Sample records for tank organic safety

  1. A summary description of the flammable gas tank safety program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.D.; Sherwood, D.J.

    1994-10-01

    Radioactive liquid waste may produce hydrogen as result of the interaction of gamma radiation and water. If the waste contains organic chelating agents, additional hydrogen as well as nitrous oxide and ammonia may be produced by thermal and radiolytic decomposition of these organics. Several high-level radioactive liquid waste storage tanks, located underground at the Hanford Site in Washington State, are on a Flammable Gas Watch List. Some contain waste that produces and retains gases until large quantities of gas are released rapidly to the tank vapor space. Tanks nearly-filled to capacity have relatively little vapor space; therefore if the wastemore » suddenly releases a large amount of hydrogen and nitrous oxide, a flammable gas mixture could result. The most notable example of a Hanford waste tank with a flammable gas problem is tank 241-SY-101. Upon occasion waste stored in this tank has released enough flammable gas to burn if an ignition source had been present inside of the tank. Several, other Hanford waste tanks exhibit similar behavior although to a lesser magnitude. Because this behavior was hot adequately-addressed in safety analysis reports for the Hanford Tank Farms, an unreviewed safety question was declared, and in 1990 the Flammable Gas Tank Safety Program was established to address this problem. The purposes of the program are a follows: (1) Provide safety documents to fill gaps in the safety analysis reports, and (2) Resolve the safety issue by acquiring knowledge about gas retention and release from radioactive liquid waste and developing mitigation technology. This document provides the general logic and work activities required to resolve the unreviewed safety question and the safety issue of flammable gas mixtures in radioactive liquid waste storage tanks.« less

  2. Safety criteria for organic watch list tanks at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meacham, J.E., Westinghouse Hanford

    1996-08-01

    This document reviews the hazards associated with the storage of organic complexant salts in Hanford Site high-level waste single- shell tanks. The results of this analysis were used to categorize tank wastes as safe, unconditionally safe, or unsafe. Sufficient data were available to categorize 67 tanks; 63 tanks were categorized as safe, and four tanks were categorized as conditionally safe. No tanks were categorized as unsafe. The remaining 82 SSTs lack sufficient data to be categorized.Historic tank data and an analysis of variance model were used to prioritize the remaining tanks for characterization.

  3. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumedmore » to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely.« less

  4. Minutes of the Tank Waste Science Panel Meeting March 25--27, 1992. Hanford Tank Safety Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schutz, W W; Consultant, Wellington, Delaware; Strachan, D M

    Discussions from the seventh meeting of the Tank Waste Science are presented in Colorado. The subject areas included the generation of gases in Tank 241-SY-101, the possible use of sonication as a mitigation method, and analysis for organic constituents in core samples. Results presented and discussed include: Ferrocyanides appear to be rapidly dissolved in 1M NaOH; upon standing in the laboratory at ambient conditions oxalate precipitates from simulated wastes containing HEDTA. This suggests that one of the main components in the solids in Tank 241-SY-101 is oxalate; hydrogen evolved from waste samples from Tank 241-SY-101 is five times that observedmore » in the off gas from the tank; data suggest that mitigation of Tank 241-SY-101 will not cause a high release of dissolved N{sub 2}O; when using a slurry for radiation studies, a portion of the generated gases is very difficult to remove. To totally recover the generated gases, the solids must first be dissolved. This result may have an impact on mitigation by mixing if the gases are not released. Using {sup 13}C-labeled organics in thermal degradation studies has allowed researchers to illucidate much of the kinetic mechanism for the degradation of HEDTA and glycolate. In addition to some of the intermediate, more complex organic species, oxalate, formate, and CO{sub 2} were identified; and analytic methods for organics in radioactive complex solutions such as that found in Tank 241-SY-101 have been developed and others continue to be developed.« less

  5. Generalized railway tank car safety design optimization for hazardous materials transport: addressing the trade-off between transportation efficiency and safety.

    PubMed

    Saat, Mohd Rapik; Barkan, Christopher P L

    2011-05-15

    North America railways offer safe and generally the most economical means of long distance transport of hazardous materials. Nevertheless, in the event of a train accident releases of these materials can pose substantial risk to human health, property or the environment. The majority of railway shipments of hazardous materials are in tank cars. Improving the safety design of these cars to make them more robust in accidents generally increases their weight thereby reducing their capacity and consequent transportation efficiency. This paper presents a generalized tank car safety design optimization model that addresses this tradeoff. The optimization model enables evaluation of each element of tank car safety design, independently and in combination with one another. We present the optimization model by identifying a set of Pareto-optimal solutions for a baseline tank car design in a bicriteria decision problem. This model provides a quantitative framework for a rational decision-making process involving tank car safety design enhancements to reduce the risk of transporting hazardous materials. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Tank waste remediation system nuclear criticality safety program management review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRADY RAAP, M.C.

    1999-06-24

    This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999.

  7. Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks.

    PubMed

    Sadeghi-Nassaj, Seyed Mohammad; Catalá, Teresa S; Álvarez, Pedro A; Reche, Isabel

    2018-01-01

    Mono-specific aquaculture effluents contain high concentrations of nutrients and organic matter, which affect negatively the water quality of the recipient ecosystems. A fundamental feature of water quality is its transparency. The fraction of dissolved organic matter that absorbs light is named chromophoric dissolved organic matter (CDOM). A sustainable alternative to mono-specific aquaculture is the multitrophic aquaculture that includes species trophically complementary named "extractive" species that uptake the waste byproducts. Sea cucumbers are recognized as efficient extractive species due to the consumption of particulate organic matter (POM). However, the effects of sea cucumbers on CDOM are still unknown. During more than one year, we monitored CDOM in two big-volume tanks with different trophic structure. One of the tanks (-holothurian) only contained around 810 individuals of Anemonia sulcata , whereas the other tank (+holothurian) also included 90 individuals of Holothuria tubulosa and Holothuria forskali . We routinely analyzed CDOM absorption spectra and determined quantitative (absorption coefficients at 325 nm) and qualitative (spectral slopes) optical parameters in the inlet waters, within the tanks, and in their corresponding effluents. To confirm the time-series results, we also performed three experiments. Each experiment consisted of two treatments: +holothurians (+H) and -holothurians (-H). We set up three +H tanks with 80 individuals of A. sulcata and 10 individuals of H. tubulosa in each tank and four -H tanks that contained only 80 individuals of A. sulcata . In the time-series, absorption coefficients at 325 nm ( a 325 ) and spectral slopes from 275 to 295 nm ( S 275-295 ) were significantly lower in the effluent of the +holothurian tank (average: 0.33 m -1 and 16 µm -1 , respectively) than in the effluent of the -holothurian tank (average: 0.69 m -1 and 34 µm -1 , respectively), the former being similar to those found in the inlet

  8. Stratification of living organisms in ballast tanks: how do organism concentrations vary as ballast water is discharged?

    PubMed

    First, Matthew R; Robbins-Wamsley, Stephanie H; Riley, Scott C; Moser, Cameron S; Smith, George E; Tamburri, Mario N; Drake, Lisa A

    2013-05-07

    Vertical migrations of living organisms and settling of particle-attached organisms lead to uneven distributions of biota at different depths in the water column. In ballast tanks, heterogeneity could lead to different population estimates depending on the portion of the discharge sampled. For example, concentrations of organisms exceeding a discharge standard may not be detected if sampling occurs during periods of the discharge when concentrations are low. To determine the degree of stratification, water from ballast tanks was sampled at two experimental facilities as the tanks were drained after water was held for 1 or 5 days. Living organisms ≥50 μm were counted in discrete segments of the drain (e.g., the first 20 min of the drain operation, the second 20 min interval, etc.), thus representing different strata in the tank. In 1 and 5 day trials at both facilities, concentrations of organisms varied among drain segments, and the patterns of stratification varied among replicate trials. From numerical simulations, the optimal sampling strategy for stratified tanks is to collect multiple time-integrated samples spaced relatively evenly throughout the discharge event.

  9. Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks

    PubMed Central

    Sadeghi-Nassaj, Seyed Mohammad; Catalá, Teresa S.; Álvarez, Pedro A.

    2018-01-01

    Background Mono-specific aquaculture effluents contain high concentrations of nutrients and organic matter, which affect negatively the water quality of the recipient ecosystems. A fundamental feature of water quality is its transparency. The fraction of dissolved organic matter that absorbs light is named chromophoric dissolved organic matter (CDOM). A sustainable alternative to mono-specific aquaculture is the multitrophic aquaculture that includes species trophically complementary named “extractive” species that uptake the waste byproducts. Sea cucumbers are recognized as efficient extractive species due to the consumption of particulate organic matter (POM). However, the effects of sea cucumbers on CDOM are still unknown. Methods During more than one year, we monitored CDOM in two big-volume tanks with different trophic structure. One of the tanks (−holothurian) only contained around 810 individuals of Anemonia sulcata, whereas the other tank (+holothurian) also included 90 individuals of Holothuria tubulosa and Holothuria forskali. We routinely analyzed CDOM absorption spectra and determined quantitative (absorption coefficients at 325 nm) and qualitative (spectral slopes) optical parameters in the inlet waters, within the tanks, and in their corresponding effluents. To confirm the time-series results, we also performed three experiments. Each experiment consisted of two treatments: +holothurians (+H) and –holothurians (−H). We set up three +H tanks with 80 individuals of A. sulcata and 10 individuals of H. tubulosa in each tank and four –H tanks that contained only 80 individuals of A. sulcata. Results In the time-series, absorption coefficients at 325 nm (a325) and spectral slopes from 275 to 295 nm (S275−295) were significantly lower in the effluent of the +holothurian tank (average: 0.33 m−1 and 16 µm−1, respectively) than in the effluent of the −holothurian tank (average: 0.69 m−1 and 34 µm−1, respectively), the former being

  10. 75 FR 9638 - Safety Advisory Notice: Use of Composite Cargo Tanks Manufactured Under DOT Special Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    .... PHMSA-2010-0046; Notice No. 10-1] Safety Advisory Notice: Use of Composite Cargo Tanks Manufactured... use composite cargo tank motor vehicles authorized under DOT special permits of the requirement to... for composite cargo tanks, such as fiber reinforced plastic (FRP) or glass fiber reinforced plastic...

  11. 77 FR 62224 - Hanford Tank Farms Flammable Gas Safety Strategy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... believes that actions are necessary to install real time monitoring to measure tank ventilation flowrates... monitoring. In its August letter, the Board noted that DOE's SAC for flammable gas monitoring exhibited a... flammable gas monitoring, it remained inadequate as a credited safety control. The SAC is less reliable than...

  12. Analysis on Dangerous Source of Large Safety Accident in Storage Tank Area

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Li, Ying; Xie, Tiansheng; Liu, Yu; Zhu, Xueyuan

    2018-01-01

    The difference between a large safety accident and a general accident is that the consequences of a large safety accident are particularly serious. To study the tank area which factors directly or indirectly lead to the occurrence of large-sized safety accidents. According to the three kinds of hazard source theory and the consequence cause analysis of the super safety accident, this paper analyzes the dangerous source of the super safety accident in the tank area from four aspects, such as energy source, large-sized safety accident reason, management missing, environmental impact Based on the analysis of three kinds of hazard sources and environmental analysis to derive the main risk factors and the AHP evaluation model is established, and after rigorous and scientific calculation, the weights of the related factors in four kinds of risk factors and each type of risk factors are obtained. The result of analytic hierarchy process shows that management reasons is the most important one, and then the environmental factors and the direct cause and Energy source. It should be noted that although the direct cause is relatively low overall importance, the direct cause of Failure of emergency measures and Failure of prevention and control facilities in greater weight.

  13. Microbial Penetration and Utilization of Organic Aircraft Fuel-Tank Coatings1

    PubMed Central

    Crum, M. G.; Reynolds, R. J.; Hedrick, H. G.

    1967-01-01

    Microorganisms have been found as contaminants in various types of aircraft fuel tanks. Their presence introduces problems in the operation of the aircraft, including destruction of components such as the organic coatings used as protective linings in the fuel tanks. Microbial penetration and utilization of the currently used organic coatings, EC 776, DV 1180, PR 1560, and DeSoto 1080, were determined by changes in electrical resistances of the coatings; mycelial weight changes; growth counts of the bacteria; and manometric determinations on Pseudomonas aeruginosa (GD-FW B-25) and Cladosporium resinae (QMC-7998). The results indicate EC 776 and DV 1180 to be less resistant to microbial degradation than the other coatings. Organic coatings, serving as a source of nutrition, would be conducive to population buildups in aircraft fuel tanks. Images Fig. 1 PMID:16349744

  14. Developing a model for moisture in saltcake waste tanks: Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, C.S.; Aimo, N.; Fayer, M.J.

    1997-07-01

    This report describes a modeling effort to provide a computer simulation capability for estimating the distribution and movement of moisture in the saltcake-type waste contained in Hanford`s single-shell radioactive waste storage tanks. This moisture model goes beyond an earlier version because it describes water vapor movement as well as the interstitial liquid held in a saltcake waste. The work was performed by Pacific Northwest National Laboratory to assist Duke Engineering and Services Hanford with the Organic Tank Safety Program. The Organic Tank Safety Program is concerned whether saltcake waste, when stabilized by jet pumping, will retain sufficient moisture near themore » surface to preclude any possibility of an accidental ignition and propagation of burning. The nitrate/nitrite saltcake, which might also potentially include combustible organic chemicals might not always retain enough moisture near the surface to preclude any such accident. Draining liquid from a tank by pumping, coupled with moisture evaporating into a tank`s head space, may cause a dry waste surface that is not inherently safe. The moisture model was devised to help examine this safety question. The model accounts for water being continually cycled by evaporation into the head space and returned to the waste by condensation or partly lost through venting to the external atmosphere. Water evaporation occurs even in a closed tank, because it is driven by the transfer to the outside of the heat load generated by radioactivity within the waste. How dry a waste may become over time depends on the particular hydraulic properties of a saltcake, and the model uses those properties to describe the capillary flow of interstitial liquid as well as the water vapor flow caused by thermal differences within the porous waste.« less

  15. Inorganic, Radioisotopic, and Organic Analysis of 241-AP-101 Tank Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiskum, S.K.; Bredt, P.R.; Campbell, J.A.

    2000-10-17

    Battelle received five samples from Hanford waste tank 241-AP-101, taken at five different depths within the tank. No visible solids or organic layer were observed in the individual samples. Individual sample densities were measured, then the five samples were mixed together to provide a single composite. The composite was homogenized and representative sub-samples taken for inorganic, radioisotopic, and organic analysis. All analyses were performed on triplicate sub-samples of the composite material. The sample composite did not contain visible solids or an organic layer. A subsample held at 10 C for seven days formed no visible solids.

  16. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  17. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  18. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  19. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  20. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109...

  1. 76 FR 79192 - Patient Safety Organizations: Voluntary Relinquishment From HSMS Patient Safety Organization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... HSMS Patient Safety Organization was delisted effective at 12:00 Midnight ET (2400) on December 6, 2011... Organizations: Voluntary Relinquishment From HSMS Patient Safety Organization AGENCY: Agency for Healthcare... voluntary relinquishment from the HSMS Patient Safety Organization of its status as a Patient Safety...

  2. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  3. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  4. Investigation of thermolytic hydrogen generation rate of tank farm simulated and actual waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C.; Newell, D.; Woodham, W.

    To support resolution of Potential Inadequacies in the Safety Analysis for the Savannah River Site (SRS) Tank Farm, Savannah River National Laboratory conducted research to determine the thermolytic hydrogen generation rate (HGR) with simulated and actual waste. Gas chromatography methods were developed and used with air-purged flow systems to quantify hydrogen generation from heated simulated and actual waste at rates applicable to the Tank Farm Documented Safety Analysis (DSA). Initial simulant tests with a simple salt solution plus sodium glycolate demonstrated the behavior of the test apparatus by replicating known HGR kinetics. Additional simulant tests with the simple salt solutionmore » excluding organics apart from contaminants provided measurement of the detection and quantification limits for the apparatus with respect to hydrogen generation. Testing included a measurement of HGR on actual SRS tank waste from Tank 38. A final series of measurements examined HGR for a simulant with the most common SRS Tank Farm organics at temperatures up to 140 °C. The following conclusions result from this testing.« less

  5. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW...

  6. Potential of Organic Matrix Composites for Liquid Oxygen Tank

    NASA Technical Reports Server (NTRS)

    Davis, Samuel E.; Herald, Stephen D.; Stolzfus, Joel M.; Engel, Carl D.; Bohlen, James W.; Palm, Tod; Robinson, Michael J.

    2005-01-01

    Composite materials are being considered for the tankage of cryogenic propellants in access to space because of potentially lower structural weights. A major hurdle for composites is an inherent concern about the safety of using flammable structural materials in contact with liquid and gaseous oxygen. A hazards analysis approach addresses a series of specific concerns that must be addressed based upon test data. Under the 2nd Generation Reusable Launch Vehicle contracts, testing was begun for a variety of organic matrix composite materials both to aid in the selection of materials and to provide needed test data to support hazards analyses. The work has continued at NASA MSFC and the NASA WSTF to provide information on the potential for using composite materials in oxygen systems. Appropriate methods for oxygen compatibility testing of structural materials and data for a range of composite materials from impact, friction, flammability and electrostatic discharge testing are presented. Remaining concerns and conclusions about composite tank structures, and recommendations for additional testing are discussed. Requirements for system specific hazards analysis are identified.

  7. 76 FR 58812 - Patient Safety Organizations: Delisting for Cause of Patient Safety Organization One, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... Organizations: Delisting for Cause of Patient Safety Organization One, Inc. AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS. ACTION: Notice of Delisting. SUMMARY: Patient Safety Organization One, Inc.: AHRQ has delisted Patient Safety Organization One, Inc. as a Patient Safety Organization (PSO...

  8. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Special requirements for class 114A * * * tank car...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  9. Chemical and chemically-related considerations associated with sluicing tank C-106 waste to tank AY-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, D.A.

    1997-04-04

    New data on tank 241-C-106 were obtained from grab sampling and from compatibility testing of tank C-106 and tank AY-102 wastes. All chemistry-associated and other compatibility Information compiled in this report strongly suggests that the sluicing of the contents of tank C-106, in accord with appropriate controls, will pose no unacceptable risk to workers, public safety, or the environment. In addition, it is expected that the sluicing operation will successfully resolve the High-Heat Safety Issue for tank C-106.

  10. 49 CFR 179.200 - General specifications applicable to non-pressure tank car tanks (Class DOT-111).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tank car tanks (Class DOT-111). 179.200 Section 179.200 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes...

  11. 49 CFR 179.200 - General specifications applicable to non-pressure tank car tanks (Class DOT-111).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tank car tanks (Class DOT-111). 179.200 Section 179.200 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW...

  12. 49 CFR 179.200 - General specifications applicable to non-pressure tank car tanks (Class DOT-111).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tank car tanks (Class DOT-111). 179.200 Section 179.200 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW...

  13. Tank 241-C-112 vapor sampling and analysis tank characterization report. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huckaby, J.L.

    1995-05-31

    Tank 241-C-112 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-C-112 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  14. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferredmore » from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.« less

  15. 49 CFR 179.221 - Individual specification requirements applicable to tank car tanks consisting of an inner...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.221 Individual specification... to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section...

  16. 49 CFR 179.221 - Individual specification requirements applicable to tank car tanks consisting of an inner...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.221 Individual specification... to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section...

  17. 49 CFR 179.220 - General specifications applicable to nonpressure tank car tanks consisting of an inner container...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tank car tanks consisting of an inner container supported within an outer shell (class DOT-115). 179... AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220...

  18. 30 CFR 56.13011 - Air receiver tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air receiver tanks. 56.13011 Section 56.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic pressure...

  19. 30 CFR 56.13011 - Air receiver tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air receiver tanks. 56.13011 Section 56.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic pressure...

  20. 30 CFR 57.13011 - Air receiver tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air receiver tanks. 57.13011 Section 57.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic...

  1. 30 CFR 56.13011 - Air receiver tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air receiver tanks. 56.13011 Section 56.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic pressure...

  2. 30 CFR 57.13011 - Air receiver tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air receiver tanks. 57.13011 Section 57.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic...

  3. 30 CFR 56.13011 - Air receiver tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic pressure... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air receiver tanks. 56.13011 Section 56.13011...

  4. 30 CFR 57.13011 - Air receiver tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air receiver tanks. 57.13011 Section 57.13011...

  5. 9 CFR 316.14 - Marking tank cars and tank trucks used in transportation of edible products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Marking tank cars and tank trucks used in transportation of edible products. 316.14 Section 316.14 Animals and Animal Products FOOD SAFETY... CONTAINERS § 316.14 Marking tank cars and tank trucks used in transportation of edible products. Each tank...

  6. 76 FR 14643 - Hazardous Materials: Safety Requirements for External Product Piping on Cargo Tanks Transporting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... for External Product Piping on Cargo Tanks Transporting Flammable Liquids AGENCY: Pipeline and...) seeking public comment on a proposal to prohibit the transportation of flammable liquids in exposed... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part...

  7. Enabling social listening for cardiac safety monitoring: Proceedings from a drug information association-cardiac safety research consortium cosponsored think tank.

    PubMed

    Seifert, Harry A; Malik, Raleigh E; Bhattacharya, Mondira; Campbell, Kevin R; Okun, Sally; Pierce, Carrie; Terkowitz, Jeffrey; Turner, J Rick; Krucoff, Mitchell W; Powell, Gregory E

    2017-12-01

    This white paper provides a summary of the presentations and discussions from a think tank on "Enabling Social Listening for Cardiac Safety Monitoring" trials that was cosponsored by the Drug Information Association and the Cardiac Safety Research Consortium, and held at the White Oak headquarters of the US Food and Drug Administration on June 3, 2016. The meeting's goals were to explore current methods of collecting and evaluating social listening data and to consider their applicability to cardiac safety surveillance. Social listening is defined as the act of monitoring public postings on the Internet. It has several theoretical advantages for drug and device safety. First, these include the ability to detect adverse events that are "missed" by traditional sources and the ability to detect adverse events sooner than would be allowed by traditional sources, both by affording near-real-time access to data from culturally and geographically diverse sources. Social listening can also potentially introduce a novel patient voice into the conversation about drug safety, which could uniquely augment understanding of real-world medication use obtained from more traditional methodologies. Finally, it can allow for access to information about drug misuse and diversion. To date, the latter 2 of these have been realized. Although regulators from the Food and Drug Administration and the United Kingdom's Medicines and Healthcare Products Regulatory Agency participated in the think tank along with representatives from industry, academia, and patient groups, this article should not be construed to constitute regulatory guidance. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Food safety and organic meats.

    PubMed

    Van Loo, Ellen J; Alali, Walid; Ricke, Steven C

    2012-01-01

    The organic meat industry in the United States has grown substantially in the past decade in response to consumer demand for nonconventionally produced products. Consumers are often not aware that the United States Department of Agriculture (USDA) organic standards are based only on the methods used for production and processing of the product and not on the product's safety. Food safety hazards associated with organic meats remain unclear because of the limited research conducted to determine the safety of organic meat from farm-to-fork. The objective of this review is to provide an overview of the published results on the microbiological safety of organic meats. In addition, antimicrobial resistance of microbes in organic food animal production is addressed. Determining the food safety risks associated with organic meat production requires systematic longitudinal studies that quantify the risks of microbial and nonmicrobial hazards from farm-to-fork.

  9. 14 CFR 417.103 - Safety organization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Safety organization. 417.103 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.103 Safety organization. (a) A launch operator must maintain and document a safety organization. A launch operator must...

  10. Tank characterization report for double-shell tank 241-AW-105

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, L.M.

    1997-06-05

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for double-shell tank 241-AW-105. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AW-105 waste; and to provide a standard characterization of this waste in terms of a best-basis inventorymore » estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone Characterization. information presented in this report originated from sample analyses and known historical sources. While only the results of a recent sampling event will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-AW-105 is provided in Appendix A, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. The recent sampling event listed, as well as pertinent sample data obtained before 1996, are summarized in Appendix B along with the sampling results. The results of the 1996 grab sampling event satisfied the data requirements specified in the sampling and analysis plan (SAP) for this tank. In addition, the tank headspace flammability was measured, which

  11. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  12. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  13. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  14. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  15. 60-day safety screen results and final report for tank 241-C-111, auger samples 95-Aug-002, 95-Aug-003, 95-Aug-016, and 95-Aug-017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, A.D.

    1995-05-30

    This report presents the details of the auger sampling events for underground waste tank C-111. The samples were shipped to the 222-S laboratories were they underwent safety screening analysis and primary ferricyanide analysis. The samples were analyzed for alpha total, total organic carbon, cyanide, Ni, moisture, and temperature differentials. The results of this analysis are presented in this document.

  16. 49 CFR 179.200-8 - Tank heads.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-8 Tank heads. (a) All external tank heads...

  17. 49 CFR 179.100-8 - Tank heads.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-8 Tank heads. (a) The tank head shape...

  18. 49 CFR 179.100-8 - Tank heads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-8 Tank heads. (a) The tank head shape...

