Sample records for tanel mullari risto

  1. Outside the Golden Gate: Prospects and Comparisons in Finnish Adult Higher Education.

    ERIC Educational Resources Information Center

    Parjanen, Matti, Ed.; And Others

    This book contains four articles on adult higher education (AHE) in Finland. In the preface, Matti Parjanen outlines the development of AHE in Finland and discusses the rationale for the book. In "Adult Education and Universities in the Era of Economic Depression," Osmo Kivinen and Risto Rinne examine the dilemma between the mission of…

  2. Accurately Decoding Visual Information from fMRI Data Obtained in a Realistic Virtual Environment

    DTIC Science & Technology

    2015-06-09

    Center for Learning and Memory , The University of Texas at Austin, 100 E 24th Street, Stop C7000, Austin, TX 78712, USA afloren@utexas.edu Received: 18...information from fMRI data obtained in a realistic virtual environment. Front. Hum. Neurosci. 9:327. doi: 10.3389/fnhum.2015.00327 Accurately decoding...visual information from fMRI data obtained in a realistic virtual environment Andrew Floren 1*, Bruce Naylor 2, Risto Miikkulainen 3 and David Ress 4

  3. Diagnosis of Glanzmann thrombasthenia by whole blood impedance analyzer (MEA) vs. light transmission aggregometry.

    PubMed

    Albanyan, A; Al-Musa, A; AlNounou, R; Al Zahrani, H; Nasr, R; AlJefri, A; Saleh, M; Malik, A; Masmali, H; Owaidah, T

    2015-08-01

    Glanzmann thrombasthenia (GT) is a rare inherited platelet disorder that is characterized by spontaneous or postprocedural bleeding. The diagnosis of GT depends on identifying the dysfunction of the platelets. The aim of this study was to compare a whole blood impedance Multiplate analyzer (MEA) with the standard method, light transmission aggregometry (LTA) in diagnosis of GT. Fifteen patients with GT were assessed on MEA and LTA using arachidonic acid (ASPI: 15 mm), (TRAP: 1 mm), collagen (100 μg/mL), ADP (0.2 mm), and ristocetin (Risto: 10 mg/mL). Whole blood samples were collected in sodium citrate and hirudin vacuum, blood collection tubes and tested within 4 h. Platelet-rich plasma was used for LTA using platelet agonists (ristocetin 1.5 mg/mL) (arachidonic acid 0.5 mg/mL) (ADP 2.5 mg/mL) and (collagen 1 mg/mL). The platelet count and PFA-100 results were (average and SD) 319 ± 93 × 10(9) L and 252 ± 34 s, respectively. Flow cytometry analysis showed that all samples are positive for CD42a and CD42b, whereas 9/15 samples were negative for CD61 and CD41. The other six patients had either partial or full expression of CD61/CD41. Aggregation analysis using both methods showed that all samples had no aggregation response to any of the agonists used apart from six samples which, using only the MEA, showed minimal aggregation in response to collagen (average = 14.3 ± 7 μg, which may suggest ability to detect qualitative abnormality of GPIIb/IIIa). These results suggest that the MEA is sensitive for the detection of Glanzmann thrombasthenia. Furthermore, MEA may also be able to differentiate between the subtypes of Glanzmann thrombasthenia. © 2014 John Wiley & Sons Ltd.

  4. An mHealth App for Supporting Quitters to Manage Cigarette Cravings With Short Bouts of Physical Activity: A Randomized Pilot Feasibility and Acceptability Study.

    PubMed

    Hassandra, Mary; Lintunen, Taru; Hagger, Martin S; Heikkinen, Risto; Vanhala, Mauno; Kettunen, Tarja

    2017-05-26

    . The PhoS app showed some potential to reduce abstinence among participants not using pharmacological therapy and to increase physical activity. However, problems with usability and lack of effects on abstinence raise questions over the app's long-term effectiveness. Future research should prioritize further development of the app to maximize usability and test effects of the intervention independent of quit-smoking programs. International Standard Randomized Controlled Trial Number (ISRCTN): 55259451; http://www.controlled-trials.com/ISRCTN55259451 (Archived by WebCite at http://www.webcitation.org/6cKF2mzEI). ©Mary Hassandra, Taru Lintunen, Martin S Hagger, Risto Heikkinen, Mauno Vanhala, Tarja Kettunen. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 26.05.2017.

