durham, Alan M; Gruber, Arthur

    2006-02-01

    TRAP, the Tandem Repeats Analysis Program, is a Perl program that provides a unified set of analyses for the selection, classification, quantification and automated annotation of tandemly repeated sequences. TRAP uses the results of the Tandem Repeats Finder program to perform a global analysis of the satellite content of DNA sequences, permitting researchers to easily assess the tandem repeat content for both individual sequences and whole genomes. The results can be generated in convenient formats such as HTML and comma-separated values. TRAP can also be used to automatically generate annotation data in the format of feature table and GFF files.

  7. Optical efficiency enhancement in white organic light-emitting diode display with high color gamut using patterned quantum dot film and long pass filter

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Jun; Shin, Min-Ho; Kim, Young-Joo

    2016-08-01

    A new structure for white organic light-emitting diode (OLED) displays with a patterned quantum dot (QD) film and a long pass filter (LPF) was proposed and evaluated to realize both a high color gamut and high optical efficiency. Since optical efficiency is a critical parameter in white OLED displays with a high color gamut, a red or green QD film as a color-converting component and an LPF as a light-recycling component are introduced to be adjusted via the characteristics of a color filter (CF). Compared with a conventional white OLED without both a QD film and the LPF, it was confirmed experimentally that the optical powers of red and green light in a new white OLED display were increased by 54.1 and 24.7% using a 30 wt % red QD film and a 20 wt % green QD film with the LPF, respectively. In addition, the white OLED with both a QD film and the LPF resulted in an increase in the color gamut from 98 to 107% (NTSC x,y ratio) due to the narrow emission linewidth of the QDs.

  8. Low driving voltage blue, green, yellow, red and white organic light-emitting diodes with a simply double light-emitting structure.

    PubMed

    Zhang, Zhensong; Yue, Shouzhen; Wu, Yukun; Yan, Pingrui; Wu, Qingyang; Qu, Dalong; Liu, Shiyong; Zhao, Yi

    2014-01-27

    Low driving voltage blue, green, yellow, red and white phosphorescent organic light-emitting diodes (OLEDs) with a common simply double emitting layer (D-EML) structure are investigated. Our OLEDs without any out-coupling schemes as well as n-doping strategies show low driving voltage, e.g. < 2.4 V for onset and < 3 V for 1000 cd/m2, and high efficiency of 32.5 lm/W (13.3%), 58.8 lm/W (14.3%), 55.1 lm/W (14.6%), 24.9 lm/W (13.7%) and 45.1 lm/W (13.5%) for blue, green, yellow, red and white OLED, respectively. This work demonstrates that the low driving voltages and high efficiencies can be simultaneously realized with a common simply D-EML structure.

  9. Focusing on butterfly eyespot focus: uncoupling of white spots from eyespot bodies in nymphalid butterflies.

    PubMed

    Iwata, Masaki; Otaki, Joji M

    2016-01-01

    Developmental studies on butterfly wing color patterns often focus on eyespots. A typical eyespot (such as that of Bicyclus anynana) has a few concentric rings of dark and light colors and a white spot (called a focus) at the center. The prospective eyespot center during the early pupal stage is known to act as an organizing center. It has often been assumed, according to gradient models for positional information, that a white spot in adult wings corresponds to an organizing center and that the size of the white spot indicates how active that organizing center was. However, there is no supporting evidence for these assumptions. To evaluate the feasibility of these assumptions in nymphalid butterflies, we studied the unique color patterns of Calisto tasajera (Nymphalidae, Satyrinae), which have not been analyzed before in the literature. In the anterior forewing, one white spot was located at the center of an eyespot, but another white spot associated with either no or only a small eyespot was present in the adjacent compartment. The anterior hindwing contained two adjacent white spots not associated with eyespots, one of which showed a sparse pattern. The posterior hindwing contained two adjacent pear-shaped eyespots, and the white spots were located at the proximal side or even outside the eyespot bodies. The successive white spots within a single compartment along the midline in the posterior hindwing showed a possible trajectory of a positional determination process for the white spots. Several cases of focus-less eyespots in other nymphalid butterflies were also presented. These results argue for the uncoupling of white spots from eyespot bodies, suggesting that an eyespot organizing center does not necessarily differentiate into a white spot and that a prospective white spot does not necessarily signify organizing activity for an eyespot. Incorporation of these results in future models for butterfly wing color pattern formation is encouraged.

  10. Targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae.

    PubMed

    Takahashi, Tadashi; Sato, Atsushi; Ogawa, Masahiro; Hanya, Yoshiki; Oguma, Tetsuya

    2014-08-01

    We describe here the first successful construction of a targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. The targeted tandem chromosomal duplication was achieved by using strains that had a 5'-deleted pyrG upstream of the region targeted for tandem chromosomal duplication and a 3'-deleted pyrG downstream of the target region. Consequently,strains bearing a 210-kb targeted tandem chromosomal duplication near the centromeric region of chromosome 8 and strains bearing a targeted tandem chromosomal duplication of a 700-kb region of chromosome 2 were successfully constructed. The strains bearing the tandem chromosomal duplication were efficiently obtained from the regenerated protoplast of the parental strains. However, the generation of the chromosomal duplication did not depend on the introduction of double-stranded breaks(DSBs) by I-SceI. The chromosomal duplications of these strains were stably maintained after five generations of culture under nonselective conditions. The strains bearing the tandem chromosomal duplication in the 700-kb region of chromosome 2 showed highly increased protease activity in solid-state culture, indicating that the duplication of large chromosomal segments could be a useful new breeding technology and gene analysis method.

  11. Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage.

    PubMed

    Rajagopal, Adharsh; Yang, Zhibin; Jo, Sae Byeok; Braly, Ian L; Liang, Po-Wei; Hillhouse, Hugh W; Jen, Alex K-Y

    2017-09-01

    Organic-inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley-Queisser limit of single-junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss ) in small- and large-bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite-perovskite tandem solar cells with small V oc,loss . A fullerene variant, Indene-C 60 bis-adduct, is used to achieve optimized interfacial contact in a small-bandgap (≈1.2 eV) subcell, which facilitates higher quasi-Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large-bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite-perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state-of-the-art silicon-perovskite tandem solar cells, which highlights the prospects of using perovskite-perovskite tandems for solar-energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar-to-hydrogen efficiencies beyond 15%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Tipping Point: The Diversity Threshold for White Student (Dis) Engagement in Traditional Student Organizations

    ERIC Educational Resources Information Center

    Elston, Dhanfu El-Hajj

    2011-01-01

    During a time when most institutions of higher education are in search of underrepresented student participation, Georgia State University (GSU), a majority White institution, has observed a lack of involvement of White students in co-curricular activities. The purpose of the research study was to critically examine White students' (dis)…

  13. Influences of wide-angle and multi-beam interference on the chromaticity and efficiency of top-emitting white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Deng, Lingling; Zhou, Hongwei; Chen, Shufen; Shi, Hongying; Liu, Bin; Wang, Lianhui; Huang, Wei

    2015-02-01

    Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using δ-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the use of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.

  14. Organic Fluorescent Dyes Supported on Activated Boron Nitride: A Promising Blue Light Excited Phosphors for High-Performance White Light-Emitting Diodes

    PubMed Central

    Li, Jie; Lin, Jing; Huang, Yang; Xu, Xuewen; Liu, Zhenya; Xue, Yanming; Ding, Xiaoxia; Luo, Han; Jin, Peng; Zhang, Jun; Zou, Jin; Tang, Chengchun

    2015-01-01

    We report an effective and rare-earth free light conversion material synthesized via a facile fabrication route, in which organic fluorescent dyes, i.e. Rhodamine B (RhB) and fluorescein isothiocyanate (FITC) are embedded into activated boron nitride (αBN) to form a composite phosphor. The composite phosphor shows highly efficient Förster resonance energy transfer and greatly improved thermal stability, and can emit at broad visible wavelengths of 500–650 nm under the 466 nm blue-light excitation. By packaging of the composite phosphors and a blue light-emitting diode (LED) chip with transparent epoxy resin, white LED with excellent thermal conductivity, current stability and optical performance can be realized, i.e. a thermal conductivity of 0.36 W/mk, a Commission Internationale de 1'Eclairage color coordinates of (0.32, 0.34), and a luminous efficiency of 21.6 lm·W−1. Our research opens the door toward to the practical long-life organic fluorescent dyes-based white LEDs. PMID:25682730

  15. Alpha particle confinement in tandem mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devoto, R.S.; Ohnishi, M.; Kerns, J.

    1980-10-10

    Mechanisms leading to loss of alpha particles from non-axisymmetric tandem mirrors are considered. Stochastic diffusion due to bounce-drift resonances, which can cause rapid radial losses of high-energy alpha particles, can be suppressed by imposing a 20% rise in axisymmetric fields before the quadrupole transition sections. Alpha particles should then be well-confined until thermal energies when they enter the resonant plateau require. A fast code for computation of drift behavior in reactors is described. Sample calculations are presented for resonant particles in a proposed coil set for the Tandem Mirror Next Step.

  16. Tandem mobile robot system

    DOEpatents

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  17. Ion-exchange solid-phase extraction combined with liquid chromatography-tandem mass spectrometry for the determination of veterinary drugs in organic fertilizers.

    PubMed

    Zhao, Zhiyong; Zhang, Yanmei; Xuan, Yanfang; Song, Wei; Si, Wenshuai; Zhao, Zhihui; Rao, Qinxiong

    2016-06-01

    The analysis of veterinary drugs in organic fertilizers is crucial for an assessment of potential risks to soil microbial communities and human health. We develop a robust and sensitive method to quantitatively determine 19 veterinary drugs (amantadine, sulfonamides and fluoroquinolones) in organic fertilizers. The method involved a simple solid-liquid extraction step using the combination of acetonitrile and McIlvaine buffer as extraction solvent, followed by cleanup with a solid-phase extraction cartridge containing polymeric mixed-mode anion-exchange sorbents. Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was used to separate and detect target analytes. We particularly focused on the optimization of sample clean-up step: different diluents and dilution factors were tested. The developed method was validated in terms of linearity, recovery, precision, sensitivity and specificity. The recoveries of all the drugs ranged from 70.9% to 112.7% at three concentration levels, with the intra-day and inter-day relative standard deviation lower than 15.7%. The limits of quantification were between 1.0 and 10.0μg/kg for all the drugs. Matrix effect was minimized by matrix-matched calibration curves. The analytical method was successfully applied for the survey of veterinary drugs contamination in 20 compost samples. The results indicated that fluoroquinolones had higher incidence rate and mean concentration levels ranging from 31.9 to 308.7μg/kg compared with other drugs. We expect the method will provide the basis for risk assessment of veterinary drugs in organic fertilizers. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. An organic white light-emitting dye: very small molecular architecture displays panchromatic emission.

    PubMed

    Nandhikonda, Premchendar; Heagy, Michael D

    2010-11-14

    The synthesis and photophysical characterization of a new white-light fluorophore is described. The optimization of excitation wavelengths allows the naphthalimide (NI) dyes to display blue, green or white light emission depending on the excitation wavelength.

  19. Quality evaluation of tandem mass spectral libraries.

    PubMed

    Oberacher, Herbert; Weinmann, Wolfgang; Dresen, Sebastian

    2011-06-01

    Tandem mass spectral libraries are gaining more and more importance for the identification of unknowns in different fields of research, including metabolomics, forensics, toxicology, and environmental analysis. Particularly, the recent invention of reliable, robust, and transferable libraries has increased the general acceptance of these tools. Herein, we report on results obtained from thorough evaluation of the match reliabilities of two tandem mass spectral libraries: the MSforID library established by the Oberacher group in Innsbruck and the Weinmann library established by the Weinmann group in Freiburg. Three different experiments were performed: (1) Spectra of the libraries were searched against their corresponding library after excluding either this single compound-specific spectrum or all compound-specific spectra prior to searching; (2) the libraries were searched against each other using either library as reference set or sample set; (3) spectra acquired on different mass spectrometric instruments were matched to both libraries. Almost 13,000 tandem mass spectra were included in this study. The MSforID search algorithm was used for spectral matching. Statistical evaluation of the library search results revealed that principally both libraries enable the sensitive and specific identification of compounds. Due to higher mass accuracy of the QqTOF compared with the QTrap instrument, matches to the MSforID library were more reliable when comparing spectra with both libraries. Furthermore, only the MSforID library was shown to be efficiently transferable to different kinds of tandem mass spectrometers, including "tandem-in-time" instruments; this is due to the coverage of a large range of different collision energy settings-including the very low range-which is an outstanding characteristics of the MSforID library.

  20. Nanocrystal assembly for tandem catalysis

    DOEpatents

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  1. White grubs

    Treesearch

    Albert E. Mayfield

    2012-01-01

    White grubs are soil-dwelling larvae of insects commonly known as “May beetles” or “June beetles” in the family Scarabaeidae. These grubs feed on herbaceous plant roots and other soil organic matter, but will also feed on the roots of woody plants, including all types of coniferous and hardwood seedlings in nursery settings. Numerous genera known to cause damage in...

  2. Single-task and dual-task tandem gait test performance after concussion.

    PubMed

    Howell, David R; Osternig, Louis R; Chou, Li-Shan

    2017-07-01

    To compare single-task and dual-task tandem gait test performance between athletes after concussion with controls on observer-timed, spatio-temporal, and center-of-mass (COM) balance control measurements. Ten participants (19.0±5.5years) were prospectively identified and completed a tandem gait test protocol within 72h of concussion and again 1 week, 2 weeks, 1 month, and 2 months post-injury. Seven uninjured controls (20.0±4.5years) completed the same protocol in similar time increments. Tandem gait test trials were performed with (dual-task) and without (single-task) concurrently performing a cognitive test as whole-body motion analysis was performed. Outcome variables included test completion time, average tandem gait velocity, cadence, and whole-body COM frontal plane displacement. Concussion participants took significantly longer to complete the dual-task tandem gait test than controls throughout the first 2 weeks post-injury (mean time=16.4 [95% CI: 13.4-19.4] vs. 10.1 [95% CI: 6.4-13.7] seconds; p=0.03). Single-task tandem gait times were significantly lower 72h post-injury (p=0.04). Dual-task cadence was significantly lower for concussion participants than controls (89.5 [95% CI: 68.6-110.4] vs. 127.0 [95% CI: 97.4-156.6] steps/minute; p=0.04). Moderately-high to high correlations between tandem gait test time and whole-body COM medial-lateral displacement were detected at each time point during dual-task gait (r s =0.70-0.93; p=0.03-0.001). Adding a cognitive task during the tandem gait test resulted in longer detectable deficits post-concussion compared to the traditional single-task tandem gait test. As a clinical tool to assess dynamic motor function, tandem gait may assist with return to sport decisions after concussion. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. Highly Simplified Tandem Organic Light-Emitting Devices Incorporating a Green Phosphorescence Ultrathin Emitter within a Novel Interface Exciplex for High Efficiency.

    PubMed

    Xu, Ting; Zhou, Jun-Gui; Huang, Chen-Chao; Zhang, Lei; Fung, Man-Keung; Murtaza, Imran; Meng, Hong; Liao, Liang-Sheng

    2017-03-29

    Herein we report a novel design philosophy of tandem OLEDs incorporating a doping-free green phosphorescent bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III) (Ir(ppy) 2 (acac)) as an ultrathin emissive layer (UEML) into a novel interface-exciplex-forming structure of 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and 1,3,5-tri(p-pyrid-3-yl-phenyl)benzene (TmPyPB). Particularly, relatively low working voltage and remarkable efficiency are achieved and the designed tandem OLEDs exhibit a peak current efficiency of 135.74 cd/A (EQE = 36.85%) which is two times higher than 66.2 cd/A (EQE = 17.97%) of the device with a single emitter unit. This might be one of the highest efficiencies of OLEDs applying ultrathin emitters without light extraction. Moreover, with the proposed structure, the color gamut of the displays can be effectively increased from 76% to 82% NTSC if the same red and blue emissions as those in the NTSC are applied. A novel form of harmonious fusion among interface exciplex, UEML, and tandem structure is successfully realized, which sheds light on further development of ideal OLED structure with high efficiency, simplified fabrication, low power consumption, low cost, and improved color gamut, simultaneously.

  4. Studies of mechanisms of decay and recovery in organic dye-doped polymers using spatially resolved white light interferometry

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin; Bernhardt, Elizabeth; Kuzyk, Mark

    2012-10-01

    Several organic dyes have been shown to self heal when doped in a polymer matrix. Most measurements to date use optical absorbance, amplified spontaneous emission, or digital imaging as a probe. Each method determines a subset of the relevant parameters. We have constructed a white light interferometric microscope, which measures the absorption spectrum and change in refractive index during decay and recovery simultaneously at multiple points in the material. We report on preliminary measurements and results concerning the microscopes spatial resolution.

  5. Non-destructive profiling of volatile organic compounds using HS-SPME/GC-MS and its application for the geographical discrimination of white rice.

    PubMed

    Lim, Dong Kyu; Mo, Changyeun; Lee, Dong-Kyu; Long, Nguyen Phuoc; Lim, Jongguk; Kwon, Sung Won

    2018-01-01

    The authenticity determination of white rice is crucial to prevent deceptive origin labeling and dishonest trading. However, a non-destructive and comprehensive method for rapidly discriminating the geographical origins of white rice between countries is still lacking. In the current study, we developed a volatile organic compound based geographical discrimination method using headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME/GC-MS) to discriminate rice samples from Korea and China. A partial least squares discriminant analysis (PLS-DA) model exhibited a good classification of white rice between Korea and China (accuracy = 0.958, goodness of fit = 0.937, goodness of prediction = 0.831, and permutation test p-value = 0.043). Combining the PLS-DA based feature selection with the differentially expressed features from the unpaired t-test and significance analysis of microarrays, 12 discriminatory biomarkers were found. Among them, hexanal and 1-hexanol have been previously known to be associated with the cultivation environment and storage conditions. Other hydrocarbon biomarkers are novel, and their impact on rice production and storage remains to be elucidated. In conclusion, our findings highlight the ability to rapidly discriminate white rice from Korea and China. The developed method maybe useful for the authenticity and quality control of white rice. Copyright © 2017. Published by Elsevier B.V.

  6. Negotiating Multiple Identities through eTandem Learning Experiences

    ERIC Educational Resources Information Center

    Yang, Se Jeong; Yi, Youngjoo

    2017-01-01

    Much of eTandem research has investigated either linguistic or cross-cultural aspects of second language (L2) learning, but relatively little is known about issues of identity construction in an eTandem context. Situating the study within theories and research of language learner identity, we examined ways in which two adult L2 learners (a Korean…

  7. Experimental design for extraction and quantification of phenolic compounds and organic acids in white "Vinho Verde" grapes.

    PubMed

    Dopico-García, M S; Valentão, P; Guerra, L; Andrade, P B; Seabra, R M

    2007-01-30

    An experimental design was applied for the optimization of extraction and clean-up processes of phenolic compounds and organic acids from white "Vinho Verde" grapes. The developed analytical method consisted in two steps: first a solid-liquid extraction of both phenolic compounds and organic acids and then a clean-up step using solid-phase extraction (SPE). Afterwards, phenolic compounds and organic acids were determined by high-performance liquid chromatography (HPLC) coupled to a diode array detector (DAD) and HPLC-UV, respectively. Plackett-Burman design was carried out to select the significant experimental parameters affecting both the extraction and the clean-up steps. The identified and quantified phenolic compounds were: quercetin-3-O-glucoside, quercetin-3-O-rutinoside, kaempferol-3-O-rutinoside, isorhamnetin-3-O-glucoside, quercetin, kaempferol and epicatechin. The determined organic acids were oxalic, citric, tartaric, malic, shikimic and fumaric acids. The obtained results showed that the most important variables were the temperature (40 degrees C) and the solvent (acid water at pH 2 with 5% methanol) for the extraction step and the type of sorbent (C18 non end-capped) for the clean-up step.

  8. Tandem robot control system and method for controlling mobile robots in tandem

    DOEpatents

    Hayward, David R.; Buttz, James H.; Shirey, David L.

    2002-01-01

    A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.

  9. SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, D; Fowler, T

    2004-06-15

    A time-dependent version of the steady-state radial transport model in symmetric tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified for tandem mirror physics. Motivated by Post's new concept of kinetic stabilization of symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting radial transport [2], which successfully accounted for experimental results in TMX. The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT in that our code is focused on axisymmetric tandem mirrorsmore » and classical diffusion, whereas TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes exhibit interesting but different non-linear behavior.« less

  10. A novel species-specific tandem repeat DNA family from Sinapis arvensis: detection of telomere-like sequences.

    PubMed

    Kapila, R; Das, S; Srivastava, P S; Lakshmikumaran, M

    1996-08-01

    DNA sequences representing a tandemly repeated DNA family of the Sinapis arvensis genome were cloned and characterized. The 700-bp tandem repeat family is represented by two clones, pSA35 and pSA52, which are 697 and 709 bp in length, respectively. Dot matrix analysis of the sequences indicates the presence of repeated elements within each monomeric unit. Sequence analysis of the repetitive region of clones pSA35 and pSA52 shows that there are several copies of a 7-bp repeat element organized in tandem. The consensus sequence of this repeat element is 5'-TTTAGGG-3'. These elements are highly mutated and the difference in length between the two clones is due to different copy numbers of these elements. The repetitive region of clone pSA35 has 26 copies of the element TTTAGGG, whereas clone pSA52 has 28 copies. The repetitive region in both clones is flanked on either side by inverted repeats that may be footprints of a transposition event. Sequence comparison indicates that the element TTTAGGG is identical to telomeric repeats present in Arabidopsis, maize, tomato, and other plants. However, Bal31 digestion kinetics indicates non-telomeric localization of the 700-bp tandem repeats. The clones represent a novel repeat family as (i) they contain telomere-like motifs as subrepeats within each unit; and (ii) they do not hybridize to related crucifers and are species-specific in nature.

  11. Multilayer white lighting polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gong, Xiong; Wang, Shu; Heeger, Alan J.

    2006-08-01

    Organic and polymer light-emitting diodes (OLEDs/PLEDs) that emit white light are of interest and potential importance for use in active matrix displays (with color filters) and because they might eventually be used for solid-state lighting. In such applications, large-area devices and low-cost of manufacturing will be major issues. We demonstrated that high performance multilayer white emitting PLEDs can be fabricated by using a blend of luminescent semiconducting polymers and organometallic complexes as the emission layer, and water-soluble (or ethanol-soluble) polymers/small molecules (for example, PVK-SO 3Li) as the hole injection/transport layer (HIL/HTL) and water-soluble (or ethanol-soluble) polymers/small molecules (for example, t-Bu-PBD-SO 3Na) as the electron injection/transport layer (EIL/HTL). Each layer is spin-cast sequentially from solutions. Illumination quality light is obtained with stable Commission Internationale d'Eclairage coordinates, stable color temperatures, and stable high color rendering indices, all close to those of "pure" white. The multilayer white-emitting PLEDs exhibit luminous efficiency of 21 cd/A, power efficiency of 6 lm/W at a current density of 23 mA/cm2 with luminance of 5.5 x 10 4 cd/m2 at 16 V. By using water-soluble (ethanol-soluble) polymers/small molecules as HIL/HTL and polymers/small molecules as EIL/ETL, the interfacial mixing problem is solved (the emissive polymer layer is soluble in organic solvents, but not in water/ ethanol). As a result, this device architecture and process technology can potentially be used for printing large-area multiplayer light sources and for other applications in "plastic" electronics. More important, the promise of producing large areas of high quality white light with low-cost manufacturing technology makes the white multilayer white-emitting PLEDs attractive for the development of solid state light sources.

  12. Cooperative cell motility during tandem locomotion of amoeboid cells

    PubMed Central

    Bastounis, Effie; Álvarez-González, Begoña; del Álamo, Juan C.; Lasheras, Juan C.; Firtel, Richard A.

    2016-01-01

    Streams of migratory cells are initiated by the formation of tandem pairs of cells connected head to tail to which other cells subsequently adhere. The mechanisms regulating the transition from single to streaming cell migration remain elusive, although several molecules have been suggested to be involved. In this work, we investigate the mechanics of the locomotion of Dictyostelium tandem pairs by analyzing the spatiotemporal evolution of their traction adhesions (TAs). We find that in migrating wild-type tandem pairs, each cell exerts traction forces on stationary sites (∼80% of the time), and the trailing cell reuses the location of the TAs of the leading cell. Both leading and trailing cells form contractile dipoles and synchronize the formation of new frontal TAs with ∼54-s time delay. Cells not expressing the lectin discoidin I or moving on discoidin I–coated substrata form fewer tandems, but the trailing cell still reuses the locations of the TAs of the leading cell, suggesting that discoidin I is not responsible for a possible chemically driven synchronization process. The migration dynamics of the tandems indicate that their TAs’ reuse results from the mechanical synchronization of the leading and trailing cells’ protrusions and retractions (motility cycles) aided by the cell–cell adhesions. PMID:26912787

  13. DNA Damage by Ionizing Radiation: Tandem Double Lesions by Charged Particles

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Wang, Dunyou; Dateo, Christopher E.

    2005-01-01

    Oxidative damages by ionizing radiation are the source of radiation-induced carcinogenesis, damage to the central nervous system, lowering of the immune response, as well as other radiation-induced damages to human health. Monte Carlo track simulations and kinetic modeling of radiation damages to the DNA employ available molecular and cellular data to simulate the biological effect of high and low LET radiation io the DNA. While the simulations predict single and double strand breaks and base damages, so far all complex lesions are the result of stochastic coincidence from independent processes. Tandem double lesions have not yet been taken into account. Unlike the standard double lesions that are produced by two separate attacks by charged particles or radicals, tandem double lesions are produced by one single attack. The standard double lesions dominate at the high dosage regime. On the other hand, tandem double lesions do not depend on stochastic coincidences and become important at the low dosage regime of particular interest to NASA. Tandem double lesions by hydroxyl radical attack of guanine in isolated DNA have been reported at a dosage of radiation as low as 10 Gy. The formation of two tandem base lesions was found to be linear with the applied doses, a characteristic of tandem lesions. However, tandem double lesions from attack by a charged particle have not been reported.

  14. A tandem mirror hybrid plume plasma propulsion facility

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Krueger, W. A.; Peng, S.; Urbahn, J.; Chang-Diaz, F. R.

    1988-01-01

    This paper discusses a novel concept in electrodeless plasma propulsion, in which the materials problems are ameliorated by an electrodeless magnetic confinement scheme borrowed from the tandem mirror approach to controlled thermonuclear fusion. The concept also features a two-stage magnetic nozzle with an annular hypersonic coaxial gas injector near the throat. The nozzle produces hybrid plume by the coaxial injection of hypersonic neutral gas, and the gas layer thus formed protects the material walls from the hot plasma and, through increased collisions, helps detach it from the diverging magnetic field. The tandem mirror plasma propulsion facility is capable of delivering a variable I(sp). The results of numerical simulation of this concept are presented together with those from an experimental tandem-mirror plasma propulsion device.

  15. Trace elements in organisms of different trophic groups in the White Sea

    NASA Astrophysics Data System (ADS)

    Budko, D. F.; Demina, L. L.; Martynova, D. M.; Gorshkova, O. M.

    2015-09-01

    Concentrations of trace elements (Fe, Mn, Cu, Pb, Ni, Cr, Cd, As, Co, and Se) have been studied in different trophic groups of organisms: primary producers (seston, presented mostly by phytoplankton), primary consumers (mesozooplankton, macrozooplankton, and bivalves), secondary consumers (predatory macrozooplankton and starfish), and consumers of higher trophic levels (fish species), inhabiting the coastal zone of Kandalaksha Bay and the White Sea (Cape Kartesh). The concentrations of elements differ significantly for the size groups of Sagitta elegans (zooplankton) and blue mussel Mytilus edulis, as well as for the bone and muscle tissues of studied fish species, Atlantic cod Gadus morhua marisalbi and Atlantic wolffish Anarhichas lupus. The concentrations of all the studied elements were lower among the primary consumers and producers, but increased again at higher trophic levels, from secondary consumers to tertiary consumers ("mesozooplankton → macrozooplankton Sagitta elegans" and "mussels → starfish"). Ni and Pb tended to decline through the food chains seston→…→cod and mesozooplankton→…→stickleback. Only the concentrations of Fe increased in all the trophic chains along with the increase of the trophic level.

  16. Highly Efficient Red and White Organic Light-Emitting Diodes with External Quantum Efficiency beyond 20% by Employing Pyridylimidazole-Based Metallophosphors.

    PubMed

    Miao, Yanqin; Tao, Peng; Wang, Kexiang; Li, Hongxin; Zhao, Bo; Gao, Long; Wang, Hua; Xu, Bingshe; Zhao, Qiang

    2017-11-01

    Two highly efficient red neutral iridium(III) complexes, Ir1 and Ir2, were rationally designed and synthesized by selecting two pyridylimidazole derivatives as the ancillary ligands. Both Ir1 and Ir2 show nearly the same photoluminescence emission with the maximum peak at 595 nm (shoulder band at about 638 nm) and achieve high solution quantum yields of up to 0.47 for Ir1 and 0.57 for Ir2. Employing Ir1 and Ir2 as emitters, the fabricated red organic light-emitting diodes (OLEDs) show outstanding performance with the maximum external quantum efficiency (EQE), current efficiency (CE), and power efficiency (PE) of 20.98%, 33.04 cd/A, and 33.08 lm/W for the Ir1-based device and 22.15%, 36.89 cd/A, and 35.85 lm/W for the Ir2-based device, respectively. Furthermore, using Ir2 as red emitter, a trichromatic hybrid white OLED, showing good warm white emission with low correlated color temperature of <2200 K under the voltage of 4-6 V, was fabricated successfully. The white device also realizes excellent device efficiencies with the maximum EQE, CE, and PE reaching 22.74%, 44.77 cd/A, and 46.89 lm/W, respectively. Such high electroluminescence performance for red and white OLEDs indicates that Ir1 and Ir2 as efficient red phosphors have great potential for future OLED displays and lightings applications.

  17. Monitoring Bilingualism: Pedagogical Implications of the Bilingual Tandem Analyser

    ERIC Educational Resources Information Center

    Schwienhorst, Klaus; Borgia, Alexandre

    2006-01-01

    Tandem learning is the collaborative learning partnership of two language learners with complementary language combinations, for example an Irish student learning German and a German student learning English. One of the major principles in tandem learning, apart from reciprocity and learner autonomy, is balanced bilingualism. While learners may…

  18. Biodegradation of hazardous waste using white rot fungus: Project planning and concept development document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luey, J.; Brouns, T.M.; Elliott, M.L.

    1990-11-01

    The white rot fungus Phanerochaete chrysosporium has been shown to effectively degrade pollutants such as trichlorophenol, polychlorinated biphenyls (PCBs), dioxins and other halogenated aromatic compounds. These refractory organic compounds and many others have been identified in the tank waste, groundwater and soil of various US Department of Energy (DOE) sites. The treatment of these refractory organic compounds has been identified as a high priority for DOE's Research, Development, Demonstration, Testing, and Evaluation (RDDT E) waste treatment programs. Unlike many bacteria, the white rot fungus P. chrysosporium is capable of degrading these types of refractory organics and may be valuable formore » the treatment of wastes containing multiple pollutants. The objectives of this project are to identify DOE waste problems amenable to white rot fungus treatment and to develop and demonstrate white rot fungus treatment process for these hazardous organic compounds. 32 refs., 6 figs., 7 tabs.« less

  19. White matter and cognition: making the connection

    PubMed Central

    Fields, R. Douglas

    2016-01-01

    Whereas the cerebral cortex has long been regarded by neuroscientists as the major locus of cognitive function, the white matter of the brain is increasingly recognized as equally critical for cognition. White matter comprises half of the brain, has expanded more than gray matter in evolution, and forms an indispensable component of distributed neural networks that subserve neurobehavioral operations. White matter tracts mediate the essential connectivity by which human behavior is organized, working in concert with gray matter to enable the extraordinary repertoire of human cognitive capacities. In this review, we present evidence from behavioral neurology that white matter lesions regularly disturb cognition, consider the role of white matter in the physiology of distributed neural networks, develop the hypothesis that white matter dysfunction is relevant to neurodegenerative disorders, including Alzheimer's disease and the newly described entity chronic traumatic encephalopathy, and discuss emerging concepts regarding the prevention and treatment of cognitive dysfunction associated with white matter disorders. Investigation of the role of white matter in cognition has yielded many valuable insights and promises to expand understanding of normal brain structure and function, improve the treatment of many neurobehavioral disorders, and disclose new opportunities for research on many challenging problems facing medicine and society. PMID:27512019

  20. High Performance Tandem Perovskite/Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Bag, Monojit; Page, Zachariah; Renna, Lawrence; Kim, Paul; Choi, Jaewon; Emrick, Todd; Venkataraman, D.; Russell, Thomas

    Combining perovskites with other inorganic materials, such as copper indium gallium diselenide (CIGS) or silicon, is enabling significant improvement in solar cell device performance. Here, we demonstrate a highly efficient hybrid tandem solar cell fabricated through a facile solution deposition approach to give a perovskite front sub-cell and a polymer:fullerene blend back sub-cell. This methodology eliminates the adverse effects of thermal annealing during perovskite fabrication on polymer solar cells. The record tandem solar cell efficiency of 15.96% is 40% greater than the corresponding perovskite-based single junction device and 65% greater than the polymer-based single junction device, while mitigating deleterious hysteresis effects often associated with perovskite solar cells. The hybrid tandem devices demonstrate the synergistic effects arising from the combination of perovskite and polymer-based materials for solar cells. This work was supported by the Department of Energy-supported Energy Frontier Research Center at the University of Massachusetts (DE-SC0001087). The authors acknowledge the W.M. Keck Electron Microscopy.

  1. Influences of wide-angle and multi-beam interference on the chromaticity and efficiency of top-emitting white organic light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Lingling; Zhou, Hongwei; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn

    Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using δ-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the usemore » of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.« less

  2. Flexible bottom-emitting white organic light-emitting diodes with semitransparent Ni/Ag/Ni anode.

    PubMed

    Koo, Ja-Ryong; Lee, Seok Jae; Lee, Ho Won; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Woo Young; Kim, Young Kwan

    2013-05-06

    We fabricated a flexible bottom-emitting white organic light-emitting diode (BEWOLED) with a structure of PET/Ni/Ag/Ni (3/6/3 nm)/ NPB (50 nm)/mCP (10 nm)/7% FIrpic:mCP (10 nm)/3% Ir(pq)(2) acac:TPBi (5 nm)/7% FIrpic:TPBi (5 nm)/TPBi (10 nm)/Liq (2 nm)/ Al (100 nm). To improve the performance of the BEWOLED, a multilayered metal stack anode of Ni/Ag/Ni treated with oxygen plasma for 60 sec was introduced into the OLED devices. The Ni/Ag/Ni anode effectively enhanced the probability of hole-electron recombination due to an efficient hole injection into and charge balance in an emitting layer. By comparing with a reference WOLED using ITO on glass, it is verified that the flexible BEWOLED showed a similar or better electroluminescence (EL) performance.

  3. rTANDEM, an R/Bioconductor package for MS/MS protein identification.

    PubMed

    Fournier, Frédéric; Joly Beauparlant, Charles; Paradis, René; Droit, Arnaud

    2014-08-01

    rTANDEM is an R/Bioconductor package that interfaces the X!Tandem protein identification algorithm. The package can run the multi-threaded algorithm on proteomic data files directly from R. It also provides functions to convert search parameters and results to/from R as well as functions to manipulate parameters and automate searches. An associated R package, shinyTANDEM, provides a web-based graphical interface to visualize and interpret the results. Together, those two packages form an entry point for a general MS/MS-based proteomic pipeline in R/Bioconductor. rTANDEM and shinyTANDEM are distributed in R/Bioconductor, http://bioconductor.org/packages/release/bioc/. The packages are under open licenses (GPL-3 and Artistice-1.0). frederic.fournier@crchuq.ulaval.ca or arnaud.droit@crchuq.ulaval.ca Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Thrust augmentation in tandem flapping foils by foil-wake interaction

    NASA Astrophysics Data System (ADS)

    Anderson, Erik; Lauder, George

    2006-11-01

    Propulsion by pitching and heaving airfoils and hydrofoils has been a focus of much research in the field of biologically inspired propulsion. Organisms that use this sort of propulsion are self-propelled, so it is difficult to use standard experimental metrics such as thrust and drag to characterize performance. We have constructed a flapping foil robot mounted in a flume on air-bearings that allows for the determination of self-propelled speed as a metric of performance. We have used a pair of these robots to examine the impact of an upstream flapping foil on a downstream flapping foil as might apply to tandem fins of a swimming organism or in-line swimming of schooling organisms. Self-propelled speed and a force transducer confirmed significant thrust augmentation for particular foil-to-foil spacings, phase differences, and flapping frequencies. Flow visualization shows the mechanism to be related to the effective angle of attack of the downstream foil due to the structure of the wake of the upstream foil. This confirms recent computational work and the hypotheses by early investigators of fish fluid dynamics.

  5. Novel Low Cost Organic Vapor Jet Printing of Striped High Efficiency Phosphorescent OLEDs for White Lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Hack

    In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing themore » efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or shaped

  6. Determination of low-molecular-weight organic acids in non-small cell lung cancer with a new liquid chromatography-tandem mass spectrometry method.

    PubMed

    Klupczynska, Agnieszka; Plewa, Szymon; Dyszkiewicz, Wojciech; Kasprzyk, Mariusz; Sytek, Natalia; Kokot, Zenon J

    2016-09-10

    As compared to other classes of metabolites, determination of organic acids is an underrepresented field in cancer research and till now there has been a lack of appropriate analytical procedure for determination of serum levels of organic acids potentially associated with cancer development. The aim of the study was to develop a new rapid liquid chromatography-tandem mass spectrometry method for the quantification of six low-molecular-weight organic acids in human serum and to apply this method in an analysis of samples collected from non-small cell lung cancer (NSCLC) patients and a matched control group. The samples were prepared by solid phase extraction (Clean-up CUQAX, UCT). Chromatography was conducted on a Synergi Hydro-RP column (Phenomenex) and a gradient run of 15min. Detection was performed using a negative multiple reaction monitoring mode. The calibration ranges were as follows: 0.24-38.42μmol/L for 2-hydroxybutyric acid, 0.09-17.23μmol/L for fumaric acid, 0.08-15.13μmol/L for glutaric acid, 0.11-2.22mmol/L for lactic acid, 0.39-30.98μmol/L for pyroglutamic acid, and 0.08-16.93μmol/L for succinic acid. Mean relative recovery range was 85.99-114.42% and the determined intra- and inter day coefficients of variation were ≤14%. Among the studied acids, pyroglutamic acid showed the best discriminating potential and enabled to identify accurately NSCLC patients and control subjects regardless of the cancer stage. Further investigations of serum organic acids may allow us to better understand the underlying mechanisms involved in NSCLC and develop novel means of its detection and treatment. The developed method may be also a valuable tool to study metabolic changes associated with other types of cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    DOE PAGES

    Bailie, Colin D.; Christoforo, M. Greyson; Mailoa, Jonathan P.; ...