  19. 49 CFR 179.100-8 - Tank heads.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-8 Tank heads. (a) The tank head shape...

  20. 49 CFR 179.200-8 - Tank heads.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-8 Tank heads. (a) All external tank heads...

  1. 49 CFR 179.200-9 - Compartment tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-9 Compartment tanks. (a) When a tank is...

  2. 49 CFR 179.220-8 - Tank heads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-8 Tank heads. (a) Tank heads of the inner...

  3. 49 CFR 179.200-9 - Compartment tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-9 Compartment tanks. (a) When a tank is...

  4. 49 CFR 179.220-8 - Tank heads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-8 Tank heads. (a) Tank heads of the inner...

  5. 49 CFR 179.300-8 - Tank heads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-8 Tank heads. (a) Class DOT-110A tanks shall...

  6. 49 CFR 179.300-8 - Tank heads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-8 Tank heads. (a) Class DOT-110A tanks shall...

  7. 14 CFR 415.33 - Safety organization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Safety organization. 415.33 Section 415.33... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch From a Federal Launch Range § 415.33 Safety organization. (a) An applicant shall maintain a safety organization and document it by...

  8. Risk factors associated with bulk tank standard plate count, bulk tank coliform count, and the presence of Staphylococcus aureus on organic and conventional dairy farms in the United States.

    PubMed

    Cicconi-Hogan, K M; Gamroth, M; Richert, R; Ruegg, P L; Stiglbauer, K E; Schukken, Y H

    2013-01-01

    The purpose of this study was to assess the association of bulk tank milk standard plate counts, bulk tank coliform counts (CC), and the presence of Staphylococcus aureus in bulk tank milk with various management and farm characteristics on organic and conventional dairy farms throughout New York, Wisconsin, and Oregon. Data from size-matched organic farms (n=192), conventional nongrazing farms (n=64), and conventional grazing farms (n=36) were collected at a single visit for each farm. Of the 292 farms visited, 290 bulk tank milk samples were collected. Statistical models were created using data from all herds in the study, as well as exclusively for the organic subset of herds. Because of incomplete data, 267 of 290 herds were analyzed for total herd modeling, and 173 of 190 organic herds were analyzed for the organic herd modeling. Overall, more bulk tanks from organic farms had Staph. aureus cultured from them (62% of organic herds, 42% conventional nongrazing herds, and 43% of conventional grazing herds), whereas fewer organic herds had a high CC, defined as ≥50 cfu/mL, than conventional farms in the study. A high standard plate count (×1,000 cfu/mL) was associated with decreased body condition score of adult cows and decreased milk production in both models. Several variables were significant only in the model created using all herds or only in organic herds. The presence of Staph. aureus in the bulk tank milk was associated with fewer people treating mastitis, increased age of housing, and a higher percentage of cows with 3 or fewer teats in both the organic and total herd models. The Staph. aureus total herd model also showed a relationship with fewer first-lactation animals, higher hock scores, and less use of automatic takeoffs at milking. High bulk tank CC was related to feeding a total mixed ration and using natural service in nonlactating heifers in both models. Overall, attentive management and use of outside resources were useful with regard to CC

  9. 14 CFR 415.33 - Safety organization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Safety organization. 415.33 Section 415.33....33 Safety organization. (a) An applicant shall maintain a safety organization and document it by... communication, both within the applicant's organization and between the applicant and any federal launch range...

  10. 49 CFR 179.300 - General specifications applicable to multi-unit tank car tanks designed to be removed from car...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tank car tanks designed to be removed from car structure for filling and emptying (Classes DOT-106A and...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300...

  11. 49 CFR 179.300 - General specifications applicable to multi-unit tank car tanks designed to be removed from car...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tank car tanks designed to be removed from car structure for filling and emptying (Classes DOT-106A and...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300...

  12. 27 CFR 19.273 - Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TREASURY LIQUORS DISTILLED SPIRITS PLANTS Construction, Equipment and Security § 19.273 Tanks. (a) General... safety devices shall be constructed to prevent extraction of spirits or wines. (b) Scale tanks. (1) Beams...

  13. 49 CFR 179.220-9 - Compartment tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-9 Compartment tanks. (a) The inner...

  14. 49 CFR 179.200-8 - Tank heads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-8 Tank heads. (a) All...

  15. 49 CFR 179.220-9 - Compartment tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-9 Compartment tanks. (a) The inner...

  16. 49 CFR 230.116 - Oil tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Oil tanks. 230.116 Section 230.116 Transportation... Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free from leaks. The oil supply pipe shall be equipped with a safety cut-off device that: (a) Is located...

  17. 49 CFR 230.116 - Oil tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Oil tanks. 230.116 Section 230.116 Transportation... Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free from leaks. The oil supply pipe shall be equipped with a safety cut-off device that: (a) Is located...

  18. 49 CFR 230.116 - Oil tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Oil tanks. 230.116 Section 230.116 Transportation... Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free from leaks. The oil supply pipe shall be equipped with a safety cut-off device that: (a) Is located...

  19. 49 CFR 230.116 - Oil tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Oil tanks. 230.116 Section 230.116 Transportation... Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free from leaks. The oil supply pipe shall be equipped with a safety cut-off device that: (a) Is located...

  20. 49 CFR 179.100-18 - Tests of tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-18 Tests of tanks. (a) Each tank...

  1. 49 CFR 179.100-18 - Tests of tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-18 Tests of tanks. (a) Each tank...

  2. 49 CFR 179.100-18 - Tests of tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-18 Tests of tanks. (a) Each tank...

  3. 49 CFR 179.10 - Tank mounting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank mounting. 179.10 Section 179.10 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Design Requirements § 179.10 Tank mounting. (a) The manner in which tanks are attached to the car...

  4. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  5. 14 CFR 431.33 - Safety organization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Safety organization. 431.33 Section 431.33... Launch and Reentry of a Reusable Launch Vehicle § 431.33 Safety organization. (a) An applicant shall maintain a safety organization and document it by identifying lines of communication and approval authority...

  6. 33 CFR 183.518 - Fuel tank openings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tank openings. 183.518...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.518 Fuel tank openings. Each opening into the fuel tank must be at or above the topmost surface of the tank. ...

  7. 33 CFR 183.518 - Fuel tank openings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank openings. 183.518...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.518 Fuel tank openings. Each opening into the fuel tank must be at or above the topmost surface of the tank. ...

  8. Implementation of Recommendations from the One System Comparative Evaluation of the Hanford Tank Farms and Waste Treatment Plant Safety Bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, Richard L.; Niemi, Belinda J.; Paik, Ingle K.

    2013-11-07

    A Comparative Evaluation was conducted for One System Integrated Project Team to compare the safety bases for the Hanford Waste Treatment and Immobilization Plant Project (WTP) and Tank Operations Contract (TOC) (i.e., Tank Farms) by an Expert Review Team. The evaluation had an overarching purpose to facilitate effective integration between WTP and TOC safety bases. It was to provide One System management with an objective evaluation of identified differences in safety basis process requirements, guidance, direction, procedures, and products (including safety controls, key safety basis inputs and assumptions, and consequence calculation methodologies) between WTP and TOC. The evaluation identified 25more » recommendations (Opportunities for Integration). The resolution of these recommendations resulted in 16 implementation plans. The completion of these implementation plans will help ensure consistent safety bases for WTP and TOC along with consistent safety basis processes. procedures, and analyses. and should increase the likelihood of a successful startup of the WTP. This early integration will result in long-term cost savings and significant operational improvements. In addition, the implementation plans lead to the development of eight new safety analysis methodologies that can be used at other U.S. Department of Energy (US DOE) complex sites where URS Corporation is involved.« less

  9. Chemical Safety Alert: Catastrophic Failure of Storage Tanks

    EPA Pesticide Factsheets

    Aboveground, atmospheric storage tanks can fail when flammable vapors in the tank explode and break either the shell-to-bottom or side seam, resulting in hazardous release accidents. Proper maintenance practices can help prevent accidents.

  10. Improved tank car safety research

    DOT National Transportation Integrated Search

    2007-09-11

    Three recent accidents involving the release of hazardous : material have focused attention on the structural integrity of : railroad tank cars: (1) Minot, ND, on January 18, 2002; (2) : Macdona, TX, on June 28, 2004; and (3) Graniteville, SC, on : J...

  11. 49 CFR 179.220-23 - Test of tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-23 Test of tanks. (a) Each inner container...

  12. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak when...

  13. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak when...

  14. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fuel tanks. 183.510 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak when...

  15. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent...

  16. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent...

  17. 46 CFR 154.446 - Tank design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent...

  18. 46 CFR 154.446 - Tank design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent...

  19. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent...

  20. 46 CFR 154.446 - Tank design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent...

  1. 14 CFR 417.103 - Safety organization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Safety organization. 417.103 Section 417... organization. (a) A launch operator must maintain and document a safety organization. A launch operator must... within the launch operator's organization and between the launch operator and any federal launch range or...

  2. 78 FR 41853 - Safety Advisory Guidance: Heating Rail Tank Cars To Prepare Hazardous Material for Unloading or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... rail tank car due to chemical self-reaction and expansion of the toluene diisocyanate matter wastes. On...: Cheryl West Freeman, Division of Engineering and Research, Pipeline and Hazardous Materials Safety... catastrophically ruptured at a transfer station at the BASF Corporation chemical facility in Freeport, Texas. The...

  3. Tank characterization report for single-shell tank 241-C-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, B.C.

    1997-05-23

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms ofmore » a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.« less

  4. 49 CFR 179.400-16 - Access to inner tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Access to inner tank. 179.400-16 Section 179.400... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400...

  5. 49 CFR 179.400-14 - Cleaning of inner tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Cleaning of inner tank. 179.400-14 Section 179.400... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400...

  6. 49 CFR 179.220-14 - Openings in the tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-14 Openings in the tanks... Specifications for Tank Cars, appendix E (IBR, see § 171.7 of this subchapter). In determining the required...

  7. 49 CFR 178.255-13 - Repair of tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Repair of tanks. 178.255-13 Section 178.255-13 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Portable Tanks § 178.255-13 Repair of tanks. (a) Tanks failing to meet the test may be repaired and...

  8. 49 CFR 179.220-14 - Openings in the tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Openings in the tanks. 179.220-14 Section 179.220... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-14 Openings in the tanks...

  9. 14 CFR 431.33 - Safety organization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Safety organization. 431.33 Section 431.33... TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Safety Review and Approval for Launch and Reentry of a Reusable Launch Vehicle § 431.33 Safety organization. (a) An applicant shall...

  10. Nuclear criticality safety bounding analysis for the in-tank-precipitation (ITP) process, impacted by fissile isotopic weight fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, C.E.

    The In-Tank Precipitation process (ITP) receives High Level Waste (HLW) supernatant liquid containing radionuclides in waste processing tank 48H. Sodium tetraphenylborate, NaTPB, and monosodium titanate (MST), NaTi{sub 2}O{sub 5}H, are added for removal of radioactive Cs and Sr, respectively. In addition to removal of radio-strontium, MST will also remove plutonium and uranium. The majority of the feed solutions to ITP will come from the dissolution of supernate that had been concentrated by evaporation to a crystallized salt form, commonly referred to as saltcake. The concern for criticality safety arises from the adsorption of U and Pt onto MST. If sufficientmore » mass and optimum conditions are achieved then criticality is credible. The concentration of u and Pt from solution into the smaller volume of precipitate represents a concern for criticality. This report supplements WSRC-TR-93-171, Nuclear Criticality Safety Bounding Analysis For The In-Tank-Precipitation (ITP) Process. Criticality safety in ITP can be analyzed by two bounding conditions: (1) the minimum safe ratio of MST to fissionable material and (2) the maximum fissionable material adsorption capacity of the MST. Calculations have provided the first bounding condition and experimental analysis has established the second. This report combines these conditions with canyon facility data to evaluate the potential for criticality in the ITP process due to the adsorption of the fissionable material from solution. In addition, this report analyzes the potential impact of increased U loading onto MST. Results of this analysis demonstrate a greater safety margin for ITP operations than the previous analysis. This report further demonstrates that the potential for criticality in the ITP process due to adsorption of fissionable material by MST is not credible.« less

  11. 49 CFR 179.200-22 - Test of tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... evidence of distress. All rivets and closures, except safety relief valves or safety vents, shall be in place when test is made. (b) Insulated tanks shall be tested before insulation is applied. (c) Rubber-lined tanks shall be tested before rubber lining is applied. (d) Caulking of welded joints to stop leaks...

  12. 49 CFR 179.200-22 - Test of tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... evidence of distress. All rivets and closures, except safety relief valves or safety vents, shall be in place when test is made. (b) Insulated tanks shall be tested before insulation is applied. (c) Rubber-lined tanks shall be tested before rubber lining is applied. (d) Caulking of welded joints to stop leaks...

  13. 49 CFR 179.200-22 - Test of tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... evidence of distress. All rivets and closures, except safety relief valves or safety vents, shall be in place when test is made. (b) Insulated tanks shall be tested before insulation is applied. (c) Rubber-lined tanks shall be tested before rubber lining is applied. (d) Caulking of welded joints to stop leaks...

  14. 49 CFR 179.200-22 - Test of tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... evidence of distress. All rivets and closures, except safety relief valves or safety vents, shall be in place when test is made. (b) Insulated tanks shall be tested before insulation is applied. (c) Rubber-lined tanks shall be tested before rubber lining is applied. (d) Caulking of welded joints to stop leaks...

  15. 46 CFR 154.235 - Cargo tank location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank location. 154.235 Section 154.235 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Survival Capability and Cargo Tank Location § 154.235 Cargo tank location. (a) For type IG hulls, cargo...

  16. 33 CFR 183.520 - Fuel tank vent systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tank vent systems. 183.520...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.520 Fuel tank vent systems. (a) Each fuel tank must have a vent system that prevents pressure in the tank from exceeding 80...

  17. 33 CFR 183.520 - Fuel tank vent systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank vent systems. 183.520...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.520 Fuel tank vent systems. (a) Each fuel tank must have a vent system that prevents pressure in the tank from exceeding 80...

  18. Nuclear criticality safety evaluation of the passage of decontaminated salt solution from the ITP filters into tank 50H for interim storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, D.T.; Davis, J.R.

    This report assesses the nuclear criticality safety associated with the decontaminated salt solution after passing through the In-Tank Precipitation (ITP) filters, through the stripper columns and into Tank 50H for interim storage until transfer to the Saltstone facility. The criticality safety basis for the ITP process is documented. Criticality safety in the ITP filtrate has been analyzed under normal and process upset conditions. This report evaluates the potential for criticality due to the precipitation or crystallization of fissionable material from solution and an ITP process filter failure in which insoluble material carryover from salt dissolution is present. It is concludedmore » that no single inadvertent error will cause criticality and that the process will remain subcritical under normal and credible abnormal conditions.« less

  19. Locomotive fuel tank structural safety testing program : passenger locomotive fuel tank jackknife derailment load test.

    DOT National Transportation Integrated Search

    2010-08-01

    This report presents the results of a passenger locomotive fuel tank load test simulating jackknife derailment (JD) load. The test is based on FRA requirements for locomotive fuel tanks in the Title 49, Code of Federal Regulations (CFR), Part 238, Ap...

  20. 33 CFR 183.550 - Fuel tanks: Installation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks: Installation. 183.550...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.550 Fuel tanks: Installation. (a) Each fuel tank must not be integral with any boat structure or mounted on an engine. (b) Each...

  1. 33 CFR 183.514 - Fuel tanks: Labels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks: Labels. 183.514...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.514 Fuel tanks: Labels. (a) Each fuel tank must have a label that meets the requirements of paragraphs (b) through (d) of...

  2. 33 CFR 183.514 - Fuel tanks: Labels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks: Labels. 183.514...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.514 Fuel tanks: Labels. (a) Each fuel tank must have a label that meets the requirements of paragraphs (b) through (d) of...

  3. 33 CFR 183.550 - Fuel tanks: Installation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks: Installation. 183.550...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.550 Fuel tanks: Installation. (a) Each fuel tank must not be integral with any boat structure or mounted on an engine. (b) Each...

  4. Tank characterization report for single-shell tank 241-S-111

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, J.M.

    1997-04-28

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basismore » inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.« less

  5. 49 CFR 179.4 - Changes in specifications for tank cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Changes in specifications for tank cars. 179.4... TANK CARS Introduction, Approvals and Reports § 179.4 Changes in specifications for tank cars. (a...—Tank Car Safety, AAR, for consideration by its Tank Car Committee. An application for construction of...

  6. Ultimate strength analysis of inland tank barges

    DOT National Transportation Integrated Search

    1997-06-16

    In an effort to understand the cause of recent catastrophic failures of inland tank barges and reduce the possibility of future casualties, the Coast Guard Marine Safety Center (MSC) studied the buckling" phenomenon. In conclusion, inland tank barges...

  7. 46 CFR 154.1705 - Independent tank type C.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Independent tank type C. 154.1705 Section 154.1705 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... § 154.1705 Independent tank type C. The following cargoes must be carried in an independent tank type C...

  8. 46 CFR 154.1705 - Independent tank type C.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Independent tank type C. 154.1705 Section 154.1705 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... § 154.1705 Independent tank type C. The following cargoes must be carried in an independent tank type C...

  9. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each LNG storage tank must be inspected or tested to verify that each of the following conditions does not impair...

  10. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each LNG storage tank must be inspected or tested to verify that each of the following conditions does not impair...

  11. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each LNG storage tank must be inspected or tested to verify that each of the following conditions does not impair...

  12. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Fuel tanks. 183.510 Section 183.510 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each...

  13. 33 CFR 183.510 - Fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks. 183.510 Section 183.510 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each...

  14. 46 CFR 154.427 - Membrane tank system design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Membrane tank system design. 154.427 Section 154.427 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.427 Membrane tank system...

  15. 46 CFR 154.427 - Membrane tank system design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Membrane tank system design. 154.427 Section 154.427 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.427 Membrane tank system...

  16. 46 CFR 154.427 - Membrane tank system design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Membrane tank system design. 154.427 Section 154.427 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.427 Membrane tank system...

  17. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tank fill system. 183.564...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.564 Fuel tank... floating position. (b) Each hose in the tank fill system must be secured to a pipe, spud, or hose fitting...

  18. 30 CFR 57.4401 - Storage tank foundations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Control Flammable and Combustible Liquids and Gases § 57.4401 Storage tank foundations. Fixed, unburied, flammable or combustible liquid storage tanks shall be securely mounted on firm foundations....4401 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...

  19. 30 CFR 57.4401 - Storage tank foundations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Control Flammable and Combustible Liquids and Gases § 57.4401 Storage tank foundations. Fixed, unburied, flammable or combustible liquid storage tanks shall be securely mounted on firm foundations....4401 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...

  20. Testing and recommended practices to improve nurse tank safety, phase I.

    DOT National Transportation Integrated Search

    2013-10-01

    This research project studied causes and possible remediation inspection strategies to prevent failures for anhydrous ammonia (NH3) nurse tanks. Nurse tanks are steel tanks used to transport NH3 locally over public roadways and farm fields. Many of t...

  1. Testing and Recommended Practices to Improve Nurse Tank Safety, Phase I

    DOT National Transportation Integrated Search

    2013-10-01

    This research project studied causes and possible remediation inspection strategies to prevent failures for anhydrous ammonia (NH3) nurse tanks. Nurse tanks are steel tanks used to transport NH3 locally over public roadways and farm fields. Many of t...

  2. 30 CFR 56.4401 - Storage tank foundations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Control Flammable and Combustible Liquids and Gases § 56.4401 Storage tank foundations. Fixed, unburied, flammable or combustible liquid storage tanks shall be securely mounted on firm foundations. Piping shall be....4401 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...

  3. 30 CFR 56.4401 - Storage tank foundations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Control Flammable and Combustible Liquids and Gases § 56.4401 Storage tank foundations. Fixed, unburied, flammable or combustible liquid storage tanks shall be securely mounted on firm foundations. Piping shall be....4401 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...

  4. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity § 193.2181 Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a... 49 Transportation 3 2010-10-01 2010-10-01 false Impoundment capacity: LNG storage tanks. 193.2181...

  5. Think tank (3) - Present activities of other representative organizations

    NASA Astrophysics Data System (ADS)

    Obara, Michio

    There were some think tank businesses in Japan before the war. South Manchuria Railway Company established its Research Department for the purpose of getting power to control Manchuria as a colony, and got the good results. Think tank business was flourishing three times after the war. This business attracts much attention when the social and economic paradigm is going to change. Among the key large-scale think tanks in Japan, Nomura Research Institute, Ltd. (NRI) was the first to enhance the system functions by the merger, and posted think tank function up in the SI business. Mitsubishi Research Institute, Inc. (MRI) intends to be an orthodox think tank, and established an advanced research institute and the laboratory for R&D. Daiwa Institute of Research, Ltd. (DIR) focuses on economic forecast by using system. Fuji Research Institute, Corp. (FUJI RIC) focuses on survey and policy proposing in macro-economics, and analyzing technology. The Japan Research Institute, Ltd. (JRI) focuses on regional development, and R&D in advanced technology.

  6. Planning the Safety of Atrial Fibrillation Ablation Registry Initiative (SAFARI) as a Collaborative Pan-Stakeholder Critical Path Registry Model: a Cardiac Safety Research Consortium "Incubator" Think Tank.

    PubMed

    Al-Khatib, Sana M; Calkins, Hugh; Eloff, Benjamin C; Packer, Douglas L; Ellenbogen, Kenneth A; Hammill, Stephen C; Natale, Andrea; Page, Richard L; Prystowsky, Eric; Jackman, Warren M; Stevenson, William G; Waldo, Albert L; Wilber, David; Kowey, Peter; Yaross, Marcia S; Mark, Daniel B; Reiffel, James; Finkle, John K; Marinac-Dabic, Danica; Pinnow, Ellen; Sager, Phillip; Sedrakyan, Art; Canos, Daniel; Gross, Thomas; Berliner, Elise; Krucoff, Mitchell W

    2010-01-01

    Atrial fibrillation (AF) is a major public health problem in the United States that is associated with increased mortality and morbidity. Of the therapeutic modalities available to treat AF, the use of percutaneous catheter ablation of AF is expanding rapidly. Randomized clinical trials examining the efficacy and safety of AF ablation are currently underway; however, such trials can only partially determine the safety and durability of the effect of the procedure in routine clinical practice, in more complex patients, and over a broader range of techniques and operator experience. These limitations of randomized trials of AF ablation, particularly with regard to safety issues, could be addressed using a synergistically structured national registry, which is the intention of the SAFARI. To facilitate discussions about objectives, challenges, and steps for such a registry, the Cardiac Safety Research Consortium and the Duke Clinical Research Institute, Durham, NC, in collaboration with the US Food and Drug Administration, the American College of Cardiology, and the Heart Rhythm Society, organized a Think Tank meeting of experts in the field. Other participants included the National Heart, Lung and Blood Institute, the Centers for Medicare and Medicaid Services, the Agency for Healthcare Research and Quality, the Society of Thoracic Surgeons, the AdvaMed AF working group, and additional industry representatives. The meeting took place on April 27 to 28, 2009, at the US Food and Drug Administration headquarters in Silver Spring, MD. This article summarizes the issues and directions presented and discussed at the meeting. Copyright 2010 Mosby, Inc. All rights reserved.

  7. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  8. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  9. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  10. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  11. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  12. Vapor space characterization of Waste Tank 241-TY-104 (in situ): Results from samples collected on 8/5/94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ligotke, M.W.; Pool, K.H.; Lucke, R.B.

    1995-10-01

    This report describes inorganic and organic analyses results from in situ samples obtained from the headspace of the Hanford waste storage Tank 241-TY-104 (referred to as Tank TY-104). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water (H{sub 2}O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not performed. Inmore » addition, the authors looked for the 39 TO-14 compounds plus an additional 14 analytes. Of these, eight were observed above the 5-ppbv reporting cutoff. Twenty-four organic tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 86% of the total organic components in Tank TY-104. Tank TY-104 is on the Ferrocyanide Watch List.« less

  13. Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory

    Science.gov Websites

    rises above set safe levels. However, even if conditions result in a fuel release, an ignition source vehicle tanks are all equipped with PRDs to ensure safe levels of LPG pressure in the tanks, and we are practices for OPDs to ensure they work properly. The US DOE Clean Cities (DOE-CC) program is working with

  14. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....2623 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each LNG...

  15. 30 CFR 57.4401 - Storage tank foundations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage tank foundations. 57.4401 Section 57.4401 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention...

  16. 30 CFR 56.4401 - Storage tank foundations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage tank foundations. 56.4401 Section 56.4401 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and...

  17. ESP`s Tank 42 washwater transfer to the 241-F/H tank farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aponte, C.I.; Lee, E.D.

