Sample records for tank dst space

  1. TANK SPACE ALTERNATIVES ANALYSIS REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TURNER DA; KIRCH NW; WASHENFELDER DJ

    2010-04-27

    This report addresses the projected shortfall of double-shell tank (DST) space starting in 2018. Using a multi-variant methodology, a total of eight new-term options and 17 long-term options for recovering DST space were evaluated. These include 11 options that were previously evaluated in RPP-7702, Tank Space Options Report (Rev. 1). Based on the results of this evaluation, two near-term and three long-term options have been identified as being sufficient to overcome the shortfall of DST space projected to occur between 2018 and 2025.

  2. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY TC; ABBOTT FG; CARPENTER BG

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  3. Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PACQUET, E.A.

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineeringmore » case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.« less

  4. DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WASHENFELDER DJ

    2008-01-22

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLWmore » until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  5. Architectural constructs of Ampex DST

    NASA Technical Reports Server (NTRS)

    Johnson, Clay

    1993-01-01

    The DST 800 automated library is a high performance, automated tape storage system, developed by AMPEX, providing mass storage to host systems. Physical Volume Manager (PVM) is a volume server which supports either a DST 800, DST 600 stand alone tape drive, or a combination of DST 800 and DST 600 subsystems. The objective of the PVM is to provide the foundation support to allow automated and operator assisted access to the DST cartridges with continuous operation. A second objective is to create a data base about the media, its location, and its usage so that the quality and utilization of the media on which specific data is recorded and the performance of the storage system may be managed. The DST tape drive architecture and media provides several unique functions that enhance the ability to achieve high media space utilization and fast access. Access times are enhanced through the implementation of multiple areas (called system zones) on the media where the media may be unloaded. This reduces positioning time in loading and unloading the cartridge. Access times are also reduced through high speed positioning in excess of 800 megabytes per second. A DST cartridge can be partitioned into fixed size units which can be reclaimed for rewriting without invalidating other recorded data on the tape cartridge. Most tape management systems achieve space reclamation by deleting an entire tape volume, then allowing users to request a 'scratch tape' or 'nonspecific' volume when they wish to record data to tape. Physical cartridge sizes of 25, 75, or 165 gigabytes will make this existing process inefficient or unusable. The DST cartridge partitioning capability provides an efficient mechanism for addressing the tape space utilization problem.

  6. Restoration of Secondary Containment in Double Shell Tank (DST) Pits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SHEN, E.J.

    2000-10-05

    Cracks found in many of the double-shell tank (DST) pump and valve pits bring into question the ability of the pits to provide secondary containment and remain in compliance with State and Federal regulations. This study was commissioned to identify viable options for maintain/restoring secondary containment capability in these pits. The basis for this study is the decision analysis process which identifies the requirements to be met and the desired goals (decision criteria) that each option will be weighed against. A facilitated workshop was convened with individuals knowledgeable of Tank Farms Operations, engineering practices, and safety/environmental requirements. The outcome ofmore » this workshop was the validation or identification of the critical requirements, definition of the current problem, identification and weighting of the desired goals, baselining of the current repair methods, and identification of potential alternate solutions. The workshop was followed up with further investigations into the potential solutions that were identified in the workshop and through other efforts. These solutions are identified in the body of this report. Each of the potential solutions were screened against the list of requirements and only those meeting the requirements were considered viable options. To expand the field of viable options, hybrid concepts that combine the strongest features of different individual approaches were also examined. Several were identified. The decision analysis process then ranked each of the viable options against the weighted decision criteria, which resulted in a recommended solution. The recommended approach is based upon installing a sprayed on coating system.« less

  7. Chemical Species in the Vapor Phase of Hanford Double-Shell Tanks: Potential Impacts on Waste Tank Corrosion Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.

    2010-09-22

    The presence of corrosive and inhibiting chemicals on the tank walls in the vapor space, arising from the waste supernatant, dictate the type and degree of corrosion that occurs there. An understanding of how waste chemicals are transported to the walls and the affect on vapor species from changing supernatant chemistry (e.g., pH, etc.), are basic to the evaluation of risks and impacts of waste changes on vapor space corrosion (VSC). In order to address these issues the expert panel workshop on double-shell tank (DST) vapor space corrosion testing (RPP-RPT-31129) participants made several recommendations on the future data and modelingmore » needs in the area of DST corrosion. In particular, the drying of vapor phase condensates or supernatants can form salt or other deposits at the carbon steel interface resulting in a chemical composition at the near surface substantially different from that observed directly in the condensates or the supernatants. As a result, over the past three years chemical modeling and experimental studies have been performed on DST supernatants and condensates to predict the changes in chemical composition that might occur as condensates or supernatants equilibrate with the vapor space species and dry at the carbon steel surface. The experimental studies included research on both the chemical changes that occurred as the supernatants dried as well as research on how these chemical changes impact the corrosion of tank steels. The chemical modeling and associated experimental studies were performed at the Pacific Northwest National Laboratory (PNNL) and the research on tank steel corrosion at the Savannah River National Laboratory (SRNL). This report presents a summary of the research conducted at PNNL with special emphasis on the most recent studies conducted in FY10. An overall summary of the project results as well as their broader implications for vapor space corrosion of the DST’s is given at the end of this report.« less

  8. HANFORD DST THERMAL & SEISMIC PROJECT ANSYS BENCHMARK ANALYSIS OF SEISMIC INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY, T.C.

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Themore » overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS

  9. U.S. Geological Survey Near Real-Time Dst Index

    USGS Publications Warehouse

    Gannon, J.L.; Love, J.J.; Friberg, P.A.; Stewart, D.C.; Lisowski, S.W.

    2011-01-01

    The operational version of the United States Geological Survey one-minute Dst index (a global geomagnetic disturbance-intensity index for scientific studies and definition of space-weather effects) uses either four- or three-station input (including Honolulu, Hawaii; San Juan, Puerto Rico; Hermanus, South Africa; and Kakioka, Japan; or Honolulu, San Juan and Guam) and a method based on the U.S. Geological Survey definitive Dst index, in which Dst is more rigorously calculated. The method uses a combination of time-domain techniques and frequency-space filtering to produce the disturbance time series at an individual observatory. The operational output is compared to the U.S. Geological Survey one-minute Dst index (definitive version) and to the Kyoto (Japan) Final Dst to show that the U.S. Geological Survey operational output matches both definitive indices well.

  10. Design concepts and performance of NASA X-band transponder (DST) for deep space spacecraft applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Perret, Jonathan D.; Kermode, Arthur W.

    1991-01-01

    The design concepts and measured performance characteristics of an X band (7162 MHz/8415 MHz) breadboard deep space transponder (DST) for future spacecraft applications, with the first use scheduled for the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini missions in 1995 and 1996, respectively. The DST consists of a double conversion, superheterodyne, automatic phase tracking receiver, and an X band (8415 MHz) exciter to drive redundant downlink power amplifiers. The receiver acquires and coherently phase tracks the modulated or unmodulated X band (7162 MHz) uplink carrier signal. The exciter phase modulates the X band (8415 MHz) downlink signal with composite telemetry and ranging signals. The receiver measured tracking threshold, automatic gain control static phase error, and phase jitter characteristics of the breadboard DST are in good agreement with the expected performance. The measured results show a receiver tracking threshold of -158 dBm and a dynamic signal range of 88 dB.

  11. The radiation belts and ring current: the relationship between Dst and relativistic electron phase space density

    NASA Astrophysics Data System (ADS)

    Grande, M.; Carter, M.; Perry, C. H.

    2002-03-01

    We briefly review the radiation belts, before moving on to a more detailed examination of the relationship between the Disturbance Storm Time Index (Dst) and relativistic electron flux. We show that there is a strong correlation between the growth phase of storms, as represented by Dst, and dropouts in electron flux. Recovery is accompanied by growth of the electron flux. We calculate Electron Phase Space Density (PSD) as a function of adiabatic invariants using electron particle mesurements from the Imaging Electron Sensor (IES) and the High Sensitivity Telescope (HIST) on the CEPPAD experiment onboard POLAR. We present the time history of the phase space density through the year 1998 as L-sorted plots and look in detail at the May 98 storm. Comparison with the Tsyganenko 96 magnetic field model prediction for the last closed field line suggests that the loss of electrons may be directly caused by the opening of drift shells.

  12. DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OGDEN DM; KIRCH NW

    2007-10-31

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

  13. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  14. Hanford Double-Shell Tank Extent-of-Condition Construction Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venetz, Theodore J.; Johnson, Jeremy M.; Gunter, Jason R.

    2013-11-14

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. The formal leak assessment, documented in RPP-ASMT-53793,Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure. To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records were performed for the firstmore » three DST tank farms constructed, which included tanks 241-AY-101, 241-AZ-101, 241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103. The review for these six tanks involved research and review of dozens of boxes of historical project documentation. These reviews form a basis to better understand the current condition of the three oldest Hanford DST farms. They provide a basis for changes to the current tank inspection program and also provide valuable insight into future tank use decisions. If new tanks are constructed in the future, these reviews provide valuable "lessons-learned" information about expected difficulties as well as construction practices and techniques that are likely to be successful.« less

  15. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances ofmore » the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.« less

  16. Real-time validation of the Dst Predictor model

    USGS Publications Warehouse

    McCollough, James P.; Young, Shawn L.; Rigler, E. Joshua; Simpson, Hal A.

    2015-01-01

    The Dst Predictor model, which has been running real-time in the Space Weather Analysis and Forecast System (SWAFS), provides 1-hour and 4-hour forecasts of the Dst index. This is useful for awareness of impending geomagnetic activity, as well as driving other real-time models that use Dst as an input. In this report, we examine the performance of this forecast model in detail. When validating indices it should be noted that performance is only with respect to a reference index as they are derived quantities assumed to reflect a state of the magnetosphere that cannot be directly measured. In this case U.S. Geological Survey (USGS) Definitive Dst is the reference index (Section 3). Whether or not the model better reflects the actual activity level is nearly impossible to discern and is outside the scope of this report. We evaluate the performance of the model by computing continuous predictant skill scores against USGS Definitive Dst values as “observations” (Section 4.2). The two sets of data are not well-correlated for both 1-hour and 4-hour forecasts. The Dst Predictor Prediction Efficiency for both the 1- and 4-hour forecasts suggests poor performance versus the climatological mean. However, the skill score against a nowcast persistence model is positive, suggesting value added by the Dst Predictor model. We further examine statistics for storm times (Section 4.3) with similar results: nowcast persistence performs worse than Dst Predictor.  Dst Predictor is superior to the nowcast persistence model for the metric used in this study. We recommend continued use of the DstPredictor model for 1-and4-hour Dst predictions along with active study of other Dst forecast models that do not rely on nowcast inputs (Section 6). The lack of certified requirements makes further recommendations difficult. A study of how the error in Dst translates to error in models and a better understanding of operational needs for magnetic storm warning are needed to determine

  17. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than two...

  18. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than two...

  19. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than two...

  20. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than two...

  1. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than two...

  2. Hanford Double-Shell Tank Inspection Annual Report Calendar Year 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petermann, Tasha M.; Boomer, Kayle D.; Washenfelder, D. J.

    2013-12-02

    The double-shell tanks (DSTs) were constructed between 1968 and 1986. They will have exceeded their design life before the waste can be removed and trasferred to the Waste Treatment and Immobilization Plant for vitrification. The Double-Shell Tank Integrity Project has been established to evaluate tank aging, and ensure that each tank is structurally sound for continued use. This is the first issue of the Double-Shell Tank Inspection Annual Report. The purpose of this issue is to summarize the results of DST inspections conducted from the beginnng of the inspection program through the end of CY2012. Hereafter, the report will bemore » updated annually with summaries of the past year's DST inspection activities.« less

  3. 241-AY Double Shell Tanks (DST) Integrity Assessment Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations. are made to ensure the continued safe operation of the tanks.

  4. USGS 1-min Dst index

    USGS Publications Warehouse

    Gannon, J.L.; Love, J.J.

    2011-01-01

    We produce a 1-min time resolution storm-time disturbance index, the USGS Dst, called Dst8507-4SM. This index is based on minute resolution horizontal magnetic field intensity from low-latitude observatories in Honolulu, Kakioka, San Juan and Hermanus, for the years 1985-2007. The method used to produce the index uses a combination of time- and frequency-domain techniques, which more clearly identifies and excises solar-quiet variation from the horizontal intensity time series of an individual station than the strictly time-domain method used in the Kyoto Dst index. The USGS 1-min Dst is compared against the Kyoto Dst, Kyoto Sym-H, and the USGS 1-h Dst (Dst5807-4SH). In a time series comparison, Sym-H is found to produce more extreme values during both sudden impulses and main phase maximum deviation, possibly due to the latitude of its contributing observatories. Both Kyoto indices are shown to have a peak in their distributions below zero, while the USGS indices have a peak near zero. The USGS 1-min Dst is shown to have the higher time resolution benefits of Sym-H, while using the more typical low-latitude observatories of Kyoto Dst. ?? 2010.

  5. 46 CFR 105.25-15 - Spacings around tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Spacings around tanks. 105.25-15 Section 105.25-15... COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Additional Requirements-When Cargo Tanks Are Installed Below Decks § 105.25-15 Spacings around tanks. (a) Tanks shall be located so as to provide at...

  6. 46 CFR 105.25-15 - Spacings around tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Spacings around tanks. 105.25-15 Section 105.25-15... COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Additional Requirements-When Cargo Tanks Are Installed Below Decks § 105.25-15 Spacings around tanks. (a) Tanks shall be located so as to provide at...

  7. Double shell tanks (DST) chemistry control data quality objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    2001-10-09

    One of the main functions of the River Protection Project is to store the Hanford Site tank waste until the Waste Treatment Plant (WTP) is ready to receive and process the waste. Waste from the older single-shell tanks is being transferred to the newer double-shell tanks (DSTs). Therefore, the integrity of the DSTs must be maintained until the waste from all tanks has been retrieved and transferred to the WTP. To help maintain the integrity of the DSTs over the life of the project, specific chemistry limits have been established to control corrosion of the DSTs. These waste chemistry limitsmore » are presented in the Technical Safety Requirements (TSR) document HNF-SD-WM-TSR-006, Sec. 5 . IS, Rev 2B (CHG 200 I). In order to control the chemistry in the DSTs, the Chemistry Control Program will require analyses of the tank waste. This document describes the Data Quality Objective (DUO) process undertaken to ensure appropriate data will be collected to control the waste chemistry in the DSTs. The DQO process was implemented in accordance with Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. Ib, Vol. IV, Section 4.16, (Banning 2001) and the U.S. Environmental Protection Agency EPA QA/G4, Guidance for the Data Quality Objectives Process (EPA 1994), with some modifications to accommodate project or tank specific requirements and constraints.« less

  8. Space Shuttle Upgrade Liquid Oxygen Tank Thermal Stratification

    NASA Technical Reports Server (NTRS)

    Tunc, Gokturk; Wagner, Howard; Bayazitoglu, Yildiz

    2001-01-01

    In 1997, NASA initiated a study of a liquid oxygen and ethanol orbital maneuvering and reaction control system for space shuttle upgrades as well as other reusable launch vehicle applications. The pressure-fed system uses sub-cooled liquid oxygen at 2413.2 KPa (350 psia) stored passively using insulation. Thermal stratification builds up while the space shuttle is docked at the international space station. The venting from the space shuttle's liquid oxygen tank is not desired during this 96-hr time period. Once the shuttle undocks from the space station there could be a pressure collapse in the liquid oxygen tank caused by fluid mixing due to the thruster fU"ings . The thermal stratification and resulting pressure rise in the tank were examined by a computational fluid dynamic model. Since the heat transfer from the pressurant gas to the liquid will result in a decrease in tank pressure the final pressure after the 96 hours will be significantly less when the tank is pressurized with ambient temperature helium. Therefore, using helium at ambient temperature to pressurize the tank is preferred to pressurizing the tank with helium at the liquid oxygen temperature. The higher helium temperature will also result in less mass of helium to pressurize the tank.

  9. 46 CFR 169.631 - Separation of machinery and fuel tank spaces from accommodation spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Separation of machinery and fuel tank spaces from accommodation spaces. 169.631 Section 169.631 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... machinery and fuel tank spaces from accommodation spaces. (a) Machinery and fuel tank spaces must be...

  10. 46 CFR 169.631 - Separation of machinery and fuel tank spaces from accommodation spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Separation of machinery and fuel tank spaces from accommodation spaces. 169.631 Section 169.631 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... machinery and fuel tank spaces from accommodation spaces. (a) Machinery and fuel tank spaces must be...

  11. Hanford Double-Shell Tank Extent-of-Condition Review - 15498

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J. M.; Baide, D. D.; Barnes, T. J.

    2014-11-19

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. A formal leak assessment, documented in RPP-ASMT-53793, Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure.1 To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records was performed for Hanford’smore » remaining twenty-seven DSTs. Review involved research of 241 boxes of historical project documentation to better understand the condition of the Hanford DST farms, noting similarities in construction difficulties/issues to tank AY-102. Information gathered provides valuable insight regarding construction difficulties, future tank operations decisions, and guidance of the current tank inspection program. Should new waste storage tanks be constructed in the future, these reviews also provide valuable lessons-learned.« less

  12. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion space...

  13. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion space...

  14. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion space...

  15. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion space...

  16. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion space...

  17. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion space...

  18. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion space...

  19. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion space...

  20. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion space...

  1. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion space...

  2. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion space...

  3. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion space...

  4. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion space...

  5. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion space...

  6. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion space...

  7. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  8. Design and analysis of low-loss linear analog phase modulator for deep space spacecraft X-band transponder (DST) application

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Mueller, Robert O.

    1991-01-01

    This paper summarizes the design concepts, analyses, and the development of an X-band transponder low-loss linear phase modulator for deep space spacecraft applications. A single section breadboard circulator-coupled reflection phase modulator has been analyzed, fabricated, and evaluated. Two- and three-cascaded sections have been modeled and simulations performed to provide an X-band DST phase modulator with +/- 2.5 radians of peak phase deviation to accommodate down-link signal modulation with composite telemetry data and ranging with a deviation linearity tolerance +/- 8 percent and insertion loss of less than 10 +/- 0.5 dB. A two-section phase modulator using constant gamma hyperabrupt varactors and an efficient modulator driver circuit was breadboarded. The measured results satisfy the DST phase modulator requirements, and excellent agreement with the predicted results.

  9. Progress in Hanford's Double-Shell Tank Integrity Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryson, D.C.; Washenfelder, D.J.; Boomer, K.D.

    2008-07-01

    The U.S. Department of Energy's Office of River Protection has an extensive integrity assessment program for the Hanford Site Double-Shell Tank System. The DOE Orders and environmental protection regulations provide the guidelines for the activities used to inspect and maintain 28 double-shell tanks (DSTs), the waste evaporator, and ancillary equipment that compose this system. This program has been reviewed by oversight and regulatory bodies and found to comply with the established guidelines. The basis for the DOE Order 435.1-1 for tank integrity comes from the Tank Structural Integrity Panel led by Brookhaven National Laboratory during the late 1990's. These guidelinesmore » established criteria for performing Non-Destructive Examination (NDE), for acceptance of the NDE results, for waste chemistry control, and for monitoring the tanks. The environmental regulations mirror these requirements and allow for the tank integrity program to provide compliant storage of the tanks. Both sets of requirements provide additional guidance for the protection of ancillary equipment. CH2M HILL uses two methods of NDE: visual inspection and Ultrasonic Testing (UT). The visual inspection program examines the primary tank and secondary liner of the DST. The primary tank is examined both on the interior surface above the waste in the tank and on the exterior surface facing the annulus of the DST. The interior surface of the tank liner is examined at the same time as the outer surface of the primary tank. The UT program examines representative areas of the primary tank and secondary liner by deploying equipment in the annulus of the tank. Both programs have led to the development of new equipment for remote inspection of the tanks. Compact camera and enhanced lighting systems have been designed and deployed through narrow access ports (called risers) into the tanks. The UT program has designed two generations of crawlers and equipment for deployment through risers into the

  10. Geomagnetic storms, the Dst ring-current myth and lognormal distributions

    USGS Publications Warehouse

    Campbell, W.H.

    1996-01-01

    The definition of geomagnetic storms dates back to the turn of the century when researchers recognized the unique shape of the H-component field change upon averaging storms recorded at low latitude observatories. A generally accepted modeling of the storm field sources as a magnetospheric ring current was settled about 30 years ago at the start of space exploration and the discovery of the Van Allen belt of particles encircling the Earth. The Dst global 'ring-current' index of geomagnetic disturbances, formulated in that period, is still taken to be the definitive representation for geomagnetic storms. Dst indices, or data from many world observatories processed in a fashion paralleling the index, are used widely by researchers relying on the assumption of such a magnetospheric current-ring depiction. Recent in situ measurements by satellites passing through the ring-current region and computations with disturbed magnetosphere models show that the Dst storm is not solely a main-phase to decay-phase, growth to disintegration, of a massive current encircling the Earth. Although a ring current certainly exists during a storm, there are many other field contributions at the middle-and low-latitude observatories that are summed to show the 'storm' characteristic behavior in Dst at these observatories. One characteristic of the storm field form at middle and low latitudes is that Dst exhibits a lognormal distribution shape when plotted as the hourly value amplitude in each time range. Such distributions, common in nature, arise when there are many contributors to a measurement or when the measurement is a result of a connected series of statistical processes. The amplitude-time displays of Dst are thought to occur because the many time-series processes that are added to form Dst all have their own characteristic distribution in time. By transforming the Dst time display into the equivalent normal distribution, it is shown that a storm recovery can be predicted with

  11. Revised Dst and the epicycles of magnetic disturbance: 1958-2007

    USGS Publications Warehouse

    Love, J.J.; Gannon, J.L.

    2009-01-01

    A revised version of the storm-time disturbance index Dst is calculated using hourly-mean magnetic-observatory data from four standard observatories and collected over the years 1958-2007. The calculation algorithm is a revision of that established by Sugiura et al., and which is now used by the Kyoto World Data Center for routine production of Dst. The most important new development is for the removal of solar-quiet variation. This is done through time and frequency-domain band-stop filtering - selectively removing specific Fourier terms approximating stationary periodic variation driven by the Earth's rotation, the Moon's orbit, the Earth's orbit around the Sun, and their mutual coupling. The resulting non-stationary disturbance time series are weighted by observatory-site geomagnetic latitude and then averaged together across longitudes to give what we call Dst5807-4SH. Comparisons are made with the standard Kyoto D st. Various biases, especially for residual solar-quiet variation, are identified in the Kyoto Dst, and occasional storm-time errors in the Kyoto Dst are noted. Using Dst5807-4SH, storms are ranked for maximum storm-time intensity, and we show that storm-occurrence frequency follows a power-law distribution with an exponential cutoff. The epicycles of magnetic disturbance are explored: we (1) map low-latitude local-time disturbance asymmetry, (2) confirm the 27-day storm-recurrence phenomenon using autocorrelation, (3) investigate the coupled semi-annual-diurnal variation of magnetic activity and the proposed explanatory equinoctial and Russell-McPherron hypotheses, and (4) illustrate the well-known solar-cycle modulation of storm-occurrence likelihood. Since Dst5807-4SH is useful for a variety of space physics and solid-Earth applications, it is made freely available to the scientific community.

  12. Comparison between three algorithms for Dst predictions over the 2003 2005 period

    NASA Astrophysics Data System (ADS)

    Amata, E.; Pallocchia, G.; Consolini, G.; Marcucci, M. F.; Bertello, I.

    2008-02-01

    We compare, over a two and half years period, the performance of a recent artificial neural network (ANN) algorithm for the Dst prediction called EDDA [Pallocchia, G., Amata, E., Consolini, G., Marcucci, M.F., Bertello, I., 2006. Geomagnetic Dst index forecast based on IMF data only. Annales Geophysicae 24, 989-999], based on IMF inputs only, with the performance of the ANN Lundstedt et al. [2002. Operational forecasts of the geomagnetic Dst index. Geophysical Research Letters 29, 341] algorithm and the Wang et al. [2003. Influence of the solar wind dynamic pressure on the decay and injection of the ring current. Journal of Geophysical Research 108, 51] algorithm based on differential equations, which both make use of both IMF and plasma inputs. We show that: (1) all three algorithms perform similarly for "small" and "moderate" storms; (2) the EDDA and Wang algorithms perform similarly and considerably better than the Lundstedt et al. [2002. Operational forecasts of the geomagnetic Dst index. Geophysical Research Letters 29, 341] algorithm for "intense" and for "severe" storms; (3) the EDDA algorithm has the clear advantage, for space weather operational applications, that it makes use of IMF inputs only. The advantage lies in the fact that plasma data are at times less reliable and display data gaps more often than IMF measurements, especially during large solar disturbances, i.e. during periods when space weather forecast are most important. Some considerations are developed on the reasons why EDDA may forecast the Dst index without making use of solar wind density and velocity data.

  13. Lunar habitat concept employing the space shuttle external tank.

    PubMed

    King, C B; Butterfield, A J; Hypes, W D; Nealy, J E; Simonsen, L C

    1990-01-01

    The space shuttle external tank, which consists of a liquid oxygen tank, an intertank structure, and a liquid hydrogen tank, is an expendable structure used for approximately 8.5 min during each launch. A concept for outfitting the liquid oxygen tank-intertank unit for a 12-person lunar habitat is described. The concept utilizes existing structures and openings for both man and equipment access without compromising the structural integrity of the tank. Living quarters, instrumentation, environmental control and life support, thermal control, and propulsion systems are installed at Space Station Freedom. The unmanned habitat is then transported to low lunar orbit and autonomously soft landed on the lunar surface. Design studies indicate that this concept is feasible by the year 2000 with concurrent development of a space transfer vehicle and manned cargo lander for crew changeover and resupply.

  14. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  15. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  16. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  17. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  18. 46 CFR 25.40-1 - Tanks and engine spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in..., and other spaces to which explosive or flammable gases and vapors from these compartments may flow...

  19. 46 CFR 182.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of spaces containing diesel fuel tanks. 182... Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies with § 182.465, a space containing a diesel fuel tank and no machinery must meet the requirements of this...

  20. 46 CFR 182.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel fuel tanks. 182... Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies with § 182.465, a space containing a diesel fuel tank and no machinery must meet the requirements of this...

  1. Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks

    NASA Technical Reports Server (NTRS)

    Lopez, Alfredo; Grayson, Gary D.; Chandler, Frank O.; Hastings, Leon J.; Heyadat, Ali

    2007-01-01

    A computational fluid dynamics (CFD) model is developed to simulate pressure control of an ellipsoidal-shaped liquid hydrogen tank under external heating in normal gravity. Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered within the vessel that injects cooler liquid into the tank, mixing the contents and reducing tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own vapor with liquid density varying with temperature only and a fully compressible ullage. The axisymmetric model is developed using a custom version of the commercially available FLOW-31) software. Quantitative model validation is ,provided by engineering checkout tests performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper Stage_ Technology Demonstrator (STUSTD) program. The engineering checkout tests provide cryogenic tank self-pressurization test data at various heat leaks and tank fill levels. The predicted self-pressurization rates, ullage and liquid temperatures at discrete locations within the STUSTD tank are in good agreement with test data. The work presented here advances current CFD modeling capabilities for cryogenic pressure control and helps develop a low cost CFD-based design process for space hardware.

  2. Comparison of Dst Forecast Models for Intense Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Ji, Eun-Young; Moon, Y.-J.; Gopalswamy, N.; Lee, D.-H.

    2012-01-01

    We have compared six disturbance storm time (Dst) forecast models using 63 intense geomagnetic storms (Dst <=100 nT) that occurred from 1998 to 2006. For comparison, we estimated linear correlation coefficients and RMS errors between the observed Dst data and the predicted Dst during the geomagnetic storm period as well as the difference of the value of minimum Dst (Delta Dst(sub min)) and the difference in the absolute value of Dst minimum time (Delta t(sub Dst)) between the observed and the predicted. As a result, we found that the model by Temerin and Li gives the best prediction for all parameters when all 63 events are considered. The model gives the average values: the linear correlation coefficient of 0.94, the RMS error of 14.8 nT, the Delta Dst(sub min) of 7.7 nT, and the absolute value of Delta t(sub Dst) of 1.5 hour. For further comparison, we classified the storm events into two groups according to the magnitude of Dst. We found that the model of Temerin and Lee is better than the other models for the events having 100 <= Dst < 200 nT, and three recent models (the model of Wang et al., the model of Temerin and Li, and the model of Boynton et al.) are better than the other three models for the events having Dst <= 200 nT.

  3. External tank space debris considerations

    NASA Technical Reports Server (NTRS)

    Elfer, N.; Baillif, F.; Robinson, J.

    1992-01-01

    Orbital debris issues associated with maintaining a Space Shuttle External Tank (ET) on orbit are presented. The first issue is to ensure that the ET does not become a danger to other spacecraft by generating space debris, and the second is to protect the pressurized ET from penetration by space debris or meteoroids. Tests on shield designs for penetration resistance showed that when utilized with an adequate bumper, thermal protection system foam on the ET is effective in preventing penetration.