    2014-12-23

    A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. Furthermore, this work paves the way for integrating perovskites into a low-costmore » and high-efficiency (>25%) tandem cell.« less

  8. Economic viability of thin-film tandem solar modules in the United States

    NASA Astrophysics Data System (ADS)

    Sofia, Sarah E.; Mailoa, Jonathan P.; Weiss, Dirk N.; Stanbery, Billy J.; Buonassisi, Tonio; Peters, I. Marius

    2018-05-01

    Tandem solar cells are more efficient but more expensive per unit area than established single-junction (SJ) solar cells. To understand when specific tandem architectures should be utilized, we evaluate the cost-effectiveness of different II-VI-based thin-film tandem solar cells and compare them to the SJ subcells. Levelized cost of electricity (LCOE) and energy yield are calculated for four technologies: industrial cadmium telluride and copper indium gallium selenide, and their hypothetical two-terminal (series-connected subcells) and four-terminal (electrically independent subcells) tandems, assuming record SJ quality subcells. Different climatic conditions and scales (residential and utility scale) are considered. We show that, for US residential systems with current balance-of-system costs, the four-terminal tandem has the lowest LCOE because of its superior energy yield, even though it has the highest US per watt (US W-1) module cost. For utility-scale systems, the lowest LCOE architecture is the cadmium telluride single junction, the lowest US W-1 module. The two-terminal tandem requires decreased subcell absorber costs to reach competitiveness over the four-terminal one.

  9. Race-specific molecular alterations correlate with differential outcomes for black and white endometrioid endometrial cancer patients.

    PubMed

    Bateman, Nicholas W; Dubil, Elizabeth A; Wang, Guisong; Hood, Brian L; Oliver, Julie M; Litzi, Tracy A; Gist, Glenn D; Mitchell, David A; Blanton, Brian; Phippen, Neil T; Tian, Chunqiao; Zahn, Christopher M; Cohn, David E; Havrilesky, Laura J; Berchuck, Andrew; Shriver, Craig D; Darcy, Kathleen M; Hamilton, Chad A; Conrads, Thomas P; Maxwell, G Larry

    2017-10-15

    The objective of this study was to identify molecular alterations associated with disease outcomes for white and black patients with endometrioid endometrial cancer (EEC). EEC samples from black (n = 17) and white patients (n = 13) were analyzed by proteomics (liquid chromatography-tandem mass spectrometry) and transcriptomics (RNA-seq). Coordinate alterations were validated with RNA-seq data from black (n = 49) and white patients (n = 216). Concordantly altered candidates were further tested for associations with race-specific progression-free survival (PFS) in black (n = 64) or white patients (n = 267) via univariate and multivariate Cox regression modeling and log-rank testing. Discovery analyses revealed significantly altered candidate proteins and transcripts between black and white patients, suggesting modulation of tumor cell viability in black patients and cell death signaling in black and white patients. Eighty-nine candidates were validated as altered between these patient cohorts, and a subset significantly correlated with differential PFS. White-specific PFS candidates included serpin family A member 4 (SERPINA4; hazard ratio [HR], 0.89; Wald P value = .02), integrin subunit α3 (ITGA3; HR, 0.76; P = .03), and Bet1 Golgi vesicular membrane trafficking protein like (BET1L; HR, 0.48; P = .04). Black-specific PFS candidates included family with sequence similarity 228 member B (FAM228B; HR, 0.13; P = .001) and HEAT repeat containing 6 (HEATR6; HR, 4.94; P = .047). Several candidates were also associated with overall survival (SERPINA4 and ITGA3) as well as PFS independent of disease stage, grade and myometrial invasion (SERPINA4, BET1L and FAM228B). This study has identified and validated molecular alterations in tumors from black and white EEC patients, including candidates significantly associated with altered disease outcomes within these patient cohorts. Cancer 2017;123:4004-12. © 2017 American Cancer Society. © 2017 American Cancer Society.

  10. White Matter Development during Adolescence as Shown by Diffusion MRI

    ERIC Educational Resources Information Center

    Schmithorst, Vincent J.; Yuan, Weihong

    2010-01-01

    Previous volumetric developmental MRI studies of the brain have shown white matter development continuing through adolescence and into adulthood. This review presents current findings regarding white matter development and organization from diffusion MRI studies. The general trend during adolescence (age 12-18 years) is towards increasing…

  11. Typing Clostridium difficile strains based on tandem repeat sequences

    PubMed Central

    2009-01-01

    Background Genotyping of epidemic Clostridium difficile strains is necessary to track their emergence and spread. Portability of genotyping data is desirable to facilitate inter-laboratory comparisons and epidemiological studies. Results This report presents results from a systematic screen for variation in repetitive DNA in the genome of C. difficile. We describe two tandem repeat loci, designated 'TR6' and 'TR10', which display extensive sequence variation that may be useful for sequence-based strain typing. Based on an investigation of 154 C. difficile isolates comprising 75 ribotypes, tandem repeat sequencing demonstrated excellent concordance with widely used PCR ribotyping and equal discriminatory power. Moreover, tandem repeat sequences enabled the reconstruction of the isolates' largely clonal population structure and evolutionary history. Conclusion We conclude that sequence analysis of the two repetitive loci introduced here may be highly useful for routine typing of C. difficile. Tandem repeat sequence typing resolves phylogenetic diversity to a level equivalent to PCR ribotypes. DNA sequences may be stored in databases accessible over the internet, obviating the need for the exchange of reference strains. PMID:19133124

  12. Mitochondrial dysfunction in alveolar and white matter developmental failure in premature infants

    PubMed Central

    Ten, Vadim S.

    2017-01-01

    At birth, some organs in premature infants are not developed enough to meet challenges of the extra-uterine life. Although growth and maturation continues after premature birth, postnatal organ development may become sluggish or even arrested, leading to organ dysfunction. There is no clear mechanistic concept of this postnatal organ developmental failure in premature neonates. This review introduces a concept-forming hypothesis: Mitochondrial bioenergetic dysfunction is a fundamental mechanism of organs maturation failure in premature infants. Data collected in support of this hypothesis are relevant to two major diseases of prematurity: white matter injury and broncho-pulmonary dysplasia. In these diseases, totally different clinical manifestations are defined by the same biological process, developmental failure of the main functional units—alveoli in the lungs and axonal myelination in the brain. Although molecular pathways regulating alveolar and white matter maturation differ, proper bioenergetic support of growth and maturation remains critical biological requirement for any actively developing organ. Literature analysis suggests that successful postnatal pulmonary and white matter development highly depends on mitochondrial function which can be inhibited by sublethal postnatal stress. In premature infants, sublethal stress results mostly in organ maturation failure without excessive cellular demise. PMID:27901512

  13. Mitochondrial dysfunction in alveolar and white matter developmental failure in premature infants.

    PubMed

    Ten, Vadim S

    2017-02-01

    At birth, some organs in premature infants are not developed enough to meet challenges of the extra-uterine life. Although growth and maturation continues after premature birth, postnatal organ development may become sluggish or even arrested, leading to organ dysfunction. There is no clear mechanistic concept of this postnatal organ developmental failure in premature neonates. This review introduces a concept-forming hypothesis: Mitochondrial bioenergetic dysfunction is a fundamental mechanism of organs maturation failure in premature infants. Data collected in support of this hypothesis are relevant to two major diseases of prematurity: white matter injury and broncho-pulmonary dysplasia. In these diseases, totally different clinical manifestations are defined by the same biological process, developmental failure of the main functional units-alveoli in the lungs and axonal myelination in the brain. Although molecular pathways regulating alveolar and white matter maturation differ, proper bioenergetic support of growth and maturation remains critical biological requirement for any actively developing organ. Literature analysis suggests that successful postnatal pulmonary and white matter development highly depends on mitochondrial function which can be inhibited by sublethal postnatal stress. In premature infants, sublethal stress results mostly in organ maturation failure without excessive cellular demise.

  14. Solution-processed parallel tandem polymer solar cells using silver nanowires as intermediate electrode.

    PubMed

    Guo, Fei; Kubis, Peter; Li, Ning; Przybilla, Thomas; Matt, Gebhard; Stubhan, Tobias; Ameri, Tayebeh; Butz, Benjamin; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2014-12-23

    Tandem architecture is the most relevant concept to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected tandem polymer solar cells (PSCs) have advanced rapidly during the past decade. In contrast, the development of parallel-connected tandem cells is lagging far behind due to the big challenge in establishing an efficient interlayer with high transparency and high in-plane conductivity. Here, we report all-solution fabrication of parallel tandem PSCs using silver nanowires as intermediate charge collecting electrode. Through a rational interface design, a robust interlayer is established, enabling the efficient extraction and transport of electrons from subcells. The resulting parallel tandem cells exhibit high fill factors of ∼60% and enhanced current densities which are identical to the sum of the current densities of the subcells. These results suggest that solution-processed parallel tandem configuration provides an alternative avenue toward high performance photovoltaic devices.

  15. Readiness for Change. White Paper

    ERIC Educational Resources Information Center

    Howley, Caitlin

    2012-01-01

    This white paper by ICF International's Caitlin Howley discusses commonalities and differences among various understandings of readiness and highlights conceptualizations of readiness for change in selected change models. How leaders can use such theories to best to prepare their organizations--and the people enlivening them--for new ways of…

  16. Effect of Stepwise Doping on Lifetime and Efficiency of Blue and White Phosphorescent Organic Light Emitting Diodes.

    PubMed

    Lee, Song Eun; Lee, Ho Won; Lee, Seok Jae; Koo, Ja-ryong; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Hye Jeong; Yoon, Seung Soo; Kim, Young Kwan

    2015-02-01

    We investigated a light emission mechanism of blue phosphorescent organic light emitting diodes (PHOLEDs), using a stepwise doping profile of 2, 8, and 14 wt.% within the emitting layer (EML). We fabricated several blue PHOLEDs with phosphorescent blue emitter iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,C2]picolinate doped in N,N'-dicarbazolyl-3,5-benzene as a p-type host material. A blue PHOLED with the highest doping concentration as part of the EML close to an electron transporting layer showed a maximum luminous efficiency of 20.74 cd/A, and a maximum external quantum efficiency of 10.52%. This can be explained by effective electron injection through a highly doped EML side. Additionally, a white OLED based on the doping profile was fabricated with two thin red EMLs within a blue EML maintaining a thickness of 30 nm for the entire EML. Keywords: Blue Phosphorescent Organic Light Emitting Diodes, Stepwise Doping Structure, Charge Trapping Effect.

  17. Flow field interactions between two tandem cyclists

    NASA Astrophysics Data System (ADS)

    Barry, Nathan; Burton, David; Sheridan, John; Thompson, Mark; Brown, Nicholas A. T.

    2016-12-01

    Aerodynamic drag is the primary resistive force acting on cyclists at racing speeds. Many events involve cyclists travelling in very close proximity. Previous studies have shown that interactions result in significant drag reductions for inline cyclists. However, the interaction between cyclist leg position (pedalling) and the vortical flow structures that contribute significantly to the drag on an isolated cyclist has not previously been quantified or described for tandem cyclists of varying separation. To this end, scale model cyclists were constructed for testing in a water channel for inline tandem configurations. Particle image velocimetry was used to capture time-averaged velocity fields around two tandem cyclists. Perhaps surprisingly, the wake of a trailing cyclist maintains strong similarity to the characteristic wake of a single cyclist despite a significant disturbance to the upstream flow. Together with streamwise velocity measurements through the wake and upstream of the trailing cyclist, this work supports previous findings, which showed that the trailing cyclist drag reduction is primarily due to upstream sheltering effects reducing the stagnation pressure on forward-facing surfaces.

  18. Efficient red, green, blue and white organic light-emitting diodes with same exciplex host

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hao; Wu, Szu-Wei; Huang, Chih-Wei; Hsieh, Chung-Tsung; Lin, Sung-En; Chen, Nien-Po; Chang, Hsin-Hua

    2016-03-01

    Recently, exciplex had drawn attention because of its potential for efficient electroluminescence or for use as a host in organic light-emitting diodes (OLEDs). In this study, four kinds of hole transport material/electron transport material combinations were examined to verify the formation of exciplex and the corresponding energy bandgaps. We successfully demonstrated that the combination of tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and 3,5,3‧,5‧-tetra(m-pyrid-3-yl)phenyl[1,1‧]biphenyl (BP4mPy) could form a stable exciplex emission with an adequate energy gap. Using exciplex as a host in red, green, and blue phosphorescent OLEDs with an identical trilayer architecture enabled effective energy transfer from exciplex to emitters, achieving corresponding efficiencies of 8.8, 14.1, and 15.8%. A maximum efficiency of 11.3% and stable emission was obtained in white OLEDs.

  19. Two-Dimensional Metal-Organic Layers as a Bright and Processable Phosphor for Fast White-Light Communication.

    PubMed

    Hu, Xuefu; Wang, Zi; Lin, Bangjiang; Zhang, Cankun; Cao, Lingyun; Wang, Tingting; Zhang, Jingzheng; Wang, Cheng; Lin, Wenbin

    2017-06-22

    A metal-organic layer (MOL) is a new type of 2D material that is derived from metal-organic frameworks (MOFs) by reducing one dimension to a single layer or a few layers. Tetraphenylethylene-based tetracarboxylate ligands (TCBPE), with aggregation-induced emission properties, were assembled into the first luminescent MOL by linking with Zr 6 O 4 (OH) 6 (H 2 O) 2 (HCO 2 ) 6 clusters. The emissive MOL can replace the lanthanide phosphors in white light emitting diodes (WLEDs) with remarkable processability, color rendering, and brightness. Importantly, the MOL-WLED exhibited a physical switching speed three times that of commercial WLEDs, which is crucial for visible-light communication (VLC), an alternative wireless communication technology to Wi-Fi and Bluetooth, by using room lighting to carry transmitted signals. The short fluorescence lifetime (2.6 ns) together with high quantum yield (50 %) of the MOL affords fast switching of the assembled WLEDs for efficient information encoding and transmission. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Detailed phenolic composition of Vidal grape pomace by ultrahigh-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Luo, Lanxin; Cui, Yan; Zhang, Shuting; Li, Lingxi; Suo, Hao; Sun, Baoshan

    2017-11-15

    Vidal Blanc grape (Vitis vinifera cv.) is the predominant white grape variety used for the production of icewine in China's Liaoning province. In this paper, the development and validation of the method by ultrahigh-performance liquid chromatography-tandem mass spectrometry has been performed for determination of the detailed phenolic composition in the skin, seed and stem of Vidal grapes. The validation of the method was realized by calculating the linearity, repeatability, precision, stability and the limits of detection (LOD) and quantification (LOQ) of standard solutions. All the curves exhibited good linearity (r 2 >0.9997) and the LOD and LOQ were in the range of 0.002-0.025 and 0.006-0.086μg/ml, respectively. Good repeatability (RSD<4.3%) and stability (RSD<3.7%) were also found. Results confirmed that the developed method was more effective and sensitive for simultaneous determination of the major phenolic compounds in Vidal grape pomace. The optimized and validated method of ultrahigh-performance liquid chromatography tandem two complementary techniques, fourier transform ion cyclotron resonance mass spectrometry and triple-quadrupole mass spectrometry, allowed to identify and quantify up to 35 phenolic compounds in Vidal grape pomace, which has, as far as we know, been reported this grapevine variety for the first time. Seeds, skins and stems exhibited different qualitative and quantitative phenolic profiles. These results provided useful information for recovery of phenolic antioxidants from different parts of icewine pomace. Copyright © 2017. Published by Elsevier B.V.

  1. [Polymorphic loci and polymorphism analysis of short tandem repeats within XNP gene].

    PubMed

    Liu, Qi-Ji; Gong, Yao-Qin; Guo, Chen-Hong; Chen, Bing-Xi; Li, Jiang-Xia; Guo, Yi-Shou

    2002-01-01

    To select polymorphic short tandem repeat markers within X-linked nuclear protein (XNP) gene, genomic clones which contain XNP gene were recognized by homologous analysis with XNP cDNA. By comparing the cDNA with genomic DNA, non-exonic sequences were identified, and short tandem repeats were selected from non-exonic sequences by using BCM search Launcher. Polymorphisms of the short tandem repeats in Chinese population were evaluated by PCR amplification and PAGE. Five short tandem repeats were identified from XNP gene, two of which were polymorphic. Four and 11 alleles were observed in Chinese population for XNPSTR1 and XNPSTR4, respectively. Heterozygosities were 47% for XNPSTR1 and 70% for XNPSTR4. XNPSTR1 and XNPSTR4 localized within 3' end and intron 10, respectively. Two polymorphic short tandem repeats have been identified within XNP gene and will be useful for linkage analysis and gene diagnosis of XNP gene.

  2. Low-Cost CdTe/Silicon Tandem Solar Cells

    DOE PAGES

    Tamboli, Adele C.; Bobela, David C.; Kanevce, Ana; ...

    2017-09-06

    Achieving higher photovoltaic efficiency in single-junction devices is becoming increasingly difficult, but tandem modules offer the possibility of significant efficiency improvements. By device modeling we show that four-terminal CdTe/Si tandem solar modules offer the prospect of 25%-30% module efficiency, and technoeconomic analysis predicts that these efficiency gains can be realized at costs per Watt that are competitive with CdTe and Si single junction alternatives. The cost per Watt of the modeled tandems is lower than crystalline silicon, but slightly higher than CdTe alone. But, these higher power modules reduce area-related balance of system costs, providing increased value especially in area-constrainedmore » applications. This avenue for high-efficiency photovoltaics enables improved performance on a near-term timeframe, as well as a path to further reduced levelized cost of electricity as module and cell processes continue to advance.« less

  3. Low-Cost CdTe/Silicon Tandem Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamboli, Adele C.; Bobela, David C.; Kanevce, Ana

    Achieving higher photovoltaic efficiency in single-junction devices is becoming increasingly difficult, but tandem modules offer the possibility of significant efficiency improvements. By device modeling we show that four-terminal CdTe/Si tandem solar modules offer the prospect of 25%-30% module efficiency, and technoeconomic analysis predicts that these efficiency gains can be realized at costs per Watt that are competitive with CdTe and Si single junction alternatives. The cost per Watt of the modeled tandems is lower than crystalline silicon, but slightly higher than CdTe alone. But, these higher power modules reduce area-related balance of system costs, providing increased value especially in area-constrainedmore » applications. This avenue for high-efficiency photovoltaics enables improved performance on a near-term timeframe, as well as a path to further reduced levelized cost of electricity as module and cell processes continue to advance.« less

  4. White perovskite based lighting devices.

    PubMed

    Bidikoudi, M; Fresta, E; Costa, R D

    2018-06-28

    Hybrid organic-inorganic and all-inorganic metal halide perovskites have been one of the most intensively studied materials during the last few years. In particular, research focusing on understanding how to tune the photoluminescence features and to apply perovskites to optoelectronic applications has led to a myriad of new materials featuring high photoluminescence quantum yields covering the whole visible range, as well as devices with remarkable performances. Having already established their successful incorporation in highly efficient solar cells, the next step is to tackle the challenges in solid-state lighting (SSL) devices. Here, the most prominent is the preparation of white-emitting devices. Herein, we have provided a comprehensive view of the route towards perovskite white lighting devices, including thin film light-emitting diodes (PeLEDs) and hybrid LEDs (HLEDs), using perovskite based color down-converting coatings. While synthesis and photoluminescence features are briefly discussed, we focus on highlighting the major achievements and limitations in white devices. Overall, we expect that this review will provide the reader a general overview of the current state of perovskite white SSL, paving the way towards new breakthroughs in the near future.

  5. White adipose tissue coloring by intermittent fasting.

    PubMed

    Kivelä, Riikka; Alitalo, Kari

    2017-11-01

    Intermittent fasting (IF) has been shown to promote metabolic health in several organisms. Two recent papers show that IF induces white adipose tissue beiging and increases thermogenesis, which improves metabolic health in mice.

  6. High efficient white organic light-emitting diodes with single emissive layer using phosphorescent red, green, and blue dopants

    NASA Astrophysics Data System (ADS)

    Kim, You-Hyun; Wai Cheah, Kok; Young Kim, Woo

    2013-07-01

    Phosphorescent white organic light-emitting diodes (PHWOLEDs) with single emissive layer were fabricated by co-doping phosphorescent blue, green, and red emitters with different concentrations. WOLEDs using Ir(piq)3 and Ir(ppy)3 as red and green dopants along with 8% of Firpic as blue dopant with host materials of 4CzPBP in the emissive layer were compared under various doping ratio between Ir(piq)3 and Ir(ppy)3. Triplet-triplet Dexter energy transfer in single emissive PHWOLEDs including three primary colors was saturated from higher triplet energy levels to lower triplet energy levels directly.

  7. Partners in crime: The role of tandem modules in gene transcription.

    PubMed

    Sharma, Rajal; Zhou, Ming-Ming

    2015-09-01

    Histones and their modifications play an important role in the regulation of gene transcription. Numerous modifications, such as acetylation, phosphorylation, methylation, ubiquitination, and SUMOylation, have been described. These modifications almost always co-occur and thereby increase the combinatorial complexity of post-translational modification detection. The domains that recognize these histone modifications often occur in tandem in the context of larger proteins and complexes. The presence of multiple modifications can positively or negatively regulate the binding of these tandem domains, influencing downstream cellular function. Alternatively, these tandem domains can have novel functions from their independent parts. Here we summarize structural and functional information known about major tandem domains and their histone binding properties. An understanding of these interactions is key for the development of epigenetic therapy. © 2015 The Protein Society.

  8. The genetic basis of white tigers.

    PubMed

    Xu, Xiao; Dong, Gui-Xin; Hu, Xue-Song; Miao, Lin; Zhang, Xue-Li; Zhang, De-Lu; Yang, Han-Dong; Zhang, Tian-You; Zou, Zheng-Ting; Zhang, Ting-Ting; Zhuang, Yan; Bhak, Jong; Cho, Yun Sung; Dai, Wen-Tao; Jiang, Tai-Jiao; Xie, Can; Li, Ruiqiang; Luo, Shu-Jin

    2013-06-03

    The white tiger, an elusive Bengal tiger (Panthera tigris tigris) variant with white fur and dark stripes, has fascinated humans for centuries ever since its discovery in the jungles of India. Many white tigers in captivity are inbred in order to maintain this autosomal recessive trait and consequently suffer some health problems, leading to the controversial speculation that the white tiger mutation is perhaps a genetic defect. However, the genetic basis of this phenotype remains unknown. Here, we conducted genome-wide association mapping with restriction-site-associated DNA sequencing (RAD-seq) in a pedigree of 16 captive tigers segregating at the putative white locus, followed by whole-genome sequencing (WGS) of the three parents. Validation in 130 unrelated tigers identified the causative mutation to be an amino acid change (A477V) in the transporter protein SLC45A2. Three-dimensional homology modeling suggests that the substitution may partially block the transporter channel cavity and thus affect melanogenesis. We demonstrate the feasibility of combining RAD-seq and WGS to rapidly map exotic variants in nonmodel organisms. Our results identify the basis of the longstanding white tiger mystery as the same gene underlying color variation in human, horse, and chicken and highlight its significance as part of the species' natural polymorphism that is viable in the wild. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Repeat-containing protein effectors of plant-associated organisms

    PubMed Central

    Mesarich, Carl H.; Bowen, Joanna K.; Hamiaux, Cyril; Templeton, Matthew D.

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms. PMID:26557126

  10. Repeat-containing protein effectors of plant-associated organisms.

    PubMed

    Mesarich, Carl H; Bowen, Joanna K; Hamiaux, Cyril; Templeton, Matthew D

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.

  11. Inorganic arsenic contents in ready-to-eat rice products and various Korean rice determined by a highly sensitive gas chromatography-tandem mass spectrometry.

    PubMed

    Jung, Mun Yhung; Kang, Ju Hee; Jung, Hyun Jeong; Ma, Sang Yong

    2018-02-01

    Rice and rice products have been reported to contain high contents of toxic inorganic arsenic (iAs). The inorganic arsenic contents in microwavable ready-to-eat rice products (n=30) and different types of Korean rice (n=102) were determined by a gas chromatography-tandem mass spectrometry (GC-MS/MS). The method showed low limit of detection (0.015pg), high intra- and inter-day repeatability (<7.3%, RSD), and recovery rates (90-117%). The mean iAs content in the ready-to-eat rice products was 59μgkg -1 (dry weight basis). The mean iAs contents in polished white, brown, black, and waxy rice were 65, 109, 91, and 66μgkg -1 , respectively. The percentages of ready-to-eat rice products, white, brown, black, and waxy rice containing iAs over the maximum level (100μgkg -1 ) set by EU for the infant foods were 17, 4, 70, 36 and 0%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. White matter organization in cervical spinal cord relates differently to age and control of grip force in healthy subjects.

    PubMed

    Lindberg, Påvel G; Feydy, Antoine; Maier, Marc A

    2010-03-17

    Diffusion tensor imaging (DTI) can be used to elucidate relations between CNS structure and function. We hypothesized that the degree of spinal white matter organization relates to the accuracy of control of grip force. Healthy subjects of different age were studied using DTI and visuomotor tracking of precision grip force. The latter is a prime component of manual dexterity. A regional analysis of spinal white matter [fractional anisotropy (FA)] across multiple cervical levels (C2-C3, C4-C5, and C6-C7) and in different regions of interest (left and right lateral or medial spinal cord) was performed. FA was highest at the C2-C3 level, higher on the right than the left side, and higher in the lateral than in the medial spinal cord (p < 0.001). FA of whole cervical spinal cord (C2-C7) was lower in subjects with high tracking error (r = -0.56, p = 0.004) and decreased with age (r = -0.63, p = 0.001). A multiple regression analysis revealed an independent contribution of each predictor (semipartial correlations: age, r = -0.55, p < 0.001; tracking error, r = -0.49, p = 0.003). The closest relation between FA and tracking error was found at the C6-C7 level in the lateral spinal cord, in which the corticospinal tract innervates spinal circuitry controlling hand and digit muscles. FA of the medial spinal cord correlated consistently with age across all cervical levels, whereas FA of the lateral spinal cord did not. The results suggest (1) a functionally relevant specialization of lateral spinal cord white matter and (2) an increased sensitivity to age-related decline in medial spinal cord white matter in healthy subjects.

  13. White Students Reflecting on Whiteness: Understanding Emotional Responses

    PubMed Central

    Todd, Nathan R.; Spanierman, Lisa B.; Aber, Mark S.

    2010-01-01

    In the present investigation, the authors explored potential predictors of White students’ general emotional responses after they reflected on their Whiteness in a semi-structured interview (n = 88) or written reflection (n = 187). Specifically, the authors examined how color-blindness (i.e., awareness of White privilege) and racial affect (i.e., White empathy, White guilt, and White fear), assessed before the interview or written reflection, may predict positive and negative emotional responses, assessed immediately following the interview or written reflection. Furthermore, the authors considered whether affective costs of racism to Whites moderated the association between racial color-blindness and general positive and negative emotional responses of White students. Findings indicated that affective costs of racism moderated associations between racial color-blindness and general emotional responses. Specifically, White fear moderated associations for the written reflection group whereas White empathy moderated an association in the interview. White guilt did not moderate, but instead directly predicted a negative emotional response in the written reflection group. Findings suggest that the interaction between racial color-blindness and racial affect is important when predicting students’ emotional responses to reflecting on their Whiteness. Implications for educators and administrators are discussed. PMID:20657811

  14. The Embeddedness of White Fragility within White Pre-Service Principals' Reflections on White Privilege

    ERIC Educational Resources Information Center

    Hines, Mack T., III

    2016-01-01

    This study analyzes the prevalence of white fragility within the six white, pre-service principals' online responses to readings about white privilege. Six white, pre-service principals were asked to provide commentary to class readings on the relevance of white privilege to their preparation for future positions as principals. The findings showed…

  15. Perovskite-perovskite tandem photovoltaics with optimized band gaps

    NASA Astrophysics Data System (ADS)

    Eperon, Giles E.; Leijtens, Tomas; Bush, Kevin A.; Prasanna, Rohit; Green, Thomas; Wang, Jacob Tse-Wei; McMeekin, David P.; Volonakis, George; Milot, Rebecca L.; May, Richard; Palmstrom, Axel; Slotcavage, Daniel J.; Belisle, Rebecca A.; Patel, Jay B.; Parrott, Elizabeth S.; Sutton, Rebecca J.; Ma, Wen; Moghadam, Farhad; Conings, Bert; Babayigit, Aslihan; Boyen, Hans-Gerd; Bent, Stacey; Giustino, Feliciano; Herz, Laura M.; Johnston, Michael B.; McGehee, Michael D.; Snaith, Henry J.

    2016-11-01

    We demonstrate four- and two-terminal perovskite-perovskite tandem solar cells with ideally matched band gaps. We develop an infrared-absorbing 1.2-electron volt band-gap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3, that can deliver 14.8% efficiency. By combining this material with a wider-band gap FA0.83Cs0.17Pb(I0.5Br0.5)3 material, we achieve monolithic two-terminal tandem efficiencies of 17.0% with >1.65-volt open-circuit voltage. We also make mechanically stacked four-terminal tandem cells and obtain 20.3% efficiency. Notably, we find that our infrared-absorbing perovskite cells exhibit excellent thermal and atmospheric stability, not previously achieved for Sn-based perovskites. This device architecture and materials set will enable “all-perovskite” thin-film solar cells to reach the highest efficiencies in the long term at the lowest costs.

  16. Identification and High-Resolution Imaging of α-Tocopherol from Human Cells to Whole Animals by TOF-SIMS Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bruinen, Anne L.; Fisher, Gregory L.; Balez, Rachelle; van der Sar, Astrid M.; Ooi, Lezanne; Heeren, Ron M. A.

    2018-06-01

    A unique method for identification of biomolecular components in different biological specimens, while preserving the capability for high speed 2D and 3D molecular imaging, is employed to investigate cellular response to oxidative stress. The employed method enables observing the distribution of the antioxidant α-tocopherol and other molecules in cellular structures via time-of-flight secondary ion mass spectrometry (TOF-SIMS (MS1)) imaging in parallel with tandem mass spectrometry (MS2) imaging, collected simultaneously. The described method is employed to examine a network formed by neuronal cells differentiated from human induced pluripotent stem cells (iPSCs), a model for investigating human neurons in vitro. The antioxidant α-tocopherol is identified in situ within different cellular layers utilizing a 3D TOF-SIMS tandem MS imaging analysis. As oxidative stress also plays an important role in mediating inflammation, the study was expanded to whole body tissue sections of M. marinum-infected zebrafish, a model organism for tuberculosis. The TOF-SIMS tandem MS imaging results reveal an increased presence of α-tocopherol in response to the pathogen. [Figure not available: see fulltext.

  17. Circulating thyroid hormones and associated metabolites in white whales (Delphinapterus leucas) determined using isotope-dilution mass spectrometry.

    PubMed

    Hansen, Martin; Villanger, Gro D; Bechshoft, Thea; Levin, Milton; Routti, Heli; Kovacs, Kit M; Lydersen, Christian

    2017-07-01

    Blood was sampled from nine free-ranging white whales (beluga whale, Delphinapterus leucas) from Svalbard, Norway during the summers of 2013 and 2014. Total concentrations of eleven thyroid hormones and metabolites were measured in serum using a novel liquid chromatography tandem mass spectrometry analytical method. Measurements of these compounds in plasma gave the same results as in serum. The three hormones found in highest concentrations were 3,3',5-triiodothyronine (T 3 ), 3,3',5'-triiodothyronine (rT 3 ) and thyroxine (T 4 ). Traces of associated metabolites were also found. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Two-state dynamics of the SH3-SH2 tandem of Abl kinase and the allosteric role of the N-cap.

    PubMed

    Corbi-Verge, Carles; Marinelli, Fabrizio; Zafra-Ruano, Ana; Ruiz-Sanz, Javier; Luque, Irene; Faraldo-Gómez, José D

    2013-09-03

    The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3-SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3-SH2 connector, which involve a phosphorylation site. We also show that the SH3-SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3-SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization.

  19. TandEM: Titan and Enceladus mission

    USGS Publications Warehouse

    Coustenis, A.; Atreya, S.K.; Balint, T.; Brown, R.H.; Dougherty, M.K.; Ferri, F.; Fulchignoni, M.; Gautier, D.; Gowen, R.A.; Griffith, C.A.; Gurvits, L.I.; Jaumann, R.; Langevin, Y.; Leese, M.R.; Lunine, J.I.; McKay, C.P.; Moussas, X.; Muller-Wodarg, I.; Neubauer, F.; Owen, T.C.; Raulin, F.; Sittler, E.C.; Sohl, F.; Sotin, Christophe; Tobie, G.; Tokano, T.; Turtle, E.P.; Wahlund, J.-E.; Waite, J.H.; Baines, K.H.; Blamont, J.; Coates, A.J.; Dandouras, I.; Krimigis, T.; Lellouch, E.; Lorenz, R.D.; Morse, A.; Porco, C.C.; Hirtzig, M.; Saur, J.; Spilker, T.; Zarnecki, J.C.; Choi, E.; Achilleos, N.; Amils, R.; Annan, P.; Atkinson, D.H.; Benilan, Y.; Bertucci, C.; Bezard, B.; Bjoraker, G.L.; Blanc, M.; Boireau, L.; Bouman, J.; Cabane, M.; Capria, M.T.; Chassefiere, E.; Coll, P.; Combes, M.; Cooper, J.F.; Coradini, A.; Crary, F.; Cravens, T.; Daglis, I.A.; de Angelis, E.; De Bergh, C.; de Pater, I.; Dunford, C.; Durry, G.; Dutuit, O.; Fairbrother, D.; Flasar, F.M.; Fortes, A.D.; Frampton, R.; Fujimoto, M.; Galand, M.; Grasset, O.; Grott, M.; Haltigin, T.; Herique, A.; Hersant, F.; Hussmann, H.; Ip, W.; Johnson, R.; Kallio, E.; Kempf, S.; Knapmeyer, M.; Kofman, W.; Koop, R.; Kostiuk, T.; Krupp, N.; Kuppers, M.; Lammer, H.; Lara, L.-M.; Lavvas, P.; Le, Mouelic S.; Lebonnois, S.; Ledvina, S.; Li, Ji; Livengood, T.A.; Lopes, R.M.; Lopez-Moreno, J. -J.; Luz, D.; Mahaffy, P.R.; Mall, U.; Martinez-Frias, J.; Marty, B.; McCord, T.; Salvan, C.M.; Milillo, A.; Mitchell, D.G.; Modolo, R.; Mousis, O.; Nakamura, M.; Neish, Catherine D.; Nixon, C.A.; Mvondo, D.N.; Orton, G.; Paetzold, M.; Pitman, J.; Pogrebenko, S.; Pollard, W.; Prieto-Ballesteros, O.; Rannou, P.; Reh, K.; Richter, L.; Robb, F.T.; Rodrigo, R.; Rodriguez, S.; Romani, P.; Bermejo, M.R.; Sarris, E.T.; Schenk, P.; Schmitt, B.; Schmitz, N.; Schulze-Makuch, D.; Schwingenschuh, K.; Selig, A.; Sicardy, B.; Soderblom, L.; Spilker, L.J.; Stam, D.; Steele, A.; Stephan, K.; Strobel, D.F.; Szego, K.; Szopa,

    2009-01-01

    TandEM was proposed as an L-class (large) mission in response to ESA’s Cosmic Vision 2015–2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini–Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini–Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (Montgolfière) and possibly several landing probes to be delivered through the atmosphere.

  20. TandEM: Titan and Enceladus mission

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Atreya, S. K.; Balint, T.; Brown, R. H.; Dougherty, M. K.; Ferri, F.; Fulchignoni, M.; Gautier, D.; Gowen, R. A.; Griffith, C. A.; Gurvits, L. I.; Jaumann, R.; Langevin, Y.; Leese, M. R.; Lunine, J. I.; McKay, C. P.; Moussas, X.; Müller-Wodarg, I.; Neubauer, F.; Owen, T. C.; Raulin, F.; Sittler, E. C.; Sohl, F.; Sotin, C.; Tobie, G.; Tokano, T.; Turtle, E. P.; Wahlund, J.-E.; Waite, J. H.; Baines, K. H.; Blamont, J.; Coates, A. J.; Dandouras, I.; Krimigis, T.; Lellouch, E.; Lorenz, R. D.; Morse, A.; Porco, C. C.; Hirtzig, M.; Saur, J.; Spilker, T.; Zarnecki, J. C.; Choi, E.; Achilleos, N.; Amils, R.; Annan, P.; Atkinson, D. H.; Bénilan, Y.; Bertucci, C.; Bézard, B.; Bjoraker, G. L.; Blanc, M.; Boireau, L.; Bouman, J.; Cabane, M.; Capria, M. T.; Chassefière, E.; Coll, P.; Combes, M.; Cooper, J. F.; Coradini, A.; Crary, F.; Cravens, T.; Daglis, I. A.; de Angelis, E.; de Bergh, C.; de Pater, I.; Dunford, C.; Durry, G.; Dutuit, O.; Fairbrother, D.; Flasar, F. M.; Fortes, A. D.; Frampton, R.; Fujimoto, M.; Galand, M.; Grasset, O.; Grott, M.; Haltigin, T.; Herique, A.; Hersant, F.; Hussmann, H.; Ip, W.; Johnson, R.; Kallio, E.; Kempf, S.; Knapmeyer, M.; Kofman, W.; Koop, R.; Kostiuk, T.; Krupp, N.; Küppers, M.; Lammer, H.; Lara, L.-M.; Lavvas, P.; Le Mouélic, S.; Lebonnois, S.; Ledvina, S.; Li, J.; Livengood, T. A.; Lopes, R. M.; Lopez-Moreno, J.-J.; Luz, D.; Mahaffy, P. R.; Mall, U.; Martinez-Frias, J.; Marty, B.; McCord, T.; Menor Salvan, C.; Milillo, A.; Mitchell, D. G.; Modolo, R.; Mousis, O.; Nakamura, M.; Neish, C. D.; Nixon, C. A.; Nna Mvondo, D.; Orton, G.; Paetzold, M.; Pitman, J.; Pogrebenko, S.; Pollard, W.; Prieto-Ballesteros, O.; Rannou, P.; Reh, K.; Richter, L.; Robb, F. T.; Rodrigo, R.; Rodriguez, S.; Romani, P.; Ruiz Bermejo, M.; Sarris, E. T.; Schenk, P.; Schmitt, B.; Schmitz, N.; Schulze-Makuch, D.; Schwingenschuh, K.; Selig, A.; Sicardy, B.; Soderblom, L.; Spilker, L. J.; Stam, D.; Steele, A.; Stephan, K.; Strobel, D. F.; Szego, K.; Szopa, C.; Thissen, R.; Tomasko, M. G.; Toublanc, D.; Vali, H.; Vardavas, I.; Vuitton, V.; West, R. A.; Yelle, R.; Young, E. F.

