Sample records for tank sst simulants

  1. OVERVIEW OF ENHANCED HANFORD SINGLE-SHELL TANK (SST) INTEGRITY PROJECT - 12128

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VENETZ TJ; BOOMER KD; WASHENFELDER DJ

    2012-01-25

    To improve the understanding of the single-shell tanks integrity, Washington River Protection Solutions, LLC, the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank (SST) Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federalmore » Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The change package identified two phases of work for SST integrity. The initial phase has been focused on efforts to envelope the integrity of the tanks. The initial phase was divided into two primary areas of investigation: structural integrity and leak integrity. If necessary based on the outcome from the initial work, a second phase would be focused on further definition of the integrity of the concrete and liners. Combined these two phases are designed to support the formal integrity assessment of the Hanford SSTs in 2018 by Independent Qualified Registered Engineer. The work to further define the DOE's understanding of the structural integrity SSTs involves preparing a modern Analysis of Record using a finite element analysis program. Structural analyses of the SSTs have been conducted since 1957, but these analyses used analog calculation, less rigorous models, or focused on individual structures. As such, an integrated understanding of all of the SSTs has not been developed to modern expectations. In support of this effort, other milestones will address the visual inspection of the tank concrete and the collection of concrete core samples from the tanks for

  2. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAST RS; RINKER MW; WASHENFELDER DJ

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanfordmore » Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for

  3. Progress of the Enhanced Hanford Single Shell Tank (SST) Integrity Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venetz, Theodore J.; Washenfelder, Dennis J.; Boomer, Kayle D.

    2015-01-07

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. In late 2010, seventeen of these recommendations were used to develop the basis for the M-45-10-1 Changemore » Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement.« less

  4. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for themore » Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior

  5. Understanding Southern Ocean SST Trends in Historical Simulations and Observations

    NASA Astrophysics Data System (ADS)

    Kostov, Yavor; Ferreira, David; Marshall, John; Armour, Kyle

    2017-04-01

    Historical simulations with CMIP5 global climate models do not reproduce the observed 1979-2014 Southern Ocean (SO) cooling, and most ensemble members predict gradual warming around Antarctica. In order to understand this discrepancy and the mechanisms behind the SO cooling, we analyze output from 19 CMIP5 models. For each ensemble member we estimate the characteristic responses of SO SST to step changes in greenhouse gas (GHG) forcing and in the seasonal indices of the Southern Annular Mode (SAM). Using these step-response functions and linear convolution theory, we reconstruct the original CMIP5 simulations of 1979-2014 SO SST trends. We recover the CMIP5 ensemble mean trend, capture the intermodel spread, and reproduce very well the behavior of individual models. We thus suggest that GHG forcing and the SAM are major drivers of the simulated 1979-2014 SO SST trends. In consistence with the seasonal signature of the Antarctic ozone hole, our results imply that the summer (DJF) and fall (MAM) SAM exert a particularly important effect on the SO SST. In some CMIP5 models the SO SST response to SAM partially counteracts the warming due to GHG forcing, while in other ensemble members the SAM-induced SO SST trends complement the warming effect of GHG forcing. The compensation between GHG and SAM-induced SO SST anomalies is model-dependent and is determined by multiple factors. Firstly, CMIP5 models have different characteristic SST step response functions to SAM. Kostov et al. (2016) relate these differences to biases in the models' climatological SO temperature gradients. Secondly, many CMIP5 historical simulations underestimate the observed positive trends in the DJF and MAM seasonal SAM indices. We show that this affects the models' ability to reproduce the observed SO cooling. Last but not least, CMIP5 models differ in their SO SST step response functions to GHG forcing. Understanding the diverse behavior of CMIP5 models helps shed light on the physical processes

  6. Impact of Variable SST on Simulated Warm Season Precipitation

    NASA Astrophysics Data System (ADS)

    Saleeby, S. M.; Cotton, W. R.