  4. Mysql Data-Base Applications for Dst-Like Physics Analysis

    NASA Astrophysics Data System (ADS)

    Tsenov, Roumen

    2004-07-01

    The data and analysis model developed and being used in the HARP experiment for studying hadron production at CERN Proton Synchrotron is discussed. Emphasis is put on usage of data-base (DB) back-ends for persistent storing and retrieving "alive" C++ objects encapsulating raw and reconstructed data. Concepts of "Data Summary Tape" (DST) as a logical collection of DB-persistent data of different types, and of "intermediate DST" (iDST) as a physical "tag" of DST, are introduced. iDST level of persistency allows a powerful, DST-level of analysis to be performed by applications running on an isolated machine (even laptop) with no connection to the experiment's main data storage. Implementation of these concepts is considered.

  5. Provisional hourly values of equatorial Dst for 1971

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Poros, D. J.

    1972-01-01

    Tables and plots of provisional hourly values of the equatorial Dst index for 1971 are given, a table of daily mean Dst values for 1971 is also provided. The base line values for the four observatories, Hermanus, Kakioka, Honolulu, and San Juan, were obtained from extrapolations using the coefficients for the secular variations determined for the previous years. Examining the Dst values for quiet days, the base lines so determined appear to be slightly low, so that the Dst index for quiet periods tends to be high.

  6. Large Eddy Simulations using oodlesDST

    DTIC Science & Technology

    2016-01-01

    Research Agency DST-Group-TR-3205 ABSTRACT The oodlesDST code is based on OpenFOAM software and performs Large Eddy Simulations of......maritime platforms using a variety of simulation techniques. He is currently using OpenFOAM software to perform both Reynolds Averaged Navier-Stokes

  7. SKYLAB II - Making a Deep Space Habitat from a Space Launch System Propellant Tank

    NASA Technical Reports Server (NTRS)

    Griffin, Brand N.; Smitherman, David; Kennedy, Kriss J.; Toups, Larry; Gill, Tracy; Howe, A. Scott

    2012-01-01

    Called a "House in Space," Skylab was an innovative program that used a converted Saturn V launch vehicle propellant tank as a space station habitat. It was launched in 1973 fully equipped with provisions for three separate missions of three astronauts each. The size and lift capability of the Saturn V enabled a large diameter habitat, solar telescope, multiple docking adaptor, and airlock to be placed on-orbit with a single launch. Today, the envisioned Space Launch System (SLS) offers similar size and lift capabilities that are ideally suited for a Skylab type mission. An envisioned Skylab II mission would employ the same propellant tank concept; however serve a different mission. In this case, the SLS upper stage hydrogen tank is used as a Deep Space Habitat (DSH) for NASA s planned missions to asteroids, Earth-Moon Lagrangian point and Mars.

  8. 46 CFR 119.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation of spaces containing diesel fuel tanks. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.470 Ventilation of spaces containing diesel... containing a diesel fuel tank and no machinery must meet one of the following requirements: (1) A space of 14...

  9. 46 CFR 119.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel fuel tanks. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.470 Ventilation of spaces containing diesel... containing a diesel fuel tank and no machinery must meet one of the following requirements: (1) A space of 14...

  10. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... access from the weather deck to gas-safe spaces in the cargo area must be at least 2.4 m (7.9 ft.) above... 46 Shipping 5 2014-10-01 2014-10-01 false Access to tanks and spaces in the cargo area. 154.340... Equipment Ship Arrangements § 154.340 Access to tanks and spaces in the cargo area. (a) Each cargo tank must...

  11. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... access from the weather deck to gas-safe spaces in the cargo area must be at least 2.4 m (7.9 ft.) above... 46 Shipping 5 2012-10-01 2012-10-01 false Access to tanks and spaces in the cargo area. 154.340... Equipment Ship Arrangements § 154.340 Access to tanks and spaces in the cargo area. (a) Each cargo tank must...

  12. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... access from the weather deck to gas-safe spaces in the cargo area must be at least 2.4 m (7.9 ft.) above... 46 Shipping 5 2013-10-01 2013-10-01 false Access to tanks and spaces in the cargo area. 154.340... Equipment Ship Arrangements § 154.340 Access to tanks and spaces in the cargo area. (a) Each cargo tank must...

  13. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... access from the weather deck to gas-safe spaces in the cargo area must be at least 2.4 m (7.9 ft.) above... 46 Shipping 5 2010-10-01 2010-10-01 false Access to tanks and spaces in the cargo area. 154.340... Equipment Ship Arrangements § 154.340 Access to tanks and spaces in the cargo area. (a) Each cargo tank must...

  14. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... access from the weather deck to gas-safe spaces in the cargo area must be at least 2.4 m (7.9 ft.) above... 46 Shipping 5 2011-10-01 2011-10-01 false Access to tanks and spaces in the cargo area. 154.340... Equipment Ship Arrangements § 154.340 Access to tanks and spaces in the cargo area. (a) Each cargo tank must...

  15. Space Shuttle Atlantis' external tank repairs from Hail Damage

    NASA Image and Video Library

    2007-04-09

    In the Vehicle Assembly Building, United Space Alliance technicians Brenda Morris and Brian Williams are applying foam and molds on Space Shuttle Atlantis' external tank to areas damaged by hail. The white hole with a red circle around it (upper right) is a hole prepared for molding and material application. The red material is sealant tape so the mold doesn't leak when the foam rises against the mold. The white/ translucent square mold is an area where the foam has been applied and the foam has risen and cured against the mold surface. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The March launch was postponed and has not yet been rescheduled due to the repair process.

  16. VIEW OF INTERIOR SPACE WITH ANODIZING TANK AND LIQUID BIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF INTERIOR SPACE WITH ANODIZING TANK AND LIQUID BIN STORAGE TANK IN FOREGROUND, FACING NORTH. - Douglas Aircraft Company Long Beach Plant, Aircraft Parts Receiving & Storage Building, 3855 Lakewood Boulevard, Long Beach, Los Angeles County, CA

  17. Riser Difference Uncertainty Methodology Based on Tank AY-101 Wall Thickness Measurements with Application to Tank AN-107

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weier, Dennis R.; Anderson, Kevin K.; Berman, Herbert S.

    2005-03-10

    The DST Integrity Plan (RPP-7574, 2003, Double-Shell Tank Integrity Program Plan, Rev. 1A, CH2M HILL Hanford Group, Inc., Richland, Washington.) requires the ultrasonic wall thickness measurement of two vertical scans of the tank primary wall while using a single riser location. The resulting measurements are then used in extreme value methodology to predict the minimum wall thickness expected for the entire tank. The representativeness of using a single riser in this manner to draw conclusions about the entire circumference of a tank has been questioned. The only data available with which to address the representativeness question comes from Tank AY-101more » since only for that tank have multiple risers been used for such inspection. The purpose of this report is to (1) further characterize AY-101 riser differences (relative to prior work); (2) propose a methodology for incorporating a ''riser difference'' uncertainty for subsequent tanks for which only a single riser is used, and (3) specifically apply the methodology to measurements made from a single riser in Tank AN-107.« less

  18. Photogrammetry Measurements During a Tanking Test on the Space Shuttle External Tank, ET-137

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Schmidt, Tim; Tyson, John; Oliver, Stanley T.; Melis, Matthew E.; Ruggeri, Charles

    2012-01-01

    On November 5, 2010, a significant foam liberation threat was observed as the Space Shuttle STS-133 launch effort was scrubbed because of a hydrogen leak at the ground umbilical carrier plate. Further investigation revealed the presence of multiple cracks at the tops of stringers in the intertank region of the Space Shuttle External Tank. As part of an instrumented tanking test conducted on December 17, 2010, a three dimensional digital image correlation photogrammetry system was used to measure radial deflections and overall deformations of a section of the intertank region. This paper will describe the experimental challenges that were overcome in order to implement the photogrammetry measurements for the tanking test in support of STS-133. The technique consisted of configuring and installing two pairs of custom stereo camera bars containing calibrated cameras on the 215-ft level of the fixed service structure of Launch Pad 39-A. The cameras were remotely operated from the Launch Control Center 3.5 miles away during the 8 hour duration test, which began before sunrise and lasted through sunset. The complete deformation time history was successfully computed from the acquired images and would prove to play a crucial role in the computer modeling validation efforts supporting the successful completion of the root cause analysis of the cracked stringer problem by the Space Shuttle Program. The resulting data generated included full field fringe plots, data extraction time history analysis, section line spatial analyses and differential stringer peak ]valley motion. Some of the sample results are included with discussion. The resulting data showed that new stringer crack formation did not occur for the panel examined, and that large amounts of displacement in the external tank occurred because of the loads derived from its filling. The measurements acquired were also used to validate computer modeling efforts completed by NASA Marshall Space Flight Center (MSFC).

  19. Liquid oxygen sloshing in Space Shuttle External Tank

    NASA Technical Reports Server (NTRS)

    Kannapel, M. D.; Przekwas, A. J.; Singhal, A. K.; Costes, N. C.

    1987-01-01

    This paper describes a numerical simulation of the hydrodynamics within the liquid oxygen tank of the Space Shuttle External Tank during liftoff. Before liftoff, the tank is filled with liquid oxygen (LOX) to approximately 97 percent with the other 3 percent containing gaseous oxygen (GOX) and helium. During liftoff, LOX is drained from the bottom of the tank, and GOX is pumped into the tank's ullage volume. There is a delay of several seconds before the GOX reaches the tank which causes the ullage pressure to decrease for several seconds after liftoff; this pressure 'slump' is a common phenomenon in rocket propulsion. When four slosh baffles were removed from the tank, the ullage gas pressure dropped more rapidly than in all previous flights. The purpose of this analysis was to determine whether the removal of the baffles could have caused the increased pressure 'slump' by changing the LOX surface dynamics. The results show that the LOX surface undergoes very high vertical accelerations (up to 5 g) and, therefore, splashing almost certainly occurs. The number of baffles does not affect the surface if the structural motion is assumed; but, the number of baffles may affect the structural motion of the tank.

  20. Concepts for a Shroud or Propellant Tank Derived Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Howard, Robert L.

    2012-01-01

    Long duration human spaceflight missions beyond Low Earth Orbit will require much larger spacecraft than capsules such as the Russian Soyuz or American Orion Multi-Purpose Crew Vehicle. A concept spacecraft under development is the Deep Space Habitat, with volumes approaching that of space stations such as Skylab, Mir, and the International Space Station. This paper explores several concepts for Deep Space Habitats constructed from a launch vehicle shroud or propellant tank. It also recommends future research using mockups and prototypes to validate the size and crew station capabilities of such a habitat. Keywords: Exploration, space station, lunar outpost, NEA, habitat, long duration, deep space habitat, shroud, propellant tank.

  1. Hanford Double Shell Waste Tank Corrosion Studies - Final Report FY2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuentes, R. E.; Wyrwas, R. B.

    2016-05-01

    During FY15, SRNL performed corrosion testing that supported Washington River Protection Solutions (WRPS) with their double shell tank (DST) integrity program. The testing investigated six concerns including, 1) the possibility of corrosion of the exterior of the secondary tank wall; 2) the effect of ammonia on vapor space corrosion (VSC) above waste simulants; 3) the determination of the minimum required nitrite and hydroxide concentrations that prevent pitting in concentrated nitrate solutions (i.e., waste buffering); 4) the susceptibility to liquid air interface (LAI) corrosion at proposed stress corrosion cracking (SCC) inhibitor concentrations; 5) the susceptibility of carbon steel to pitting inmore » dilute solutions that contain significant quantities of chloride and sulfate; and 6) the effect of different heats of A537 carbon steel on the corrosion response. For task 1, 2, and 4, the effect of heat treating and/ or welding of the materials was also investigated.« less

  2. Space Shuttle external tank: Today - DDT & E: Tomorrow - Production

    NASA Technical Reports Server (NTRS)

    Norton, A. M.; Tanner, E. J.

    1979-01-01

    The External Tank (ET) is the structural backbone of the Space Shuttle. The ET is discussed relative to its role; its design as a highly efficient Shuttle element; the liquid oxygen tank - a thin shelled monocoque; the intertank - the forward structural connection; the liquid hydrogen tank structure - the connection with the Orbiter; the ET structural verification; the propulsion system - a variety of functions; the electrical subsystem; electrical subsystem qualification; the thermal protection system; and other related problems. To date the qualification programs have been extremely successful and are almost complete, and the first flight tank has been delivered. Tomorrow's objectives will concentrate on establishing the facilities, tools and processes to achieve a production rate of 24 ETs/year.

  3. Tank Pressure Control Experiment on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The tank pressure control experiment is a demonstration of NASA intent to develop new technology for low-gravity management of the cryogenic fluids that will be required for future space systems. The experiment will use freon as the test fluid to measure the effects of jet-induced fluid mixing on storage tank pressure and will produce data on low-gravity mixing processes critical to the design of on-orbit cryogenic storage and resupply systems. Basic data on fluid motion and thermodynamics in low gravity is limited, but such data is critical to the development of space transfer vehicles and spacecraft resupply facilities. An in-space experiment is needed to obtain reliable data on fluid mixing and pressure control because none of the available microgravity test facilities provide a low enough gravity level for a sufficient duration to duplicate in-space flow patterns and thermal processes. Normal gravity tests do not represent the fluid behavior properly; drop-tower tests are limited in length of time available; aircraft low-gravity tests cannot provide the steady near-zero gravity level and long duration needed to study the subtle processes expected in space.

  4. Structural Continuum Modeling of Space Shuttle External Tank Foam Insulation

    NASA Technical Reports Server (NTRS)

    Steeve, Brian; Ayala, Sam; Purlee, T. Eric; Shaw, Phillip

    2006-01-01

    This document is a viewgraph presentation reporting on work in modeling the foam insulation of the Space Shuttle External Tank. An analytical understanding of foam mechanics is required to design against structural failure. The Space Shuttle External Tank is covered primarily with closed cell foam to: Prevent ice, Protect structure from ascent aerodynamic and engine plume heating, and Delay break-up during re-entry. It is important that the foam does not shed unacceptable debris during ascent environment. Therefore a modeling of the foam insulation was undertaken.

  5. Space Shuttle Atlantis' external tank repairs from Hail Damage

    NASA Image and Video Library

    2007-04-09

    In the Vehicle Assembly Building, markers show the hail damage being repaired on the external tank of Space Shuttle Atlantis. The white hole with a red circle around it is a hole prepared for molding and material application. The red material is sealant tape so the mold doesn't leak when the foam rises against the mold. The white/ translucent square mold is an area where the foam has been applied and the foam has risen and cured against the mold surface. The area will be de-molded and sanded flush the with adjacent area. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The March launch was postponed and has not yet been rescheduled due to the repair process.

  6. Structural Continuum Modeling of Space Shuttle External Tank Foam Insulation

    NASA Technical Reports Server (NTRS)

    Steeve, Brian; Ayala, Sam; Purlee, T. Eric; Shaw, Phillip

    2006-01-01

    The Space Shuttle External Tank is covered with rigid polymeric closed-cell foam insulation to prevent ice formation, protect the metallic tank from aerodynamic heating, and control the breakup of the tank during re-entry. The cryogenic state of the tank, as well as the ascent into a vacuum environment, places this foam under significant stress. Because the loss of the foam during ascent poses a critical risk to the shuttle orbiter, there is much interest in understanding the stress state in the foam insulation and how it may contribute to fracture and debris loss. Several foam applications on the external tank have been analyzed using finite element methods. This presentation describes the approach used to model the foam material behavior and compares analytical results to experiments.

  7. Space Shuttle with rail system and aft thrust structure securing solid rocket boosters to external tank

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L. (Inventor)

    1984-01-01

    The configuration and relationship of the external propellant tank and solid rocket boosters of space transportation systems such as the space shuttle are described. The space shuttle system with the improved propellant tank is shown. The external tank has a forward pressure vessel for liquid hydrogen and an aft pressure vessel for liquid oxygen. The solid rocket boosters are joined together by a thrust frame which extends across and behind the external tank. The thrust of the orbiter's main rocket engines are transmitted to the aft portion of the external tank and the thrust of the solid rocket boosters are transmitted to the aft end of the external tank.

  8. Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SEDERBURG, J.P.

    1999-09-30

    This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.

  9. Engineering Task Plan for the Ultrasonic Inspection of Hanford Double Shell Tanks (DST) FY2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JENSEN, C.E.

    2000-01-10

    This document facilitates the ultrasonic examination of Hanford double-shell tanks. Included are a plan for engineering activities (individual responsibilities), plan for performance demonstration testing, and a plan for field activities (tank inspection). Also included are a Statement of Work for contractor performance of the work and a protocol to be followed should tank flaws that exceed the acceptance criteria be discovered.

  10. 46 CFR 169.631 - Separation of machinery and fuel tank spaces from accommodation spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Separation of machinery and fuel tank spaces from accommodation spaces. 169.631 Section 169.631 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.631 Separation of...

  11. EVALUATION OF FROST HEAVE ON WASTE TRANSFER LINES WITH SHALLOW DEPTHS IN DST (DOUBLE SHELL TANK) FARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAQ MA

    2009-05-12

    The purpose of this document is to evaluate the effect of frost heave on waste transfer lines with shallow depths in DST farms. Because of the insulation, well compacted sandy material around waste transfer lines, the type of sandy and gravel soil, and relatively low precipitation at Hanford site, it is concluded that waste transfer lines with one foot of soil covers (sandy cushion material and insulation) are not expected to undergo frost heave damaging effects.

  12. CFM technologies for space transportation: Multipurpose hydrogen testbed system definition and tank procurement

    NASA Technical Reports Server (NTRS)

    Fox, E. C.; Kiefel, E. R.; Mcintosh, G. L.; Sharpe, J. B.; Sheahan, D. R.; Wakefield, M. E.

    1993-01-01

    The development of a test bed tank and system for evaluating cryogenic fluid management technologies in a simulated upper stage liquid hydrogen tank is covered. The tank is 10 ft long and is 10 ft in diameter, and is an ASME certified tank constructed of 5083 aluminum. The tank is insulated with a combination of sprayed on foam insulation, covered by 45 layers of double aluminized mylar separated by dacron net. The mylar is applied by a continuous wrap system adapted from commercial applications, and incorporates variable spacing between the mylar to provide more space between those layers having a high delta temperature, which minimizes heat leak. It also incorporates a unique venting system which uses fewer large holes in the mylar rather than the multitude of small holes used conventionally. This significantly reduces radiation heat transfer. The test bed consists of an existing vacuum chamber at MSFC, the test bed tank and its thermal control system, and a thermal shroud (which may be heated) surrounding the tank. Provisions are made in the tank and chamber for inclusion of a variety of cryogenic fluid management experiments.

  13. External tank project new technology plan. [development of space shuttle external tank system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A production plan for the space shuttle external tank configuration is presented. The subjects discussed are: (1) the thermal protection system, (2) thermal coating application techniques, (3) manufacturing and tooling, (4) propulsion system configurations and components, (5) low temperature rotating and sliding joint seals, (6) lightning protection, and (7) nondestructive testing technology.

  14. Influence of the substorm current wedge on the Dst index

    NASA Astrophysics Data System (ADS)

    Friedrich, Erena; Rostoker, Gordon; Connors, Martin G.; McPherron, R. L.

    1999-03-01

    One of the major questions confronting researchers studying the nature of the solar-terrestrial interaction centers around whether or not the substorm expansive phase has any causal effect on the growth of the storm time ring current. This question is often addressed by using the Dst index as a proxy for the storm time ring current and inspecting the main phase growth of Dst in the context of the substorm expansive phases which occur in the same time frame as the ring current growth. In the past it has been assumed that the magnetic effects of the substorm current wedge have little influence on the Dst index because the current wedge is an asymmetric current system, while Dst is supposed to reflect changes in the symmetric component of the ring current. In this paper we shall shown that the substorm current wedge can have a significant effect on the present Dst index, primarily as a consequence of the fact that only four stations are presently used to formulate the index. Calculations are made assuming the instantaneous magnitude of the wedge current is constant at 1 MA. Hourly values of Dst may be as much as 50° smaller than those presented here because of variation of the wedge current over the hour. We shall show how the effect of the current wedge depends on the UT of the expansive phase onset, the angular extent of the current wedge, and the locale of the closure current in the magnetosphere. The fact that the substorm current wedge is a conjugate phenomenon has an important influence on the magnitude of the expansive phase effect in the Dst index.

  15. Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hedayat, Ali; Lopez, Alfredo; Grayson, Gary D.; Chandler, Frank O.; Hastings, Leon J.

    2008-01-01

    A computational fluid dynamics (CFD) model is developed to simulate pressure control of an ellipsoidal-shaped liquid hydrogen tank under external heating in low gravity. Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered within the vessel that injects cooler liquid into the tank, mixing the contents and reducing tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own vapor with liquid density varying with temperature only and a fully compressible ullage. The axisymmetric model is developed using a custom version of the commercially available FLOW-3D software and simulates low gravity extrapolations of engineering checkout tests performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper Stage Technology Demonstrator (STUSTD) program. Model results illustrate that stable low gravity liquid-gas interfaces are maintained during all phases of the pressure control cycle. Steady and relatively smooth ullage pressurization rates are predicted. This work advances current low gravity CFD modeling capabilities for cryogenic pressure control and aids the development of a low cost CFD-based design process for space hardware.

  16. A Study on the Optimal Duration of Daylight Saving Time (DST) in Korea

    NASA Astrophysics Data System (ADS)

    Mihn, Byeong-Hee; Ahn, Young Sook; Kim, Dong-Bin; Yang, Hong-Jin

    2009-09-01

    Daylight saving time aims at spending effective daylight in summer season. Korea had enforced daylight saving time twelve times from 1948 to 1988. Since 1988, it is not executed, but it is recently discussed the resumption of DST. In this paper, we investigate the trend of DST in other countries, review the history of DST in Korea, and suggest the optimal DST duration in terms of astronomical aspects (times of sunrise and sunset). We find that the starting day of DST in Korea is apt for the second Sunday in May or the second Sunday in April according to the time of sunrise or to the difference between Korean standard meridian and observer's, respectively. We also discuss time friction that might be caused by time difference between DST and Korea Standard Time (KST).

  17. International Space Station (ISS) Advanced Recycle Filter Tank Assembly (ARFTA)

    NASA Technical Reports Server (NTRS)

    Nasrullah, Mohammed K.

    2013-01-01

    The International Space Station (ISS) Recycle Filter Tank Assembly (RFTA) provides the following three primary functions for the Urine Processor Assembly (UPA): volume for concentrating/filtering pretreated urine, filtration of product distillate, and filtration of the Pressure Control and Pump Assembly (PCPA) effluent. The RFTAs, under nominal operations, are to be replaced every 30 days. This poses a significant logistical resupply problem, as well as cost in upmass and new tanks purchase. In addition, it requires significant amount of crew time. To address and resolve these challenges, NASA required Boeing to develop a design which eliminated the logistics and upmass issues and minimize recurring costs. Boeing developed the Advanced Recycle Filter Tank Assembly (ARFTA) that allowed the tanks to be emptied on-orbit into disposable tanks that eliminated the need for bringing the fully loaded tanks to earth for refurbishment and relaunch, thereby eliminating several hundred pounds of upmass and its associated costs. The ARFTA will replace the RFTA by providing the same functionality, but with reduced resupply requirements

  18. High-Speed Machining (HSM) of Space Shuttle External Tank (ET) panels

    NASA Astrophysics Data System (ADS)

    Miller, J. A.

    1983-02-01

    The External Fuel Tank (ET) of the Space Shuttle is not recovered after launch and a new one must be provided for each launch. Currently, the external ""skin'' panels of the tank are produced by machining from solid wrought 2219-T87 aluminum plate stock approximately 1-3/4 inch thick. The reduction of costs in producing External Fuel Tank panels is obviously of increasing production rates and decreasing costs of the panels through the application of high-speed machining (HSM) techniques was conducted.

  19. High-Speed Machining (HSM) of Space Shuttle External Tank (ET) panels

    NASA Technical Reports Server (NTRS)

    Miller, J. A.

    1983-01-01

    The External Fuel Tank (ET) of the Space Shuttle is not recovered after launch and a new one must be provided for each launch. Currently, the external ""skin'' panels of the tank are produced by machining from solid wrought 2219-T87 aluminum plate stock approximately 1-3/4 inch thick. The reduction of costs in producing External Fuel Tank panels is obviously of increasing production rates and decreasing costs of the panels through the application of high-speed machining (HSM) techniques was conducted.

  20. Dst Index in the 2008 GEM Modeling Challenge - Model Performance for Moderate and Strong Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Rastaetter, Lutz; Kuznetsova, Maria; Hesse, Michael; Chulaki, Anna; Pulkkinen, Antti; Ridley, Aaron J.; Gombosi, Tamas; Vapirev, Alexander; Raeder, Joachim; Wiltberger, Michael James; hide

    2010-01-01

    The GEM 2008 modeling challenge efforts are expanding beyond comparing in-situ measurements in the magnetosphere and ionosphere to include the computation of indices to be compared. The Dst index measures the largest deviations of the horizontal magnetic field at 4 equatorial magnetometers from the quiet-time background field and is commonly used to track the strength of the magnetic disturbance of the magnetosphere during storms. Models can calculate a proxy Dst index in various ways, including using the Dessler-Parker Sckopke relation and the energy of the ring current and Biot-Savart integration of electric currents in the magnetosphere. The GEM modeling challenge investigates 4 space weather events and we compare models available at CCMC against each other and the observed values of Ost. Models used include SWMF/BATSRUS, OpenGGCM, LFM, GUMICS (3D magnetosphere MHD models), Fok-RC, CRCM, RAM-SCB (kinetic drift models of the ring current), WINDMI (magnetosphere-ionosphere electric circuit model), and predictions based on an impulse response function (IRF) model and analytic coupling functions with inputs of solar wind data. In addition to the analysis of model-observation comparisons we look at the way Dst is computed in global magnetosphere models. The default value of Dst computed by the SWMF model is for Bz the Earth's center. In addition to this, we present results obtained at different locations on the Earth's surface. We choose equatorial locations at local noon, dusk (18:00 hours), midnight and dawn (6:00 hours). The different virtual observatory locations reveal the variation around the earth-centered Dst value resulting from the distribution of electric currents in the magnetosphere during different phases of a storm.

  1. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  2. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Dixon

    The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Reportmore » is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The DST THC Model is used solely for the validation of the

  3. Overexpression of a Chimeric Gene, OsDST-SRDX, Improved Salt Tolerance of Perennial Ryegrass

    PubMed Central

    Cen, Huifang; Ye, Wenxing; Liu, Yanrong; Li, Dayong; Wang, Kexin; Zhang, Wanjun

    2016-01-01

    The Drought and Salt Tolerance gene (DST) encodes a C2H2 zinc finger transcription factor, which negatively regulates salt tolerance in rice (Oryza sativa). Phylogenetic analysis of six homologues of DST genes in different plant species revealed that DST genes were conserved evolutionarily. Here, the rice DST gene was linked to an SRDX domain for gene expression repression based on the Chimeric REpressor gene-Silencing Technology (CRES-T) to make a chimeric gene (OsDST-SRDX) construct and introduced into perennial ryegrass by Agrobacterium-mediated transformation. Integration and expression of the OsDST-SRDX in transgenic plants were tested by PCR and RT-PCR, respectively. Transgenic lines overexpressing the OsDST-SRDX fusion gene showed obvious phenotypic differences and clear resistance to salt-shock and to continuous salt stresses compared to non-transgenic plants. Physiological analyses including relative leaf water content, electrolyte leakage, proline content, malondialdehyde (MDA) content, H2O2 content and sodium and potassium accumulation indicated that the OsDST-SRDX fusion gene enhanced salt tolerance in transgenic perennial ryegrass by altering a wide range of physiological responses. To our best knowledge this study is the first report of utilizing Chimeric Repressor gene-Silencing Technology (CRES-T) in turfgrass and forage species for salt-tolerance improvement. PMID:27251327

  4. Review and test of chilldown methods for space-based cryogenic tanks

    NASA Astrophysics Data System (ADS)

    Chato, David J.; Sanabria, Rafael

    The literature for tank chilldown methods applicable to cryogenic tankage in the zero gravity environment of earth orbit is reviewed. One method is selected for demonstration in a ground based test. The method selected for investigation was the charge-hold-vent method which uses repeated injection of liquid slugs, followed by a hold to allow complete vaporization of the liquid and a vent of the tank to space vacuum to cool tankage to the desired temperature. The test was conducted on a 175 cubic foot, 2219 aluminum walled tank weighing 329 pounds, which was previously outfitted with spray systems to test nonvented fill technologies. To minimize hardware changes, a simple control-by-pressure scheme was implemented to control injected liquid quantities. The tank cooled from 440 R sufficiently in six charge-hold-vent cycles to allow a complete nonvented fill of the test tank. Liquid hydrogen consumed in the process is estimated at 32 pounds.