    2009-03-01

    TandEM was proposed as an L-class (large) mission in response to ESA’s Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (Montgolfière) and possibly several landing probes to be delivered through the atmosphere.

  1. Optimizing a tandem disk model

    NASA Astrophysics Data System (ADS)

    Healey, J. V.

    1983-08-01

    The optimum values of the solidity ratio, tip speed ratio (TSR), and the preset angle of attack, the corresponding distribution, and the breakdown mechanism for a tandem disk model for a crosswind machine such as a Darrieus are examined analytically. Equations are formulated for thin blades with zero drag in consideration of two plane rectangular disks, both perpendicular to the wind flow. Power coefficients are obtained for both disks and comparisons are made between a single-disk system and a two-disk system. The power coefficient for the tandem disk model is shown to be a sum of the coefficients of the individual disks, with a maximum value of twice the Betz limit at an angle of attack of -1 deg and the TSR between 4-7. The model, applied to the NACA 0012 profile, gives a maximum power coefficient of 0.967 with a solidity ratio of 0.275 and highly limited ranges for the angle of attack and TSR.

  2. The use of white-rot fungi as active biofilters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun-Luellemann, A.; Johannes, C.; Majcherczyk, A.

    1995-12-31

    White-rot fungi, growing on lignocellulosic substrates, have been successfully used as active organisms in biofilters. Filters using these fungi have a very high biological active surface area, allowing for high degrees of retention, a comparatively low pressure drop, and a high physical stability. The unspecific action of the extracellular enzymes of the white-rot fungi allows for the degradation of a wide variety of substances by the same organism. Degradation of several compounds in the gas phase by the white-rot fungi Trametes versicolor, Pleurotus ostreatus, Bjerkandera adusta, and Phanerochaete chrysosporium was tested. Among the aromatic solvents, styrene was the compound thatmore » was most readily degraded, followed by ethylbenzene, xylenes, and toluene. Tetrahydrofuran and dichloromethane were also degraded, whereas dioxane could not be attacked by fungi under the conditions used. Acrylonitrile and aniline were degraded very well, whereas pyridine was resistant to degradation. The process for removing styrene is now in the scaling-up stage.« less

  3. Dynamics of tandem bubble interaction in a microfluidic channel

    PubMed Central

    Yuan, Fang; Sankin, Georgy; Zhong, Pei

    2011-01-01

    The dynamics of tandem bubble interaction in a microfluidic channel (800 × 21 μm, W × H) have been investigated using high-speed photography, with resultant fluid motion characterized by particle imaging velocimetry. A single or tandem bubble is produced reliably via laser absorption by micron-sized gold dots (6 μm in diameter with 40 μm in separation distance) coated on a glass surface of the microfluidic channel. Using two pulsed Nd:YAG lasers at λ = 1064 nm and ∼10 μJ/pulse, the dynamics of tandem bubble interaction (individual maximum bubble diameter of 50 μm with a corresponding collapse time of 5.7 μs) are examined at different phase delays. In close proximity (i.e., interbubble distance = 40 μm or γ = 0.8), the tandem bubbles interact strongly with each other, leading to asymmetric deformation of the bubble walls and jet formation, as well as the production of two pairs of vortices in the surrounding fluid rotating in opposite directions. The direction and speed of the jet (up to 95 m/s), as well as the orientation and strength of the vortices can be varied by adjusting the phase delay. PMID:22088007

  4. Dynamics of tandem bubble interaction in a microfluidic channel.

    PubMed

    Yuan, Fang; Sankin, Georgy; Zhong, Pei

    2011-11-01

    The dynamics of tandem bubble interaction in a microfluidic channel (800  ×  21 μm, W × H) have been investigated using high-speed photography, with resultant fluid motion characterized by particle imaging velocimetry. A single or tandem bubble is produced reliably via laser absorption by micron-sized gold dots (6 μm in diameter with 40 μm in separation distance) coated on a glass surface of the microfluidic channel. Using two pulsed Nd:YAG lasers at λ = 1064 nm and ∼10 μJ/pulse, the dynamics of tandem bubble interaction (individual maximum bubble diameter of 50 μm with a corresponding collapse time of 5.7 μs) are examined at different phase delays. In close proximity (i.e., interbubble distance = 40 μm or γ = 0.8), the tandem bubbles interact strongly with each other, leading to asymmetric deformation of the bubble walls and jet formation, as well as the production of two pairs of vortices in the surrounding fluid rotating in opposite directions. The direction and speed of the jet (up to 95 m/s), as well as the orientation and strength of the vortices can be varied by adjusting the phase delay.

  5. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    NASA Astrophysics Data System (ADS)

    Minárik, Stanislav

    2015-08-01

    A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensity acts on ions in any stage. In general, non-relativistic dynamics is used for the description of the ion transport in tandem accelerator. Energies of accelerated ions are too low and relativistic effects cannot be commonly observed by standard experimental technique. Estimation of possible relativistic correction of ion trajectories is therefore only a matter of calculation. In this note, we briefly present such calculation. Our aim is to show how using the relativistic dynamics modifies the particles trajectory in tandem type accelerator and what parameters determine this modification.

  6. The Hidden Curriculum of Whiteness: White Teachers, White Territory, and White Community.

    ERIC Educational Resources Information Center

    Allen, Ricky Lee

    This paper suggests that space and spatiality are major features of racial identity and the formation of student resistance. It brings together critical studies of "Whiteness," human territoriality, and theories of resistance in education. The problems between white teachers and students of color can be understood better through a combination of…

  7. Next generation offline approaches to trace organic compound speciation: Approaching comprehensive speciation with soft ionization and very high resolution tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Khare, P.; Marcotte, A.; Sheu, R.; Ditto, J.; Gentner, D. R.

    2017-12-01

    Intermediate- and semi-volatile organic compounds (IVOCs and SVOCs) have high secondary organic aerosol (SOA) yields, as well as significant ozone formation potentials. Yet, their emission sources and oxidation pathways remain largely understudied due to limitations in current analytical capabilities. Online mass spectrometers are able to collect real time data but their limited mass resolving power renders molecular level characterization of IVOCs and SVOCs from the unresolved complex mixture unfeasible. With proper sampling techniques and powerful analytical instrumentation, our offline tandem mass spectrometry (i.e. MS×MS) techniques provide molecular-level and structural identification over wide polarity and volatility ranges. We have designed a novel analytical system for offline analysis of gas-phase SOA precursors collected on custom-made multi-bed adsorbent tubes. Samples are desorbed into helium via a gradual temperature ramp and sample flow is split equally for direct-MS×MS analysis and separation via gas chromatography (GC). The effluent from GC separation is split again for analysis via atmospheric pressure chemical ionization quadrupole time-of-flight mass spectrometry (APCI-Q×TOF) and traditional electron ionization mass spectrometry (EI-MS). The compounds for direct-MS×MS analysis are delivered via a transfer line maintained at 70ºC directly to APCI-Q×TOF, thus preserving the molecular integrity of thermally-labile, or other highly-reactive, organic compounds. Both our GC-MS×MS and direct-MS×MS analyses report high accuracy parent ion masses as well as information on molecular structure via MS×MS, which together increase the resolution of unidentified complex mixtures. We demonstrate instrument performance and present preliminary results from urban atmospheric samples collected from New York City with a wide range of compounds including highly-functionalized organic compounds previously understudied in outdoor air. Our work offers new

  8. Determination of ochratoxin A and T-2 toxin in alcoholic beverages by hollow fiber liquid phase microextraction and ultra high-pressure liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Romero-González, R; Frenich, A Garrido; Vidal, J L Martínez; Aguilera-Luiz, M M

    2010-06-30

    A new method for the determination of ochratoxin A and T-2 toxin in alcoholic beverages (wine and beer) by hollow fiber liquid microextraction was optimized. The extraction step was followed by ultra high-pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The extraction procedure was based on the extraction of mycotoxins from the sample to the organic solvent (1-octanol) immobilized in the fiber, and afterwards, they were desorbed in a mixture of acetonitrile/water (80:20, v/v) at pH 7 prior to chromatographic determination. Different variables affecting the extraction process such as organic solvent, salt content, extraction time and desorption solution were studied. The developed method was validated in wine and beer, using white wine and alcoholic beer as representative matrices for both types of samples. Relative recoveries higher than 70% were obtained for the selected mycotoxins. Good linearity (R(2)>0.993) was obtained and quantification limits (0.02-0.09 microg L(-1)) below European regulatory levels were achieved. Repeatability, expressed as relative standard deviation, was always lower than 12%, whereas interday precision was lower than 21%. The proposed method was applied to the analysis of several types of wines and beers and ochratoxin A was detected in a rosé wine at 1.1 microg L(-1). Copyright 2010 Elsevier B.V. All rights reserved.

  9. Ultra-Thin, Triple-Bandgap GaInP/GaAs/GaInAs Monolithic Tandem Solar Cells

    NASA Technical Reports Server (NTRS)

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, Sarah; Moriarty, T.; hide

    2007-01-01

    The performance of state-of-the-art, series-connected, lattice-matched (LM), triple-junction (TJ), III-V tandem solar cells could be improved substantially (10-12%) by replacing the Ge bottom subcell with a subcell having a bandgap of approx.1 eV. For the last several years, research has been conducted by a number of organizations to develop approx.1-eV, LM GaInAsN to provide such a subcell, but, so far, the approach has proven unsuccessful. Thus, the need for a high-performance, monolithically integrable, 1-eV subcell for TJ tandems has remained. In this paper, we present a new TJ tandem cell design that addresses the above-mentioned problem. Our approach involves inverted epitaxial growth to allow the monolithic integration of a lattice-mismatched (LMM) approx.1- eV GaInAs/GaInP double-heterostructure (DH) bottom subcell with LM GaAs (middle) and GaInP (top) upper subcells. A transparent GaInP compositionally graded layer facilitates the integration of the LM and LMM components. Handle-mounted, ultra-thin device fabrication is a natural consequence of the inverted-structure approach, which results in a number of advantages, including robustness, potential low cost, improved thermal management, incorporation of back-surface reflectors, and possible reclamation/reuse of the parent crystalline substrate for further cost reduction. Our initial work has concerned GaInP/GaAs/GaInAs tandem cells grown on GaAs substrates. In this case, the 1- eV GaInAs experiences 2.2% compressive LMM with respect to the substrate. Specially designed GaInP graded layers are used to produce 1-eV subcells with performance parameters nearly equaling those of LM devices with the same bandgap (e.g., LM, 1-eV GaInAsP grown on InP). Previously, we reported preliminary ultra-thin tandem devices (0.237 cm2) with NREL-confirmed efficiencies of 31.3% (global spectrum, one sun) (1), 29.7% (AM0 spectrum, one sun) (2), and 37.9% (low-AOD direct spectrum, 10.1 suns) (3), all at 25 C. Here, we include

  10. Solution-processed small molecules as mixed host for highly efficient blue and white phosphorescent organic light-emitting diodes.

    PubMed

    Fu, Qiang; Chen, Jiangshan; Shi, Changsheng; Ma, Dongge

    2012-12-01

    The widely used hole-transporting host 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA) blended with either a hole-transporting or an electron-transporting small-molecule material as a mixed-host was investigated in the phosphorescent organic light-emitting diodes (OLEDs) fabricated by the low-cost solution-process. The performance of the solution-processed OLEDs was found to be very sensitive to the composition of the mixed-host systems. The incorporation of the hole-transporting 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) into TCTA as the mixed-host was demonstrated to greatly reduce the driving voltage and thus enhance the efficiency due to the improvement of hole injection and transport. On the basis of the mixed-host of TCTA:TAPC, we successfully fabricated low driving voltage and high efficiency blue and white phosphorescent OLEDs. A maximum forward viewing current efficiency of 32.0 cd/A and power efficiency of 25.9 lm/W were obtained in the optimized mixed-host blue OLED, which remained at 29.6 cd/A and 19.1 lm/W at the luminance of 1000 cd/m(2) with a driving voltage as low as 4.9 V. The maximum efficiencies of 37.1 cd/A and 32.1 lm/W were achieved in a single emissive layer white OLED based on the TCTA:TAPC mixed-host. Even at 1000 cd/m(2), the efficiencies still reach 34.2 cd/A and 23.3 lm/W and the driving voltage is only 4.6 V, which is comparable to those reported from the state-of-the-art vacuum-evaporation deposited white OLEDs.

  11. Color-Tunable and High-Efficiency Dye-Encapsulated Metal-Organic Framework Composites Used for Smart White-Light-Emitting Diodes.

    PubMed

    Chen, Wenwei; Zhuang, Yixi; Wang, Le; Lv, Ying; Liu, Jianbin; Zhou, Tian-Liang; Xie, Rong-Jun

    2018-05-25

    Luminescent metal-organic frameworks (MOFs) (typically dye-encapsulated MOFs) are considered as one kind of interesting downconversion materials for white-light-emitting diodes (LEDs), but their quantum efficiency (QE) is not sufficient and thus needs to be significantly enhanced for practical applications. In this study, we successfully synthesized a series of Rh@bio-MOF-1 (Rh = rhodamine) with an internal QE as high as ∼79% via a solvothermal reaction followed by cation exchanges. The high efficiency of the Rh@bio-MOF-1 composites was attributable to the high intrinsic luminescent efficiency of the selected Rh dyes, the confinement effect in the bio-MOF-1 host, and the uniform particle morphology. The emission maximum could be continuously tuned from 550 to 610 nm by controlling the species and concentration of encapsulated dye molecules, showing great color tunability of the dye-encapsulated MOFs. The emission lifetime of ∼7 ns was 1 or 2 magnitude orders shorter than that of Ce 3+ - or Eu 2+ -doped inorganic phosphors, allowing for visible light communication (VLC). White LEDs, fabricated by using the synthesized Rh@bio-MOF-1 composite and inorganic phosphors of green (Ba,Sr) 2 SiO 4 :Eu 2+ and red CaAlSiN 3 :Eu 2+ , exhibited a high color rendering index of 80-94, a luminous efficacy of 94-156 lm/W, and an excellent stability in color point against drive current. The Rh@bio-MOF-1 composites with tunable colors, short emission lifetime, and high QE are expected to be used for smart white LEDs with multifunctions of both lighting and VLC.

  12. CdSe white quantum dots-based white light-emitting diodes with high color rendering index

    NASA Astrophysics Data System (ADS)

    Su, Yu-Sheng; Hsiao, Chih-Chun; Chung, Shu-Ru

    2016-09-01

    A white light emission CdSe quantum dots (QDs) can be prepared by chemical route under 180°C. An organic oleic acid (OA) is used to react with CdO to form Cd-OA complex. Hexadecylamine (HDA) and 1-Octadecene (ODE) were used as co-surfactants. By controlling the reaction time, a white light emission CdSe QDs can be obtained after reacts for 3 to 10 min. The luminescence spectra compose two obvious emission peaks and entire visible light ranges from 400 to 650 nm. Based on TEM measurement result, spherical morphologies with particle size 2.39+/-0.27 nm can be obtained. The quantum yields (QYs) of white CdSe QD are between 20 and 60 %, which depends on reaction time. A white CdSe QDs were mixed with UV cured gel (OPAS-226) with weight ratios 50.0 wt. %, and putted the mixture into reflective cup (3020, 13 mil) as convert type. The white LEDs have controllable CIE coordinates and correlated color temperature (CCT). The luminous efficacy of the device is less than 3 lm/W, but the color rendering index (CRI) for all devices are higher than 80. Since the luminous efficacy of hybrid devices has a direct dependence on the external QY of the UV-LED as well, the luminous efficacy can be improved by well dispersion of CdSe QDs in UV gel matrix and using optimized LED chips. Therefore, in this study, we provide a new and simple method to prepare high QY of white CdSe QDs and its have a potential to applicate in solid-state lighting.

  13. Assessing and Improving Student Organizations: Student Workbook. The Assessing and Improving Student Organization (AISO) Program

    ERIC Educational Resources Information Center

    Nolfi, Tricia; Ruben, Brent D.

    2010-01-01

    This "Workbook" is intended for student participants during the AISO (Assessing and Improving Student Organization) assessment and planning sessions, and to be used in tandem with the "Guide for Students". Each page presents an action or reflection slide from the "Guide" with a space below for participants to note their own ideas, outcomes of…

  14. Design and long-term monitoring of DSC/CIGS tandem solar module

    NASA Astrophysics Data System (ADS)

    Vildanova, M. F.; Nikolskaia, A. B.; Kozlov, S. S.; Shevaleevskiy, O. I.

    2015-11-01

    This paper describes the design and development of tandem dye-sensitized/Cu(In, Ga)Se (DSC/CIGS) PV modules. The tandem PV module comprised of the top DSC module and a bottom commercial 0,8 m2 CIGS module. The top DSC module was made of 10 DSC mini-modules with the field size of 20 × 20 cm2 each. Tandem DSC/CIGS PV modules were used for providing the long-term monitoring of energy yield and electrical parameters in comparison with standalone CIGS modules under outdoor conditions. The outdoor test facility, containing solar modules of both types and a measurement unit, was located on the roof of the Institute of Biochemical Physics in Moscow. The data obtained during monitoring within the 2014 year period has shown the advantages of the designed tandem DSC/CIGS PV-modules over the conventional CIGS modules, especially for cloudy weather and low-intensity irradiation conditions.

  15. Two-state dynamics of the SH3–SH2 tandem of Abl kinase and the allosteric role of the N-cap

    PubMed Central

    Corbi-Verge, Carles; Marinelli, Fabrizio; Zafra-Ruano, Ana; Ruiz-Sanz, Javier; Luque, Irene; Faraldo-Gómez, José D.

    2013-01-01

    The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3–SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3–SH2 connector, which involve a phosphorylation site. We also show that the SH3–SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3–SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization. PMID:23959873

  16. [Multiplayer white organic light-emitting diodes with different order and thickness of emission layers].

    PubMed

    Xu, Wei; Lu, Fu-Han; Cao, Jin; Zhu, Wen-Qing; Jiang, Xue-Yin; Zhang, Zhi-Lin; Xu, Shao-Hong

    2008-02-01

    In multilayer OLED devices, the order and thickness of the emission layers have great effect on their spectrum. Based on the three basic colours of red, blue and green, a series of white organic light-emitting diodes(WOLEDS)with the structure of ITO/CuPc(12 nm)/NPB(50 nm)/EML/LiF(1 nm)/Al(100 nm) and a variety of emission layer's orders and thicknesses were fabricated. The blue emission material: 2-t-butyl-9,10-di-(2-naphthyl)anthracene (TBADN) doped with p-bis(p-N, N-diphenyl-amono-styryl)benzene(DSA-Ph), the green emission material: tris-[8-hydroxyquinoline]aluminum(Alq3) doped with C545, and the red emission material: tris-[8-hydroxyquinoline]aluminum( Alq3) doped with 4-(dicyanomethylene)-2-t-butyl-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) were used. By adjusting the order and thickness of each emission layer in the RBG structure, we got a white OLED with current efficiency of 5.60 cd x A(-1) and Commission Internationale De L'Eclairage (CIE) coordinates of (0. 34, 0.34) at 200 mA x cm(-2). Its maximum luminance reached 20 700 cd x m(-2) at current density of 400 mA x cm(-2). The results were analyzed on the basis of the theory of excitons' generation and diffusion. According to the theory, an equation was set up which relates EL spectra to the luminance efficiency, the thickness of each layer and the exciton diffusion length. In addition, in RBG structure with different thickness of red layer, the ratio of th e spectral intensity of red to that of blue was calculated. It was found that the experimental results are in agreement with the theoretical values.

  17. Simultaneous quantitation and identification of organic and inorganic selenium in diet supplements by liquid chromatography with tandem mass spectrometry.

    PubMed

    Zembrzuska, Joanna; Matusiewicz, Henryk; Polkowska-Motrenko, Halina; Chajduk, Ewelina

    2014-01-01

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for selenium speciation in dietary supplements. Chromatographic separation was performed on a TSK-Gel ODS-100V column using a mixture of 5mM ammonium acetate water solution and methanol as a mobile phase. Conditions chosen for this process allowed to separate all investigated chemical compounds of selenium: seleno-l-methionine, methyl-seleno-l-cysteine, l-selenocystine, methaneseleninic acid, selenite and selenate. A tandem mass spectrometer with an ion trap operating in negative or positive ion mode according to the selenium form being determined was used as a detector. Three extraction procedures: water extraction, enzymatic hydrolysis and sequential extraction were used for preparation of samples for the determination of the actual forms of selenium in diet supplements. The developed method was used for analysis of six dietary supplements containing selenium bought in a pharmacy and supermarket. Apart from speciation analysis of selenium content in supplements total selenium content was determined using instrumental neutron activation analysis (INAA). All expected forms of selenium except for selenite were determined using LC-MS/MS technique. It should be stressed that amounts of selenate were smaller than expected. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. De novo protein sequencing by combining top-down and bottom-up tandem mass spectra.

    PubMed

    Liu, Xiaowen; Dekker, Lennard J M; Wu, Si; Vanduijn, Martijn M; Luider, Theo M; Tolić, Nikola; Kou, Qiang; Dvorkin, Mikhail; Alexandrova, Sonya; Vyatkina, Kira; Paša-Tolić, Ljiljana; Pevzner, Pavel A

    2014-07-03

    There are two approaches for de novo protein sequencing: Edman degradation and mass spectrometry (MS). Existing MS-based methods characterize a novel protein by assembling tandem mass spectra of overlapping peptides generated from multiple proteolytic digestions of the protein. Because each tandem mass spectrum covers only a short peptide of the target protein, the key to high coverage protein sequencing is to find spectral pairs from overlapping peptides in order to assemble tandem mass spectra to long ones. However, overlapping regions of peptides may be too short to be confidently identified. High-resolution mass spectrometers have become accessible to many laboratories. These mass spectrometers are capable of analyzing molecules of large mass values, boosting the development of top-down MS. Top-down tandem mass spectra cover whole proteins. However, top-down tandem mass spectra, even combined, rarely provide full ion fragmentation coverage of a protein. We propose an algorithm, TBNovo, for de novo protein sequencing by combining top-down and bottom-up MS. In TBNovo, a top-down tandem mass spectrum is utilized as a scaffold, and bottom-up tandem mass spectra are aligned to the scaffold to increase sequence coverage. Experiments on data sets of two proteins showed that TBNovo achieved high sequence coverage and high sequence accuracy.

  19. Single P-N junction tandem photovoltaic device

    DOEpatents

    Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA

    2012-03-06

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  20. Single P-N junction tandem photovoltaic device

    DOEpatents

    Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA

    2011-10-18

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  1. Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2).

    PubMed

    Werner, Jérémie; Weng, Ching-Hsun; Walter, Arnaud; Fesquet, Luc; Seif, Johannes Peter; De Wolf, Stefaan; Niesen, Bjoern; Ballif, Christophe

    2016-01-07

    Monolithic perovskite/crystalline silicon tandem solar cells hold great promise for further performance improvement of well-established silicon photovoltaics; however, monolithic tandem integration is challenging, evidenced by the modest performances and small-area devices reported so far. Here we present first a low-temperature process for semitransparent perovskite solar cells, yielding efficiencies of up to 14.5%. Then, we implement this process to fabricate monolithic perovskite/silicon heterojunction tandem solar cells yielding efficiencies of up to 21.2 and 19.2% for cell areas of 0.17 and 1.22 cm(2), respectively. Both efficiencies are well above those of the involved subcells. These single-junction perovskite and tandem solar cells are hysteresis-free and demonstrate steady performance under maximum power point tracking for several minutes. Finally, we present the effects of varying the intermediate recombination layer and hole transport layer thicknesses on tandem cell photocurrent generation, experimentally and by transfer matrix simulations.

  2. High efficiency white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Dong, Weili; Gao, Hongyan; Tian, Xiaocui; Zhao, Lina; Jiang, Wenlong; Zhang, Xiyan

    2015-06-01

    The light emitting diodes with the structure of ITO/ m-MTDATA(20 nm)/NPB(10 nm)/CBP BCzVBi ( x, nm, 10%)/CBP(3 nm)/CBP: Ir(ppy)3: DCJTB(10 nm, 8 and 1%)/Bphen(30 nm)/Cs2CO3: Ag2O (2 nm, 20%)/Al (100 nm) employing phosphorescence sensitization and fluorescence doping, were manufactured. The performance of the devices was studied by adjusting the thickness of fluorescence dopant layer ( x = 15, 20, 25, and 30). The best performance was achieved when its thickness was 25 nm. The device has the maximum luminance of 20260 cd/m2 at applied voltage of 14 V and the maximum current efficiency of 11.70 cd/A at 7 V. The device displays a continuous change of color from yellow to white. The CIE coordinates change from (0.49, 0.48) to (0.32, 0.39) when the driving voltage is varied from 5 to 15 V.

  3. [Research on brain white matter network in cerebral palsy infant].

    PubMed

    Li, Jun; Yang, Cheng; Wang, Yuanjun; Nie, Shengdong

    2017-10-01

    Present study used diffusion tensor image and tractography to construct brain white matter networks of 15 cerebral palsy infants and 30 healthy infants that matched for age and gender. After white matter network analysis, we found that both cerebral palsy and healthy infants had a small-world topology in white matter network, but cerebral palsy infants exhibited abnormal topological organization: increased shortest path length but decreased normalize clustering coefficient, global efficiency and local efficiency. Furthermore, we also found that white matter network hub regions were located in the left cuneus, precuneus, and left posterior cingulate gyrus. However, some abnormal nodes existed in the frontal, temporal, occipital and parietal lobes of cerebral palsy infants. These results indicated that the white matter networks for cerebral palsy infants were disrupted, which was consistent with previous studies about the abnormal brain white matter areas. This work could help us further study the pathogenesis of cerebral palsy infants.

  4. Within-storm and Seasonal Differences in Particulate Organic Material Composition and Sources in White Clay Creek, USA

    NASA Astrophysics Data System (ADS)

    Karwan, D. L.; Aufdenkampe, A. K.; Aalto, R. E.; Newbold, J. D.; Pizzuto, J. E.

    2011-12-01

    The material exported from a watershed reflects its origin and the processes it undergoes during downhill and downstream transport. Due to its nature as a complex mixture of material, the composition of POM integrates the physical, biological, and chemical processes effecting watershed material. In this study, we integrate sediment fingerprint analyses common in geomorphological studies of mineral suspended particulate material (SPM) with biological and ecological characterizations of particulate organic carbon (POC). Through this combination, we produce quantifiable budgets of particulate organic carbon and mineral material, as well as integrate our calculations of carbon and mineral cycling in a complex, human-influenced watershed. More specifically, we quantify the composition and sources of POM in the third-order White Clay Creek Watershed, and examine the differences in composition and source with hydrologic variations produced by storms and seasonality. POM and watershed sources have been analyzed for particle size, mineral surface area, total mineral elemental composition, fallout radioisotope activity for common erosion tracers (7Be, 210Pb, 137Cs), and organic carbon and nitrogen content with stable isotope (13C, 15N) abundance. Results indicate a difference in POM source with season as well as within individual storms. Beryllium-7 activity, an indicator of landscape surface erosion, nearly triples within a single spring storm, from 389 mBq/g on the rising limb and 1190 mBq/g at the storm hydrograph peak. Fall storms have even lower 7Be concentrations, below 100 mBq/g. Furthermore, weight-percent of organic carbon nearly doubles from 4 - 5% during spring storms to over 8% during fall storms, with smaller variation occurring within individual storms. Despite changes in percent organic carbon, organic carbon to mineral surface area ratios and carbon to nitrogen molar ratios remain similar within storms and across seasons.

  5. White light-emitting organic electroluminescent devices

    DOEpatents

    Shiang, Joseph John; Duggal, Anil Raj; Parthasarathy, Gautam

    2006-06-20

    A light-emitting device comprises a light-emitting member, which comprises two electrodes, at least two organic electroluminescent ("EL") materials disposed between the electrodes, a charge blocking material disposed between the electrodes, and at least one photoluminescent ("PL") material. The light-emitting member emits electromagnetic ("EM") radiation having a first spectrum in response to a voltage applied across the two electrodes. The PL material absorbs a portion of the EM radiation emitted by the light-emitting member and emits EM radiation having second spectrum different than the first spectrum. Each of the organic EL materials emits EM radiation having a wavelength range selected from the group consisting of blue and red wavelength ranges.

  6. High-efficiency tris(8-hydroxyquinoline)aluminum (Alq3) complexes for organic white-light-emitting diodes and solid-state lighting.

    PubMed

    Pérez-Bolívar, César; Takizawa, Shin-ya; Nishimura, Go; Montes, Victor A; Anzenbacher, Pavel

    2011-08-08

    Combinations of electron-withdrawing and -donating substituents on the 8-hydroxyquinoline ligand of the tris(8-hydroxyquinoline)aluminum (Alq(3)) complexes allow for control of the HOMO and LUMO energies and the HOMO-LUMO gap responsible for emission from the complexes. Here, we present a systematic study on tuning the emission and electroluminescence (EL) from Alq(3) complexes from the green to blue region. In this study, we explored the combination of electron-donating substituents on C4 and C6. Compounds 1-6 displayed the emission tuning between 478 and 526 nm, and fluorescence quantum yield between 0.15 and 0.57. The compounds 2-6 were used as emitters and hosts in organic light-emitting diodes (OLEDs). The highest OLED external quantum efficiency (EQE) observed was 4.6%, which is among the highest observed for Alq(3) complexes. Also, the compounds 3-5 were used as hosts for red phosphorescent dopants to obtain white light-emitting diodes (WOLED). The WOLEDs displayed high efficiency (EQE up to 19%) and high white color purity (color rendering index (CRI≈85). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Study of Sequential Dexter Energy Transfer in High Efficient Phosphorescent White Organic Light-Emitting Diodes with Single Emissive Layer

    NASA Astrophysics Data System (ADS)

    Kim, Jin Wook; You, Seung Il; Kim, Nam Ho; Yoon, Ju-An; Cheah, Kok Wai; Zhu, Fu Rong; Kim, Woo Young

    2014-11-01

    In this study, we report our effort to realize high performance single emissive layer three color white phosphorescent organic light emitting diodes (PHOLEDs) through sequential Dexter energy transfer of blue, green and red dopants. The PHOLEDs had a structure of; ITO(1500 Å)/NPB(700 Å)/mCP:Firpic-x%:Ir(ppy)3-0.5%:Ir(piq)3-y%(300 Å)/TPBi(300 Å)/Liq(20 Å)/Al(1200 Å). The dopant concentrations of FIrpic, Ir(ppy)3 and Ir(piq)3 were adjusted and optimized to facilitate the preferred energy transfer processes attaining both the best luminous efficiency and CIE color coordinates. The presence of a deep trapping center for charge carriers in the emissive layer was confirmed by the observed red shift in electroluminescent spectra. White PHOLEDs, with phosphorescent dopant concentrations of FIrpic-8.0%:Ir(ppy)3-0.5%:Ir(piq)3-0.5% in the mCP host of the single emissive layer, had a maximum luminescence of 37,810 cd/m2 at 11 V and a luminous efficiency of 48.10 cd/A at 5 V with CIE color coordinates of (0.35, 0.41).

  8. Synthesis of extended polycyclic aromatic hydrocarbons by oxidative tandem spirocyclization and 1,2-aryl migration

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Xu, Zhanqiang; Si, Weili; Oniwa, Kazuaki; Bao, Ming; Yamamoto, Yoshinori; Jin, Tienan

    2017-04-01

    The extended polycyclic aromatic hydrocarbons (PAHs) have received significant interdisciplinary attention due to their semiconducting applications in diverse organic electronics as well as intriguing structural interests of well-defined graphene segments. Herein, a highly efficient oxidative spirocyclization and 1,2-aryl migration tandem synthetic method for the construction of extended polyaromatic hydrocarbons (PAHs) has been developed. The CuCl-catalyst/PhCO3 tBu or DDQ oxidation system in the presence of trifluoroacetic acid enables the selective single-electron oxidation to take place preferentially at the more electron-rich alkene moiety of o-biphenylyl-substituted methylenefluorenes, giving rise to the subsequent tandem process. A variety of structurally diverse extended PAHs including functionalized dibenzo[g,p]chrysenes, benzo[f]naphtho[1,2-s]picene, hexabenzo[a,c,fg,j,l,op]tetracene, tetrabenzo[a,c,f,m]phenanthro[9,10-k]tetraphene, tetrabenzo[a,c,f,k]phenanthro[9,10-m]tetraphene, tetrabenzo[a,c,f,o]phenanthro[9,10-m]picene and S-type helicene have been readily synthesized.

  9. Modified tandem gratings anastigmatic imaging spectrometer with oblique incidence for spectral broadband

    NASA Astrophysics Data System (ADS)

    Cui, Chengguang; Wang, Shurong; Huang, Yu; Xue, Qingsheng; Li, Bo; Yu, Lei

    2015-09-01

    A modified spectrometer with tandem gratings that exhibits high spectral resolution and imaging quality for solar observation, monitoring, and understanding of coastal ocean processes is presented in this study. Spectral broadband anastigmatic imaging condition, spectral resolution, and initial optical structure are obtained based on geometric aberration theory. Compared with conventional tandem gratings spectrometers, this modified design permits flexibility in selecting gratings. A detailed discussion of the optical design and optical performance of an ultraviolet spectrometer with tandem gratings is also included to explain the advantage of oblique incidence for spectral broadband.

  10. White-matter functional networks changes in patients with schizophrenia.

    PubMed

    Jiang, Yuchao; Luo, Cheng; Li, Xuan; Li, Yingjia; Yang, Hang; Li, Jianfu; Chang, Xin; Li, Hechun; Yang, Huanghao; Wang, Jijun; Duan, Mingjun; Yao, Dezhong

    2018-04-13

    Resting-state functional MRI (rsfMRI) is a useful technique for investigating the functional organization of human gray-matter in neuroscience and neuropsychiatry. Nevertheless, most studies have demonstrated the functional connectivity and/or task-related functional activity in the gray-matter. White-matter functional networks have been investigated in healthy subjects. Schizophrenia has been hypothesized to be a brain disorder involving insufficient or ineffective communication associated with white-matter abnormalities. However, previous studies have mainly examined the structural architecture of white-matter using MRI or diffusion tensor imaging and failed to uncover any dysfunctional connectivity within the white-matter on rsfMRI. The current study used rsfMRI to evaluate white-matter functional connectivity in a large cohort of ninety-seven schizophrenia patients and 126 healthy controls. Ten large-scale white-matter networks were identified by a cluster analysis of voxel-based white-matter functional connectivity and classified into superficial, middle and deep layers of networks. Evaluation of the spontaneous oscillation of white-matter networks and the functional connectivity between them showed that patients with schizophrenia had decreased amplitudes of low-frequency oscillation and increased functional connectivity in the superficial perception-motor networks. Additionally, we examined the interactions between white-matter and gray-matter networks. The superficial perception-motor white-matter network had decreased functional connectivity with the cortical perception-motor gray-matter networks. In contrast, the middle and deep white-matter networks had increased functional connectivity with the superficial perception-motor white-matter network and the cortical perception-motor gray-matter network. Thus, we presumed that the disrupted association between the gray-matter and white-matter networks in the perception-motor system may be compensated for

  11. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  12. White on whiteness: becoming radicalized about race.

    PubMed

    Gustafson, Diana L

    2007-06-01

    Race difference and whiteness--key elements in the construction of my cultural identity - became a focus of my reflective practice that began over 5 years ago. This article reflects critically on the production of white identity from my social location as a white nurse. My attention focused on two aspects of whiteness: the social location from which I live and learn, and the hegemonic but unmarked discourse that informs the knowledge I read and create as a researcher. My white identity is characterized by four features: the absent presence of whiteness; the need for an oppositional identity; the entitlement of choice and subjectivity; and the denial of a dominant position and relation to the racialized Other. Exploring these features is critically important at this juncture in global and professional history because of the persistence of neoliberalism and the popularity of culturalist approaches to diversity. Examining the process of my radicalization about race simultaneously calls attention to the historiography of ideas about whiteness and race difference and the institutionalization of beliefs and practices about race difference that continuously reproduce racialized identities and inform collective nursing practice and research.

  13. Organic light-emitting diodes with direct contact-printed red, green, blue, and white light-emitting layers

    NASA Astrophysics Data System (ADS)

    Chen, Sun-Zen; Peng, Shiang-Hau; Ting, Tzu-Yu; Wu, Po-Shien; Lin, Chun-Hao; Chang, Chin-Yeh; Shyue, Jing-Jong; Jou, Jwo-Huei

    2012-10-01

    We demonstrate the feasibility of using direct contact-printing in the fabrication of monochromatic and polychromatic organic light-emitting diodes (OLEDs). Bright devices with red, green, blue, and white contact-printed light-emitting layers with a respective maximum luminance of 29 000, 29 000, 4000, and 18 000 cd/m2 were obtained with sound film integrity by blending a polymeric host into a molecular host. For the red OLED as example, the maximum luminance was decreased from 29 000 to 5000 cd/m2 as only the polymeric host was used, or decreased to 7000 cd/m2 as only the molecular host was used. The markedly improved device performance achieved in the devices with blended hosts may be attributed to the employed polymeric host that contributed a good film-forming character, and the molecular host that contributed a good electroluminescence character.

  14. In Vivo Evidence of Reduced Integrity of the Gray-White Matter Boundary in Autism Spectrum Disorder.

    PubMed

    Andrews, Derek Sayre; Avino, Thomas A; Gudbrandsen, Maria; Daly, Eileen; Marquand, Andre; Murphy, Clodagh M; Lai, Meng-Chuan; Lombardo, Michael V; Ruigrok, Amber N V; Williams, Steven C; Bullmore, Edward T; The Mrc Aims Consortium; Suckling, John; Baron-Cohen, Simon; Craig, Michael C; Murphy, Declan G M; Ecker, Christine

    2017-02-01

    Atypical cortical organization and reduced integrity of the gray-white matter boundary have been reported by postmortem studies in individuals with autism spectrum disorder (ASD). However, there are no in vivo studies that examine these particular features of cortical organization in ASD. Hence, we used structural magnetic resonance imaging to examine differences in tissue contrast between gray and white matter in 98 adults with ASD and 98 typically developing controls, to test the hypothesis that individuals with ASD have significantly reduced tissue contrast. More specifically, we examined contrast as a percentage between gray and white matter tissue signal intensities (GWPC) sampled at the gray-white matter boundary, and across different cortical layers. We found that individuals with ASD had significantly reduced GWPC in several clusters throughout the cortex (cluster, P < 0.05). As expected, these reductions were greatest when tissue intensities were sampled close to gray-white matter interface, which indicates a less distinct gray-white matter boundary in ASD. Our in vivo findings of reduced GWPC in ASD are therefore consistent with prior postmortem findings of a less well-defined gray-white matter boundary in ASD. Taken together, these results indicate that GWPC might be utilized as an in vivo proxy measure of atypical cortical microstructural organization in future studies. © The Author 2017. Published by Oxford University Press.