    1997-12-01

    As a result of the separation of the High-Level Liquid Waste Department into three separate organizations (formerly there were two) (Concentration, Storage, and Transfer (CST), Waste Pre-Treatment (WPT) and Waste Disposition (WD)) process interface controls were required. One of these controls is implementing the Waste the waste between CST and WPT. At present, CST`s Waste Acceptance Criteria is undergoing revision and WPT has not prepared the required Waste Compliance Plan (WCP). The Waste Pre-Treatment organization is making preparations for transferring spent washwater in Tank 42 to Tank 43 and/or Tank 22. The washwater transfer is expected to complete the washingmore » steps for preparing ESP batch 1B sludge. This report is intended to perform the function of a Waste Compliance Plan for the proposed transfer. Previously, transfers between the Tank Farm and ITP/ESP were controlled by requirements outlined in the Tank Farm`s Technical Standards and ITP/ESP`s Process Requirements. Additionally, these controls are implemented primarily in operating procedure 241-FH-7TSQ and ITP Operations Manual SW16.1-SOP-WTS-1 which will be completed prior to performing the waste transfers.« less

  18. 49 CFR 179.300 - General specifications applicable to multi-unit tank car tanks designed to be removed from car...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false General specifications applicable to multi-unit tank car tanks designed to be removed from car structure for filling and emptying (Classes DOT-106A and 110AW). 179.300 Section 179.300 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY...

  19. 27 CFR 24.167 - Tanks.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... revenue protection. All open tanks will be under a roof or other suitable covering. (b) Other requirements... have a similar means of revenue protection. Any vents, flame arrestors, foam devices, or other safety...

  20. 27 CFR 24.167 - Tanks.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... revenue protection. All open tanks will be under a roof or other suitable covering. (b) Other requirements... have a similar means of revenue protection. Any vents, flame arrestors, foam devices, or other safety...

  1. 27 CFR 24.167 - Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... revenue protection. All open tanks will be under a roof or other suitable covering. (b) Other requirements... have a similar means of revenue protection. Any vents, flame arrestors, foam devices, or other safety...

  2. 27 CFR 24.167 - Tanks.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... revenue protection. All open tanks will be under a roof or other suitable covering. (b) Other requirements... have a similar means of revenue protection. Any vents, flame arrestors, foam devices, or other safety...

  3. 27 CFR 24.167 - Tanks.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... revenue protection. All open tanks will be under a roof or other suitable covering. (b) Other requirements... have a similar means of revenue protection. Any vents, flame arrestors, foam devices, or other safety...

  4. Project health and safety plan for the Gunite and Associated Tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abston, J.P.

    1997-04-01

    The Lockheed Martin Energy Systems, Inc. (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at the Gunite and Associated Tanks (GAAT) in the North and South Tank Farms (NTF and STF) at the Department of Energy (DOE) Oak Ridge National Laboratory are guided by an overall plan and consistent proactive approach to health and safety (H and S) issues. The policy and procedures in this plan apply to all GAAT operations in the NTF and STF. The provisions of this plan are to bemore » carried out whenever activities identifies s part of the GAAT are initiated that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and best management practices in order to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air. This plan explains additional task-specific health and safety requirements such as the Site Safety and health Addendum and Activity Hazard Analysis, which should be used in concert with this plan and existing established procedures.« less

  5. Safety organizing, emotional exhaustion, and turnover in hospital nursing units.

    PubMed

    Vogus, Timothy J; Cooil, Bruce; Sitterding, Mary; Everett, Linda Q

    2014-10-01

    Prior research has found that safety organizing behaviors of registered nurses (RNs) positively impact patient safety. However, little research exists on how engaging in safety organizing affects caregivers. While we know that organizational processes can have divergent effects on organizational and employee outcomes, little research exists on the effects of pursuing highly reliable performance through safety organizing on caregivers. Specifically, we examined whether, and the conditions under which, safety organizing affects RN emotional exhaustion and nursing unit turnover rates. Subjects included 1352 RNs in 50 intensive care, internal medicine, labor, and surgery nursing units in 3 Midwestern acute-care hospitals who completed questionnaires between August and December 2011 and 50 Nurse Managers from the units who completed questionnaires in December 2012. Cross-sectional analyses of RN emotional exhaustion linked to survey data on safety organizing and hospital incident reporting system data on adverse event rates for the year before survey administration. Cross-sectional analysis of unit-level RN turnover rates for the year following the administration of the survey linked to survey data on safety organizing. Multilevel regression analysis indicated that safety organizing was negatively associated with RN emotional exhaustion on units with higher rates of adverse events and positively associated with RN emotional exhaustion with lower rates of adverse events. Tobit regression analyses indicated that safety organizing was associated with lower unit level of turnover rates over time. Safety organizing is beneficial to caregivers in multiple ways, especially on nursing units with high levels of adverse events and over time.

  6. Cargo Tank Registration Statistics

    DOT National Transportation Integrated Search

    1980-07-01

    This report is a presentation of the data collected by the Bureau of Motor Carrier Safety of the Federal Highway Administration under Title 49, Code of Federal Regulations, Part 177.824 (f), reporting requirements for MC 330 and MC 331 Cargo Tanks. I...

  7. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  8. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  9. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  10. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  11. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  12. Improved tank car design development : ongoing studies on sandwich structures

    DOT National Transportation Integrated Search

    2009-03-02

    The Government and industry have a common interest in : improving the safety performance of railroad tank cars carrying : hazardous materials. Research is ongoing to develop strategies : to maintain the structural integrity of railroad tank cars carr...

  13. 14 CFR 431.33 - Safety organization.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Safety organization. 431.33 Section 431.33 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... for all mission decisions that may affect public safety. Lines of communication within the applicant's...

  14. 14 CFR 431.33 - Safety organization.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Safety organization. 431.33 Section 431.33 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... for all mission decisions that may affect public safety. Lines of communication within the applicant's...

  15. 14 CFR 431.33 - Safety organization.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Safety organization. 431.33 Section 431.33 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... for all mission decisions that may affect public safety. Lines of communication within the applicant's...

  16. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank fill system. 183.564...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.564 Fuel tank fill system. (a) Each fuel fill opening must be located so that a gasoline overflow of up to five...

  17. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach tomore » waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E

  18. Developing strategies for maintaining tank car integrity during train accidents

    DOT National Transportation Integrated Search

    2007-09-11

    Accidents that lead to rupture of tank cars carrying : hazardous materials can cause serious public safety hazards and : substantial economic losses. The desirability of improved tank : car designs that are better equipped to keep the commodity : con...

  19. 49 CFR 231.21 - Tank cars without underframes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Tank cars without underframes. 231.21 Section 231... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.21 Tank cars without underframes. (a) Hand brakes—(1) Number. Same as specified for “Box and other house cars” (see § 231.1(a)(1...

  20. 49 CFR 231.21 - Tank cars without underframes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Tank cars without underframes. 231.21 Section 231... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.21 Tank cars without underframes. (a) Hand brakes—(1) Number. Same as specified for “Box and other house cars” (see § 231.1(a)(1...

  1. 49 CFR 231.21 - Tank cars without underframes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Tank cars without underframes. 231.21 Section 231... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.21 Tank cars without underframes. (a) Hand brakes—(1) Number. Same as specified for “Box and other house cars” (see § 231.1(a)(1...

  2. 49 CFR 231.21 - Tank cars without underframes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Tank cars without underframes. 231.21 Section 231... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.21 Tank cars without underframes. (a) Hand brakes—(1) Number. Same as specified for “Box and other house cars” (see § 231.1(a)(1...

  3. 49 CFR 231.21 - Tank cars without underframes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Tank cars without underframes. 231.21 Section 231... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.21 Tank cars without underframes. (a) Hand brakes—(1) Number. Same as specified for “Box and other house cars” (see § 231.1(a)(1...

  4. Testing and recommended practices to improve nurse tank safety, phase I : [research brief].

    DOT National Transportation Integrated Search

    2013-10-01

    This study focuses on determining causes and possible inspection remediation strategies to reduce the occurrence of anhydrous ammonia (NH3) nurse tank failures. Nurse tanks are cylindrical steel tank shells with hemispherical or elliptical end caps r...

  5. Radiological Source Terms for Tank Farms Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    COWLEY, W.L.

    2000-06-27

    This document provides Unit Liter Dose factors, atmospheric dispersion coefficients, breathing rates and instructions for using and customizing these factors for use in calculating radiological doses for accident analyses in the Hanford Tank Farms.

  6. Summary of Activities for Nondestructive Evaluation of Insulation in Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2012-01-01

    This project was undertaken to investigate methods to non-intrusively determine the existence and density of perlite insulation in the annular region of the cryogenic storage vessels, specifically considering the Launch Complex 39 hydrogen tanks at Kennedy Space Center. Lack of insulation in the tanks (as existed in the pad B hydrogen tank at Kennedy Space Center) results in an excessive loss of commodity and can pose operational and safety risks if precautions are not taken to relieve the excessive gas build-up. Insulation with a density that is higher than normal (due to settling or compaction) may also pose an operational and safety risk if the insulation prevents the system from moving and responding to expansions and contractions as fluid is removed and added to the tank.

  7. Computational Analyses of Pressurization in Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Mattick, Stephen; Lee, Chun P.; Field, Robert E.; Ryan, Harry

    2008-01-01

    A) Advanced Gas/Liquid Framework with Real Fluids Property Routines: I. A multi-fluid formulation in the preconditioned CRUNCH CFD(Registered TradeMark) code developed where a mixture of liquid and gases can be specified: a) Various options for Equation of state specification available (from simplified ideal fluid mixtures, to real fluid EOS such as SRK or BWR models). b) Vaporization of liquids driven by pressure value relative to vapor pressure and combustion of vapors allowed. c) Extensive validation has been undertaken. II. Currently working on developing primary break-up models and surface tension effects for more rigorous phase-change modeling and interfacial dynamics B) Framework Applied to Run-time Tanks at Ground Test Facilities C) Framework Used For J-2 Upper Stage Tank Modeling: 1) NASA MSFC tank pressurization: a) Hydrogen and oxygen tank pre-press, repress and draining being modeled at NASA MSFC. 2) NASA AMES tank safety effort a) liquid hydrogen and oxygen are separated by a baffle in the J-2 tank. We are modeling pressure rise and possible combustion if a hole develops in the baffle and liquid hydrogen leaks into the oxygen tank. Tank pressure rise rates simulated and risk of combustion evaluated.

  8. An Evaluation of Hazardous Air Pollutants and Volatile Organic Compound Emissions from Tank Barges in Memphis, TN

    EPA Science Inventory

    Many urban centers have population centers near river ports, which may be affected by volatile organic compound (VOC) and hazardous air pollutant (HAP) emissions from tank barge traffic. This study will examine Memphis, Tennessee and West Memphis, Arkansas. Both cities (located ...

  9. 77 FR 22381 - Odorant Fade in Railroad Tank Cars

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... can lead to the loss of odorant. 4. Facilities that load odorized LPG into tank cars take any other... diminished levels of odorant or no odorant present, represents significant safety risks. Absent sufficient... the LPG in the storage tanks at the construction site had virtually no odorant present, explaining why...

  10. Tank 241-AP-105, cores 208, 209 and 210, analytical results for the final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuzum, J.L.

    1997-10-24

    This document is the final laboratory report for Tank 241-AP-105. Push mode core segments were removed from Risers 24 and 28 between July 2, 1997, and July 14, 1997. Segments were received and extruded at 222-S Laboratory. Analyses were performed in accordance with Tank 241-AP-105 Push Mode Core Sampling and Analysis Plan (TSAP) (Hu, 1997) and Tank Safety Screening Data Quality Objective (DQO) (Dukelow, et al., 1995). None of the subsamples submitted for total alpha activity (AT), differential scanning calorimetry (DSC) analysis, or total organic carbon (TOC) analysis exceeded the notification limits as stated in TSAP and DQO. The statisticalmore » results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group, and are not considered in this report. Appearance and Sample Handling Two cores, each consisting of four segments, were expected from Tank 241-AP-105. Three cores were sampled, and complete cores were not obtained. TSAP states core samples should be transported to the laboratory within three calendar days from the time each segment is removed from the tank. This requirement was not met for all cores. Attachment 1 illustrates subsamples generated in the laboratory for analysis and identifies their sources. This reference also relates tank farm identification numbers to their corresponding 222-S Laboratory sample numbers.« less

  11. A sub-tank water-saving drinking water station

    NASA Astrophysics Data System (ADS)

    Zhang, Ting

    2017-05-01

    "Thousands of boiling water" problem has been affecting people's quality of life and good health, and now most of the drinking fountains cannot effectively solve this problem, at the same time, ordinary drinking water also has high energy consumption, there are problems such as yin and yang water. Our newly designed dispenser uses a two-tank heating system. Hot water after heating, into the insulation tank for insulation, when the water tank in the water tank below a certain water level, the cold water and then enter the heating tank heating. Through the water flow, tank volume and other data to calculate the time required for each out of water, so as to determine the best position of the water level control, summed up the optimal program, so that water can be continuously uninterrupted supply. Two cans are placed up and down the way, in the same capacity on the basis of the capacity of the container, the appropriate to reduce its size, and increase the bottom radius, reduce the height of its single tank to ensure that the overall height of two cans compared with the traditional single change. Double anti-dry design, to ensure the safety of the use of drinking water. Heating tank heating circuit on and off by the tank of the float switch control, so that the water heating time from the tank water level control, to avoid the "thousands of boiling water" generation. The entry of cold water is controlled by two solenoid valves in the inlet pipe, and the opening and closing of the solenoid valve is controlled by the float switch in the two tanks. That is, the entry of cold water is determined by the water level of the two tanks. By designing the control scheme cleverly, Yin and yang water generation. Our design completely put an end to the "thousands of boiling water", yin and yang water, greatly improving the drinking water quality, for people's drinking water safety provides a guarantee, in line with the concept of green and healthy development. And in the small

  12. Tank atmosphere perturbation: a procedure for assessing flashing losses from oil storage tanks.

    PubMed

    Littlejohn, David; Lucas, Donald

    2003-03-01

    A new procedure to measure the total volume of emissions from heavy crude oil storage tanks is described. Tank flashing losses, which are difficult to measure, can be determined by correcting this value for working and breathing losses. The procedure uses a fan or blower to vent the headspace of the storage tank, with subsequent monitoring of the change in concentrations of oxygen or other gases. Combined with a separate determination of the reactive organic carbon (ROC) fraction in the gas, this method allows the evaluation of the total amount of ROC emitted. The operation of the system is described, and results from measurement of several storage tanks in California oil fields are presented. Our measurements are compared with those obtained using the California Air Resources Board (CARB) 150 method.

  13. Damage Tolerance Analysis of a Pressurized Liquid Oxygen Tank

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Harvin, Stephen F.; Gregory, Peyton B.; Mason, Brian H.; Thompson, Joe E.; Hoffman, Eric K.

    2006-01-01

    A damage tolerance assessment was conducted of an 8,000 gallon pressurized Liquid Oxygen (LOX) tank. The LOX tank is constructed of a stainless steel pressure vessel enclosed by a thermal-insulating vacuum jacket. The vessel is pressurized to 2,250 psi with gaseous nitrogen resulting in both thermal and pressure stresses on the tank wall. Finite element analyses were performed on the tank to characterize the stresses from operation. Engineering material data was found from both the construction of the tank and the technical literature. An initial damage state was assumed based on records of a nondestructive inspection performed on the tank. The damage tolerance analyses were conducted using the NASGRO computer code. This paper contains the assumptions, and justifications, made for the input parameters to the damage tolerance analyses and the results of the damage tolerance analyses with a discussion on the operational safety of the LOX tank.

  14. Toxic chemical considerations for tank farm releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs weremore » not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.« less

  15. Tank car accident data analysis

    DOT National Transportation Integrated Search

    1991-06-01

    This report presents the results of a study of accidents involving railroad tank cars. The study is part of an overall effort to provide improved safety of rail transportation at reduced life-cycle costs. A major goal of the study is to provide a tec...

  16. SY Tank Farm ventilation isolation option risk assessment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, T.B.; Morales, S.D.

    The safety of the 241-SY Tank Farm ventilation system has been under extensive scrutiny due to safety concerns associated with tank 101-SY. Hydrogen and other gases are generated and trapped in the waste below the liquid surface. Periodically, these gases are released into the dome space and vented through the exhaust system. This attention to the ventilation system has resulted in the development of several alternative ventilation system designs. The ventilation system provides the primary means of mitigation of accidents associated with flammable gases. This report provides an assessment of various alternatives ventilation system designs.

  17. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  18. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  19. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  20. Selected topics in railroad tank car safety. Volume 2 : test plan for accelerated life testing of thermally shielded tank cars

    DOT National Transportation Integrated Search

    1978-08-01

    A test plan for the accelerated life testing of thermally shielded tank cars is described. The test program would be conducted at the DOT Transportation Test Center in Pueblo, Colorado. Eighteen tank cars would be included in the program. Five cars w...

  1. 49 CFR 231.7 - Tank cars with side platforms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Tank cars with side platforms. 231.7 Section 231.7..., DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.7 Tank cars with side platforms. (a) Hand brakes—(1) Number. Same as specified for “Box and other house cars” (see § 231.1(a)(1)). (2...

  2. 49 CFR 231.7 - Tank cars with side platforms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Tank cars with side platforms. 231.7 Section 231.7..., DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.7 Tank cars with side platforms. (a) Hand brakes—(1) Number. Same as specified for “Box and other house cars” (see § 231.1(a)(1)). (2...

  3. 49 CFR 231.9 - Tank cars without end sills.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Tank cars without end sills. 231.9 Section 231.9..., DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.9 Tank cars without end sills. (a) Hand brakes—(1) Number. Same as specified for “Box and other house cars” (see § 231.1(a)(1)). (2...

  4. 49 CFR 231.7 - Tank cars with side platforms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Tank cars with side platforms. 231.7 Section 231.7..., DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.7 Tank cars with side platforms. (a) Hand brakes—(1) Number. Same as specified for “Box and other house cars” (see § 231.1(a)(1)). (2...

  5. 49 CFR 231.9 - Tank cars without end sills.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Tank cars without end sills. 231.9 Section 231.9..., DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.9 Tank cars without end sills. (a) Hand brakes—(1) Number. Same as specified for “Box and other house cars” (see § 231.1(a)(1)). (2...

  6. 49 CFR 231.7 - Tank cars with side platforms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Tank cars with side platforms. 231.7 Section 231.7..., DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.7 Tank cars with side platforms. (a) Hand brakes—(1) Number. Same as specified for “Box and other house cars” (see § 231.1(a)(1)). (2...

  7. 49 CFR 231.9 - Tank cars without end sills.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Tank cars without end sills. 231.9 Section 231.9..., DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.9 Tank cars without end sills. (a) Hand brakes—(1) Number. Same as specified for “Box and other house cars” (see § 231.1(a)(1)). (2...

  8. 49 CFR 231.9 - Tank cars without end sills.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Tank cars without end sills. 231.9 Section 231.9..., DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.9 Tank cars without end sills. (a) Hand brakes—(1) Number. Same as specified for “Box and other house cars” (see § 231.1(a)(1)). (2...

  9. 49 CFR 231.7 - Tank cars with side platforms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Tank cars with side platforms. 231.7 Section 231.7..., DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.7 Tank cars with side platforms. (a) Hand brakes—(1) Number. Same as specified for “Box and other house cars” (see § 231.1(a)(1)). (2...

  10. 49 CFR 231.9 - Tank cars without end sills.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Tank cars without end sills. 231.9 Section 231.9..., DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.9 Tank cars without end sills. (a) Hand brakes—(1) Number. Same as specified for “Box and other house cars” (see § 231.1(a)(1)). (2...

  11. Side impact test and analysis of a DOT-112 tank car.

    DOT National Transportation Integrated Search

    2016-12-01

    As part of a program to improve transportation safety for tank cars, Transportation Technology Center, Inc. (TTCI) has conducted a side impact test on a DOT-112 tank car to evaluate the performance of the DOT-112 under dynamic impact conditions and t...

  12. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  13. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  14. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  15. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  16. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  17. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  18. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  19. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  20. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  1. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  2. Small-Scale Surface (Tank) Irrigation in Asia

    NASA Astrophysics Data System (ADS)

    Palanisami, K.; Easter, K. William

    1987-05-01

    Tank irrigation is an ancient tradition in Asia which is now being reviewed as a potential model for future irrigation expansion. South India has thousands of tanks which are in need of rehabilitation after being in operation for over a century. This study evaluates tank irrigation in an area of south India which has the greatest concentration of tanks. Constraints and unique characteristics of tank irrigation are analyzed to provide a basis for devising strategies for improving tank irrigation. A combination of public and private investments along with institutional changes are recommended to help farmers organize to improve irrigation. Yet, only if public investment is carefully integrated with existing private efforts will farmers have incentives to maintain the irrigation systems.

  3. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WILLIS, W.L.

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  4. Probability analysis of multiple-tank-car release incidents in railway hazardous materials transportation.

    PubMed

    Liu, Xiang; Saat, Mohd Rapik; Barkan, Christopher P L

    2014-07-15

    Railroads play a key role in the transportation of hazardous materials in North America. Rail transport differs from highway transport in several aspects, an important one being that rail transport involves trains in which many railcars carrying hazardous materials travel together. By contrast to truck accidents, it is possible that a train accident may involve multiple hazardous materials cars derailing and releasing contents with consequently greater potential impact on human health, property and the environment. In this paper, a probabilistic model is developed to estimate the probability distribution of the number of tank cars releasing contents in a train derailment. Principal operational characteristics considered include train length, derailment speed, accident cause, position of the first car derailed, number and placement of tank cars in a train and tank car safety design. The effect of train speed, tank car safety design and tank car positions in a train were evaluated regarding the number of cars that release their contents in a derailment. This research provides insights regarding the circumstances affecting multiple-tank-car release incidents and potential strategies to reduce their occurrences. The model can be incorporated into a larger risk management framework to enable better local, regional and national safety management of hazardous materials transportation by rail. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. 49 CFR 179.500-1 - Tanks built under these specifications shall meet the requirements of § 179.500.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and...

  6. 49 CFR 383.119 - Requirements for tank vehicle endorsement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Requirements for tank vehicle endorsement. 383.119 Section 383.119 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS COMMERCIAL DRIVER'S LICENSE STANDARDS;...

  7. 49 CFR 179.100-19 - Tests of safety relief valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tests of safety relief valves. 179.100-19 Section... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  8. Thermographic inspection of pipes, tanks, and containment liners

    NASA Astrophysics Data System (ADS)

    Renshaw, Jeremy B.; Lhota, James R.; Muthu, Nathan; Shepard, Steven M.

    2015-03-01

    Nuclear power plants are required to operate at a high level of safety. Recent industry and license renewal commitments aim to further increase safety by requiring the inspection of components that have not traditionally undergone detailed inspected in the past, such as tanks and liners. NEI 09-14 requires the inspection of buried pipes and tanks while containment liner inspections are required as a part of license renewal commitments. Containment liner inspections must inspect the carbon steel liner for defects - such as corrosion - that could threaten the pressure boundary and ideally, should be able to inspect the surrounding concrete for foreign material that could be in contact with the steel liner and potentially initiate corrosion. Such an inspection requires a simultaneous evaluation of two materials with very different material properties. Rapid, yet detailed, inspection results are required due to the massive size of the tanks and containment liners to be inspected. For this reason, thermal NDE methods were evaluated to inspect tank and containment liner mockups with simulated defects. Thermographic Signal Reconstruction (TSR) was utilized to enhance the images and provide detailed information on the sizes and shapes of the observed defects. The results show that thermographic inspection is highly sensitive to the defects of interest and is capable of rapidly inspecting large areas.

  9. Undergraduate Organic Chemistry Laboratory Safety

    NASA Astrophysics Data System (ADS)

    Luckenbaugh, Raymond W.

    1996-11-01

    Each organic chemistry student should become familiar with the educational and governmental laboratory safety requirements. One method for teaching laboratory safety is to assign each student to locate safety resources for a specific class laboratory experiment. The student should obtain toxicity and hazardous information for all chemicals used or produced during the assigned experiment. For example, what is the LD50 or LC50 for each chemical? Are there any specific hazards for these chemicals, carcinogen, mutagen, teratogen, neurotixin, chronic toxin, corrosive, flammable, or explosive agent? The school's "Chemical Hygiene Plan", "Prudent Practices for Handling Hazardous Chemicals in the Laboratory" (National Academy Press), and "Laboratory Standards, Part 1910 - Occupational Safety and Health Standards" (Fed. Register 1/31/90, 55, 3227-3335) should be reviewed for laboratory safety requirements for the assigned experiment. For example, what are the procedures for safe handling of vacuum systems, if a vacuum distillation is used in the assigned experiment? The literature survey must be submitted to the laboratory instructor one week prior to the laboratory session for review and approval. The student should then give a short presentation to the class on the chemicals' toxicity and hazards and describe the safety precautions that must be followed. This procedure gives the student first-hand knowledge on how to find and evaluate information to meet laboartory safety requirements.

  10. Recommended Practices to Improve Nurse Tank Safety: Phase II

    DOT National Transportation Integrated Search

    2013-12-01

    This project addressed four topics: Pinhole leaks in nurse tanks were studied by radiography, serial milling, and side-angle ultrasound. These measurements indicated that welding surfaces contaminated by water, mill scale, rust, or other contamin...