  5. Review and test of chilldown methods for space-based cryogenic tanks

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Sanabria, Rafael

    1991-01-01

    The literature for tank chilldown methods applicable to cryogenic tankage in the zero gravity environment of earth orbit is reviewed. One method is selected for demonstration in a ground based test. The method selected for investigation was the charge-hold-vent method which uses repeated injection of liquid slugs, followed by a hold to allow complete vaporization of the liquid and a vent of the tank to space vacuum to cool tankage to the desired temperature. The test was conducted on a 175 cubic foot, 2219 aluminum walled tank weighing 329 pounds, which was previously outfitted with spray systems to test nonvented fill technologies. To minimize hardware changes, a simple control-by-pressure scheme was implemented to control injected liquid quantities. The tank cooled from 440 R sufficiently in six charge-hold-vent cycles to allow a complete nonvented fill of the test tank. Liquid hydrogen consumed in the process is estimated at 32 pounds.

  6. Assessing the validity of station location assumptions made in the calculation of the geomagnetic disturbance index, Dst

    USGS Publications Warehouse

    Gannon, Jennifer

    2012-01-01

    In this paper, the effects of the assumptions made in the calculation of the Dst index with regard to longitude sampling, hemisphere bias, and latitude correction are explored. The insights gained from this study will allow operational users to better understand the local implications of the Dst index and will lead to future index formulations that are more physically motivated. We recompute the index using 12 longitudinally spaced low-latitude stations, including the traditional 4 (in Honolulu, Kakioka, San Juan, and Hermanus), and compare it to the standard United States Geological Survey definitive Dst. We look at the hemisphere balance by comparing stations at equal geomagnetic latitudes in the Northern and Southern hemispheres. We further separate the 12-station time series into two hemispheric indices and find that there are measurable differences in the traditional Dst formulation due to the undersampling of the Southern Hemisphere in comparison with the Northern Hemisphere. To analyze the effect of latitude correction, we plot latitudinal variation in a disturbance observed during the year 2005 using two separate longitudinal observatory chains. We separate these by activity level and find that while the traditional cosine form fits the latitudinal distributions well for low levels of activity, at higher levels of disturbance the cosine form does not fit the observed variation. This suggests that the traditional latitude scaling is insufficient during active times. The effect of the Northern Hemisphere bias and the inadequate latitude scaling is such that the standard correction underestimates the true disturbance by 10–30 nT for storms of main phase magnitude deviation greater than 150 nT in the traditional Dst index.

  7. Friction Plug Weld Repair for the Space Shuttle External Tank

    NASA Technical Reports Server (NTRS)

    Hartley, Paula J.; McCool, A. (Technical Monitor)

    2000-01-01

    Lockheed Martin Space Systems, Michoud Operations in New Orleans, LA is the manufacturer of the External Fuel Tanks (ET) for the Space Transportation System (STS). The ET contains and delivers the propellants used by the Orbiters three main engines. Additionally, it also serves as the structural backbone for the Orbiter and the two Solid Rocket Boosters (SRB), which combined, constitute the STS. In 1994, NASA established that in order to launch the International Space Station, the performance of the STS must be improved. One option was to reduce the weight of the ET, which would enable sufficient increase in performance. With the development of the Weldalite(R) series of Al-Cu-Li alloys in the late 1980's, Lockheed Martin was postured to replace the current A12219 fuel tanks with the high strength, light weight A12195 alloy. With the use of A12195 and some component redesign, the weight of the Super Lightweight (SLWT) ET was reduced by approximately 7,000 pounds, which added as much capability to the Space Shuttle. Since June 1998, seven STS missions have been successful with the use of the SLWT ET's.

  8. 46 CFR 182.460 - Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline. 182.460 Section 182.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND..., gasoline. (a) A space containing machinery powered by, or fuel tanks for, gasoline must have a ventilation...

  9. 46 CFR 182.460 - Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline. 182.460 Section 182.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND..., gasoline. (a) A space containing machinery powered by, or fuel tanks for, gasoline must have a ventilation...

  10. 46 CFR 182.460 - Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline. 182.460 Section 182.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND..., gasoline. (a) A space containing machinery powered by, or fuel tanks for, gasoline must have a ventilation...

  11. 46 CFR 182.460 - Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline. 182.460 Section 182.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND..., gasoline. (a) A space containing machinery powered by, or fuel tanks for, gasoline must have a ventilation...

  12. 46 CFR 182.460 - Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ventilation of spaces containing machinery powered by, or fuel tanks for, gasoline. 182.460 Section 182.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND..., gasoline. (a) A space containing machinery powered by, or fuel tanks for, gasoline must have a ventilation...

  13. Longitudinal observation of [11C]4DST uptake in turpentine-induced inflammatory tissue.

    PubMed

    Toyohara, Jun; Sakata, Muneyuki; Oda, Keiichi; Ishii, Kenji; Ishiwata, Kiichi

    2013-02-01

    Longitudinal changes of 4'-[methyl-(11)C]thiothymidine ([(11)C]4DST) uptake were evaluated in turpentine-induced inflammation. Turpentine (0.1 ml) was injected intramuscularly into the right hind leg of male Wistar rats. Longitudinal [(11)C]4DST uptake was evaluated by the tissue dissection method at 1, 2, 4, 7, and 14 days after turpentine injection (n=5). The tumor selectivity index was calculated using the previously published biodistribution data in C6 glioma-bearing rats. Dynamic PET scan was performed on day 4 when maximum [(11)C]4DST uptake was observed during the longitudinal study. Histopathological analysis and Ki-67 immunostaining were also performed. The uptake of [(11)C]4DST in inflammatory tissue was significantly increased on days 2-4 after turpentine injection, and then decreased. On day 14, tracer uptake returned to the day 1 level. The maximum SUV of inflamed muscle was 0.6 and was 3 times higher than that of the contralateral healthy muscle on days 2-4 after turpentine injection. However, tumor selectivity index remains very high (>10) because of the low inflammation uptake. A dynamic PET scan showed that the radioactivity in inflammatory tissues peaked at 5 min after [(11)C]4DST injection, and then washed out until 20 min. At intervals >20 min, radioactivity levels were constant and double that of healthy muscle. The changes in Ki-67 index were paralleled with those of [(11)C]4DST uptake, indicating cell proliferation-dependent uptake of [(11)C]4DST in inflammatory tissues. In our animal model, low but significant levels of [(11)C]4DST uptake were observed in subacute inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. 46 CFR 153.217 - Access to enclosed spaces and dedicated ballast tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Access to enclosed spaces and dedicated ballast tanks... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment General Vessel Requirements § 153.217 Access to enclosed spaces and dedicated ballast...

  15. 46 CFR 153.217 - Access to enclosed spaces and dedicated ballast tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Access to enclosed spaces and dedicated ballast tanks... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment General Vessel Requirements § 153.217 Access to enclosed spaces and dedicated ballast...

  16. 46 CFR 153.217 - Access to enclosed spaces and dedicated ballast tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Access to enclosed spaces and dedicated ballast tanks... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment General Vessel Requirements § 153.217 Access to enclosed spaces and dedicated ballast...

  17. 46 CFR 153.217 - Access to enclosed spaces and dedicated ballast tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Access to enclosed spaces and dedicated ballast tanks... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment General Vessel Requirements § 153.217 Access to enclosed spaces and dedicated ballast...

  18. 46 CFR 153.217 - Access to enclosed spaces and dedicated ballast tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Access to enclosed spaces and dedicated ballast tanks... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment General Vessel Requirements § 153.217 Access to enclosed spaces and dedicated ballast...

  19. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  20. Rationale for Selection of Pesticides, Herbicides, and Related Compounds from the Hanford SST/DST Waste Considered for Analysis in Support of the Regulatory DQO (Privatization)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiemers, K.D.; Daling, P.; Meier, K.

    1999-01-04

    Regulated pesticides, herbicides, miticides, and fungicides were evaluated for their potential past and current use at the Hanford Site. The starting list of these compounds is based on regulatory analyte input lists discussed in the Regulatory DQO. Twelve pesticide, herbicide, miticide, and fungicide compounds are identified for analysis in the Hanford SST and DST waste in support of the Regulatory DQO. The compounds considered for additional analyses are non-detected, considered stable in the tank waste matrix, and of higher toxicity/carcinogenicity.

  1. Dst and a map of average equivalent ring current: 1958-2007

    NASA Astrophysics Data System (ADS)

    Love, J. J.

    2008-12-01

    A new Dst index construction is made using the original hourly magnetic-observatory data collected over the years 1958-2007; stations: Hermanus South Africa, Kakioka Japan, Honolulu Hawaii, and San Juan Puerto Rico. The construction method we use is generally consistent with the algorithm defined by Sugiura (1964), and which forms the basis for the standard Kyoto Dst index. This involves corrections for observatory baseline shifts, subtraction of the main-field secular variation, and subtraction of specific harmonics that approximate the solar-quiet (Sq) variation. Fourier analysis of the observatory data reveals the nature of Sq: it consists primarily of periodic variation driven by the Earth's rotation, the Moon's orbit, the Earth's orbit, and, to some extent, the solar cycle. Cross coupling of the harmonics associated with each of the external periodic driving forces results in a seemingly complicated Sq time series that is sometimes considered to be relatively random and unpredictable, but which is, in fact, well described in terms of Fourier series. Working in the frequency domain, Sq can be filtered out, and, upon return to the time domain, the local disturbance time series (Dist) for each observatory can be recovered. After averaging the local disturbance time series from each observatory, the global magnetic disturbance time series Dst is obtained. Analysis of this new Dst index is compared with that produced by Kyoto, and various biases and differences are discussed. The combination of the Dist and Dst time series can be used to explore the local-time/universal-time symmetry of an equivalent ring current. Individual magnetic storms can have a complicated disturbance field that is asymmetrical in longitude, presumably due to partial ring currents. Using 50 years of data we map the average local-time magnetic disturbance, finding that it is very nearly proportional to Dst. To our surprise, the primary asymmetry in mean magnetic disturbance is not between

  2. Time Delay Between Dst Index and Magnetic Storm Related Structure in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Osherovich, Vladimir A.; Fainberg, Joseph

    2015-01-01

    Benson et al. (2015, this volume) selected 10 large magnetic storms, with associated Dst minimum values less than or equal to -100 nT, for which high-latitude topside ionospheric electron density profiles are available from topside-sounder satellites. For these 10 storms, we performed a superposition of Dst and interplanetary parameters B, v, N(sub p) and T(sub p). We have found that two interplanetary parameters, namely B and v, are sufficient to reproduce Dst with correlation coefficient cc approximately 0.96 provided that the interplanetary parameter times are taken 0.15 days earlier than the associated Dst times. Thus we have found which part of the solar wind is responsible for each phase of the magnetic storm. This result is also verified for individual storms as well. The total duration of SRS (storm related structure in the solar wind) is 4 - 5 days which is the same as the associated Dst interval of the magnetic storm.

  3. KENNEDY SPACE CENTER, FLA. - The external tank in the Vehicle Assembly Building (VAB) is destacked from the solid rocket boosters. The tank and SRBs were configured for Atlantis and mission STS-114. The tank will remain in the VAB.

    NASA Image and Video Library

    2003-05-20

    KENNEDY SPACE CENTER, FLA. - The external tank in the Vehicle Assembly Building (VAB) is destacked from the solid rocket boosters. The tank and SRBs were configured for Atlantis and mission STS-114. The tank will remain in the VAB.

  4. Space shuttle with common fuel tank for liquid rocket booster and main engines (supertanker space shuttle)

    NASA Technical Reports Server (NTRS)

    Thorpe, Douglas G.

    1991-01-01

    An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.

  5. 76 FR 32227 - DST Systems, Inc., Including On-Site Leased Workers From Comsys Information Technology Services...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... Technologies, a wholly owned subsidiary of DSI Systems, Inc., Boston, Massachusetts operated in conjunction... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,649; TA-W-74,649a] DST Systems... Kelly Services Kansas City, MO; DST Technologies, a Wholly Owned Subsidiary of DST Systems, Inc., Boston...

  6. Calibration of the Flow in the Test Section of the Research Wind Tunnel at DST Group

    DTIC Science & Technology

    2015-10-01

    calibration of the flow in the test section of the Research Wind Tunnel at DST Group. The calibration was performed to establish the flow quality and to...of the Flow in the Test Section of the Research Wind Tunnel at DST Group Executive Summary The Defence Science and Technology Group (DST

  7. Calibrating the Helium Pressurization System for the Space Shuttle Liquid-Hydrogen Tank

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Analysis of the results from the STS-114 tanking tests and subsequent launch called into question existing thermal and mass models of helium pressurization of the liquid hydrogen tank. This hydrogen tank, which makes up the bottom two-thirds of the External Tank, is pressurized prior to launch to avoid cavitation in the Shuttle Main Engine pumps. At about 2 minutes prior to launch, the main vent valve is closed, and pressurized helium flows into the tank ullage space to achieve set point pressure. As the helium gas cools, its pressure drops, calling for additional helium. Subsequent helium flows are provided in short, timed pulses. The number of pulses is taken as a rough leak indicator. An analysis of thermal models by Marshall Space Flight Center showed considerable uncertainty in the pressure-versus-time behavior of the helium ullage space and the ability to predict the number of pulses normally expected. Kennedy Space Center proposed to calibrate the dime-sized orifice, which together with valves, controls the helium flow quantity (Figure 1). Pressure and temperature sensors were installed to provide upstream and downstream measurements necessary to compute flow rate based on the orifice discharge coefficient. An assessment of flow testing with helium indicated an extremely costly use of this critical resource. In order to reduce costs, we proposed removing the orifices from each Mobile Launcher Platform (MLP) and asking Colorado Engineering Experiment Station Inc. (CEESI) to calibrate the flow. CEESI has a high-pressure air flow system with traceable flow meters capable of handling the large flow rates. However, literature research indicated that square-edged orifices of small diameters often exhibit significant hysteresis and nonrepeatability in the vicinity of choked or sonic flow. Fortunately, the MLP orifices behaved relatively well in testing (Figure 2). Using curve fitting of the air-flow data, in conjunction with ASME orifice modeling equations, a

  8. Vented Tank Resupply Experiment (VTRE) for In-space Technology Experiment Program (IN-STEP)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An overview of the Vented Tank Resupply Experiment (VTRE) program is presented in outline and graphical form. The goal of the program is to develop, design, build and provide flight and post flight support for a Shuttle Hitchhiker Experiment to investigate and demonstrate vented tank venting in space. Program schedules and experiment subsystem schematics are presented and specific technical objectives, power requirements, payload assemblies, Hitchhiker canister integration, and orbiter mission approach are addressed.

  9. Space shuttle: Aerodynamic characteristics of various MDAC space shuttle ascent configurations with parallel burn pressure-fed and SRM boosters. Volume 1: Tanks T1 and T2 ascent configurations

    NASA Technical Reports Server (NTRS)

    Jarrett, T. W.

    1972-01-01

    Various space shuttle ascent configurations were tested in a trisonic wind tunnel to determine the aerodynamic characteristics. The ascent configuration consisted of a NASA/MSC 040 orbiter in combination with various HO centerline tank and booster geometries. The aerodynamic interference between components of the space shuttle and the effect on the orbiter aerodynamics was determined. The various aerodynamic configurations tested were: (1) centerline HO tanks T1 and T2, (2) centerline HO tank T3, and (3) centerline HO tank H4.

  10. Stress Analysis and Testing at the Marshall Space Flight Center to Study Cause and Corrective Action of Space Shuttle External Tank Stringer Failures

    NASA Technical Reports Server (NTRS)

    Wingate, Robert J.

    2012-01-01

    After the launch scrub of Space Shuttle mission STS-133 on November 5, 2010, large cracks were discovered in two of the External Tank intertank stringers. The NASA Marshall Space Flight Center, as managing center for the External Tank Project, coordinated the ensuing failure investigation and repair activities with several organizations, including the manufacturer, Lockheed Martin. To support the investigation, the Marshall Space Flight Center formed an ad-hoc stress analysis team to complement the efforts of Lockheed Martin. The team undertook six major efforts to analyze or test the structural behavior of the stringers. Extensive finite element modeling was performed to characterize the local stresses in the stringers near the region of failure. Data from a full-scale tanking test and from several subcomponent static load tests were used to confirm the analytical conclusions. The analysis and test activities of the team are summarized. The root cause of the stringer failures and the flight readiness rationale for the repairs that were implemented are discussed.

  11. LH tank installation

    NASA Image and Video Library

    2011-07-25

    Stennis Space Center employees marked another construction milestone July 25 with installation of the 85,000-gallon liquid hydrogen tank atop the A-3 Test Stand. The 300-foot-tall stand is being built to test next-generation rocket engines that could carry humans into deep space once more. The liquid hydrogen tank and a 35,000-gallon liquid oxygen tank installed atop the steel structure earlier in June will provide fuel propellants for testing the engines.

  12. State-of-the-art of the Space Shuttle External Tank

    NASA Astrophysics Data System (ADS)

    Ronquillo, L.

    The designation, structure and environment of the External Tank (ET) of the Space Shuttle as well as plans for increasing the facilities and tooling to meet the required production rate capability of 40 or more ETs per year in 1992 are described. Special attention is given to the weight reduction of ET, since 1.0 lb of weight saved on the empty structure translates into about 0.9 lb of additional payload. To determine the potentiality of the weight reduction, structural tests were conducted. It was found that the tank could function properly with interior support structures reduced, and selected stringers eliminated. It is reported that an alternate sprayable polyisocyanurate foam capable of replacing a foam insulation over ablator bilayer thermoprotective composite on the aft-dome of the tank was developed: a commercially available material was modified to adhere to the -423 F aluminum substrate in the 2000 F engine-plume radiant-heat environment. It is mentioned that the weight savings program which started in Oct. 1975 saved 6000 lb by Jan. 1979. To reduce weld testing time and gain 100 times the accuracy, an electromechanical check system was developed. Problems of using robots are discussed.

  13. Experimental and analytical study of cryogenic propellant boiloff to develop and verify alternate pressurization concepts for Space Shuttle external tank using a scaled down tank

    NASA Technical Reports Server (NTRS)

    Akyuzlu, K. M.; Jones, S.; Meredith, T.

    1993-01-01

    Self pressurization by propellant boiloff is experimentally studied as an alternate pressurization concept for the Space Shuttle external tank (ET). The experimental setup used in the study is an open flow system which is composed of a variable area test tank and a recovery tank. The vacuum jacketed test tank is geometrically similar to the external LOx tank for the Space Shuttle. It is equipped with instrumentation to measure the temperature and pressure histories within the liquid and vapor, and viewports to accommodate visual observations and Laser-Doppler Anemometry measurements of fluid velocities. A set of experiments were conducted using liquid Nitrogen to determine the temperature stratification in the liquid and vapor, and pressure histories of the vapor during sudden and continuous depressurization for various different boundary and initial conditions. The study also includes the development and calibration of a computer model to simulate the experiments. This model is a one-dimensional, multi-node type which assumes the liquid and the vapor to be under non-equilibrium conditions during the depressurization. It has been tested for a limited number of cases. The preliminary results indicate that the accuracy of the simulations is determined by the accuracy of the heat transfer coefficients for the vapor and the liquid at the interface which are taken to be the calibration parameters in the present model.

  14. LOX tank installation

    NASA Image and Video Library

    2011-06-08

    Construction of the A-3 Test Stand at Stennis Space Center continued June 8 with installation of a 35,000-gallon liquid oxygen tank atop the steel structure. The stand is being built to test next-generation rocket engines that will carry humans into deep space once more. The LOX tank and a liquid hydrogen tank to be installed atop the stand later will provide propellants for testing the engines. The A-3 Test Stand is scheduled for completion and activation in 2013.

  15. Space Shuttle External Tank Project status

    NASA Technical Reports Server (NTRS)

    Davis, R. M.

    1980-01-01

    The External Tank Project is reviewed with emphasis on the DDT&E and production phases and the lightweight tank development. It is noted that the DDT&E phase is progressing well with the structural and ground vibration test article programs complete, the propulsion test article program progressing well, and the component qualification and verification testing 92% complete. New tools and facilities are being brought on line to support the increased build rate for the production phase. The lightweight tank, which will provide additional payload in orbit, is progressing to schedule with first delivery in early 1982.

  16. An assessment study of the wavelet-based index of magnetic storm activity (WISA) and its comparison to the Dst index

    NASA Astrophysics Data System (ADS)

    Xu, Zhonghua; Zhu, Lie; Sojka, Jan; Kokoszka, Piotr; Jach, Agnieszka

    2008-08-01

    A wavelet-based index of storm activity (WISA) has been recently developed [Jach, A., Kokoszka, P., Sojka, L., Zhu, L., 2006. Wavelet-based index of magnetic storm activity. Journal of Geophysical Research 111, A09215, doi:10.1029/2006JA011635] to complement the traditional Dst index. The new index can be computed automatically by using the wavelet-based statistical procedure without human intervention on the selection of quiet days and the removal of secular variations. In addition, the WISA is flexible on data stretch and has a higher temporal resolution (1 min), which can provide a better description of the dynamical variations of magnetic storms. In this work, we perform a systematic assessment study on the WISA index. First, we statistically compare the WISA to the Dst for various quiet and disturbed periods and analyze the differences of their spectral features. Then we quantitatively assess the flexibility of the WISA on data stretch and study the effects of varying number of stations on the index. In addition, the ability of the WISA for handling the missing data is also quantitatively assessed. The assessment results show that the hourly averaged WISA index can describe storm activities equally well as the Dst index, but its full automation, high flexibility on data stretch, easiness of using the data from varying number of stations, high temporal resolution, and high tolerance to missing data from individual station can be very valuable and essential for real-time monitoring of the dynamical variations of magnetic storm activities and space weather applications, thus significantly complementing the existing Dst index.

  17. An assessment study of the wavelet-based index of magnetic storm activity (WISA) and its comparison to the Dst index

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Zhu, L.; Sojka, J. J.; Kokoszka, P.; Jach, A.

    2006-12-01

    A wavelet-based index of storm activities (WISA) has been recently developed (Jach et al., 2006) to complement the traditional Dst index. The new index can be computed automatically using the wavelet-based statistical procedure without human intervention on the selection of quiet days and the removal of secular variations. In addition, the WISA is flexible on data stretch and has a higher temporal resolution (one minute), which can provide a better description of the dynamical variations of magnetic storms. In this work, we perform a systematic assessment study on the WISA index. First, we statistically compare the WISA to the Dst for various quiet and disturbing periods and analyze the differences of their spectrum features. Then we quantitatively assess the flexibility of the WISA on data stretch and study the effects of varying number of stations on the index. In addition, how well the WISA can handle the missing data is also quantitatively assessed. The assessment results show that the hourly-averaged WISA index can describe storm activities equally well as the Dst index, but its full automation, high flexibility on data stretch, easiness of using the data from varying number of stations, high temporal resolution, and high tolerance on missing data from individual station can be very valuable and essential for real-time monitoring of the dynamical variations of magnetic storm activities and space weather applications, thus significantly complementing the existing Dst index. Jach, A., P. Kokoszka, J. Sojka, and L. Zhu, Wavelet-based index of magnetic storm activity, J. Geophys. Res., in press, 2006.

  18. Geospace environment modeling 2008--2009 challenge: Dst index

    USGS Publications Warehouse

    Rastätter, L.; Kuznetsova, M.M.; Glocer, A.; Welling, D.; Meng, X.; Raeder, J.; Wittberger, M.; Jordanova, V.K.; Yu, Y.; Zaharia, S.; Weigel, R.S.; Sazykin, S.; Boynton, R.; Wei, H.; Eccles, V.; Horton, W.; Mays, M.L.; Gannon, J.

    2013-01-01

    This paper reports the metrics-based results of the Dst index part of the 2008–2009 GEM Metrics Challenge. The 2008–2009 GEM Metrics Challenge asked modelers to submit results for four geomagnetic storm events and five different types of observations that can be modeled by statistical, climatological or physics-based models of the magnetosphere-ionosphere system. We present the results of 30 model settings that were run at the Community Coordinated Modeling Center and at the institutions of various modelers for these events. To measure the performance of each of the models against the observations, we use comparisons of 1 hour averaged model data with the Dst index issued by the World Data Center for Geomagnetism, Kyoto, Japan, and direct comparison of 1 minute model data with the 1 minute Dst index calculated by the United States Geological Survey. The latter index can be used to calculate spectral variability of model outputs in comparison to the index. We find that model rankings vary widely by skill score used. None of the models consistently perform best for all events. We find that empirical models perform well in general. Magnetohydrodynamics-based models of the global magnetosphere with inner magnetosphere physics (ring current model) included and stand-alone ring current models with properly defined boundary conditions perform well and are able to match or surpass results from empirical models. Unlike in similar studies, the statistical models used in this study found their challenge in the weakest events rather than the strongest events.

  19. Project W-211 initial tank retrieval systems year 2000 compliance assessment project plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BUSSELL, J.H.

    1999-08-24

    This assessment describes the potential Year 2000 (Y2K) problems and describes the methods for achieving Y2K Compliance for Project W-211, Initial Tank Retrieval Systems (ITRS). The purpose of this assessment is to give an overview of the project. This document will not be updated and any dates contained in this document are estimates and may change. The scope of project W-211 is to provide systems for retrieval of radioactive wastes from ten double-shell tanks (DST). systems will be installed in tanks 102-AP, 104-AP, 105-AN, 104-AN, 102-AZ, 101-AW, 103-AN, 107-AN, 102-AY, and 102-SY. The current tank selection and sequence supports phasemore » I feed delivery to privatized processing plants. A detailed description of system dates, functions, interfaces, potential Y2K problems, and date resolutions can not be described since the project is in the definitive design phase. This assessment will describe the methods, protocols, and practices to assure that equipment and systems do not have Y2K problems.« less

  20. 46 CFR 154.1710 - Exclusion of air from cargo tank vapor spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Exclusion of air from cargo tank vapor spaces. 154.1710 Section 154.1710 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Special Design and...

  1. 46 CFR 154.1710 - Exclusion of air from cargo tank vapor spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Exclusion of air from cargo tank vapor spaces. 154.1710 Section 154.1710 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Special Design and...

  2. 46 CFR 154.1710 - Exclusion of air from cargo tank vapor spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Exclusion of air from cargo tank vapor spaces. 154.1710 Section 154.1710 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Special Design and...

  3. 46 CFR 154.1710 - Exclusion of air from cargo tank vapor spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Exclusion of air from cargo tank vapor spaces. 154.1710 Section 154.1710 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Special Design and...

  4. 46 CFR 154.1710 - Exclusion of air from cargo tank vapor spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Exclusion of air from cargo tank vapor spaces. 154.1710 Section 154.1710 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Special Design and...

  5. An expert system to manage the operation of the Space Shuttle's fuel cell cryogenic reactant tanks

    NASA Technical Reports Server (NTRS)

    Murphey, Amy Y.

    1990-01-01

    This paper describes a rule-based expert system to manage the operation of the Space Shuttle's cryogenic fuel system. Rules are based on standard fuel tank operating procedures described in the EECOM Console Handbook. The problem of configuring the operation of the Space Shuttle's fuel tanks is well-bounded and well defined. Moreover, the solution of this problem can be encoded in a knowledge-based system. Therefore, a rule-based expert system is the appropriate paradigm. Furthermore, the expert system could be used in coordination with power system simulation software to design operating procedures for specific missions.

  6. Two types of geomagnetic storms and relationship between Dst and AE indexes

    NASA Astrophysics Data System (ADS)

    Shadrina, Lyudmila P.

    2017-10-01

    The study of the relationship between Dst and AE indices of the geomagnetic field and its manifestation in geomagnetic storms in the XXIII solar cycle was carried out. It is shown that geomagnetic storms are divided into two groups according to the ratio of the amplitude of Ds index decrease to the sum of the AE index during the main phase of the storm. For the first group it is characteristic that for small depressions of the Dst index, significant amounts of the AE index are observed. Most often these are storms with a gradual beginning and a long main phase associated with recurrent solar wind streams. Storms of the second group differ in large amplitudes of Dst index decrease, shorter duration of main phase and small amounts of AE-index. Usually these are sporadic geomagnetic storms with a sudden commencement caused by interplanetary disturbances of the CME type. The storms of these two types differ also in their geoeffects, including the effect on human health.

  7. Investigation of lightweight designs and materials for LO2 and LH2 propellant tanks for space vehicles, phase 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Design, analysis, and fabrication studies were performed on nonintegral (suspended) tanks using a representative space tug design. The LH2 and LO2 tank concept selection was developed. Tank geometries and support relationships were investigated using tug design propellant inertias and ullage pressures, then compared based on total tug systems effects. The tank combinations which resulted in the maximum payload were selected. Tests were conducted on samples of membrane material which was processed in a manner simulating production tank fabrication operations to determine fabrication effects on the fracture toughness of the tank material. Fracture mechanics analyses were also performed to establish a preliminary set of allowables for initial defects.

  8. Utilization of Space Shuttle External Tank materials by melting and powder metallurgy

    NASA Technical Reports Server (NTRS)

    Chern, T. S.