  15. 1. Progress toward the synthesis of vancosamine using a tandem [4+2]/[3+2] cycloaddition. 2. Discussion boards and pre-lecture quizzes in organic chemistry courses

    NASA Astrophysics Data System (ADS)

    Miller, Tyson A.

    The sugar vancosamine is one of the two sugar residues found on the broad spectrum antibiotic vancomycin. A strategy using a tandem intermolecular [4+2]/intermolecular [3+2] cycloaddition with nitro olefins was employed in an effort to enantioselectively synthesize the target. The [4+2] cycloaddition proceeded well with tin tetrachloride in high yield. However, the products from the [3+2] cycloaddition afforded diastereomers with stereocenters that were inconsistent with the natural product. An online facilitated group work assignment was introduced to a first semester non-majors organic chemistry lecture courses with large enrollments (˜300--660 students). Student opinion surveys, performance scores, and a detailed account of time spent by the facilitator afforded insight on the value of such assignments with large class sizes. Format and number of attempts were varied in online pre-lecture quizzes administered to a first semester non-majors organic chemistry lecture course. Student quiz performance and post-quiz assessment shows significant differences in mastery of material and class preparedness with format and number of attempts. When combined with student survey data, recommendations are made as to how format selection and number of attempts can optimize the value of online pre-lecture quizzes as a learning tool and as an assessment tool.

  16. Whole genome grey and white matter DNA methylation profiles in dorsolateral prefrontal cortex.

    PubMed

    Sanchez-Mut, Jose Vicente; Heyn, Holger; Vidal, Enrique; Delgado-Morales, Raúl; Moran, Sebastian; Sayols, Sergi; Sandoval, Juan; Ferrer, Isidre; Esteller, Manel; Gräff, Johannes

    2017-06-01

    The brain's neocortex is anatomically organized into grey and white matter, which are mainly composed by neuronal and glial cells, respectively. The neocortex can be further divided in different Brodmann areas according to their cytoarchitectural organization, which are associated with distinct cortical functions. There is increasing evidence that brain development and function are governed by epigenetic processes, yet their contribution to the functional organization of the neocortex remains incompletely understood. Herein, we determined the DNA methylation patterns of grey and white matter of dorsolateral prefrontal cortex (Brodmann area 9), an important region for higher cognitive skills that is particularly affected in various neurological diseases. For avoiding interindividual differences, we analyzed white and grey matter from the same donor using whole genome bisulfite sequencing, and for validating their biological significance, we used Infinium HumanMethylation450 BeadChip and pyrosequencing in ten and twenty independent samples, respectively. The combination of these analysis indicated robust grey-white matter differences in DNA methylation. What is more, cell type-specific markers were enriched among the most differentially methylated genes. Interestingly, we also found an outstanding number of grey-white matter differentially methylated genes that have previously been associated with Alzheimer's, Parkinson's, and Huntington's disease, as well as Multiple and Amyotrophic lateral sclerosis. The data presented here thus constitute an important resource for future studies not only to gain insight into brain regional as well as grey and white matter differences, but also to unmask epigenetic alterations that might underlie neurological and neurodegenerative diseases. © 2017 Wiley Periodicals, Inc.

  17. Far Red and White Light-promoted Utilization of Calcium by Seedlings of Phaseolus vulgaris L.

    PubMed

    Helms, K; David, D J

    1973-01-01

    The cotyledons and embryo axes of seeds of Phaseolus vulgaris L. cv. Pinto contained 16% of the total calcium in the seed. The remaining 84% was in the testas. There was no evidence that calcium in testas was used in seedling growth or that calcium was leached from seedlings during growth.An external supply of calcium decreased the incidence of hypocotyl collapse (a severe symptom of calcium deficiency), increased the calcium content of all organs, and increased the dry weight of all organs except cotyledons. Light treatments decreased the incidence of hypocotyl collapse and increased the calcium content and dry weight of all organs except cotyledons and hypocotyls.White light was more effective than far red light for decreasing incidence of hypocotyl collapse. Usually the effects of white light and far red light on the calcium content and dry weight of organs were similar, and usually those of white light were quantitatively greater than those of far red light. It is suggested that the light-promoted effects were associated with photomorphogenesis and that differences in data obtained with white light and far red light could be associated with photosynthesis.

  18. Preparing a Health Care White Paper: Providing Structure to the Writing Process.

    PubMed

    Rotarius, Timothy; Rotarius, Velmarie

    2016-01-01

    Health care leaders operate in a very complex and turbulent business environment. Both government regulations and market forces are very active in the industry. Thus, health care managers have many multifaceted and, sometimes, contradictory expectations placed upon them and their organizations. To ensure professional accountability, health care executives often join professional associations and strive for licenses and certifications that are intended to place the professional above the rest. One important avenue to achieve various licensing and certification accomplishments involves writing a white paper about a specific topic of interest to the industry and organization. Presented herein are structural processes that facilitate the creation and preparation of a health care white paper. Both conceptual and empirical structures of white papers are presented, with the similarities and the differences between conceptual and empirical papers highlighted.

  19. The Healing Forest: White Bison Helps Re-Vision Corporations and Organizations.

    ERIC Educational Resources Information Center

    Simonelli, Richard

    1993-01-01

    White Bison, a Native-owned training center, offers a comprehensive long-term program based on American Indian principles and aimed at managing organizational or community development. Participants build unity and empower themselves by examining their own beliefs and values that affect the workplace and by giving each other legitimate positive…

  20. Numerical investigation & comparison of a tandem-bladed turbocharger centrifugal compressor stage with conventional design

    NASA Astrophysics Data System (ADS)

    Danish, Syed Noman; Qureshi, Shafiq Rehman; EL-Leathy, Abdelrahman; Khan, Salah Ud-Din; Umer, Usama; Ma, Chaochen

    2014-12-01

    Extensive numerical investigations of the performance and flow structure in an unshrouded tandem-bladed centrifugal compressor are presented in comparison to a conventional compressor. Stage characteristics are explored for various tip clearance levels, axial spacings and circumferential clockings. Conventional impeller was modified to tandem-bladed design with no modifications in backsweep angle, meridional gas passage and camber distributions in order to have a true comparison with conventional design. Performance degradation is observed for both the conventional and tandem designs with increase in tip clearance. Linear-equation models for correlating stage characteristics with tip clearance are proposed. Comparing two designs, it is clearly evident that the conventional design shows better performance at moderate flow rates. However; near choke flow, tandem design gives better results primarily because of the increase in throat area. Surge point flow rate also seems to drop for tandem compressor resulting in increased range of operation.

  1. Functional Groups and Structural Insights of Water-Soluble Organic Carbon using Ultrahigh Resolution FT-ICR Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mazzoleni, L. R.; Habib, D.; Zhao, Y.; Dalbec, M.; Samburova, V.; Hallar, G.; Zielinska, B.; Lowenthal, D.

    2013-12-01

    Water-soluble organic carbon (WSOC) is a complex mixture of thousands of organic compounds which may have significant influence on the climate-relevant properties of atmospheric aerosols. An improved understanding of the molecular composition of WSOC is needed to evaluate the effect of aerosol composition upon aerosol physical properties. Products of gas phase, aqueous phase and particle phase reactions contribute to pre-existing aerosol organic mass or nucleate new aerosol particles. Thus, ambient aerosols carry a complex array of WSOC components with variable chemical signatures depending upon its origin and aerosol life-cycle processes. In this work, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to characterize aerosol WSOC collected during the summer of 2010 at the Storm Peak Laboratory (3210 m a.s.l.) near Steamboat Springs, CO. Approximately 4000 molecular formulas were assigned in the mass range of m/z 100-800 after negative-ion electrospray ionization. The observed trends indicate significant non-oxidative accretion reaction pathways for the formation of high molecular weight WSOC components closely associated with terpene ozonolysis secondary organic aerosol (SOA). The aerosol WSOC was further characterized using ultrahigh resolution tandem MS analysis with infrared multiphoton dissociation to determine the functional groups and structural properties of 1700 WSOC species up to m/z 600. Due to the complex nature of the WSOC, multiple precursor ions were simultaneously fragmented. The exact mass measurements of the precursor and product ions facilitated molecular formula assignments and matching of neutral losses. The most important neutral losses are CO2, H2O, CH3OH, HNO3, CH3NO3, SO3 and SO4. The presence and frequency of these losses indicate the type of functional groups contained in the precursor structures. Consistent with the acidic nature of WSOC compounds, the most frequently observed losses

  2. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution.

    PubMed

    Melters, Daniël P; Bradnam, Keith R; Young, Hugh A; Telis, Natalie; May, Michael R; Ruby, J Graham; Sebra, Robert; Peluso, Paul; Eid, John; Rank, David; Garcia, José Fernando; DeRisi, Joseph L; Smith, Timothy; Tobias, Christian; Ross-Ibarra, Jeffrey; Korf, Ian; Chan, Simon W L

    2013-01-30

    Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.

  3. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution

    PubMed Central

    2013-01-01

    Background Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Results Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. Conclusions While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes. PMID:23363705

  4. Narrative Constructions of Whiteness among White Undergraduates

    ERIC Educational Resources Information Center

    Foste, Zak

    2017-01-01

    This critical narrative inquiry was guided by two overarching research questions. First, this study examined how white undergraduates interpreted and gave meaning to their white racial identities. This line of inquiry sought to understand how participants made sense of their white racial selves, the self in relation to people of color, and the…

  5. Remanagement of Singlet and Triplet Excitons in Single-Emissive-Layer Hybrid White Organic Light-Emitting Devices Using Thermally Activated Delayed Fluorescent Blue Exciplex.

    PubMed

    Liu, Xiao-Ke; Chen, Zhan; Qing, Jian; Zhang, Wen-Jun; Wu, Bo; Tam, Hoi Lam; Zhu, Furong; Zhang, Xiao-Hong; Lee, Chun-Sing

    2015-11-25

    A high-performance hybrid white organic light-emitting device (WOLED) is demonstrated based on an efficient novel thermally activated delayed fluorescence (TADF) blue exciplex system. This device shows a low turn-on voltage of 2.5 V and maximum forward-viewing external quantum efficiency of 25.5%, which opens a new avenue for achieving high-performance hybrid WOLEDs with simple structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Peptide Identification by Database Search of Mixture Tandem Mass Spectra*

    PubMed Central

    Wang, Jian; Bourne, Philip E.; Bandeira, Nuno

    2011-01-01

    In high-throughput proteomics the development of computational methods and novel experimental strategies often rely on each other. In certain areas, mass spectrometry methods for data acquisition are ahead of computational methods to interpret the resulting tandem mass spectra. Particularly, although there are numerous situations in which a mixture tandem mass spectrum can contain fragment ions from two or more peptides, nearly all database search tools still make the assumption that each tandem mass spectrum comes from one peptide. Common examples include mixture spectra from co-eluting peptides in complex samples, spectra generated from data-independent acquisition methods, and spectra from peptides with complex post-translational modifications. We propose a new database search tool (MixDB) that is able to identify mixture tandem mass spectra from more than one peptide. We show that peptides can be reliably identified with up to 95% accuracy from mixture spectra while considering only a 0.01% of all possible peptide pairs (four orders of magnitude speedup). Comparison with current database search methods indicates that our approach has better or comparable sensitivity and precision at identifying single-peptide spectra while simultaneously being able to identify 38% more peptides from mixture spectra at significantly higher precision. PMID:21862760

  7. Transcription of tandemly repetitive DNA: functional roles.

    PubMed

    Biscotti, Maria Assunta; Canapa, Adriana; Forconi, Mariko; Olmo, Ettore; Barucca, Marco

    2015-09-01

    A considerable fraction of the eukaryotic genome is made up of satellite DNA constituted of tandemly repeated sequences. These elements are mainly located at centromeres, pericentromeres, and telomeres and are major components of constitutive heterochromatin. Although originally satellite DNA was thought silent and inert, an increasing number of studies are providing evidence on its transcriptional activity supporting, on the contrary, an unexpected dynamicity. This review summarizes the multiple structural roles of satellite noncoding RNAs at chromosome level. Indeed, satellite noncoding RNAs play a role in the establishment of a heterochromatic state at centromere and telomere. These highly condensed structures are indispensable to preserve chromosome integrity and genome stability, preventing recombination events, and ensuring the correct chromosome pairing and segregation. Moreover, these RNA molecules seem to be involved also in maintaining centromere identity and in elongation, capping, and replication of telomere. Finally, the abnormal variation of centromeric and pericentromeric DNA transcription across major eukaryotic lineages in stress condition and disease has evidenced the critical role that these transcripts may play and the potentially dire consequences for the organism.

  8. Tandem betatron

    DOEpatents

    Keinigs, Rhonald K.

    1992-01-01

    Two betatrons are provided in tandem for alternately accelerating an electron beam to avoid the single flux swing limitation of conventional betatrons and to accelerate the electron beam to high energies. The electron beam is accelerated in a first betatron during a period of increasing magnetic flux. The eletron beam is extracted from the first betatron as a peak magnetic flux is reached and then injected into a second betatron at a time of minimum magnetic flux in the second betatron. The cycle may be repeated until the desired electron beam energy is obtained. In one embodiment, the second betatron is axially offset from the first betatron to provide for electron beam injection directly at the axial location of the beam orbit in the second betatron.

  9. [Simultaneous determination of sixteen perfluorinated organic compounds in surface water by solid phase extraction and ultra performance liquid chromatography with electrospray ionization tandem mass spectrometry].

    PubMed

    Zhang, Ming; Tang, Fangliang; Yu, Yayun; Chen, Feng; Xu, Jianfen; Ye, Yonggen

    2014-05-01

    A high-throughput detection method has been developed for the determination of sixteen perfluorinated organic compounds (PFCs) in surface water by solid phase extraction-ultra performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (SPE-UPLC-ESI-MS/MS). The water samples were concentrated and purified through WAX solid phase extraction cartridges. The UPLC separation was performed on an ACQUITY UPLC BEH C18 column utilizing a gradient elution program of methanol (containing 2 mmol/L ammonium acetate) and water (containing 2 mmol/L ammonium acetate) as the mobile phases at a flow rate of 0.4 mL/min. The MS/MS detection was performed under negative electrospray ionization ( ESI ) in multiple reaction monitoring (MRM) mode. Good linearities were observed in the range of 0.5-100 gg/L or 1.0 - 100 microg/L with correlation coefficients from 0.998 7 to 0.999 9. The limits of detection (LODs) for the sixteen perfluorinated organic compounds were in the range of 0.06-0.46 ng/L. The recoveries ranged from 67.6% to 103% with the relative standard deviations between 2.94% and 12.0%. This method was characterized by high sensitivity and precision, extensive range and high speed, and can be applied for the analysis of PFC contaminants in surface water.

  10. Whole Genome and Tandem Duplicate Retention Facilitated Glucosinolate Pathway Diversification in the Mustard Family

    PubMed Central

    Hofberger, Johannes A.; Lyons, Eric; Edger, Patrick P.; Chris Pires, J.; Eric Schranz, M.

    2013-01-01

    Plants share a common history of successive whole-genome duplication (WGD) events retaining genomic patterns of duplicate gene copies (ohnologs) organized in conserved syntenic blocks. Duplication was often proposed to affect the origin of novel traits during evolution. However, genetic evidence linking WGD to pathway diversification is scarce. We show that WGD and tandem duplication (TD) accelerated genetic versatility of plant secondary metabolism, exemplified with the glucosinolate (GS) pathway in the mustard family. GS biosynthesis is a well-studied trait, employing at least 52 biosynthetic and regulatory genes in the model plant Arabidopsis. In a phylogenomics approach, we identified 67 GS loci in Aethionema arabicum of the tribe Aethionemae, sister group to all mustard family members. All but one of the Arabidopsis GS gene families evolved orthologs in Aethionema and all but one of the orthologous sequence pairs exhibit synteny. The 45% fraction of duplicates among all protein-coding genes in Arabidopsis was increased to 95% and 97% for Arabidopsis and Aethionema GS pathway inventory, respectively. Compared with the 22% average for all protein-coding genes in Arabidopsis, 52% and 56% of Aethionema and Arabidopsis GS loci align to ohnolog copies dating back to the last common WGD event. Although 15% of all Arabidopsis genes are organized in tandem arrays, 45% and 48% of GS loci in Arabidopsis and Aethionema descend from TD, respectively. We describe a sequential combination of TD and WGD events driving gene family extension, thereby expanding the evolutionary playground for functional diversification and thus potential novelty and success. PMID:24171911

  11. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  12. The direct analysis of drug distribution of rotigotine-loaded microspheres from tissue sections by LESA coupled with tandem mass spectrometry.

    PubMed

    Xu, Li-Xiao; Wang, Tian-Tian; Geng, Yin-Yin; Wang, Wen-Yan; Li, Yin; Duan, Xiao-Kun; Xu, Bin; Liu, Charles C; Liu, Wan-Hui

    2017-09-01

    The direct analysis of drug distribution of rotigotine-loaded microspheres (RoMS) from tissue sections by liquid extraction surface analysis (LESA) coupled with tandem mass spectrometry (MS/MS) was demonstrated. The RoMS distribution in rat tissues assessed by the ambient LESA-MS/MS approach without extensive or tedious sample pretreatment was compared with that obtained by a conventional liquid chromatography tandem mass spectrometry (LC-MS/MS) method in which organ excision and subsequent solvent extraction were commonly employed before analysis. Results obtained from the two were well correlated for a majority of the organs, such as muscle, liver, stomach, and hippocampus. The distribution of RoMS in the brain, however, was found to be mainly focused in the hippocampus and striatum regions as shown by the LESA-imaged profiles. The LESA approach we developed is sensitive enough, with an estimated LLOQ at 0.05 ng/mL of rotigotine in brain tissue, and information-rich with minimal sample preparation, suitable, and promising in assisting the development of new drug delivery systems for controlled drug release and protection. Graphical abstract Workflow for the LESA-MS/MS imaging of brain tissue section after intramuscular RoMS administration.

  13. Pharmacokinetic properties of tandem d-peptides designed for treatment of Alzheimer's disease.

    PubMed

    Leithold, Leonie H E; Jiang, Nan; Post, Julia; Niemietz, Nicole; Schartmann, Elena; Ziehm, Tamar; Kutzsche, Janine; Shah, N Jon; Breitkreutz, Jörg; Langen, Karl-Josef; Willuweit, Antje; Willbold, Dieter

    2016-06-30

    Peptides are more and more considered for the development of drug candidates. However, they frequently exhibit severe disadvantages such as instability and unfavourable pharmacokinetic properties. Many peptides are rapidly cleared from the organism and oral bioavailabilities as well as in vivo half-lives often remain low. In contrast, some peptides consisting solely of d-enantiomeric amino acid residues were shown to combine promising therapeutic properties with high proteolytic stability and enhanced pharmacokinetic parameters. Recently, we have shown that D3 and RD2 have highly advantageous pharmacokinetic properties. Especially D3 has already proven promising properties suitable for treatment of Alzheimer's disease. Here, we analyse the pharmacokinetic profiles of D3D3 and RD2D3, which are head-to-tail tandem d-peptides built of D3 and its derivative RD2. Both D3D3 and RD2D3 show proteolytic stability in mouse plasma and organ homogenates for at least 24h and in murine and human liver microsomes for 4h. Notwithstanding their high affinity to plasma proteins, both peptides are taken up into the brain following i.v. as well as i.p. administration. Although both peptides contain identical d-amino acid residues, they are arranged in a different sequence order and the peptides show differences in pharmacokinetic properties. After i.p. administration RD2D3 exhibits lower plasma clearance and higher bioavailability than D3D3. We therefore concluded that the amino acid sequence of RD2 leads to more favourable pharmacokinetic properties within the tandem peptide, which underlines the importance of particular sequence motifs, even in short peptides, for the design of further therapeutic d-peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Imaging camera system of OYGBR-phosphor-based white LED lighting

    NASA Astrophysics Data System (ADS)

    Kobashi, Katsuya; Taguchi, Tsunemasa

    2005-03-01

    The near-ultraviolet (nUV) white LED approach is analogous to three-color fluorescent lamp technology, which is based on the conversion of nUV radiation to visible light via the photoluminescence process in phosphor materials. The nUV light is not included in the white light generation from nUV-based white LED devices. This technology can thus provide a higher quality of white light than the blue and YAG method. A typical device demonstrates white luminescence with Tc=3,700 K, Ra > 93, K > 40 lm/W and chromaticity (x, y) = (0.39, 0.39), respectively. The orange, yellow, green and blue OYGB) or orange, yellow, red, green and blue (OYRGB) device shows a luminescence spectrum broader than of an RGB white LED and a better color rendering index. Such superior luminous characteristics could be useful for the application of several kinds of endoscope. We have shown the excellent pictures of digestive organs in a stomach of a dog due to the strong green component and high Ra.

  15. White Space, White Privilege: Mapping Discursive Inquiry into the Self.

    ERIC Educational Resources Information Center

    Jackson, Ronald L., II

    1999-01-01

    Explores the role of communication in the strategic self-definition of "whiteness." Uses transcripts from two focus group interviews (with Whites from two historically Black universities) to map the discourses of "White" participants concerning the nature of "whiteness." Implies that the space Whites occupy is not clearly constructed and defined…

  16. Tandem Repeat Proteins Inspired By Squid Ring Teeth

    NASA Astrophysics Data System (ADS)

    Pena-Francesch, Abdon

    Proteins are large biomolecules consisting of long chains of amino acids that hierarchically assemble into complex structures, and provide a variety of building blocks for biological materials. The repetition of structural building blocks is a natural evolutionary strategy for increasing the complexity and stability of protein structures. However, the relationship between amino acid sequence, structure, and material properties of protein systems remains unclear due to the lack of control over the protein sequence and the intricacies of the assembly process. In order to investigate the repetition of protein building blocks, a recently discovered protein from squids is examined as an ideal protein system. Squid ring teeth are predatory appendages located inside the suction cups that provide a strong grasp of prey, and are solely composed of a group of proteins with tandem repetition of building blocks. The objective of this thesis is the understanding of sequence, structure and property relationship in repetitive protein materials inspired in squid ring teeth for the first time. Specifically, this work focuses on squid-inspired structural proteins with tandem repeat units in their sequence (i.e., repetition of alternating building blocks) that are physically cross-linked via beta-sheet structures. The research work presented here tests the hypothesis that, in these systems, increasing the number of building blocks in the polypeptide chain decreases the protein network defects and improves the material properties. Hence, the sequence, nanostructure, and properties (thermal, mechanical, and conducting) of tandem repeat squid-inspired protein materials are examined. Spectroscopic structural analysis, advanced materials characterization, and entropic elasticity theory are combined to elucidate the structure and material properties of these repetitive proteins. This approach is applied not only to native squid proteins but also to squid-inspired synthetic polypeptides

  17. Medical Applications of White LEDs for Surgical Operation

    NASA Astrophysics Data System (ADS)

    Shimada, Junichi; Kawakami, Yoichi

    Everywhere in the world, the highest quality and quantity of lighting is required during the surgical operations. However, the surgical approach has had many types and various angles, common ceiling surgical halogen lighting system cannot provide an adequate amount of beams because the surgeons' heads hinder the illuminations from reaching the operation field. The evolution of solid-state-lighting is currently going to be developed due to the progress of white light emitting diodes (LEDs). We proposed and developed the new lighting equipment that is a surgical lighting goggle composed of InGaN-YAG (yttrium aluminum garnet):Ce3+-based white LEDs. Here, we newly design surgical lighting system composed of white LEDs equipped on both sides of goggles. In fact, we have succeeded in the first internal shunt operation in the left forearm using the surgical LED lighting system on 11th Sept 2000. Since the white LEDs used were composed of InGaN-blue-emitters and YAG-yellow-phosphors, the color rendering property was not sufficient in the reddish colors. After our first challenge for medical application of white LEDs, we have been trying to improve the luminance power of white LED, the color rendering in red colors and the spectral distribution of white LED to render inherent color of raw flesh such as skin, blood, fat tissue and internal organs. We have produced new concepts for LED lighting sources and new several generations of LED lighting goggles.

  18. Using an ultra-thin non-doped orange emission layer to realize high efficiency white organic light-emitting diodes with low efficiency roll-off

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Liping; Chen, Jiangshan; Ma, Dongge, E-mail: mdg1014@ciac.ac.cn

    2014-06-28

    By adopting an ultra-thin non-doped orange emission layer sandwiched between two blue emission layers, high efficiency white organic light-emitting diodes (WOLEDs) with reduced efficiency roll-off were fabricated. The optimized devices show a balanced white emission with Internationale de L'Eclairage of (0.41, 0.44) at the luminance of 1000 cd/m{sup 2}, and the maximum power efficiency, current efficiency (CE), and external quantum efficiency reach 63.2 lm/W, 59.3 cd/A, and 23.1%, which slightly shift to 53.4 lm/W, 57.1 cd/A, and 22.2% at 1000 cd/m{sup 2}, respectively, showing low efficiency roll-off. Detailed investigations on the recombination zone and the transient electroluminescence (EL) clearly reveal the EL processes of the ultra-thinmore » non-doped orange emission layer in WOLEDs.« less

  19. Better load-weight distribution is needed for tandem-axle logging trucks

    Treesearch

    John E. Baumgras

    1976-01-01

    To determine the GVW and axle weights of tandem-axle logging trucks hauling into two West Virginia sawmills, 543 truckloads of hardwood sawlogs were weighed. The results showed that less than 2 percent of the truckloads exceeded the 48,000 pound GVW limit. While 58 percent of the truckloads exceeded the 32,000 pound tandem-axle weight limit, the front-axle weights...

  20. Accumulation of Phenylpropanoids by White, Blue, and Red Light Irradiation and Their Organ-Specific Distribution in Chinese Cabbage (Brassica rapa ssp. pekinensis).

    PubMed

    Kim, Yeon Jeong; Kim, Yeon Bok; Li, Xiaohua; Choi, Su Ryun; Park, Suhyoung; Park, Jong Seok; Lim, Yong Pyo; Park, Sang Un

    2015-08-05

    This study investigated optimum light conditions for enhancing phenylpropanoid biosynthesis and the distribution of phenylpropanoids in organs of Chinese cabbage (Brassica rapa ssp. pekinensis). Blue light caused a high accumulation of most phenolic compounds, including p-hydroxybenzoic acid, ferulic acid, quercetin, and kaempferol, at 12 days after irradiation (DAI). This increase was coincident with a noticeable increase in expression levels of BrF3H, BrF3'H, BrFLS, and BrDFR. Red light led to the highest ferulic acid content at 12 DAI and to elevated expression of the corresponding genes during the early stages of irradiation. White light induced the highest accumulation of kaempferol and increased expression of BrPAL and BrDFR at 9 DAI. The phenylpropanoid content analysis in different organs revealed organ-specific accumulation of p-hydroxybenzoic acid, quercetin, and kaempferol. These results demonstrate that blue light is effective at increasing phenylpropanoid biosynthesis in Chinese cabbage, with leaves and flowers representing the most suitable organs for the production of specific phenylpropanoids.

  1. Fine-scale genetic structure and social organization in female white-tailed deer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comer, Christopher E.; Kilgo, John C.; D'Angelo, Gino J.

    Abstract: Social behavior of white-tailed deer (Odocoileus virginianus) can have important management implications. The formation of matrilineal social groups among female deer has been documented and management strategies have been proposed based on this well-developed social structure. Using radiocollared (n = 17) and hunter or vehicle-killed (n = 21) does, we examined spatial and genetic structure in white-tailed deer on a 7,000-ha portion of the Savannah River Site in the upper Coastal Plain of South Carolina, USA. We used 14 microsatellite DNA loci to calculate pairwise relatedness among individual deer and to assign doe pairs to putative relationship categories. Linearmore » distance and genetic relatedness were weakly correlated (r = –0.08, P = 0.058). Relationship categories differed in mean spatial distance, but only 60% of first-degree-related doe pairs (full sibling or mother–offspring pairs) and 38% of second-degree-related doe pairs (half sibling, grandmother–granddaughter pairs) were members of the same social group based on spatial association. Heavy hunting pressure in this population has created a young age structure among does, where the average age is <2.5 years, and <4% of does are >4.5 years old. This—combined with potentially elevated dispersal among young does—could limit the formation of persistent, cohesive social groups. Our results question the universal applicability of recently proposed models of spatial and genetic structuring in white-tailed deer, particularly in areas with differing harvest histories.« less

  2. Flexible and fragmentable tandem photosensitive nanocrystal skins

    NASA Astrophysics Data System (ADS)

    Akhavan, S.; Uran, C.; Bozok, B.; Gungor, K.; Kelestemur, Y.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Demir, H. V.

    2016-02-01

    We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm-2 at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion.We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of

  3. Recombination zone in white organic light emitting diodes with blue and orange emitting layers

    NASA Astrophysics Data System (ADS)

    Tsuboi, Taiju; Kishimoto, Tadashi; Wako, Kazuhiro; Matsuda, Kuniharu; Iguchi, Hirofumi

    2012-10-01

    White fluorescent OLED devices with a 10 nm thick blue-emitting layer and a 31 nm thick orange-emitting layer have been fabricated, where the blue-emitting layer is stacked on a hole transport layer. An interlayer was inserted between the two emitting layers. The thickness of the interlayer was changed among 0.3, 0.4, and 1.0 nm. White emission with CIE coordinates close to (0.33, 0.33) was observed from all the OLEDs. OLED with 0.3 nm thick interlayer gives the highest maximum luminous efficiency (11 cd/A), power efficiency (9 lm/W), and external quantum efficiency (5.02%). The external quantum efficiency becomes low with increasing the interlayer thickness from 0 nm to 1.0 nm. When the location of the blue- and orange-emitting layers is reversed, white emission was not obtained because of too weak blue emission. It is suggested that the electron-hole recombination zone decreases nearly exponentially with a distance from the hole transport layer.

  4. Chemiluminescence of Organic Compounds.

    DTIC Science & Technology

    1981-04-07

    of organic reaction chemiluminescence (Rauiht, 197) ; Hastings and Wilson, 1976 ; Gundermann, 1974 ; White et al., 1974 ; McCapra, 1973 ; .oto, 1979...1977; Wilson, T., 1976; Turro et al., JI U4a; Mumtord, 1915), the chemiluminescence -4- of hydrazides (Roswell and White , 1978 ; White and Roswell...mechanical Iv exc, it cd . iii; q ie ed in a react inn, meaning energv is released in period ot t ime noi the *r?-!tcr of Ol I ess than thle t ime of a

  5. A Silicon–Singlet Fission Tandem Solar Cell Exceeding 100% External Quantum Efficiency with High Spectral Stability

    PubMed Central

    2017-01-01

    After 60 years of research, silicon solar cell efficiency saturated close to the theoretical limit, and radically new approaches are needed to further improve the efficiency. The use of tandem systems raises this theoretical power conversion efficiency limit from 34% to 45%. We present the advantageous spectral stability of using voltage-matched tandem solar cells with respect to their traditional series-connected counterparts and experimentally demonstrate how singlet fission can be used to produce simple voltage-matched tandems. Our singlet fission silicon–pentacene tandem solar cell shows efficient photocurrent addition. This allows the tandem system to benefit from carrier multiplication and to produce an external quantum efficiency exceeding 100% at the main absorption peak of pentacene. PMID:28261671

  6. Tandem Mass Spectrometry on a Miniaturized Laser Desorption Time-of-Flight Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Li, Xiang; Cornish, Timothy; Getty, Stephanie A.; Brinckerhoff, William B.

    2016-01-01

    Tandem mass spectrometry (MSMS) is a powerful and widely-used technique for identifying the molecular structure of organic constituents of a complex sample. Application of MSMS to the study of unknown planetary samples on a remote space mission would contribute to our understanding of the origin, evolution, and distribution of extraterrestrial organics in our solar system. Here we report on the realization of MSMS on a miniaturized laser desorption time-of-flight mass spectrometer (LD-TOF-MS), which is one of the most promising instrument types for future planetary missions. This achievement relies on two critical components: a curved-field reflectron and a pulsed-pin ion gate. These enable use of the complementary post-source decay (PSD) and laser-assisted collision induced dissociation (L-CID) MSMS methods on diverse measurement targets with only modest investment in instrument resources such as volume and weight. MSMS spectra of selected molecular targets in various organic standards exhibit excellent agreement when compared with results from a commercial, laboratory-scale TOF instrument, demonstrating the potential of this powerful technique in space and planetary environments.

  7. Recent developments and new applications of tandem mass spectrometry in newborn screening.

    PubMed

    Rinaldo, Piero; Tortorelli, Silvia; Matern, Dietrich

    2004-08-01

    To summarize recent developments in the field of newborn screening related to the use of tandem mass spectrometry as an analytic platform. Novel inborn errors of metabolism with informative amino acid and/or acylcarnitine profiles have been characterized, increasing the complexity of the differential diagnosis of abnormal results. In addition, methods have been developed for the analysis in dried blood spots of steroids and lysosomal enzymes. Previously unrecognized genotype/phenotype correlations have been found among cohorts of patients whose conditions were diagnosed by screening rather than clinically. Several government entities and professional organizations have issued position statements on newborn screening, and worldwide outcome studies continue to underscore the clinical and financial benefits of expanded newborn screening. Although it is done inconsistently, newborn screening in the United States is undergoing a rapid expansion driven by the introduction of tandem mass spectrometry in at least 34 state programs. This technology is also used to detect disease markers beyond acylcarnitines and amino acids, as both primary and second-tier tests. In addition to analytic improvements, there is a trend toward the development of joint programs not limited to contiguous geographic areas, often based upon public-private partnerships. This review will summarize several new developments in the field that have occurred since early 2003 and will mention others likely to occur in the near future.

  8. Comparison of dye doping and ultrathin emissive layer in white organic light-emitting devices with dual emissive layers

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Qi, Yige; Yu, Junsheng

    2014-09-01

    White organic light-emitting devices (WOLEDs) with combined doping emissive layer (EML) and ultrathin EML have been fabricated to investigate the effect of each EML on the electroluminescent (EL) performance of the WOLEDs. Through tailoring doping concentration of bis[(4,6-difluorophenyl)-pyridinato-N,C2'](picolinate) iridium(III) (FIrpic) and thickness of ultrathin bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2'] iridium (acetylacetonate) [(tbt)2Ir(acac)] EML, it is found that the change in the doping ratio of FIrpic significantly influenced the EL efficiencies and spectra, while the alteration of ultrathin EML thickness had much milder effect on the EL performance. The results indicated that ultrathin EML is in favor of reproducibility in mass production compared with doping method.

  9. A tandem mirror plasma source for hybrid plume plasma studies

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Chang, F. R.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.

    1985-01-01

    A tandem mirror device to be considered as a hot plasma source for the hybrid plume rocket concept is discussed. The hot plamsa from this device is injected into an exhaust duct, which will interact with an annular hypersonic layer of neutral gas. The device can be used to study the dynamics of the hybrid plume, and to verify the numerical predictions obtained with computer codes. The basic system design is also geared towards low weight and compactness, and high power density at the exhaust. The basic structure of the device consists of four major subsystems: (1) an electric power supply; (2) a low temperature, high density plasma gun, such as a stream gun, an MPD source or gas cell; (3) a power booster in the form of a tandem mirror machine; and (4) an exhaust nozzle arrangement. The configuration of the tandem mirror section is shown.

  10. Impeller tandem blade study with grid embedding for local grid refinement

    NASA Technical Reports Server (NTRS)

    Bache, George

    1992-01-01

    Flow non-uniformity at the discharge of high power density impellers can result in significant unsteady interactions between impeller blades and downstream diffuser vanes. These interactions result in degradation of both performance and pump reliability. The MSFC Pump Technology Team has recognized the importance of resolving this problem and has thus initiated the development and testing of a high head coefficient impeller. One of the primary goals of this program is to improve impeller performance and discharge flow uniformity. The objective of the present work is complimentary. Flow uniformity and performance gains were sought through the application of a tandem blade arrangement. The approach adopted was to numerically establish flow characteristics at the impeller discharge for the baseline MSFC impeller and then parametrically evaluate tandem blade configurations. A tandem design was sought that improves both impeller performance and discharge uniformity. The Navier-Stokes solver AEROVISC was used to conduct the study. Grid embedding is used to resolve local gradients while attempting to minimize model size. Initial results indicate that significant gains in flow uniformity can be achieved through the tandem blade concept and that blade clocking rather than slot location is the primary driver for flow uniformity.

  11. Simulation of Two Dimensional Electrophoresis and Tandem Mass Spectrometry for Teaching Proteomics

    ERIC Educational Resources Information Center

    Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul

    2012-01-01

    In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations--2D electrophoresis and tandem mass spectrometry.…

  12. Efficient white light generation from 2,3-diphenyl-1,2-dihydro-quinoxaline complex

    NASA Astrophysics Data System (ADS)

    Dwivedi, Y.; Kant, S.; Rai, R. N.; Rai, S. B.

    2010-11-01

    In this article, we report two organic materials dispersed in transparent poly (methyl methacrylate) matrix for efficient white light simulation under different optical excitations. A newly synthesized complex of benzoin and o-phenyldiamine is observed to be white on illumination with a blue LED. A new concept of white light emitting tube is also demonstrated. A mixture of 2,2″-([1,1'-biphenyl]-4,4'-diyldi-2,1-ethenediyl)-bis-benzenesulfonic acid disodium salt and complex is optimized to emit white light extended in the violet region on 355 nm laser excitation. The optical quality of the emitted white light is adjudged by the CIE coordinate, correlated color temperature and color rendition index in both the cases.

  13. An approach for configuring space photovoltaic tandem arrays based on cell layer performance

    NASA Technical Reports Server (NTRS)

    Flora, C. S.; Dillard, P. A.

    1991-01-01

    Meeting solar array performance goals of 300 W/Kg requires use of solar cells with orbital efficiencies greater than 20 percent. Only multijunction cells and cell layers operating in tandem produce this required efficiency. An approach for defining solar array design concepts that use tandem cell layers involve the following: transforming cell layer performance at standard test conditions to on-orbit performance; optimizing circuit configuration with tandem cell layers; evaluating circuit sensitivity to cell current mismatch; developing array electrical design around selected circuit; and predicting array orbital performance including seasonal variations.

  14. Modeling the Performance Limitations and Prospects of Perovskite/Si Tandem Solar Cells under Realistic Operating Conditions

    PubMed Central

    2017-01-01

    Perovskite/Si tandem solar cells have the potential to considerably out-perform conventional solar cells. Under standard test conditions, perovskite/Si tandem solar cells already outperform the Si single junction. Under realistic conditions, however, as we show, tandem solar cells made from current record cells are hardly more efficient than the Si cell alone. We model the performance of realistic perovskite/Si tandem solar cells under real-world climate conditions, by incorporating parasitic cell resistances, nonradiative recombination, and optical losses into the detailed-balance limit. We show quantitatively that when optimizing these parameters in the perovskite top cell, perovskite/Si tandem solar cells could reach efficiencies above 38% under realistic conditions, even while leaving the Si cell untouched. Despite the rapid efficiency increase of perovskite solar cells, our results emphasize the need for further material development, careful device design, and light management strategies, all necessary for highly efficient perovskite/Si tandem solar cells. PMID:28920081

  15. Modeling the Performance Limitations and Prospects of Perovskite/Si Tandem Solar Cells under Realistic Operating Conditions.