  11. Lifecycle Verification of Tank Liner Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anovitz, Lawrence; Smith, Barton

    2014-03-01

    This report describes a method that was developed for the purpose of assessing the durability of thermoplastic liners used in a Type IV hydrogen storage tank during the tank s expected service life. In the method, a thermoplastic liner specimen is cycled between the maximum and minimum expected working temperatures while it is differentially pressurized with high-pressure hydrogen gas. The number of thermal cycling intervals corresponds to those expected within the tank s design lifetime. At prescribed intervals, hydrogen permeation measurements are done in situ to assess the ability of the liner specimen to maintain its hydrogen barrier properties andmore » to model its permeability over the tank lifetime. Finally, the model is used to assess whether the steady-state leakage rate in the tank could potentially exceed the leakage specification for hydrogen fuel cell passenger vehicles. A durability assessment was performed on a specimen of high-density polyethylene (HDPE) that is in current use as a tank liner. Hydrogen permeation measurements were performed on several additional tank liner polymers as well as novel polymers proposed for use as storage tank liners and hydrogen barrier materials. The following technical barriers from the Fuel Cell Technologies Program MYRDD were addressed by the project: D. Durability of on-board storage systems lifetime of at least 1500 cycles G. Materials of construction vessel containment that is resistant to hydrogen permeation M. Lack of Tank Performance Data and Understanding of Failure Mechanisms And the following technical targets1 for on-board hydrogen storage systems R&D were likewise addressed: Operational cycle life (1/4 tank to full) FY 2017: 1500 cycles; Ultimate: 1500 cycles Environmental health & safety Permeation and leakage: Meets or exceeds applicable standards Loss of useable H2: FY 2017: 0.05 g/h/kg H2; Ultimate: 0.05 g/h/kg H2« less

  12. 49 CFR 179.100-19 - Tests of safety relief valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Tests of safety relief valves. 179.100-19 Section... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-19...

  13. 49 CFR 179.100-19 - Tests of safety relief valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Tests of safety relief valves. 179.100-19 Section... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-19...

  14. 49 CFR 179.100-19 - Tests of safety relief valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tests of safety relief valves. 179.100-19 Section... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-19...

  15. Optimizing Railroad Tank Car Safety Design to Reduce Hazardous Materials Transportation Risk

    ERIC Educational Resources Information Center

    Saat, Mohd Rapik

    2009-01-01

    The design of railroad tank cars is subject to structural and performance requirements and constrained by weight. They can be made safer by increasing tank thickness and adding various protective features, but these increase the weight and cost of the car and reduce its capacity and consequent transportation efficiency. Aircraft, automobiles and…

  16. Bushfires and tank rainwater quality: a cause for concern?

    PubMed

    Spinks, Jean; Phillips, Suzanne; Robinson, Priscilla; Van Buynder, Paul

    2006-03-01

    In early 2003, after a prolonged drought period, extensive bushfires occurred in the east of Victoria affecting 1.5 million hectares of land. At the time, smoke and ash from bushfires, settling on roofs, contained pollutants that could potentially contaminate rainwater collected and stored in tanks for domestic use. The major concerns include polycyclic aromatic hydrocarbons (PAHs) from incomplete combustion of organic matter and arsenic from burnt copper chrome arsenate (CCA) treated wood. An increase in microbial contamination through altered nutrient levels was also hypothesised. A pilot study of 49 rainwater tank owners was undertaken in north-east Victoria. A rainwater tank sample was taken and analysed for a variety of parameters including organic compounds, microbiological indicators, metals, nutrients and physico-chemical parameters. A survey was administered concurrently. A number of results were outside the Australian Drinking Water Guideline (ADWG) values for metals and microbiological indicator organisms, but not for any tested organic compounds. PAHs and arsenic are unlikely to be elevated in rainwater tanks as a result of bushfires, but cadmium may be of concern.

  17. Organic chemical aging mechanisms: An annotated bibliography. Waste Tank Safety Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuels, W.D.; Camaioni, D.M.; Nelson, D.A.

    1993-09-01

    An annotated bibliography has been compiled of the potential chemical and radiological aging mechanisms of the organic constituents (non-ferrocyanide) that would likely be found in the UST at Hanford. The majority of the work that has been conducted on the aging of organic chemicals used for extraction and processing of nuclear materials has been in conjunction with the acid or PUREX type processes. At Hanford the waste being stored in the UST has been stabilized with caustic. The aging factors that were used in this work were radiolysis, hydrolysis and nitrite/nitrate oxidation. The purpose of this work was two-fold: tomore » determine whether or not research had been or is currently being conducted on the species associated with the Hanford UST waste, either as a mixture or as individual chemicals or chemical functionalities, and to determine what areas of chemical aging need to be addressed by further research.« less

  18. Tanks focus area multiyear program plan FY97-FY99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-08-01

    The U.S. Department of Energy (DOE) continues to face a major tank remediation problem with approximately 332 tanks storing over 378,000 ml of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Most of the tanks have significantly exceeded their life spans. Approximately 90 tanks across the DOE complex are known or assumed to have leaked. Some of the tank contents are potentially explosive. These tanks must be remediated and made safe. How- ever, regulatory drivers are more ambitious than baseline technologies and budgets will support. Therefore, the Tanks Focus Area (TFA) began operation in October 1994. Themore » focus area manages, coordinates, and leverages technology development to provide integrated solutions to remediate problems that will accelerate safe and cost-effective cleanup and closure of DOE`s national tank system. The TFA is responsible for technology development to support DOE`s four major tank sites: Hanford Site (Washington), INEL (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: safety, characterization, retrieval, pretreatment, immobilization, and closure.« less

  19. 49 CFR 179.103-4 - Safety relief devices and pressure regulators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Safety relief devices and pressure regulators. 179...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  20. 49 CFR 179.103-4 - Safety relief devices and pressure regulators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Safety relief devices and pressure regulators. 179...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  1. 49 CFR 179.103-4 - Safety relief devices and pressure regulators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Safety relief devices and pressure regulators. 179... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  2. 49 CFR 179.103-4 - Safety relief devices and pressure regulators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Safety relief devices and pressure regulators. 179...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  3. Improving safety culture through the health and safety organization: a case study.

    PubMed

    Nielsen, Kent J

    2014-02-01

    International research indicates that internal health and safety organizations (HSO) and health and safety committees (HSC) do not have the intended impact on companies' safety performance. The aim of this case study at an industrial plant was to test whether the HSO can improve company safety culture by creating more and better safety-related interactions both within the HSO and between HSO members and the shop-floor. A quasi-experimental single case study design based on action research with both quantitative and qualitative measures was used. Based on baseline mapping of safety culture and the efficiency of the HSO three developmental processes were started aimed at the HSC, the whole HSO, and the safety representatives, respectively. Results at follow-up indicated a marked improvement in HSO performance, interaction patterns concerning safety, safety culture indicators, and a changed trend in injury rates. These improvements are interpreted as cultural change because an organizational double-loop learning process leading to modification of the basic assumptions could be identified. The study provides evidence that the HSO can improve company safety culture by focusing on safety-related interactions. © 2013. Published by Elsevier Ltd and National Safety Council.

  4. 77 FR 26280 - Patient Safety Organizations: Voluntary Relinquishment From CareRise LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... Organizations: Voluntary Relinquishment From CareRise LLC AGENCY: Agency for Healthcare Research and Quality... relinquishment from CareRise LLC of its status as a Patient Safety Organization (PSO). The Patient Safety and... safety and the quality of health care delivery. HHS issued the Patient Safety and Quality Improvement...

  5. Thermographic inspection of pipes, tanks, and containment liners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renshaw, Jeremy B., E-mail: jrenshaw@epri.com; Muthu, Nathan; Lhota, James R.

    2015-03-31

    Nuclear power plants are required to operate at a high level of safety. Recent industry and license renewal commitments aim to further increase safety by requiring the inspection of components that have not traditionally undergone detailed inspected in the past, such as tanks and liners. NEI 09-14 requires the inspection of buried pipes and tanks while containment liner inspections are required as a part of license renewal commitments. Containment liner inspections must inspect the carbon steel liner for defects - such as corrosion - that could threaten the pressure boundary and ideally, should be able to inspect the surrounding concretemore » for foreign material that could be in contact with the steel liner and potentially initiate corrosion. Such an inspection requires a simultaneous evaluation of two materials with very different material properties. Rapid, yet detailed, inspection results are required due to the massive size of the tanks and containment liners to be inspected. For this reason, thermal NDE methods were evaluated to inspect tank and containment liner mockups with simulated defects. Thermographic Signal Reconstruction (TSR) was utilized to enhance the images and provide detailed information on the sizes and shapes of the observed defects. The results show that thermographic inspection is highly sensitive to the defects of interest and is capable of rapidly inspecting large areas.« less

  6. LH2 fuel tank design for SSTO

    NASA Technical Reports Server (NTRS)

    Wright, Geoff

    1994-01-01

    This report will discuss the design of a liquid hydrogen fuel tank constructed from composite materials. The focus of this report is to recommend a design for a fuel tank which will be able to withstand all static and dynamic forces during manned flight. Areas of study for the design include material selection, material structural analysis, heat transfer, thermal expansion, and liquid hydrogen diffusion. A structural analysis FORTRAN program was developed for analyzing the buckling and yield characteristics of the tank. A thermal analysis Excel spreadsheet was created to determine a specific material thickness which will minimize heat transfer through the wall of the tank. The total mass of the tank was determined by the combination of both structural and thermal analyses. The report concludes with the recommendation of a layered material tank construction. The designed system will include exterior insulation, combination of metal and organize composite matrices and honeycomb.

  7. 46 CFR 154.532 - Valves: Cargo tank MARVS greater than 69 kPa gauge (10 psig).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Valves: Cargo tank MARVS greater than 69 kPa gauge (10... greater than 69 kPa gauge (10 psig). (a) Except connections for tank safety relief valves and except for... on a cargo tank with a MARVS greater than 69 kPa gauge (10 psig) must have, as close to the tank as...

  8. 76 FR 79192 - Patient Safety Organizations: Voluntary Relinquishment From the Georgia Hospital Association...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... The Georgia Hospital Association Research and Education Foundation Patient Safety Organization (GHA... Hospital Association Research and Education Foundation Patient Safety Organization (GHA-PSO), PSO number... and Education Foundation Patient Safety Organization (GHA-PSO) was delisted effective at 12:00...

  9. Investigating the effects of transport on the preservation of soft-bodied organisms using an annular flume tank.

    NASA Astrophysics Data System (ADS)

    Bath Enright, Orla; Minter, Nicholas; Sumner, Esther; Mángano, Gabriela; Buatois, Luis

    2016-04-01

    Annular flume tank experiments offer unique opportunities to be able to investigate the effect of transport on a range of organisms; being able to create slow to fast sediment-laden flows that can be laminar to fully turbulent, and lasting over durations of minutes to hours. Understanding the effects of transport on the preservation potential of different organisms is fundamental to the study of palaeoecology. Despite this, the sedimentological processes leading up to fossil entombment remain largely overlooked. This is especially significant for fossil lagerstätte such as the Burgess Shale, whose exquisite fossil preservation has enabled insights into the anatomy of early soft-bodied organisms and their evolution during the Cambrian explosion. However there is still a fundamental debate with regards to the transport these organisms have undergone. Namely, whether they were living within or close to the environment of deposition, or could they have been transported from one environment to another? As such, does the Burgess Shale biota represent a palaeocommunity or not? To explore the limits of the effect of transport, initial experiments have been designed using an annular flume tank in order to test the influence of fully turbulent sandy suspensions (75-250μm) on organism preservation. This is a three factorial design where the three independent variables are transport duration, sediment concentration and grain angularity. In all experiments, flow velocity was kept constant along with controls on pH and salinity. The dependent variable, an index of "increasing state of damage" has been devised to classify the amount of destruction each organism exhibits after the experimental procedure. Results are presented here. From observations such as these, we can begin to set constraints on the amount of transport, if any, that these fossil organisms could have endured.

  10. 46 CFR 35.30-10 - Cargo tank hatches, ullage holes, and Butterworth plates-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Cargo tank hatches, ullage holes, and Butterworth plates... OPERATIONS General Safety Rules § 35.30-10 Cargo tank hatches, ullage holes, and Butterworth plates—TB/ALL. No cargo tank hatches, ullage holes, or Butterworth plates shall be opened or shall remain open...

  11. 46 CFR 35.30-10 - Cargo tank hatches, ullage holes, and Butterworth plates-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Cargo tank hatches, ullage holes, and Butterworth plates... OPERATIONS General Safety Rules § 35.30-10 Cargo tank hatches, ullage holes, and Butterworth plates—TB/ALL. No cargo tank hatches, ullage holes, or Butterworth plates shall be opened or shall remain open...

  12. 46 CFR 35.30-10 - Cargo tank hatches, ullage holes, and Butterworth plates-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Cargo tank hatches, ullage holes, and Butterworth plates... OPERATIONS General Safety Rules § 35.30-10 Cargo tank hatches, ullage holes, and Butterworth plates—TB/ALL. No cargo tank hatches, ullage holes, or Butterworth plates shall be opened or shall remain open...

  13. 46 CFR 35.30-10 - Cargo tank hatches, ullage holes, and Butterworth plates-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Cargo tank hatches, ullage holes, and Butterworth plates... OPERATIONS General Safety Rules § 35.30-10 Cargo tank hatches, ullage holes, and Butterworth plates—TB/ALL. No cargo tank hatches, ullage holes, or Butterworth plates shall be opened or shall remain open...

  14. 46 CFR 35.30-10 - Cargo tank hatches, ullage holes, and Butterworth plates-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Cargo tank hatches, ullage holes, and Butterworth plates... OPERATIONS General Safety Rules § 35.30-10 Cargo tank hatches, ullage holes, and Butterworth plates—TB/ALL. No cargo tank hatches, ullage holes, or Butterworth plates shall be opened or shall remain open...

  15. Seismic Response Analysis of an Unanchored Steel Tank under Horizontal Excitation

    NASA Astrophysics Data System (ADS)

    Rulin, Zhang; Xudong, Cheng; Youhai, Guan

    2017-06-01

    The seismic performance of liquid storage tank affects the safety of people’s life and property. A 3-D finite element method (FEM) model of storage tank is established, which considers the liquid-solid coupling effect. Then, the displacement and stress distribution along the tank wall is studied under El Centro earthquake. Results show that, large amplitude sloshing with long period appears on liquid surface. The elephant-foot deformation occurs near the tank bottom, and at the elephant-foot deformation position maximum hoop stress and axial stress appear. The maximum axial compressive stress is very close to the allowable critical stress calculated by the design code, and may be local buckling failure occurs. The research can provide some reference for the seismic design of storage tanks.

  16. Developments in the safe design of LNG tanks

    NASA Astrophysics Data System (ADS)

    Fulford, N. J.; Slatter, M. D.

    The objective of this paper is to discuss how the gradual development of design concepts for liquefied natural gas (LNG) storage systems has helped to enhance storage safety and economy. The experience in the UK is compared with practice in other countries with similar LNG storage requirements. Emphasis is placed on the excellent record of safety and reliability exhibited by tanks with a primary metal container designed and constructed to approved standards. The work carried out to promote the development of new materials, fire protection, and monitoring systems for use in LNG storage is also summarized, and specific examples described from British Gas experience. Finally, the trends in storage tank design world-wide and options for future design concepts are discussed, bearing in mind planned legislation and design codes governing hazardous installations.

  17. Surgical Safety Training of World Health Organization Initiatives.

    PubMed

    Davis, Christopher R; Bates, Anthony S; Toll, Edward C; Cole, Matthew; Smith, Frank C T; Stark, Michael

    2014-01-01

    Undergraduate training in surgical safety is essential to maximize patient safety. This national review quantified undergraduate surgical safety training. Training of 2 international safety initiatives was quantified: (1) World Health Organization (WHO) "Guidelines for Safe Surgery" and (2) Department of Health (DoH) "Principles of the Productive Operating Theatre." Also, 13 additional safety skills were quantified. Data were analyzed using Mann-Whitney U tests. In all, 23 universities entered the study (71.9% response). Safety skills from WHO and DoH documents were formally taught in 4 UK medical schools (17.4%). Individual components of the documents were taught more frequently (47.6%). Half (50.9%) of the additional safety skills identified were taught. Surgical societies supplemented safety training, although the total amount of training provided was less than that in university curricula (P < .0001). Surgical safety training is inadequate in UK medical schools. To protect patients and maximize safety, a national undergraduate safety curriculum is recommended. © 2013 by the American College of Medical Quality.

  18. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    PubMed Central

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-01-01

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications. PMID:26393596

  19. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    PubMed

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  20. Trace organic chemical attenuation during managed aquifer recharge: Insights from a variably saturated 2D tank experiment

    NASA Astrophysics Data System (ADS)

    Regnery, Julia; Lee, Jonghyun; Drumheller, Zachary W.; Drewes, Jörg E.; Illangasekare, Tissa H.; Kitanidis, Peter K.; McCray, John E.; Smits, Kathleen M.

    2017-05-01

    Meaningful model-based predictions of water quality and quantity are imperative for the designed footprint of managed aquifer recharge installations. A two-dimensional (2D) synthetic MAR system equipped with automated sensors (temperature, water pressure, conductivity, soil moisture, oxidation-reduction potential) and embedded water sampling ports was used to test and model fundamental subsurface processes during surface spreading managed aquifer recharge operations under controlled flow and redox conditions at the meso-scale. The fate and transport of contaminants in the variably saturated synthetic aquifer were simulated using the finite element analysis model, FEFLOW. In general, the model concurred with travel times derived from contaminant breakthrough curves at individual sensor locations throughout the 2D tank. However, discrepancies between measured and simulated trace organic chemical concentrations (i.e., carbamazepine, sulfamethoxazole, tris (2-chloroethyl) phosphate, trimethoprim) were observed. While the FEFLOW simulation of breakthrough curves captured overall shapes of trace organic chemical concentrations well, the model struggled with matching individual data points, although compound-specific attenuation parameters were used. Interestingly, despite steady-state operation, oxidation-reduction potential measurements indicated temporal disturbances in hydraulic properties in the saturated zone of the 2D tank that affected water quality.

  1. Keeping patients safe in healthcare organizations: a structuration theory of safety culture.

    PubMed

    Groves, Patricia S; Meisenbach, Rebecca J; Scott-Cawiezell, Jill

    2011-08-01

    This paper presents a discussion of the use of structuration theory to facilitate understanding and improvement of safety culture in healthcare organizations. Patient safety in healthcare organizations is an important problem worldwide. Safety culture has been proposed as a means to keep patients safe. However, lack of appropriate theory limits understanding and improvement of safety culture. The proposed structuration theory of safety culture was based on a critique of available English-language literature, resulting in literature published from 1983 to mid-2009. CINAHL, Communication and Mass Media Complete, ABI/Inform and Google Scholar databases were searched using the following terms: nursing, safety, organizational culture and safety culture. When viewed through the lens of structuration theory, safety culture is a system involving both individual actions and organizational structures. Healthcare organization members, particularly nurses, share these values through communication and enact them in practice, (re)producing an organizational safety culture system that reciprocally constrains and enables the actions of the members in terms of patient safety. This structurational viewpoint illuminates multiple opportunities for safety culture improvement. Nurse leaders should be cognizant of competing value-based culture systems in the organization and attend to nursing agency and all forms of communication when attempting to create or strengthen a safety culture. Applying structuration theory to the concept of safety culture reveals a dynamic system of individual action and organizational structure constraining and enabling safety practice. Nurses are central to the (re)production of this safety culture system. © 2011 Blackwell Publishing Ltd.

  2. Developing the Safety of Atrial Fibrillation Ablation Registry Initiative (SAFARI) as a collaborative pan-stakeholder critical path registry model: a Cardiac Safety Research Consortium "Incubator" Think Tank.

    PubMed

    Al-Khatib, Sana M; Calkins, Hugh; Eloff, Benjamin C; Kowey, Peter; Hammill, Stephen C; Ellenbogen, Kenneth A; Marinac-Dabic, Danica; Waldo, Albert L; Brindis, Ralph G; Wilbur, David J; Jackman, Warren M; Yaross, Marcia S; Russo, Andrea M; Prystowsky, Eric; Varosy, Paul D; Gross, Thomas; Pinnow, Ellen; Turakhia, Mintu P; Krucoff, Mitchell W

    2010-10-01

    Although several randomized clinical trials have demonstrated the safety and efficacy of catheter ablation of atrial fibrillation (AF) in experienced centers, the outcomes of this procedure in routine clinical practice and in patients with persistent and long-standing persistent AF remain uncertain. Brisk adoption of this therapy by physicians with diverse training and experience highlights potential concerns regarding the safety and effectiveness of this procedure. Some of these concerns could be addressed by a national registry of AF ablation procedures such as the Safety of Atrial Fibrillation Ablation Registry Initiative that was initially proposed at a Cardiac Safety Research Consortium Think Tank meeting in April 2009. In January 2010, the Cardiac Safety Research Consortium, in collaboration with the Duke Clinical Research Institute, the US Food and Drug Administration, the American College of Cardiology, and the Heart Rhythm Society, held a follow-up meeting of experts in the field to review the construct and progress to date. Other participants included the National Heart, Lung, and Blood Institute; the Centers for Medicare and Medicaid Services; the Agency for Healthcare Research and Quality; the AdvaMed AF working group; and additional industry representatives. This article summarizes the discussions that occurred at the meeting of the state of the Safety of Atrial Fibrillation Ablation Registry Initiative, the identification of a clear pathway for its implementation, and the exploration of solutions to potential issues in the execution of this registry. Copyright © 2010 Mosby, Inc. All rights reserved.

  3. 46 CFR 154.630 - Cargo tank material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo tank material. 154.630 Section 154.630 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Materials...

  4. 46 CFR 154.630 - Cargo tank material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo tank material. 154.630 Section 154.630 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Materials...

  5. 46 CFR 154.630 - Cargo tank material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo tank material. 154.630 Section 154.630 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Materials...

  6. Office of River Protection Integrated Safety Management System Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CLARK, D.L.

    Revision O was never issued. Finding safe and environmentally sound methods of storage and disposal of 54 million gallons of highly radioactive waste contained in 177 underground tanks is the largest challenge of Hanford cleanup. TWRS was established in 1991 and continues to integrate all aspects of the treatment and management of the high-level radioactive waste tanks. In fiscal Year 1997, program objectives were advanced in a number of areas. RL TWRS refocused the program toward retrieving, treating, and immobilizing the tank wastes, while maintaining safety as first priority. Moving from a mode of storing the wastes to getting themore » waste out of the tanks will provide the greatest cleanup return on the investment and eliminate costly mortgage continuance. There were a number of safety-related achievements in FY1997. The first high priority safety issue was resolved with the removal of 16 tanks from the ''Wyden Watch List''. The list, brought forward by Senator Ron Wyden of Oregon, identified various Hanford safety issues needing attention. One of these issues was ferrocyanide, a chemical present in 24 tanks. Although ferrocyanide can ignite at high temperature, analysis found that the chemical has decomposed into harmless compounds and is no longer a concern.« less

  7. 77 FR 65892 - Patient Safety Organizations: Voluntary Relinquishment From PDR Secure, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... Organizations: Voluntary Relinquishment From PDR Secure, LLC AGENCY: Agency for Healthcare Research and Quality... Patient Safety Organizations (PSOs), which collect, aggregate, and analyze confidential information... Safety Act authorizes the listing of PSOs, which are entities or component organizations whose mission...

  8. Investigation of Tank 241-AN-101 Floating Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, Douglas P.; Meznarich, H. K.

    Tank 241-AN-101 is the receiver tank for retrieval of several C-Farms waste tanks, including Tanks 241-C-102 and 241-C-111. Tank 241 C 111 received first-cycle decontamination waste from the bismuth phosphate process and Plutonium and Uranium Extraction cladding waste, as well as hydraulic fluid. Three grab samples, 1AN-16-01, 1AN-16-01A, and 1AN-16-01B, were collected at the surface of Tank 241-AN-101 on April 25, 2016, after Tank 241-C-111 retrieval was completed. Floating solids were observed in the three grab samples in the 11A hot cell after the samples were received at the 222-S Laboratory. Routine chemical analyses, solid phase characterization on the floatingmore » and settled solids, semivolatile organic analysis mainly on the aqueous phase for identification of degradation products of hydraulic fluids were performed. Investigation of the floating solids is reported.« less

  9. 46 CFR 38.25-10 - Safety relief valves-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Safety relief valves-TB/ALL. 38.25-10 Section 38.25-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Periodic Tests and Inspections § 38.25-10 Safety relief valves—TB/ALL. (a) The cargo tank safety relief valves shall...

  10. 46 CFR 38.25-10 - Safety relief valves-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Safety relief valves-TB/ALL. 38.25-10 Section 38.25-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Periodic Tests and Inspections § 38.25-10 Safety relief valves—TB/ALL. (a) The cargo tank safety relief valves shall...

  11. 46 CFR 38.25-10 - Safety relief valves-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Safety relief valves-TB/ALL. 38.25-10 Section 38.25-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Periodic Tests and Inspections § 38.25-10 Safety relief valves—TB/ALL. (a) The cargo tank safety relief valves shall...