    1985-01-01

    The Crucible Melt Extraction Process was demonstrated to convert scraps of aluminum alloy 2219, used in the Space Shuttle External Tank, into fibers. The cast fibers were then consolidated by cold welding. The X-ray diffraction test of the cast fibers was done to examine the crystallinity and oxide content of the fibers. The compressive stress-strain behavior of the consolidated materials was also examined. Two conceptual schemes which would adapt the as-developed Crucible Melt Extraction Process to the microgravity condition in space were finally proposed.

  9. Utilization of space shuttle external tank materials by melting and powder metallurgy

    NASA Astrophysics Data System (ADS)

    Chern, Terry S.

    The Crucible Melt Extraction Process was demonstrated to convert scraps of aluminum alloy 2219, used in the Space Shuttle External Tank, into fibers. The cast fibers were then consolidated by cold welding. The X-ray diffraction test of the cast fibers was done to examine the crystallinity and oxide content of the fibers. The compressive stress-strain behavior of the consolidated materials was also examined. Two conceptual schemes which would adapt the as-developed Crucible Melt Extraction Process to the microgravity condition in space were finally proposed.

  10. STS-133 Space Shuttle External Tank Intertank Stringer Crack Investigation Stress Analysis

    NASA Technical Reports Server (NTRS)

    Steeve, Brian E.

    2012-01-01

    The first attempt to launch the STS-133 Space Shuttle mission in the fall of 2010 was halted due to indications of a gaseous hydrogen leak at the External Tank ground umbilical carrier plate seal. Subsequent inspection of the external tank (figure 1) hardware and recorded video footage revealed that the foam insulation covering the forward end of the intertank near the liquid oxygen tank had cracked severely enough to have been cause for halting the launch attempt on its own (figure 2). An investigation into the cause of the insulation crack revealed that two adjacent hat-section sheet metal stringers (figure 3) had cracks up to nine inches long in the forward ends of the stringer flanges, or feet, near the fasteners that attach the stringer to the skin of the intertank (figure 4). A repair of those two stringers was implemented and the investigation effort widened to understand the root cause of the stringer cracks and to determine whether there was sufficient flight rationale to launch with the repairs and the other installed stringers.

  11. STS-114: Discovery Tanking Operations for Launch

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Jessica Rye from NASA Public Affairs is the narrator for the tanking operations for the launch of the Space Shuttle Discovery. She presents a video of the arrival and processing of the new external tank at the Kennedy Space Center. The external tank is also shown entering the Vehicle Assembly Building (VAB). The external tank underwent new processing resulting from its redesign including inspection of the bipod heater and the external separation camera. The changes to the external tank include: 1) Electric heaters to protect from icing; and 2) Liquid Oxygen feed line bellows to carry fuel from the external tank to the Orbiter. Footage of the external tank processing facility at NASA's Michoud Assembly Facility in New Orleans, La. prior to its arrival at Kennedy Space Center is shown and a video of the three key modifications to the external tank including the bipod, flange and bellows are shown.

  12. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  13. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  14. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  15. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  16. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  17. Integration and software for thermal test of heat rate sensors. [space shuttle external tank

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.; Shrider, K. R.

    1982-01-01

    A minicomputer controlled radiant test facility is described which was developed and calibrated in an effort to verify analytical thermal models of instrumentation islands installed aboard the space shuttle external tank to measure thermal flight parameters during ascent. Software was provided for the facility as well as for development tests on the SRB actuator tail stock. Additional testing was conducted with the test facility to determine the temperature and heat flux rate and loads required to effect a change of color in the ET tank external paint. This requirement resulted from the review of photographs taken of the ET at separation from the orbiter which showed that 75% of the external tank paint coating had not changed color from its original white color. The paint on the remaining 25% of the tank was either brown or black, indicating that it had degraded due to heating or that the spray on form insulation had receded in these areas. The operational capability of the facility as well as the various tests which were conducted and their results are discussed.

  18. Dobson space telescope: development of an optical payload of the next generation

    NASA Astrophysics Data System (ADS)

    Segert, Tom; Danziger, Björn; Gork, Daniel; Lieder, Matthias

    2017-11-01

    The Dobson Space Telescope (DST) is a research project of the Department of Astronautics at the TUBerlin. For Development and commercialisation there is a close cooperation with the network of the Berlin Space Industry (RIBB). Major Partner is the Astro- und Feinwerktechnik Adlershof GmbH a specialist for space structures and head of the industry consortia which built the DLR BIRD micro satellite. The aim of the project is to develop a new type of deployable telescope that can overcome the mass and volume limitations of small satellites. With the DST payload micro satellites of the 100kg class will be able to carry 50cm main mirror diameter optics (→ 1m GSD). Basis of this technology is the fact that a telescope is mainly empty space between the optical elements. To fold down the telescope during launch and to undfold it after the satellite reached its orbit can save 70% of payload volume and 50% of payload mass. Since these advantages continue along the value added chain DST is of highest priority for the next generation of commercial EO micro satellites. Since 2002 the key technologies for DST have been developed in test benches in Labs of TU-Berlin and were tested on board a ESA parabolic flight campaign in 2005. The development team at TU-Berlin currently prepares the foundation of a start-up company for further development and commercialisation of DST.

  19. 46 CFR 151.13-5 - Cargo segregation-tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks. (a... design. (2) Segregation of cargo space from machinery spaces and other spaces which have or could have a... separating medium. ii=Double bulkhead, required. Cofferdam, empty tank, pumproom, tank with Grade E Liquid...

  20. 46 CFR 151.13-5 - Cargo segregation-tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks. (a... design. (2) Segregation of cargo space from machinery spaces and other spaces which have or could have a... separating medium. ii=Double bulkhead, required. Cofferdam, empty tank, pumproom, tank with Grade E Liquid...

  1. 46 CFR 151.13-5 - Cargo segregation-tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks. (a... design. (2) Segregation of cargo space from machinery spaces and other spaces which have or could have a... separating medium. ii=Double bulkhead, required. Cofferdam, empty tank, pumproom, tank with Grade E Liquid...

  2. Role of Process Control in Improving Space Vehicle Safety A Space Shuttle External Tank Example

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Nguyen, Son C.; Burleson, Keith W.

    2006-01-01

    Developing a safe and reliable space vehicle requires good design and good manufacturing, or in other words "design it right and build it right". A great design can be hard to build or manufacture mainly due to difficulties related to quality. Specifically, process control can be a challenge. As a result, the system suffers from low quality which leads to low reliability and high system risk. The Space Shuttle has experienced some of those cases, but has overcome these difficulties through extensive redesign efforts and process enhancements. One example is the design of the hot gas temperature sensor on the Space Shuttle Main Engine (SSME), which resulted in failure of the sensor in flight and led to a redesign of the sensor. The most recent example is the Space Shuttle External Tank (ET) Thermal Protection System (TPS) reliability issues that contributed to the Columbia accident. As a result, extensive redesign and process enhancement activities have been performed over the last two years to minimize the sensitivities and difficulties of the manual TPS application process.

  3. 14 CFR 27.971 - Fuel tank sump.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank sump. 27.971 Section 27.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.971 Fuel tank sump. (a) Each fuel tank...

  4. 14 CFR 29.971 - Fuel tank sump.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank sump. 29.971 Section 29.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.971 Fuel tank sump. (a) Each fuel tank...

  5. 14 CFR 29.971 - Fuel tank sump.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank sump. 29.971 Section 29.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.971 Fuel tank sump. (a) Each fuel tank...

  6. 14 CFR 25.971 - Fuel tank sump.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank sump. 25.971 Section 25.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.971 Fuel tank sump. (a) Each fuel tank...

  7. 14 CFR 29.965 - Fuel tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank tests. 29.965 Section 29.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.965 Fuel tank tests. (a) Each fuel tank...

  8. 14 CFR 27.965 - Fuel tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank tests. 27.965 Section 27.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.965 Fuel tank tests. (a) Each fuel tank...

  9. 14 CFR 29.965 - Fuel tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank tests. 29.965 Section 29.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.965 Fuel tank tests. (a) Each fuel tank...

  10. 14 CFR 25.971 - Fuel tank sump.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank sump. 25.971 Section 25.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.971 Fuel tank sump. (a) Each fuel tank...

  11. 14 CFR 25.971 - Fuel tank sump.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank sump. 25.971 Section 25.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.971 Fuel tank sump. (a) Each fuel tank...

  12. 14 CFR 27.965 - Fuel tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank tests. 27.965 Section 27.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.965 Fuel tank tests. (a) Each fuel tank...

  13. 14 CFR 27.971 - Fuel tank sump.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank sump. 27.971 Section 27.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.971 Fuel tank sump. (a) Each fuel tank...

  14. 14 CFR 29.965 - Fuel tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank tests. 29.965 Section 29.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.965 Fuel tank tests. (a) Each fuel tank...

  15. 14 CFR 27.971 - Fuel tank sump.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank sump. 27.971 Section 27.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.971 Fuel tank sump. (a) Each fuel tank...

  16. 14 CFR 25.971 - Fuel tank sump.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank sump. 25.971 Section 25.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.971 Fuel tank sump. (a) Each fuel tank...

  17. 14 CFR 29.971 - Fuel tank sump.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank sump. 29.971 Section 29.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.971 Fuel tank sump. (a) Each fuel tank...

  18. 14 CFR 29.971 - Fuel tank sump.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank sump. 29.971 Section 29.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.971 Fuel tank sump. (a) Each fuel tank...

  19. 14 CFR 27.971 - Fuel tank sump.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank sump. 27.971 Section 27.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.971 Fuel tank sump. (a) Each fuel tank...

  20. 14 CFR 27.965 - Fuel tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank tests. 27.965 Section 27.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.965 Fuel tank tests. (a) Each fuel tank...

  1. 14 CFR 29.1015 - Oil tank tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil tank tests. 29.1015 Section 29.1015 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1015 Oil tank tests. Each oil tank must...

  2. 14 CFR 29.1015 - Oil tank tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tank tests. 29.1015 Section 29.1015 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1015 Oil tank tests. Each oil tank must...

  3. 14 CFR 29.1015 - Oil tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil tank tests. 29.1015 Section 29.1015 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1015 Oil tank tests. Each oil tank must...

  4. 14 CFR 29.1015 - Oil tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil tank tests. 29.1015 Section 29.1015 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1015 Oil tank tests. Each oil tank must...

  5. 46 CFR 151.25-1 - Cargo tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... not react with the cargo. (c) Ventilated (forced). Vapor space above the liquid surface in the tank is... (natural). Vapor space above the liquid surface in the tank is continuously swept with atmospheric air... LIQUID HAZARDOUS MATERIAL CARGOES Environmental Control § 151.25-1 Cargo tank. When carrying certain...

  6. 46 CFR 151.25-1 - Cargo tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... not react with the cargo. (c) Ventilated (forced). Vapor space above the liquid surface in the tank is... (natural). Vapor space above the liquid surface in the tank is continuously swept with atmospheric air... LIQUID HAZARDOUS MATERIAL CARGOES Environmental Control § 151.25-1 Cargo tank. When carrying certain...

  7. 46 CFR 151.25-1 - Cargo tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... not react with the cargo. (c) Ventilated (forced). Vapor space above the liquid surface in the tank is... (natural). Vapor space above the liquid surface in the tank is continuously swept with atmospheric air... LIQUID HAZARDOUS MATERIAL CARGOES Environmental Control § 151.25-1 Cargo tank. When carrying certain...

  8. 46 CFR 151.25-1 - Cargo tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... not react with the cargo. (c) Ventilated (forced). Vapor space above the liquid surface in the tank is... (natural). Vapor space above the liquid surface in the tank is continuously swept with atmospheric air... LIQUID HAZARDOUS MATERIAL CARGOES Environmental Control § 151.25-1 Cargo tank. When carrying certain...

  9. 46 CFR 151.25-1 - Cargo tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... not react with the cargo. (c) Ventilated (forced). Vapor space above the liquid surface in the tank is... (natural). Vapor space above the liquid surface in the tank is continuously swept with atmospheric air... LIQUID HAZARDOUS MATERIAL CARGOES Environmental Control § 151.25-1 Cargo tank. When carrying certain...

  10. Tank Riser Pit Decontamination System (Pit Viper) Return on Investment and Break-Even Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Joan K.; Weimar, Mark R.; Balducci, Patrick J.

    2003-06-30

    This study assessed the cost benefit of Pit Viper deployment for 80 tank farm pits between October 1, 2003 and September 30, 2012 under the technical baseline for applicable double-shell tank (DST) and single-shell tank (SST) projects. After this assessment had been completed, the U.S. Department of Energy (DOE) Richland Operations Office (RL) and Office of River Protection (ORP) published the Hanford Performance Management Plan (August 2003), which accelerated the schedule for SST retrieval. Then, DOE/CH2M HILL contract modification M064 (October 2002) and The Integrated Mission Acceleration Plan (March 2003) further accelerated SST retrieval and closure schedules. Twenty-six to 40more » tanks must be retrieved by 2006. Thus the schedule for SST pit entries is accelerated and the number of SST pit entries is increased. This study estimates the return on investment (ROI) and the number of pits where Pit Viper deployment would break even or save money over current manual practices. The results of the analysis indicate a positive return on the federal investment for deployment of the Pit Viper provided it is used on a sufficient number of pits.« less

  11. Acquisition of Turbulence Data Using the DST Group Constant-Temperature Hot-Wire Anemometer System

    DTIC Science & Technology

    2015-10-01

    fluctuations in the low-speed wind tunnel at DST Group. The use of both single- wire and crossed- wire (2 wire ) probes is described. Areas covered include a...fluid-flow studies, including testing of models of aircraft, ships and submarines in wind and water tunnels. Hot- wire anemometers and associated hot...spectra of velocity fluctuations in the low-speed wind tunnel at DST Group. The use of both single- wire and crossed- wire (2 wires ) probes is

  12. Space Shuttle - Bringing cryohydrogen technology down to earth. [details of LH2 and LO2 technology and External Tank design

    NASA Technical Reports Server (NTRS)

    Odom, J. B.

    1978-01-01

    The External Tank must provide a safe storage container for both LH2 and LO2, a means of maintaining propellant quality in order to meet the engine pump net positive suction pressure requirements, and a structural strong-back for the Space Shuttle system, all at the minimum recurring cost and weight, while maintaining quality and reliability. The present paper summarizes External Tank design features and discusses the advantages of using LH2 and LO2 for the Space Shuttle system.

  13. The DST group ionospheric sounder replacement for JORN

    NASA Astrophysics Data System (ADS)

    Harris, T. J.; Quinn, A. D.; Pederick, L. H.

    2016-06-01

    The Jindalee Over-the-horizon Radar Network (JORN) is an integral part of Australia's national defense capability. JORN uses a real-time ionospheric model as part of its operations. The primary source of data for this model is a set of 13 vertical-incidence sounders (VIS) scattered around the Australian coast and inland locations. These sounders are a mix of Lowell digisonde portable sounder (DPS)-1 and DPS-4. Both of these sounders, the DPS-1 in particular, are near the end of their maintainable life. A replacement for these aging sounders was required as part of the ongoing sustainment program for JORN. Over the last few years the High-Frequency Radar Branch (HFRB) of the Defence Science and Technology (DST) Group, Australian Department of Defence, has been developing its own sounders based on its successful radar hardware technology. The DST Group VIS solution known as PRIME (Portable Remote Ionospheric Monitoring Equipment) is a 100% duty cycle, continuous wave system that receives the returned ionospheric signal while it is still transmitting and operates the receiver in the near field of the transmitter. Of considerable importance to a successful VIS is the autoscaling software, which takes the ionogram data and produces an ionogram trace (group delay as a function of frequency), and from that produces a set of ionospheric parameters that represent the (bottomside) overhead electron density profile. HFRB has developed its own robust autoscaling software. The performance of DST Group's PRIME under a multitude of challenging ionospheric conditions has been studied. In December 2014, PRIME was trialed at a JORN VIS site collocated with the existing Lowell Digisonde DPS-1. This side-by-side testing determined that PRIME was fit for purpose. A summary of the results of this comparison and example PRIME output will be discussed. Note that this paper compares PRIME with the 25 year old Lowell Digisonde DPS-1, which is planned to be replaced. Our future plans include

  14. Global Response of the Space Shuttle External Tank with the Presence of Intertank Stringer Cracks and Radius Blocks

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Rankin, Charles C.

    2013-01-01

    After propellant was loaded into the external tank (ET), the November 5, 2010 launch of Space Shuttle mission STS-133 was scrubbed due to a gaseous hydrogen leak located in a vent line near the ground umbilical and ET connection. Subsequent visual inspections identified cracks in the sprayed-on foam insulation in the forward end of the ET intertank segment, adjacent to the liquid oxygen (LOX) tank, as shown in Figure 1. These cracks necessitated repair of the foam due to debris concerns that violated launch constraints. As part of the repair process, the affected foam was removed to reveal cracks in the underlying external hat stiffeners on the intertank, as shown in Figure 2. Ultimately, five stiffeners were discovered to be cracked adjacent to the LOX tank. As the managing center for the ET Project, NASA Marshall Space Flight Center (MSFC) coordinated failure investigation and repair activities among multiple organizations, which included the ET prime contractor (Lockheed Martin Space Systems Michoud Operations), the Space Shuttle Program Office at the NASA Johnson Space Center (JSC), the NASA Kennedy Space Center (KSC), and the NASA Engineering and Safety Center (NESC). STS-133 utilized the external tank designated as ET-137. Many aspects of the investigation have been reported previously in Refs. 1-7, which focus on the root cause of the failures, the flight readiness rationale and the local analyses of the stringer failures and repair. This paper summarizes the global analyses that were conducted on ET-137 as part of the NESC effort during the investigation, which was conducted primarily to determine if the repairs that were introduced to the stringers would alter the global response of the ET. In the process of the investigation, a new STAGS tabular input capability was developed to more easily introduce the aerodynamic pressure loads using a method that could easily be extended to incorporate finite element property data such as skin and stiffener

  15. Operational specification and forecasting advances for Dst, LEO thermospheric densities, and aviation radiation dose and dose rate

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent

    Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the magnetosphere, thermosphere, and even troposphere are key regions that are affected. Space Environment Technologies (SET) has developed and is producing innovative space weather applications. Key operational systems for providing timely information about the effects of space weather on these domains are SET’s Magnetosphere Alert and Prediction System (MAPS), LEO Alert and Prediction System (LAPS), and Automated Radiation Measurements for Aviation Safety (ARMAS) system. MAPS provides a forecast Dst index out to 6 days through the data-driven, redundant data stream Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. In addition, an ENLIL/Rice Dst prediction out to several days has also been developed and will be described. LAPS is the SET fully redundant operational system providing recent history, current epoch, and forecast solar and geomagnetic indices for use in operational versions of the JB2008 thermospheric density model. The thermospheric densities produced by that system, driven by the LAPS data, are forecast to 72-hours to provide the global mass densities for satellite operators. ARMAS is a project that has successfully demonstrated the operation of a micro dosimeter on aircraft to capture the real-time radiation environment due to Galactic Cosmic Rays and Solar Energetic Particles. The dose and dose-rates are captured on aircraft, downlinked in real-time via the Iridium satellites, processed on the ground, incorporated into the most recent NAIRAS global radiation climatology data runs, and made available to end users via the web and

  16. Room temperature stretch forming of scale space shuttle external tank dome gores. Volume 1: Technical

    NASA Technical Reports Server (NTRS)

    Blunck, R. D.; Krantz, D. E.

    1974-01-01

    An account of activities and data gathered in the Room Temperature Stretch Forming of One-third Scale External Tank Bulkhead Gores for space shuttle study, and a tooling design and production cost study are reported. The following study phases are described: (1) the stretch forming of three approximately one-third scale external tank dome gores from single sheets of 2219-T37 aluminum alloy; (2) the designing of a full scale production die, including a determination of tooling requirements; and (3) the determination of cost per gore at the required production rates, including manufacturing, packaging, and shipping.

  17. Lateral Earth Pressure at Rest and Shear Modulus Measurements on Hanford Sludge Simulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Jenks, Jeromy WJ; Boeringa, Gregory K.

    2010-09-30

    This report describes the equipment, techniques, and results of lateral earth pressure at rest and shear modulus measurements on kaolin clay as well as two chemical sludge simulants. The testing was performed in support of the problem of hydrogen gas retention and release encountered in the double- shell tanks (DSTs) at the Hanford Site near Richland, Washington. Wastes from single-shell tanks (SSTs) are being transferred to double-shell tanks (DSTs) for safety reasons (some SSTs are leaking or are in danger of leaking), but the available DST space is limited.

  18. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks. Each...

  19. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks. Each...

  20. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks. Each...

  1. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks. Each...

  2. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks. Each...

  3. An Overview of Spray-On Foam Insulation Applications on the Space Shuttle's External Tank: Foam Applications and Foam Shedding Mechanisms

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Lerch, Bradley A.; Rogers, Patrick R.; Sparks, Scotty S.

    2006-01-01

    The Columbia Accident Investigation Board (CAIB) concluded that the cause of the tragic loss of the Space Shuttle Columbia and its crew was a breach in the thermal protection system on the leading edge of the left wing. The breach was initiated by a piece of insulating foam that separated from the left bipod ramp of the External Tank and struck the wing in the vicinity of the lower half of Reinforced Carbon-Carbon panel No. 8 at 81.9 seconds after launch. The CAIB conclusion has spawned numerous studies to identify the cause of and factors influencing foam shedding and foam debris liberation from the External Tank during ascent. The symposium on the Thermo-mechanics and Fracture of Space Shuttle External Tank Spray-On Foam Insulation is a collection of presentations that discuss the physics and mechanics of the ET SOFI with the objective of improving analytical and numerical methods for predicting foam thermo-mechanical and fracture behavior. This keynote presentation sets the stage for the presentations contained in this symposium by introducing the audience to the various types of SOFI applications on the Shuttle s External Tank and by discussing the various mechanisms that are believed to be the cause of foam shedding during the Shuttle s ascent to space

  4. Nonlinear ARMA models for the D(st) index and their physical interpretation

    NASA Technical Reports Server (NTRS)

    Vassiliadis, D.; Klimas, A. J.; Baker, D. N.

    1996-01-01

    Time series models successfully reproduce or predict geomagnetic activity indices from solar wind parameters. A method is presented that converts a type of nonlinear filter, the nonlinear Autoregressive Moving Average (ARMA) model to the nonlinear damped oscillator physical model. The oscillator parameters, the growth and decay, the oscillation frequencies and the coupling strength to the input are derived from the filter coefficients. Mathematical methods are derived to obtain unique and consistent filter coefficients while keeping the prediction error low. These methods are applied to an oscillator model for the Dst geomagnetic index driven by the solar wind input. A data set is examined in two ways: the model parameters are calculated as averages over short time intervals, and a nonlinear ARMA model is calculated and the model parameters are derived as a function of the phase space.

  5. The role of fracture mechanics in the design of fuel tanks in space vehicles

    NASA Technical Reports Server (NTRS)

    Denton, S. J.; Liu, C. K.

    1976-01-01

    With special reference to design of fuel tanks in space vehicles, the principles of fracture mechanics are reviewed. An approximate but extremely simple relationship is derived among the operating stress level, the length of crack, and the number of cycles of failure. Any one of the variables can be computed approximately from the knowledge of the other two, if the loading schedule (mission of the tank) is not greatly altered. Two sample examples illustrating the procedures of determining the allowable safe operating stress corresponding to a set of assumed loading schedule are included. The selection of sample examples is limited by the relatively meager available data on the candidate material for various stress ratios in the cycling.

  6. Major Geomagnetic Storms (Dst less than or equal to -100 nT) Generated by Corotating Interaction Regions

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Webb, D. F.; Zhang, J.; Berdichevsky, B. D.; Biesecker, D. A.; Kasper, J. C.; Kataoka, R.; Steinberg, J. T.; Thompson, B. J.; Wu, C.-C.; hide

    2006-01-01

    Seventy-nine major geomagnetic storms (minimum Dst less than or equal to -100 nT) observed in 1996 to 2004 were the focus of a Living with a Star Coordinated Data-Analysis Workshop (CDAW) in March, 2005. In 9 cases, the storm driver appears to have been purely a corotating interaction region (CIR) without any contribution from coronal mass ejection-related material (interplanetary coronal mass ejections, ICMEs). These storms were generated by structures within CIRs located both before and/or after the stream interface that included persistently southward magnetic fields for intervals of several hours. We compare their geomagnetic effects with those of 159 CIRs observed during 1996 - 2005. The major storms form the extreme tail of a continuous distribution of CIR geoeffectiveness which peaks at Dst approx. -40 nT but is subject to a prominent seasonal variation of - 40 nT which is ordered by the spring and fall equinoxes and the solar wind magnetic field direction towards or away from the Sun. The O'Brien and McPherron [2000] equations, which estimate Dst by integrating the incident solar wind electric field and incorporating a ring current loss term, largely account for the variation in storm size. They tend to underestimate the size of the larger CIR-associated storms by Dst approx. 20 nT. This suggests that injection into the ring current may be more efficient than expected in such storms. Four of the nine major storms in 1996 - 2004 occurred during a period of less than three solar rotations in September - November, 2002, also the time of maximum mean IMF and solar magnetic field intensity during the current solar cycle. The maximum CIR-storm strength found in our sample of events, plus additional 23 probable CIR-associated Dst less than or equal to -100 nT storms in 1972 - 1995, is (Dst = -161 nT). This is consistent with the maximum storm strength (Dst approx. -180 nT) expected from the O'Brien and McPherron equations for the typical range of solar wind

  7. 14 CFR 27.1013 - Oil tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tanks. 27.1013 Section 27.1013... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1013 Oil tanks. Each oil tank must be... prevent oil overflow from entering the oil tank compartment. [Doc. No. 5074, 29 FR 15695, Nov. 24, 1964...

  8. 14 CFR 27.1013 - Oil tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil tanks. 27.1013 Section 27.1013... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1013 Oil tanks. Each oil tank must be... prevent oil overflow from entering the oil tank compartment. [Doc. No. 5074, 29 FR 15695, Nov. 24, 1964...

  9. 14 CFR 27.1013 - Oil tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil tanks. 27.1013 Section 27.1013... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1013 Oil tanks. Each oil tank must be... prevent oil overflow from entering the oil tank compartment. [Doc. No. 5074, 29 FR 15695, Nov. 24, 1964...

  10. 14 CFR 27.1013 - Oil tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil tanks. 27.1013 Section 27.1013... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1013 Oil tanks. Each oil tank must be... prevent oil overflow from entering the oil tank compartment. [Doc. No. 5074, 29 FR 15695, Nov. 24, 1964...

  11. 14 CFR 27.1013 - Oil tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil tanks. 27.1013 Section 27.1013... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1013 Oil tanks. Each oil tank must be... prevent oil overflow from entering the oil tank compartment. [Doc. No. 5074, 29 FR 15695, Nov. 24, 1964...

  12. CSF 5-HIAA and DST non-suppression--orthogonal biologic risk factors for suicide in male mood disorder inpatients.

    PubMed

    Jokinen, Jussi; Nordström, Anna-Lena; Nordström, Peter

    2009-01-30

    Two biomarkers of suicide risk; non-suppression in the dexamethasone suppression test (DST) and low 5-hydroxyindoleacetic acid (5-HIAA) in the cerebrospinal fluid (CSF) have been reported to be predictors of suicide in mood disorders. The interrelation of the two systems seems to be different in suicide attempters compared with depressed inpatients who have not made a suicide attempt, indicating that the two biomarkers may be seen as independent. This investigation examined the interrelation of low CSF 5-HIAA and DST non-suppression in suicide victims with mood disorder. Fifty-eight mood disorder inpatients not receiving any treatment with antidepressants underwent lumbar puncture and the DST. Plasma cortisol levels at 8:00 a.m., 4:00 p.m. and 11:00 p.m. were analysed in relation to CSF 5-HIAA. All patients were followed up for causes of death and suicides were verified with death certificates. During follow-up (mean 21 years), 11 (19%) patients had committed suicide. In male suicide victims (n=6), the serum cortisol level at 4:00 p.m. showed a significant positive correlation with CSF 5-HIAA. Low CSF 5-HIAA predicted all early suicides (within 1 year), whereas all males who committed suicide after 1 year were DST non-suppressors. In female suicide victims (n=5), the post-DST serum cortisol did not correlate with CSF 5-HIAA. Low CSF 5-HIAA and DST non-suppression are orthogonal biologic risk factors for suicide in male mood disorder inpatients. CSF 5-HIAA is associated with short-term suicide risk; dysregulation of the hypothalamic-pituitary-adrenal axis seems to be a long-term suicide predictor.

  13. Earthquake bursts and fault branching: lessons from the Carmel fault branch (CFB) of the Dead Sea Transform (DST)

    NASA Astrophysics Data System (ADS)

    Agnon, A.; Rockwell, T. K.; Stein, S.; Raphael, K.