    PubMed

    Futscher, Moritz H; Ehrler, Bruno

    2017-09-08

    Perovskite/Si tandem solar cells have the potential to considerably out-perform conventional solar cells. Under standard test conditions, perovskite/Si tandem solar cells already outperform the Si single junction. Under realistic conditions, however, as we show, tandem solar cells made from current record cells are hardly more efficient than the Si cell alone. We model the performance of realistic perovskite/Si tandem solar cells under real-world climate conditions, by incorporating parasitic cell resistances, nonradiative recombination, and optical losses into the detailed-balance limit. We show quantitatively that when optimizing these parameters in the perovskite top cell, perovskite/Si tandem solar cells could reach efficiencies above 38% under realistic conditions, even while leaving the Si cell untouched. Despite the rapid efficiency increase of perovskite solar cells, our results emphasize the need for further material development, careful device design, and light management strategies, all necessary for highly efficient perovskite/Si tandem solar cells.

  16. Monolithic tandem solar cell

    DOEpatents

    Wanlass, M.W.

    1994-06-21

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.

  17. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W.

    1994-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

  18. The effect of a charge control layer on the electroluminescent characteristic of blue and white organic light-emitting diodes.

    PubMed

    Lee, Dong Hyung; Lee, Seok Jae; Koo, Ja-Ryong; Lee, Ho Won; Shin, Hyun Su; Lee, Song Eun; Kim, Woo Young; Lee, Kum Hee; Yoon, Seung Soo; Kim, Young Kwan

    2014-08-01

    We investigated blue fluorescent organic light-emitting diode (OLED) with a charge control layer (CCL) to produce high efficiency and improve the half-decay lifetime. Three types of devices (device A, B, and C) were fabricated following the number of CCLs within the emitting layer (EML), maintaining the thickness of whole EML. The CCL and host material, 2-methyl-9,10-di(2-naphthyl)anthracene, which has a bipolar property, was able to control the carrier movement with ease inside the EML. Device B demonstrated a maximum luminous efficiency (LE) and external quantum efficiency (EQE) of 9.19 cd/A and 5.78%, respectively. It also showed that the enhancement of the half-decay lifetime, measured at an initial luminance of 1,000 cd/m2, was 1.5 times longer than that of the conventional structure. A hybrid white OLED (WOLED) was also fabricated using a phosphorescent red emitter, bis(2-phenylquinoline)-acetylacetonate iridium III doped in 4,4'-N,N'-dicarbazolyl-biphenyl. The property of the hybrid WOLED with CCL showed a maximum LE and an EQE of 13.46 cd/A and 8.32%, respectively. It also showed white emission with Commission International de L'Éclairage coordinates of (x = 0.41, y = 0.33) at 10 V.

  19. Spatial exciton allocation strategy with reduced energy loss for high-efficiency fluorescent/phosphorescent hybrid white organic light-emitting diodes

    DOE PAGES

    Zhao, Fangchao; Wei, Ying; Xu, Hui; ...

    2017-05-17

    Due to the poor operational lifetime of blue phosphorescent dopants and blue thermally activated delayed fluorescent (TADF) materials, hybrid white organic light-emitting diodes (WOLEDs) with conventional blue fluorescent emitters are still preferred for commercial applications in general lighting. However, the improvement in the overall efficiency of hybrid WOLEDs has been limited due to energy losses during the energy transfer process and exciton quenching after the spatial separation of the singlet and triplet excitons. Here we demonstrate the development of a Spatial Exciton Allocation Strategy (SEAS) to achieve close to 100% internal quantum efficiency (IQE) in blue-yellow complementary color hybrid WOLEDs.more » The employed blue fluorophore not only has a resonant triplet level with the yellow phosphor to reduce energy loss during energy transfer processes and triplet–triplet annihilation (TTA), but also has a resonant singlet level with the electron transport layer to extend singlet exciton distribution and enhance both singlet and triplet exciton utilization. Thus, the resulting hybrid WOLEDs exhibited 104 lm W -1 efficacy at 100 cd m -2 and 74 lm W -1 at 1000 cd m -2 with CIE coordinates of (0.42, 0.44) which is warm white and suitable for indoor lighting.« less

  20. Spatial exciton allocation strategy with reduced energy loss for high-efficiency fluorescent/phosphorescent hybrid white organic light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Fangchao; Wei, Ying; Xu, Hui

    Due to the poor operational lifetime of blue phosphorescent dopants and blue thermally activated delayed fluorescent (TADF) materials, hybrid white organic light-emitting diodes (WOLEDs) with conventional blue fluorescent emitters are still preferred for commercial applications in general lighting. However, the improvement in the overall efficiency of hybrid WOLEDs has been limited due to energy losses during the energy transfer process and exciton quenching after the spatial separation of the singlet and triplet excitons. Here we demonstrate the development of a Spatial Exciton Allocation Strategy (SEAS) to achieve close to 100% internal quantum efficiency (IQE) in blue-yellow complementary color hybrid WOLEDs.more » The employed blue fluorophore not only has a resonant triplet level with the yellow phosphor to reduce energy loss during energy transfer processes and triplet–triplet annihilation (TTA), but also has a resonant singlet level with the electron transport layer to extend singlet exciton distribution and enhance both singlet and triplet exciton utilization. Thus, the resulting hybrid WOLEDs exhibited 104 lm W -1 efficacy at 100 cd m -2 and 74 lm W -1 at 1000 cd m -2 with CIE coordinates of (0.42, 0.44) which is warm white and suitable for indoor lighting.« less

  1. Tandem mass spectrometry, but not T-cell receptor excision circle analysis, identifies newborns with late-onset adenosine deaminase deficiency.

    PubMed

    la Marca, Giancarlo; Canessa, Clementina; Giocaliere, Elisa; Romano, Francesca; Duse, Marzia; Malvagia, Sabrina; Lippi, Francesca; Funghini, Silvia; Bianchi, Leila; Della Bona, Maria Luisa; Valleriani, Claudia; Ombrone, Daniela; Moriondo, Maria; Villanelli, Fabio; Speckmann, Carsten; Adams, Stuart; Gaspar, Bobby H; Hershfield, Michael; Santisteban, Ines; Fairbanks, Lynette; Ragusa, Giovanni; Resti, Massimo; de Martino, Maurizio; Guerrini, Renzo; Azzari, Chiara

    2013-06-01

    Adenosine deaminase (ADA)-severe combined immunodeficiency (SCID) is caused by genetic variants that disrupt the function of ADA. In its early-onset form, it is rapidly fatal to infants. Delayed or late-onset ADA-SCID is characterized by insidious progressive immunodeficiency that leads to permanent organ damage or death. Quantification of T-cell receptor excision circles (TRECs) or tandem mass spectrometry (tandem-MS) analysis of dried blood spots (DBSs) collected at birth can identify newborns with early-onset ADA-SCID and are used in screening programs. However, it is not clear whether these analyses can identify newborns who will have delayed or late-onset ADA-SCID before symptoms appear. We performed a retrospective study to evaluate whether tandem-MS and quantitative TREC analyses of DBSs could identify newborns who had delayed-onset ADA-SCID later in life. We tested stored DBSs collected at birth from 3 patients with delayed-onset ADA-SCID using tandem-MS (PCT EP2010/070517) to evaluate levels of adenosine and 2'-deoxyadenosine and real-time PCR to quantify TREC levels. We also analyzed DBSs from 3 newborns with early-onset ADA-SCID and 2 healthy newborn carriers of ADA deficiency. The DBSs taken at birth from the 3 patients with delayed-onset ADA-SCID had adenosine levels of 10, 25, and 19 μmol/L (normal value, <1.5 μmol/L) and 2'-deoxyadenosine levels of 0.7, 2.7, and 2.4 μmol/L (normal value, <0.07 μmol/L); the mean levels of adenosine and 2'-deoxyadenosine were respectively 12.0- and 27.6-fold higher than normal values. DBSs taken at birth from all 3 patients with delayed-onset ADA deficiency had normal TREC levels, but TRECs were undetectable in blood samples taken from the same patients at the time of diagnosis. Tandem-MS but not TREC quantification identifies newborns with delayed- or late-onset ADA deficiency. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  2. White Students' Understanding of Race: An Exploration of How White University Students, Raised in a Predominately White State, Experience Whiteness

    ERIC Educational Resources Information Center

    Smith, Barbara A.

    2014-01-01

    This study examines White university students' understanding of race. Based in the scholarship on higher education and diversity, and framed in Critical Race Theory (CRT), this study explores the racial awareness of White students. This study contributes to the literature on the racial experience of Whites and an understanding of how White…

  3. 47 CFR 69.713 - Common line, traffic-sensitive, and tandem-switched transport services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-switched transport services. 69.713 Section 69.713 Telecommunication FEDERAL COMMUNICATIONS COMMISSION..., traffic-sensitive, and tandem-switched transport services. (a) Scope. This paragraph governs requests for...)(2) of this chapter. (3) The traffic-sensitive components of tandem-switched transport services, as...

  4. 47 CFR 69.713 - Common line, traffic-sensitive, and tandem-switched transport services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-switched transport services. 69.713 Section 69.713 Telecommunication FEDERAL COMMUNICATIONS COMMISSION..., traffic-sensitive, and tandem-switched transport services. (a) Scope. This paragraph governs requests for...)(2) of this chapter. (3) The traffic-sensitive components of tandem-switched transport services, as...

  5. Life prediction for white OLED based on LSM under lognormal distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Jianping; Liu, Fang; Liu, Yu; Wu, Helen; Zhu, Wenqing; Wu, Wenli; Wu, Liang

    2012-09-01

    In order to acquire the reliability information of White Organic Light Emitting Display (OLED), three groups of OLED constant stress accelerated life tests (CSALTs) were carried out to obtain failure data of samples. Lognormal distribution function was applied to describe OLED life distribution, and the accelerated life equation was determined by Least square method (LSM). The Kolmogorov-Smirnov test was performed to verify whether the white OLED life meets lognormal distribution or not. Author-developed software was employed to predict the average life and the median life. The numerical results indicate that the white OLED life submits to lognormal distribution, and that the accelerated life equation meets inverse power law completely. The estimated life information of the white OLED provides manufacturers and customers with important guidelines.

  6. Studies of the Lateral-Directional Flying Qualities of a Tandem Helicopter in Forward Flight

    NASA Technical Reports Server (NTRS)

    Amer, Kenneth B; Tapscott, Robert J

    1954-01-01

    An investigation of the lateral-directional flying qualities of a tandem-rotor helicopter in forward flight was undertaken to determine desirable goals for helicopter lateral-directional flying qualities and possible methods of achieving these goals in the tandem-rotor helicopter. Comparison between directional stability as measured in flight and rotor-off model tests in a wind tunnel shows qualitative agreement and, hence, indicates such wind-tunnel test, despite the absence of the rotors, to be one effective method of studying means of improving the directional stability of the tandem helicopter. Flight-test measurements of turns and oscillations, in conjunction with analytical studies, suggest possible practical methods of achieving the goals of satisfactory turn and oscillatory characteristics in the tandem helicopter.

  7. Development and Utilization of Host Materials for White Phosphorescent Organic Light-Emitting Diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Ching; Chen, Shaw

    Our project was primarily focused on the MYPP 2015 goal for white phosphorescent organic devices (PhOLEDs or phosphorescent organic light-emitting diodes) for solid-state lighting with long lifetimes and high efficiencies. Our central activity was to synthesize and evaluate a new class of host materials for blue phosphors in the PhOLEDs, known to be a weak link in the device operating lifetime. The work was a collaborative effort between three groups, one primarily responsible for chemical design and characterization (Chen), one primarily responsible for device development (Tang) and one primarily responsible for mechanistic studies and degradation analysis (Rothberg). The host materialsmore » were designed with a novel architecture that chemically links groups with good ability to move electrons with those having good ability to move “holes” (positive charges), the main premise being that we could suppress the instability associated with physical separation and crystallization of the electron conducting and hole conducting materials that might cause the devices to fail. We found that these materials do prevent crystallization and that this will increase device lifetimes but that efficiencies were reduced substantially due to interactions between the materials creating new low energy “charge transfer” states that are non-luminescent. Therefore, while our proposed strategy could in principle improve device lifetimes, we were unable to find a materials combination where the efficiency was not substantially compromised. In the course of our project, we made several important contributions that are peripherally related to the main project goal. First, we were able to prepare the proposed new family of materials and develop synthetic routes to make them efficiently. These types of materials that can transport both electrons and holes may yet have important roles to play in organic device technology. Second we developed an important new method for controlling

  8. Electrolytes Based on TEMPO–Co Tandem Redox Systems Outperform Single Redox Systems in Dye‐sensitized Solar Cells

    PubMed Central

    Cong, Jiayan; Hao, Yan; Boschloo, Gerrit

    2014-01-01

    Abstract A new TEMPO–Co tandem redox system with TEMPO and Co(bpy)3 2+/3+ has been investigated for the use in dye‐sensitized solar cells (DSSCs). A large open‐circuit voltage (V OC) increase, from 862 mV to 965 mV, was observed in the tandem redox system, while the short‐circuit current density (J SC) was maintained. The conversion efficiency was observed to increase from 7.1 % for cells containing the single Co(bpy)3 2+/3+ redox couple, to 8.4 % for cells containing the TEMPO–Co tandem redox system. The reason for the increase in V OC and overall efficiency is ascribed to the involvement of partial regeneration of the sensitizing dye molecules by TEMPO. This assumption can be verified through the observed much faster regeneration dynamics exhibited in the presence of the tandem system. Using the tandem redox system, the faster recombination problem of the single TEMPO redox couple is resolved and the mass‐transport of the metal‐complex‐based electrolyte is also improved. This TEMPO–Co tandem system is so far the most effienct tandem redox electrolyte reported not involving iodine. The current results show a promising future for tandem system as replacements for single redox systems in electrolytes for DSSCs. PMID:25504818

  9. Resilience Differences of Black Greek-Lettered Organization Members and African-American Students at Predominately White Institutions

    ERIC Educational Resources Information Center

    White, Sherra' M.

    2013-01-01

    Even though the number of African American students has increased on college campuses, particularly Predominately White Institutions (PWIs), over the last century, they are less likely to graduate than their White counterparts are. They face discrimination, hostile environments, adversity, low or no social or mentoring support, and often feel…

  10. Controlled human malaria infection trials: How tandems of trust and control construct scientific knowledge.

    PubMed

    Bijker, Else M; Sauerwein, Robert W; Bijker, Wiebe E

    2016-02-01

    Controlled human malaria infections are clinical trials in which healthy volunteers are deliberately infected with malaria under controlled conditions. Controlled human malaria infections are complex clinical trials: many different groups and institutions are involved, and several complex technologies are required to function together. This functioning together of technologies, people, and institutions is under special pressure because of potential risks to the volunteers. In this article, the authors use controlled human malaria infections as a strategic research site to study the use of control, the role of trust, and the interactions between trust and control in the construction of scientific knowledge. The authors argue that tandems of trust and control play a central role in the successful execution of clinical trials and the construction of scientific knowledge. More specifically, two aspects of tandems of trust and control will be highlighted: tandems are sites where trust and control coproduce each other, and tandems link the personal, the technical, and the institutional domains. Understanding tandems of trust and control results in setting some agendas for both clinical trial research and science and technology studies.

  11. New method to determine the total carbonyl functional group content in extractable particulate organic matter by tandem mass spectrometry.

    PubMed

    Dron, J; Zheng, W; Marchand, N; Wortham, H

    2008-08-01

    A functional group analysis method was developed to determine the quantitative content of carbonyl functional groups in atmospheric particulate organic matter (POM) using constant neutral loss scanning-tandem mass spectrometry (CNLS-MS/MS). The neutral loss method consists in monitoring the loss of a neutral fragment produced by the fragmentation of a precursor ion in a collision cell. The only ions detected are the daughter ions resulting from the loss of the neutral fragment under study. Then, scanning the loss of a neutral fragment characteristic of a functional group enables the selective detection of the compounds bearing the chemical function under study within a complex mixture. The selective detection of carbonyl functional groups was achieved after derivatization with pentafluorophenylhydrazine (PFPH) by monitoring the neutral loss of C(6)F(5)N (181 amu), which was characteristic of a large panel of derivatized carbonyl compounds. The method was tested on 25 reference mixtures of different composition, all containing 24 carbonyl compounds at randomly determined concentrations. The repeatability and calibration tests were satisfying as they resulted in a relative standard deviation below 5% and a linear range between 0.01 and 0.65 mM with a calculated detection limit of 0.0035 mM. Also, the relative deviation induced by changing the composition of the mixture while keeping the total concentration of carbonyl functional groups constant was less than 20%. These reliability experiments demonstrate the high robustness of the developed procedure for accurate carbonyl functional group measurement, which was applied to atmospheric POM samples. Copyright (c) 2008 John Wiley & Sons, Ltd.

  12. A versatile approach to organic photovoltaics evaluation using white light pulse and microwave conductivity.

    PubMed

    Saeki, Akinori; Yoshikawa, Saya; Tsuji, Masashi; Koizumi, Yoshiko; Ide, Marina; Vijayakumar, Chakkooth; Seki, Shu

    2012-11-21

    State-of-the-art low band gap conjugated polymers have been investigated for application in organic photovoltaic cells (OPVs) to achieve efficient conversion of the wide spectrum of sunlight into electricity. A remarkable improvement in power conversion efficiency (PCE) has been achieved through the use of innovative materials and device structures. However, a reliable technique for the rapid screening of the materials and processes is a prerequisite toward faster development in this area. Here we report the realization of such a versatile evaluation technique for bulk heterojunction OPVs by the combination of time-resolved microwave conductivity (TRMC) and submicrosecond white light pulse from a Xe-flash lamp. Xe-flash TRMC allows examination of the OPV active layer without requiring fabrication of the actual device. The transient photoconductivity maxima, involving information on generation efficiency, mobility, and lifetime of charge carriers in four well-known low band gap polymers blended with phenyl-C(61)-butyric acid methyl ester (PCBM), were confirmed to universally correlate with the PCE divided by the open circuit voltage (PCE/V(oc)), offering a facile way to predict photovoltaic performance without device fabrication.

  13. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W.

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  14. Highly loaded multi-stage fan drive turbine-tandem blade configuration design

    NASA Technical Reports Server (NTRS)

    Evans, D. C.; Wolfmeyer, G. W.

    1972-01-01

    The results of the tandem blade configuration design study are reported. The three stage constant-inside-diameter turbine utilizes tandem blading in the stage two and stage three vanes and in the stage three blades. All other bladerows use plain blades. Blading detailed design is discussed, and design data are summarized. Steady-state stresses and vibratory behavior are discussed, and the results of the mechanical design analysis are presented.

  15. Tunneling Injection and Exciton Diffusion of White Organic Light-Emitting Diodes with Composed Buffer Layers

    NASA Astrophysics Data System (ADS)

    Yang, Su-Hua; Wu, Jian-Ping; Huang, Tao-Liang; Chung, Bin-Fong

    2018-02-01

    Four configurations of buffer layers were inserted into the structure of a white organic light emitting diode, and their impacts on the hole tunneling-injection and exciton diffusion processes were investigated. The insertion of a single buffer layer of 4,4'-bis(carbazol-9-yl)biphenyl (CBP) resulted in a balanced carrier concentration and excellent color stability with insignificant chromaticity coordinate variations of Δ x < 0.023 and Δ y < 0.023. A device with a 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) buffer layer was beneficial for hole tunneling to the emission layer, resulting in a 1.45-fold increase in current density. The tunneling of holes and the diffusion of excitons were confirmed by the preparation of a dual buffer layer of CBP:tris-(phenylpyridine)-iridine (Ir(ppy)3)/BCP. A maximum current efficiency of 12.61 cd/A with a luminance of 13,850 cd/m2 was obtained at 8 V when a device with a dual-buffer layer of CBP:6 wt.% Ir(ppy)3/BCP was prepared.

  16. Portable Tandem Mass Spectrometer Analyzer

    DTIC Science & Technology

    1991-07-01

    The planned instrument was to be small enough to be portable in small vehicles and was to be able to use either an atmospheric pressure ion source or a...conventional electron impact/chemical ionization ion source. In order to accomplish these developments an atmospheric pressure ionization source was...developed for a compact, commercially available tandem quadrupole mass spectrometer. This ion source could be readily exchanged with the conventional

  17. Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells

    NASA Astrophysics Data System (ADS)

    Chang, Hong-Wei; Lee, Jonghee; Hofmann, Simone; Hyun Kim, Yong; Müller-Meskamp, Lars; Lüssem, Björn; Wu, Chung-Chih; Leo, Karl; Gather, Malte C.

    2013-05-01

    The performance of both organic light-emitting diodes (OLEDs) and organic solar cells (OSC) depends on efficient coupling between optical far field modes and the emitting/absorbing region of the device. Current approaches towards OLEDs with efficient light-extraction often are limited to single-color emission or require expensive, non-standard substrates or top-down structuring, which reduces compatibility with large-area light sources. Here, we report on integrating solution-processed nano-particle based light-scattering films close to the active region of organic semiconductor devices. In OLEDs, these films efficiently extract light that would otherwise remain trapped in the device. Without additional external outcoupling structures, translucent white OLEDs containing these scattering films achieve luminous efficacies of 46 lm W-1 and external quantum efficiencies of 33% (both at 1000 cd m-2). These are by far the highest numbers ever reported for translucent white OLEDs and the best values in the open literature for any white device on a conventional substrate. By applying additional light-extraction structures, 62 lm W-1 and 46% EQE are reached. Besides universally enhancing light-extraction in various OLED configurations, including flexible, translucent, single-color, and white OLEDs, the nano-particle scattering film boosts the short-circuit current density in translucent organic solar cells by up to 70%.

  18. Versatile communication strategies among tandem WW domain repeats

    PubMed Central

    Dodson, Emma Joy; Fishbain-Yoskovitz, Vered; Rotem-Bamberger, Shahar

    2015-01-01

    Interactions mediated by short linear motifs in proteins play major roles in regulation of cellular homeostasis since their transient nature allows for easy modulation. We are still far from a full understanding and appreciation of the complex regulation patterns that can be, and are, achieved by this type of interaction. The fact that many linear-motif-binding domains occur in tandem repeats in proteins indicates that their mutual communication is used extensively to obtain complex integration of information toward regulatory decisions. This review is an attempt to overview, and classify, different ways by which two and more tandem repeats cooperate in binding to their targets, in the well-characterized family of WW domains and their corresponding polyproline ligands. PMID:25710931

  19. Let's Talk about Race, Baby: How a White Professor Teaches White Students about White Privilege and Racism

    ERIC Educational Resources Information Center

    Heinze, Peter

    2008-01-01

    There are a variety of methods by which the themes of White privilege and racism can be presented to White students. By using the concept of racial identity a continuum of racism can be considered. Furthermore, addressing White privilege and racism in the context of a multicultural psychology course allows White students to have a greater…

  20. Interpreting the Need for Initial Support to Perform Tandem Stance Tests of Balance

    PubMed Central

    Brach, Jennifer S.; Perera, Subashan; Wert, David M.; VanSwearingen, Jessie M.; Studenski, Stephanie A.

    2012-01-01

    Background Geriatric rehabilitation reimbursement increasingly requires documented deficits on standardized measures. Tandem stance performance can characterize balance, but protocols are not standardized. Objective The purpose of this study was to explore the impact of: (1) initial support to stabilize in position and (2) maximum hold time on tandem stance tests of balance in older adults. Design A cross-sectional secondary analysis of observational cohort data was conducted. Methods One hundred seventeen community-dwelling older adults (71% female, 12% black) were assigned to 1 of 3 groups based on the need for initial support to perform tandem stance: (1) unable even with support, (2) able only with support, and (3) able without support. The able without support group was further stratified on hold time in seconds: (1) <10 (low), (2) 10 to 29, (medium), and (3) 30 (high). Groups were compared on primary outcomes (gait speed, Timed “Up & Go” Test performance, and balance confidence) using analysis of variance. Results Twelve participants were unable to perform tandem stance, 14 performed tandem stance only with support, and 91 performed tandem stance without support. Compared with the able without support group, the able with support group had statistically or clinically worse performance and balance confidence. No significant differences were found between the able with support group and the unable even with support group on these same measures. Extending the hold time to 30 seconds in a protocol without initial support eliminated ceiling effects for 16% of the study sample. Limitations Small comparison groups, use of a secondary analysis, and lack of generalizability of results were limitations of the study. Conclusions Requiring initial support to stabilize in tandem stance appears to reflect meaningful deficits in balance-related mobility measures, so failing to consider support may inflate balance estimates and confound hold time comparisons

  1. Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors, part 8

    NASA Technical Reports Server (NTRS)

    Brent, J. A.; Clemmons, D. R.

    1974-01-01

    An experimental investigation was conducted with an 0.8 hub/tip ratio, single-stage, axial flow compressor to determine the potential of tandem-airfoil blading for improving the efficiency and stable operating range of compressor stages. The investigation included testing of a baseline stage with single-airfoil blading and two tandem-blade stages. The overall performance of the baseline stage and the tandem-blade stage with a 20-80% loading split was considerably below the design prediction. The other tandem-blade stage, which had a rotor with a 50-50% loading split, came within 4.5% of the design pressure rise (delta P(bar)/P(bar) sub 1) and matched the design stage efficiency. The baseline stage with single-airfoil blading, which was designed to account for the actual rotor inlet velocity profile and the effects of axial velocity ratio and secondary flow, achieved the design predicted performance. The corresponding tandem-blade stage (50-50% loading split in both blade rows) slightly exceeded the design pressure rise but was 1.5 percentage points low in efficiency. The tandem rotors tested during both phases demonstrated higher pressure rise and efficiency than the corresponding single-airfoil rotor, with identical inlet and exit airfoil angles.

  2. Independent selection by I-Ak molecules of two epitopes found in tandem in an extended polypeptide antigen.

    PubMed

    Gugasyan, R; Velazquez, C; Vidavsky, I; Deck, B M; van der Drift, K; Gross, M L; Unanue, E R

    2000-09-15

    The protein hen egg white lysozyme (HEL) contains two segments, in tandem, from which two families of peptides are selected by the class II molecule I-Ak, during processing. These encompass peptides primarily from residues 31-47 and 48-63. Mutant HEL proteins were created with changes in residues 52 and 55, resulting in a lack of binding and selection of the 48-63 peptides to I-Ak molecules. Such mutant HEL proteins donated the same amount of 31-47 peptide as did the unmodified protein. Other mutant HEL molecules containing proline residues at residue 46, 47, or 48 resulted in extensions of the selected 31-47 or 48-62 families to their overlapping regions (in the carboxyl or amino termini, respectively). However, the amount of each family of peptide selected was not changed. We conclude that the presence or absence of the major peptide from HEL does not influence the selection of other epitopes, and that these two families are selected independently of each other.

  3. Effect of 1-naphthaleneacetic acid on organic acid exudation by the roots of white lupin plants grown under phosphorus-deficient conditions.

    PubMed

    Gómez, Diego A; Carpena, Ramón O

    2014-09-15

    The effect of NAA (1-naphthaleneacetic acid) on organic acid exudation in white lupin plants grown under phosphorus deficiency was investigated. Plants were sampled periodically for collecting of organic acids (citrate, malate, succinate), and also were used to study the effect on proton extrusion and release of Na(+), K(+), Ca(2+) and Mg(2+). The tissues were later processed to quantify the organic acids in tissues, the phosphorus content and the effects on plant biomass. The exogenous addition of NAA led to an increase in organic acid exudation, but this response was not proportional to the concentration of the dose applied, noticing the largest increments with NAA 10(-8)M. In contrast the increase in root weight was proportional to the dose applied, which shows that with higher doses the roots produced are not of proteoid type. Proton extrusion and the release of cations were related to the NAA dose, the first was proportional to the dose applied and the second inversely proportional. Regarding the analysis of tissues, the results of citrate and phosphorus content in shoots show that the overall status of these parts are the main responsible of the organic acids exuded. NAA served as an enhancer of the organic acid exudation that occurs under phosphorus deficient conditions, with a response that depends on the dose applied, not only in its magnitude, but also in the mechanism of action of the plant hormone. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Artificial urinary sphincter revision for urethral atrophy: Comparing single cuff downsizing and tandem cuff placement.

    PubMed

    Linder, Brian J; Viers, Boyd R; Ziegelmann, Matthew J; Rivera, Marcelino E; Elliott, Daniel S

    2017-01-01

    To compare outcomes for single urethral cuff downsizing versus tandem cuff placement during artificial urinary sphincter (AUS) revision for urethral atrophy. We identified 1778 AUS surgeries performed at our institution from 1990-2014. Of these, 406 were first AUS revisions, including 69 revisions for urethral atrophy. Multiple clinical and surgical variables were evaluated for potential association with device outcomes following revision, including surgical revision strategy (downsizing a single urethral cuff versus placing tandem urethral cuffs). Of the 69 revision surgeries for urethral atrophy at our institution, 56 (82%) were tandem cuff placements, 12 (18%) were single cuff downsizings and one was relocation of a single cuff. When comparing tandem cuff placements and single cuff downsizings, the cohorts were similar with regard to age (p=0.98), body-mass index (p=0.95), prior pelvic radiation exposure (p=0.73) and length of follow-up (p=0.12). Notably, there was no difference in 3-year overall device survival compared between single cuff and tandem cuff revisions (60% versus 76%, p=0.94). Likewise, no significant difference was identified for tandem cuff placement (ref. single cuff) when evaluating the risk of any tertiary surgery (HR 0.95, 95% CI 0.32-4.12, p=0.94) or urethral erosion/device infection following revision (HR 0.79, 95% CI 0.20-5.22, p=0.77). There was no significant difference in overall device survival in patients undergoing single cuff downsizing or tandem cuff placement during AUS revision for urethral atrophy. Copyright® by the International Brazilian Journal of Urology.

  5. Simultaneous detection and quantitation of organic impurities in methamphetamine by ultra-high-performance liquid chromatography-tandem mass spectrometry, a complementary technique for methamphetamine profiling.

    PubMed

    Li, Li; Brown, Jaclyn L; Toske, Steven G

    2018-04-06

    The analysis of organic impurities plays an important role in the impurity profiling of methamphetamine, which in turn provides valuable information about methamphetamine manufacturing, in particular its synthetic route, chemicals, and precursors used. Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) is ideally suited for this purpose due to its excellent sensitivity, selectivity, and wide linear range in multiple reaction monitoring (MRM) mode. In this study, a dilute-and-shoot UHPLC-MS/MS method was developed for the simultaneous identification and quantitation of 23 organic manufacturing impurities in illicit methamphetamine. The developed method was validated in terms of stability, limit of detection (LOD), lower limit of quantification (LLOQ), accuracy, and precision. More than 100 illicitly prepared methamphetamine samples were analyzed. Due to its ability to detect ephedrine/pseudoephedrine and its high sensitivity for critical target markers (eg, chloro-pseudoephedrine, N-cyclohexylamphetamine, and compounds B and P), more impurities and precursor/pre-precursors were identified and quantified versus the current procedure by gas chromatography-mass spectrometry (GC-MS). Consequently, more samples could be classified by their synthetic routes. However, the UHPLC-MS/MS method has difficulty in detecting neutral and untargeted emerging manufacturing impurities and can therefore only serve as a complement to the current method. Despite this deficiency, the quantitative information acquired by the presented UHPLC-MS/MS methodology increased the sample discrimination power, thereby enhancing the capacity of methamphetamine profiling program (MPP) to conduct sample-sample comparisons. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  6. 76 FR 40935 - Vertical Tandem Lifts in Marine Terminals; Extension of the Office of Management and Budget's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ...] Vertical Tandem Lifts in Marine Terminals; Extension of the Office of Management and Budget's (OMB... Standard on Vertical Tandem Lifts (VTLs) in Marine Terminals (29 CFR part 1917). The collection of... on Vertical Tandem Lifts for Marine Terminals (29 CFR part 1917). OSHA is proposing to increase the...

  7. Simultaneous enhancement of photo- and electroluminescence in white organic light-emitting devices by localized surface plasmons of silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Yu, Jingting; Zhu, Wenqing; Shi, Guanjie; Zhai, Guangsheng; Qian, Bingjie; Li, Jun

    2017-02-01

    White organic light-emitting devices (WOLEDs) with enhanced current efficiency and negligible color shifting equipped with an internal color conversion layer (CCL) were fabricated. They were attained by embedding a single layer of silver nanoclusters (SNCs) between the CCL and light-emitting layer (EML). The simultaneous enhancement of the photoluminescence (PL) of the CCL and electroluminescence (EL) of the EML were realized by controlling the thickness and size of the SNCs to match the localized surface plasmon resonance spectrum with the PL spectrum of the CCL and the EL spectrum of the EML. The WOLED with optimal SNCs demonstrated a 25.81% enhancement in current efficiency at 60 mA cm-2 and good color stability over the entire range of current density.

  8. Tandem SAM Domain Structure of Human Caskin1: A Presynaptic, Self-Assembling Scaffold for CASK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stafford, Ryan L.; Hinde, Elizabeth; Knight, Mary Jane

    2012-02-07

    The synaptic scaffolding proteins CASK and Caskin1 are part of the fibrous mesh of proteins that organize the active zones of neural synapses. CASK binds to a region of Caskin1 called the CASK interaction domain (CID). Adjacent to the CID, Caskin1 contains two tandem sterile a motif (SAM) domains. Many SAM domains form polymers so they are good candidates for forming the fibrous structures seen in the active zone. We show here that the SAM domains of Caskin1 form a new type of SAM helical polymer. The Caskin1 polymer interface exhibits a remarkable segregation of charged residues, resulting in amore » high sensitivity to ionic strength in vitro. The Caskin1 polymers can be decorated with CASK proteins, illustrating how these proteins may work together to organize the cytomatrix in active zones.« less

  9. Tandem UIMs confer Lys48 ubiquitin chain substrate preference to deubiquitinase USP25

    PubMed Central

    Kawaguchi, Kohei; Uo, Kazune; Tanaka, Toshiaki; Komada, Masayuki

    2017-01-01

    Ubiquitin-specific protease (USP) 25, belonging to the USP family of deubiquitinases, harbors two tandem ubiquitin-interacting motifs (UIMs), a ~20-amino-acid α-helical stretch that binds to ubiquitin. However, the role of the UIMs in USP25 remains unclear. Here we show that the tandem UIM region binds to Lys48-, but not Lys63-, linked ubiquitin chains, where the two UIMs played a critical and cooperative role. Purified USP25 exhibited higher ubiquitin isopeptidase activity to Lys48-, than to Lys63-, linked ubiquitin chains. Mutations that disrupted the ubiquitin-binding ability of the tandem UIMs resulted in a reduced ubiquitin isopeptidase activity of USP25, suggesting a role for the UIMs in exerting the full catalytic activity of USP25. Moreover, when mutations that convert the binding preference from Lys48- to Lys63-linked ubiquitin chains were introduced into the tandem UIM region, the USP25 mutants acquired elevated and reduced isopeptidase activity toward Lys63- and Lys48-linked ubiquitin chains, respectively. These results suggested that the binding preference of the tandem UIMs toward Lys48-linked ubiquitin chains contributes not only to the full catalytic activity but also to the ubiquitin chain substrate preference of USP25, possibly by selectively holding the Lys48-linked ubiquitin chain substrates in the proximity of the catalytic core. PMID:28327663

  10. Fine-scale genetic structure and social organization in female white-tailed deer

    Treesearch

    Christopher E. Comer; John C. Kilgo; Gino J. D' Angelo; Travis C. Glenn; Karl V. Miller

    2005-01-01

    Social behavior of white-tailed deer (Odocoileus virginianus) can have important management implications. The formation of matrilineal social groups among female deer has been documented and management strategies have been proposed based on this well-developed social structure. Using radiocollared (n = 17) and hunter or vehicle-killed (n = 21) does, we examined spatial...

  11. Growth and yield of white spruce plantations in the Lake States (a literature review).

    Treesearch

    H. Michael Rauscher

    1984-01-01

    This summary of the white spruce literature covers the structure, site relations, population dynamics, and cultural practices applicable to established plantations in the Lake States. The objective of this paper is to assemble and organize all information relevant to the silviculture, growth, and yield of white spruce plantations in the Lake States .

  12. N719 dye-sensitized organophotocatalysis: enantioselective tandem Michael addition/oxyamination of aldehydes.

    PubMed

    Yoon, Hyo-Sang; Ho, Xuan-Huong; Jang, Jiyeon; Lee, Hwa-Jung; Kim, Seung-Joo; Jang, Hye-Young

    2012-07-06

    A remarkably efficient photosensitizer, N719 dye, was used in asymmetric tandem Michael addition/oxyamination of aldehydes, rendering α,β-substituted aldehydes in good yields with excellent levels of enantioselectivity and diastereoselectivity. This is the first report of a multiorganocatalytic reaction involving iminium catalysis and photoinduced singly occupied molecular orbital (SOMO) catalysis. This reaction is expected to expand the scope of tandem organocatalytic reactions.

  13. Bioprinting toward organ fabrication: challenges and future trends.

    PubMed

    Ozbolat, Ibrahim T; Yu, Yin

    2013-03-01

    Tissue engineering has been a promising field of research, offering hope for bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3-D) vascularized organs remains the main technological barrier to be overcome. Organ printing, which is defined as computer-aided additive biofabrication of 3-D cellular tissue constructs, has shed light on advancing this field into a new era. Organ printing takes advantage of rapid prototyping (RP) technology to print cells, biomaterials, and cell-laden biomaterials individually or in tandem, layer by layer, directly creating 3-D tissue-like structures. Here, we overview RP-based bioprinting approaches and discuss the current challenges and trends toward fabricating living organs for transplant in the near future.

  14. InP/Ga0.47In0.53As monolithic, two-junction, three-terminal tandem solar cells

    NASA Technical Reports Server (NTRS)

    Wanlaas, M. W.; Gessert, T. A.; Horner, G. S.; Emery, K. A.; Coutts, T. J.