  12. 46 CFR 38.25-10 - Safety relief valves-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Safety relief valves-TB/ALL. 38.25-10 Section 38.25-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Periodic Tests and Inspections § 38.25-10 Safety relief valves—TB/ALL. (a) The cargo tank safety relief valves shall...

  13. 46 CFR 38.25-10 - Safety relief valves-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Safety relief valves-TB/ALL. 38.25-10 Section 38.25-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Periodic Tests and Inspections § 38.25-10 Safety relief valves—TB/ALL. (a) The cargo tank safety relief valves shall...

  14. 40 CFR 63.902 - Standards-Tank fixed roof.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... section joints or between the interface of the roof edge and the tank wall. (3) Each opening in the fixed... closure devices shall include: organic vapor permeability, the effects of any contact with the liquid or its vapors managed in the tank; the effects of outdoor exposure to wind, moisture, and sunlight; and...

  15. 40 CFR 63.902 - Standards-Tank fixed roof.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... section joints or between the interface of the roof edge and the tank wall. (3) Each opening in the fixed... closure devices shall include: organic vapor permeability, the effects of any contact with the liquid or its vapors managed in the tank; the effects of outdoor exposure to wind, moisture, and sunlight; and...

  16. 40 CFR 63.902 - Standards-Tank fixed roof.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... section joints or between the interface of the roof edge and the tank wall. (3) Each opening in the fixed... closure devices shall include: organic vapor permeability, the effects of any contact with the liquid or its vapors managed in the tank; the effects of outdoor exposure to wind, moisture, and sunlight; and...

  17. 40 CFR 63.902 - Standards-Tank fixed roof.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... section joints or between the interface of the roof edge and the tank wall. (3) Each opening in the fixed... closure devices shall include: organic vapor permeability, the effects of any contact with the liquid or its vapors managed in the tank; the effects of outdoor exposure to wind, moisture, and sunlight; and...

  18. Analysis of multiple tank car releases in train accidents.

    PubMed

    Liu, Xiang; Liu, Chang; Hong, Yili

    2017-10-01

    There are annually over two million carloads of hazardous materials transported by rail in the United States. The American railroads use large blocks of tank cars to transport petroleum crude oil and other flammable liquids from production to consumption sites. Being different from roadway transport of hazardous materials, a train accident can potentially result in the derailment and release of multiple tank cars, which may result in significant consequences. The prior literature predominantly assumes that the occurrence of multiple tank car releases in a train accident is a series of independent Bernoulli processes, and thus uses the binomial distribution to estimate the total number of tank car releases given the number of tank cars derailing or damaged. This paper shows that the traditional binomial model can incorrectly estimate multiple tank car release probability by magnitudes in certain circumstances, thereby significantly affecting railroad safety and risk analysis. To bridge this knowledge gap, this paper proposes a novel, alternative Correlated Binomial (CB) model that accounts for the possible correlations of multiple tank car releases in the same train. We test three distinct correlation structures in the CB model, and find that they all outperform the conventional binomial model based on empirical tank car accident data. The analysis shows that considering tank car release correlations would result in a significantly improved fit of the empirical data than otherwise. Consequently, it is prudent to consider alternative modeling techniques when analyzing the probability of multiple tank car releases in railroad accidents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. 49 CFR 179.100-1 - Tanks built under these specifications shall comply with the requirements of §§ 179.100, 179.101...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  20. 49 CFR 179.100-1 - Tanks built under these specifications shall comply with the requirements of §§ 179.100, 179.101...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  1. 49 CFR 179.100-1 - Tanks built under these specifications shall comply with the requirements of §§ 179.100, 179.101...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  2. 49 CFR 179.100-1 - Tanks built under these specifications shall comply with the requirements of §§ 179.100, 179.101...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  3. Effects of coupler height mismatch on the structural integrity of railroad tank car stub sills.

    DOT National Transportation Integrated Search

    2001-12-01

    This project evaluated the safety implications of coupler height mismatches on the integrity of railroad tank car stub sills, through a series of static and impact tests. The test car was a loaded tank car instrumented with strain gages at critical l...

  4. 16. Governor Accumulator Tanks for Units 3 and 4 and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Governor Accumulator Tanks for Units 3 and 4 and Grounding Transformer for Unit 4, view to the east. The back of the governor housing is visible in center of photograph, between the accumulator tanks. The grounding transformer for Unit 4 is located on left side of photograph, behind wire mesh safety cage. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  5. Transportation of Organs by Air: Safety, Quality, and Sustainability Criteria.

    PubMed

    Mantecchini, L; Paganelli, F; Morabito, V; Ricci, A; Peritore, D; Trapani, S; Montemurro, A; Rizzo, A; Del Sordo, E; Gaeta, A; Rizzato, L; Nanni Costa, A

    2016-03-01

    The outcomes of organ transplantation activities are greatly affected by the ability to haul organs and medical teams quickly and safely. Organ allocation and usage criteria have greatly improved over time, whereas the same result has not been achieved so far from the transport point of view. Safety and the highest level of service and efficiency must be reached to grant transplant recipients the healthiest outcome. The Italian National Transplant Centre (CNT), in partnership with the regions and the University of Bologna, has promoted a thorough analysis of all stages of organ transportation logistics chains to produce homogeneous and shared guidelines throughout the national territory, capable of ensuring safety, reliability, and sustainability at the highest levels. The mapping of all 44 transplant centers and the pertaining airport network has been implemented. An analysis of technical requirements among organ shipping agents at both national and international level has been promoted. A national campaign of real-time monitoring of organ transport activities at all stages of the supply chain has been implemented. Parameters investigated have been hospital and region of both origin and destination, number and type of organs involved, transport type (with or without medical team), stations of arrival and departure, and shipping agents, as well as actual times of activities involved. National guidelines have been issued to select organ storage units and shipping agents on the basis of evaluation of efficiency, reliability, and equipment with reference to organ type and ischemia time. Guidelines provide EU-level standards on technical equipment of aircrafts, professional requirements of shipping agencies and cabin crew, and requirements on service provision, including pricing criteria. The introduction in the Italian legislation of guidelines issuing minimum requirements on topics such as the medical team, packaging, labeling, safety and integrity, identification

  6. 49 CFR 179.200-1 - Tank built under these specifications must meet the requirements of §§ 179.200, and 179.201.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-1 Tank built under these specifications must meet...

  7. 49 CFR 179.200-1 - Tank built under these specifications must meet the requirements of §§ 179.200, and 179.201.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-1 Tank built under these specifications must meet...

  8. 49 CFR 179.200-1 - Tank built under these specifications must meet the requirements of §§ 179.200, and 179.201.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-1 Tank built under these specifications must meet...

  9. 49 CFR 179.220-1 - Tanks built under these specifications must meet the requirements of §§ 179.220 and 179.221.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-1 Tanks built under these specifications must meet...

  10. Selected topics in railroad tank car safety research. Volume 1 : fatigue evaluation of prototype tank car head shield

    DOT National Transportation Integrated Search

    1978-08-01

    The characteristics of a prototype head shield for hazardous material tank cars were evaluated with respect to the maintenance of its structural integrity under normal service conditions. The primary concern was with the resistance to fatigue damage ...

  11. Guidelines for pressure vessel safety assessment

    NASA Astrophysics Data System (ADS)

    Yukawa, S.

    1990-04-01

    A technical overview and information on metallic pressure containment vessels and tanks is given. The intent is to provide Occupational Safety and Health Administration (OSHA) personnel and other persons with information to assist in the evaluation of the safety of operating pressure vessels and low pressure storage tanks. The scope is limited to general industrial application vessels and tanks constructed of carbon or low alloy steels and used at temperatures between -75 and 315 C (-100 and 600 F). Information on design codes, materials, fabrication processes, inspection and testing applicable to the vessels and tanks are presented. The majority of the vessels and tanks are made to the rules and requirements of ASME Code Section VIII or API Standard 620. The causes of deterioration and damage in operation are described and methods and capabilities of detecting serious damage and cracking are discussed. Guidelines and recommendations formulated by various groups to inspect for the damages being found and to mitigate the causes and effects of the problems are presented.

  12. Functions and requirements for tank farm restoration and safe operations, Project W-314. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrison, R.C.

    1995-02-01

    This Functions and Requirements document (FRD) establishes the basic performance criteria for Project W-314, in accordance with the guidance outlined in the letter from R.W. Brown, RL, to President, WHC, ``Tank Waste Remediation System (TWRS) Project Documentation Methodology,`` 94-PRJ-018, dated 3/18/94. The FRD replaces the Functional Design Criteria (FDC) as the project technical baseline documentation. Project W-314 will improve the reliability of safety related systems, minimize onsite health and safety hazards, and support waste retrieval and disposal activities by restoring and/or upgrading existing Tank Farm facilities and systems. The scope of Project W-314 encompasses the necessary restoration upgrades of themore » Tank Farms` instrumentation, ventilation, electrical distribution, and waste transfer systems.« less

  13. Analysis of railroad tank car releases using a generalized binomial model.

    PubMed

    Liu, Xiang; Hong, Yili

    2015-11-01

    The United States is experiencing an unprecedented boom in shale oil production, leading to a dramatic growth in petroleum crude oil traffic by rail. In 2014, U.S. railroads carried over 500,000 tank carloads of petroleum crude oil, up from 9500 in 2008 (a 5300% increase). In light of continual growth in crude oil by rail, there is an urgent national need to manage this emerging risk. This need has been underscored in the wake of several recent crude oil release incidents. In contrast to highway transport, which usually involves a tank trailer, a crude oil train can carry a large number of tank cars, having the potential for a large, multiple-tank-car release incident. Previous studies exclusively assumed that railroad tank car releases in the same train accident are mutually independent, thereby estimating the number of tank cars releasing given the total number of tank cars derailed based on a binomial model. This paper specifically accounts for dependent tank car releases within a train accident. We estimate the number of tank cars releasing given the number of tank cars derailed based on a generalized binomial model. The generalized binomial model provides a significantly better description for the empirical tank car accident data through our numerical case study. This research aims to provide a new methodology and new insights regarding the further development of risk management strategies for improving railroad crude oil transportation safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  15. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  16. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  17. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  18. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  19. Study on Calculation of Liquid Level And Storage of Tanks for LNG-fueled Vessels

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wang, Guoqing; Liu, Chang

    2018-01-01

    As the ongoing development of the application of LNG as a clean energy in waterborne transport industry, the fleet scale of LNG-fueled vessels enlarged and the safety operation has attracted more attention in the industry. Especially the accurate detection of liquid level of LNG tanks is regarded as an important issue to ensure a safe and stable operation of LNG-fueled ships and a key parameter to keep the proper functioning of marine fuel storage system, supply system and safety control system. At present, detection of LNG tank liquid level mainly adopts differential pressure detection method. Liquid level condition could be found from the liquid level reference tables. However in practice, since LNG-fueled vessels are generally not in a stationary state, liquid state within the LNG tanks will constantly change, the detection of storage of tanks only by reference to the tables will cause deviation to some extent. By analyzing the temperature under different pressure, the effects of temperature change on density and volume integration calculation, a method of calculating the liquid level and storage of LNG tanks is put forward making the calculation of liquid level and actual storage of LNG tanks more accurately and providing a more reliable basis for the calculation of energy consumption level and operation economy for LNG-fueled vessels.

  20. Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With Reduced Permeability

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi G.; Johnston, Chris

    2004-01-01

    Over the past decade, there has been considerable research in the area of polymer-layered silicate nanocomposites. This research has shown that the dispersion of small amounts of an organically modified layered silicate improves the polymer strength, modulus, thermal stability, and barrier properties. There have been several reports on the dispersion of layered silicates in an epoxy matrix. Potential enhancements to the barrier properties of epoxy/silicate nanocomposites make this material attractive for low permeability tankage. Polymer matrix composites (PMCs) have several advantages for cryogenic storage tanks. They are lightweight, strong, and stiff; therefore, a smaller fraction of a vehicle's potential payload capacity is used for propellant storage. Unfortunately, the resins typically used to make PMC tanks have higher gas permeability than metals. This can lead to hydrogen loss through the body of the tank instead of just at welds and fittings. One approach to eliminate this problem is to build composite tanks with thin metal liners. However, although these tanks provide good permeability performance, they suffer from a substantial mismatch in the coefficient of thermal expansion, which can lead to failure of the bond between the liner and the body of the tank. Both problems could be addressed with polymersilicate nanocomposites, which exhibit reduced hydrogen permeability, making them potential candidates for linerless PMC tanks. Through collaboration with Northrop Grumman and Michigan State University, nanocomposite test tanks were manufactured for the NASA Glenn Research Center, and the helium permeability was measured. An organically modified silicate was prepared at Michigan State University and dispersed in an epoxy matrix (EPON 826/JeffamineD230). The epoxy/silicate nanocomposites contained either 0 or 5 wt% of the organically modified silicate. The tanks were made by filament winding carbon fibers with the nanocomposite resin. Helium permeability

  1. The patient safety climate in healthcare organizations (PSCHO) survey: Short-form development.

    PubMed

    Benzer, Justin K; Meterko, Mark; Singer, Sara J

    2017-08-01

    Measures of safety climate are increasingly used to guide safety improvement initiatives. However, cost and respondent burden may limit the use of safety climate surveys. The purpose of this study was to develop a 15- to 20-item safety climate survey based on the Patient Safety Climate in Healthcare Organizations survey, a well-validated 38-item measure of safety climate. The Patient Safety Climate in Healthcare Organizations was administered to all senior managers, all physicians, and a 10% random sample of all other hospital personnel in 69 private sector hospitals and 30 Veterans Health Administration hospitals. Both samples were randomly divided into a derivation sample to identify a short-form subset and a confirmation sample to assess the psychometric properties of the proposed short form. The short form consists of 15 items represented 3 overarching domains in the long-form scale-organization, work unit, and interpersonal. The proposed short form efficiently captures 3 important sources of variance in safety climate: organizational, work-unit, and interpersonal. The short-form development process was a practical method that can be applied to other safety climate surveys. This safety climate short form may increase response rates in studies that involve busy clinicians or repeated measures. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  2. Tanks Focus Area site needs assessment FY 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report documents the process used by the Tanks Focus Area (TFA) to analyze and develop responses to technology needs submitted by four major US Department of Energy (DOE) sites with radioactive tank waste problems, and the initial results of the analysis. The sites are the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), and Savannah River Site (SRS). This document describes the TFA`s process of collecting site needs, analyzing them, and creating technical responses to the sites. It also summarizes the information contained within the TFA needs database, portraying information provided by four majormore » DOE sites with tank waste problems. The overall TFA program objective is to deliver a tank technology program that reduces the current cost, and the operational and safety risks of tank remediation. The TFA`s continues to enjoy close, cooperative relationships with each site. During the past year, the TFA has fostered exchanges of technical information between sites. These exchanges have proven to be healthy for all concerned. The TFA recognizes that site technology needs often change, and the TFA must be prepared not only to amend its program in response, but to help the sites arrive at the best technical approach to solve revised site needs.« less

  3. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  4. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  5. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  6. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  7. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  8. Safety assessment and detection methods of genetically modified organisms.

    PubMed

    Xu, Rong; Zheng, Zhe; Jiao, Guanglian

    2014-01-01

    Genetically modified organisms (GMOs), are gaining importance in agriculture as well as the production of food and feed. Along with the development of GMOs, health and food safety concerns have been raised. These concerns for these new GMOs make it necessary to set up strict system on food safety assessment of GMOs. The food safety assessment of GMOs, current development status of safety and precise transgenic technologies and GMOs detection have been discussed in this review. The recent patents about GMOs and their detection methods are also reviewed. This review can provide elementary introduction on how to assess and detect GMOs.

  9. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... allowance if the cargo tank: (a) is located in a space that does not have inert gas or dry air; or (b... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo...

  10. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... allowance if the cargo tank: (a) is located in a space that does not have inert gas or dry air; or (b... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo...

  11. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... allowance if the cargo tank: (a) is located in a space that does not have inert gas or dry air; or (b... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo...

  12. Organizing seniors to protect the health safety net: the way forward.

    PubMed

    Sharma, Leena; Regan, Carol; Villers, Katherine S

    2018-04-12

    Over the past century, the organized voice of seniors has been critical in building the U.S. health safety net. Since the 2016 election, that safety net, particularly the Medicaid program, is in jeopardy. As we have seen with the rise of the Tea Party, senior support for health care programs-even programs that they use in large numbers-cannot and should not be taken for granted. This article provides a brief history of senior advocacy and an overview of the current senior organizing landscape. It also identifies opportunities for building the transformational organizing of low-income seniors needed to defend against sustained attacks on critical programs. Several suggestions are made, drawn from years of work in philanthropy, advocacy, and campaigns, for strengthening the ability to organize seniors-particularly low-income seniors-into an effective political force advocating for Medicaid and other safety net programs.

  13. 49 CFR 176.340 - Combustible liquids in portable tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 3 (Flammable) and Combustible Liquid Materials § 176.340... 49 Transportation 2 2014-10-01 2014-10-01 false Combustible liquids in portable tanks. 176.340...

  14. 49 CFR 176.340 - Combustible liquids in portable tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 3 (Flammable) and Combustible Liquid Materials § 176.340... 49 Transportation 2 2010-10-01 2010-10-01 false Combustible liquids in portable tanks. 176.340...

  15. 49 CFR 176.340 - Combustible liquids in portable tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 3 (Flammable) and Combustible Liquid Materials § 176.340... 49 Transportation 2 2011-10-01 2011-10-01 false Combustible liquids in portable tanks. 176.340...

  16. 49 CFR 176.340 - Combustible liquids in portable tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 3 (Flammable) and Combustible Liquid Materials § 176.340... 49 Transportation 2 2012-10-01 2012-10-01 false Combustible liquids in portable tanks. 176.340...

  17. 49 CFR 176.340 - Combustible liquids in portable tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 3 (Flammable) and Combustible Liquid Materials § 176.340... 49 Transportation 2 2013-10-01 2013-10-01 false Combustible liquids in portable tanks. 176.340...

  18. Organic Separation Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-09-22

    Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations,more » could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.« less

  19. An investigation of safety climate in OHSAS 18001-certified and non-certified organizations.

    PubMed

    Ghahramani, Abolfazl

    2016-09-01

    Many organizations worldwide have implemented Occupational Health and Safety Assessment Series (OHSAS) 18001 in their premises because of the assumed positive effects of this standard on safety. Few studies have analyzed the effect of the safety climate in OHSAS 18001-certified organizations. This case-control study used a new safety climate questionnaire to evaluate three OHSAS 18001-certified and three non-certified manufacturing companies in Iran. Hierarchical regression indicated that the safety climate was influenced by OHSAS implementation and by safety training. Employees who received safety training had better perceptions of the safety climate and its dimensions than other respondents within the certified companies. This study found that the implementation of OHSAS 18001 does not guarantee improvement of the safety climate. This study also emphasizes the need for high-quality safety training for employees of the certified companies to improve the safety climate.

  20. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... of Tank Cars § 180.519 Periodic retest and inspection of tank cars other than single-unit tank car...

  1. Product Safety, It's No Accident. A Consumer Product Safety Monthly Planning Guide for Community Organizations.

    ERIC Educational Resources Information Center

    Consumer Product Safety Commission, Washington, DC.

    A consumer product safety monthly planning guide for community organizations is provided. The material is organized into suggested monthly topics with seasonal emphasis. Each section highlights selected information about how to identify potential hazards associated with categories of products. Each section also includes recommendaitons of ways to…

  2. Assessment of single-shell tank residual-liquid issues at Hanford Site, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, K.S.; Stout, L.A.; Napier, B.A.

    1983-06-01

    This report provides an assessment of the overall effectiveness and implications of jet pumping the interstitial liquids (IL) from single-shell tanks at Hanford. The jet-pumping program, currently in progress at Hanford, involves the planned removal of IL contained in 89 of the 149 single-shell tanks and its transfer to double-shell tanks after volume reduction by evaporation. The purpose of this report is to estimate the public and worker doses associated with (1) terminating pumping immediately, (2) pumping to a 100,000-gal limit per tank, (3) pumping to a 50,000-gal limit per tank, and (4) pumping to the maximum practical liquid removalmore » level of 30,000 gal. Assessment of the cost-effectiveness of these various levels of pumping in minimizing any undue health and safety risks to the public or worker is also presented.« less

  3. 78 FR 9902 - DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy; Correction AGENCY: Department of Energy... Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy. This document corrects an error in...

  4. Milestone 4: Test plan for Reusable Hydrogen Composite Tank System (RHCTS). Task 3: Composite tank materials

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    This document is the detailed test plan for the series of tests enumerated in the preceding section. The purpose of this plan is to present the test objectives, test parameters and procedures, expected performance and data analysis plans, criteria for success, test schedules, and related safety provisions and to describe the test articles, test instrumentation, and test facility requirements. Initial testing will be performed to screen four composite materials for suitability for SSTO LH2 tank loads and environmental conditions. The laminates for this testing will be fabricated by fiber placement, which is the manufacturing approach identified as baseline for the tank wall. Even though hand layup will be involved in fabricating many of the internal structural members of the tank, no hand-layup laminates will be evaluated in the screening or subsequent characterization testing. This decision is based on the understanding that mechanical properties measured for hand-layup material should be at least equivalent to properties measured for fiber-placed material, so that the latter should provide no less than a conservative approximation of the former. A single material will be downselected from these screening tests. This material will be subsequently characterized for impact-damage tolerance and durability under conditions of mechanical and thermal cycling, and to establish a preliminary design database to support ongoing analysis. Next, testing will be performed on critical structural elements fabricated from the selected material. Finally, the 8-foot diameter tank article, containing the critical structural features of the full-scale tank, will be fabricated by fiber placement and tested to verify its structural integrity and LH2 containment.

  5. [Genetically modified organisms: a new threat to food safety].

    PubMed

    Spendeler, Liliane

    2005-01-01

    This article analyzes all of the food safety-related aspects related to the use of genetically modified organisms into agriculture and food. A discussion is provided as to the uncertainties related to the insertion of foreign genes into organisms, providing examples of unforeseen, undesirable effects and of instabilities of the organisms thus artificially fabricated. Data is then provided from both official agencies as well as existing literature questioning the accuracy and reliability of the risk analyses as to these organisms being harmless to health and discusses the almost total lack of scientific studies analyzing the health safety/dangerousness of transgenic foods. Given all these unknowns, other factors must be taken into account, particularly genetic contamination of the non-genetically modified crops, which is now starting to become widespread in some parts of the world. Not being able of reversing the situation in the even of problems is irresponsible. Other major aspects are the impacts on the environment (such as insects building up resistances, the loss of biodiversity, the increase in chemical products employed) with indirect repercussions on health and/or future food production. Lastly, thoughts for discussion are added concerning food safety in terms of food availability and food sovereignty, given that the transgenic seed and related agrochemicals market is currently cornered by five large-scale transnational companies. The conclusion entails an analysis of biotechnological agriculture's contribution to sustainability.

  6. Cargo tank incident study (CTIS) : rollover data and risk framework.

    DOT National Transportation Integrated Search

    2017-03-01

    It is critical to our nations safety to minimize the risk of accidents involving the transportation of hazardous materials on our nations roadways via commercial cargo tank trucks. This research included a detailed human factors analysis of car...

  7. Enhanced sludge reduction in septic tanks by increasing temperature.

    PubMed

    Pussayanavin, Tatchai; Koottatep, Thammarat; Eamrat, Rawintra; Polprasert, Chongrak

    2015-01-01

    Septic tanks in most developing countries are constructed without drainage trenches or leaching fields to treat toilet wastewater and /or grey water. Due to the short hydraulic retention time, effluents of these septic tanks are still highly polluted, and there is usually high accumulation of septic tank sludge or septage containing high levels of organics and pathogens that requires frequent desludging and subsequent treatment. This study aimed to reduce sludge accumulation in septic tanks by increasing temperatures of the septic tank content. An experimental study employing two laboratory-scale septic tanks fed with diluted septage and operating at temperatures of 40 and 30°C was conducted. At steady-state conditions, there were more methanogenic activities occurring in the sludge layer of the septic tank operating at the temperature of 40°C, resulting in less total volatile solids (TVS) or sludge accumulation and more methane (CH4) production than in the unit operating at 30°C. Molecular analysis found more abundance and diversity of methanogenic microorganisms in the septic tank sludge operating at 40°C than at 30°C. The reduced TVS accumulation in the 40°C septic tank would lengthen the period of septage removal, resulting in a cost-saving in desluging and septage treatment. Cost-benefit analysis of increasing temperatures in septic tanks was discussed.

  8. Dynamic Pressure Distribution due to Horizontal Acceleration in Spherical LNG Tank with Cylindrical Central Part

    NASA Astrophysics Data System (ADS)

    Ko, Dae-Eun; Shin, Sang-Hoon

    2017-11-01

    Spherical LNG tanks having many advantages such as structural safety are used as a cargo containment system of LNG carriers. However, it is practically difficult to fabricate perfectly spherical tanks of different sizes in the yard. The most effective method of manufacturing LNG tanks of various capacities is to insert a cylindrical part at the center of existing spherical tanks. While a simplified high-precision analysis method for the initial design of the spherical tanks has been developed for both static and dynamic loads, in the case of spherical tanks with a cylindrical central part, the analysis method available only considers static loads. The purpose of the present study is to derive the dynamic pressure distribution due to horizontal acceleration, which is essential for developing an analysis method that considers dynamic loads as well.