    2017-12-01

    The DST, accommodating most of the displacement across the boundary zone between the Arabian and Sinai plates, is an ideal plate boundary on which to study earthquake sequences because of 1) a long (>2 kyr) record of historical earthquakes (corroborated and extended several millennia back with ancient ruins); 2) deformed sediments and rockfalls, offering datable archives of strong shaking at various distances from the fault, spanning 300 kyr; 3) a moderate fault slip rate, allowing separation and dating of individual earthquakes for comparison to the historical record, and 4) a growing body of paleoseismic trench data on both timing and displacement across some sectors of the fault. Here we explore the role of a secondary fault branch on clustering using a new approach for the analysis of earthquake bursts. The CFZ is a ≥100 km long shear zone, branching northwestward from the N-S trending Jordan Valley segment of the DST. GPS monitoring of the CFZ indicates a slip rate of <1 mm/yr, absorbing up to 20% of the slip between Arabia Plate and the Sinai-Levant Block across the DST. CFZ seismicity is recorded by three datasets with different time scales and maximum magnitudes: 1) Instrumental seismicity, M≤5.3 (1984); 2) Historic documents suggesting a M>6 event in 363 CE, with ruins distributed up to 100 km from the CFZ; 3) 5 ka cave deposits showing damage greater than from any subsequent earthquake, implying 6The CFZ branch events interact with ruptures on the main DST. At 5 ka destruction was widespread along the DST. The 363 CE earthquake was accompanied by another event in the Arava Valley. The pair skipped the 100 km long Dead Sea segment of the DST. An earlier pair in the northern Levant preceded that pair by several decades: 303 & 347 CE, following a two-century long quiescence, and a harbinger for a shaky millennium. We suggest that the 363 CE pair reflects a rare state that enables a CFZ rupture. This oblique branch is unfavorably oriented for slip under

  14. Tank Waste Retrieval Lessons Learned at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodd, R.A.

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons ofmore » this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST salt-cake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the Tri- Party Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U.S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 ft{sup 3} in 530,000 gallon or larger tanks; 30 ft{sup 3} in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and

  15. Correlation Study Of Diffenrential Skin Temperatures (DST) For Ovulation Detection Using Infra-Red Thermography

    NASA Astrophysics Data System (ADS)

    Rao, K. H. S.; Shah, A. v.; Ruedi, B.

    1982-11-01

    The importance of ovulation time detection in the Practice of Natural Birth Control (NBC) as a contraceptive tool, and for natural/artificial insemination among women having the problem of in-fertility, is well known. The simple Basal Body Temperature (BBT) method of ovulation detection is so far unreliable. A newly proposed Differential Skin Temperature (DST) method may help minimize disturbing physiological effects and improve reliability. This paper explains preliminary results of a detailed correlative study on the DST method, using Infra-Red Thermography (IRT) imaging, and computer analysis techniques. Results obtained with five healthy, normally menstruating women volunteers will be given.

  16. 14 CFR 23.1015 - Oil tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil tank tests. 23.1015 Section 23.1015... tank tests. Each oil tank must be tested under § 23.965, except that— (a) The applied pressure must be five p.s.i. for the tank construction instead of the pressures specified in § 23.965(a); (b) For a tank...

  17. 11C-4DST PET/CT Imaging of Cardiac Sarcoidosis: Comparison With 18F-FDG and Cardiac MRI.

    PubMed

    Hotta, Masatoshi; Minamimoto, Ryogo; Kubota, Shuji; Awaya, Toru; Hiroi, Yukio

    2018-06-01

    A 75-year-old woman with a history of sarcoidosis presenting with low cardiac output and complete right bundle-branch block underwent 4'-[methyl-C]-thiothymidine (4DST) PET/CT after cardiac MRI and FDG PET/CT for the evaluation of suspected cardiac sarcoidosis (CS) before treatment. Cardiac MRI revealed late gadolinium enhancement on the anterior-to-lateral and posterior wall, indicating CS. FDG uptake was shown on the anterior-to-lateral wall, but not on the posterior wall. In contrast, 4DST uptake was demonstrated on both anterior-to-lateral and posterior walls. Use of 4DST appears promising for detecting CS without dietary restriction, due to the lack of physiological uptake in myocardium.

  18. Verification of short lead time forecast models: applied to Kp and Dst forecasting

    NASA Astrophysics Data System (ADS)

    Wintoft, Peter; Wik, Magnus

    2016-04-01

    In the ongoing EU/H2020 project PROGRESS models that predicts Kp, Dst, and AE from L1 solar wind data will be used as inputs to radiation belt models. The possible lead times from L1 measurements are shorter (10s of minutes to hours) than the typical duration of the physical phenomena that should be forecast. Under these circumstances several metrics fail to single out trivial cases, such as persistence. In this work we explore metrics and approaches for short lead time forecasts. We apply these to current Kp and Dst forecast models. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637302.

  19. Optical Cryogenic Tank Level Sensor

    NASA Technical Reports Server (NTRS)

    Duffell, Amanda

    2005-01-01

    Cryogenic fluids play an important role in space transportation. Liquid oxygen and hydrogen are vital fuel components for liquid rocket engines. It is also difficult to accurately measure the liquid level in the cryogenic tanks containing the liquids. The current methods use thermocouple rakes, floats, or sonic meters to measure tank level. Thermocouples have problems examining the boundary between the boiling liquid and the gas inside the tanks. They are also slow to respond to temperature changes. Sonic meters need to be mounted inside the tank, but still above the liquid level. This causes problems for full tanks, or tanks that are being rotated to lie on their side.

  20. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank installations. 25.967 Section 25.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.967 Fuel tank installations...

  1. 14 CFR 29.967 - Fuel tank installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank installation. 29.967 Section 29.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.967 Fuel tank installation...

  2. 14 CFR 27.967 - Fuel tank installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank installation. 27.967 Section 27.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.967 Fuel tank installation. (a...

  3. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank installations. 25.967 Section 25.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.967 Fuel tank installations...

  4. 14 CFR 29.967 - Fuel tank installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank installation. 29.967 Section 29.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.967 Fuel tank installation...

  5. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank installations. 25.967 Section 25.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.967 Fuel tank installations...

  6. 14 CFR 27.967 - Fuel tank installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank installation. 27.967 Section 27.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.967 Fuel tank installation. (a...

  7. 14 CFR 29.967 - Fuel tank installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank installation. 29.967 Section 29.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.967 Fuel tank installation...

  8. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank installations. 25.967 Section 25.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.967 Fuel tank installations...

  9. 14 CFR 27.967 - Fuel tank installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank installation. 27.967 Section 27.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.967 Fuel tank installation. (a...

  10. 14 CFR 27.967 - Fuel tank installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank installation. 27.967 Section 27.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.967 Fuel tank installation. (a...

  11. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank installations. 25.967 Section 25.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.967 Fuel tank installations...

  12. 14 CFR 29.967 - Fuel tank installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank installation. 29.967 Section 29.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.967 Fuel tank installation...

  13. 14 CFR 27.967 - Fuel tank installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank installation. 27.967 Section 27.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.967 Fuel tank installation. (a...

  14. 14 CFR 29.967 - Fuel tank installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank installation. 29.967 Section 29.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.967 Fuel tank installation...

  15. Toroidal Tank Development for Upper-stages

    NASA Technical Reports Server (NTRS)

    DeLay, Tom; Roberts, Keith

    2003-01-01

    The advantages, development, and fabrication of toroidal propellant tanks are profiled in this viewgraph presentation. Several images are included of independent research and development (IR&D) of toroidal propellant tanks at Marshall Space Flight Center (MSFC). Other images in the presentation give a brief overview of Thiokol conformal tank technology development. The presentation describes Thiokol's approach to continuous composite toroidal tank fabrication in detail. Images are shown of continuous and segmented toroidal tanks fabricated by Thiokol.

  16. The Evolution of Nondestructive Evaluation Methods for the Space Shuttle External Tank Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Richter, Joel D.

    2006-01-01

    Three nondestructive evaluation methods are being developed to identify defects in the foam thermal protection system (TPS) of the Space Shuttle External Tank (ET). Shearography is being developed to identify shallow delaminations, shallow voids and crush damage in the foam while terahertz imaging and backscatter radiography are being developed to identify voids and cracks in thick foam regions. The basic theory of operation along with factors affecting the results of these methods will be described. Also, the evolution of these methods from lab tools to implementation on the ET will be discussed. Results from both test panels and flight tank inspections will be provided to show the range in defect sizes and types that can be readily detected.

  17. 14 CFR 29.963 - Fuel tanks: general.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tanks: general. 29.963 Section 29.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.963 Fuel tanks: general. (a) Each fuel...

  18. 14 CFR 27.963 - Fuel tanks: general.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tanks: general. 27.963 Section 27.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.963 Fuel tanks: general. (a) Each fuel...

  19. 14 CFR 29.963 - Fuel tanks: general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tanks: general. 29.963 Section 29.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.963 Fuel tanks: general. (a) Each fuel...

  20. 14 CFR 27.963 - Fuel tanks: general.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tanks: general. 27.963 Section 27.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.963 Fuel tanks: general. (a) Each fuel...

  1. 14 CFR 27.963 - Fuel tanks: general.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tanks: general. 27.963 Section 27.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.963 Fuel tanks: general. (a) Each fuel...

  2. 14 CFR 29.963 - Fuel tanks: general.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tanks: general. 29.963 Section 29.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.963 Fuel tanks: general. (a) Each fuel...

  3. 14 CFR 27.963 - Fuel tanks: general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tanks: general. 27.963 Section 27.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.963 Fuel tanks: general. (a) Each fuel...

  4. 14 CFR 29.963 - Fuel tanks: general.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tanks: general. 29.963 Section 29.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.963 Fuel tanks: general. (a) Each fuel...

  5. 14 CFR 29.963 - Fuel tanks: general.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tanks: general. 29.963 Section 29.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.963 Fuel tanks: general. (a) Each fuel...

  6. 14 CFR 27.963 - Fuel tanks: general.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tanks: general. 27.963 Section 27.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.963 Fuel tanks: general. (a) Each fuel...

  7. Using Drained Spacecraft Propellant Tanks for Habitation

    NASA Technical Reports Server (NTRS)

    Thomas, Andrew S. W.

    2009-01-01

    A document proposes that future spacecraft for planetary and space exploration be designed to enable reuse of drained propellant tanks for occupancy by humans. This proposal would enable utilization of volume and mass that would otherwise be unavailable and, in some cases, discarded. Such utilization could enable reductions in cost, initial launch mass, and number of launches needed to build up a habitable outpost in orbit about, or on the surface of, a planet or moon. According to the proposal, the large propellant tanks of a spacecraft would be configured to enable crews to gain access to their interiors. The spacecraft would incorporate hatchways, between a tank and the crew volume, that would remain sealed while the tank contained propellant and could be opened after the tank was purged by venting to outer space and then refilled with air. The interior of the tank would be pre-fitted with some habitation fixtures that were compatible with the propellant environment. Electrical feed-throughs, used originally for gauging propellants, could be reused to supply electric power to equipment installed in the newly occupied space. After a small amount of work, the tank would be ready for long-term use as a habitation module.

  8. Integral Radiator and Storage Tank

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Miller, John R.; Jakupca, Ian; Sargi,Scott

    2007-01-01

    A simplified, lightweight system for dissipating heat of a regenerative fuel- cell system would include a heat pipe with its evaporator end placed at the heat source and its condenser end integrated into the wall of the regenerative fuel cell system gas-storage tanks. The tank walls act as heat-radiating surfaces for cooling the regenerative fuel cell system. The system was conceived for use in outer space, where radiation is the only physical mechanism available for transferring heat to the environment. The system could also be adapted for use on propellant tanks or other large-surface-area structures to convert them to space heat-radiating structures. Typically for a regenerative fuel cell system, the radiator is separate from the gas-storage tanks. By using each tank s surface as a heat-radiating surface, the need for a separate, potentially massive radiator structure is eliminated. In addition to the mass savings, overall volume is reduced because a more compact packaging scheme is possible. The underlying tank wall structure provides ample support for heat pipes that help to distribute the heat over the entire tank surface. The heat pipes are attached to the outer surface of each gas-storage tank by use of a high-thermal conductance, carbon-fiber composite-material wrap. Through proper choice of the composite layup, it is possible to exploit the high longitudinal conductivity of the carbon fibers (greater than the thermal conductivity of copper) to minimize the unevenness of the temperature distribution over the tank surface, thereby helping to maximize the overall heat-transfer efficiency. In a prototype of the system, the heat pipe and the composite wrap contribute an average mass of 340 g/sq m of radiator area. Lightweight space radiator panels have a mass of about 3,000 g/sq m of radiator area, so this technique saves almost 90 percent of the mass of separate radiator panels. In tests, the modified surface of the tank was found to have an emissivity of 0

  9. 14 CFR 25.965 - Fuel tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank tests. 25.965 Section 25.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.965 Fuel tank tests. (a) It must be...

  10. 14 CFR 25.965 - Fuel tank tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank tests. 25.965 Section 25.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.965 Fuel tank tests. (a) It must be...

  11. 14 CFR 25.965 - Fuel tank tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank tests. 25.965 Section 25.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.965 Fuel tank tests. (a) It must be...

  12. 14 CFR 25.965 - Fuel tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank tests. 25.965 Section 25.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.965 Fuel tank tests. (a) It must be...

  13. 14 CFR 25.965 - Fuel tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank tests. 25.965 Section 25.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.965 Fuel tank tests. (a) It must be...

  14. Photography by KSC Space Shuttle Orbiter Enterprise mated to an external fuel tank and two solid

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Photography by KSC Space Shuttle Orbiter Enterprise mated to an external fuel tank and two solid rocket boosters on top of a Mobil Launcher Platform, undergoes fit and function checks at the launch site for the first Space Shuttle at Launch Complex 39's Pad A. The dummy Space Shuttle was assembled in the Vehicle Assembly Building and rolled out to the launch site on May 1 as part of an exercise to make certain shuttle elements are compatible with the Spaceport's assembly and launch facilities and ground support equipment, and help clear the way for the launch of the Space Shuttle Orbiter Columbia.

  15. PHOTOGRAPHY BY KSC SPACE SHUTTLE ORBITER ENTERPRISE MATED TO AN EXTERNAL FUEL TANK AND TWO SOLID

    NASA Technical Reports Server (NTRS)

    1980-01-01

    PHOTOGRAPHY BY KSC SPACE SHUTTLE ORBITER ENTERPRISE MATED TO AN EXTERNAL FUEL TANK AND TWO SOLID ROCKET BOOSTERS ON TOP OF A MOBIL LAUNCHER PLATFORM, UNDERGOES FIT AND FUNCTION CHECKS AT THE LAUNCH SITE FOR THE FIRST SPACE SHUTTLE AT LAUNCH COMPLEX 39'S PAD A. THE DUMMY SPACE SHUTTLE WAS ASSEMBLED IN THE VEHICLE ASSEMBLY BUILDING AND ROLLED OUT TO THE LAUNCH SITE ON MAY 1 AS PART OF AN EXERCISE TO MAKE CERTAIN SHUTTLE ELEMENTS ARE COMPATIBLE WITH THE SPACEPORT'S ASSEMBLY AND LAUNCH FACILITIES AND GROUND SUPPORT EQUIPMENT, AND HELP CLEAR THE WAY FOR THE LAUNCH OF THE SPACE SHUTTLE ORBITER COLUMBIA.

  16. 14 CFR 27.1015 - Oil tank tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tank tests. 27.1015 Section 27.1015... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1015 Oil tank tests. Each oil tank must be... that each pressurized oil tank used with a turbine engine must be designed and installed so that it can...

  17. 14 CFR 27.1015 - Oil tank tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil tank tests. 27.1015 Section 27.1015... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1015 Oil tank tests. Each oil tank must be... that each pressurized oil tank used with a turbine engine must be designed and installed so that it can...

  18. 14 CFR 27.1015 - Oil tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil tank tests. 27.1015 Section 27.1015... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1015 Oil tank tests. Each oil tank must be... that each pressurized oil tank used with a turbine engine must be designed and installed so that it can...

  19. 14 CFR 27.1015 - Oil tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil tank tests. 27.1015 Section 27.1015... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1015 Oil tank tests. Each oil tank must be... that each pressurized oil tank used with a turbine engine must be designed and installed so that it can...

  20. 14 CFR 27.1015 - Oil tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... that each pressurized oil tank used with a turbine engine must be designed and installed so that it can... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil tank tests. 27.1015 Section 27.1015... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1015 Oil tank tests. Each oil tank must be...

  1. The variable polarity plasma arc welding process: Its application to the Space Shuttle external tank

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Bayless, O. E., Jr.; Jones, C. S., III; Munafo, A. P.; Wilson, W. A.

    1983-01-01

    The technical history of the variable polarity plasma arc (VPPA) welding process being introduced as a partial replacement for the gas shielded tungsten arc process in assembly welding of the space shuttle external tank is described. Interim results of the weld strength qualification studies, and plans for further work on the implementation of the VPPA process are included.

  2. LH2 Liquid Separator Tank Delivery

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. The tank will be lifted and rotated for delivery to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  3. 14 CFR 121.229 - Location of fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Location of fuel tanks. 121.229 Section 121... of fuel tanks. (a) Fuel tanks must be located in accordance with § 121.255. (b) No part of the engine... the wall of an integral tank. (c) Fuel tanks must be isolated from personnel compartments by means of...

  4. 14 CFR 121.229 - Location of fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Location of fuel tanks. 121.229 Section 121... of fuel tanks. (a) Fuel tanks must be located in accordance with § 121.255. (b) No part of the engine... the wall of an integral tank. (c) Fuel tanks must be isolated from personnel compartments by means of...

  5. 49 CFR 179.400-17 - Inner tank piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping. (a) Product lines. The piping system for vapor and liquid phase transfer and venting must be made for...

  6. 49 CFR 179.400-17 - Inner tank piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping. (a) Product lines. The piping system for vapor and liquid phase transfer and venting must be made for...

  7. 49 CFR 179.400-17 - Inner tank piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping. (a) Product lines. The piping system for vapor and liquid phase transfer and venting must be made for...

  8. Data Quality Objectives for Tank Farms Waste Compatibility Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    1999-07-02

    There are 177 waste storage tanks containing over 210,000 m{sup 3} (55 million gal) of mixed waste at the Hanford Site. The River Protection Project (RPP) has adopted the data quality objective (DQO) process used by the U.S. Environmental Protection Agency (EPA) (EPA 1994a) and implemented by RPP internal procedure (Banning 1999a) to identify the information and data needed to address safety issues. This DQO document is based on several documents that provide the technical basis for inputs and decision/action levels used to develop the decision rules that evaluate the transfer of wastes. A number of these documents are presentlymore » in the process of being revised. This document will need to be revised if there are changes to the technical criteria in these supporting documents. This DQO process supports various documents, such as sampling and analysis plans and double-shell tank (DST) waste analysis plans. This document identifies the type, quality, and quantity of data needed to determine whether transfer of supernatant can be performed safely. The requirements in this document are designed to prevent the mixing of incompatible waste as defined in Washington Administrative Code (WAC) 173-303-040. Waste transfers which meet the requirements contained in this document and the Double-Shell Tank Waste Analysis Plan (Mulkey 1998) are considered to be compatible, and prevent the mixing of incompatible waste.« less

  9. 14 CFR 25.1013 - Oil tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... tank used with a turbine engine must have an expansion space of not less than 10 percent of the tank... must be arranged so that condensed water vapor that might freeze and obstruct the line cannot... operating temperature. There must be a shutoff valve at the outlet of each oil tank used with a turbine...

  10. 14 CFR 25.1013 - Oil tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... tank used with a turbine engine must have an expansion space of not less than 10 percent of the tank... must be arranged so that condensed water vapor that might freeze and obstruct the line cannot... operating temperature. There must be a shutoff valve at the outlet of each oil tank used with a turbine...

  11. 14 CFR 25.1013 - Oil tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... tank used with a turbine engine must have an expansion space of not less than 10 percent of the tank... must be arranged so that condensed water vapor that might freeze and obstruct the line cannot... operating temperature. There must be a shutoff valve at the outlet of each oil tank used with a turbine...

  12. 14 CFR 25.1013 - Oil tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... tank used with a turbine engine must have an expansion space of not less than 10 percent of the tank... must be arranged so that condensed water vapor that might freeze and obstruct the line cannot... operating temperature. There must be a shutoff valve at the outlet of each oil tank used with a turbine...

  13. 14 CFR 25.1013 - Oil tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... tank used with a turbine engine must have an expansion space of not less than 10 percent of the tank... must be arranged so that condensed water vapor that might freeze and obstruct the line cannot... operating temperature. There must be a shutoff valve at the outlet of each oil tank used with a turbine...

  14. A DST Model of Multilingualism and the Role of Metalinguistic Awareness

    ERIC Educational Resources Information Center

    Jessner, Ulrike

    2008-01-01

    This paper suggests that a dynamic systems theory (DST) provides an adequate conceptual metaphor for discussing multilingual development. Multilingual acquisition is a nonlinear and complex dynamic process depending on a number of interacting factors. Variability plays a crucial role in the multilingual system as it changes over time (Herdina &…

  15. LH2 Liquid Separator Tank Delivery

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane will be used to lift and rotate the tank for delivery to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  16. 14 CFR 125.127 - Location of fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Location of fuel tanks. 125.127 Section 125... Requirements § 125.127 Location of fuel tanks. (a) Fuel tanks must be located in accordance with § 125.153. (b... compartment may be used as the wall of an integral tank. (c) Fuel tanks must be isolated from personnel...

  17. 14 CFR 125.127 - Location of fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Location of fuel tanks. 125.127 Section 125... Requirements § 125.127 Location of fuel tanks. (a) Fuel tanks must be located in accordance with § 125.153. (b... compartment may be used as the wall of an integral tank. (c) Fuel tanks must be isolated from personnel...

  18. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler...

  19. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank filler...

  20. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank filler...

  1. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler...

  2. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler...

  3. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank filler...

  4. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank filler...

  5. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler...

  6. 14 CFR 29.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank filler...

  7. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler...

  8. Hail damage on Atlantis' external tank is inspected

    NASA Image and Video Library

    2007-04-13

    In the Vehicle Assembly Building, Mike Ravenscroft, with United Space Alliance, points to some of the foam repair done on the external tank of Space Shuttle Atlantis. Holes filled with foam are sanded flush with the adjacent area. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch now is targeted for June 8.

  9. Lightning protection design external tank /Space Shuttle/

    NASA Technical Reports Server (NTRS)

    Anderson, A.; Mumme, E.

    1979-01-01

    The possibility of lightning striking the Space Shuttle during liftoff is considered and the lightning protection system designed by the Martin Marietta Corporation for the external tank (ET) portion of the Shuttle is discussed. The protection system is based on diverting and/or directing a lightning strike to an area of the spacecraft which can sustain the strike. The ET lightning protection theory and some test analyses of the system's design are reviewed including studies of conductivity and thermal/stress properties in materials, belly band feasibility, and burn-through plug grounding and puncture voltage. The ET lightning protection system design is shown to be comprised of the following: (1) a lightning rod on the forward most point of the ET, (2) a continually grounded, one inch wide conductive strip applied circumferentially at station 371 (belly band), (3) a three inch wide conductive belly band applied over the TPS (i.e. the insulating surface of the ET) and grounded to a structure with eight conductive plugs at station 536, and (4) a two inch thick TPS between the belly bands which are located over the weld lands.

  10. 14 CFR 27.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank filler connection. 27.973 Section 27.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection...

  11. 14 CFR 27.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank filler connection. 27.973 Section 27.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection...

  12. 14 CFR 27.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 27.973 Section 27.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection...

  13. 14 CFR 27.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 27.973 Section 27.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection...

  14. 14 CFR 27.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank filler connection. 27.973 Section 27.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection...

  15. Elastic-Plastic Nonlinear Response of a Space Shuttle External Tank Stringer. Part 2; Thermal and Mechanical Loadings

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Warren, Jerry E.; Elliott, Kenny B.; Song, Kyongchan; Raju, Ivatury S.

    2012-01-01

    Elastic-plastic, large-deflection nonlinear thermo-mechanical stress analyses are performed for the Space Shuttle external tank s intertank stringers. Detailed threedimensional finite element models are developed and used to investigate the stringer s elastic-plastic response for different thermal and mechanical loading events from assembly through flight. Assembly strains caused by initial installation on an intertank panel are accounted for in the analyses. Thermal loading due to tanking was determined to be the bounding loading event. The cryogenic shrinkage caused by tanking resulted in a rotation of the intertank chord flange towards the center of the intertank, which in turn loaded the intertank stringer feet. The analyses suggest that the strain levels near the first three fasteners remain sufficiently high that a failure may occur. The analyses also confirmed that the installation of radius blocks on the stringer feet ends results in an increase in the stringer capability.

  16. 14 CFR 25.1015 - Oil tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil tank tests. 25.1015 Section 25.1015... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1015 Oil tank tests. Each oil tank must be designed and installed so that— (a) It can withstand, without failure, each vibration, inertia...

  17. 14 CFR 29.1015 - Oil tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil tank tests. 29.1015 Section 29.1015... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1015 Oil tank tests. Each oil tank must be designed and installed so that— (a) It can withstand, without failure, any vibration, inertia, and...

  18. Comparison of reusable insulation systems for cryogenically-tanked earth-based space vehicles

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Barber, J. R.

    1978-01-01

    Three reusable insulation systems concepts have been developed for use with cryogenic tanks of earth-based space vehicles. Two concepts utilized double-goldized Kapton (DGK) or double-aluminized Mylar (DAM) multilayer insulation (MLI), while the third utilized a hollow-glass-microsphere, load-bearing insulation (LBI). All three insulation systems have recently undergone experimental testing and evaluation under NASA-sponsored programs. Thermal performance measurements were made under space-hold (vacuum) conditions for insulation warm boundary temperatures of approximately 291 K. The resulting effective thermal conductivity was approximately .00008 W/m-K for the MLI systems (liquid hydrogen test results) and .00054 W/m-K for the LBI system (liquid nitrogen test results corrected to liquid hydrogen temperature). The DGK MLI system experienced a maximum thermal degradation of 38 percent, the DAM MLI system 14 percent, and the LBI system 6.7 percent due to repeated thermal cycling representing typical space flight conditions. Repeated exposure of the DAM MLI system to a high humidity environment for periods as long as 8 weeks provided a maximum degradation of only 24 percent.

  19. 14 CFR 23.1015 - Oil tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil tank tests. 23.1015 Section 23.1015... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1015 Oil tank tests. Each oil tank must be tested under § 23.965, except that— (a) The applied pressure must be...

  20. 14 CFR 23.1015 - Oil tank tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tank tests. 23.1015 Section 23.1015... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1015 Oil tank tests. Each oil tank must be tested under § 23.965, except that— (a) The applied pressure must be...

  1. 14 CFR 23.1015 - Oil tank tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil tank tests. 23.1015 Section 23.1015... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1015 Oil tank tests. Each oil tank must be tested under § 23.965, except that— (a) The applied pressure must be...

  2. 14 CFR 23.1015 - Oil tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil tank tests. 23.1015 Section 23.1015... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1015 Oil tank tests. Each oil tank must be tested under § 23.965, except that— (a) The applied pressure must be...

  3. Vented Chill / No-Vent Fill of Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Rhys, Noah O.; Foster, Lee W.; Martin, Adam K.; Stephens, Jonathan R.

    2016-01-01

    Architectures for extended duration missions often include an on-orbit replenishment of the space vehicle's cryogenic liquid propellants. Such a replenishment could be accomplished via a tank-to-tank transfer from a dedicated tanker or a more permanent propellant depot storage tank. Minimizing the propellant loss associated with transfer line and receiver propellant tank thermal conditioning is essential for mass savings. A new methodology for conducting tank-to-tank transfer while minimizing such losses has been demonstrated. Charge-Hold-Vent is the traditional methodology for conducting a tank-to-tank propellant transfer. A small amount of cryogenic liquid is introduced to chill the transfer line and propellant tank. As the propellant absorbs heat and undergoes a phase change, the tank internal pressure increases. The tank is then vented to relieve pressure prior to another charge of cryogenic liquid being introduced. This cycle is repeated until the transfer lines and tank are sufficiently chilled and the replenishment of the propellant tank is complete. This method suffers inefficiencies due to multiple chill and vent cycles within the transfer lines and associated feed system components. Additionally, this system requires precise measuring of cryogenic fluid delivery for each transfer, multiple valve cycling events, and other complexities associated with cycled operations. To minimize propellant loss and greatly simplify on-orbit operations, an alternate methodology has been designed and demonstrated. The Vented Chill / No Vent Fill method is a simpler, constant flow approach in which the propellant tank and transfer lines are only chilled once. The receiver tank is continuously vented as cryogenic liquid chills the transfer lines, tank mass and ullage space. Once chilled sufficiently, the receiver tank valve is closed and the tank is completely filled. Interestingly, the vent valve can be closed prior to receiver tank components reaching liquid saturation

  4. Design and testing of the Space Station Freedom Propellant Tank Assembly

    NASA Technical Reports Server (NTRS)

    Dudley, D. D.; Thonet, T. A.; Goforth, A. M.