    1991-01-01

    The work presented has focussed on increasing the efficiency of InP-based solar cells through the development of a high-performance InP/Ga(0.47)In(0.53)As two-junction, three-terminal monolithic tandem cell. Such a tandem is particularly suited to space applications where a radiation-hard top cell (i.e., InP) is required. Furthermore, the InP/Ga(0.47)In(0.53)As materials system is lattice matched and offers a top cell/bottom cell bandgap differential (0.60 eV at 300 K) suitable for high tandem cell efficiencies under AMO illumination. A three-terminal configuration was chosen since it allows for independent power collection from each subcell in the monolithic stack, thus minimizing the adverse impact of radiation damage on the overall tandem efficiency. Realistic computer modeling calculations predict an efficiency boost of 7 to 11 percent from the Ga(0.47)In(0.53)As bottom cell under AMO illumination (25 C) for concentration ratios in the 1 to 1000 range. Thus, practical AMO efficiencies of 25 to 32 percent appear possible with the InP/Ga(0.47)In(0.53)As tandem cell. Prototype n/p/n InP/Ga(0.47)In(0.53)As monolithic tandem cells were fabricated and tested successfully. Using an aperture to define the illuminated areas, efficiency measurements performed on a non-optimized device under standard global illumination conditions (25 C) with no antireflection coating (ARC) give 12.2 percent for the InP top cell and 3.2 percent for the Ga(0.47)In(0.53)As bottom cell, yielding an overall tandem efficiency of 15.4 percent. With an ARC, the tandem efficiency could reach approximately 22 percent global and approximately 20 percent AMO. Additional details regarding the performance of individual InP and Ga(0.47)In(0.53)As component cells, fabrication and operation of complete tandem cells and methods for improving the tandem cell performance, are also discussed.

  15. Virulence and genotypes of white spot syndrome virus infecting Pacific white shrimp Litopenaeus vannamei in north-western Mexico.

    PubMed

    Ramos-Paredes, J; Grijalva-Chon, J M; Ibarra-Gámez, J C

    2017-03-01

    White spot syndrome virus (WSSV) has caused substantial global economic impact on aquaculture, and it has been determined that strains can vary in virulence. In this study, the effect of viral load was evaluated by infecting Litopenaeus vannamei with 10-fold serial dilution of tissue infected with strain WSSV Mx-H, and the virulence of four WSSV strains from north-western Mexico was assessed along with their variable number of tandem repeat (VNTR) genotypes in ORF75, ORF94 and ORF125. The LD 50 of the Mx-H strain was a dilution dose of 10 -7.5 ; the mortality titre was 10 9.2 LD 50 per gram. In shrimp injected with 10 2.5 to 10 6.5 LD 50 , no significant virulence differences were evident. Using mortality data, the four WSSV strains grouped into three virulence levels. The Mx-F strain (intermediate virulence) and the Mx-C strain (high virulence) showed more genetic differences than those observed between the Mx-G (low-virulence) and Mx-H (high-virulence) strains, in ORF94 and ORF125. The application of high-viral-load inocula proved useful in determining the different virulence phenotypes of the WSSV strains from the Eastern Pacific. © 2017 John Wiley & Sons Ltd.

  16. White Matter Hyperintensities and Hypobaric Exposure

    DTIC Science & Technology

    2014-11-01

    at the Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas , using a Siemens (Erlangen, Germany) 3T Tim Trio... Research Department 2510 Fifth St. Wright-Patterson AFB, OH 45433-7913 8. PERFORMING ORGANIZATION REPORT NUMBER AFRL-SA-WP-JA-2014-0008...Prescribed by ANSI Std. Z39.18 RESEARCH ARTICLE White Matter Hyperintensities and Hypobaric Exposure Stephen A. McGuire, MD,1,2,3 Paul M

  17. A review of recent progress in heterogeneous silicon tandem solar cells

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masafumi; Lee, Kan-Hua; Araki, Kenji; Kojima, Nobuaki

    2018-04-01

    Silicon solar cells are the most established solar cell technology and are expected to dominate the market in the near future. As state-of-the-art silicon solar cells are approaching the Shockley-Queisser limit, stacking silicon solar cells with other photovoltaic materials to form multi-junction devices is an obvious pathway to further raise the efficiency. However, many challenges stand in the way of fully realizing the potential of silicon tandem solar cells because heterogeneously integrating silicon with other materials often degrades their qualities. Recently, above or near 30% silicon tandem solar cell has been demonstrated, showing the promise of achieving high-efficiency and low-cost solar cells via silicon tandem. This paper reviews the recent progress of integrating solar cell with other mainstream solar cell materials. The first part of this review focuses on the integration of silicon with III-V semiconductor solar cells, which is a long-researched topic since the emergence of III-V semiconductors. We will describe the main approaches—heteroepitaxy, wafer bonding and mechanical stacking—as well as other novel approaches. The second part introduces the integration of silicon with polycrystalline thin-film solar cells, mainly perovskites on silicon solar cells because of its rapid progress recently. We will also use an analytical model to compare the material qualities of different types of silicon tandem solar cells and project their practical efficiency limits.

  18. Identification and characterization of tandem repeats in exon III of dopamine receptor D4 (DRD4) genes from different mammalian species.

    PubMed

    Larsen, Svend Arild; Mogensen, Line; Dietz, Rune; Baagøe, Hans Jørgen; Andersen, Mogens; Werge, Thomas; Rasmussen, Henrik Berg

    2005-12-01

    In this study we have identified and characterized dopamine receptor D4 (DRD4) exon III tandem repeats in 33 public available nucleotide sequences from different mammalian species. We found that the tandem repeat in canids could be described in a novel and simple way, namely, as a structure composed of 15- and 12- bp modules. Tandem repeats composed of 18-bp modules were found in sequences from the horse, zebra, onager, and donkey, Asiatic bear, polar bear, common raccoon, dolphin, harbor porpoise, and domestic cat. Several of these sequences have been analyzed previously without a tandem repeat being found. In the domestic cow and gray seal we identified tandem repeats composed of 36-bp modules, each consisting of two closely related 18-bp basic units. A tandem repeat consisting of 9-bp modules was identified in sequences from mink and ferret. In the European otter we detected an 18-bp tandem repeat, while a tandem repeat consisting of 27-bp modules was identified in a sequence from European badger. Both these tandem repeats were composed of 9-bp basic units, which were closely related with the 9-bp repeat modules identified in the mink and ferret. Tandem repeats could not be identified in sequences from rodents. All tandem repeats possessed a high GC content with a strong bias for C. On phylogenetic analysis of the tandem repeats evolutionary related species were clustered into the same groups. The degree of conservation of the tandem repeats varied significantly between species. The deduced amino acid sequences of most of the tandem repeats exhibited a high propensity for disorder. This was also the case with an amino acid sequence of the human DRD4 exon III tandem repeat, which was included in the study for comparative purposes. We identified proline-containing motifs for SH3 and WW domain binding proteins, potential phosphorylation sites, PDZ domain binding motifs, and FHA domain binding motifs in the amino acid sequences of the tandem repeats. The numbers of

  19. White spots in pharmaceutical pipelines-EMA identifies potential areas of unmet medical needs.

    PubMed

    Papaluca, Marisa; Greco, Martina; Tognana, Enrico; Ehmann, Falk; Saint-Raymond, Agnès

    2015-05-01

    Unmet medical needs are a priority for organizations such as the WHO and major public-private initiatives, such as Innovative Medicines Initiative, were established to speed up the development of better and safer medicines for patients. To assist such projects, the EMA in its 'Road Map to 2015' considered the mapping of unmet medical needs as a priority. This study has identified medical conditions for which the EMA could not identify developments in the pharmaceutical pipelines, that is, 'white spots'. Our analysis was made using external data sources as well as mining data of the EMA. The main areas for white spots were oncology, infectious diseases and certain psychiatric conditions. According to our data and a review of literature, in a number of these white spots, diagnostic tools may even be missing. The identification of those conditions will benefit stakeholders, including regulators, research funding bodies and patients' organizations.

  20. High energy collisions on tandem time-of-flight mass spectrometers†

    PubMed Central

    Cotter, Robert J.

    2013-01-01

    Long before the introduction of matrix-assisted laser desorption (MALDI), electrospray ionization (ESI), Orbitraps and any of the other tools that are now used ubiquitously for proteomics and metabolomics, the highest performance mass spectrometers were sector instruments, providing high resolution mass measurements by combining an electrostatic energy analyzer (E) with a high field magnet (B). In its heyday, the four sector mass spectrometer (or EBEB) was the crown jewel, providing the highest performance tandem mass spectrometry using single, high energy collisions to induce fragmentation. During a time in which quadrupole and tandem triple quadrupole instruments were also enjoying increased usage and popularity, there were nonetheless some clear advantages for sectors over their low collision energy counterparts. Time-of-flight mass spectrometers are high voltage, high vacuum instruments that have much in common with sectors and have inspired the development of tandem instruments exploiting single high energy collisions. In this retrospective we recount our own journey to produce high performance time-of-flights and tandems, describing the basic theory, problems and the advantages for such instruments. An experiment testing impulse collision theory (ICT) underscores the similarities with sector mass spectrometers where this concept was first developed. Applications provide examples of more extensive fragmentation, side chain cleavages and charge-remote fragmentation, also characteristic of high energy sector mass spectrometers. Moreover, the so-called curved-field reflectron has enabled the design of instruments that are simpler, collect and focus all of the ions, and may provide the future technology for the clinic, for tissue imaging and the characterization of microorganisms. PMID:23519928

  1. Evolutionary-Optimized Photonic Network Structure in White Beetle Wing Scales.

    PubMed

    Wilts, Bodo D; Sheng, Xiaoyuan; Holler, Mirko; Diaz, Ana; Guizar-Sicairos, Manuel; Raabe, Jörg; Hoppe, Robert; Liu, Shu-Hao; Langford, Richard; Onelli, Olimpia D; Chen, Duyu; Torquato, Salvatore; Steiner, Ullrich; Schroer, Christian G; Vignolini, Silvia; Sepe, Alessandro

    2018-05-01

    Most studies of structural color in nature concern periodic arrays, which through the interference of light create color. The "color" white however relies on the multiple scattering of light within a randomly structured medium, which randomizes the direction and phase of incident light. Opaque white materials therefore must be much thicker than periodic structures. It is known that flying insects create "white" in extremely thin layers. This raises the question, whether evolution has optimized the wing scale morphology for white reflection at a minimum material use. This hypothesis is difficult to prove, since this requires the detailed knowledge of the scattering morphology combined with a suitable theoretical model. Here, a cryoptychographic X-ray tomography method is employed to obtain a full 3D structural dataset of the network morphology within a white beetle wing scale. By digitally manipulating this 3D representation, this study demonstrates that this morphology indeed provides the highest white retroreflection at the minimum use of material, and hence weight for the organism. Changing any of the network parameters (within the parameter space accessible by biological materials) either increases the weight, increases the thickness, or reduces reflectivity, providing clear evidence for the evolutionary optimization of this morphology. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells.

    PubMed

    You, Jingbi; Chen, Chun-Chao; Hong, Ziruo; Yoshimura, Ken; Ohya, Kenichiro; Xu, Run; Ye, Shenglin; Gao, Jing; Li, Gang; Yang, Yang

    2013-08-07

    Polymer tandem solar cells with 10.2% power conversion efficiency are demonstrated via stacking two PDTP-DFBT:PC₇₁ BM bulk heterojunctions, connected by MoO₃/PEDOT:PSS/ZnO as an interconnecting layer. The tandem solar cells increase the power conversion efficiency of the PDTP-DFBT:PC₇₁ BM system from 8.1% to 10.2%, successfully demonstrating polymer tandem solar cells with identical sub-cells of double-digit efficiency. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A Tandem Catalyst with Multiple Metal Oxide Interfaces Produced by Atomic Layer Deposition.

    PubMed

    Ge, Huibin; Zhang, Bin; Gu, Xiaomin; Liang, Haojie; Yang, Huimin; Gao, Zhe; Wang, Jianguo; Qin, Yong

    2016-06-13

    Ideal heterogeneous tandem catalysts necessitate the rational design and integration of collaborative active sites. Herein, we report on the synthesis of a new tandem catalyst with multiple metal-oxide interfaces based on a tube-in-tube nanostructure using template-assisted atomic layer deposition, in which Ni nanoparticles are supported on the outer surface of the inner Al2 O3 nanotube (Ni/Al2 O3 interface) and Pt nanoparticles are attached to the inner surface of the outer TiO2 nanotube (Pt/TiO2 interface). The tandem catalyst shows remarkably high catalytic efficiency in nitrobenzene hydrogenation over Pt/TiO2 interface with hydrogen formed in situ by the decomposition of hydrazine hydrate over Ni/Al2 O3 interface. This can be ascribed to the synergy effect of the two interfaces and the confined nanospace favoring the instant transfer of intermediates. The tube-in-tube tandem catalyst with multiple metal-oxide interfaces represents a new concept for the design of highly efficient and multifunctional nanocatalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Novel Biochar-Plant Tandem Approach for Remediating Hexachlorobenzene Contaminated Soils: Proof-of-Concept and New Insight into the Rhizosphere.

    PubMed

    Song, Yang; Li, Yang; Zhang, Wei; Wang, Fang; Bian, Yongrong; Boughner, Lisa A; Jiang, Xin

    2016-07-13

    Volatilization of semi/volatile persistent organic pollutants (POPs) from soils is a major source of global POPs emission. This proof-of-concept study investigated a novel biochar-plant tandem approach to effectively immobilize and then degrade POPs in soils using hexachlorobenzene (HCB) as a model POP and ryegrass (Lolium perenne L.) as a model plant growing in soils amended with wheat straw biochar. HCB dissipation was significantly enhanced in the rhizosphere and near rhizosphere soils, with the greatest dissipation in the 2 mm near rhizosphere. This enhanced HCB dissipation likely resulted from (i) increased bioavailability of immobilized HCB and (ii) enhanced microbial activities, both of which were induced by ryegrass root exudates. As a major component of ryegrass root exudates, oxalic acid suppressed HCB sorption to biochar and stimulated HCB desorption from biochar and biochar-amended soils, thus increasing the bioavailability of HCB. High-throughput sequencing results revealed that the 2 mm near rhizosphere soil showed the lowest bacterial diversity due to the increased abundance of some genera (e.g., Azohydromonas, Pseudomonas, Fluviicola, and Sporocytophaga). These bacteria were likely responsible for the enhanced degradation of HCB as their abundance was exponentially correlated with HCB dissipation. The results from this study suggest that the biochar-plant tandem approach could be an effective strategy for remediating soils contaminated with semi/volatile organic contaminants.

  5. Old and New Techniques as a Safe Hybrid Approach for Carotid Tandem Lesions.

    PubMed

    Barillà, David; Massara, Mafalda; Alberti, Antonino; Volpe, Alberto; Cutrupi, Andrea; Versace, Paolo; Volpe, Pietro

    2016-04-01

    Carotid revascularization is performed to prevent stroke. Carotid tandem lesions represent a challenge for treatment, and a hybrid approach may result effective. A high-risk 65-year-old woman presented with a "tandem lesion" of left common and internal carotid artery. She was deemed unfit for "simple" standard carotid endarterectomy (CEA). A "single-step" safe hybrid procedure was scheduled for the patient. A "Cormier" carotid vein graft bypass with a retrograde stenting was performed under local anesthesia. The "safe hybrid procedure" for tandem lesions of the common and internal carotid artery is effective and suitable in high-risk patients in a high-volume centers. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Light beam shaping for collimated emission from white organic light-emitting diodes using customized lenticular microlens arrays structure

    NASA Astrophysics Data System (ADS)

    Zhou, Lei; Bai, Gui-Lin; Guo, Xin; Shen, Su; Ou, Qing-Dong; Fan, Yuan-Yuan

    2018-05-01

    We present a design approach to realizing a desired collimated planar incoherent light source (CPILS) by incorporating lenticular microlens arrays (LMLAs) onto the substrates of discrete white organic light-emitting diode (WOLED) light sources and demonstrate the effectiveness of this method in collimated light beam shaping and luminance enhancement simultaneously. The obtained collimated WOLED light source shows enhanced luminance by a factor of 2.7 compared with that of the flat conventional device at the normal polar angle and, more importantly, exhibits a narrowed angular emission with a full-width at half-maximum (FWHM) of ˜33.6°. We anticipate that the presented strategy could provide an alternative way for achieving the desired large scale CPILS, thereby opening the door to many potential applications, including LCD backlights, three-dimensional displays, car headlights, and so forth.

  7. Two-terminal monolithic InP-based tandem solar cells with tunneling intercell ohmic connections

    NASA Technical Reports Server (NTRS)

    Shen, C. C.; Chang, P. T.; Emery, K. A.

    1991-01-01

    A monolithic two-terminal InP/InGaAsP tandem solar cell was successfully fabricated. This tandem solar cell consists of a p/n InP homojunction top subcell and a 0.95 eV p/n InGaAsP homojunction bottom subcell. A patterned 0.95 eV n(+)/p(+) InGaAsP tunnel diode was employed as an intercell ohmic connection. The solar cell structure was prepared by two-step liquid phase epitaxial growth. Under one sun, AM1.5 global illumination, the best tandem cell delivered a conversion efficiency of 14.8 pct.

  8. Unveiling White Privilege.

    ERIC Educational Resources Information Center

    Pappas, Georgia

    1995-01-01

    Racism, discrimination, and prejudice are typically viewed from the perspective of the disadvantaged ethnic minority, but another approach is to address the advantages of whites. There is one culture that is usually invisible to whites, and that is "whiteness." To grow up white is to be the focal point from which others differ. Whites…

  9. Aerodynamic Characteristics of Tube-Launched Tandem Wing Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Rosid, Nurhayyan H.; Irsyad Lukman, E.; Fadlillah, M. Ahmad; Agoes Moelyadi, M.

    2018-04-01

    Tube Launched UAV with expandable tandem-wing configuration becomes one of the most interesting topic to be investigated. Folding wing mechanism is used due to the requirements that the UAV should be folded into tubular launcher. This paper focuses on investigating the aerodynamics characteristics because of the effects of folding wing mechanism, tandem wing configuration, and rapid deploying process from tube launcher. The aerodynamic characteristics investigation is conducted using computational fluid dynamics (CFD) at low Reynolds numbers (Re < 200000). The results of the simulation are used for the development of ITB Tube-launched UAV prototype and for future studies.

  10. Flow cytometry and immunomorphological characteristics of apoptosis in hepatocytes of white mice during aging.

    PubMed

    Gujabidze, N; Rukhadze, R

    2006-08-01

    Apoptosis, sometimes called "programmed cell death", the process that goes on continuously throughout life has received phenomenal attention in the past few years. In the process of aging of organism, most of organs undergo morphological and functional changes at various frequencies. Initially, the role of apoptosis regarding aging was evaluated negatively, however, at present the issue is in the process of reconsideration. The experiments were performed on 74 white mice, distributed in three age groups (juveniles, adults, and senescents). Apoptotic nuclei were detected by immunomorphological and flow cytometry assay. So, the analysis of the data obtained that apoptosis in hepatocytes of white mice decreases with age and afterwards increases in a credible way. The maximum value is reached in the senescent mice. It has been considered, that aging increases the susceptibility of hepatocytes to apoptosis in white mice.

  11. The effects of whiteness on the health of whites in the USA.

    PubMed

    Malat, Jennifer; Mayorga-Gallo, Sarah; Williams, David R

    2018-02-01

    Whites in the USA are the dominant racial group, with greater than average access to most material and social rewards. Yet, while whites have better outcomes than other racial groups on some health indicators, whites paradoxically compare poorly on other measures. Further, whites in the USA also rank poorly in international health comparisons. In this paper, we present a framework that combines the concept of whiteness-a system that socially, economically, and ideologically benefits European descendants and disadvantages people in other groups-with research from a variety of fields in order to comprehensively model the social factors that influence whites' health. The framework we present describes how whiteness and capitalism in the USA shape societal conditions, individual social characteristics and experiences, and psychosocial responses to circumstances to influence health outcomes. We detail specific examples of how social policies supported by whiteness, the narratives of whiteness, and the privileges of whiteness may positively and negatively affect whites' health. In doing so, we suggest several areas for future research that can expand our understanding of how social factors affect health and can contribute to the patterns and paradoxes of whites' health. By expanding research to include theoretically-grounded analyses of the dominant group's health, we can achieve a more complete picture of how systems of racial inequity affect health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Mixing Halogens To Assemble an All-Inorganic Layered Perovskite with Warm White-Light Emission.

    PubMed

    Li, Xianfeng; Wang, Sasa; Zhao, Sangen; Li, Lina; Li, Yanqiang; Zhao, Bingqing; Shen, Yaoguo; Wu, Zhenyue; Shan, Pai; Luo, Junhua

    2018-05-01

    Most of single-component white-light-emitting materials focus on organic-inorganic hybrid perovskites, metal-organic frameworks, as well as all-inorganic semiconductors. In this work, we successfully assembled an all-inorganic layered perovskite by mixing two halogens of distinct ionic radii, namely, Rb 2 CdCl 2 I 2 , which emits "warm" white light with a high color rendering index of 88. To date, Rb 2 CdCl 2 I 2 is the first single-component white-light-emitting material with an all-inorganic layered perovskite structure. Furthermore, Rb 2 CdCl 2 I 2 is thermally highly stable up to 575 K. A series of luminescence measurements show that the white-light emission arises from the lattice deformation, which are closely related to the [CdCl 4 I 2 ] 2- octahedra with high distortion from the distinct ionic radii of Cl and I. The first-principles calculations reveal that both the Cl and I components make significant contributions to the electronic band structures of Rb 2 CdCl 2 I 2 . These findings indicate that mixing halogens is an effective route to design and synthesize new single-component white-light-emitting materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Generation of Tandem Direct Duplications by Reversed-Ends Transposition of Maize Ac Elements

    PubMed Central

    Peterson, Thomas

    2013-01-01

    Tandem direct duplications are a common feature of the genomes of eukaryotes ranging from yeast to human, where they comprise a significant fraction of copy number variations. The prevailing model for the formation of tandem direct duplications is non-allelic homologous recombination (NAHR). Here we report the isolation of a series of duplications and reciprocal deletions isolated de novo from a maize allele containing two Class II Ac/Ds transposons. The duplication/deletion structures suggest that they were generated by alternative transposition reactions involving the termini of two nearby transposable elements. The deletion/duplication breakpoint junctions contain 8 bp target site duplications characteristic of Ac/Ds transposition events, confirming their formation directly by an alternative transposition mechanism. Tandem direct duplications and reciprocal deletions were generated at a relatively high frequency (∼0.5 to 1%) in the materials examined here in which transposons are positioned nearby each other in appropriate orientation; frequencies would likely be much lower in other genotypes. To test whether this mechanism may have contributed to maize genome evolution, we analyzed sequences flanking Ac/Ds and other hAT family transposons and identified three small tandem direct duplications with the structural features predicted by the alternative transposition mechanism. Together these results show that some class II transposons are capable of directly inducing tandem sequence duplications, and that this activity has contributed to the evolution of the maize genome. PMID:23966872

  14. Improve definition of titanium tandems in MR-guided high dose rate brachytherapy for cervical cancer using proton density weighted MRI

    PubMed Central

    2013-01-01

    Background For cervical cancer patients treated with MR-guided high dose rate brachytherapy, the accuracy of radiation delivery depends on accurate localization of both tumors and the applicator, e.g. tandem and ovoid. Standard T2-weighted (T2W) MRI has good tumor-tissue contrast. However, it suffers from poor uterus-tandem contrast, which makes the tandem delineation very challenging. In this study, we evaluated the possibility of using proton density weighted (PDW) MRI to improve the definition of titanium tandems. Methods Both T2W and PDW MRI images were obtained from each cervical cancer patient. Imaging parameters were kept the same between the T2W and PDW sequences for each patient except the echo time (90 ms for T2W and 5.5 ms for PDW) and the slice thickness (0.5 cm for T2W and 0.25 cm for PDW). Uterus-tandem contrast was calculated by the equation C = (Su-St)/Su, where Su and St represented the average signal in the uterus and the tandem, respectively. The diameter of the tandem was measured 1.5 cm away from the tip of the tandem. The tandem was segmented by the histogram thresholding technique. Results PDW MRI could significantly improve the uterus-tandem contrast compared to T2W MRI (0.42±0.24 for T2W MRI, 0.77±0.14 for PDW MRI, p=0.0002). The average difference between the measured and physical diameters of the tandem was reduced from 0.20±0.15 cm by using T2W MRI to 0.10±0.11 cm by using PDW MRI (p=0.0003). The tandem segmented from the PDW image looked more uniform and complete compared to that from the T2W image. Conclusions Compared to the standard T2W MRI, PDW MRI has better uterus-tandem contrast. The information provided by PDW MRI is complementary to those provided by T2W MRI. Therefore, we recommend adding PDW MRI to the simulation protocol to assist tandem delineation process for cervical cancer patients. PMID:23327682

  15. Two 3D metal-organic frameworks as multi-functional materials to detect Fe3+ ions and nitroaromatic explosives and to encapsulate Ln3+ ions for white-light emission

    NASA Astrophysics Data System (ADS)

    Ma, Bing; Xu, Jianing; Qi, Hui; Sun, Jing; Chai, Juan; Jia, Jia; Jing, Shubo; Fan, Yong; Wang, Li

    2018-02-01

    Two metal-organic frameworks (MOFs), namely {[Zn3(L)2(4,4‧-bipy)(DMF)2]·2H2O}n(1) and {[Cd3(L)2(4,4‧-bipy)(H2O)2].2DMF}n(2) (4,4‧-bipy = 4,4‧-bipyridine, DMF = N,N-dimethylformamide), were solvothermally prepared based on a rigid tricarboxylic acid 3-(3,5-dicarboxylphenyl)-5-(3-carboxylphenyl)-1-H-1,2,4-triazole (H3L). X-ray crystallographic analysis reveals that 1 and 2 are isostructural and both emit blue light. Notably, 1 exhibits good luminescent sensing for nitro-containing compounds and Fe3+ ions. In addition, the emission colors of 1 can be tuned from yellow to white and to blue by encapsulating different mole ratios of Eu3+ and Tb3+ ions and changing the excitation wavelength. A white emission with the Commission International de l'Eclairage (CIE) coordinates of (0.331, 0.337), which fall within the white-light region, emerges upon excitation at 340 nm.

  16. Dopant effects on charge transport to enhance performance of phosphorescent white organic light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Liping; Chen, Jiangshan; Ma, Dongge, E-mail: mdg1014@ciac.ac.cn

    2015-11-07

    We compared the performance of phosphorescent white organic light emitting diodes (WOLEDs) with red-blue-green and green-blue-red sequent emissive layers. It was found that the influence of red and green dopants on electron and hole transport in emissive layers leads to the large difference in the efficiency of fabricated WOLEDs. This improvement mechanism is well investigated by the current density-voltage characteristics of single-carrier devices based on dopant doped emissive layers and the comparison of electroluminescent and photoluminescence spectra, and attributed to the different change of charge carrier transport by the dopants. The optimized device achieves a maximum power efficiency, current efficiency,more » and external quantum efficiency of 37.0 lm/W, 38.7 cd/A, and 17.7%, respectively, which are only reduced to 32.8 lm/W, 38.5 cd/A, and 17.3% at 1000 cd/m{sup 2} luminance. The critical current density is as high as 210 mA/cm{sup 2}. It can be seen that the efficiency roll-off in phosphorescent WOLEDs can be well improved by effectively designing the structure of emissive layers.« less

  17. Efficient hybrid white organic light-emitting diodes for application of triplet harvesting with simple structure

    NASA Astrophysics Data System (ADS)

    Hwang, Kyo Min; Lee, Song Eun; Lee, Sungkyu; Yoo, Han Kyu; Baek, Hyun Jung; Kim, Young Kwan; Kim, Jwajin; Yoon, Seung Soo

    2016-08-01

    In this study, we fabricated hybrid white organic light-emitting diodes (WOLEDs) based on triplet harvesting with a simple structure. All the hole transporting material and host in the emitting layer (EML) of devices utilized the same material N,N'-di-1-naphthalenyl-N,N'-diphenyl [1,1':4',1″:4″,1‴-quaterphenyl]-4,4‴-diamine (4P-NPD), which is known to be blue fluorescent material. Simple hybrid WOLEDs were fabricated with blue fluorescent, green and red phosphorescent materials. We investigated the effect of triplet harvesting (TH) by an exciton generation zone on simple hybrid WOLEDs. The simple hybrid WOLEDs characteristically had a dominant hole mobility, so an exciton generation zone was expected in the EML. Additionally, the optimal the thickness of the hole transporting layer and electron transporting layer was fabricated a simple hybrid WOLEDs. The simple hybrid WOLED exhibits a maximum luminous efficiency of 29.3 cd/A and a maximum external quantum efficiency of 11.2%. The Commission Internationale de l'Éclairage (International Commission on Illumination) coordinates were (0.45, 0.43) at about 10,000 cd/m2.

  18. The "Bologna-München" Tandem--Experiencing Interculturality

    ERIC Educational Resources Information Center

    De Martino, Sandro

    2016-01-01

    This case study describes the "Bologna-München" Tandem, a cross-border collaboration which began in 2011. The aim of the collaboration is to give students studying Italian at the Ludwig- Maximilians-University in Munich and students studying German at the University of Bologna the opportunity to experience interculturality through…

  19. Tandemly arranged chalcone synthase A genes contribute to the spatially regulated expression of siRNA and the natural bicolor floral phenotype in Petunia hybrida.

    PubMed

    Morita, Yasumasa; Saito, Ryoko; Ban, Yusuke; Tanikawa, Natsu; Kuchitsu, Kazuyuki; Ando, Toshio; Yoshikawa, Manabu; Habu, Yoshiki; Ozeki, Yoshihiro; Nakayama, Masayoshi

    2012-06-01

    The natural bicolor floral traits of the horticultural petunia (Petunia hybrida) cultivars Picotee and Star are caused by the spatial repression of the chalcone synthase A (CHS-A) gene, which encodes an anthocyanin biosynthetic enzyme. Here we show that Picotee and Star petunias carry the same short interfering RNA (siRNA)-producing locus, consisting of two intact CHS-A copies, PhCHS-A1 and PhCHS-A2, in a tandem head-to-tail orientation. The precursor CHS mRNAs are transcribed from the two CHS-A copies throughout the bicolored petals, but the mature CHS mRNAs are not found in the white tissues. An analysis of small RNAs revealed the accumulation of siRNAs of 21 nucleotides that originated from the exon 2 region of both CHS-A copies. This accumulation is closely correlated with the disappearance of the CHS mRNAs, indicating that the bicolor floral phenotype is caused by the spatially regulated post-transcriptional silencing of both CHS-A genes. Linkage between the tandemly arranged CHS-A allele and the bicolor floral trait indicates that the CHS-A allele is a necessary factor to confer the trait. We suppose that the spatially regulated production of siRNAs in Picotee and Star flowers is triggered by another putative regulatory locus, and that the silencing mechanism in this case may be different from other known mechanisms of post-transcriptional gene silencing in plants. A sequence analysis of wild Petunia species indicated that these tandem CHS-A genes originated from Petunia integrifolia and/or Petunia inflata, the parental species of P. hybrida, as a result of a chromosomal rearrangement rather than a gene duplication event. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  20. 5. GENERAL VIEW OF UNITEDTOD TWIN TANDEM STEAM ENGINE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GENERAL VIEW OF UNITED-TOD TWIN TANDEM STEAM ENGINE. - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  1. Fluoroscopic percutaneous brush cytology, forceps biopsy and both in tandem for diagnosis of malignant biliary obstruction.

    PubMed

    Boos, Johannes; Yoo, Raphael J; Steinkeler, Jennifer; Ayata, Gamze; Ahmed, Muneeb; Sarwar, Ammar; Weinstein, Jeffrey; Faintuch, Salomao; Brook, Olga R

    2018-02-01

    To evaluate percutaneous brush cytology, forceps biopsy and a tandem procedure consisting of both, in the diagnosis of malignant biliary obstruction. A retrospective review of consecutive patients who underwent biliary brush cytology and/or forceps biopsy between 01/2010 and 09/2014 was performed. The cytology and pathology results were compared to the composite outcome (including radiological, pathological and clinical data). Cost for tandem procedure compared to brush cytology and forceps biopsy alone was calculated. A total of 232 interventions in 129 patients (70.8 ± 11.0 years) were included. Composite outcome showed malignancy in 94/129 (72.9%) patients. Sensitivity for brush cytology, forceps biopsy and tandem procedure was 40.6% (95% CI 32.6-48.7%), 42.7% (32.4-53.0%) and 55.8% (44.7-66.9%) with 100% specificity, respectively. There were 9/43 (20.9%) additional cancers diagnosed when forceps biopsy was performed in addition to brush cytology, while there were 13/43 (30.2%) more cancers diagnosed when brush cytology was performed in addition to forceps biopsy. Additional costs per additionally diagnosed malignancy if tandem approach is to be utilised in all cases was $704.96. Using brush cytology and forceps biopsy in tandem improves sensitivity compared to brush cytology and forceps biopsy alone in the diagnosis of malignant biliary obstruction. • Tandem procedure improves sensitivity compared to brush cytology and forceps biopsy. • Brush cytology may help to overcome "crush artefacts" from forceps biopsy. • The cost per diagnosed malignancy may warrant tandem procedure in all patients.

  2. Wolf 1130: A Nearby Triple System Containing a Cool, Ultramassive White Dwarf

    NASA Astrophysics Data System (ADS)

    Mace, Gregory N.; Mann, Andrew W.; Skiff, Brian A.; Sneden, Christopher; Kirkpatrick, J. Davy; Schneider, Adam C.; Kidder, Benjamin; Gosnell, Natalie M.; Kim, Hwihyun; Mulligan, Brian W.; Prato, L.; Jaffe, Daniel

    2018-02-01

    Following the discovery of the T8 subdwarf WISE J200520.38+542433.9 (Wolf 1130C), which has a proper motion in common with a binary (Wolf 1130AB) consisting of an M subdwarf and a white dwarf, we set out to learn more about the old binary in the system. We find that the A and B components of Wolf 1130 are tidally locked, which is revealed by the coherence of more than a year of V-band photometry phase-folded to the derived orbital period of 0.4967 days. Forty new high-resolution, near-infrared spectra obtained with the Immersion Grating Infrared Spectrometer provide radial velocities and a projected rotational velocity (v sin i) of 14.7 ± 0.7 {km} {{{s}}}-1 for the M subdwarf. In tandem with a Gaia parallax-derived radius and verified tidal locking, we calculate an inclination of i = 29° ± 2°. From the single-lined orbital solution and the inclination we derive an absolute mass for the unseen primary ({1.24}-0.15+0.19 M ⊙). Its non-detection between 0.2 and 2.5 μm implies that it is an old (>3.7 Gyr) and cool (T eff < 7000 K) ONe white dwarf. This is the first ultramassive white dwarf within 25 pc. The evolution of Wolf 1130AB into a cataclysmic variable is inevitable, making it a potential SN Ia progenitor. The formation of a triple system with a primary mass >100 times the tertiary mass and the survival of the system through the common-envelope phase, where ∼80% of the system mass was lost, is remarkable. Our analysis of Wolf 1130 allows us to infer its formation and evolutionary history, which has unique implications for understanding low-mass star and brown dwarf formation around intermediate-mass stars.

  3. Improving quality and digestibility of cocoa pod with white rot fungi

    NASA Astrophysics Data System (ADS)

    Mustabi, J.; Wedawati; Armayanti, A. K.

    2018-05-01

    White rot fungi is a type of fungus that is able to degrade lignin in the feed material from waste, so it can be used to increase the added value of cocoa pod as alternative feed ingredients to meet the nutritional needs of cattle. The purpose of this study is to investigate the use of white rot fungi in improving the quality and digestibility cocoa pod as feed. The study consisted of two phases, namely fermentation using three isolates of white rot fungi (Coprinus comatus, Corilopsis polyzona and Lentinus torulosus) on pod husks and quality testing in vitro digestibility of fermented. Results of analysis of variance show that the treatment was highly significant on the content of lignin, cellulose and hemicellulose pod husks. Fermented cocoa husks with white rot fungi can degrade lignin content of 1.42% - 12.28% and highly significant improved on in vitro digestibility of dry matter and organic matter. The conclusion, isolates of white rot fungi most active in degrading lignin was Lentinus torulosus isolates and less ability to degrade cellulose and hemicellulose.

  4. Computer simulation of white pine blister rust epidemics

    Treesearch

    Geral I. McDonald; Raymond J. Hoff; William R. Wykoff

    1981-01-01

    A simulation of white pine blister rust is described in both word and mathematical models. The objective of this first generation simulation was to organize and analyze the available epidemiological knowledge to produce a foundation for integrated management of this destructive rust of 5-needle pines. Verification procedures and additional research needs are also...

  5. A robust yellow-emitting metallophosphor with electron-injection/-transporting traits for highly efficient white organic light-emitting diodes.

    PubMed

    Zhou, Guijiang; Yang, Xiaolong; Wong, Wai-Yeung; Wang, Qi; Suo, Si; Ma, Dongge; Feng, Jikang; Wang, Lixiang

    2011-10-24

    With the aim of endowing triplet emitters in the development of organic light-emitting devices (OLEDs) with electron-injection/-transporting (EI/ET) features, the phenylsulfonyl moiety was introduced into the phenyl ring of a 2-phenylpyridine (Hppy) ligand and the yellow phosphorescent heteroleptic iridium(III) complex 1 was developed. It was shown that the SO(2)Ph unit could provide EI/ET character to 1, as indicated from both electrochemical and computational data. Complex 1 is a promising yellow-emitting material for both monochromatic OLEDs and white OLEDs (WOLEDs). The outstanding electronic traits associated with 1, coupled with careful device design, afforded very attractive electroluminescent performances for two-element WOLEDs, including a low turn-on voltage of less than 3.7 V, a maximum brightness of 48,000 cd m(-2), an external quantum efficiency of 13.0%, a luminance efficiency of 34.7 cd A(-1), and a power efficiency of 24.3 Lm W(-1). In addition, a good color rendering index (CRI) of about 74, a stable white color with a Commission Internationale de L'Eclairage (CIE(x,y)) variation of Δ(x, y) < ±(0.02, 0.02), and a correlated color temperature higher than 5130 K were obtained. These encouraging results indicate the potential of these WOLEDs as good candidates for warm indoor lighting sources, as well as the critical contribution of such key EI/ET properties to triplet emitters to advance new OLED research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Evaluating the economic viability of CdTe/CIS and CIGS/CIS tandem photovoltaic modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanayakkara, Sanjini U.; Horowitz, Kelsey; Kanevce, Ana

    In this paper, we analyze the potential cost competitiveness of two frameless, glass–glass thin-film tandem photovoltaic module structures, cadmium telluride (CdTe)/CuInSe 2 (CIS) and CuIn 0.3Ga 0.7Se 2 (CIGS)/CIS, based on the demonstrated cost of manufacturing the respective component cell technologies in high volume. To consider multiple economic scenarios, we base the CdTe/CIS module efficiency on the current industrial production of CdTe modules, while for CIGS/CIS, we use an aspirational estimate for CIGS efficiency. We focus on four-terminal mechanically stacked structures, thus avoiding the need to achieve current matching between the two cells. The top cell in such a tandemmore » must have a transparent back contact, which has not been successfully implemented to date. However, for the purpose of understanding the economic viability of both tandems, we assume that this can be implemented at a cost similar to that of sputtered indium tin oxide. The cost of both tandem module structures was found to be nearly identical on an equal-area basis and approximately $30/m 2 higher than the single-junction alternatives. Both tandem modules are about 4% (absolute) more efficient than a module by using the top-cell material alone. We find that these tandem modules might reduce total system cost by as much as 11% in applications having a high area-related balance-of-system cost, such as area-constrained residential systems; however, the relative advantage of tandems decreases in the cases where balance-of-system costs are lower, such as in commercial and utility scale systems.« less

  7. Evaluating the economic viability of CdTe/CIS and CIGS/CIS tandem photovoltaic modules

    DOE PAGES

    Nanayakkara, Sanjini U.; Horowitz, Kelsey; Kanevce, Ana; ...