  9. Tank Pressure Control Experiment (TPCE)

    NASA Technical Reports Server (NTRS)

    Bentz, Mike

    1992-01-01

    The Tank Pressure Control Experiment (TPCE) is a small self-contained STS payload designed to test a jet mixer for cryogenic fluid pressure control. Viewgraphs are presented that describe project organization, experiment objectives and approach, risk management, payload concept and mission plan, and initial test data.

  10. Trade associations and labor organizations as intermediaries for disseminating workplace safety and health information.

    PubMed

    Okun, Andrea H; Watkins, Janice P; Schulte, Paul A

    2017-09-01

    There has not been a systematic study of the nature and extent to which business and professional trade associations and labor organizations obtain and communicate workplace safety and health information to their members. These organizations can serve as important intermediaries and play a central role in transferring this information to their members. A sample of 2294 business and professional trade associations and labor organizations in eight industrial sectors identified by the National Occupational Research Agenda was surveyed via telephone. A small percent of these organizations (40.9% of labor organizations, 15.6% of business associations, and 9.6% of professional associations) were shown to distribute workplace safety and health information to their members. Large differences were also observed between industrial sectors with construction having the highest total percent of organizations disseminating workplace safety and health information. There appears to be significant potential to utilize trade and labor organizations as intermediaries for transferring workplace safety and health information to their members. Government agencies have a unique opportunity to partner with these organizations and to utilize their existing communication channels to address high risk workplace safety and health concerns. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  11. Think Tanks

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A new inspection robot from Solex Robotics Systems was designed to eliminate hazardous inspections of petroleum and chemical storage tanks. The submersible robot, named Maverick, is used to inspect the bottoms of tanks, keeping the tanks operational during inspection. Maverick is able to provide services that will make manual tank inspections obsolete. While the inspection is conducted, Maverick's remote human operators remain safe outside of the tank. The risk to human health and life is now virtually eliminated. The risk to the environment is also minimal because there is a reduced chance of spillage from emptying and cleaning the tanks, where previously, tons of pollutants were released through the process of draining and refilling.

  12. Think tank (2) Its development and the current situation of the key organizations in Japan

    NASA Astrophysics Data System (ADS)

    Obara, Michio

    There were some think tank businesses in Japan before the war. South Manchuria Railway Company established its Research Department for the purpose of getting power to control Manchuria as a colony, and got the good results. Think tank business was flourishing three times after the war. This business attracts much attention when the social and economic paradigm is going to change. Among the key large-scale think tanks in Japan, Nomura Research Institute, Ltd. (NRI) was the first to enhance the system functions by the merger, and posted think tank function up in the SI business. Mitsubishi Research Institute, Inc. (MRI) intends to be an orthodox think tank, and established an advanced research institute and the laboratory for R&D. Daiwa Institute of Research, Ltd. (DIR) focuses on economic forecast by using system. Fuji Research Institute. Corp. (FUJI RIC) focuses on survey and policy proposing in macro-economics, and analyzing technology. The Japan Research Institute, Ltd. (JRI) focuses on regional development, and R&D in advanced technology.

  13. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  14. Patient Safety Climate: A Study of Southern California Healthcare Organizations.

    PubMed

    Avramchuk, Andre S; McGuire, Stephen J J

    2018-01-01

    Human error remains the most important factor in unnecessary deaths and suffering in U.S. hospitals. Human error results from healthcare providers' attitudes and behaviors toward patients in different settings. Therefore, taking periodic snapshots of the attitudes and behaviors prevalent in an organization and manifested in its patient safety climate (PSC) is essential.We developed and tested a short survey instrument intended as an organization-level measure of PSC with good psychometric properties that can be used in hospitals, clinics, or other healthcare provider settings. Analysis of data from 61 Southern California healthcare organizations resulted in a PSC model with four distinct, reliable factors: (1) Assistance From Others and the Organization, (2) Leadership Messages of Support in Policy and Behavior, (3) Resources and Work Environment, and (4) Error Reporting Behavior. A PSC score, ranging from 0 to 100, was generated for each organization.For a subsample of hospitals in our study, preliminary results indicate a predictive quality of the model. The higher the PSC score, the lower the number of violations detected by the Centers for Medicare & Medicaid Services in complaint inspections, and the fewer the safety problems reported by The Leapfrog Group.Given the association between PSC and health outcomes, we urge healthcare leaders to use various means, such as our survey, to monitor the degree to which their organizations maintain a climate that fosters patient safety and use such data to pinpoint areas for improvement.

  15. Tank 241-T-204, core 188 analytical results for the final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuzum, J.L.

    TANK 241-T-204, CORE 188, ANALYTICAL RESULTS FOR THE FINAL REPORT. This document is the final laboratory report for Tank 241 -T-204. Push mode core segments were removed from Riser 3 between March 27, 1997, and April 11, 1997. Segments were received and extruded at 222-8 Laboratory. Analyses were performed in accordance with Tank 241-T-204 Push Mode Core Sampling and analysis Plan (TRAP) (Winkleman, 1997), Letter of instruction for Core Sample Analysis of Tanks 241-T-201, 241- T-202, 241-T-203, and 241-T-204 (LAY) (Bell, 1997), and Safety Screening Data Qual@ Objective (DO) ODukelow, et al., 1995). None of the subsamples submitted for totalmore » alpha activity (AT) or differential scanning calorimetry (DC) analyses exceeded the notification limits stated in DO. The statistical results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group and are not considered in this report.« less

  16. 49 CFR 179.300-1 - Tanks built under these specifications shall meet the requirements of §§ 179.300 and 179.301.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car...

  17. Work organization research at the National Institute for Occupational Safety and Health.

    PubMed

    Rosenstock, L

    1997-01-01

    For 25 years, the National Institute for Occupational Safety and Health (NIOSH) has conducted and sponsored laboratory, field, and epidemiological studies that have helped define the role of work organization factors in occupational safety and health. Research has focused on the health effects of specific job conditions, occupational stressors in specific occupations, occupational difference in the incidence of stressors and stress-related disorders, and intervention strategies. NIOSH and the American Psychological Association have formalized the concept of occupational health psychology and developed a postdoctoral training program. The National Occupational Research Agenda recognizes organization of work as one of 21 national occupational safety and health research priority areas. Future research should focus on industries, occupations, and populations at special risk; the impact of work organization on overall health; the identification of healthy organization characteristics; and the development of intervention strategies.

  18. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tank. (2) A new vessel of 70,000 tons DWT or more must have at least two slop tanks. (b) Capacity. Slop tanks must have the total capacity to retain oily mixtures from cargo tank washings, oil residue, and ballast water containing an oily mixture of 3 percent or more of the oil carrying capacity. Two percent...

  19. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  20. Hospital collaboration with public safety organizations on bioterrorism response.

    PubMed

    Niska, Richard W

    2008-01-01

    To identify hospital characteristics that predict collaboration with public safety organizations on bioterrorism response plans and mass casualty drills. The 2003 and 2004 Bioterrorism and Mass Casualty Supplements to the National Hospital Ambulatory Medical Care Survey examined collaboration with emergency medical services (EMS), hazardous materials teams (HAZMAT), fire departments, and law enforcement. The sample included 112 geographic primary sampling units and 1,110 hospitals. Data were weighted by inverse selection probability, to yield nationally representative estimates. Characteristics included residency and medical school affiliation, bed capacity, ownership, urbanicity and Joint Commission accreditation. The response rate was 84.6%. Chi-square analysis was performed with alpha set at p < 0.05. Logistic regression modeling yielded odds ratios with 95% confidence intervals. During a bioterrorism incident, 68.9% of hospitals would contact EMS, 68.7% percent law enforcement, 61.6% fire departments, 58.1% HAZMAT, and 42.8% all four. About 74.2% had staged mass casualty drills with EMS, 70.4% with fire departments, 67.4% with law enforcement, 43.3% with HAZMAT, and 37.0% with all four. Predictors of drilling with some or all of these public safety organizations included larger bed capacity, nonprofit and proprietary ownership, and JCAHO accreditation. Medical school affiliation was a negative predictor of drilling with EMS. The majority of hospitals involve public safety organizations in their emergency plans or drills. Bed capacity was most predictive of drilling with these organizations. Medical school affiliation was the only characteristic negatively associated with drilling.

  1. Technical evaluation of a tank-connected food waste disposer system for biogas production and nutrient recovery.

    PubMed

    Davidsson, Å; Bernstad Saraiva, A; Magnusson, N; Bissmont, M

    2017-07-01

    In this study, a tank-connected food waste disposer system with the objective to optimise biogas production and nutrient recovery from food waste in Malmö was evaluated. The project investigated the source-separation ratio of food waste through waste composition analyses, determined the potential biogas production in ground food waste, analysed the organic matter content and the limiting components in ground food waste and analysed outlet samples to calculate food waste losses from the separation tank. It can be concluded that the tank-connected food waste disposer system in Malmö can be used for energy recovery and optimisation of biogas production. The organic content of the collected waste is very high and contains a lot of energy rich fat and protein, and the methane potential is high. The results showed that approximately 38% of the food waste dry matter is collected in the tank. The remaining food waste is either found in residual waste (34% of the dry matter) or passes the tank and goes through the outlet to the sewer (28%). The relatively high dry matter content in the collected fraction (3-5% DM) indicates that the separation tank can thicken the waste substantially. The potential for nutrient recovery is rather limited considering the tank content. Only small fractions of the phosphorus (15%) and nitrogen (21%) are recyclable by the collected waste in the tank. The quality of the outlet indicates a satisfactory separation of particulate organic matter and fat. The organic content and nutrients, which are in dissolved form, cannot be retained in the tank and are rather led to the sewage via the outlet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Implementing an Integrated Commitment Management System at the Savannah River Site Tank Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, A.

    1999-06-16

    Recently, the Savannah River Site Tank Farms have been transitioning from pre-1990 Authorization Basis requirements to new 5480.22/.23 requirements. Implementation of the new Authorization Basis has resulted in more detailed requirements, a completely new set of implementing procedures, and the expectation of even more disciplined operations. Key to the success of this implementation has been the development of an Integrated Commitment Management System (ICMS) by Westinghouse Safety Management Solutions. The ICMS has two elements: the Authorization Commitment Matrix (ACM), and a Procedure Consistency Review methodology. The Authorization Commitment Matrix is a linking database, which ties requirements and implementing documents together.more » The associated Procedure Consistency Review process ensures that the procedures to be credited in the ACM do in fact correctly and completely meet all intended commitments. This Integrated Commitment Management System helps Westinghouse Safety Management Solutions and the facility operations and engineering organizations take ownership in the implementation of the requirements that have been developed.« less

  3. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and... liquid tank car tanks. ...

  4. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  5. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  6. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  7. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  8. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to...

  9. Double shell tanks (DST) chemistry control data quality objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    2001-10-09

    One of the main functions of the River Protection Project is to store the Hanford Site tank waste until the Waste Treatment Plant (WTP) is ready to receive and process the waste. Waste from the older single-shell tanks is being transferred to the newer double-shell tanks (DSTs). Therefore, the integrity of the DSTs must be maintained until the waste from all tanks has been retrieved and transferred to the WTP. To help maintain the integrity of the DSTs over the life of the project, specific chemistry limits have been established to control corrosion of the DSTs. These waste chemistry limitsmore » are presented in the Technical Safety Requirements (TSR) document HNF-SD-WM-TSR-006, Sec. 5 . IS, Rev 2B (CHG 200 I). In order to control the chemistry in the DSTs, the Chemistry Control Program will require analyses of the tank waste. This document describes the Data Quality Objective (DUO) process undertaken to ensure appropriate data will be collected to control the waste chemistry in the DSTs. The DQO process was implemented in accordance with Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. Ib, Vol. IV, Section 4.16, (Banning 2001) and the U.S. Environmental Protection Agency EPA QA/G4, Guidance for the Data Quality Objectives Process (EPA 1994), with some modifications to accommodate project or tank specific requirements and constraints.« less

  10. The Vaccine Safety Datalink: immunization research in health maintenance organizations in the USA.

    PubMed Central

    Chen, R. T.; DeStefano, F.; Davis, R. L.; Jackson, L. A.; Thompson, R. S.; Mullooly, J. P.; Black, S. B.; Shinefield, H. R.; Vadheim, C. M.; Ward, J. I.; Marcy, S. M.

    2000-01-01

    The Vaccine Safety Datalink is a collaborative project involving the National Immunization Program of the Centers for Disease Control and Prevention and several large health maintenance organizations in the USA. The project began in 1990 with the primary purpose of rigorously evaluating concerns about the safety of vaccines. Computerized data on vaccination, medical outcome (e.g. outpatient visits, emergency room visits, hospitalizations, and deaths) and covariates (e.g. birth certificates, census data) are prospectively collected and linked under joint protocol at multiple health maintenance organizations for analysis. Approximately 6 million persons (2% of the population of the USA) are now members of health maintenance organizations participating in the Vaccine Safety Datalink, which has proved to be a valuable resource providing important information on a number of vaccine safety issues. The databases and infrastructure created for the Vaccine Safety Datalink have also provided opportunities to address vaccination coverage, cost-effectiveness and other matters connected with immunization as well as matters outside this field. PMID:10743283

  11. [High Pressure Gas Tanks

    NASA Technical Reports Server (NTRS)

    Quintana, Rolando

    2002-01-01

    Four high-pressure gas tanks, the basis of this study, were especially made by a private contractor and tested before being delivered to NASA Kennedy Space Center. In order to insure 100% reliability of each individual tank the staff at KSC decided to again submit the four tanks under more rigorous tests. These tests were conducted during a period from April 10 through May 8 at KSC. This application further validates the predictive safety model for accident prevention and system failure in the testing of four high-pressure gas tanks at Kennedy Space Center, called Continuous Hazard Tracking and Failure Prediction Methodology (CHTFPM). It is apparent from the variety of barriers available for a hazard control that some barriers will be more successful than others in providing protection. In order to complete the Barrier Analysis of the system, a Task Analysis and a Biomechanical Study were performed to establish the relationship between the degree of biomechanical non-conformities and the anomalies found within the system on particular joints of the body. This relationship was possible to obtain by conducting a Regression Analysis to the previously generated data. From the information derived the body segment with the lowest percentage of non-conformities was the neck flexion with 46.7%. Intense analysis of the system was conducted including Preliminary Hazard Analysis (PHA), Failure Mode and Effect Analysis (FMEA), and Barrier Analysis. These analyses resulted in the identification of occurrences of conditions, which may be becoming hazardous in the given system. These conditions, known as dendritics, may become hazards and could result in an accident, system malfunction, or unacceptable risk conditions. A total of 56 possible dendritics were identified. Work sampling was performed to observe the occurrence each dendritic. The out of control points generated from a Weighted c control chart along with a Pareto analysis indicate that the dendritics "Personnel not

  12. Edible safety requirements and assessment standards for agricultural genetically modified organisms.

    PubMed

    Deng, Pingjian; Zhou, Xiangyang; Zhou, Peng; Du, Zhong; Hou, Hongli; Yang, Dongyan; Tan, Jianjun; Wu, Xiaojin; Zhang, Jinzhou; Yang, Yongcun; Liu, Jin; Liu, Guihua; Li, Yonghong; Liu, Jianjun; Yu, Lei; Fang, Shisong; Yang, Xiaoke

    2008-05-01

    This paper describes the background, principles, concepts and methods of framing the technical regulation for edible safety requirement and assessment of agricultural genetically modified organisms (agri-GMOs) for Shenzhen Special Economic Zone in the People's Republic of China. It provides a set of systematic criteria for edible safety requirements and the assessment process for agri-GMOs. First, focusing on the degree of risk and impact of different agri-GMOs, we developed hazard grades for toxicity, allergenicity, anti-nutrition effects, and unintended effects and standards for the impact type of genetic manipulation. Second, for assessing edible safety, we developed indexes and standards for different hazard grades of recipient organisms, for the influence of types of genetic manipulation and hazard grades of agri-GMOs. To evaluate the applicability of these criteria and their congruency with other safety assessment systems for GMOs applied by related organizations all over the world, we selected some agri-GMOs (soybean, maize, potato, capsicum and yeast) as cases to put through our new assessment system, and compared our results with the previous assessments. It turned out that the result of each of the cases was congruent with the original assessment.

  13. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100 and...

  14. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100 and...

  15. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100 and...

  16. 76 FR 27300 - Hazardous Materials: Cargo Tank Motor Vehicle Loading and Unloading Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... Motor Vehicle Loading and Unloading Operations AGENCY: Pipeline and Hazardous Materials Safety... cargo tank motor vehicle proposals in this notice, we are providing affected entities as well as the...

  17. Development and flight test of metal-lined CFRP cryogenic tank for reusable rocket

    NASA Astrophysics Data System (ADS)

    Higuchi, Ken; Takeuchi, Shinsuke; Sato, Eiichi; Naruo, Yoshihiro; Inatani, Yoshifumi; Namiki, Fumiharu; Tanaka, Kohtaro; Watabe, Yoko

    2005-07-01

    A cryogenic tank made of carbon fiber reinforced plastic (CFRP) shell with aluminum thin liner has been designed as a liquid hydrogen (LH2) tank for an ISAS reusable launch vehicle, and the function of it has been proven by repeated flights onboard the test vehicle called reusable vehicle testing (RVT) in October 2003. The liquid hydrogen tank has to be a pressure vessel, because the fuel of the engine of the test vehicle is supplied by fuel pressure. The pressure vessel of a combination of the outer shell of CFRP for strength element at a cryogenic temperature and the inner liner of aluminum for gas barrier has shown excellent weight merit for this purpose. Interfaces such as tank outline shape, bulk capacity, maximum expected operating pressure (MEOP), thermal insulation, pipe arrangement, and measurement of data are also designed to be ready onboard. This research has many aims, not only development of reusable cryogenic composite tank but also the demonstration of repeated operation including thermal cycle and stress cycle, familiarization with test techniques of operation of cryogenic composite tanks, and the accumulation of data for future design of tanks, vehicle structures, safety evaluation, and total operation systems.

  18. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  19. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  20. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  1. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  2. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  3. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  4. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT... tank car tanks. Editorial Note: At 66 FR 45186, Aug. 28, 2001, an amendment published amending a table...

  5. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  6. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  7. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  8. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  9. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  10. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  11. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances ofmore » the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.« less

  12. 33 CFR 157.147 - Similar tank design: Inspections on foreign tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Similar tank design: Inspections... § 157.147 Similar tank design: Inspections on foreign tank vessels. (a) If a foreign tank vessel has..., for only one of those tanks to be inspected under § 157.140(a)(1). (b) Only one tank of a group of...

  13. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  14. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  15. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  16. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  17. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  18. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  19. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  20. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  1. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...

  2. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In...

  3. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...

  4. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...

  5. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  6. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  7. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  8. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  9. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  10. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  11. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification DOT-107A * * * * seamless steel tank...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  12. ADM. Tanks: from left to right: fuel oil tank, fuel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADM. Tanks: from left to right: fuel oil tank, fuel pump house (TAN-611), engine fuel tank, water pump house, water storage tank. Camera facing northwest. Not edge of shielding berm at left of view. Date: November 25, 1953. INEEL negative no. 9217 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  13. 78 FR 76775 - Special Conditions: Airbus, Model A350-900 Series Airplane; Lightning Protection of Fuel Tank...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... level of safety equivalent to that established by the existing airworthiness standards. DATES: Send your... finding of regulatory adequacy under Sec. 611 of Public Law 92-574, the ``Noise Control Act of 1972.'' The... intended to control fuel tank flammability for all fuel tanks. This NGS is designed to provide a level of...

  14. Seal Analysis for the Ares-I Upper Stage Fuel Tank Manhole Cover

    NASA Technical Reports Server (NTRS)

    Phillips, Dawn R.; Wingate, Robert J.

    2010-01-01

    Techniques for studying the performance of Naflex pressure-assisted seals in the Ares-I Upper Stage liquid hydrogen tank manhole cover seal joint are explored. To assess the feasibility of using the identical seal design for the Upper Stage as was used for the Space Shuttle External Tank manhole covers, a preliminary seal deflection analysis using the ABAQUS commercial finite element software is employed. The ABAQUS analyses are performed using three-dimensional symmetric wedge finite element models. This analysis technique is validated by first modeling a heritage External Tank liquid hydrogen tank manhole cover joint and correlating the results to heritage test data. Once the technique is validated, the Upper Stage configuration is modeled. The Upper Stage analyses are performed at 1.4 times the expected pressure to comply with the Constellation Program factor of safety requirement on joint separation. Results from the analyses performed with the External Tank and Upper Stage models demonstrate the effects of several modeling assumptions on the seal deflection. The analyses for Upper Stage show that the integrity of the seal is successfully maintained.

  15. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  16. 49 CFR 178.255-8 - Safety devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Safety devices. 178.255-8 Section 178.255-8 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Portable Tanks § 178.255-8 Safety devices. (a) See § 173.315(i) of this subchapter. (b) [Reserved] [Amdt...

  17. 49 CFR 178.255-8 - Safety devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Safety devices. 178.255-8 Section 178.255-8 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Specifications for Portable Tanks § 178.255-8 Safety devices. (a) See § 173.315(i) of this subchapter. (b...

  18. Think tank (1) - Its definition and the overseas situation

    NASA Astrophysics Data System (ADS)

    Obara, Michio

    The definition as organization is that 1) the think tank should be policy oriented and propose the current issues, 2) it should be interdisciplinary and future oriented, and 3) it should be independent without any outside interference upon it. It is divided into three types in terms of business activity; 1) policy proposing, 2) R&D undertaking and 3) business consulting think tanks. Historically the U.S. has been leading the world because the first think tank was born in this country, and three types of think tanks have brought out the mature business undertakings there. Most of the countries other than the U.S. has held policy proposing type think tanks. The notable think tanks are Brookings Research Institute, Rand Research Institute, Battelle Memorial Institute, Arthur D. Little Co. Ltd. SRI International in the U.S.A., IFO Economic Research Institute, German Economic Research Institute in Germany, France International Relations Research Institute in France, Royal International Relations Research institute, International Strategic Matters Research Institute in the U.K., and Korean Development Research Institute, Korean industrial Research Institute in Korea. All of these have been active in the areas of politics, economics, industry and technology.

  19. Making the Undergraduate Classroom into a Policy Think Tank: Reflections from a Field Methods Class

    ERIC Educational Resources Information Center

    Broughton, Chad

    2011-01-01

    This article examines the opportunities and limitations presented by organizing an undergraduate field research methods class as a policy think tank working for a government client. Organized as such, the course had both the learning objectives of a traditional undergraduate methods class and the corporate objectives of a policy think tank (i.e.,…

  20. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  1. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  2. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  3. 78 FR 6819 - Patient Safety Organizations: Voluntary Relinquishment From The Connecticut Hospital Association...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ..., Center for Quality Improvement and Patient Safety, AHRQ, 540 Gaither Road, Rockville, MD 20850; Telephone... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety Organizations: Voluntary Relinquishment From The Connecticut Hospital Association Federal Patient Safety...

  4. Numerical analysis of the flow field in a sloshing tank with a horizontal perforated plate

    NASA Astrophysics Data System (ADS)

    Jin, Heng; Liu, Yong; Li, Huajun; Fu, Qiang

    2017-08-01

    Liquid sloshing is a type of free surface flow inside a partially filled water tank. Sloshing exerts a significant effect on the safety of liquid transport systems; in particular, it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank. Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions. In this study, a numerical model based on OpenFOAM (Open Source Field Operation and Manipulation), an open source computed fluid dynamic code, is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate. The numerical results of the free surface elevations are first verified using experimental data, and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples. The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies. This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.

  5. Fuel tank integrity research : fuel tank analyses and test plans

    DOT National Transportation Integrated Search

    2013-04-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. Fuel tank research is being performed to : determine strategies for increasing the fuel tank impact : resistance to ...

  6. Design criteria monograph for metal tanks and tank components

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Significant elements in detail tank design are wall and end structures, weld joints at bulkhead and attachment junctures, and ports and access openings. Additional design considerations are influence and effect of fabrication processes on tank component design, and finally, testing and inspection that are required to establish confidence in tank design.

  7. Thermal model development and validation for rapid filling of high pressure hydrogen tanks

    DOE PAGES

    Johnson, Terry A.; Bozinoski, Radoslav; Ye, Jianjun; ...