    1992-01-01

    Propellant storage and management functions for the Propulsion Module of the U.S. Space Station Freedom are provided by the Propellant Tank Assembly (PTA). The PTA consists of a surface-tension type propellant acquisition device contained within a welded titanium pressure vessel. The PTA design concept was selected with high reliability and low program risk as primary goals in order to meet stringent NASA structural, expulsion, fracture control and reliability requirements. The PTA design makes use of Shuttle Orbital Maneuvering System and Peacekeeper Propellant Storage Assembly design and analysis techniques. This paper summarizes the PTA design solution and discusses the underlying detailed analyses. In addition, design verification and qualification test activities are discussed.

  5. Evaluation of the BACTEC MGIT 960 SL DST Kit and the GenoType MTBDRsl Test for Detecting Extensively Drug-resistant Tuberculosis Cases.

    PubMed

    Tekin, Kemal; Albay, Ali; Simsek, Hulya; Sig, Ali Korhan; Guney, Mustafa

    2017-10-01

    The present study aimed to evaluate the performances of the BACTEC MGIT 960 SL DST kit and the GenoType MTBDRsl test for detecting second-line antituberculosis drug resistance in Multidrug-resistant TB (MDR-TB) cases. Forty-six MDR-TB strains were studied. Second-line antituberculosis drug resistances were detected using the BACTEC MGIT 960 SL DST kit and the GenoType MTBDRsl test. The Middlebrook 7H10 agar proportion method was used as the reference test. The sensitivity and specificity values for the BACTEC MGIT 960 SL DST kit were both 100% for amikacin, kanamycin, capreomycin (4 µg/mL), and ofloxacin; 100% and 95.3%, respectively, for capreomycin (10 µg/mL); and 85.7% and 100%, respectively, for moxifloxacin (0.5 µg/mL). The sensitivity and specificity values for the GenoType MTBDRsl test to detect fluoroquinolone and aminoglycoside/cyclic peptide resistance were 88.9% and 100%, respectively, for ofloxacin and 85.7% and 94.9%, respectively, for moxifloxacin (0.5 µg/mL). The accuracy of the GenoType MTBDRsl assay for kanamycin, capreomycin, ofloxacin, and moxifloxacin was lower than that of the BACTEC MGIT 960 SL DST. The BACTEC MGIT 960 SL DST kit and the GenoType MTBDRsl were successful in detecting second-line antituberculosis drug resistance. Preliminary results of the GenoType MTBDRsl are very valuable for early treatment decisions, but we still recommend additional BACTEC MGIT 960 SL DST kit usage in the routine evaluation of drug-resistant tuberculosis.

  6. Evaluation of the BACTEC MGIT 960 SL DST Kit and the GenoType MTBDRsl Test for Detecting Extensively Drug-resistant Tuberculosis Cases

    PubMed Central

    Tekin, Kemal; Albay, Ali; Simsek, Hulya; Sig, Ali Korhan; Guney, Mustafa

    2017-01-01

    Objective: The present study aimed to evaluate the performances of the BACTEC MGIT 960 SL DST kit and the GenoType MTBDRsl test for detecting second-line antituberculosis drug resistance in Multidrug-resistant TB (MDR-TB) cases. Materials and Methods: Forty-six MDR-TB strains were studied. Second-line antituberculosis drug resistances were detected using the BACTEC MGIT 960 SL DST kit and the GenoType MTBDRsl test. The Middlebrook 7H10 agar proportion method was used as the reference test. Results: The sensitivity and specificity values for the BACTEC MGIT 960 SL DST kit were both 100% for amikacin, kanamycin, capreomycin (4 µg/mL), and ofloxacin; 100% and 95.3%, respectively, for capreomycin (10 µg/mL); and 85.7% and 100%, respectively, for moxifloxacin (0.5 µg/mL). The sensitivity and specificity values for the GenoType MTBDRsl test to detect fluoroquinolone and aminoglycoside/cyclic peptide resistance were 88.9% and 100%, respectively, for ofloxacin and 85.7% and 94.9%, respectively, for moxifloxacin (0.5 µg/mL). The accuracy of the GenoType MTBDRsl assay for kanamycin, capreomycin, ofloxacin, and moxifloxacin was lower than that of the BACTEC MGIT 960 SL DST. Conclusion: The BACTEC MGIT 960 SL DST kit and the GenoType MTBDRsl were successful in detecting second-line antituberculosis drug resistance. Preliminary results of the GenoType MTBDRsl are very valuable for early treatment decisions, but we still recommend additional BACTEC MGIT 960 SL DST kit usage in the routine evaluation of drug-resistant tuberculosis. PMID:29123441

  7. Pad B Liquid Hydrogen Storage Tank

    NASA Technical Reports Server (NTRS)

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  8. External Tank (ET) Separation

    NASA Image and Video Library

    2011-05-16

    S134-E-005103 (16 May 2011) --- The STS-134 external fuel tank is seen during its release from space shuttle Endeavour in space following the successful launch on May 16, 2011. A camera in the umbilical well exposed the image. Photo credit: NASA

  9. External Tank (ET) Separation

    NASA Image and Video Library

    2011-05-16

    S134-E-005014 (16 May 2011) --- The STS-134 external fuel tank is seen during its release from space shuttle Endeavour in space following the successful launch on May 16, 2011. A camera in the umbilical well exposed the image. Photo credit: NASA

  10. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents. 27.975 Section 27.975...

  11. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank vents. 27.975 Section 27.975...

  12. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank vents. 27.975 Section 27.975...

  13. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank vents. 27.975 Section 27.975...

  14. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the event... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank vents. 27.975 Section 27.975...

  15. 46 CFR 153.254 - Cargo tank access.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks... vapor space described in § 153.354. (b) An access through a vertical cargo tank surface must be at least...

  16. 46 CFR 153.254 - Cargo tank access.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks... vapor space described in § 153.354. (b) An access through a vertical cargo tank surface must be at least...

  17. 46 CFR 153.254 - Cargo tank access.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks... vapor space described in § 153.354. (b) An access through a vertical cargo tank surface must be at least...

  18. 46 CFR 153.254 - Cargo tank access.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks... vapor space described in § 153.354. (b) An access through a vertical cargo tank surface must be at least...

  19. Thermal insulation of a cryogenic tank for a space telescope using a pretensioned suspension of Fiber Reinforced Composite (FRC)

    NASA Astrophysics Data System (ADS)

    Bongers, Bernd; Haider, Otmar; Tauber, Wolfgang

    1990-09-01

    For the thermal insulation of cryogenic tanks in satellite applications Fiber Reinforced Composite (FRC) materials are preferable because of their low thermal conductivity and high tensile strength compared to metallic materials. At the Infrared Space Observatory (ISO) satellite the main Liquid Helium (LHe) tank is suspended by one spatial framework and eight pretensioned chain strands at each side. Frameworks and chain strands are acting as a thermal barrier and therefore made of FRC. To meet the various and, in parts contractive requirements, sophisticated design approaches are chosen for the structural parts.

  20. Fracture Toughness Evaluation of Space Shuttle External Tank Thermal Protection System Polyurethane Foam Insulation Materials

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Wells, Doug; Morgan, Kristin

    2006-01-01

    Experimental evaluation of the basic fracture properties of Thermal Protection System (TPS) polyurethane foam insulation materials was conducted to validate the methodology used in estimating critical defect sizes in TPS applications on the Space Shuttle External Fuel Tank. The polyurethane foam found on the External Tank (ET) is manufactured by mixing liquid constituents and allowing them to react and expand upwards - a process which creates component cells that are generally elongated in the foam rise direction and gives rise to mechanical anisotropy. Similarly, the application of successive foam layers to the ET produces cohesive foam interfaces (knitlines) which may lead to local variations in mechanical properties. This study reports the fracture toughness of BX-265, NCFI 24-124, and PDL-1034 closed-cell polyurethane foam as a function of ambient and cryogenic temperatures and knitline/cellular orientation at ambient pressure.

  1. Hopkins works with tanks from the ARFTA

    NASA Image and Video Library

    2013-11-24

    ISS038-E-008287 (24 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, works with tanks from the Advanced Recycle Filter Tank Assembly (ARFTA) in the Tranquility node of the International Space Station.

  2. Hopkins works with tanks from the ARFTA

    NASA Image and Video Library

    2013-11-24

    ISS038-E-008289 (24 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, works with tanks from the Advanced Recycle Filter Tank Assembly (ARFTA) in the Tranquility node of the International Space Station.

  3. Comparison of 4'-[methyl-(11)C]thiothymidine ((11)C-4DST) and 3'-deoxy-3'-[(18)F]fluorothymidine ((18)F-FLT) PET/CT in human brain glioma imaging.

    PubMed

    Toyota, Yasunori; Miyake, Keisuke; Kawai, Nobuyuki; Hatakeyama, Tetsuhiro; Yamamoto, Yuka; Toyohara, Jun; Nishiyama, Yoshihiro; Tamiya, Takashi

    2015-01-01

    3'-deoxy-3'-[(18)F]fluorothymidine ((18)F-FLT) has been used to evaluate tumor malignancy and cell proliferation in human brain gliomas. However, (18)F-FLT has several limitations in clinical use. Recently, (11)C-labeled thymidine analogue, 4'-[methyl-(11)C]thiothymidine ((11)C-4DST), became available as an in vivo cell proliferation positron emission tomography (PET) tracer. The present study was conducted to evaluate the usefulness of (11)C-4DST PET in the diagnosis of human brain gliomas by comparing with the images of (18)F-FLT PET. Twenty patients with primary and recurrent brain gliomas underwent (18)F-FLT and (11)C-4DST PET scans. The uptake values in the tumors were evaluated using the maximum standardized uptake value (SUVmax), the tumor-to-normal tissue uptake (T/N) ratio, and the tumor-to-blood uptake (T/B) ratio. These values were compared among different glioma grades. Correlation between the Ki-67 labeling index and the uptake values of (11)C-4DST and (18)F-FLT in the tumor was evaluated using linear regression analysis. The relationship between the individual (18)F-FLT and (11)C-4DST uptake values in the tumors was also examined. (11)C-4DST uptake was significantly higher than that of (18)F-FLT in the normal brain. The uptake values of (11)C-4DST in the tumor were similar to those of (18)F-FLT resulting in better visualization with (18)F-FLT. No significant differences in the uptake values of (18)F-FLT and (11)C-4DST were noted among different glioma grades. Linear regression analysis showed a significant correlation between the Ki-67 labeling index and the T/N ratio of (11)C-4DST (r = 0.50, P < 0.05) and (18)F-FLT (r = 0.50, P < 0.05). Significant correlations were also found between the Ki-67 labeling index and the T/B ratio of (11)C-4DST (r = 0.52, P < 0.05) and (18)F-FLT (r = 0.55, P < 0.05). A highly significant correlation was observed between the individual T/N ratio of (11)C-4DST and (18)F-FLT in the tumor (r

  4. Principles for identification of High Potency Category Chemicals for which the Dermal Sensitisation Threshold (DST) approach should not be applied.

    PubMed

    Roberts, David W; Api, Anne Marie; Safford, Robert J; Lalko, Jon F

    2015-08-01

    An essential step in ensuring the toxicological safety of chemicals used in consumer products is the evaluation of their skin sensitising potential. The sensitising potency, coupled with information on exposure levels, can be used in a Quantitative Risk Assessment (QRA) to determine an acceptable level of a given chemical in a given product. Where consumer skin exposure is low, a risk assessment can be conducted using the Dermal Sensitisation Threshold (DST) approach, avoiding the need to determine potency experimentally. Since skin sensitisation involves chemical reaction with skin proteins, the first step in the DST approach is to assess, on the basis of the chemical structure, whether the chemical is expected to be reactive or not. Our accompanying publication describes the probabilistic derivation of a DST of 64 μg/cm(2) for chemicals assessed as reactive. This would protect against 95% of chemicals assessed as reactive, but the remaining 5% would include chemicals with very high potency. Here we discuss the chemical properties and structural features of high potency sensitisers, and derive an approach whereby they can be identified and consequently excluded from application of the DST. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. 14 CFR 25.1015 - Oil tank tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tank tests. 25.1015 Section 25.1015... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1015 Oil tank tests. Each oil tank must... in § 25.965(a); and (2) The test fluid must be oil at 250 °F. instead of the fluid specified in § 25...

  6. 14 CFR 25.1015 - Oil tank tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil tank tests. 25.1015 Section 25.1015... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1015 Oil tank tests. Each oil tank must... in § 25.965(a); and (2) The test fluid must be oil at 250 °F. instead of the fluid specified in § 25...

  7. 14 CFR 25.1015 - Oil tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil tank tests. 25.1015 Section 25.1015... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1015 Oil tank tests. Each oil tank must... in § 25.965(a); and (2) The test fluid must be oil at 250 °F. instead of the fluid specified in § 25...

  8. 14 CFR 25.1015 - Oil tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil tank tests. 25.1015 Section 25.1015... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1015 Oil tank tests. Each oil tank must... in § 25.965(a); and (2) The test fluid must be oil at 250 °F. instead of the fluid specified in § 25...

  9. Variable polarity plasma arc welding on the Space Shuttle external tank

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Bayless, E. O., Jr.; Jones, C. S., III; Munafo, P. M.; Biddle, A. P.; Wilson, W. A.

    1984-01-01

    Variable polarity plasma arc (VPPA) techniques used at NASA's Marshall Space Flight Center for the fabrication of the Space Shuttle External Tank are presentedd. The high plasma arc jet velocities of 300-2000 m/s are produced by heating the plasma gas as it passes through a constraining orifice, with the plasma arc torch becoming a miniature jet engine. As compared to the GTA jet, the VPPA has the following advantages: (1) less sensitive to contamination, (2) a more symmetrical fusion zone, and (3) greater joint penetration. The VPPA welding system is computerized, operating with a microprocessor, to set welding variables in accordance with set points inputs, including the manipulator and wire feeder, as well as torch control and power supply. Some other VPPA welding technique advantages are: reduction in weld repair costs by elimination of porosity; reduction of joint preparation costs through elimination of the need to scrape or file faying surfaces; reduction in depeaking costs; eventual reduction of the 100 percent-X-ray inspection requirements. The paper includes a series of schematic and block diagrams.

  10. An AI Approach to Ground Station Autonomy for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Fisher, Forest; Estlin, Tara; Mutz, Darren; Paal, Leslie; Law, Emily; Stockett, Mike; Golshan, Nasser; Chien, Steve

    1998-01-01

    This paper describes an architecture for an autonomous deep space tracking station (DS-T). The architecture targets fully automated routine operations encompassing scheduling and resource allocation, antenna and receiver predict generation. track procedure generation from service requests, and closed loop control and error recovery for the station subsystems. This architecture has been validated by the construction of a prototype DS-T station, which has performed a series of demonstrations of autonomous ground station control for downlink services with NASA's Mars Global Surveyor (MGS).

  11. Application of Digital Radiography to Weld Inspection for the Space Shuttle External Fuel Tank

    NASA Technical Reports Server (NTRS)

    Ussery, Warren

    2009-01-01

    This slide presentation reviews NASA's use of digital radiography to inspect the welds of the external tanks used to hold the cryogenic fuels for the Space Shuttle Main Engines. NASA has had a goal of replacing a significant portion of film used to inspect the welds, with digital radiography. The presentation reviews the objectives for converting to a digital system from film, the characteristics of the digital system, the Probability of detection study, the qualification and implementation of the system.

  12. External Tank (ET) Separation

    NASA Image and Video Library

    2011-05-16

    S134-E-005102 (16 May 2011) --- The STS-134 external fuel tank is seen during its release from space shuttle Endeavour in space following the successful launch on May 16, 2011. An STS-134 crew member using a hand-held still camera exposed the image. Photo credit: NASA

  13. External Tank (ET) Separation

    NASA Image and Video Library

    2011-05-16

    S134-E-005085 (16 May 2011) --- The STS-134 external fuel tank is seen during its release from space shuttle Endeavour in space following the successful launch on May 16, 2011. An STS-134 crew member using a hand-held still camera exposed the image. Photo credit: NASA

  14. External Tank (ET) Separation

    NASA Image and Video Library

    2011-05-16

    S134-E-005013 (16 May 2011) --- The STS-134 external fuel tank is seen during its release from space shuttle Endeavour in space following the successful launch on May 16, 2011. An STS-134 crew member using a hand-held still camera exposed the image. Photo credit: NASA

  15. Thermal performance of gaseous-helium-purged tank-mounted multilayer insulation system during ground-hold and space-hold thermal cycling and exposure to water vapor

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.

    1978-01-01

    An experimental investigation was conducted to determine (1) the ground-hold and space-hold thermal performance of a multilayer insulation (MLI) system mounted on a spherical, liquid-hydrogen propellant tank and (2) the degradation to the space-hold thermal performance of the insulation system that resulted from both thermal cycling and exposure to moisture. The propellant tank had a diameter of 1.39 meters (4.57ft). The MLI consisted of two blankets of insulation; each blanket contained 15 double-aluminized Mylar radiation shields separated by double silk net spacers. Nineteen tests simulating basic cryogenic spacecraft thermal (environmental) conditions were conducted. These tests typically included initial helium purge, liquid-hydrogen fill and ground-hold, ascent, space-hold, and repressurization. No significant degradation of the space-hold thermal performance due to thermal cycling was noted.

  16. Hybrid Tank Technology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researchers have accomplished great advances in pressure vessel technology by applying high-performance composite materials as an over-wrap to metal-lined pressure vessels. These composite over-wrapped pressure vessels (COPVs) are used in many areas, from air tanks for firefighters and compressed natural gas tanks for automobiles, to pressurant tanks for aerospace launch vehicles and propellant tanks for satellites and deep-space exploration vehicles. NASA and commercial industry are continually striving to find new ways to make high-performance pressure vessels safer and more reliable. While COPVs are much lighter than all-metal pressure vessels, the composite material, typically graphite fibers with an epoxy matrix resin, is vulnerable to impact damage. Carbon fiber is most frequently used for the high-performance COPV applications because of its high strength-to-weight characteristics. Other fibers have been used, but with limitations. For example, fiberglass is inexpensive but much heavier than carbon. Aramid fibers are impact resistant but have less strength than carbon and their performance tends to deteriorate.

  17. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  18. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  19. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  20. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  1. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  2. Development and Exploration of a Regional Stormwater BMP Performance Database to Parameterize an Integrated Decision Support Tool (i-DST)

    NASA Astrophysics Data System (ADS)

    Bell, C.; Li, Y.; Lopez, E.; Hogue, T. S.

    2017-12-01

    Decision support tools that quantitatively estimate the cost and performance of infrastructure alternatives are valuable for urban planners. Such a tool is needed to aid in planning stormwater projects to meet diverse goals such as the regulation of stormwater runoff and its pollutants, minimization of economic costs, and maximization of environmental and social benefits in the communities served by the infrastructure. This work gives a brief overview of an integrated decision support tool, called i-DST, that is currently being developed to serve this need. This presentation focuses on the development of a default database for the i-DST that parameterizes water quality treatment efficiency of stormwater best management practices (BMPs) by region. Parameterizing the i-DST by region will allow the tool to perform accurate simulations in all parts of the United States. A national dataset of BMP performance is analyzed to determine which of a series of candidate regionalizations explains the most variance in the national dataset. The data used in the regionalization analysis comes from the International Stormwater BMP Database and data gleaned from an ongoing systematic review of peer-reviewed and gray literature. In addition to identifying a regionalization scheme for water quality performance parameters in the i-DST, our review process will also provide example methods and protocols for systematic reviews in the field of Earth Science.

  3. Closeup view of the External Tank and Solid Rocket Boosters ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the External Tank and Solid Rocket Boosters at the Launch Pad at Kennedy Space Center. Note the Hydrogen Vent Arm extending out from the Fixed Service Structure at attached to the Intertank segment of the External Tank. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  4. A 'two-tank' seasonal storage concept for solar space heating of buildings

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Connor, D. W.; Mueller, R. O.

    This paper presents an analysis of a novel 'two-tank' water storage system, consisting of a large primary water tank for seasonal storage of solar energy plus a much smaller secondary water tank for storage of solar energy collected during the heating season. The system offers the advantages of high collection efficiency during the early stages of the heating season, a period when the temperature of the primary tank is generally high. By preferentially drawing energy from the small secondary tank to meet load, its temperature can be kept well below that of the larger primary tank, thereby providing a lower-temperature source for collector inlet fluid. The resulting improvement in annual system efficiency through the addition of a small secondary tank is found to be substantial - for the site considered in the paper (Madison, Wisconsin), the relative percentage gain in annual performance is in the range of 10 to 20%. A simple computer model permits accurate hour-by-hour transient simulation of thermal performance over a yearly cycle. The paper presents results of detailed simulations of collectors and storage sizing and design trade-offs for solar energy systems supplying 90% to 100% of annual heating load requirements.

  5. Vapor ingestion in Centaur liquid-hydrogen tank

    NASA Technical Reports Server (NTRS)

    Symons, E. P.

    1977-01-01

    Vapor ingestion phenomena were investigated using scale models of the Centaur liquid hydrogen tank to determine the height of the free surface of the liquid when vapor is intially ingested into the tank outlet. Data are compared with an analysin and, is general the agreement is very good. Predictions are presented for minimum liquid levels required in the Centaur liquid hydrogen tank in order to prevent vapor ingestion when restarting the engines in space and the quantities of liquid remaining in the tank at vapor ingestion during main engine firing.

  6. The latitudinal variation of geoelectromagnetic disturbances during large ( Dst ≤ ₋100 nT) geomagnetic storms

    DOE PAGES

    Woodroffe, Jesse Richard; Morley, S. K.; Jordanova, V. K.; ...

    2016-09-20

    Geoelectromagnetic disturbances (GMDs) are an important consequence of space weather that can directly impact many types of terrestrial infrastructure. In this paper, we analyze 30 years of SuperMAG magnetometer data from the range of magnetic latitudes 20°≤λ≤75° to derive characteristic latitudinal profiles for median GMD amplitudes. Based on this data, we obtain a parameterization of these latitudinal profiles of different types of GMDs, providing an analytical fit with Dst-dependent parameters. Finally, we also obtain probabilistic estimates for the magnitudes of “100 year” GMDs, finding thatmore » $$\\dot{_B}$$ = 6.9 (3.60–12.9) nT/s should be expected at 45°≤λ< 50°, exceeding the 5 nT/s threshold for dangerous inductive heating.« less

  7. Conformal Cryogenic Tank Trade Study for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin

    1999-01-01

    Future reusable launch vehicles may be lifting bodies with non-circular cross section like the proposed Lockheed-Martin VentureStar(tm). Current designs for the cryogenic tanks of these vehicles are dual-lobed and quad-lobed tanks which are packaged more efficiently than circular tanks, but still have low packaging efficiencies with large gaps existing between the vehicle outer mold line and the outer surfaces of the tanks. In this study, tanks that conform to the outer mold line of a non-circular vehicle were investigated. Four structural concepts for conformal cryogenic tanks and a quad-lobed tank concept were optimized for minimum weight designs. The conformal tank concepts included a sandwich tank stiffened with axial tension webs, a sandwich tank stiffened with transverse tension webs, a sandwich tank stiffened with rings and tension ties, and a sandwich tank stiffened with orthogrid stiffeners and tension ties. For each concept, geometric parameters (such as ring frame spacing, the number and spacing of tension ties or webs, and tank corner radius) and internal pressure loads were varied and the structure was optimized using a finite-element-based optimization procedure. Theoretical volumetric weights were calculated by dividing the weight of the barrel section of the tank concept and its associated frames, webs and tension ties by the volume it circumscribes. This paper describes the four conformal tank concepts and the design assumptions utilized in their optimization. The conformal tank optimization results included theoretical weights, trends and comparisons between the concepts, are also presented, along with results from the optimization of a quad-lobed tank. Also, the effects of minimum gauge values and non-optimum weights on the weight of the optimized structure are described in this paper.

  8. External Tank - The Structure Backbone

    NASA Technical Reports Server (NTRS)

    Welzyn, Kenneth; Pilet, Jeffrey C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle

    2011-01-01

    The External Tank forms the structural backbone of the Space Shuttle in the launch configuration. Because the tank flies to orbital velocity with the Space Shuttle Orbiter, minimization of weight is mandatory, to maximize payload performance. Choice of lightweight materials both for structure and thermal conditioning was necessary. The tank is large, and unique manufacturing facilities, tooling, handling, and transportation operations were required. Weld processes and tooling evolved with the design as it matured through several block changes, to reduce weight. Non Destructive Evaluation methods were used to assure integrity of welds and thermal protection system materials. The aluminum-lithium alloy was used near the end of the program and weld processes and weld repair techniques had to be refined. Development and implementation of friction stir welding was a substantial technology development incorporated during the Program. Automated thermal protection system application processes were developed for the majority of the tank surface. Material obsolescence was an issue throughout the 40 year program. The final configuration and tank weight enabled international space station assembly in a high inclination orbit allowing international cooperation with the Russian Federal Space Agency. Numerous process controls were implemented to assure product quality, and innovative proof testing was accomplished prior to delivery. Process controls were implemented to assure cleanliness in the production environment, to control contaminants, and to preclude corrosion. Each tank was accepted via rigorous inspections, including non-destructive evaluation techniques, proof testing, and all systems testing. In the post STS-107 era, the project focused on ascent debris risk reduction. This was accomplished via stringent process controls, post flight assessment using substantially improved imagery, and selective redesigns. These efforts were supported with a number of test programs to

  9. Liquid Hydrogen Propellant Tank Sub-Surface Pressurization with Gaseous Helium

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Cartagena, W.

    2015-01-01

    A series of tests were conducted to evaluate the performance of a propellant tank pressurization system with the pressurant diffuser intentionally submerged beneath the surface of the liquid. Propellant tanks and pressurization systems are typically designed with the diffuser positioned to apply pressurant gas directly into the tank ullage space when the liquid propellant is settled. Space vehicles, and potentially propellant depots, may need to conduct tank pressurization operations in micro-gravity environments where the exact location of the liquid relative to the diffuser is not well understood. If the diffuser is positioned to supply pressurant gas directly to the tank ullage space when the propellant is settled, then it may become partially or completely submerged when the liquid becomes unsettled in a microgravity environment. In such case, the pressurization system performance will be adversely affected requiring additional pressurant mass and longer pressurization times. This series of tests compares and evaluates pressurization system performance using the conventional method of supplying pressurant gas directly to the propellant tank ullage, and then supplying pressurant gas beneath the liquid surface. The pressurization tests were conducted on the Engineering Development Unit (EDU) located at Test Stand 300 at NASA Marshall Space Flight Center (MSFC). EDU is a ground based Cryogenic Fluid Management (CFM) test article supported by Glenn Research Center (GRC) and MSFC. A 150 ft3 propellant tank was filled with liquid hydrogen (LH2). The pressurization system used regulated ambient helium (GHe) as a pressurant, a variable position valve to maintain flow rate, and two identical independent pressurant diffusers. The ullage diffuser was located in the forward end of the tank and was completely exposed to the tank ullage. The submerged diffuser was located in the aft end of the tank and was completely submerged when the tank liquid level was 10% or greater

  10. Application of CFRP with High Hydrogen Gas Barrier Characteristics to Fuel Tanks of Space Transportation System

    NASA Astrophysics Data System (ADS)

    Yonemoto, Koichi; Yamamoto, Yuta; Okuyama, Keiichi; Ebina, Takeo

    In the future, carbon fiber reinforced plastics (CFRPs) with high hydrogen gas barrier performance will find wide applications in all industrial hydrogen tanks that aim at weight reduction; the use of such materials will be preferred to the use of conventional metallic materials such as stainless steel or aluminum. The hydrogen gas barrier performance of CFRP will become an important issue with the introduction of hydrogen-fuel aircraft. It will also play an important role in realizing fully reusable space transportation system that will have high specific tensile CFRP structures. Such materials are also required for the manufacture of high-pressure hydrogen gas vessels for use in the fuel cell systems of automobiles. This paper introduces a new composite concept that can be used to realize CFRPs with high hydrogen gas barrier performance for applications in the cryogenic tanks of fully reusable space transportation system by the incorporation of a nonmetallic crystal layer, which is actually a dense and highly oriented clay crystal laminate. The preliminary test results show that the hydrogen gas barrier characteristics of this material after cryogenic heat shocks and cyclic loads are still better than those of other polymer materials by approximately two orders of magnitude.

  11. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  12. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  13. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  14. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  15. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  16. Thermal design of the space shuttle external tank

    NASA Technical Reports Server (NTRS)

    Bachrtel, F. D.; Vaniman, J. L.; Stuckey, J. M.; Gray, C.; Widofsky, B.

    1985-01-01

    The shuttle external tank thermal design presents many challenges in meeting the stringent requirements established by the structures, main propulsion systems, and Orbiter elements. The selected thermal protection design had to meet these requirements, and ease of application, suitability for mass production considering low weight, cost, and high reliability. This development led to a spray-on-foam (SOFI) which covers the entire tank. The need and design for a SOFI material with a dual role of cryogenic insulation and ablator, and the development of the SOFI over SLA concept for high heating areas are discussed. Further issuses of minimum surface ice/frost, no debris, and the development of the TPS spray process considering the required quality and process control are examined.