    2017-01-20

    In this paper, we analyze the potential cost competitiveness of two frameless, glass–glass thin-film tandem photovoltaic module structures, cadmium telluride (CdTe)/CuInSe 2 (CIS) and CuIn 0.3Ga 0.7Se 2 (CIGS)/CIS, based on the demonstrated cost of manufacturing the respective component cell technologies in high volume. To consider multiple economic scenarios, we base the CdTe/CIS module efficiency on the current industrial production of CdTe modules, while for CIGS/CIS, we use an aspirational estimate for CIGS efficiency. We focus on four-terminal mechanically stacked structures, thus avoiding the need to achieve current matching between the two cells. The top cell in such a tandemmore » must have a transparent back contact, which has not been successfully implemented to date. However, for the purpose of understanding the economic viability of both tandems, we assume that this can be implemented at a cost similar to that of sputtered indium tin oxide. The cost of both tandem module structures was found to be nearly identical on an equal-area basis and approximately $30/m 2 higher than the single-junction alternatives. Both tandem modules are about 4% (absolute) more efficient than a module by using the top-cell material alone. We find that these tandem modules might reduce total system cost by as much as 11% in applications having a high area-related balance-of-system cost, such as area-constrained residential systems; however, the relative advantage of tandems decreases in the cases where balance-of-system costs are lower, such as in commercial and utility scale systems.« less

  8. R&D issues in scale-up and manufacturing of amorphous silicon tandem modules

    NASA Astrophysics Data System (ADS)

    Arya, R. R.; Carlson, D. E.; Chen, L. F.; Ganguly, G.; He, M.; Lin, G.; Middya, R.; Wood, G.; Newton, J.; Bennett, M.; Jackson, F.; Willing, F.

    1999-03-01

    R & D on amorphous silicon based tandem junction devices has improved the throughtput, the material utilization, and the performance of devices on commercial tin oxide coated glass. The tandem junction technology has been scaled-up to produce 8.6 Ft2 monolithically integrated modules in manufacturing at the TF1 plant. Optimization of performance and stability of these modules is ongoing.

  9. Happy Birthday White House!

    ERIC Educational Resources Information Center

    Dillon, Doris; And Others

    1992-01-01

    An integrated elementary teaching package offers interesting facts about presidents and the White House. Cross-curricular activities focus on architecture, presidential birthplaces, portraits, communications, science, technology, touring the White House, children in the White House, a day in the life of the White House, and a White House birthday…

  10. Complicating Whiteness: Identifications of Veteran White Teachers in Multicultural Settings

    ERIC Educational Resources Information Center

    Miele, Anthony

    2013-01-01

    A scrupulous search of whiteness literatures in relation to multicultural education reveals a preponderance of scholarship noting White privilege and race evasiveness. Given contrasting scholarship arguing White identity as complicated, multifarious, and bound to social and historical context, concurrent with a dearth of scholarship that examines…

  11. Allelic Heterogeneity at the Equine KIT Locus in Dominant White (W) Horses

    PubMed Central

    Haase, Bianca; Brooks, Samantha A; Schlumbaum, Angela; Azor, Pedro J; Bailey, Ernest; Alaeddine, Ferial; Mevissen, Meike; Burger, Dominik; Poncet, Pierre-André; Rieder, Stefan; Leeb, Tosso

    2007-01-01

    White coat color has been a highly valued trait in horses for at least 2,000 years. Dominant white (W) is one of several known depigmentation phenotypes in horses. It shows considerable phenotypic variation, ranging from ∼50% depigmented areas up to a completely white coat. In the horse, the four depigmentation phenotypes roan, sabino, tobiano, and dominant white were independently mapped to a chromosomal region on ECA 3 harboring the KIT gene. KIT plays an important role in melanoblast survival during embryonic development. We determined the sequence and genomic organization of the ∼82 kb equine KIT gene. A mutation analysis of all 21 KIT exons in white Franches-Montagnes Horses revealed a nonsense mutation in exon 15 (c.2151C>G, p.Y717X). We analyzed the KIT exons in horses characterized as dominant white from other populations and found three additional candidate causative mutations. Three almost completely white Arabians carried a different nonsense mutation in exon 4 (c.706A>T, p.K236X). Six Camarillo White Horses had a missense mutation in exon 12 (c.1805C>T, p.A602V), and five white Thoroughbreds had yet another missense mutation in exon 13 (c.1960G>A, p.G654R). Our results indicate that the dominant white color in Franches-Montagnes Horses is caused by a nonsense mutation in the KIT gene and that multiple independent mutations within this gene appear to be responsible for dominant white in several other modern horse populations. PMID:17997609

  12. Imaging White Matter in Human Brainstem

    PubMed Central

    Ford, Anastasia A.; Colon-Perez, Luis; Triplett, William T.; Gullett, Joseph M.; Mareci, Thomas H.; FitzGerald, David B.

    2013-01-01

    The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted magnetic resonance imaging (MRI) may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging of an intact excised human brainstem performed at 11.1 T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST), superior (SCP) and middle cerebellar peduncle (MCP), and medial lemniscus (ML) pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI

  13. Imaging white matter in human brainstem.

    PubMed

    Ford, Anastasia A; Colon-Perez, Luis; Triplett, William T; Gullett, Joseph M; Mareci, Thomas H; Fitzgerald, David B

    2013-01-01

    The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted magnetic resonance imaging (MRI) may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging of an intact excised human brainstem performed at 11.1 T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST), superior (SCP) and middle cerebellar peduncle (MCP), and medial lemniscus (ML) pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI

  14. Toxicity of organic and inorganic nanoparticles to four species of white-rot fungi.

    PubMed

    Galindo, T P S; Pereira, R; Freitas, A C; Santos-Rocha, T A P; Rasteiro, M G; Antunes, F; Rodrigues, D; Soares, A M V M; Gonçalves, F; Duarte, A C; Lopes, I

    2013-08-01

    The rapid development of nanoparticles (NP) for industrial applications and large-volume manufacturing, with its subsequent release into the environment, raised the need to understand and characterize the potential effects of NP to biota. Accordingly, this work aimed to assess sublethal effects of five NP to the white-rot fungi species Trametes versicolor, Lentinus sajor caju, Pleurotus ostreatus, and Phanerochaete chrysosporium. Each species was exposed to serial dilutions of the following NP: organic-vesicles of SDS/DDAB and of Mo/NaO; gold-NP, quantum dot CdSe/ZnS, and Fe/Co. Fungi growth rate was monitored every day, and at the end of assay the mycelium from each replicate was collected to evaluate possible changes in its chemical composition. For all NP-suspensions the following parameters were characterized: hydrodynamic diameter, surface charge, aggregation index, zeta potential, and conductivity. All tested NP tended to aggregate when suspended in aqueous media. The obtained results showed that gold-NP, CdSe/ZnS, Mo/NaO, and SDS/DDAB significantly inhibited the growth of fungi with effects on the mycelium chemical composition. Among the tested NP, gold-NP and CdSe/ZnS were the ones exerting a higher effect on the four fungi. Finally to our knowledge, this is the first study reporting that different types of NP induce changes in the chemical composition of fungi mycelium. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Displacement of particles in microfluidics by laser-generated tandem bubbles

    NASA Astrophysics Data System (ADS)

    Lautz, Jaclyn; Sankin, Georgy; Yuan, Fang; Zhong, Pei

    2010-11-01

    The dynamic interaction between laser-generated tandem bubble and individual polystyrene particles of 2 and 10 μm in diameter is studied in a microfluidic channel (25 μm height) by high-speed imaging and particle image velocimetry. The asymmetric collapse of the tandem bubble produces a pair of microjets and associated long-lasting vortices that can propel a single particle to a maximum velocity of 1.4 m/s in 30 μs after the bubble collapse with a resultant directional displacement up to 60 μm in 150 μs. This method may be useful for high-throughput cell sorting in microfluidic devices.

  16. Discourses of Whiteness: White Students at Catholic Women's Colleges (Dis)Engaging Race

    ERIC Educational Resources Information Center

    Ropers-Huilman, Rebecca; Winters, Kelly T.; Enke, Kathryn A. E.

    2013-01-01

    To better understand how White college women understand and are influenced by whiteness, we discursively analyzed data from interviews and focus groups with 25 White seniors at two Catholic women's colleges. Findings suggest that participants understood whiteness through discourses of insignificance, nominal difference, responsibility, and…

  17. Four-electron transfer tandem tetracyanoquinodimethane for cathode-active material in lithium secondary battery

    NASA Astrophysics Data System (ADS)

    Kurimoto, Naoya; Omoda, Ryo; Mizumo, Tomonobu; Ito, Seitaro; Aihara, Yuichi; Itoh, Takahito

    2018-02-01

    Quinoid compounds are important candidates of organic active materials for lithium-ion batteries. However, its high solubility to organic electrolyte solutions and low redox potential are known as their major drawbacks. To circumvent these issues, we have designed and synthesized a tandem-tetracyanoquinonedimethane type cathode-active material, 11,11,12,12,13,13,14,14-octacyano-1,4,5,8-anthradiquinotetramethane (OCNAQ), that has four redox sites per molecule, high redox potential and suppressed solubility to electrolyte solution. Synthesized OCNAQ has been found to have two-step redox reactions by cyclic voltammetry, and each step consists of two-electron reactions. During charge-discharge tests using selected organic cathode-active materials with a lithium metal anode, the cell voltages obtained from OCNAQ are higher than those for 11,11-dicyanoanthraquinone methide (AQM) as expected, due to the strong electron-withdrawing effect of the cyano groups. Unfortunately, even with the use of the organic active material, the issue of dissolution to the electrolyte solution cannot be suppressed completely; however, appropriate choice of the electrolyte solutions, glyme-based electrolyte solutions in this study, give considerable improvement of the cycle retention (98% and 56% at 10 and 100 cycles at 0.5C, respectively). The specific capacity and energy density obtained in this study are 206 mAh g-1 and 554 mWh g-1 with respect to the cathode active material.

  18. Racializing white drag.

    PubMed

    Rhyne, Ragan

    2004-01-01

    While drag is primarily understood as a performance of gender, other performative categories such as race, class, and sexuality create drag meaning as well. Though other categories of identification are increasingly understood as essential elements of drag by performers of color, whiteness remains an unmarked category in the scholarship on drag performances by white queens. In this paper, I argue that drag by white queens must be understood as a performance of race as well as gender and that codes of gender excess are specifically constructed through the framework of these other axes of identity. This essay asks whether white performance by white queens necessarily reinscribes white supremacy through the performance of an unmarked white femininity, or might drag performance complicate (though not necessarily subvert) categories of race as well as gender? In this essay, I will suggest that camp drag performances, through the deployment of class as a crucial category of performative femininity, might indeed be a key site through which whiteness is denaturalized and its power challenged. Specifically, I will read on camp as a politicized mode of race, class and gender performance, focusing on the intersections of these categories of identity in the drag performance of Divine.

  19. Improved color stability of white organic light-emitting diodes without interlayer between red, orange and blue emission layers

    NASA Astrophysics Data System (ADS)

    Xue, Kaiwen; Chen, Ping; Duan, Yu; Sheng, Ren; Han, Guangguang; Zhao, Yi

    2016-03-01

    We demonstrated color stability improved white phosphorescent organic light-emitting diodes (WOLEDs) based on red, orange and blue emission layers. Iridium(III) Bis(3,5-diflouro)-2-(2-pyridyl)phenyl-(2-carboxypyridyl) was doped into red emission layer (R-EML) and orange emission layer (O-EML) to lower the electrons injection barrier and facilitate the ambipolar charge carriers balance. Consequently, the recombination region was extended to the R-EML and O-EML, leading to the excellently stable spectra and the reduction of triplet-triplet annihilation. Then the resulting device with a negligible Commission International de L'Eclairage coordinates shift of (0.003, 0.007) within a wide luminance range as well as a high color rendering index of 90 was gained, which was comparable to the profit caused by the conventional method of introducing the interlayer. And the emission mechanism of the WOLEDs was also discussed.

  20. Functional centromeres in Astragalus sinicus include a compact centromere-specific histone H3 and a 20-bp tandem repeat.

    PubMed

    Tek, Ahmet L; Kashihara, Kazunari; Murata, Minoru; Nagaki, Kiyotaka

    2011-11-01

    The centromere plays an essential role for proper chromosome segregation during cell division and usually harbors long arrays of tandem repeated satellite DNA sequences. Although this function is conserved among eukaryotes, the sequences of centromeric DNA repeats are variable. Most of our understanding of functional centromeres, which are defined by localization of a centromere-specific histone H3 (CENH3) protein, comes from model organisms. The components of the functional centromere in legumes are poorly known. The genus Astragalus is a member of the legumes and bears the largest numbers of species among angiosperms. Therefore, we studied the components of centromeres in Astragalus sinicus. We identified the CenH3 homolog of A. sinicus, AsCenH3 that is the most compact in size among higher eukaryotes. A CENH3-based assay revealed the functional centromeric DNA sequences from A. sinicus, called CentAs. The CentAs repeat is localized in A. sinicus centromeres, and comprises an AT-rich tandem repeat with a monomer size of 20 nucleotides.

  1. White matter microstructure mediates the relationship between cardiorespiratory fitness and spatial working memory in older adults.

    PubMed

    Oberlin, Lauren E; Verstynen, Timothy D; Burzynska, Agnieszka Z; Voss, Michelle W; Prakash, Ruchika Shaurya; Chaddock-Heyman, Laura; Wong, Chelsea; Fanning, Jason; Awick, Elizabeth; Gothe, Neha; Phillips, Siobhan M; Mailey, Emily; Ehlers, Diane; Olson, Erin; Wojcicki, Thomas; McAuley, Edward; Kramer, Arthur F; Erickson, Kirk I

    2016-05-01

    White matter structure declines with advancing age and has been associated with a decline in memory and executive processes in older adulthood. Yet, recent research suggests that higher physical activity and fitness levels may be associated with less white matter degeneration in late life, although the tract-specificity of this relationship is not well understood. In addition, these prior studies infrequently associate measures of white matter microstructure to cognitive outcomes, so the behavioral importance of higher levels of white matter microstructural organization with greater fitness levels remains a matter of speculation. Here we tested whether cardiorespiratory fitness (VO2max) levels were associated with white matter microstructure and whether this relationship constituted an indirect pathway between cardiorespiratory fitness and spatial working memory in two large, cognitively and neurologically healthy older adult samples. Diffusion tensor imaging was used to determine white matter microstructure in two separate groups: Experiment 1, N=113 (mean age=66.61) and Experiment 2, N=154 (mean age=65.66). Using a voxel-based regression approach, we found that higher VO2max was associated with higher fractional anisotropy (FA), a measure of white matter microstructure, in a diverse network of white matter tracts, including the anterior corona radiata, anterior internal capsule, fornix, cingulum, and corpus callosum (PFDR-corrected<.05). This effect was consistent across both samples even after controlling for age, gender, and education. Further, a statistical mediation analysis revealed that white matter microstructure within these regions, among others, constituted a significant indirect path between VO2max and spatial working memory performance. These results suggest that greater aerobic fitness levels are associated with higher levels of white matter microstructural organization, which may, in turn, preserve spatial memory performance in older adulthood

  2. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution

    USDA-ARS?s Scientific Manuscript database

    Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres comprise of megabase-scale arrays of tandem repeats. The true prevalence of centromere tandem repeats, and whether they exhibit conserved seque...

  3. Monolithic Perovskite Silicon Tandem Solar Cells with Advanced Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldschmidt, Jan C.; Bett, Alexander J.; Bivour, Martin

    2016-11-14

    For high efficiency monolithic perovskite silicon tandem solar cells, we develop low-temperature processes for the perovskite top cell, rear-side light trapping, optimized perovskite growth, transparent contacts and adapted characterization methods.

  4. White organic light-emitting diodes based on doped and ultrathin Rubrene layer

    NASA Astrophysics Data System (ADS)

    Li, Yi; Jiang, Yadong; Wen, Wen; Yu, Junsheng

    2010-10-01

    Based on a yellow fluorescent dye of 5, 6, 11, 12-tetraphenylnaphthacene (Rubrene), WOLEDs were fabricated, with doping structure and ultrathin layer structure utilized in the devices. By doping Rubrene into blue-emitting N,N'-bis-(1- naphthyl)-N,N'-biphenyl-1,1'-biphenyl-4,4'-diamine (NPB), the device with a structure of indium-tin-oxide (ITO)/NPB (40 nm)/NPB:Rubrene (0.25 wt%, 7 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) (30 nm)/Mg:Ag exhibited a warm white light with Commissions Internationale De L'Eclairage (CIE) coordinates of (0.38, 0.41) at 12 V. The electroluminescent spectrum of the OLED consisted of blue and yellow fluorescent emissions, the intensity of blue emission increased gradually relative to the orange emission with increasing voltage. This is mainly due to the recombination zone shifted towards the anode side as the transmission rate of electrons grows faster than that of holes under higher bias voltage. A maximum luminance of 7300 cd/m2 and a maximum power efficiency of 0.57 lm/W were achieved. Comparatively, by utilizing ultrathin dopant layer, the device with a structure of ITO/NPB (40 nm)/Rubrene (0.3 nm)/NPB (7 nm)/BCP (30 nm)/Mg:Ag achieved a low turn-on voltage of 3 V and a more stable white light. The peaks of EL spectra located at 430 and 560 nm corresponding to the CIE coordinates of (0.32, 0.32) under bias voltage ranging from 5 to 15 V. A maximum luminance of 5630 cd/m2 and a maximum power efficiency of 0.6 lm/W were achieved. The balanced spectra were attributed to the stable confining of charge carriers and exciton by the thin emitting layers. Hence, with simple device structure and fabricating process, the device with ultrathin layer achieved low turn-on voltage, stable white light emitting and higher power efficiency.

  5. Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells.

    PubMed

    Lang, Felix; Gluba, Marc A; Albrecht, Steve; Rappich, Jörg; Korte, Lars; Rech, Bernd; Nickel, Norbert H

    2015-07-16

    Perovskite solar cells with transparent contacts may be used to compensate for thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers with high electrical conductivity and optimal transparency. We address this challenge by implementing large-area graphene grown by chemical vapor deposition as a highly transparent electrode in perovskite solar cells, leading to identical charge collection efficiencies. Electrical performance of solar cells with a graphene-based contact reached those of solar cells with standard gold contacts. The optical transmission by far exceeds that of reference devices and amounts to 64.3% below the perovskite band gap. Finally, we demonstrate a four-terminal tandem device combining a high band gap graphene-contacted perovskite top solar cell (Eg = 1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg = 1.12 eV).

  6. White-pine weevil attack: susceptibility of western white pine in the Northeast

    Treesearch

    Ronald C. Wilkinson

    1981-01-01

    Heights were measured and white-pine weevil (Pissodes strobi (Peck)) attacks were recorded on 668 western white pines (Pinus monticola Douglas) interplanted among 109 eastern white pines (Pinus strobus L.) in a 10-year-old plantation in southern Maine. Less than 13 percent of the western white pines were...

  7. Bifacial tandem solar cells

    DOEpatents

    Wojtczuk, Steven J.; Chiu, Philip T.; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2016-06-14

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  8. Erick A. White | NREL

    Science.gov Websites

    Erick A. White Photo of Erick A. White Erick White Chemical Reaction Engineer Erick.White@nrel.gov compounds to chemicals and fuels Numeric modeling of chemical reaction kinetics and reactor hydrodynamics

  9. Nitric oxide is involved in phosphorus deficiency-induced cluster root development and citrate exudation in white lupin

    USDA-ARS?s Scientific Manuscript database

    White lupin (Lupinus albus) forms specialized cluster roots characterized by exudation of organic anions under phosphorus (P) deficiency. Here, we evaluated the role of nitric oxide (NO) in P deficiency-induced cluster-root formation and citrate exudation in white lupin. Plants were treated with NO ...

  10. Abundance of volatile organic compounds in white ash phloem and emerald ash borer larval frass does not attract Tetrastichus planipennisi in a Y-tube olfactometer.

    PubMed

    Chen, Yigen; Ulyshen, Michael D; Poland, Therese M

    2016-10-01

    Many natural enemies employ plant- and/or herbivore-derived signals for host/prey location. The larval parasitoid Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) is 1 of 3 biocontrol agents currently being released in an effort to control the emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coloeptera: Burprestidae) in North America. To enhance its efficiency, allelochemicals that attract it need to be assessed. In this study, ash phloem volatile organic compounds (VOCs) of black, green, and white ash, and EAB larval frass were compared. Foraging behavior of T. planipennisi females in response to VOCs of white ash or frass from EAB larvae feeding on white ash phloem was tested using a Y-tube olfactometer. Results indicated that the 3 ash species had similar VOC profiles. EAB larval frass generally contained greater levels of VOCs than phloem. Factor analysis indicated that the 11 VOCs could be broadly divided into 2 groups, with α-bisabolol, β-caryophyllene, (E)-2-hexenal, (Z)-3-hexenal, limonene, methyl benzoate, methyl indole-3-acetic acid, methyl jasmonate, methyl salicylate as the first group and the rest (i.e., methyl linoleate and methyl linolenate) as a second. Abundance of VOCs in white ash phloem tissue and frass, nevertheless, did not attract T. planipennisi females. The concealed feeding of EAB larvae might explain the selection for detectable and reliable virbrational signals, instead of undetectable and relatively unreliable VOC cues from phloem and frass, in short-range foraging by T. planipennisi. Alternatively, it is possible that T. planipennisi is not amenable to the Y-tube olfactometer assay employed. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  11. Solar spectrum matching with white OLED and monochromatic LEDs.

    PubMed

    Yu, Hui-Yuan; Cao, Guan-Ying; Zhang, Jing-Hui; Yang, Yi; Sun, Wen-Liang; Wang, Li-Ping; Zou, Nian-Yu

    2018-04-01

    In this paper, the solar spectrum matching in the visible range of 380-780 nm with white organic light-emitting diode (OLED) and monochromatic light-emitting diodes (LEDs) is investigated. The correlation index ( R 2 ) is used to evaluate the difference between the matching spectrum and the solar spectrum. The optimal combination is obtained by the least squares method. We also perform subtraction experiments to find the optimal combination. We utilize a common white OLED device design and just change the species of monochromatic LEDs used. We report and evaluate different degrees of matching effects. The results show that the correlation index of the best combination can reach 94.09% with white OLED and 36 monochromatic LEDs. We define three levels of performance as an evaluation system in accordance with the matching effect. The level is excellent with an R 2 above 90.14%. The good level is from 86.65% to 58.28%. From 42.08% to 33.06% is the reasonable level. Compared with other methods, using white OLED combined with monochromatic LEDs achieves the best solar spectrum matching effect. The results can be applied to different requirements of engineering practice.

  12. Indium Zinc Oxide Mediated Wafer Bonding for III-V/Si Tandem Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamboli, Adele C.; Essig, Stephanie; Horowitz, Kelsey A. W.

    Silicon-based tandem solar cells are desirable as a high efficiency, economically viable approach to one sun or low concentration photovoltaics. We present an approach to wafer bonded III-V/Si solar cells using amorphous indium zinc oxide (IZO) as an interlayer. We investigate the impact of a heavily doped III-V contact layer on the electrical and optical properties of bonded test samples, including the predicted impact on tandem cell performance. We present economic modeling which indicates that the path to commercial viability for bonded cells includes developing low-cost III-V growth and reducing constraints on material smoothness. If these challenges can be surmounted,more » bonded tandems on Si can be cost-competitive with incumbent PV technologies, especially in low concentration, single axis tracking systems.« less

  13. Fifty shades of white: how white feather brightness differs among species

    NASA Astrophysics Data System (ADS)

    Igic, Branislav; D'Alba, Liliana; Shawkey, Matthew D.

    2018-04-01

    White colouration is a common and important component of animal visual signalling and camouflage, but how and why it varies across species is poorly understood. White is produced by wavelength-independent and diffuse scattering of light by the internal structures of materials, where the degree of brightness is related to the amount of light scattered. Here, we investigated the morphological basis of brightness differences among unpigmented pennaceous regions of white body feathers across 61 bird species. Using phylogenetically controlled comparisons of reflectance and morphometric measurements, we show that brighter white feathers had larger and internally more complex barbs than duller white feathers. Higher brightness was also associated with more closely packed barbs and barbules, thicker and longer barbules, and rounder and less hollow barbs. Larger species tended to have brighter white feathers than smaller species because they had thicker and more complex barbs, but aquatic species were not significantly brighter than terrestrial species. As similar light scattering principals affect the brightness of chromatic signals, not just white colours, these findings help broaden our general understanding of the mechanisms that affect plumage brightness. Future studies should examine how feather layering on a bird's body contributes to differences between brightness of white plumage patches within and across species.

  14. Visualization of tandem repeat mutagenesis in Bacillus subtilis.

    PubMed

    Dormeyer, Miriam; Lentes, Sabine; Ballin, Patrick; Wilkens, Markus; Klumpp, Stefan; Kohlheyer, Dietrich; Stannek, Lorena; Grünberger, Alexander; Commichau, Fabian M

    2018-03-01

    Mutations are crucial for the emergence and evolution of proteins with novel functions, and thus for the diversity of life. Tandem repeats (TRs) are mutational hot spots that are present in the genomes of all organisms. Understanding the molecular mechanism underlying TR mutagenesis at the level of single cells requires the development of mutation reporter systems. Here, we present a mutation reporter system that is suitable to visualize mutagenesis of TRs occurring in single cells of the Gram-positive model bacterium Bacillus subtilis using microfluidic single-cell cultivation. The system allows measuring the elimination of TR units due to growth rate recovery. The cultivation of bacteria carrying the mutation reporter system in microfluidic chambers allowed us for the first time to visualize the emergence of a specific mutation at the level of single cells. The application of the mutation reporter system in combination with microfluidics might be helpful to elucidate the molecular mechanism underlying TR (in)stability in bacteria. Moreover, the mutation reporter system might be useful to assess whether mutations occur in response to nutrient starvation. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. On describing human white matter anatomy: the white matter query language.

    PubMed

    Wassermann, Demian; Makris, Nikos; Rathi, Yogesh; Shenton, Martha; Kikinis, Ron; Kubicki, Marek; Westin, Carl-Fredrik

    2013-01-01

    The main contribution of this work is the careful syntactical definition of major white matter tracts in the human brain based on a neuroanatomist's expert knowledge. We present a technique to formally describe white matter tracts and to automatically extract them from diffusion MRI data. The framework is based on a novel query language with a near-to-English textual syntax. This query language allows us to construct a dictionary of anatomical definitions describing white matter tracts. The definitions include adjacent gray and white matter regions, and rules for spatial relations. This enables automated coherent labeling of white matter anatomy across subjects. We use our method to encode anatomical knowledge in human white matter describing 10 association and 8 projection tracts per hemisphere and 7 commissural tracts. The technique is shown to be comparable in accuracy to manual labeling. We present results applying this framework to create a white matter atlas from 77 healthy subjects, and we use this atlas in a proof-of-concept study to detect tract changes specific to schizophrenia.

  16. Intrahemispheric white matter asymmetries: the missing link between brain structure and functional lateralization?

    PubMed

    Ocklenburg, Sebastian; Friedrich, Patrick; Güntürkün, Onur; Genç, Erhan

    2016-07-01

    Hemispheric asymmetries are a central principle of nervous system architecture and shape the functional organization of most cognitive systems. Structural gray matter asymmetries and callosal interactions have been identified as contributing neural factors but always fell short to constitute a full explanans. Meanwhile, recent advances in in vivo white matter tractography have unrevealed the asymmetrical organization of many intrahemispheric white matter pathways, which might serve as the missing link to explain the substrate of functional lateralization. By taking into account callosal interactions, gray matter asymmetries and asymmetrical interhemispheric pathways, we opt for a new triadic model that has the potential to explain many observations which cannot be elucidated within the current frameworks of lateralized cognition.

  17. Tandem mass spectrometry data quality assessment by self-convolution.

    PubMed

    Choo, Keng Wah; Tham, Wai Mun

    2007-09-20

    Many algorithms have been developed for deciphering the tandem mass spectrometry (MS) data sets. They can be essentially clustered into two classes. The first performs searches on theoretical mass spectrum database, while the second based itself on de novo sequencing from raw mass spectrometry data. It was noted that the quality of mass spectra affects significantly the protein identification processes in both instances. This prompted the authors to explore ways to measure the quality of MS data sets before subjecting them to the protein identification algorithms, thus allowing for more meaningful searches and increased confidence level of proteins identified. The proposed method measures the qualities of MS data sets based on the symmetric property of b- and y-ion peaks present in a MS spectrum. Self-convolution on MS data and its time-reversal copy was employed. Due to the symmetric nature of b-ions and y-ions peaks, the self-convolution result of a good spectrum would produce a highest mid point intensity peak. To reduce processing time, self-convolution was achieved using Fast Fourier Transform and its inverse transform, followed by the removal of the "DC" (Direct Current) component and the normalisation of the data set. The quality score was defined as the ratio of the intensity at the mid point to the remaining peaks of the convolution result. The method was validated using both theoretical mass spectra, with various permutations, and several real MS data sets. The results were encouraging, revealing a high percentage of positive prediction rates for spectra with good quality scores. We have demonstrated in this work a method for determining the quality of tandem MS data set. By pre-determining the quality of tandem MS data before subjecting them to protein identification algorithms, spurious protein predictions due to poor tandem MS data are avoided, giving scientists greater confidence in the predicted results. We conclude that the algorithm performs well

  18. A new approach for white organic light-emitting diodes of single emitting layer using large stokes shift.

    PubMed

    Kim, Beomjin; Park, Youngil; Kim, Seungho; Lee, Younggu; Park, Jongwook

    2014-08-01

    DPPZ showed UV-Vis. and PL maximum values of 412 and 638 nm, meaning the large stokes shift. Blue host compound, TAT was synthesized and used for co-mixed white emission. TAT exhibited UV-Vis. and PL maximum values of 403 nm and 445 nm in film state. Thus, when two compounds are used as co-mixed emitter in OLED device, there is no energy transfer from blue emission of TAT to DPPZ due to large stokes shift of DPPZ. Based on the PL result, it is available to realize two-colored white in PL and EL spectra. As a result of this, two-mixed compounds showed vivid their own PL emission peaks of 449 and 631 nm in film state. Also, white OLED device using two-mixed compounds system was fabricated. EL spectrum shows 457 and 634 nm peaks and two separate EL peaks, respectively. As the operation voltage is increased from 7 to 11 V, EL spectrum does not change the peak shape and maximum wavelength values. EL performance of white device showed 0.29 cd/A, 0.14 lm/W, and CIE (0.325, 0.195) at 7 V.

  19. Producing multicharged fullerene ion beam extracted from the second stage of tandem-type ECRIS.

    PubMed

    Nagaya, Tomoki; Nishiokada, Takuya; Hagino, Shogo; Uchida, Takashi; Muramatsu, Masayuki; Otsuka, Takuro; Sato, Fuminobu; Kitagawa, Atsushi; Kato, Yushi; Yoshida, Yoshikazu

    2016-02-01

    We have been constructing the tandem-type electron cyclotron resonance ion source (ECRIS). Two ion sources of the tandem-type ECRIS are possible to generate plasma individually, and they also confined individual ion species by each different plasma parameter. Hence, it is considered to be suitable for new materials production. As the first step, we try to produce and extract multicharged C60 ions by supplying pure C60 vapor in the second stage plasma because our main target is producing the endohedral fullerenes. We developed a new evaporator to supply fullerene vapor, and we succeeded in observation about multicharged C60 ion beam in tandem-type ECRIS for the first time.

  20. The Impact of Sex, Puberty, and Hormones on White Matter Microstructure in Adolescents

    PubMed Central

    Herting, Megan M.; Maxwell, Emily C.; Irvine, Christy

    2012-01-01

    Background: During adolescence, numerous factors influence the organization of the brain. It is unclear what influence sex and puberty have on white matter microstructure, as well as the role that rapidly increasing sex steroids play. Methods: White matter microstructure was examined in 77 adolescents (ages 10–16) using diffusion tensor imaging. Multiple regression analyses were performed to examine the relationships between fractional anisotropy (FA) and mean diffusivity (MD) and sex, puberty, and their interaction, controlling for age. Follow-up analyses determined if sex steroids predicted microstructural characteristics in sexually dimorphic and pubertal-related white matter regions, as well as in whole brain. Results: Boys had higher FA in white matter carrying corticospinal, long-range association, and cortico-subcortical fibers, and lower MD in frontal and temporal white matter compared with girls. Pubertal development was related to higher FA in the insula, while a significant sex-by-puberty interaction was seen in superior frontal white matter. In boys, testosterone predicted white matter integrity in sexually dimorphic regions as well as whole brain FA, whereas estradiol showed a negative relationship with FA in girls. Conclusions: Sex differences and puberty uniquely relate to white matter microstructure in adolescents, which can partially be explained by sex steroids. PMID:22002939

  1. Simultaneous determination of gallic acid and gentisic acid in organic anion transporter expressing cells by liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Li; Halquist, Matthew S; Sweet, Douglas H

    2013-10-15

    In order to elucidate the role of organic anion transporters (OATs) in the renal elimination of gallic acid and gentisic acid, a new, rapid, and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous determination of gallic acid and gentisic acid in cell lysate, using Danshensu as the internal standard (IS). After a simple liquid-liquid extraction, the analytes were detected in negative ESI mode using selected reaction monitoring. The precursor-to-product ion transitions (m/z) were 169.0→125.0, 153.1→108.0, and 196.8→135.2 for gallic acid, gentisic acid, and the IS, respectively. Chromatographic separation was achieved on a C18 column using mobile phases consisting of water with 0.1% acetic acid (A) and acetonitrile with 0.05% formic acid. (B) The total run time was 3min and calibration curves were linear over the concentrations of 0.33-2400ng/mL for both compounds (r(2)>0.995). Good precision (between 3.11% and 14.1% RSD) and accuracy (between -12.7% and 11% bias) was observed for quality controls at concentrations of 0.33 (lower limit of quantification), 1, 50, and 2000ng/mL. The mean extraction recovery of gallic acid and gentisic acid was 80.7% and 83.5%, respectively. Results from post-column infusion and post-extraction methods indicated that the analytical method exhibited negligible matrix effects. Finally, this validated assay was successfully applied in a cellular uptake study to determine the intracellular concentrations of gallic acid and gentisic acid in OAT expressing cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Development of High Efficiency Four-Terminal Perovskite-Silicon Tandems

    NASA Astrophysics Data System (ADS)

    Duong, The Duc

    This thesis is concerned with the development of high efficiency four-terminal perovskite-silicon tandem solar cells with the potential to reduce the cost of solar energy. The work focuses on perovskite top cells and can be divided into three main parts: developing low parasitic absorption and efficient semi-transparent perovskite cells, doping perovskite materials with rubidium, and optimizing perovskite material's bandgap with quadruple-cation and mixed-halide. A further section investigates the light stability of optimized bandgap perovskite cells. In a four-terminal mechanically stacked tandem, the perovskite top cell requires two transparent contacts at both the front and rear sides. Through detailed optical and electrical power loss analysis of the tandem efficiency due to non-ideal properties of the two transparent contacts, optimal contact parameters in term of sheet resistance and transparency are identified. Indium doped tin oxide by sputtering is used for both two transparent contacts and their deposition parameters are optimized separately. The semi-transparent perovskite cell using MAPbI3 has an efficiency of more than 12% with less than 12% parasitic absorption and up to 80% transparency in the long wavelength region. Using a textured foil as anti-reflection coating, an outstanding average transparency of 84% in the long wavelength is obtained. The low parasitic absorption allows an opaque version of the semi-transparent perovskite cell to operate efficiently in a filterless spectrum splitting perovskite-silicon tandem configuration. To further enhance the performance of perovskite cells, it is essential to improve the quality of perovskite films. This can be achieved with mixed-perovskite FAPbI3/MAPbBr3. However, mixed-perovskite films normally contain small a small amount of a non-perovskite phase, which is detrimental for the cell performance. Rb-doping is found to eliminate the formation of the non-perovskite phase and enhance the crystallinity of

  3. Intrinsic white-light emission from layered hybrid perovskites.

    PubMed

    Dohner, Emma R; Jaffe, Adam; Bradshaw, Liam R; Karunadasa, Hemamala I

    2014-09-24

    We report on the second family of layered perovskite white-light emitters with improved photoluminescence quantum efficiencies (PLQEs). Upon near-ultraviolet excitation, two new Pb-Cl and Pb-Br perovskites emit broadband "cold" and "warm" white light, respectively, with high color rendition. Emission from large, single crystals indicates an origin from the bulk material and not surface defect sites. The Pb-Br perovskite has a PLQE of 9%, which is undiminished after 3 months of continuous irradiation. Our mechanistic studies indicate that the emission has contributions from strong electron-phonon coupling in a deformable lattice and from a distribution of intrinsic trap states. These hybrids provide a tunable platform for combining the facile processability of organic materials with the structural definition of crystalline, inorganic solids.

  4. R&D issues in scale-up and manufacturing of amorphous silicon tandem modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arya, R.R.; Carlson, D.E.; Chen, L.F.