  5. PREFACE: 3rd Workshop on Theory, Modelling and Computational Methods for Semiconductors (TMCSIII)

    NASA Astrophysics Data System (ADS)

    Califano, Marco; Migliorato, Max; Probert, Matt

    2012-05-01

    contributions also from representatives of renowned theoretical groups from many European countries (Spain, France, Ireland, Germany, Italy, Poland, Denmark, Sweden, Serbia, Greece, etc.), as well as Asia (India) and Africa (Algeria, Tunisia and South Africa). We would like to thank all participants for making this a very successful meeting and for their contribution to the conference programme and these proceedings. We would also like to acknowledge the financial support from the Institute of Physics (Computational Physics group and Semiconductor Physics group), and QuantumWise (distributors of Atomistix). The Editors Acknowledgments Conference Organising Committee: Marco Califano (University of Leeds) Max Migliorato (University of Manchester) Matt Probert (University of York) Programme Committee: Stewart Clark (University of Durham) Aldo Di Carlo (University of Rome 'Tor Vergata', Italy) Ben Hourahine (University of Strathclyde) Lev Kantorovich (King's College London) Risto Nieminen (Helsinki University of Technology, Finland) Eoin O'Reilly (Tyndall Institute Cork, Republic of Ireland) Mauro Pereira (Sheffield Hallam University) John Robertson (University of Cambridge) Mervin Roy (University of Leicester) Stanko Tomic (University of Salford) David Whittaker (University of Sheffield) The proceedings were edited and compiled by Marco Califano, Max Migliorato and Matt Probert.

  6. PREFACE: 4th Workshop on Theory, Modelling and Computational Methods for Semiconductors (TMCSIV)

    NASA Astrophysics Data System (ADS)

    Tomić, Stanko; Probert, Matt; Migliorato, Max; Pal, Joydeep

    2014-06-01

    renowned theoretical groups from many European countries (Spain, France, Ireland, Germany, Switzerland, Luxemburg, Norway, Italy, Poland, Denmark, Sweden, Serbia, etc.), as well as Asia (Iran, Japan) and USA. We would like to thank all participants for making this a very successful meeting and for their contribution to the conference programme and these proceedings. We would also like to acknowledge the financial support from the Institute of Physics (Semiconductor Physics Group and Computational Physics Group), EPSRC-UK, the CECAM UK-Hartree Node, CCP9, and Quantum Wise (distributors of Atomistix). The Editors Acknowledgments Conference Organising Committee: Stanko Tomić (Chair, University of Salford) Matt Probert (University of York) Max Migliorato (University of Manchester) Joydeep Pal (University of Manchester) Programme Committee: David Whittaker (University of Sheffield, UK) John Robertson (University of Cambridge, UK) Risto Nieminen (Helsinki University of Technology Finland) Eoin O'Reilly (Tyndall Institute Cork Republic of Ireland) Marco Califano (University of Leeds, UK) Stewart Clark (University of Durham, UK) Stanko Tomić (University of Salford, UK) Mauro Pereira (Sheffield Hallam University, UK) Aldo Di Carlo (University of Rome ''Tor Vergata,'' Italy) Lev Kantorovich (King's College London, UK) Mervin Roy (University of Leicester, UK) Ben Hourahine (University of Strathclyde, UK) Rita Magri (University of Modena and Reggio Emilia, Italy) Zoran Ikonic (University of Leeds) John Barker (University of Glasgow) The proceedings were edited and compiled by Joydeep Pal, Max Migliorato and Stanko Tomić.