    2007-05-01

    The Colorado State University - Regional Atmospheric Modeling System (CSU-RAMS) is being used to examine the variability in monsoon-related warm season precipitation over Mexico and the United States due to variability in SST. Given recent improvements and increased resolution in satellite derived SSTs it is pertinent to examine the sensitivity of the RAMS model to the variety of SST data sources that are available. In particular, we are examining this dependence across continental scales over the full warm season, as well as across the regional scale centered around the Gulf of California on time scales of individual surge events. In this study we performed an ensemble of simulations that include the 2002, 2003, and 2004 warm seasons with use of the Climatology, Reynold's, AVHRR, and MODIS SSTs. From the seasonal 90-day simulations with 30km grid spacing, it was found that variations in surface latent heat flux are directly linked to differences in SST. Regions with cooler (warmer) SST have decreased (increased) moisture flux from the ocean which is in proportion to the magnitude of the SST difference. Over the eastern Pacific, differences in low-level horizontal moisture flux show a general trend toward reduced fluxes over cooler waters and very little inland impact. Over the Gulf of Mexico, however, there is substantial variability for each dataset comparison, despite having only limited variability among the SST data. Causes of this unexpected variability are not straight-forward. Precipitation impacts are greatest near the southern coast of Mexico and along the Sierra Madres. Precipitation variability over the CONUS is rather chaotic and is limited to areas impacted by the Gulf of Mexico or monsoon convection. Another unexpected outcome is the lack of variability in areas near the northern Gulf of California where SST and latent heat flux variability is a maximum. From the 7-day surge period simulations at 7km grid spacing, we found that SST differences on the

  7. On the influence of simulated SST warming on rainfall projections in the Indo-Pacific domain: an AGCM study

    NASA Astrophysics Data System (ADS)

    Zhang, Huqiang; Zhao, Y.; Moise, A.; Ye, H.; Colman, R.; Roff, G.; Zhao, M.

    2018-02-01

    Significant uncertainty exists in regional climate change projections, particularly for rainfall and other hydro-climate variables. In this study, we conduct a series of Atmospheric General Circulation Model (AGCM) experiments with different future sea surface temperature (SST) warming simulated by a range of coupled climate models. They allow us to assess the extent to which uncertainty from current coupled climate model rainfall projections can be attributed to their simulated SST warming. Nine CMIP5 model-simulated global SST warming anomalies have been super-imposed onto the current SSTs simulated by the Australian climate model ACCESS1.3. The ACCESS1.3 SST-forced experiments closely reproduce rainfall means and interannual variations as in its own fully coupled experiments. Although different global SST warming intensities explain well the inter-model difference in global mean precipitation changes, at regional scales the SST influence vary significantly. SST warming explains about 20-25% of the patterns of precipitation changes in each of the four/five models in its rainfall projections over the oceans in the Indo-Pacific domain, but there are also a couple of models in which different SST warming explains little of their precipitation pattern changes. The influence is weaker again for rainfall changes over land. Roughly similar levels of contribution can be attributed to different atmospheric responses to SST warming in these models. The weak SST influence in our study could be due to the experimental setup applied: superimposing different SST warming anomalies onto the same SSTs simulated for current climate by ACCESS1.3 rather than directly using model-simulated past and future SSTs. Similar modelling and analysis from other modelling groups with more carefully designed experiments are needed to tease out uncertainties caused by different SST warming patterns, different SST mean biases and different model physical/dynamical responses to the same underlying

  8. Sensitive study of the climatological SST by using ATSR global SST data sets

    NASA Astrophysics Data System (ADS)

    Xue, Yong; Lawrence, Sean P.; Llewellyn-Jones, David T.

    1995-12-01

    Climatological sea surface temperature (SST) is an initial step for global climate processing monitoring. A comparison has been made by using Oberhuber's SST data set and two years monthly averaged SST from ATSR thermal band data to force the OGCM. In the eastern Pacific Ocean, these make only a small difference to model SST. In the western Pacific Ocean, the use of Oberhuber's data set gives higher climatological SST than that using ATSR data. The SSTs were also simulated for 1992 using climatological SSTs from two years monthly averaged ATSR data and Oberhuber data. The forcing with SST from ATSR data was found to give better SST simulation than that from Oberhuber's data. Our study has confirmed that ATSR can provide accurate monthly averaged global SST for global climate processing monitoring.

  9. Relationships of Upper Tropospheric Water Vapor, Clouds and SST: MLS Observations, ECMWF Analyses and GCM Simulations

    NASA Technical Reports Server (NTRS)

    Su, Hui; Waliser, Duane E.; Jiang, Jonathan H.; Li, Jui-lin; Read, William G.; Waters, Joe W.; Tompkins, Adrian M.