    1999-03-01

    R & D on amorphous silicon based tandem junction devices has improved the throughtput, the material utilization, and the performance of devices on commercial tin oxide coated glass. The tandem junction technology has been scaled-up to produce 8.6&hthinsp;Ft{sup 2} monolithically integrated modules in manufacturing at the TF1 plant. Optimization of performance and stability of these modules is ongoing. {copyright} {ital 1999 American Institute of Physics.}

  5. It Does Not Have to Be Uncomfortable: The Role of Behavioral Scripts in Black-White Interracial Interactions

    ERIC Educational Resources Information Center

    Avery, Derek R.; Richeson, Jennifer A.; Hebl, Michelle R.; Ambady, Nalini

    2009-01-01

    Despite growing racioethnic diversity in U.S. organizations, few organizational studies have focused on Black-White interracial interactions. Two experiments examined the influence of interaction roles, and the social scripts they trigger, on White participants' anxiety during dyadic interactions with Black partners. Results from both studies…

  6. White OLED in Hybrid Structure for Enhancing Color Purity.

    PubMed

    Kim, Dong-Eun; Kang, Min-Jae; Park, Gwang-Ryeol; Lee, Burm-Jong; Kwon, Young-Soo; Shin, Hoon-Kyu

    2016-06-01

    We synthesized the red emission material, bis(1,4-bis(5-phenyloxazol-2-yl)phenyl) iridium(picolate) [Ir-complexes] and the blue emission material, bis (2-(2-hydroxyphenyl) benzoxazolate)zinc [Zn(HPB)2]. White Organic Light Emitting Diodes were fabricated by using Zn(HPB)2 for a blue emitting layer, Ir-complexes for a red emitting layer and a tris (8-hydroxy quinoline)aluminum [Alq3] for a green emitting layer. The important experimental results obtained, white OLED was fabricated by using double emitting layers of Zn(HPB)2 and Alq3:Ir-complexes, and hole blocking layer of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline[BCP]. We also varied the thickness of BCP. When the thickness of BCP layer was 5 nm, white emission was achieved. We obtained a maximum luminance of 5400 cd/m2 at a current density of 650 mA/cm2. The CIE coordinates was (0.339, 0.323) at voltage of 10 V.

  7. Contrasting influences of Drosophila white/mini-white on ethanol sensitivity in two different behavioral assays

    PubMed Central

    Chan, Robin F.; Lewellyn, Lara; DeLoyht, Jacqueline M.; Sennett, Kristyn; Coffman, Scarlett; Hewitt, Matthew; Bettinger, Jill C.; Warrick, John M.; Grotewiel, Mike

    2014-01-01

    Background The fruit fly Drosophila melanogaster has been used extensively to investigate genetic mechanisms of ethanol-related behaviors. Many past studies in flies, including studies from our laboratory, have manipulated gene expression using transposons carrying the genetic-phenotypic marker mini-white, a derivative of the endogenous gene white. Whether the mini-white transgenic marker or the endogenous white gene influence behavioral responses to acute ethanol exposure in flies has not been systematically investigated. Methods We manipulated mini-white and white expression via (i) transposons marked with mini-white, (ii) RNAi against mini-white and white and (iii) a null allele of white. We assessed ethanol sensitivity and tolerance using a previously described eRING assay (based on climbing in the presence of ethanol) and an assay based on ethanol-induced sedation. Results In eRING assays, ethanol-induced impairment of climbing correlated inversely with expression of the mini-white marker from a series of transposon insertions. Additionally, flies harboring a null allele of white or flies with RNAi-mediated knockdown of mini-white were significantly more sensitive to ethanol in eRING assays than controls expressing endogenous white or the mini-white marker. In contrast, ethanol sensitivity and rapid tolerance measured in the ethanol sedation assay were not affected by decreased expression of mini-white or endogenous white in flies. Conclusions Ethanol sensitivity measured in the eRING assay is noticeably influenced by white and mini-white, making eRING problematic for studies on ethanol-related behavior in Drosophila using transgenes marked with mini-white. In contrast, the ethanol sedation assay described here is a suitable behavioral paradigm for studies on ethanol sedation and rapid tolerance in Drosophila including those that use widely available transgenes marked with mini-white. PMID:24890118

  8. Toxicity of copper to early-life stage Kootenai River white sturgeon, Columbia River white sturgeon, and rainbow trout

    USGS Publications Warehouse

    Little, E.E.; Calfee, R.D.; Linder, G.

    2012-01-01

    White sturgeon (Acipenser transmontanus) populations throughout western North America are in decline, likely as a result of overharvest, operation of dams, and agricultural and mineral extraction activities in their watersheds. Recruitment failure may reflect the loss of early-life stage fish in spawning areas of the upper Columbia River, which are contaminated with metals from effluents associated with mineral-extraction activities. Early-life stage white sturgeon (A. transmontanus) from the Columbia River and Kootenai River populations were exposed to copper during 96-h flow-through toxicity tests to determine their sensitivity to the metal. Similar tests were conducted with rainbow trout (RBT [Oncorhynchus mykiss]) to assess the comparative sensitivity of this species as a surrogate for white sturgeon. Exposures were conducted with a water quality pH 8.1-8.3, hardness 81-119 mg/L as CaCO2, and dissolved organic carbon 0.2-0.4 mg/L. At approximately 30 days posthatch (dph), sturgeon were highly sensitive to copper with median lethal concentration (LC50) values ranging from 4.1 to 6.8 μg/L compared with 36.5 μg/L for 30 dph RBT. White sturgeon at 123-167 dph were less sensitive to copper with LC50 values ranging from 103.7 to 268.9 μg/L. RBT trout, however, remained more sensitive to copper at 160 dph with an LC50 value of 30.9 μg/L. The results indicate that high sensitivity to copper in early-life stage white sturgeon may be a factor in recruitment failure occurring in the upper Columbia and Kootenai rivers. When site-specific water-quality criteria were estimated using the biotic ligand model (BLM), derived values were not protective of early-life stage fish, nor were estimates derived by water-hardness adjustment.

  9. White matter changes and word finding failures with increasing age.

    PubMed

    Stamatakis, Emmanuel A; Shafto, Meredith A; Williams, Guy; Tam, Phyllis; Tyler, Lorraine K

    2011-01-07

    Increasing life expectancy necessitates the better understanding of the neurophysiological underpinnings of age-related cognitive changes. The majority of research examining structural-cognitive relationships in aging focuses on the role of age-related changes to grey matter integrity. In the current study, we examined the relationship between age-related changes in white matter and language production. More specifically, we concentrated on word-finding failures, which increase with age. We used Diffusion tensor MRI (a technique used to image, in vivo, the diffusion of water molecules in brain tissue) to relate white matter integrity to measures of successful and unsuccessful picture naming. Diffusion tensor images were used to calculate Fractional Anisotropy (FA) images. FA is considered to be a measure of white matter organization/integrity. FA images were related to measures of successful picture naming and to word finding failures using voxel-based linear regression analyses. Successful naming rates correlated positively with white matter integrity across a broad range of regions implicated in language production. However, word finding failure rates correlated negatively with a more restricted region in the posterior aspect of superior longitudinal fasciculus. The use of DTI-MRI provides evidence for the relationship between age-related white matter changes in specific language regions and word finding failures in old age.

  10. Tandem concentrator photovoltaic array applied to Space Station Freedom evolutionary power requirements

    NASA Technical Reports Server (NTRS)

    Fisher, Edward M., Jr.

    1991-01-01

    Additional power is required to support Space Station Freedom (SSF) evolution. Boeing Defense and Space Group, LeRC, and Entech Corporation have participated in the development of efficiency gallium arsenide and gallium antimonide solar cells make up the solar array tandem cell stacks. Entech's Mini-Dome Fresnel Lens Concentrators focus solar energy onto the active area of the solar cells at 50 times one solar energy flux. Development testing for a flight array, to be launched in Nov. 1992 is under way with support from LeRC. The tandem cells, interconnect wiring, concentrator lenses, and structure were integrated into arrays subjected to environmental testing. A tandem concentrator array can provide high mass and area specific power and can provide equal power with significantly less array area and weight than the baseline array design. Alternatively, for SSF growth, an array of twice the baseline power can be designed which still has a smaller drag area than the baseline.

  11. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability

    NASA Astrophysics Data System (ADS)

    Bush, Kevin A.; Palmstrom, Axel F.; Yu, Zhengshan J.; Boccard, Mathieu; Cheacharoen, Rongrong; Mailoa, Jonathan P.; McMeekin, David P.; Hoye, Robert L. Z.; Bailie, Colin D.; Leijtens, Tomas; Peters, Ian Marius; Minichetti, Maxmillian C.; Rolston, Nicholas; Prasanna, Rohit; Sofia, Sarah; Harwood, Duncan; Ma, Wen; Moghadam, Farhad; Snaith, Henry J.; Buonassisi, Tonio; Holman, Zachary C.; Bent, Stacey F.; McGehee, Michael D.

    2017-02-01

    As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processability. Previously, perovskite/silicon tandems were limited by significant parasitic absorption and poor environmental stability. Here, we improve the efficiency of monolithic, two-terminal, 1-cm2 perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide perovskite. This more-stable perovskite tolerates deposition of a tin oxide buffer layer via atomic layer deposition that prevents shunts, has negligible parasitic absorption, and allows for the sputter deposition of a transparent top electrode. Furthermore, the window layer doubles as a diffusion barrier, increasing the thermal and environmental stability to enable perovskite devices that withstand a 1,000-hour damp heat test at 85 ∘C and 85% relative humidity.

  12. White Men's Racial Others

    ERIC Educational Resources Information Center

    Lensmire, Timothy J.

    2014-01-01

    Background/Context: Increasingly, researchers and educators have argued that alternative conceptions of Whiteness and White racial identity are needed because current conceptions have undermined, rather than strengthened, our critical pedagogies with White people. Grounded in critical Whiteness studies, and drawing especially on the writings of…

  13. Small tandemly repeated DNA sequences of higher plants likely originate from a tRNA gene ancestor.

    PubMed Central

    Benslimane, A A; Dron, M; Hartmann, C; Rode, A

    1986-01-01

    Several monomers (177 bp) of a tandemly arranged repetitive nuclear DNA sequence of Brassica oleracea have been cloned and sequenced. They share up to 95% homology between one another and up to 80% with other satellite DNA sequences of Cruciferae, suggesting a common ancestor. Both strands of these monomers show more than 50% homology with many tRNA genes; the best homologies have been obtained with Lys and His yeast mitochondrial tRNA genes (respectively 64% and 60%). These results suggest that small tandemly repeated DNA sequences of plants may have evolved from a tRNA gene ancestor. These tandem repeats have probably arisen via a process involving reverse transcription of polymerase III RNA intermediates, as is the case for interspersed DNA sequences of mammalians. A model is proposed to explain the formation of such small tandemly repeated DNA sequences. Images PMID:3774553

  14. Highly efficient white OLEDs for lighting applications

    NASA Astrophysics Data System (ADS)

    Murano, Sven; Burghart, Markus; Birnstock, Jan; Wellmann, Philipp; Vehse, Martin; Werner, Ansgar; Canzler, Tobias; Stübinger, Thomas; He, Gufeng; Pfeiffer, Martin; Boerner, Herbert

    2005-10-01

    The use of organic light-emitting diodes (OLEDs) for large area general lighting purposes is gaining increasing interest during the recent years. Especially small molecule based OLEDs have already shown their potential for future applications. For white light emission OLEDs, power efficiencies exceeding that of incandescent bulbs could already be demonstrated, however additional improvements are needed to further mature the technology allowing for commercial applications as general purpose illuminating sources. Ultimately the efficiencies of fluorescent tubes should be reached or even excelled, a goal which could already be achieved in the past for green OLEDs.1 In this publication the authors will present highly efficient white OLEDs based on an intentional doping of the charge carrier transport layers and the usage of different state of the art emission principles. This presentation will compare white PIN-OLEDs based on phosphorescent emitters, fluorescent emitters and stacked OLEDs. It will be demonstrated that the reduction of the operating voltage by the use of intentionally doped transport layers leads to very high power efficiencies for white OLEDs, demonstrating power efficiencies of well above 20 lm/W @ 1000 cd/m2. The color rendering properties of the emitted light is very high and CRIs between 85 and 95 are achieved, therefore the requirements for standard applications in the field of lighting applications could be clearly fulfilled. The color coordinates of the light emission can be tuned within a wide range through the implementation of minor structural changes.

  15. Characteristics of the flow around tandem flapping wings

    NASA Astrophysics Data System (ADS)

    Muscutt, Luke; Ganapathisubramani, Bharathram; Weymouth, Gabriel; The University of Southampton Team

    2014-11-01

    Vortex recapture is a fundamental fluid mechanics phenomenon which is important to many fields. Any large scale vorticity contained within a freestream flow may affect the aerodynamic properties of a downstream body. In the case of tandem flapping wings, the front wing generates strong large scale vorticity which impinges on the hind wing. The characteristics of this interaction are greatly affected by the spacing, and the phase of flapping between the front and rear wings. The interaction of the vorticity of the rear wing with the shed vorticity of the front wing may be constructive or destructive, increasing thrust or efficiency of the hind wing when compared to a wing operating in isolation. Knowledge of the parameter space where the maximum increases in these are obtained is important for the development of tandem wing unmanned air and underwater vehicles, commercial aerospace and renewable energy applications. This question is addressed with a combined computational and experimental approach, and a discussion of these is presented.

  16. Software for peak finding and elemental composition assignment for glycosaminoglycan tandem mass spectra.

    PubMed

    Hogan, John D; Klein, Joshua A; Wu, Jiandong; Chopra, Pradeep; Boons, Geert-Jan; Carvalho, Luis; Lin, Cheng; Zaia, Joseph

    2018-04-03

    Glycosaminoglycans (GAGs) covalently linked to proteoglycans (PGs) are characterized by repeating disaccharide units and variable sulfation patterns along the chain. GAG length and sulfation patterns impact disease etiology, cellular signaling, and structural support for cells. We and others have demonstrated the usefulness of tandem mass spectrometry (MS2) for assigning the structures of GAG saccharides; however, manual interpretation of tandem mass spectra is time-consuming, so computational methods must be employed. In the proteomics domain, the identification of monoisotopic peaks and charge states relies on algorithms that use averagine, or the average building block of the compound class being analyzed. While these methods perform well for protein and peptide spectra, they perform poorly on GAG tandem mass spectra, due to the fact that a single average building block does not characterize the variable sulfation of GAG disaccharide units. In addition, it is necessary to assign product ion isotope patterns in order to interpret the tandem mass spectra of GAG saccharides. To address these problems, we developed GAGfinder, the first tandem mass spectrum peak finding algorithm developed specifically for GAGs. We define peak finding as assigning experimental isotopic peaks directly to a given product ion composition, as opposed to deconvolution or peak picking, which are terms more accurately describing the existing methods previously mentioned. GAGfinder is a targeted, brute force approach to spectrum analysis that utilizes precursor composition information to generate all theoretical fragments. GAGfinder also performs peak isotope composition annotation, which is typically a subsequent step for averagine-based methods. Data are available via ProteomeXchange with identifier PXD009101. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Single-graded CIGS with narrow bandgap for tandem solar cells.

    PubMed

    Feurer, Thomas; Bissig, Benjamin; Weiss, Thomas P; Carron, Romain; Avancini, Enrico; Löckinger, Johannes; Buecheler, Stephan; Tiwari, Ayodhya N

    2018-01-01

    Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se 2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe 2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells.

  18. Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra.

    PubMed

    Rieder, Vera; Schork, Karin U; Kerschke, Laura; Blank-Landeshammer, Bernhard; Sickmann, Albert; Rahnenführer, Jörg

    2017-11-03

    In proteomics, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is established for identifying peptides and proteins. Duplicated spectra, that is, multiple spectra of the same peptide, occur both in single MS/MS runs and in large spectral libraries. Clustering tandem mass spectra is used to find consensus spectra, with manifold applications. First, it speeds up database searches, as performed for instance by Mascot. Second, it helps to identify novel peptides across species. Third, it is used for quality control to detect wrongly annotated spectra. We compare different clustering algorithms based on the cosine distance between spectra. CAST, MS-Cluster, and PRIDE Cluster are popular algorithms to cluster tandem mass spectra. We add well-known algorithms for large data sets, hierarchical clustering, DBSCAN, and connected components of a graph, as well as the new method N-Cluster. All algorithms are evaluated on real data with varied parameter settings. Cluster results are compared with each other and with peptide annotations based on validation measures such as purity. Quality control, regarding the detection of wrongly (un)annotated spectra, is discussed for exemplary resulting clusters. N-Cluster proves to be highly competitive. All clustering results benefit from the so-called DISMS2 filter that integrates additional information, for example, on precursor mass.

  19. Single-graded CIGS with narrow bandgap for tandem solar cells

    PubMed Central

    Avancini, Enrico; Buecheler, Stephan; Tiwari, Ayodhya N.

    2018-01-01

    Abstract Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells. PMID:29707066

  20. The mechanics and behavior of cliff swallows during tandem flights.

    PubMed

    Shelton, Ryan M; Jackson, Brandon E; Hedrick, Tyson L

    2014-08-01

    Cliff swallows (Petrochelidon pyrrhonota) are highly maneuverable social birds that often forage and fly in large open spaces. Here we used multi-camera videography to measure the three-dimensional kinematics of their natural flight maneuvers in the field. Specifically, we collected data on tandem flights, defined as two birds maneuvering together. These data permit us to evaluate several hypotheses on the high-speed maneuvering flight performance of birds. We found that high-speed turns are roll-based, but that the magnitude of the centripetal force created in typical maneuvers varied only slightly with flight speed, typically reaching a peak of ~2 body weights. Turning maneuvers typically involved active flapping rather than gliding. In tandem flights the following bird copied the flight path and wingbeat frequency (~12.3 Hz) of the lead bird while maintaining position slightly above the leader. The lead bird turned in a direction away from the lateral position of the following bird 65% of the time on average. Tandem flights vary widely in instantaneous speed (1.0 to 15.6 m s(-1)) and duration (0.72 to 4.71 s), and no single tracking strategy appeared to explain the course taken by the following bird. © 2014. Published by The Company of Biologists Ltd.

  1. Advanced astigmatism-corrected tandem Wadsworth mounting for small-scale spectral broadband imaging spectrometer.

    PubMed

    Lei, Yu; Lin, Guan-yu

    2013-01-01

    Tandem gratings of double-dispersion mount make it possible to design an imaging spectrometer for the weak light observation with high spatial resolution, high spectral resolution, and high optical transmission efficiency. The traditional tandem Wadsworth mounting is originally designed to match the coaxial telescope and large-scale imaging spectrometer. When it is used to connect the off-axis telescope such as off-axis parabolic mirror, it presents lower imaging quality than to connect the coaxial telescope. It may also introduce interference among the detector and the optical elements as it is applied to the short focal length and small-scale spectrometer in a close volume by satellite. An advanced tandem Wadsworth mounting has been investigated to deal with the situation. The Wadsworth astigmatism-corrected mounting condition for which is expressed as the distance between the second concave grating and the imaging plane is calculated. Then the optimum arrangement for the first plane grating and the second concave grating, which make the anterior Wadsworth condition fulfilling each wavelength, is analyzed by the geometric and first order differential calculation. These two arrangements comprise the advanced Wadsworth mounting condition. The spectral resolution has also been calculated by these conditions. An example designed by the optimum theory proves that the advanced tandem Wadsworth mounting performs excellently in spectral broadband.

  2. Treating Refractory Cardiogenic Shock With the TandemHeart and Impella Devices: A Single Center Experience

    PubMed Central

    Schwartz, Bryan G.; Ludeman, Daniel J.; Mayeda, Guy S.; Kloner, Robert A.; Economides, Christina; Burstein, Steven

    2012-01-01

    Background Patients with cardiogenic shock (CS) are routinely treated with intra-aortic balloon pumps (IABPs). The utility of 2 new percutaneous left ventricular assist devices (PLVADs), the Impella and TandemHeart, is unknown. The objective of this study was to describe the use of PLVADs for patients with CS at our institution. Methods All cases involving PLVADs in patients with CS between between January 1, 2008 and June 30, 2010 at a private, tertiary referral hospital were reviewed retrospectively. Results All 76 cases were identified (50 IABP only, 7 Impella, 19 TandemHeart). Most Impella (5/7) and TandemHeart (10/19) patients were initially treated with an IABP before "upgrading" for increased hemodynamic support. All 76 devices (100%) were initiated successfully. Percutaneous revascularization was attempted in 63 patients with angiographic success in 57 (90%). The incidences of major complications were similar between groups, except bleeding occurred less frequently with the IABP. Mean ejection fraction on presentation was 30.4±16.5% and increased by a mean of 6.6±11.4% (P < 0.001). With the institutional approach of treating patients with CS initially with vasopressors and IABPs, then upgrading to an Impella or TandemHeart device for patients refractory to IABP therapy, the overall mortality rate was 40%. Conclusion The Impella and TandemHeart devices can be initiated successfully in patients with CS, are associated with high rates of angiographic success during high risk percutaneous interventions and may benefit the myocardium during myocardial infarction. Randomized trials are warranted investigating use of the Impella and TandemHeart devices in patients with CS and in patients refractory to conventional IABP therapy. PMID:28348673

  3. Monitoring of Sea Ice Dynamic by Means of ERS-Envisat Tandem Cross-Interferometry

    NASA Astrophysics Data System (ADS)

    Pasquali, Paolo; Cantone, Alessio; Barbieri, Massimo; Engdahl, Marcus

    2010-03-01

    The interest in the monitoring of sea ice masses has increased greatly over the past decades for a variety of reasons. These include:- Navigation in northern latitude waters;- transportation of petroleum;- exploitation of mineral deposits in the Arctic, and- the use of icebergs as a source of fresh water.The availability of ERS-Envisat 28minute tandem acquisitions from dedicated campaigns, covering large areas in the northern latitudes with large geometrical baseline and very short temporal separation, allows the precise estimation of sea ice displacement fields with an accuracy that cannot be obtained on large scale from any other instrument. This article presents different results of sea ice dynamic monitoring over northern Canada obtained within the "ERS-Envisat Tandem Cross-Interferometry Campaigns: CInSAR processing and studies over extended areas" project from data acquired during the 2008-2009 Tandem campaign..

  4. Working against the Grain: White Privilege in Human Resource Development

    ERIC Educational Resources Information Center

    Monaghan, Catherine H.

    2010-01-01

    Research demonstrates that white privilege and racism have a direct impact on the success of businesses and the economy (Updegrave, Byrd, and Leuchter, 1989). Furthermore, organizations that are effective in integrating diversity experience increased organizational viability and profitability. Employees' intentions and actions of engaging in the…

  5. Tandemly repeated sequences in mtDNA control region of whitefish, Coregonus lavaretus.

    PubMed

    Brzuzan, P

    2000-06-01

    Length variation of the mitochondrial DNA control region was observed with PCR amplification of a sample of 138 whitefish (Coregonus lavaretus). Nucleotide sequences of representative PCR products showed that the variation was due to the presence of an approximately 100-bp motif tandemly repeated two, three, or five times in the region between the conserved sequence block-3 (CSB-3) and the gene for phenylalanine tRNA. This is the first report on the tandem array composed of long repeat units in mitochondrial DNA of salmonids.

  6. Explosive Tandem and Segmental Duplications of Multigenic Families in Eucalyptus grandis

    PubMed Central

    Li, Qiang; Yu, Hong; Cao, Phi Bang; Fawal, Nizar; Mathé, Catherine; Azar, Sahar; Cassan-Wang, Hua; Myburg, Alexander A.; Grima-Pettenati, Jacqueline; Marque, Christiane; Teulières, Chantal; Dunand, Christophe

    2015-01-01

    Plant organisms contain a large number of genes belonging to numerous multigenic families whose evolution size reflects some functional constraints. Sequences from eight multigenic families, involved in biotic and abiotic responses, have been analyzed in Eucalyptus grandis and compared with Arabidopsis thaliana. Two transcription factor families APETALA 2 (AP2)/ethylene responsive factor and GRAS, two auxin transporter families PIN-FORMED and AUX/LAX, two oxidoreductase families (ascorbate peroxidases [APx] and Class III peroxidases [CIII Prx]), and two families of protective molecules late embryogenesis abundant (LEA) and DNAj were annotated in expert and exhaustive manner. Many recent tandem duplications leading to the emergence of species-specific gene clusters and the explosion of the gene numbers have been observed for the AP2, GRAS, LEA, PIN, and CIII Prx in E. grandis, while the APx, the AUX/LAX and DNAj are conserved between species. Although no direct evidence has yet demonstrated the roles of these recent duplicated genes observed in E. grandis, this could indicate their putative implications in the morphological and physiological characteristics of E. grandis, and be the key factor for the survival of this nondormant species. Global analysis of key families would be a good criterion to evaluate the capabilities of some organisms to adapt to environmental variations. PMID:25769696

  7. Two different size classes of 5S rDNA units coexisting in the same tandem array in the razor clam Ensis macha: is this region suitable for phylogeographic studies?

    PubMed

    Fernández-Tajes, Juan; Méndez, Josefina

    2009-12-01

    For a study of 5S ribosomal genes (rDNA) in the razor clam Ensis macha, the 5S rDNA region was amplified and sequenced. Two variants, so-called type I or short repeat (approximately 430 bp) and type II or long repeat (approximately 735 bp), appeared to be the main components of the 5S rDNA of this species. Their spacers differed markedly, both in length and nucleotide composition. The organization of the two variants was investigated by amplifying the genomic DNA with primers based on the sequence of the type I and type II spacers. PCR amplification products with primers EMLbF and EMSbR showed that the long and short repeats are associated within the same tandem array, suggesting an intermixed arrangement of both spacers. Nevertheless, amplifications carried out with inverse primers EMSinvF/R and EMLinvF/R revealed that some short and long repeats are contiguous in the same tandem array. This is the first report of the coexistence of two variable spacers in the same tandem array in bivalve mollusks.

  8. Disrupted white matter structural connectivity in heroin abusers.

    PubMed

    Sun, Yan; Wang, Gui-Bin; Lin, Qi-Xiang; Lu, Lin; Shu, Ni; Meng, Shi-Qiu; Wang, Jun; Han, Hong-Bin; He, Yong; Shi, Jie

    2017-01-01

    Neurocognitive impairment is one of the factors that put heroin abusers at greater risk for relapse, and deficits in related functional brain connections have been found. However, the alterations in structural brain connections that may underlie these functional and neurocognitive impairments remain largely unknown. In the present study, we investigated topological organization alterations in the structural network of white matter in heroin abusers and examined the relationships between the network changes and clinical measures. We acquired diffusion tensor imaging datasets from 76 heroin abusers and 78 healthy controls. Network-based statistic was applied to identify alterations in interregional white matter connectivity, and graph theory methods were used to analyze the properties of global networks. The participants also completed a battery of neurocognitive measures. One increased subnetwork characterizing widespread abnormalities in structural connectivity was present in heroin users, which mainly composed of default-mode, attentional and visual systems. The connection strength was positively correlated with increases in fractional anisotropy in heroin abusers. Intriguingly, the changes in within-frontal and within-temporal connections in heroin abusers were significantly correlated with daily heroin dosage and impulsivity scores, respectively. These findings suggest that heroin abusers have extensive abnormal white matter connectivity, which may mediate the relationship between heroin dependence and clinical measures. The increase in white matter connectivity may be attributable to the inefficient microstructure integrity of white matter. The present findings extend our understanding of cerebral structural disruptions that underlie neurocognitive and functional deficits in heroin addiction and provide circuit-level markers for this chronic disorder. © 2015 Society for the Study of Addiction.

  9. Organic electronic devices with multiple solution-processed layers

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.

    2015-08-04

    A method of fabricating a tandem organic photosensitive device involves depositing a first layer of an organic electron donor type material film by solution-processing of the organic electron donor type material dissolved in a first solvent; depositing a first layer of an organic electron acceptor type material over the first layer of the organic electron donor type material film by a dry deposition process; depositing a conductive layer over the interim stack by a dry deposition process; depositing a second layer of the organic electron donor type material over the conductive layer by solution-processing of the organic electron donor type material dissolved in a second solvent, wherein the organic electron acceptor type material and the conductive layer are insoluble in the second solvent; depositing a second layer of an organic electron acceptor type material over the second layer of the organic electron donor type material film by a dry deposition process, resulting in a stack.

  10. Racial ideology and explanations for health inequalities among middle-class whites.

    PubMed

    Muntaner, C; Nagoshi, C; Diala, C

    2001-01-01

    Middle-class whites' explanations for racial inequalities in health can have a profound impact on the type of questions addressed in epidemiology and public health research. These explanations also constitute a subset of white racial ideology (i.e., racism) that in itself powerfully affects the health of non-whites. This study begins to examine the nature of attributions for racial inequalities in health among university students who by definition are likely to be involved in the research, policy, and service professions (the upper middle class). Investigation of the degree to which middle-class whites attribute racial inequalities in cardiovascular health (between themselves and African Americans, American Indians, or Asian Americans) to biological, social, or lifestyle factors reveals that whites tend to attribute their own health to lifestyle choice and to biology rather than to social factors. These results suggest that contemporary middle-class whites' "self-serving" explanations for racial inequalities in health are comprised of two beliefs: implicit biologism (race is an attribute of organisms rather than a social relation) and liberal belief in self-determination, choice, and individual responsibility--some of the core lay beliefs of the worldview that sustains neoliberal capitalism. Contemporary white middle-class explanations for racial inequalities in health appear to include assumptions that justify class inequality. Liberal approaches to racism in public health are bound to miss a key component of racial ideology that is currently used to justify racial and class inequalities.

  11. Producing multicharged fullerene ion beam extracted from the second stage of tandem-type ECRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagaya, Tomoki, E-mail: nagaya@nf.eie.eng.osaka-u.ac.jp; Nishiokada, Takuya; Hagino, Shogo

    2016-02-15

    We have been constructing the tandem-type electron cyclotron resonance ion source (ECRIS). Two ion sources of the tandem-type ECRIS are possible to generate plasma individually, and they also confined individual ion species by each different plasma parameter. Hence, it is considered to be suitable for new materials production. As the first step, we try to produce and extract multicharged C{sub 60} ions by supplying pure C{sub 60} vapor in the second stage plasma because our main target is producing the endohedral fullerenes. We developed a new evaporator to supply fullerene vapor, and we succeeded in observation about multicharged C{sub 60}more » ion beam in tandem-type ECRIS for the first time.« less

  12. Co-Teaching ELLs: Riding a Tandem Bike

    ERIC Educational Resources Information Center

    Honigsfeld, Andrea; Dove, Maria G.

    2016-01-01

    Imagine getting on the tandem bike of co-teaching. You have a lot to decide. Who sits in the front and takes the lead? Who takes the backseat? The fact is, neither classroom teachers nor secondary content-area teachers have proven eager to give up leading their lesson when they have a co-teacher present, whether to support ELLs or students with…

  13. Accelerated White Matter Aging in Schizophrenia: Role of White Matter Blood Perfusion

    PubMed Central

    Chiappelli, Joshua; McMahon, Robert; Muellerklein, Florian; Wijtenburg, S. Andrea; White, Michael G.; Rowland, Laura M.; Hong, L. Elliot

    2014-01-01

    Elevated rate of age-related decline in white matter integrity, indexed by fractional anisotropy (FA) from diffusion tensor imaging, was reported in patients with schizophrenia. Its etiology is unknown. We hypothesized that a decline of blood perfusion to the white matter may underlie the accelerated age-related reduction in FA in schizophrenia. Resting white matter perfusion and FA were collected using pseudo-continuous arterial spin labeling and high-angular-resolution diffusion tensor imaging, respectively, in 50 schizophrenia patients and 70 controls (age=18-63 years). Main outcome measures were the diagnosis-by-age interaction on whole-brain white matter perfusion, and FA. Significant age-related decline in brain white matter perfusion and FA were present in both groups. Age-by-diagnosis interaction was significant for FA (p<0.001) but not white matter perfusion. Age-by-diagnosis interaction for FA values remained significant even after accounting for age-related decline in perfusion. Therefore, we replicated the finding of an increased rate of age-related white matter FA decline in schizophrenia, and observed a significant age-related decline in white matter blood perfusion, although the latter did not contribute to the accelerated age-related decline in FA. The results suggest that factors other than reduced perfusion account for the accelerated age-related decline in white matter integrity in schizophrenia. PMID:24680326

  14. More than Meets the Eye: A Primer for "Timing of Locomotor Recovery from Anoxia Modulated by the white Gene in Drosophila melanogaster".

    PubMed

    Hersh, Bradley M

    2016-12-01

    SummaryA single gene might have several functions within an organism, and so mutational loss of that gene has multiple effects across different physiological systems in the organism. Though the white gene in Drosophila melanogaster was identified originally for its effect on fly eye color, an article by Xiao and Robertson in the June 2016 issue of GENETICS describes a function for the white gene in the response of Drosophila to oxygen deprivation. This Primer article provides background information on the white gene, the phenomenon of pleiotropy, and the molecular and genetic approaches used in the study to demonstrate a new behavioral function for the white gene. Copyright © 2016 by the Genetics Society of America.

  15. Fabrication of White Organic Light Emitting Diode Using Two Types of Zn-Complexes as an Emitting Layer.

    PubMed

    Kim, Dong-Eun; Kwon, Young-Soo; Shin, Hoon-Kyu

    2015-01-01

    We have studied white OLED using two types of Zn-complexes as an emitting layer. We synthesized brand new two emissive materials, Zn(HPQ)2 as a yellow emitting material and Zn(HPB)2 as a blue emitting material. The Zn-complexes are low-molecular compounds and stable thermally. The fundamental structures of the fabricated OLED was ITO/NPB (40 nm)/Zn(HPB)2 (30 nm)/Zn(HPQ)2/LiF/Al. We varied the thickness of the Zn(HPQ)2 layer by 20, 30, and 40 nm. When the thickness of the Zn(HPQ)2 layer was 20 nm, the white emission was achieved. The maximum luminance was 12,000 cd/m2 at a current density of 800 mA/cm2. The CIE coordinates of the white emission were (0.319, 0.338) at an applied voltage of 10 V.

  16. Willingness to participate in organ donation among black Seventh-Day Adventist college students.

    PubMed

    Cort, Malcolm; Cort, David

    2008-01-01

    The authors studied a group of black and white Seventh-Day Adventist (SDA) college students (N = 334) to compare the power of religious socialization with racial socialization. The authors compared the levels of willingness to donate organs between black and nonblack students in an availability sample. Black SDA college students were significantly more likely than white SDA students or SDA students of other races to perceive racism in the healthcare system and to believe that doctors would not make heroic efforts to save their lives if they knew they were organ donors; they were 66.9% less likely to donate organs than were white SDA students or SDA students of other races. Despite a common religion with a purposive indoctrination, the racial socialization of black SDA students exerted a stronger influence on willingness to participate in organ donation than did that of white students and students of other races within this religion.

  17. Economic competitiveness of III-V on silicon tandem one-sun photovoltaic solar modules in favorable future scenarios

    DOE PAGES

    Bobela, David C.; Gedvilas, Lynn; Woodhouse, Michael; ...

    2016-09-05

    Here, tandem modules combining a III-V top cell with a Si bottom cell offer the potential to increase the solar energy conversion efficiency of one-sun photovoltaic modules beyond 25%, while fully utilizing the global investment that has been made in Si photovoltaics manufacturing. At present, the cost of III-V cells is far too high for this approach to be competitive for one-sun terrestrial power applications. We investigated the system-level economic benefits of both GaAs/Si and InGaP/Si tandem modules in favorable future scenarios where the cost of III-V cells is substantially reduced, perhaps to less than the cost of Si cells.more » We found, somewhat unexpectedly, that these tandems can reduce installed system cost only when the area-related balance-of-system cost is high, such as for area-constrained residential rooftop systems in the USA. When area-related balance-of-system cost is lower, such as for utility-scale systems, the tandem module offers no benefit. This is because a system using tandem modules is more expensive than one using single-junction Si modules when III-V cells are expensive, and a system using tandem modules is more expensive than one using single-junction III-V modules when III-V cells are inexpensive.« less

  18. Economic competitiveness of III-V on silicon tandem one-sun photovoltaic solar modules in favorable future scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobela, David C.; Gedvilas, Lynn; Woodhouse, Michael

    Here, tandem modules combining a III-V top cell with a Si bottom cell offer the potential to increase the solar energy conversion efficiency of one-sun photovoltaic modules beyond 25%, while fully utilizing the global investment that has been made in Si photovoltaics manufacturing. At present, the cost of III-V cells is far too high for this approach to be competitive for one-sun terrestrial power applications. We investigated the system-level economic benefits of both GaAs/Si and InGaP/Si tandem modules in favorable future scenarios where the cost of III-V cells is substantially reduced, perhaps to less than the cost of Si cells.more » We found, somewhat unexpectedly, that these tandems can reduce installed system cost only when the area-related balance-of-system cost is high, such as for area-constrained residential rooftop systems in the USA. When area-related balance-of-system cost is lower, such as for utility-scale systems, the tandem module offers no benefit. This is because a system using tandem modules is more expensive than one using single-junction Si modules when III-V cells are expensive, and a system using tandem modules is more expensive than one using single-junction III-V modules when III-V cells are inexpensive.« less

  19. Organic matter and nutrients associated with fine root turnover in a white oak stand. [Quercus albus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joslin, J.D.; Henderson, G.S.

    1987-06-01

    Organic matter and nutrients cycled by fine root turnover were quantified in a mature white oak (Quercus alba L.) stand and compared to contributions from litterfall. The budget method, a revised version of the traditional repeated sampling method, was used to measure root turnover. The magnitude of the live and dead pools of three size classes of fine (<5 mm diameter) roots were monitored bimonthly for 14 months. Decomposition rates over these intervals were also measured, while production and mortality were calculated. Litterfall was collected simultaneously, and the nutrient concentrations of the various detritus components determined. Root pools fluctuated less,more » and total root turnover biomass (220 g m/sup -2/ yr/sup -1/) was also less than previously noted in most other stands studied. Fine root turnover accounted for 30% of the total detritus production and 20-40% of the turnover of the five macronutrients (N, P, K, Ca, Mg) studied. Differences with previous studies suggest that there may be rather large species and/or site-related differences in the amount of energy various stands allocate for fine root maintenance. For. Sci. 33(2):330-346.« less

  20. Improved Tandem Measurement Techniques for Aerosol Particle Analysis

    NASA Astrophysics Data System (ADS)

    Rawat, Vivek Kumar

    Non-spherical, chemically inhomogeneous (complex) nanoparticles are encountered in a number of natural and engineered environments, including combustion systems (which produces highly non-spherical aggregates), reactors used in gas-phase materials synthesis of doped or multicomponent materials, and in ambient air. These nanoparticles are often highly diverse in size, composition and shape, and hence require determination of property distribution functions for accurate characterization. This thesis focuses on development of tandem mobility-mass measurement techniques coupled with appropriate data inversion routines to facilitate measurement of two dimensional size-mass distribution functions while correcting for the non-idealities of the instruments. Chapter 1 provides the detailed background and motivation for the studies performed in this thesis. In chapter 2, the development of an inversion routine is described which is employed to determine two dimensional size-mass distribution functions from Differential Mobility Analyzer-Aerosol Particle Mass analyzer tandem measurements. Chapter 3 demonstrates the application of the two dimensional distribution function to compute cumulative mass distribution function and also evaluates the validity of this technique by comparing the calculated total mass concentrations to measured values for a variety of aerosols. In Chapter 4, this tandem measurement technique with the inversion routine is employed to analyze colloidal suspensions. Chapter 5 focuses on application of a transverse modulation ion mobility spectrometer coupled with a mass spectrometer to study the effect of vapor dopants on the mobility shifts of sub 2 nm peptide ion clusters. These mobility shifts are then compared to models based on vapor uptake theories. Finally, in Chapter 6, a conclusion of all the studies performed in this thesis is provided and future avenues of research are discussed.