  17. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank vents and carburetor vapor vents...

  18. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents and carburetor vapor vents...

  19. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank vents and carburetor vapor vents...

  20. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank vents and carburetor vapor vents...

  1. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank vents and carburetor vapor vents...

  2. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank vents and carburetor vapor vents...

  3. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents and carburetor vapor vents...

  4. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank vents and carburetor vapor vents...

  5. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank vents and carburetor vapor vents...

  6. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank vents and carburetor vapor vents...

  7. Test-Analysis Correlation for Space Shuttle External Tank Foam Impacting RCC Wing Leading Edge Component Panels

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.

    2008-01-01

    The Space Shuttle Columbia Accident Investigation Board recommended that NASA develop, validate, and maintain a modeling tool capable of predicting the damage threshold for debris impacts on the Space Shuttle Reinforced Carbon-Carbon (RCC) wing leading edge and nosecap assembly. The results presented in this paper are one part of a multi-level approach that supported the development of the predictive tool used to recertify the shuttle for flight following the Columbia Accident. The assessment of predictive capability was largely based on test analysis comparisons for simpler component structures. This paper provides comparisons of finite element simulations with test data for external tank foam debris impacts onto 6-in. square RCC flat panels. Both quantitative displacement and qualitative damage assessment correlations are provided. The comparisons show good agreement and provided the Space Shuttle Program with confidence in the predictive tool.

  8. Pressurizer tank upper support

    DOEpatents

    Baker, T.H.; Ott, H.L.

    1994-01-11

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

  9. Pressurizer tank upper support

    DOEpatents

    Baker, Tod H.; Ott, Howard L.

    1994-01-01

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

  10. 14 CFR 29.977 - Fuel tank outlet.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank outlet. 29.977 Section 29.977...

  11. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank outlet. 25.977 Section 25.977...

  12. 14 CFR 23.977 - Fuel tank outlet.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel... damage any fuel system component. (b) The clear area of each fuel tank outlet strainer must be at least... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank outlet. 23.977 Section 23.977...

  13. 14 CFR 23.977 - Fuel tank outlet.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel... damage any fuel system component. (b) The clear area of each fuel tank outlet strainer must be at least... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank outlet. 23.977 Section 23.977...

  14. 14 CFR 29.977 - Fuel tank outlet.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank outlet. 29.977 Section 29.977...

  15. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank outlet. 25.977 Section 25.977...

  16. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank outlet. 25.977 Section 25.977...

  17. 14 CFR 29.977 - Fuel tank outlet.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank outlet. 29.977 Section 29.977...

  18. 14 CFR 29.977 - Fuel tank outlet.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank outlet. 29.977 Section 29.977...

  19. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank outlet. 25.977 Section 25.977...

  20. 14 CFR 23.977 - Fuel tank outlet.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel... damage any fuel system component. (b) The clear area of each fuel tank outlet strainer must be at least... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank outlet. 23.977 Section 23.977...

  1. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank outlet. 25.977 Section 25.977...

  2. 14 CFR 23.977 - Fuel tank outlet.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel... damage any fuel system component. (b) The clear area of each fuel tank outlet strainer must be at least... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank outlet. 23.977 Section 23.977...

  3. 14 CFR 23.977 - Fuel tank outlet.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel... damage any fuel system component. (b) The clear area of each fuel tank outlet strainer must be at least... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank outlet. 23.977 Section 23.977...

  4. 14 CFR 29.977 - Fuel tank outlet.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.977 Fuel tank outlet. (a) There must be... airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank outlet. 29.977 Section 29.977...

  5. Single launch lunar habitat derived from an NSTS external tank

    NASA Technical Reports Server (NTRS)

    King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    A concept for using the spent external tank from a National Space Transportation System (NSTS) to derive a lunar habitat is described. The external tank is carried into low Earth orbit where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS orbiter can place the external tank in LEO, provide orbiter astronauts for disassembly of the external tank, and transport the required subsystem hardware for outfitting the lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen intertank modifications utilize existing structures and openings for man access without compromising the structural integrity of the tank. The modifications include installation of living quarters, instrumentation, and an airlock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal control, environmental control and life support, and propulsion. The converted lunar habitat is designed for unmanned transport and autonomous soft landing on the lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyer. The lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a lunar lander for crew changeover and resupply.

  6. Structural analysis of the space shuttle solid rocket booster/external tank attach ring

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.

    1988-01-01

    An External Tank (ET) attach ring is used in the Space Shuttle System to transfer lateral loads between the ET and the Solid Rocket Booster (SRB). Following the Challenger (51-L) accident, the flight performance of the ET attach ring was reviewed, and negative margins of safety and failed bolts in the attach ring were subsequently identified. The analyses described in this report were performed in order to understand the existing ET attach ring structural response to motor case internal pressurization as well as to aid in an ET attach ring redesign effort undertaken by NASA LaRC. The finite element model as well as the results from linear and nonlinear static structural analyses are described.

  7. A single launch lunar habitat derived from an NSTS external tank

    NASA Technical Reports Server (NTRS)

    King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    A concept for using a spent External Tank from the National Space Transportation System (Shuttle) to derive a Lunar habitat is described. The concept is that the External Tank is carried into Low-Earth Orbit (LEO) where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person Lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS Orbiter can place the External Tank in LEO, provide orbiter astronauts for disassembly of the External Tank, and transport the required subsystem hardware for outfitting the Lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen tank-intertank modifications utilize existing structures and openings for human access without compromising the structural integrity of the tank. The modification includes installation of living quarters, instrumentation, and an air lock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal-control, environmental-control and life-support, and propulsion. The converted Lunar habitat is designed for unmanned transport and autonomous soft landing on the Lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyor. The Lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a Lunar lander for crew changeover and resupply.

  8. Superposed epoch analysis and storm statistics from 25 years of the global geomagnetic disturbance index, USGS-Dst

    USGS Publications Warehouse

    Gannon, J.L.

    2012-01-01

    Statistics on geomagnetic storms with minima below -50 nanoTesla are compiled using a 25-year span of the 1-minute resolution disturbance index, U.S. Geological Survey Dst. A sudden commencement, main phase minimum, and time between the two has a magnitude of 35 nanoTesla, -100 nanoTesla, and 12 hours, respectively, at the 50th percentile level. The cumulative distribution functions for each of these features are presented. Correlation between sudden commencement magnitude and main phase magnitude is shown to be low. Small, medium, and large storm templates at the 33rd, 50th, and 90th percentile are presented and compared to real examples. In addition, the relative occurrence of rates of change in Dst are presented.

  9. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  10. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  11. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  12. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Compartments containing gasoline machinery or fuel tanks... gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have natural... Standard H-2.5, “Design and Construction; Ventilation of Boats Using Gasoline. ...

  13. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments containing gasoline machinery or fuel tanks... gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have natural... Standard H-2.5, “Design and Construction; Ventilation of Boats Using Gasoline. ...

  14. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Compartments containing gasoline machinery or fuel tanks... gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have natural... Standard H-2.5, “Design and Construction; Ventilation of Boats Using Gasoline. ...

  15. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Compartments containing gasoline machinery or fuel tanks... gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have natural... Standard H-2.5, “Design and Construction; Ventilation of Boats Using Gasoline. ...

  16. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Compartments containing gasoline machinery or fuel tanks... gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have natural... Standard H-2.5, “Design and Construction; Ventilation of Boats Using Gasoline. ...

  17. External Tank Program - Legacy of Success

    NASA Technical Reports Server (NTRS)

    Pilet, Jeffery C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle; Welzyn, Kenneth

    2011-01-01

    The largest single element of Space Shuttle is the External Tank (ET), which serves as the structural backbone of the vehicle during ascent and provides liquid propellants to the Orbiter s three Main Engines. The ET absorbs most of the seven million pounds of thrust exerted by the Solid Rocket Boosters and Main Engines. The design evolved through several block changes, reducing weight each time. Because the tank flies to orbital velocity with the Space Shuttle Orbiter, minimization of weight is mandatory, to maximize payload performance. The initial configuration, the standard weight tank, weighed 76,000 pounds and was an aluminum 2219 structure. The light weight tank weighed 66,000 pounds and flew 86 missions. The super light weight tank weighed 58,500 pounds and was primarily an aluminum-lithium structure. The final configuration and low weight enabled system level performance sufficient for assembly of the International Space Station in a high inclination orbit, vital for international cooperation. Another significant challenge was the minimization of ice formation on the cryogenic tanks. This was essential due to the system configuration and the choice of ceramic thermal protection system materials on the Orbiter. Ice would have been a major debris hazard. Spray on foam insulation materials served multiple functions including thermal insulation, conditioning of cryogenic propellants, and thermal protection for the tank structure during ascent and entry. The tank is large, and unique manufacturing facilities, tooling, and handling, and transportation operations were developed. Weld processes and tooling evolved with the design as it matured through several block changes. Non Destructive Evaluation methods were used to assure integrity of welds and thermal protection system materials. The aluminum-lithium alloy was used near the end of the program and weld processes and weld repair techniques had to be refined. Development and implementation of friction stir

  18. Microwave and Millimeter Wave Nondestructive Evaluation of the Space Shuttle External Tank Insulating Foam

    NASA Technical Reports Server (NTRS)

    Shrestha, S.; Kharkovsky, S.; Zoughi, R.; Hepburn, F

    2005-01-01

    The Space Shuttle Columbia s catastrophic failure has been attributed to a piece of external fuel tank insulating SOFI (Spray On Foam Insulation) foam striking the leading edge of the left wing of the orbiter causing significant damage to some of the protecting heat tiles. The accident emphasizes the growing need to develop effective, robust and life-cycle oriented methods of nondestructive testing and evaluation (NDT&E) of complex conductor-backed insulating foam and protective acreage heat tiles used in the space shuttle fleet and in future multi-launch space vehicles. The insulating SOFI foam is constructed from closed-cell foam. In the microwave regime this foam is in the family of low permittivity and low loss dielectric materials. Near-field microwave and millimeter wave NDT methods were one of the techniques chosen for this purpose. To this end several flat and thick SOFI foam panels, two structurally complex panels similar to the external fuel tank and a "blind" panel were used in this investigation. Several anomalies such as voids and disbonds were embedded in these panels at various locations. The location and properties of the embedded anomalies in the "blind" panel were not disclosed to the investigating team prior to the investigation. Three frequency bands were used in this investigation covering a frequency range of 8-75 GHz. Moreover, the influence of signal polarization was also investigated. Overall the results of this investigation were very promising for detecting the presence of anomalies in different panels covered with relatively thick insulating SOFI foam. Different types of anomalies were detected in foam up to 9 in thick. Many of the anomalies in the more complex panels were also detected. When investigating the blind panel no false positives were detected. Anomalies in between and underneath bolt heads were not easily detected. This paper presents the results of this investigation along with a discussion of the capabilities of the method

  19. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  20. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  1. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  2. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  3. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  4. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  5. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  6. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  7. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  8. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  9. Advanced collapsible tank for liquid containment

    NASA Technical Reports Server (NTRS)

    Flanagan, David T.; Hopkins, Robert C.

    1993-01-01

    Tanks for bulk liquid containment will be required to support advanced planetary exploration programs. Potential applications include storage of potable, process, and waste water, and fuels and process chemicals. The launch mass and volume penalties inherent in rigid tanks suggest that collapsible tanks may be more efficient. Collapsible tanks are made of lightweight flexible material and can be folded compactly for storage and transport. Although collapsible tanks for terrestrial use are widely available, a new design was developed that has significantly less mass and bulk than existing models. Modelled after the shape of a sessible drop, this design features a dual membrane with a nearly uniform stress distribution and a low surface-to-volume ratio. It can be adapted to store a variety of liquids in nearly any environment with constant acceleration field. Three models of 10L, 50L, and 378L capacity have been constructed and tested. The 378L (100 gallon) model weighed less than 10 percent of a commercially available collapsible tank of equivalent capacity, and required less than 20 percent of the storage space when folded for transport.

  10. Romanenko looks through a Rodnik Tank in the SM

    NASA Image and Video Library

    2012-12-31

    ISS034-E-010446 (31 Dec. 2012) --- Russian cosmonaut Roman Romanenko, Expedition 34 flight engineer, looks through a Rodnik tank in the Zvezda Service Module of the International Space Station. Romanenko performed a water transfer from a Rodnik tank in the Progress to a Rodnik tank in the Zvezda Service Module. Note the multiple refractions of the cosmonaut?s head and shoulders in the bubbles.

  11. RFTA (Recycle Filter Tank Assembly) test fill

    NASA Image and Video Library

    2009-06-02

    ISS020-E-005984 (2 June 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, works with the Water Recovery System Recycle Filter Tank Assembly (RFTA) in the Destiny laboratory of the International Space Station.

  12. Dangerous Waste Characteristics of Waste from Hanford Tank 241-S-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-11-05

    Existing analytical data from samples taken from Hanford Tank 241-S-109, along with process knowledge of the wastes transferred to this tank, are reviewed to determine whether dangerous waste characteristics currently assigned to all waste in Hanford underground storage tanks are applicable to this tank waste. Supplemental technologies are examined to accelerate the Hanford tank waste cleanup mission and to accomplish the waste treatment in a safer and more efficient manner. The goals of supplemental technologies are to reduce costs, conserve double-shell tank space, and meet the scheduled tank waste processing completion date of 2028.

  13. Redesign of solid rocket booster/external tank attachment ring for the space transportation system

    NASA Technical Reports Server (NTRS)

    Mccomb, Harvey G., Jr. (Compiler)

    1987-01-01

    An improved design concept is presented for the Space Shuttle solid rocket booster (SRB)/external tank (ET) attachment ring structural component. This component picks up three struts which attach the aft end of each SRB to the ET. The concept is a partial ring with carefully tapered ends to distribute fastener loads safely into the SRB. Extensive design studies and analyses were performed to arrive at the concept. Experiments on structural elements were performed to determine material strength and stiffness characteristics. Materials and fabrication studies were conducted to determine acceptable tolerances for the design concept. An overview is provided of the work along with conclusions and major recommendations.

  14. Numerical Modeling of Propellant Boil-Off in a Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.; Sass, J. P.; Fesmire, J. E.

    2007-01-01

    A numerical model to predict boil-off of stored propellant in large spherical cryogenic tanks has been developed. Accurate prediction of tank boil-off rates for different thermal insulation systems was the goal of this collaboration effort. The Generalized Fluid System Simulation Program, integrating flow analysis and conjugate heat transfer for solving complex fluid system problems, was used to create the model. Calculation of tank boil-off rate requires simultaneous simulation of heat transfer processes among liquid propellant, vapor ullage space, and tank structure. The reference tank for the boil-off model was the 850,000 gallon liquid hydrogen tank at Launch Complex 39B (LC- 39B) at Kennedy Space Center, which is under study for future infrastructure improvements to support the Constellation program. The methodology employed in the numerical model was validated using a sub-scale model and tank. Experimental test data from a 1/15th scale version of the LC-39B tank using both liquid hydrogen and liquid nitrogen were used to anchor the analytical predictions of the sub-scale model. Favorable correlations between sub-scale model and experimental test data have provided confidence in full-scale tank boil-off predictions. These methods are now being used in the preliminary design for other cases including future launch vehicles

  15. In-flight Video Captured by External Tank Camera System

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In this July 26, 2005 video, Earth slowly fades into the background as the STS-114 Space Shuttle Discovery climbs into space until the External Tank (ET) separates from the orbiter. An External Tank ET Camera System featuring a Sony XC-999 model camera provided never before seen footage of the launch and tank separation. The camera was installed in the ET LO2 Feedline Fairing. From this position, the camera had a 40% field of view with a 3.5 mm lens. The field of view showed some of the Bipod area, a portion of the LH2 tank and Intertank flange area, and some of the bottom of the shuttle orbiter. Contained in an electronic box, the battery pack and transmitter were mounted on top of the Solid Rocker Booster (SRB) crossbeam inside the ET. The battery pack included 20 Nickel-Metal Hydride batteries (similar to cordless phone battery packs) totaling 28 volts DC and could supply about 70 minutes of video. Located 95 degrees apart on the exterior of the Intertank opposite orbiter side, there were 2 blade S-Band antennas about 2 1/2 inches long that transmitted a 10 watt signal to the ground stations. The camera turned on approximately 10 minutes prior to launch and operated for 15 minutes following liftoff. The complete camera system weighs about 32 pounds. Marshall Space Flight Center (MSFC), Johnson Space Center (JSC), Goddard Space Flight Center (GSFC), and Kennedy Space Center (KSC) participated in the design, development, and testing of the ET camera system.

  16. Liner-less Tanks for Space Application - Design and Manufacturing Considerations

    NASA Technical Reports Server (NTRS)

    Jones, Brian H.; Li, Min-Chung

    2003-01-01

    Composite pressure vessels, used extensively for gas and fuel containment in space vehicles, are generally constructed with a metallic liner, while the fiber reinforcement carries the major portion of the pressure-induced load. The design is dominated by the liner s low strain at yield since the reinforcing fibers cannot operate at their potential load-bearing capability without resorting to pre-stressing (or autofrettaging). An ultra high-efficiency pressure vessel, which operates at the optimum strain capability of the fibers, can be potentially achieved with a liner-less construction. This paper discusses the design and manufacturing challenges to be overcome in the development of such a pressure vessel. These include: (1) gas/liquid containment and permeation, (2) design and structural analysis, and (3) manufacturing process development. The paper also presents the development and validation tests on a liner-less pressure vessel developed by Kaiser Compositek Inc. (KCI). It should be noted that KCI s liner-less tank exhibits a highly controlled leak-before-burst mode. This feature results in a structure having the highest level of safety.

  17. Space Shuttle Projects

    NASA Image and Video Library

    2004-09-13

    The Space Shuttle External Tank 120 is shown here during transfer in NASA’s Michoud Assembly Facility in New Orleans. Slated for launch on the Orbiter Discovery scheduled for next Spring, the tank will be erected vertically in preparation for its new foam application process on the liquid hydrogen tank-to-inter tank flange area, a tank structural connection point. The foam will be applied with an enhanced finishing procedure that requires two technicians, one for a new mold-injection procedure to the intertank’s ribbing and one for real-time videotaped surveillance of the process. Marshall Space Flight Center played a significant role in the development of the new application process designed to replace the possible debris shedding source previously used.

  18. Space Shuttle Projects

    NASA Image and Video Library

    2004-09-13

    The Space Shuttle External Tank 120 is shown here in its vertical position in NASA’s Michoud Assembly Facility in New Orleans. Slated for launch on the Orbiter Discovery scheduled for next Spring, the tank is in position for its new foam application process on the liquid hydrogen tank-to-inter tank flange area, a tank structural connection point. The foam will be applied with an enhanced finishing procedure that requires two technicians, one for a new mold-injection procedure to the intertank’s ribbing and one for real-time videotaped surveillance of the process. Marshall Space Flight Center played a significant role in the development of the new application process designed to replace the possible debris shedding source previously used.

  19. Space Shuttle Status News Conference

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Richard Gilbech, External Tank "Tiger Team" Lead, begins this space shuttle news conference with detailing the two major objectives of the team. The objectives include: 1) Finding the root cause of the foam loss on STS-114; and 2) Near and long term improvements for the external tank. Wayne Hale, Space Shuttle Program Manager, presents a chart to explain the external tank foam loss during STS-114. He gives a possible launch date for STS-121 after there has been a repair to the foam on the External Tank. He further discusses the changes that need to be made to the surrounding areas of the plant in New Orleans, due to Hurricane Katrina. Bill Gerstemaier, NASA Associate Administrator for Space Operations, elaborates on the testing of the external tank foam loss. The discussion ends with questions from the news media about a fix for the foam, replacement of the tiles, foam loss avoidance, the root cause of foam loss and a possible date for a new external tank to be shipped to NASA Kennedy Space Center.

  20. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.975 Fuel tank vents and carburetor vapor vents. (a) Each fuel tank must be vented... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank vents and carburetor vapor vents...

  1. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.975 Fuel tank vents and carburetor vapor vents. (a) Each fuel tank must be vented... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank vents and carburetor vapor vents...

  2. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.975 Fuel tank vents and carburetor vapor vents. (a) Each fuel tank must be vented... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank vents and carburetor vapor vents...

  3. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.975 Fuel tank vents and carburetor vapor vents. (a) Each fuel tank must be vented... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank vents and carburetor vapor vents...

  4. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.975 Fuel tank vents and carburetor vapor vents. (a) Each fuel tank must be vented... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents and carburetor vapor vents...

  5. 4. TOPSIDE VIEW FROM UPPER DECK LOOKING DOWN INTO TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. TOPSIDE VIEW FROM UPPER DECK LOOKING DOWN INTO TANK WITH SHUTTLE CARGO BAY MOCK-UP AT BOTTOM OF 40 FOOT TANK. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  6. 5. TOPSIDE VIEW FROM UPPER DECK LOOKING DOWN INTO TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. TOPSIDE VIEW FROM UPPER DECK LOOKING DOWN INTO TANK WITH SHUTTLE CARGO BAY MOCK-UP AT BOTTOM OF 40 FOOT TANK. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  7. Nonlinear Analysis of the Space Shuttle Superlightweight LO2 Tank. Part 2; Behavior Under 3g End-of-Flight Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Young, Richard D.; Collins, Timothy J.; Starnes, James H.,Jr.

    1998-01-01

    Results of linear bifurcation and nonlinear analyses of the Space Shuttle super lightweight (SLWT) external liquid-oxygen (LO2) tank are presented for an important end-of-flight loading condition. These results illustrate an important type of response mode for thin-walled shells, that are subjected to combined mechanical and thermal loads, that may be encountered in the design of other liquid-fuel launch vehicles. Linear bifurcation analyses are presented that predict several nearly equal eigenvalues that correspond to local buckling modes in the aft dome of the LO2 tank. In contrast, the nonlinear response phenomenon is shown to consist of a short-wavelength bending deformation in the aft elliptical dome of the LO2 tank that grows in amplitude in a stable manner with increasing load. Imperfection sensitivity analyses are presented that show that the presence of several nearly equal eigenvalues does not lead to a premature general instability mode for the aft dome. For the linear bifurcation and nonlinear analyses, the results show that accurate predictions of the response of the shell generally require a large-scale, high fidelity finite-element model. Results are also presented that show that the SLWT LO2 tank can support loads in excess of approximately 1.9 times the values of the operational loads considered.

  8. Deflection Analysis of the Space Shuttle External Tank Door Drive Mechanism

    NASA Technical Reports Server (NTRS)

    Tosto, Michael A.; Trieu, Bo C.; Evernden, Brent A.; Hope, Drew J.; Wong, Kenneth A.; Lindberg, Robert E.

    2008-01-01

    Upon observing an abnormal closure of the Space Shuttle s External Tank Doors (ETD), a dynamic model was created in MSC/ADAMS to conduct deflection analyses for assessing whether the Door Drive Mechanism (DDM) was subjected to excessive additional stress, and more importantly, to evaluate the magnitude of the induced step or gap with respect to shuttle s body tiles. To model the flexibility of the DDM, a lumped parameter approximation was used to capture the compliance of individual parts within the drive linkage. These stiffness approximations were then validated using FEA and iteratively updated in the model to converge on the actual distributed parameter equivalent stiffnesses. The goal of the analyses is to determine the deflections in the mechanism and whether or not the deflections are in the region of elastic or plastic deformation. Plastic deformation may affect proper closure of the ETD and would impact aero-heating during re-entry.

  9. [Space Weather Impact on the Electricity Market

    NASA Technical Reports Server (NTRS)

    SaintCyr, O. Chris

    2007-01-01

    Forbes & St. Cyr (2004, hereafter "FISC") have provided evidence that the electricity market can be impacted by space weather. Our analysis indicated that the estimated market impact for PJM was 3.7 % or approximately $500 million dollars over the 19 month sample period. Kappenman has taken exception to this estimate and contends that we have exaggerated the magnitude of the problem that space weather poses to PJM. There are four specific issues: (1) he claims that we have ignored relevant literature; (2) he asserts that Dst is not an appropriate proxy for GICs in PJM; (3) he charges that our findings are inconsistent with the impact of the 17 September 2000 storm; and (4) he alleges that our discussion of October 2003 storms is misleading. In our article, we have explained our methodology, multivariate regression analysis, with a particular focus on how it compares to correlation analysis. We have also explained the limitations of our analysis. We noted that "...While the Dstlprice relationship was found to be robust, the precise estimate should be treated with a relatively high degree of caution given that econometric modeling is not an exact science as well as the fact that the measure of space weather may be a poor proxy for GICs" (paragraph 96). We have also noted that additional research using local magnetometer data are needed (paragraph 97). We did not claim that that our findings for PJM are representative of the impact of space weather on other power grids. On the contrary, we noted that ... "Only analysis of other power grids will tell. " (paragraph 97). Kappenman inaccurately asserts that we have indicated that our findings . . . "imply much higher total costs are likely across the US and elsewhere in the world." He also inaccurately asserts that we have claimed that " . . . Dst is the most suited proxy for GIC in the PJM grid.. ." Moreover, he inaccurately refers to our analysis as a correlation study that uses Dst as quasi-binary indicator.

  10. 93. VIEW OF LIQUID OXYGEN TOPPING TANK BEHIND SKID 9 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. VIEW OF LIQUID OXYGEN TOPPING TANK BEHIND SKID 9 AND GASEOUS NITROGEN TANKS BEHIND SKID 7 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. Method of providing a lunar habitat from an external tank

    NASA Technical Reports Server (NTRS)

    King, Charles B. (Inventor); Hypes, Warren D. (Inventor); Simonsen, Lisa C. (Inventor); Butterfield, Ansel J. (Inventor); Nealy, John E. (Inventor); Hall, Jr., John B. (Inventor)

    1992-01-01

    A lunar habitat is provided by placing an external tank of an orbiter in a low Earth orbit where the hydrogen tank is separated from the intertank and oxygen tank which form a base structure. The base structure is then outfitted with an air lock, living quarters, a thermal control system, an environmental control and life support system, and a propulsion system. After the mounting of an outer sheath about the base structure to act as a micrometeoroid shield, the base structure is propelled to a soft landing on the moon. The sheath is mounted at a distance from the base structure to provide a space therebetween which is filled with regolith after landing. Conveniently, a space station is used to outfit the base structure. Various elements of the oxygen tank and intertank are used in outfitting.

  12. 14 CFR 23.1063 - Coolant tank tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Coolant tank tests. 23.1063 Section 23.1063 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Liquid Cooling § 23.1063...

  13. 14 CFR 23.1063 - Coolant tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Coolant tank tests. 23.1063 Section 23.1063 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Liquid Cooling § 23.1063...

  14. 14 CFR 23.1063 - Coolant tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Coolant tank tests. 23.1063 Section 23.1063 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Liquid Cooling § 23.1063...

  15. 14 CFR 23.1063 - Coolant tank tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Coolant tank tests. 23.1063 Section 23.1063 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Liquid Cooling § 23.1063...

  16. 14 CFR 23.1063 - Coolant tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Coolant tank tests. 23.1063 Section 23.1063 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Liquid Cooling § 23.1063...

  17. Unlined Reuseable Filament Wound Composite Cryogenic Tank Testing

    NASA Technical Reports Server (NTRS)

    Murphy, A. W.; Lake, R. E.; Wilkerson, C.

    1999-01-01

    An unlined reusable filament wound composite cryogenic tank was tested at the Marshall Space Flight Center using LH2 cryogen and pressurization to 320 psig. The tank was fabricated by Phillips Laboratory and Wilson Composite Group, Inc., using an EnTec five-axis filament winder and sand mandrels. The material used was IM7/977-2 (graphite/epoxy).

  18. An experimental investigation of the NASA space shuttle external tank at hypersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Wittliff, C. E.

    1975-01-01

    Pressure and heat transfer tests were conducted simulating flight conditions which the space shuttle external tank will experience prior to break-up. The tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel and simulated entry conditions for nominal, abort-once-around (AOA), and return to launch site (RTLS) launch occurrences. Surface pressure and heat-transfer-rate distributions were obtained with and without various protuberences (or exterior hardware) on the model at Mach numbers from 15.2 to 17.7 at angles of attack from -15 deg to -180 deg and at several roll angles. The tests were conducted over a Reynolds number range from 1300 to 58,000, based on model length.

  19. Numerical Modeling of Propellant Boiloff in Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.

    2007-01-01

    This Technical Memorandum (TM) describes the thermal modeling effort undertaken at Marshall Space Flight Center to support the Cryogenic Test Laboratory at Kennedy Space Center (KSC) for a study of insulation materials for cryogenic tanks in order to reduce propellant boiloff during long-term storage. The Generalized Fluid System Simulation program has been used to model boiloff in 1,000-L demonstration tanks built for testing the thermal performance of glass bubbles and perlite insulation. Numerical predictions of boiloff rate and ullage temperature have been compared with the measured data from the testing of demonstration tanks. A satisfactory comparison between measured and predicted data has been observed for both liquid nitrogen and hydrogen tests. Based on the experience gained with the modeling of the demonstration tanks, a numerical model of the liquid hydrogen storage tank at launch complex 39 at KSC was built. The predicted boiloff rate of hydrogen has been found to be in good agreement with observed field data. This TM describes three different models that have been developed during this period of study (March 2005 to June 2006), comparisons with test data, and results of parametric studies.