    2015-06-30

    This paper describes the development of thermal models for the filling of high pressure hydrogen tanks with experimental validation. Two models are presented; the first uses a one-dimensional, transient, network flow analysis code developed at Sandia National Labs, and the second uses the commercially available CFD analysis tool Fluent. These models were developed to help assess the safety of Type IV high pressure hydrogen tanks during the filling process. The primary concern for these tanks is due to the increased susceptibility to fatigue failure of the liner caused by the fill process. Thus, a thorough understanding of temperature changes ofmore » the hydrogen gas and the heat transfer to the tank walls is essential. The effects of initial pressure, filling time, and fill procedure were investigated to quantify the temperature change and verify the accuracy of the models. In this paper we show that the predictions of mass averaged gas temperature for the one and three-dimensional models compare well with the experiment and both can be used to make predictions for final mass delivery. Furthermore, due to buoyancy and other three-dimensional effects, however, the maximum wall temperature cannot be predicted using one-dimensional tools alone which means that a three-dimensional analysis is required for a safety assessment of the system.« less

  8. The impact of safety organizing, trusted leadership, and care pathways on reported medication errors in hospital nursing units.

    PubMed

    Vogus, Timothy J; Sutcliffe, Kathleen M

    2011-01-01

    Prior research has found that safety organizing behaviors of registered nurses (RNs) positively impact patient safety. However, little research exists on the joint benefits of safety organizing and other contextual factors that help foster safety. Although we know that organizational practices often have more powerful effects when combined with other mutually reinforcing practices, little research exists on the joint benefits of safety organizing and other contextual factors believed to foster safety. Specifically, we examined the benefits of bundling safety organizing with leadership (trust in manager) and design (use of care pathways) factors on reported medication errors. A total of 1033 RNs and 78 nurse managers in 78 emergency, internal medicine, intensive care, and surgery nursing units in 10 acute-care hospitals in Indiana, Iowa, Maryland, Michigan, and Ohio who completed questionnaires between December 2003 and June 2004. Cross-sectional analysis of medication errors reported to the hospital incident reporting system for the 6 months after the administration of the survey linked to survey data on safety organizing, trust in manager, use of care pathways, and RN characteristics and staffing. Multilevel Poisson regression analyses indicated that the benefits of safety organizing on reported medication errors were amplified when paired with high levels of trust in manager or the use of care pathways. Safety organizing plays a key role in improving patient safety on hospital nursing units especially when bundled with other organizational components of a safety supportive system.

  9. Project W-211 Initial Tank Retrieval Systems (ITRS) Description of Operations for 241-AZ-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRIGGS, S.R.

    2000-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTs) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operation (DOO) defines the control philosophy for the waste retrieval system for Tank 241-AZ-102 (AZ-102). This DOO provides a basis for the detailed design of the Project W-211 Retrieval Control System (RCS) for AZ-102 and also establishes test criteria for the RCS.

  10. Nonbibliographic Databases in a Corporate Health, Safety, and Environment Organization.

    ERIC Educational Resources Information Center

    Cubillas, Mary M.

    1981-01-01

    Summarizes the characteristics of TOXIN, CHEMFILE, and the Product Profile Information System (PPIS), nonbibliographic databases used by Shell Oil Company's Health, Safety, and Environment Organization. (FM)

  11. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  12. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  13. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  14. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Special requirements for class 114A * * * tank car... SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  15. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes... car tanks. ...

  16. 49 CFR 178.346 - Specification DOT 406; cargo tank motor vehicle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification DOT 406; cargo tank motor vehicle. 178.346 Section 178.346 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for...

  17. 49 CFR 178.348 - Specification DOT 412; cargo tank motor vehicle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification DOT 412; cargo tank motor vehicle. 178.348 Section 178.348 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for...

  18. 49 CFR 178.347 - Specification DOT 407; cargo tank motor vehicle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification DOT 407; cargo tank motor vehicle. 178.347 Section 178.347 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for...

  19. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  20. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  1. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  2. Institutes, Foundations and Think Tanks: Neoconservative Influences on U.S. Public Schools

    ERIC Educational Resources Information Center

    Kovacs, Philip; Boyles, Deron

    2005-01-01

    This paper introduces the reader to think tanks, institutes, foundations, and their roles in shaping U.S. educational policy. Quite simply, think tanks, institutes, and foundations are nonprofit organizations that both produce and rely on research and expertise to aggressively influence the public, political leaders, and policy. Via an analysis of…

  3. Organizing safety: conditions for successful information assurance programs.

    PubMed

    Collmann, Jeff; Coleman, Johnathan; Sostrom, Kristen; Wright, Willie

    2004-01-01

    Organizations must continuously seek safety. When considering computerized health information systems, "safety" includes protecting the integrity, confidentiality, and availability of information assets such as patient information, key components of the technical information system, and critical personnel. "High Reliability Theory" (HRT) argues that organizations with strong leadership support, continuous training, redundant safety mechanisms, and "cultures of high reliability" can deploy and safely manage complex, risky technologies such as nuclear weapons systems or computerized health information systems. In preparation for the Health Insurance Portability and Accountability Act (HIPAA) of 1996, the Office of the Assistant Secretary of Defense (Health Affairs), the Offices of the Surgeons General of the United States Army, Navy and Air Force, and the Telemedicine and Advanced Technology Research Center (TATRC), US Army Medical Research and Materiel Command sponsored organizational, doctrinal, and technical projects that individually and collectively promote conditions for a "culture of information assurance." These efforts include sponsoring the "P3 Working Group" (P3WG), an interdisciplinary, tri-service taskforce that reviewed all relevant Department of Defense (DoD), Miliary Health System (MHS), Army, Navy and Air Force policies for compliance with the HIPAA medical privacy and data security regulations; supporting development, training, and deployment of OCTAVE(sm), a self-directed information security risk assessment process; and sponsoring development of the Risk Information Management Resource (RIMR), a Web-enabled enterprise portal about health information assurance.

  4. Ground Water in a Fish Tank.

    ERIC Educational Resources Information Center

    Mayshark, Robin K.

    1992-01-01

    Describes creating a Model Aquatic/Terrestrial Ecosystem for use in helping students understand how water moves beneath the ground's surface. The model is constructed from a fish tank using rocks, soil, gravel, clay, and organic materials. Author describes possible cooperative-learning and problem-solving activities that can be done with this…

  5. Using the Job Demands-Resources model to investigate risk perception, safety climate and job satisfaction in safety critical organizations.

    PubMed

    Nielsen, Morten Birkeland; Mearns, Kathryn; Matthiesen, Stig Berge; Eid, Jarle

    2011-10-01

    Using the Job Demands-Resources model (JD-R) as a theoretical framework, this study investigated the relationship between risk perception as a job demand and psychological safety climate as a job resource with regard to job satisfaction in safety critical organizations. In line with the JD-R model, it was hypothesized that high levels of risk perception is related to low job satisfaction and that a positive perception of safety climate is related to high job satisfaction. In addition, it was hypothesized that safety climate moderates the relationship between risk perception and job satisfaction. Using a sample of Norwegian offshore workers (N = 986), all three hypotheses were supported. In summary, workers who perceived high levels of risk reported lower levels of job satisfaction, whereas this effect diminished when workers perceived their safety climate as positive. Follow-up analyses revealed that this interaction was dependent on the type of risks in question. The results of this study supports the JD-R model, and provides further evidence for relationships between safety-related concepts and work-related outcomes indicating that organizations should not only develop and implement sound safety procedures to reduce the effects of risks and hazards on workers, but can also enhance other areas of organizational life through a focus on safety. © 2011 The Authors. Scandinavian Journal of Psychology © 2011 The Scandinavian Psychological Associations.

  6. Ferrocyanide Safety Program. Quarterly report for the period ending March 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meacham, J.E.; Cash, R.J.; Dukelow, G.T.

    1994-04-01

    Various high-level radioactive waste from defense operations has accumulated at the Hanford Site in underground storage tanks since the mid-1940s. During the 1950s, additional tank storage space was required to support the defense mission. To obtain this additional storage volume within a short time period, and to minimize the need for constructing additional storage tanks, Hanford Site scientists developed a process to scavenge {sup 137}Cs from tank waste liquids. In implementing this process, approximately 140 metric tons of ferrocyanide were added to waste that was later routed to some Hanford Site single-shell tanks. The reactive nature of ferrocyanide in themore » presence of an oxidizer has been known for decades, but the conditions under which the compound can undergo endothermic and exothermic reactions have not been thoroughly studied. Because the scavenging process precipitated ferrocyanide from solutions containing nitrate and nitrite, an intimate mixture of ferrocyanides and nitrates and/or nitrites is likely to exist in some regions of the ferrocyanide tanks. This quarterly report provides a status of the activities underway at the Hanford Site on the Ferrocyanide Safety Issue, as requested by the Defense Nuclear Facilities Safety Board (DNFSB) in their Recommendation 90-7. A revised Ferrocyanide Safety Program Plan addressing the total Ferrocyanide Safety Program, including the six parts of DNFSB Recommendation 90-7, was recently prepared and released in March 1994. Activities in the revised program plan are underway or have been completed, and the status of each is described in Section 4.0 of this report.« less

  7. Headspace vapor characterization of Hanford Waste Tank 241-BY-108: Results from samples collected January 23, 1996. Tank Vapor Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pool, K.H.; Evans, J.C.; Thomas, B.L.

    1996-07-01

    This report describes the results of vapor samples obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling System (ISVS) with and without particulate prefiltration. Samples were collected from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) was contracted by Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for water, ammonia, permanent gases, total nonmethane hydrocarbons (TNMHCs, also known as TO-12), and organic analytes in samples collected in SUMMA{trademark} canisters and on triple sorbentmore » traps (TSTs) from the tank headspace. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sampling and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Sampling and Analysis Plan for Tank Vapor Sampling Comparison Test{close_quotes}, and the sample jobs were designated S6004, S6005, and S6006. Samples were collected by WHC on January 23, 1996, using the VSS, a truck-based sampling method using a heated probe; and the ISVS with and without particulate prefiltration.« less

  8. Liquid rocket metal tanks and tank components

    NASA Technical Reports Server (NTRS)

    Wagner, W. A.; Keller, R. B. (Editor)

    1974-01-01

    Significant guidelines are presented for the successful design of aerospace tanks and tank components, such as expulsion devices, standpipes, and baffles. The state of the art is reviewed, and the design criteria are presented along with recommended practices. Design monographs are listed.

  9. 41 CFR 102-80.40 - What are Federal agencies' responsibilities concerning the management of underground storage tanks?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Underground Storage Tanks § 102-80.40 What are Federal agencies' responsibilities... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What are Federal...

  10. Tank vapor characterization project. Headspace vapor characterization of Hanford waste tank 241-BY-108: Second comparison study results from samples collected on 3/28/96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, B.L.; Pool, K.H.; Evans, J.C.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. The results described in this report is the second in a series comparing vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H{sub 2}O) and ammonia (NH{sub 3}), permanent gases, total non-methane organic compounds (TO-12), and individual organic analytes collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs).more » Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC.« less

  11. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  12. 36. DETAILS AND SECTIONS OF SHIELDING TANK, FUEL ELEMENT SUPPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. DETAILS AND SECTIONS OF SHIELDING TANK, FUEL ELEMENT SUPPORT FRAME AND SUPPORT PLATFORM, AND SAFETY MECHANISM ASSEMBLY (SPRING-LOADED HINGE). F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-1. INEL INDEX CODE NUMBER: 075 0701 60 851 151975. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  13. Tank 241-AZ-102 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RASMUSSEN, J.H.

    1999-08-02

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AZ-102. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AZ-102 required to satisfy the Data Quality Objectives For TWRS Privatization Phase I: Confirm Tank TIS An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO) (Nguyen 1999a), Data Quality Objectives For TWRS Privatization Phase 1: Confirm Tank TIS An Appropriate Feed Source For Low-Activity Waste Feed Batch X (LAW DQO) (Nguyen 1999b), Low Activity Waste andmore » High Level Waste Feed Data Quality Objectives (L&H DQO) (Patello et al. 1999) and Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO) (Bloom 1996). The Tank Characterization Technical Sampling Basis document (Brown et al. 1998) indicates that these issues, except the Equipment DQO apply to tank 241-AZ-102 for this sampling event. The Equipment DQO is applied for shear strength measurements of the solids segments only. Poppiti (1999) requires additional americium-241 analyses of the sludge segments. Brown et al. (1998) also identify safety screening, regulatory issues and provision of samples to the Privatization Contractor(s) as applicable issues for this tank. However, these issues will not be addressed via this sampling event. Reynolds et al. (1999) concluded that information from previous sampling events was sufficient to satisfy the safety screening requirements for tank 241 -AZ-102. Push mode core samples will be obtained from risers 15C and 24A to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples, composite the liquids and solids, perform chemical

  14. Mutualistic ants contribute to tank-bromeliad nutrition.

    PubMed

    Leroy, Céline; Carrias, Jean-François; Corbara, Bruno; Pélozuelo, Laurent; Dézerald, Olivier; Brouard, Olivier; Dejean, Alain; Céréghino, Régis

    2013-09-01

    Epiphytism imposes physiological constraints resulting from the lack of access to the nutrient sources available to ground-rooted plants. A conspicuous adaptation in response to that lack is the phytotelm (plant-held waters) of tank-bromeliad species that are often nutrient-rich. Associations with terrestrial invertebrates also result in higher plant nutrient acquisition. Assuming that tank-bromeliads rely on reservoir-assisted nutrition, it was hypothesized that the dual association with mutualistic ants and the phytotelm food web provides greater nutritional benefits to the plant compared with those bromeliads involved in only one of these two associations. Quantitative (water volume, amount of fine particulate organic matter, predator/prey ratio, algal density) and qualitative variables (ant-association and photosynthetic pathways) were compared for eight tank- and one tankless-bromeliad morphospecies from French Guiana. An analysis was also made of which of these variables affect nitrogen acquisition (leaf N and δ(15)N). All variables were significantly different between tank-bromeliad species. Leaf N concentrations and leaf δ(15)N were both positively correlated with the presence of mutualistic ants. The amount of fine particulate organic matter and predator/prey ratio had a positive and negative effect on leaf δ(15)N, respectively. Water volume was positively correlated with leaf N concentration whereas algal density was negatively correlated. Finally, the photosynthetic pathway (C3 vs. CAM) was positively correlated with leaf N concentration with a slightly higher N concentration for C3-Tillandsioideae compared with CAM-Bromelioideae. The study suggests that some of the differences in N nutrition between bromeliad species can be explained by the presence of mutualistic ants. From a nutritional standpoint, it is more advantageous for a bromeliad to use myrmecotrophy via its roots than to use carnivory via its tank. The results highlight a gap in our

  15. Mutualistic ants contribute to tank-bromeliad nutrition

    PubMed Central

    Leroy, Céline; Carrias, Jean-François; Corbara, Bruno; Pélozuelo, Laurent; Dézerald, Olivier; Brouard, Olivier; Dejean, Alain; Céréghino, Régis

    2013-01-01

    Background and Aims Epiphytism imposes physiological constraints resulting from the lack of access to the nutrient sources available to ground-rooted plants. A conspicuous adaptation in response to that lack is the phytotelm (plant-held waters) of tank-bromeliad species that are often nutrient-rich. Associations with terrestrial invertebrates also result in higher plant nutrient acquisition. Assuming that tank-bromeliads rely on reservoir-assisted nutrition, it was hypothesized that the dual association with mutualistic ants and the phytotelm food web provides greater nutritional benefits to the plant compared with those bromeliads involved in only one of these two associations. Methods Quantitative (water volume, amount of fine particulate organic matter, predator/prey ratio, algal density) and qualitative variables (ant-association and photosynthetic pathways) were compared for eight tank- and one tankless-bromeliad morphospecies from French Guiana. An analysis was also made of which of these variables affect nitrogen acquisition (leaf N and δ15N). Key Results All variables were significantly different between tank-bromeliad species. Leaf N concentrations and leaf δ15N were both positively correlated with the presence of mutualistic ants. The amount of fine particulate organic matter and predator/prey ratio had a positive and negative effect on leaf δ15N, respectively. Water volume was positively correlated with leaf N concentration whereas algal density was negatively correlated. Finally, the photosynthetic pathway (C3 vs. CAM) was positively correlated with leaf N concentration with a slightly higher N concentration for C3-Tillandsioideae compared with CAM-Bromelioideae. Conclusions The study suggests that some of the differences in N nutrition between bromeliad species can be explained by the presence of mutualistic ants. From a nutritional standpoint, it is more advantageous for a bromeliad to use myrmecotrophy via its roots than to use carnivory via its

  16. SINDA/FLUINT Stratified Tank Modeling for Cryrogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara

    2014-01-01

    A general purpose SINDA/FLUINT (S/F) stratified tank model was created to simulate self-pressurization and axial jet TVS; Stratified layers in the vapor and liquid are modeled using S/F lumps.; The stratified tank model was constructed to permit incorporating the following additional features:, Multiple or singular lumps in the liquid and vapor regions of the tank, Real gases (also mixtures) and compressible liquids, Venting, pressurizing, and draining, Condensation and evaporation/boiling, Wall heat transfer, Elliptical, cylindrical, and spherical tank geometries; Extensive user logic is used to allow detailed tailoring - Don't have to rebuilt everything from scratch!!; Most code input for a specific case is done through the Registers Data Block:, Lump volumes are determined through user input:; Geometric tank dimensions (height, width, etc); Liquid level could be input as either a volume percentage of fill level or actual liquid level height

  17. Tank vapor mitigation requirements for Hanford Tank Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks,more » are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.« less

  18. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOEpatents

    Corletti, Michael M.; Lau, Louis K.; Schulz, Terry L.

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  19. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOEpatents

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  20. Headspace vapor characterization of Hanford Waste Tank 241-S-102: Results from samples collected on January 26, 1996. Tank Vapor Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, J.C.; Thomas, B.L.; Pool, K.H.

    1996-07-01

    This report describes the results of vapor samples obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling System (ISVS) with and without particulate prefiltration. Samples were collected from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) was contracted by Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for water, ammonia, permanent gases, total nonmethane hydrocarbons (TNMHCs, also known as TO-12), and organic analytes in samples collected in SUMMA{trademark} canisters and on triple sorbentmore » traps (TSTs) from the tank headspace. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sampling and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Sampling and Analysis Plan for Tank Vapor Sampling Comparison Test{close_quote}, and the sample jobs were designated S6007, S6008, and S6009. Samples were collected by WHC on January 26, 1996, using the VSS, a truck-based sampling method using a heated probe; and the ISVS with and without particulate prefiltration.« less

  1. Modelling and Experimental Verification of Pressure Wave Following Gaseous Helium Storage Tank Rupture

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Grabowski, M.; Jędrusyna, A.; Wach, J.

    Helium inventory in high energy accelerators, tokamaks and free electron lasers may exceed tens of tons. The gaseous helium is stored in steel tanks under a pressure of about 20 bar and at environment temperature. Accidental rupture of any of the tanks filled with the gaseous helium will create a rapid energy release in form of physical blast. An estimation of pressure wave distribution following the tank rupture and potential consequences to the adjacent research infrastructure and buildings is a very important task, critical in the safety aspect of the whole cryogenic system. According to the present regulations the TNT equivalent approach is to be applied to evaluate the pressure wave following a potential gas storage tank rupture. A special test stand was designed and built in order to verify experimentally the blast effects in controlled conditions. In order to obtain such a shock wave a pressurized plastic tank was used. The tank was ruptured and the resulting pressure wave was recorded using a spatially-distributed array of pressure sensors connected to a high-speed data acquisition device. The results of the experiments and the comparison with theoretical values obtained from thermodynamic model of the blast are presented. A good agreement between the simulated and measured data was obtained. Recommendations regarding the applicability of thermodynamic model of physical blast versus TNT approach, to estimate consequences of gas storage tank rupture are formulated. The laboratory scale experimental results have been scaled to ITER pressurized helium storage tanks.

  2. Modeling potential occupational inhalation exposures and associated risks of toxic organics from chemical storage tanks used in hydraulic fracturing using AERMOD.

    PubMed

    Chen, Huan; Carter, Kimberly E

    2017-05-01

    Various toxic chemicals used in hydraulic fracturing fluids may influence the inherent health risks associated with these operations. This study investigated the possible occupational inhalation exposures and potential risks related to the volatile organic compounds (VOCs) from chemical storage tanks and flowback pits used in hydraulic fracturing. Potential risks were evaluated based on radial distances between 5 m and 180 m from the wells for 23 contaminants with known inhalation reference concentration (RfC) or inhalation unit risks (IUR). Results show that chemicals used in 12.4% of the wells posed a potential acute non-cancer risks for exposure and 0.11% of the wells with may provide chronic non-cancer risks for exposure. Chemicals used in 7.5% of the wells were associated with potential acute cancer risks for exposure. Those chemicals used in 5.8% of the wells may be linked to chronic cancer risks for exposure. While eight organic compounds were associated with acute non-cancer risks for exposure (>1), methanol the major compound in the chemical storage tanks (1.00-45.49) in 7,282 hydraulic fracturing wells. Wells with chemicals additives containing formaldehyde exhibited both acute and chronic cancer risks for exposure with IUR greater than 10 -6 , suggesting formaldehyde was the dominant contributor to both types of risks for exposure in hydraulic fracturing. This study also found that due to other existing on-site emission sources of VOCs and the geographically compounded air concentrations from other surrounding wells, chemical emissions data from storage tanks and flowback pits used in this study were lower than reported concentrations from field measurements where higher occupational inhalation risks for exposure may be expected. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  4. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  5. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  6. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  7. Organized labor and the origins of the Occupational Safety and Health Act.

    PubMed

    Asher, Robert

    2014-11-01

    New Solutions is republishing this 1991 article by Robert Asher, which reviews the history of organized labor's efforts in the United States to secure health and safety protections for workers. The 1877 passage of the Massachusetts factory inspection law and the implementation of primitive industrial safety inspection systems in many states paralleled labor action for improved measures to protect workers' health and safety. In the early 1900s labor was focusing on workers' compensation laws. The New Deal expanded the federal government's role in worker protection, supported at least by the Congress of Industrial Organizations (CIO), but challenged by industry and many members of the U.S. Congress. The American Federation of Labor (AFL) and the CIO backed opposing legal and inspection strategies in the late 1940s and through the 1950s. Still, by the late 1960s, several unions were able to help craft the Occupational Safety and Health Act of 1970 and secure new federal protections for U.S. workers.

  8. Correlation models for waste tank sludges and slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, L.A.; Trent, D.S.

    This report presents the results of work conducted to support the TEMPEST computer modeling under the Flammable Gas Program (FGP) and to further the comprehension of the physical processes occurring in the Hanford waste tanks. The end products of this task are correlation models (sets of algorithms) that can be added to the TEMPEST computer code to improve the reliability of its simulation of the physical processes that occur in Hanford tanks. The correlation models can be used to augment, not only the TEMPEST code, but other computer codes that can simulate sludge motion and flammable gas retention. This reportmore » presents the correlation models, also termed submodels, that have been developed to date. The submodel-development process is an ongoing effort designed to increase our understanding of sludge behavior and improve our ability to realistically simulate the sludge fluid characteristics that have an impact on safety analysis. The effort has employed both literature searches and data correlation to provide an encyclopedia of tank waste properties in forms that are relatively easy to use in modeling waste behavior. These properties submodels will be used in other tasks to simulate waste behavior in the tanks. Density, viscosity, yield strength, surface tension, heat capacity, thermal conductivity, salt solubility, and ammonia and water vapor pressures were compiled for solutions and suspensions of sodium nitrate and other salts (where data were available), and the data were correlated by linear regression. In addition, data for simulated Hanford waste tank supernatant were correlated to provide density, solubility, surface tension, and vapor pressure submodels for multi-component solutions containing sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate.« less

  9. 49 CFR 178.338 - Specification MC-338; insulated cargo tank motor vehicle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification MC-338; insulated cargo tank motor vehicle. 178.338 Section 178.338 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for...

  10. 49 CFR 178.338 - Specification MC-338; insulated cargo tank motor vehicle.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification MC-338; insulated cargo tank motor vehicle. 178.338 Section 178.338 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for...

  11. Promoting child passenger safety in children served by a health maintenance organization.

    PubMed

    Chang, A; Hearey, C D; Gallagher, K D; English, P; Chang, P C

    1989-06-01

    A patient education program, based on the health belief model, promoting child passenger safety was developed and implemented at a health maintenance organization. The program included individual counseling by pediatricians, use of audiovisual materials and pamphlets, and (for newborn infants) a home visit by a child safety specialist. Based on parking lot observations, child safety device use increased to greater than 60% in both intervention and comparison-group children 1-4 years of age. During the child health supervision visit, pediatricians can play a leadership role in promoting child passenger safety.

  12. Comparison of different liquid hydrogen tank integration concepts for the ELAC-1 research configuration

    NASA Astrophysics Data System (ADS)

    Albus, J.; Oery, H.

    1993-04-01

    One of the main problems associated with the structural design of a hypersonic aircraft is the conception of the cryogenic tank. Therefore two essential questions, in consideration of structural weight, volumetric efficiency and the aspects as well of inspection, maintenance and repair, as of exchangeability in case of leakage (leak before burst) and safety in operation, have to be answered. These questions concern the choice of the tank integration concept and the tank cross section. To get an idea how much the take-off weight depends on the tank integration concept, at the Institut fuer Leichtbau of the RWTH Aachen a program for weight estimation of hypersonic aircraft has been developed. Herewith the goal was to define well suited substitute models which allow the performance of parametric studies within a wide range of parameters in a tolerable amount of time. In the following the mass model and calculation methods used will be shortly introduced and finally the results achieved will be presented and discussed. On this occasion also comments on structural efficiency of different tank cross sections will be given.