  7. A rule-based approach for the correlation of alarms to support Disaster and Emergency Management

    NASA Astrophysics Data System (ADS)

    Gloria, M.; Minei, G.; Lersi, V.; Pasquariello, D.; Monti, C.; Saitto, A.

    2009-04-01

    ), http://kodu.neti.ee/~risto/sec/ M. Gloria,V. Lersi, G. Minei, D. Pasquariello, C. Monti, A. Saitto, "A Semantic WEB Services Platform to support Disaster and Emergency Management", 4th biennial Meeting of International Environmental Modelling and Software Society (iEMSs), 2008

  8. FOREWORD: Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12 14 June 2007)

    NASA Astrophysics Data System (ADS)

    Hafner, Jürgen

    2008-02-01

    their application to key areas of condensed matter physics. Researchers from industry mainly focused on challenges arising from applied industrial research; contributions describing successful applications of DFT techniques to industrial problems were more scarce. Progress during the last decade has been very fast. The ESF research program has been renewed under the much bolder title 'Towards Computational Materials Design' and is now approaching the end of this second funding period. Due to the development of accurate, efficient and stable software packages for ab initio simulations, DFT-based techniques are now routinely used in many industrial laboratories worldwide. It was therefore considered timely to organize a second 'Theory meets Industry' workshop. The meeting took place between 12-14 June 2007 at the Erwin-Schrödinger-Institute (ESI) for Mathematical Physics in Vienna (Austria). It was sponsored by the Universität Wien through the VASP (Vienna Ab-initio Simulation Program) project, the Center for Computational Materials Science Vienna, the Erwin-Schrödinger-Institute and the ESF Program 'Towards Computational Materials Design'. The program of the workshop was decided by an international advisory board consisting of Ryoji Asahi (Toyota Central Research and Development Laboratory), Risto Nieminen (Helsinki University of Technology), Herve Toulhoat (Institut Français du Pétrole), Erich Wimmer (Materials Design Inc.), Chris Wolverton (Ford Motor Co. and Northwestern University) and Jürgen Hafner (Universität Wien). The 35 invited talks presented at the meeting were divided equally between researchers from academia and from industry. The contributions from academia concentrated on a wide range of new developments in DFT and post-DFT simulations (with contributions from the developers of leading software packages for ab initio simulations), as well as on applications in front-line materials research. In contrast to the first workshop nine years ago, all

  9. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).

    PubMed

    Hafner, Jürgen

    2008-02-13

    and their application to key areas of condensed matter physics. Researchers from industry mainly focused on challenges arising from applied industrial research; contributions describing successful applications of DFT techniques to industrial problems were more scarce. Progress during the last decade has been very fast. The ESF research program has been renewed under the much bolder title 'Towards Computational Materials Design' and is now approaching the end of this second funding period. Due to the development of accurate, efficient and stable software packages for ab initio simulations, DFT-based techniques are now routinely used in many industrial laboratories worldwide. It was therefore considered timely to organize a second 'Theory meets Industry' workshop. The meeting took place between 12-14 June 2007 at the Erwin-Schrödinger-Institute (ESI) for Mathematical Physics in Vienna (Austria). It was sponsored by the Universität Wien through the VASP (Vienna Ab-initio Simulation Program) project, the Center for Computational Materials Science Vienna, the Erwin-Schrödinger-Institute and the ESF Program 'Towards Computational Materials Design'. The program of the workshop was decided by an international advisory board consisting of Ryoji Asahi (Toyota Central Research and Development Laboratory), Risto Nieminen (Helsinki University of Technology), Herve Toulhoat (Institut Français du Pétrole), Erich Wimmer (Materials Design Inc.), Chris Wolverton (Ford Motor Co. and Northwestern University) and Jürgen Hafner (Universität Wien). The 35 invited talks presented at the meeting were divided equally between researchers from academia and from industry. The contributions from academia concentrated on a wide range of new developments in DFT and post-DFT simulations (with contributions from the developers of leading software packages for ab initio simulations), as well as on applications in front-line materials research. In contrast to the first workshop nine years ago