  20. LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. The tank has been lifted and rotated by crane and lowered back onto the flatbed truck for transport to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  1. LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane is used to lift and rotate the tank before delivery to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  2. LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane is used to lift the tank and rotate it before it is delivered to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  3. LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane is used to lift and rotate the tank before it is delivered to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  4. LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane has been attached to the tank to lift and rotate it before it is delivered to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  5. Summary of Activities for Nondestructive Evaluation of Insulation in Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2012-01-01

    This project was undertaken to investigate methods to non-intrusively determine the existence and density of perlite insulation in the annular region of the cryogenic storage vessels, specifically considering the Launch Complex 39 hydrogen tanks at Kennedy Space Center. Lack of insulation in the tanks (as existed in the pad B hydrogen tank at Kennedy Space Center) results in an excessive loss of commodity and can pose operational and safety risks if precautions are not taken to relieve the excessive gas build-up. Insulation with a density that is higher than normal (due to settling or compaction) may also pose an operational and safety risk if the insulation prevents the system from moving and responding to expansions and contractions as fluid is removed and added to the tank.

  6. 14 CFR 23.963 - Fuel tanks: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tanks: General. 23.963 Section 23.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.963 Fuel...

  7. 14 CFR 23.963 - Fuel tanks: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tanks: General. 23.963 Section 23.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.963 Fuel...

  8. 14 CFR 23.965 - Fuel tank tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank tests. 23.965 Section 23.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.965 Fuel...

  9. 14 CFR 23.971 - Fuel tank sump.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank sump. 23.971 Section 23.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.971 Fuel...

  10. 14 CFR 23.971 - Fuel tank sump.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank sump. 23.971 Section 23.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.971 Fuel...

  11. 14 CFR 23.963 - Fuel tanks: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tanks: General. 23.963 Section 23.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.963 Fuel...

  12. 14 CFR 23.965 - Fuel tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank tests. 23.965 Section 23.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.965 Fuel...

  13. 14 CFR 23.965 - Fuel tank tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank tests. 23.965 Section 23.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.965 Fuel...

  14. 14 CFR 23.963 - Fuel tanks: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tanks: General. 23.963 Section 23.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.963 Fuel...

  15. 14 CFR 23.965 - Fuel tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank tests. 23.965 Section 23.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.965 Fuel...

  16. 14 CFR 23.971 - Fuel tank sump.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank sump. 23.971 Section 23.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.971 Fuel...

  17. 14 CFR 23.965 - Fuel tank tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank tests. 23.965 Section 23.965 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.965 Fuel...

  18. 14 CFR 23.963 - Fuel tanks: General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tanks: General. 23.963 Section 23.963 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.963 Fuel...

  19. 14 CFR 23.971 - Fuel tank sump.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank sump. 23.971 Section 23.971 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.971 Fuel...

  20. Elevations, Major Component Isometric, Propellant Flow Schematic, and External Tank ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevations, Major Component Isometric, Propellant Flow Schematic, and External Tank Connection to Shuttle Main Engines - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  1. Temperature Stratification in a Cryogenic Fuel Tank

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Smelyanskiy, Vadim; Boschee, Jacob; Foygel, Michael Gregory

    2013-01-01

    A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It accounts for cryogenic propellant loading, storage, and unloading in the conditions of normal, increased, and micro- gravity. The model involves multiple horizontal control volumes in both liquid and ullage spaces. Temperature and velocity boundary layers at the tank walls are taken into account by using correlation relations. Heat exchange involving the tank wall is considered by means of the lumped-parameter method. By employing basic conservation laws, the model takes into consideration the major multi-phase mass and energy exchange processes involved, such as condensation-evaporation of the hydrogen, as well as flows of hydrogen liquid and vapor in the presence of pressurizing helium gas. The model involves a liquid hydrogen feed line and a tank ullage vent valve for pressure control. The temperature stratification effects are investigated, including in the presence of vent valve oscillations. A simulation of temperature stratification effects in a generic cryogenic tank has been implemented in Matlab and results are presented for various tank conditions.

  2. Decay of the Dst field of geomagnetic disturbance after substorm onset and its implication to storm-substorm relation

    NASA Astrophysics Data System (ADS)

    Iyemori, T.; Rao, D. R. K.

    1996-06-01

    In order to investigate the causal relationship between magnetic storms and substorms, variations of the mid-latitude geomagnetic indices, ASY (asymmetric part) and SYM (symmetric part), at substorm onsets are examined. Substorm onsets are defined by three different phenomena; (1) a rapid increase in the mid-latitude asymmetric-disturbance indices, ASY-D and ASY-H, with a shape of so-called `mid-latitude positive bay\\'; (2) a sharp decrease in the AL index; (3) an onset of Pi2 geomagnetic pulsation. The positive bays are selected using eye inspection and a pattern-matching technique. The 1-min-resolution SYM-H index, which is essentially the same as the hourly Dst index except in terms of the time resolution, does not show any statistically significant development after the onset of substorms; it tends to decay after the onset rather than to develop. It is suggested by a simple model calculation that the decay of the magnetospheric tail current after substorm onset is responsible for the decay of the Dst field. The relation between the IMF southward turning and the development of the Dst field is re-examined. The results support the idea that the geomagnetic storms and substorms are independent processes; that is, the ring-current development is not the result of the frequent occurrence of substorms, but that of enhanced convection caused by the large southward IMF. A substorm is the process of energy dissipation in the magnetosphere, and its contribution to the storm-time ring-current formation seems to be negligible. The decay of the Dst field after a substorm onset is explained by a magnetospheric energy theorem. Acknowledgements. This study is supported in part by the Ministry of Education, Science, Sports, and Culture in Japan, under a Grant-in-Aid for Scientific Research (Category B). Topical Editor D. Alcaydé thanks M. Lockwood and N. J. Fox for their help in evaluating this paper.-> Correspondence to: Y. Kamide->

  3. Thermographic Methods of Detecting Insulation Voids in Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Arens, Ellen; Nurge, Mark; Youngquist, Robert; Starr, Stanley

    2010-01-01

    Four very large (900Kgal) cryogenic liquid hydrogen and oxygen storage tanks at Kennedy Space Center's LC-39 launch pads were constructed in 1965 to support the Apollo/Saturn V Program and continue to support the Space Shuttle Program. These double-walled spherical tanks with powdered insulation in the annular region, have received minimal refurbishment or even inspection over the years. Intrusively inspecting these tanks would mean a significant down time to the program as the cryogenic liquid and the perlite insulation would have to be removed which would be a significant task and long-term schedule disruption. A study of the tanks was performed to determine the extent to which performance and structural information could be revealed without intrusive inspection. Thermal images of the tanks were taken over a variety of environmental conditions to determine the best conditions under which to compare and use thermography as a health monitoring technique as the tanks continue to age. The settling and subsequent compaction of insulation is a serious concern for cryogenic tanks. Comparison of images from the tanks reveals significant variations in the insulation in the annual regions and point to the use of thermography as a way to monitor for insulation migration and possible compaction. These measurements, when combined with mathematical models of historical boil-off data provide key insight to the condition of the vessels. Acceptance testing methods for new tanks, before they are filled with cryogenic commodity (and thereby thermally cycled), are needed and we explore how thermography can be used to accomplish this.

  4. 46 CFR 151.13-5 - Cargo segregation-tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks. (a... through design. (2) Segregation of cargo space from machinery spaces and other spaces which have or could... Grade E Liquid (if compatible with cargo) is satisfactory. (b) [Reserved] (c) If a cofferdam is required...

  5. 46 CFR 151.13-5 - Cargo segregation-tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks. (a... through design. (2) Segregation of cargo space from machinery spaces and other spaces which have or could... Grade E Liquid (if compatible with cargo) is satisfactory. (b) [Reserved] (c) If a cofferdam is required...

  6. Reusable Launch Vehicle Tank/Intertank Sizing Trade Study

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Myers, David E.; Martin, Carl J.

    2000-01-01

    A tank and intertank sizing tool that includes effects of major design drivers, and which allows parametric studies to be performed, has been developed and calibrated against independent representative results. Although additional design features, such as bulkheads and field joints, are not currently included in the process, the improved level of fidelity has allowed parametric studies to be performed which have resulted in understanding of key tank and intertank design drivers, design sensitivities, and definition of preferred design spaces. The sizing results demonstrated that there were many interactions between the configuration parameters of internal/external payload, vehicle fineness ratio (half body angle), fuel arrangement (LOX-forward/LOX-aft), number of tanks, and tank shape/arrangement (number of lobes).

  7. Development and Qualification of Alternate Blowing Agents for Space Shuttle External Tank Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Williams, Charles W.; Cavalaris, James G.

    1994-01-01

    The Aerospace industry has a long history of using low density polyurethane and polyurethane-modified isocyanurate foam systems as lightweight, low cost, easily processed cryogenic Thermal Protection Systems (TPS) for ascent vehicles. The Thermal Protection System of the Space Shuttle External Tank (ET) is required so that quality liquid cryogenic propellant can be supplied to the Orbiter main engines and to protect the metal structure of the tanks from becoming too hot from aerodynamic heating, hence preventing premature break-up of the tank. These foams are all blown with CFC-1 I blowing agent which has been identified by the Environmental Protection Agency (EPA) as an ozone depleting substance. CFCs will not be manufactured after 1995, Consequently, alternate blowing agent substances must be identified and implemented to assure continued ET manufacture and delivery. This paper describes the various testing performed to select and qualify HCFC-1 41 b as a near term drop-in replacement for CFC-11. Although originally intended to be a one for one substitution in the formulation, several technical issues were identified regarding material performance and processability which required both formulation changes and special processing considerations to overcome. In order to evaluate these material changes, each material was subjected to various tests to qualify them to meet the various loads imposed on them during long term storage, pre-launch operations, launch, separation and re-entry. Each material was tested for structural, thermal, aeroshear, and stress/strain loads for the various flight environments each encounters. Details of the development and qualification program and the resolution of specific problems are discussed in this paper.

  8. A summary description of the flammable gas tank safety program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.D.; Sherwood, D.J.

    1994-10-01

    Radioactive liquid waste may produce hydrogen as result of the interaction of gamma radiation and water. If the waste contains organic chelating agents, additional hydrogen as well as nitrous oxide and ammonia may be produced by thermal and radiolytic decomposition of these organics. Several high-level radioactive liquid waste storage tanks, located underground at the Hanford Site in Washington State, are on a Flammable Gas Watch List. Some contain waste that produces and retains gases until large quantities of gas are released rapidly to the tank vapor space. Tanks nearly-filled to capacity have relatively little vapor space; therefore if the wastemore » suddenly releases a large amount of hydrogen and nitrous oxide, a flammable gas mixture could result. The most notable example of a Hanford waste tank with a flammable gas problem is tank 241-SY-101. Upon occasion waste stored in this tank has released enough flammable gas to burn if an ignition source had been present inside of the tank. Several, other Hanford waste tanks exhibit similar behavior although to a lesser magnitude. Because this behavior was hot adequately-addressed in safety analysis reports for the Hanford Tank Farms, an unreviewed safety question was declared, and in 1990 the Flammable Gas Tank Safety Program was established to address this problem. The purposes of the program are a follows: (1) Provide safety documents to fill gaps in the safety analysis reports, and (2) Resolve the safety issue by acquiring knowledge about gas retention and release from radioactive liquid waste and developing mitigation technology. This document provides the general logic and work activities required to resolve the unreviewed safety question and the safety issue of flammable gas mixtures in radioactive liquid waste storage tanks.« less

  9. Saturn V First Stage S-1C LOX Fuel Tanks

    NASA Technical Reports Server (NTRS)

    1960-01-01

    This photograph shows the Saturn V assembled LOX (Liquid Oxygen) and fuel tanks ready for transport from the Manufacturing Engineering Laboratory at Marshall Space Flight Center in Huntsville, Alabama. The tanks were then shipped to the launch site at Kennedy Space Center for a flight. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  10. Approximate Pressure Distribution in an Accelerating Launch-Vehicle Fuel Tank

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2010-01-01

    A detailed derivation of the equations governing the pressure in a generic liquid-fuel launch vehicle tank subjected to uniformly accelerated motion is presented. The equations obtained are then for the Space Shuttle Superlightweight Liquid-Oxygen Tank at approximately 70 seconds into flight. This generic derivation is applicable to any fuel tank in the form of a surface of revolution and should be useful in the design of future launch vehicles

  11. Vented Tank Resupply Experiment--Flight Test Results

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Martin, Timothy A.

    1997-01-01

    This paper reports the results of the Vented Tank Resupply Experiment (VTRE) which was flown as a payload on STS 77. VTRE looks at the ability of vane Propellant Management Devices (PMD) to separate liquid and gas in low gravity. VTRE used two clear 0.8 cubic foot tanks one spherical and one with a short barrel section and transferred Refrigerant 113 between them as well as venting it to space. Tests included retention of liquid during transfer, liquid free venting, and recovery of liquid into the PMD after thruster firing. Liquid was retained successfully at the highest flow rate tested (2.73 gpm). Liquid free vents were achieved for both tanks, although at a higher flow rate (0.1591 cfm) for the spherical tank than the other (0.0400 cfm). Recovery from a thruster firing which moved the liquid to the opposite end of the tank from the PMD was achieved in 30 seconds.

  12. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    NASA Astrophysics Data System (ADS)

    Sass, J. P.; Cyr, W. W. St.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2010-04-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years.

  13. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  14. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Gonnenthal; N. Spyoher

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THCmore » Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies

  15. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Sonnenthale

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M&O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THCmore » seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are

  16. Shock interference heat transfer to tank configurations mated to a straight-wing space shuttle orbiter at Mach number 10.3. [investigated in a Langley hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Crawford, D. H.

    1976-01-01

    Heat transfer was measured on a space shuttle-tank configuration with no mated orbiter in place and with the orbiter in 10 different mated positions. The orbiter-tank combination was tested at angles of attack of 0 deg and 5 deg, at a Mach number of 10.3, and at a free-stream Reynolds number of one million based on the length of the tank. Comparison of interference heat transfer with no-interference heat transfer shows that shock interference can increase the heat transfer to the tank by two orders of magnitude along the ray adjacent to the orbiter and can cause high temperature gradients along the tank skin. The relative axial location of the two mated vehicles determined the location of the sharp peaks of extreme heating as well as their magnitude. The other control variables (the angle of attack, the gap, and the cross-section shape) had significant effects that were not as consistent or as extreme.

  17. Stringer Bending Test Helps Diagnose and Prevent Cracks in the Space Shuttle's External Tank

    NASA Technical Reports Server (NTRS)

    Saxon, Joseph B.; Swanson, Gregory R.; Ondocsin, William P.; Wingate, Robert J.

    2012-01-01

    Space Shuttle Discovery's last mission, STS-133, was scheduled to launch on November 5, 2010. Just hours before liftoff, a hydrogen leak at an umbilical connection scrubbed the launch attempt. After the scrub, further inspection revealed a large crack in the foam insulation covering the External Tank, ET-137. Video replay of the launch attempt confirmed the crack first appeared as cryogenic propellants were being loaded into the ET. When the cracked foam was removed, technicians found the underlying stringer had two 9-inch-long cracks. Further inspection revealed a total of 5 of the 108 ET stringers had cracked. NASA and Lockheed Martin immediately launched an aggressive campaign to understand the cracks and repair the stringers in ET-137, targeting February 2011 as the new launch date for STS-133. Responsibilities for the various aspects of the investigation were widely distributed among NASA centers and organizations. This paper will focus on lab testing at Marshall Space Flight Center (MSFC) in Huntsville, Alabama that was intended to replicate the stringer failure and gauge the effect of proposed countermeasures.

  18. 2008 GEM Modeling Challenge: Metrics Study of the Dst Index in Physics-Based Magnetosphere and Ring Current Models and in Statistical and Analytic Specifications

    NASA Technical Reports Server (NTRS)

    Rastaetter, L.; Kuznetsova, M.; Hesse, M.; Pulkkinen, A.; Glocer, A.; Yu, Y.; Meng, X.; Raeder, J.; Wiltberger, M.; Welling, D.; hide

    2011-01-01

    In this paper the metrics-based results of the Dst part of the 2008-2009 GEM Metrics Challenge are reported. The Metrics Challenge asked modelers to submit results for 4 geomagnetic storm events and 5 different types of observations that can be modeled by statistical or climatological or physics-based (e.g. MHD) models of the magnetosphere-ionosphere system. We present the results of over 25 model settings that were run at the Community Coordinated Modeling Center (CCMC) and at the institutions of various modelers for these events. To measure the performance of each of the models against the observations we use comparisons of one-hour averaged model data with the Dst index issued by the World Data Center for Geomagnetism, Kyoto, Japan, and direct comparison of one-minute model data with the one-minute Dst index calculated by the United States Geologic Survey (USGS).

  19. Environmental projects. Volume 13: Underground storage tanks, removal and replacement. Goldstone Deep Space Communications Complex

    NASA Technical Reports Server (NTRS)

    Bengelsdorf, Irv

    1991-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 40 miles north of Barstow, California, and about 160 miles northeast of Pasadena, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. Activities at the GDSCC are carried out in support of six large parabolic dish antennas. As a large-scale facility located in a remote, isolated desert region, the GDSCC operations require numerous on-site storage facilities for gasoline, diesel oil, hydraulic oil, and waste oil. These fluids are stored in underground storage tanks (USTs). This present volume describes what happened to the 26 USTs that remained at the GDSCC. Twenty-four of these USTs were constructed of carbon steel without any coating for corrosion protection, and without secondary containment or leak detection. Two remaining USTs were constructed of fiberglass-coated carbon steel but without secondary containment or leak protection. Of the 26 USTs that remained at the GDSCC, 23 were cleaned, removed from the ground, cut up, and hauled away from the GDSCC for environmentally acceptable disposal. Three USTs were permanently closed (abandoned in place).

  20. 77 FR 25386 - Tank Level Probing Radars

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ...-space), fixed satellite (Earth-to-space), mobile, standard frequency and time signal satellite (Earth-to... Communications Commission proposes to amend 47 CFR part 15 to read as follows: PART 15--RADIO FREQUENCY DEVICES 1... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 15 [ET Docket No. 10-23; FCC 12-34] Tank Level...

  1. Space Shuttle Projects

    NASA Image and Video Library

    1977-03-01

    This photograph shows the liquid hydrogen tank and liquid oxygen tank for the Space Shuttle external tank (ET) being assembled in the weld assembly area of the Michoud Assembly Facility (MAF). The ET provides liquid hydrogen and liquid oxygen to the Shuttle's three main engines during the first eight 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.

  2. LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer

    NASA Image and Video Library

    2016-11-17

    A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. Construction workers check lines as a crane is attached to the tank to lift and rotate it before it is delivered to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.

  3. Tank Remote Repair System Conceptual Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriikku, E.

    2002-12-06

    This document describes two conceptual designs for a Tank Remote Repair System to perform leak site repairs of double shell waste tank walls (Types I, II, III, and IIIA) from the annulus space. The first concept uses a magnetic wall crawler and an epoxy patch system and the second concept uses a magnetic wall crawler and a magnetic patch system. The recommended concept uses the magnetic patch system, since it is simpler to deliver, easier to apply, and has a higher probability of stopping an active leak.

  4. Interior of Vacuum Tank at the Electric Propulsion Laboratory

    NASA Image and Video Library

    1961-08-21

    Interior of the 20-foot diameter vacuum tank at the NASA Lewis Research Center’s Electric Propulsion Laboratory. Lewis researchers had been studying different electric rocket propulsion methods since the mid-1950s. Harold Kaufman created the first successful ion engine, the electron bombardment ion engine, in the early 1960s. These engines used electric power to create and accelerate small particles of propellant material to high exhaust velocities. Electric engines have a very small thrust, but can operate for long periods of time. The ion engines are often clustered together to provide higher levels of thrust. The Electric Propulsion Laboratory, which began operation in 1961, contained two large vacuum tanks capable of simulating a space environment. The tanks were designed especially for testing ion and plasma thrusters and spacecraft. The larger 25-foot diameter tank included a 10-foot diameter test compartment to test electric thrusters with condensable propellants. The portals along the chamber floor lead to the massive exhauster equipment that pumped out the air to simulate the low pressures found in space.

  5. Analysis of simulated hypervelocity impacts on a titanium fuel tank from the Salyut 7 space station

    NASA Astrophysics Data System (ADS)

    Jantou, V.; McPhail, D. S.; Chater, R. J.; Kearsley, A.

    2006-07-01

    The aim of this project was to gain a better understanding of the microstructural effects of hypervelocity impacts (HVI) in titanium alloys. We investigated a titanium fuel tank recovered from the Russian Salyut 7 space station, which was launched on April 19, 1982 before being destroyed during an un-controlled re-entry in 1991, reportedly scattering debris over parts of South America. Several sections were cut out from the tank in order to undergo HVI simulations using a two-stage light gas gun. In addition, a Ti-6Al-4V alloy was studied for further comparison. The crater morphologies produced were successfully characterised using microscope-based white light interferometry (Zygo ® Corp, USA), while projectile remnants were identified via secondary ion mass spectrometry (SIMS). Microstructural alterations were investigated using focused ion beam (FIB) milling and depth profiling, as well as transmission electron microscopy (TEM). There was evidence of a very high density of dislocations in the vicinity of the crater. The extent of the deformation was localised in a region of about one to two radii of the impact craters. No notable differences were observed between the titanium alloys used during the hypervelocity impact tests.

  6. High current lightning test of space shuttle external tank lightning protection system

    NASA Technical Reports Server (NTRS)

    Mumme, E.; Anderson, A.; Schulte, E. H.

    1977-01-01

    During lift-off, the shuttle launch vehicle (external tank, solid rocket booster and orbiter) may be subjected to a lightning strike. Tests of a proposed lightning protection method for the external tank and development materials which were subjected to simulated lightning strikes are described. Results show that certain of the high resistant paint strips performed remarkably well in diverting the 50 kA lightning strikes.

  7. 14 CFR 23.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank filler connection. 23.973 Section 23.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23...

  8. 14 CFR 23.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank filler connection. 23.973 Section 23.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23...

  9. 14 CFR 23.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 23.973 Section 23.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23...

  10. 14 CFR 23.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank filler connection. 23.973 Section 23.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23...

  11. 14 CFR 23.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 23.973 Section 23.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23...

  12. Hail damage on Atlantis' external tank is inspected

    NASA Image and Video Library

    2007-04-13

    In the Vehicle Assembly Building, markers show the hail damage being repaired on the external tank of Space Shuttle Atlantis. The white hole with a red circle around it is a hole prepared for molding and material application. The red material is sealant tape so the mold doesn't leak when the foam rises against the mold. The white/ translucent square mold is an area where the foam has been applied and the foam has risen and cured against the mold surface. The area will be de-molded and sanded flush with the adjacent area. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch now is targeted for June 8.

  13. Abort staging characteristics of an external oxygen tank separating from the space shuttle 040-A orbiter (.006 scale model) at Mach numbers of 0.6, 2.0, and 4.0

    NASA Technical Reports Server (NTRS)

    Fossler, I. H.; Cole, P.

    1972-01-01

    Experimental aerodynamic investigations were conducted on a .006 scale model of the space shuttle 040-A orbiter and its external fuel tank utilizing the NASA/MFSC dual sting support system in the MFSC 14 x 14 inch Trisonic Wind Tunnel. Normal force, pitching moment and axial force components were recorded simultaneously on the orbiter and the tank at selected tank field positions beneath the orbiter as both models were pitched through an angle of attack range of -5 deg to 20 deg. Incidence angles between orbiter and tank of 0 deg, 5 deg, 10 deg and 15 deg were investigated. During these tests Mach number was set at 0.6, 2.0 and 4.0.

  14. Intelligent process development of foam molding for the Thermal Protection System (TPS) of the space shuttle external tank

    NASA Technical Reports Server (NTRS)

    Bharwani, S. S.; Walls, J. T.; Jackson, M. E.

    1987-01-01

    A knowledge based system to assist process engineers in evaluating the processability and moldability of poly-isocyanurate (PIR) formulations for the thermal protection system of the Space Shuttle external tank (ET) is discussed. The Reaction Injection Molding- Process Development Advisor (RIM-PDA) is a coupled system which takes advantage of both symbolic and numeric processing techniques. This system will aid the process engineer in identifying a startup set of mold schedules and in refining the mold schedules to remedy specific process problems diagnosed by the system.

  15. Design of cryogenic tanks for space vehicles shell structures analytical modeling

    NASA Technical Reports Server (NTRS)

    Copper, Charles; Mccarthy, K.; Pilkey, W. D.; Haviland, J. K.

    1991-01-01

    The initial objective was to study the use of superplastically formed corrugated hat section stringers and frames in place of integrally machined stringers over separate frames for the tanks of large launch vehicles subjected to high buckling loads. The ALS was used as an example. The objective of the follow-on project was to study methods of designing shell structures subjected to severe combinations of structural loads and thermal gradients, with emphasis on new combinations of structural arrangements and materials. Typical applications would be to fuselage sections of high speed civil transports and to cryogenic tanks on the National Aerospace Plane.

  16. Moving, Moving, Moving- A Giant Rocket Fuel Tank

    NASA Image and Video Library

    2016-10-07

    Technicians moved a giant fuel tank from the Vertical Assembly Center where the tank recently completed friction stir welding to an adjacent work area at NASA's Michoud Assembly Facility in New Orleans. More than 1.7 miles of welds have been completed for core stage hardware at Michoud. This liquid hydrogen fuel tank is the largest piece of the core stage that will provide the fuel for the first flight of NASA's new rocket, the Space Launch System, with the Orion spacecraft in 2018. The tank is more than 130 feet long, and together with the liquid oxygen tank holds 733,000 gallons of propellant to feed the vehicle's four RS-25 engines to produce a total of 2 million pounds of thrust. SLS will have the power and capacity to carry humans to Mars. For more information on the core stage: http://www.nasa.gov/exploration/syste... Video Credit: NASA/MAF/Eric Bordelon

  17. Space Shuttle Projects

    NASA Image and Video Library

    1976-01-01

    This is a cutaway illustration of the Space Shuttle external tank (ET) with callouts. The giant cylinder, higher than a 15-story building, with a length of 154-feet (47-meters) and a diameter of 27.5-feet (8.4-meters), is the largest single piece of the Space Shuttle. During launch, the ET also acts as a backbone for the orbiter and solid rocket boosters. Separate pressurized tank sections within the external tank hold the liquid hydrogen fuel and liquid oxygen oxidizer for the Shuttle's three main engines. During launch, the ET feeds the fuel under pressure through 17-inch (43.2-centimeter) ducts that branch off into smaller lines that feed directly into the main engines. The main engines consume 64,000 gallons (242,260 liters) of fuel each minute. Machined from aluminum alloys, the Space Shuttle's external tank is currently the only part of the launch vehicle that is not reused. After its 526,000-gallons (1,991,071 liters) of propellants are consumed during the first 8.5-minutes of flight, it is jettisoned from the orbiter and breaks up in the upper atmosphere, its pieces falling into remote ocean waters. The Marshall Space Flight Center was responsible for developing the ET.

  18. Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell

    1998-01-01

    Analytical and experimental studies conducted at the NASA Langley Research Center for investigating integrated cryogenic propellant tank systems for a Reusable Launch Vehicle are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, Thermal Protection System (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.

  19. Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell W.

    2005-01-01

    Analytical and experimental studies conducted at the NASA, Langley Research Center (LaRC) for investigating integrated cryogenic propellant tank systems for a reusable launch vehicle (RLV) are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, thermal protection system (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.

  20. Thermal Imaging for Inspection of Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2012-01-01

    The end of the Shuttle Program provides an opportunity to evaluate and possibly refurbish launch support infrastructure at the Kennedy Space Center in support of future launch vehicles. One major infrastructure element needing attention is the cryogenic fuel and oxidizer system and specifically the cryogenic fuel ground storage tanks located at Launch Complex 39. These tanks were constructed in 1965 and served both the Apollo and Shuttle Programs and will be used to support future launch programs. However, they have received only external inspection and minimal refurbishment over the years as there were no operational issues that warranted the significant time and schedule disruption required to drain and refurbish the tanks while the launch programs were ongoing. Now, during the break between programs, the health of the tanks is being evaluated and refurbishment is being performed as necessary to maintain their fitness for future launch programs. Thermography was used as one part of the inspection and analysis of the tanks. This paper will describe the conclusions derived from the thermal images to evaluate anomalous regions in the tanks, confirm structural integrity of components within the annular region, and evaluate the effectiveness of thermal imaging to detect large insulation voids in tanks prior to filling with cryogenic fluid. The use of thermal imaging as a tool to inspect unfilled tanks will be important if the construction of additional storage tanks is required to fuel new launch vehicles.