  13. Performance of a lab-scale bio-electrochemical assisted septic tank for the anaerobic treatment of black water.

    PubMed

    Zamalloa, Carlos; Arends, Jan B A; Boon, Nico; Verstraete, Willy

    2013-06-25

    Septic tanks are used for the removal of organic particulates in wastewaters by physical accumulation instead of through the biological production of biogas. Improved biogas production in septic tanks is crucial to increase the potential of this system for both energy generation and organic matter removal. In this study, the effect on the biogas production and biogas quality of coupling a 20 L lab-scale septic tank with a microbial electrolysis cell (MEC) was investigated and compared with a standard septic tank. Both reactors were operated at a volumetric organic loading rate of 0.5gCOD/Ld and a hydraulic retention time between 20 and 40 days using black water as an input under mesophilic conditions for a period of 3 months. The MEC-septic tank was operated at an applied voltage of 2.0±0.1V and the current experienced ranged from 40 mA (0.9A/m(2) projected electrode area) to 180 mA (5A/m(2) projected electrode area). The COD removal was of the order of 85% and the concentration of residual COD was not different between both reactors. Yet, the total phosphorous in the output was on average 39% lower in the MEC-septic tank. Moreover, the biogas production rate in the MEC-septic tank was a factor of 5 higher than in the control reactor and the H2S concentration in the biogas was a factor of 2.5 lower. The extra electricity supplied to the MEC-septic tank was recovered as extra biogas produced. Overall, it appears that the combination of MEC and a septic tank offers perspectives in terms of lower discharge of phosphorus and H2S, nutrient recuperation and a more reliable supply of biogas. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable themore » earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the

  15. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enablemore » the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the

  16. A Combustion Model for the TWA 800 Center-Wing Fuel Tank Explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, M.R.; Gross, R.J.

    1998-10-02

    In support of the National Transportation Safety Board investigation of the TWA Flight 800 accident, a combined experimental/computational effort was conducted that focused on quarter-scale testing and simulation of the fuel-air explosion in the Boeing 747 center wing fuel tank. This report summarizes the modeling approach used at Sandia National Laboratories. In this approach approximations are introduced that capture the essential physics associated with turbulent flame propagation in multiple compartment fuel tanks. This model efficiently defines the pressure loading conditions during a jet-fuel air explosion in a fuel tank confinement. Modeling calculations compare favorably with a variety of experimental quarter-scalemore » tests conducted in rigid confinement. The modeling describes well the overpressure history in several geometry configurations. Upon demonstrating a reasonable comparison to experimental observations, a parametric study of eight possible ignition sources is then discussed. Model calculations demonstrate that different loading conditions arise as the location of the ignition event is varied. By comparing the inferred damage and calculated impulses to that seen in the recovered tank, it maybe possible to reduce the number of likely sources. A possible extension of this work to better define tank damage includes coupling the combustion model as a pressure loading routine for structural failure analysis.« less

  17. Large-Scale Liquid Hydrogen Tank Rapid Chill and Fill Testing for the Advanced Shuttle Upper Stage Concept

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hedayat, A.; Holt, K. A.; Sims, J.; Johnson, E. F.; Hastings, L. J.; Lak, T.

    2013-01-01

    Cryogenic upper stages in the Space Shuttle program were prohibited primarily due to a safety risk of a 'return to launch site' abort. An upper stage concept addressed this concern by proposing that the stage be launched empty and filled using shuttle external tank residuals after the atmospheric pressure could no longer sustain an explosion. However, only about 5 minutes was allowed for tank fill. Liquid hydrogen testing was conducted within a near-ambient environment using the multipurpose hydrogen test bed 638.5 ft3 (18m3) cylindrical tank with a spray bar mounted longitudinally inside. Although the tank was filled within 5 minutes, chilldown of the tank structure was incomplete, and excessive tank pressures occurred upon vent valve closure. Elevated tank wall temperatures below the liquid level were clearly characteristic of film boiling. The test results have substantial implications for on-orbit cryogen transfer since the formation of a vapor film would be much less inhibited due to the reduced gravity. However, the heavy tank walls could become an asset in normal gravity testing for on-orbit transfer, i.e., if film boiling in a nonflight weight tank can be inhibited in normal gravity, then analytical modeling anchored with the data could be applied to reduced gravity environments with increased confidence.

  18. Test Report for Permanganate and Cold Strontium Strike for Tank 241-AN-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, James B.; Huber, Heinz J.; Smalley, Colleen S.

    Tanks 241-AN-102 and 241-AN-107 supernatants contain soluble Sr-90 and transuranic elements that require removal prior to vitrification to comply with the Waste Treatment and Immobilization Plant immobilized low-activity waste specification (WTP Contract, DE-AC27-01RV 14136, Specification 2.2.2.8, "Radionuclide Concentration Limitations") and the U.S. Nuclear Regulatory Commission provisional agreement on waste incidental to reprocessing (letter, Paperiello, C. J., "Classification of Hanford Low-Activity Tank Waste Fraction"). These two tanks have high concentrations of organics and organic complexants and are referred to as complexant concentrate tanks. A precipitation process using sodium permanganate (NaMnO{sub 4}) and strontium nitrate (Sr(NO{sub 3}){sub 2}) was developed and testedmore » with tank waste samples to precipitate Sr-90 and transuranic elements from the supernate (PNWD-3141, Optimization of Sr/TRU Removal Conditions with Samples of AN-102 Tank Waste). Testing documented in this report was conducted to further evaluate the use of the strontium nitrate/sodium permanganate process in tank farms with a retention time of up to 12 months. Previous testing was focused on developing a process for deployment in the ultrafiltration vessels in the Waste Treatment and Immobilization Plant. This environment is different from tank farms in two important ways: the waste is diluted in the Waste Treatment and Immobilization Plant to ~5.5 M sodium, whereas the supernate in the tank farms is ~9 M Na. Secondly, while the Waste Treatment and Immobilization Plant allows for a maximum treatment time of hours to days, the in-tank farms treatment of tanks 241-AN102 and 241-AN-107 will result in a retention time of months (perhaps up to12 months) before processing. A comparative compilation of separation processes for Sr/transuranics has been published as RPP-RPT-48340, Evaluation of Alternative Strontium and Transuranic Separation Processes. This report also listed the

  19. TANK VAPOR CHEMICALS OF POTENTIAL CONCERN & EXISTING DIRECT READING INSTRUMENTION & PERSONAL PROTECTIVE EQUIPMENT CONSIDERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BUTLER, N.K.

    2004-11-01

    This document takes the newly released Industrial Hygiene Chemical Vapor Technical Basis (RPP-22491) and evaluates the chemicals of potential concern (COPC) identified for selected implementation actions by the industrial hygiene organization. This document is not intended as a hazard analysis with recommended controls for all tank farm activities. Not all of the chemicals listed are present in all tanks; therefore, hazard analyses can and should be tailored as appropriate. Detection of each chemical by current industrial hygiene non-specific instrumentation in use at the tank farms is evaluated. Information gaps are identified and recommendations are made to resolve these needs. Ofmore » the 52 COPC, 34 can be detected with existing instrumentation. Three additional chemicals could be detected with a photoionization detector (PID) equipped with a different lamp. Discussion with specific instrument manufacturers is warranted. Consideration should be given to having the SapphIRe XL customized for tank farm applications. Other instruments, sampling or modeling techniques should be evaluated to estimate concentrations of chemicals not detected by direct reading instruments. In addition, relative instrument response needs to be factored in to action levels used for direct reading instruments. These action levels should be correlated to exposures to the COPC and corresponding occupational exposure limits (OELs). The minimum respiratory protection for each of the COPC is evaluated against current options. Recommendations are made for respiratory protection based on each chemical. Until exposures are sufficiently quantified and analyzed, the current use of supplied air respiratory protection is appropriate and protective for the COPC. Use of supplied air respiratory protection should be evaluated once a detailed exposure assessment for the COPC is completed. The established tank farm OELs should be documented in the TFC-PLN-34. For chemicals without an established tank

  20. Thermodynamic aspects of an LNG tank in fire and experimental validation

    NASA Astrophysics Data System (ADS)

    Hulsbosch-Dam, Corina; Atli-Veltin, Bilim; Kamperveen, Jerry; Velthuis, Han; Reinders, Johan; Spruijt, Mark; Vredeveldt, Lex

    Mechanical behaviour of a Liquefied Natural Gas (LNG) tank and the thermodynamic behaviour of its containment under extreme heat load - for instance when subjected to external fire source as might occur during an accident - are extremely important when addressing safety concerns. In a scenario where external fire is present and consequent release of LNG from pressure relief valves (PRV) has occurred, escalation of the fire might occur causing difficulty for the fire response teams to approach the tank or to secure the perimeter. If the duration of the tank exposure to fire is known, the PRV opening time can be estimated based on the thermodynamic calculations. In this paper, such an accidental scenario is considered, relevant thermodynamic equations are derived and presented. Moreover, an experiment is performed with liquid nitrogen and the results are compared to the analytical ones. The analytical results match very well with the experimental observations. The resulting analytical models are suitable to be applied to other cryogenic liquids.

  1. 46 CFR 154.1710 - Exclusion of air from cargo tank vapor spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Exclusion of air from cargo tank vapor spaces. 154.1710 Section 154.1710 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Special Design and...

  2. 46 CFR 154.1710 - Exclusion of air from cargo tank vapor spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Exclusion of air from cargo tank vapor spaces. 154.1710 Section 154.1710 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Special Design and...

  3. 46 CFR 154.1710 - Exclusion of air from cargo tank vapor spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Exclusion of air from cargo tank vapor spaces. 154.1710 Section 154.1710 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Special Design and...

  4. 46 CFR 154.1710 - Exclusion of air from cargo tank vapor spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Exclusion of air from cargo tank vapor spaces. 154.1710 Section 154.1710 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Special Design and...

  5. 46 CFR 154.1710 - Exclusion of air from cargo tank vapor spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Exclusion of air from cargo tank vapor spaces. 154.1710 Section 154.1710 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Special Design and...

  6. RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.; Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spentmore » zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte concentration as

  7. UASB-septic tank as an alternative for decentralized wastewater treatment in Mexico.

    PubMed

    Santiago-Díaz, Ángel L; García-Albortante, Julisa; Salazar-Peláez, Mónica L

    2018-02-05

    The aim of this work was to evaluate the performance of a UASB-septic tank as a decentralized treatment of high-strength municipal wastewater under two different HRTs (48 and 72 h). Thus, a lab-scale (44.85 L) UASB-septic tank constituted by three compartments was operated under HRT 72 and 48 h. Removal efficiencies of total chemical oxygen demand (COD), biological oxygen demand (BOD 5 ) and suspended solids (SS) ranged from 60% to 80% for the first two parameters and from 70% to 90% for the last one. According to the statistical analysis, it was established that decreasing HRT from 72 to 48 h did not affect the performance of the UASB-septic tank; therefore, the latter HRT is recommended to be used for operation. In the first compartment, most of the organic matter removal was carried out, while the other two compartments served as polishing. Over the course of six months, the VS concentration and VS/TS ratio in sludge blanket decreased, indicating digestion and stabilization of the retained solids. Also, an increase of 4% in sludge volume was observed; thus, time for desludging would be approximately five years. Comparison of the UASB-septic tank and the UASB reactor showed that both systems had similar performance regarding effluent concentrations of organic matter and solids. Thus, under low volumetric organic load conditions (less than 20 mg COD/L h), the former is an attractive option for municipal wastewater treatment.

  8. POTENTIAL IMPACT OF TANK F FLUSH SOLUTION ON H-CANYON EVAPORATOR OPERATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyser, E.; Fondeur, F.; Fink, S.

    2010-09-13

    Previous chemical analysis of a sample from the liquid heel found in Tank F of the High Activity Drain (HAD) system in F/H laboratory revealed the presence of n-paraffin, tributyl phosphate (TBP), Modifier from the Modular Caustic-Side Solvent Extraction Unit (MCU) process and a vinyl ester resin that is very similar to the protective lining on Tank F. Subsequent analyses detected the presence of a small amount of diisopropylnaphthalene (DIN) (major component of Ultima Gold{trademark} AB liquid scintillation cocktail). Indications are that both vinyl ester resin and DIN are present in small amounts in the flush solution. The flush solutionmore » currently in the LR-56S trailer likely has an emulsion which is believed to contain a mixture of the reported organic species dominated by TBP. An acid treatment similar to that proposed to clear the HAD tank heel in F/H laboratory was found to allow separation of an organic phase from the cloudy sample tested by SRNL. Mixing of that clear sample did re-introduce some cloudiness that did not immediately clear but that cloudiness is attributed to the DIN in the matrix. An organic phase does quickly separate from the cloudy matrix allowing separation by a box decanter in H-Canyon prior to transfer to the evaporator feed tank. This separation should proceed normally as long as the emulsion is broken-up by acidification.« less

  9. Investigation of Electromagnetic Field Threat to Fuel Tank Wiring of a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Dudley, Kenneth L.; Scearce, Stephen A.; Beck, Fred B.; Deshpande, Manohar D.; Cockrell, C. R.

    2000-01-01

    National Transportation Safety Board investigators have questioned whether an electrical discharge in the Fuel Quantity Indication System (FQIS) may have initiated the TWA-800 center wing tank explosion. Because the FQIS was designed to be incapable of producing such a discharge on its own, attention has been directed to mechanisms of outside electromagnetic influence. To support the investigation, the NASA Langley Research Center was tasked to study the potential for radiated electromagnetic fields from external radio frequency (RF) transmitters and passenger carried portable electronic devices (PEDs) to excite the FQIS enough to cause arcing, sparking or excessive heating within the fuel tank.

  10. RPP-PRT-58489, Revision 1, One Systems Consistent Safety Analysis Methodologies Report. 24590-WTP-RPT-MGT-15-014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Mukesh; Niemi, Belinda; Paik, Ingle

    2015-09-02

    In 2012, One System Nuclear Safety performed a comparison of the safety bases for the Tank Farms Operations Contractor (TOC) and Hanford Tank Waste Treatment and Immobilization Plant (WTP) (RPP-RPT-53222 / 24590-WTP-RPT-MGT-12-018, “One System Report of Comparative Evaluation of Safety Bases for Hanford Waste Treatment and Immobilization Plant Project and Tank Operations Contract”), and identified 25 recommendations that required further evaluation for consensus disposition. This report documents ten NSSC approved consistent methodologies and guides and the results of the additional evaluation process using a new set of evaluation criteria developed for the evaluation of the new methodologies.

  11. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  12. 46 CFR 154.406 - Design loads for cargo tanks and fixtures: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design loads for cargo tanks and fixtures: General. 154.406 Section 154.406 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment...

  13. 46 CFR 154.406 - Design loads for cargo tanks and fixtures: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design loads for cargo tanks and fixtures: General. 154.406 Section 154.406 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment...

  14. 46 CFR 154.406 - Design loads for cargo tanks and fixtures: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design loads for cargo tanks and fixtures: General. 154.406 Section 154.406 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment...

  15. 27 CFR 25.35 - Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tanks. 25.35 Section 25.35... TREASURY LIQUORS BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask... contents of tanks or containers in lieu of providing each tank or container with a measuring device. (Sec...

  16. 27 CFR 25.35 - Tanks.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Tanks. 25.35 Section 25.35... TREASURY ALCOHOL BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask... contents of tanks or containers in lieu of providing each tank or container with a measuring device. (Sec...

  17. Modelling pollutants dispersion and plume rise from large hydrocarbon tank fires in neutrally stratified atmosphere

    NASA Astrophysics Data System (ADS)

    Argyropoulos, C. D.; Sideris, G. M.; Christolis, M. N.; Nivolianitou, Z.; Markatos, N. C.

    2010-02-01

    Petrochemical industries normally use storage tanks containing large amounts of flammable and hazardous substances. Therefore, the occurrence of a tank fire, such as the large industrial accident on 11th December 2005 at Buncefield Oil Storage Depots, is possible and usually leads to fire and explosions. Experience has shown that the continuous production of black smoke from these fires due to the toxic gases from the combustion process, presents a potential environmental and health problem that is difficult to assess. The goals of the present effort are to estimate the height of the smoke plume, the ground-level concentrations of the toxic pollutants (smoke, SO 2, CO, PAHs, VOCs) and to characterize risk zones by comparing the ground-level concentrations with existing safety limits. For the application of the numerical procedure developed, an external floating-roof tank has been selected with dimensions of 85 m diameter and 20 m height. Results are presented and discussed. It is concluded that for all scenarios considered, the ground-level concentrations of smoke, SO 2, CO, PAHs and VOCs do not exceed the safety limit of IDLH and there are no "death zones" due to the pollutant concentrations.

  18. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's... equivalent to a fuel tank that complies with the external fuel tank requirements in § 238.223(a). (b) Internal fuel tanks. Internal fuel tanks shall comply with the requirements specified in § 238.223(b). ...

  19. Tank characterization report for single-shell tank 241-U-110. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was ;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report.

  20. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405 Section 154.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment Systems §...

  1. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405 Section 154.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment Systems §...

  2. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405 Section 154.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment Systems §...

  3. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405 Section 154.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment Systems §...

  4. High Reliability Organizations--Medication Safety.

    PubMed

    Yip, Luke; Farmer, Brenna

    2015-06-01

    High reliability organizations (HROs), such as the aviation industry, successfully engage in high-risk endeavors and have low incidence of adverse events. HROs have a preoccupation with failure and errors. They analyze each event to effect system wide change in an attempt to mitigate the occurrence of similar errors. The healthcare industry can adapt HRO practices, specifically with regard to teamwork and communication. Crew resource management concepts can be adapted to healthcare with the use of certain tools such as checklists and the sterile cockpit to reduce medication errors. HROs also use The Swiss Cheese Model to evaluate risk and look for vulnerabilities in multiple protective barriers, instead of focusing on one failure. This model can be used in medication safety to evaluate medication management in addition to using the teamwork and communication tools of HROs.

  5. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockie, K.A.; Suttora, L.C.; Quigley, K.D.

    2007-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  6. View of tanks T18 and T19 with redwood tanks to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of tanks T18 and T19 with redwood tanks to right. Old rain shed (Building No. 43) can be seen behind the tanks. Ground catchment can be seen at left in background. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI

  7. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed.more » The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.« less

  8. 49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Compressed gases in tank cars and multi-unit tank cars. 173.314 Section 173.314 Transportation Other Regulations Relating to Transportation PIPELINE AND... Compressed gases in tank cars and multi-unit tank cars. (a) Definitions. For definitions of compressed gases...

  9. 49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Compressed gases in tank cars and multi-unit tank cars. 173.314 Section 173.314 Transportation Other Regulations Relating to Transportation PIPELINE AND... Compressed gases in tank cars and multi-unit tank cars. (a) Definitions. For definitions of compressed gases...

  10. Degradation pathway of malachite green in a novel dual-tank photoelectrochemical catalytic reactor.

    PubMed

    Diao, Zenghui; Li, Mingyu; Zeng, Fanyin; Song, Lin; Qiu, Rongliang

    2013-09-15

    A novel dual-tank photoelectrochemical catalytic reactor was designed to investigate the degradation pathway of malachite green. A thermally formed TiO₂/Ti thin film electrode was used as photoanode, graphite was used as cathode, and a saturated calomel electrode was employed as the reference electrode in the reactor. In the reactor, the anode and cathode tanks were connected by a cation exchange membrane. Results showed that the decolorization ratio of malachite green in the anode and cathode was 98.5 and 96.5% after 120 min, respectively. Malachite green in the two anode and cathode tanks was oxidized, achieving the bipolar double effect. Malachite green in both the anode and cathode tanks exhibited similar catalytic degradation pathways. The double bond of the malachite green molecule was attacked by strong oxidative hydroxyl radicals, after which the organic compound was degraded by the two pathways into 4,4-bis(dimethylamino) benzophenone, 4-(dimethylamino) benzophenone, 4-(dimethylamino) phenol, and other intermediate products. Eventually, malachite green was degraded into oxalic acid as a small molecular organic acid, which was degraded by processes such as demethylation, deamination, nitration, substitution, addition, and other reactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Supporting document for the historical tank content estimate for AY-tank farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, C H; Stroup, J L; Funk, J. W.

    1997-03-12

    This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  12. Individual employee's perceptions of " Group-level Safety Climate" (supervisor referenced) versus " Organization-level Safety Climate" (top management referenced): Associations with safety outcomes for lone workers.

    PubMed

    Huang, Yueng-Hsiang; Lee, Jin; McFadden, Anna C; Rineer, Jennifer; Robertson, Michelle M

    2017-01-01

    Research has shown that safety climate is among the strongest predictors of safety behavior and safety outcomes in a variety of settings. Previous studies have established that safety climate is a multi-faceted construct referencing multiple levels of management within a company, most generally: the organization level (employee perceptions of top management's commitment to and prioritization of safety) and group level (employee perceptions of direct supervisor's commitment to and prioritization of safety). Yet, no research to date has examined the potential interaction between employees' organization-level safety climate (OSC) and group-level safety climate (GSC) perceptions. Furthermore, prior research has mainly focused on traditional work environments in which supervisors and workers interact in the same location throughout the day. Little research has been done to examine safety climate with regard to lone workers. The present study aims to address these gaps by examining the relationships between truck drivers' (as an example of lone workers) perceptions of OSC and GSC, both potential linear and non-linear relationships, and how these predict important safety outcomes. Participants were 8095 truck drivers from eight trucking companies in the United States with an average response rate of 44.8%. Results showed that employees' OSC and GSC perceptions are highly correlated (r= 0.78), but notable gaps between the two were observed for some truck drivers. Uniquely, both OSC and GSC scores were found to have curvilinear relationships with safe driving behavior, and both scores were equally predictive of safe driving behavior. Results also showed the two levels of climate significantly interacted with one another to predict safety behavior such that if either the OSC or GSC scores were low, the other's contribution to safety behavior became stronger. These findings suggest that OSC and GSC may function in a compensatory manner and promote safe driving behavior even

  13. Improving Employees' Safety Awareness in Healthcare Organizations Using the DMAIC Quality Improvement Approach.

    PubMed

    Momani, Amer; Hirzallah, Muʼath; Mumani, Ahmad

    Occupational injuries and illnesses in healthcare can cause great human suffering, incur high cost, and have an adverse impact on the quality of patient care. One of the most effective solutions for addressing health and safety issues and improving decisions at the point of care rests in raising employees' safety awareness to recognize, avoid, or respond to potential problems before they arise. In this article, the DMAIC Six Sigma model (Define, Measure, Analyze, Improve, Control) is used as a systematic program to measure, improve, and sustain employees' safety awareness in healthcare organizations. We report on a case study using the model, which was implemented and validated at a local hospital. First, the occupational health and safety knowledge that each job requires was identified. Next, the degree of competence of jobholders to meet these requirements was assessed. Based on the assessment, different awareness-raising efforts were proposed and implemented. The results showed significant improvement in the overall safety awareness compliance assessed: from 74.2% to 84.4% (p < .001) after the intervention. The proposed model ensures that the organization's awareness-raising efforts serve its actual needs and produce optimized and sustained results that eventually lead to safer healthcare service.

  14. Mindful organizing in patients' contributions to primary care medication safety.

    PubMed

    Phipps, Denham L; Giles, Sally; Lewis, Penny J; Marsden, Kate S; Salema, Ndeshi; Jeffries, Mark; Avery, Anthony J; Ashcroft, Darren M

    2018-04-14

    There is a need to ensure that the risks associated with medication usage in primary health care are controlled. To maintain an understanding of the risks, health-care organizations may engage in a process known as "mindful organizing." While this is typically conceived of as involving organizational members, it may in the health-care context also include patients. Our study aimed to examine ways in which patients might contribute to mindful organizing with respect to primary care medication safety. Qualitative focus groups and interviews were carried out with 126 members of the public in North West England and the East Midlands. Participants were taking medicines for a long-term health condition, were taking several medicines, had previously encountered problems with their medication or were caring for another person in any of these categories. Participants described their experiences of dealing with medication-related concerns. The transcripts were analysed using a thematic method. We identified 4 themes to explain patient behaviour associated with mindful organizing: knowledge about clinical or system issues; artefacts that facilitate control of medication risks; communication with health-care professionals; and the relationship between patients and the health-care system (in particular, mutual trust). Mindful organizing is potentially useful for framing patient involvement in safety, although there are some conceptual and practical issues to be addressed before it can be fully exploited in this setting. We have identified factors that influence (and are strengthened by) patients' engagement in mindful organizing, and as such would be a useful focus of efforts to support patient involvement. © 2018 The Authors Health Expectations published by John Wiley & Sons Ltd.

  15. Supporting document for the historical tank content estimate for AX-tank farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, C.H., Westinghouse Hanford

    This Supporting Document provides historical in-depth characterization information on AX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  16. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  17. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  18. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  19. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  20. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...