    2006-01-01

    The relationships of upper tropospheric water vapor (UTWV), cloud ice and sea surface temperature (SST) are examined in the annual cycles of ECMWF analyses and simulations from 15 atmosphere-ocean coupled models which were contributed to the IPCC AR4. The results are compared with the observed relationships based on UTWV and cloud ice measurements from MLS on Aura. It is shown that the ECMWF analyses produce positive correlations between UTWV, cloud ice and SST, similar to the MLS data. The rate of the increase of cloud ice and UTWV with SST is about 30% larger than that for MLS. For the IPCC simulations, the relationships between UTWV, cloud ice and SST are qualitatively captured. However, the magnitudes of the simulated cloud ice show a considerable disagreement between models, by nearly a factor of 10. The amplitudes of the approximate linear relations between UTWV, cloud ice and SST vary by a factor up to 4.

  10. West African Monsoon dynamics in idealized simulations: the competitive roles of SST warming and CO2

    NASA Astrophysics Data System (ADS)

    Gaetani, Marco; Flamant, Cyrille; Hourdin, Frederic; Bastin, Sophie; Braconnot, Pascale; Bony, Sandrine

    2015-04-01

    The West African Monsoon (WAM) is affected by large climate variability at different timescales, from interannual to multidecadal, with strong environmental and socio-economic impacts associated to climate-related rainfall variability, especially in the Sahelian belt. State-of-the-art coupled climate models still show poor ability in correctly simulating the WAM past variability and also a large spread is observed in future climate projections. In this work, the July-to-September (JAS) WAM variability in the period 1979-2008 is studied in AMIP-like simulations (SST-forced) from CMIP5. The individual roles of global SST warming and CO2 concentration increasing are investigated through idealized experiments simulating a 4K warmer SST and a 4x CO2 concentration, respectively. Results show a dry response in Sahel to SST warming, with dryer conditions over western Sahel. On the contrary, wet conditions are observed when CO2 is increased, with the strongest response over central-eastern Sahel. The precipitation changes are associated to modifications in the regional atmospheric circulation: dry (wet) conditions are associated with reduced (increased) convergence in the lower troposphere, a southward (northward) shift of the African Easterly Jet, and a weaker (stronger) Tropical Easterly Jet. The co-variability between global SST and WAM precipitation is also investigated, highlighting a reorganization of the main co-variability modes. Namely, in the 4xCO2 simulation the influence of Tropical Pacific is dominant, while it is reduced in the 4K simulation, which also shows an increased coupling with the eastern Pacific and the Indian Ocean. The above results suggest a competitive action of SST warming and CO2 increasing on the WAM climate variability, with opposite effects on precipitation. The combination of the observed positive and negative response in precipitation, with wet conditions in central-eastern Sahel and dry conditions in western Sahel, is consistent with the

  11. The role of SST variability in the simulation of the MJO

    NASA Astrophysics Data System (ADS)

    Stan, Cristiana

    2017-12-01

    The sensitivity of the Madden-Julian Oscillation to high-frequency variability (period 1-5 days) of sea surface temperature (SST) is investigated using numerical experiments with the super-parameterized Community Climate System Model. The findings of this study emphasize the importance of air-sea interactions in the simulation of the MJO, and stress the necessity of an accurate representation of ocean variability on short time scales. Eliminating 1-5-day variability of surface boundary forcing reduces the intraseasonal variability (ISV) of the tropics during the boreal winter. The ISV spectrum becomes close to the red noise background spectrum. The variability of atmospheric circulation shifts to longer time scales. In the absence of high-frequency variability of SST the MJO power gets confined to wavenumbers 1-2 and the magnitude of westward power associated with Rossby waves increases. The MJO convective activity propagating eastward from the Indian Ocean does not cross the Maritime Continent, and convection in the western Pacific Ocean is locally generated. In the Indian Ocean convection tends to follow the meridional propagation of SST anomalies. The response of the MJO to 1-5-day variability in the SST is through the charging and discharging mechanisms contributing to the atmospheric column moist static energy before and after peak MJO convection. Horizontal advection and surface fluxes show the largest sensitivity to SST perturbations.

  12. Impact of the Gulf of California SST on simulating precipitation and crop productivity in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Kim, S.; Kim, J.; Prasad, A. K.; Stack, D. H.; El-Askary, H. M.; Kafatos, M.

    2012-12-01

    Like other ecosystems, agricultural productivity is substantially affected by climate factors. Therefore, accurate climatic data (i.e. precipitation, temperature, and radiation) is crucial to simulating crop yields. In order to understand and anticipate climate change and its impacts on agricultural productivity in the Southwestern United States, the WRF regional climate model (RCM) and the Agricultural Production Systems sIMulator (APSIM) were employed for simulating crop production. 19 years of WRF RCM output show that there is a strong dry bias during the warm season, especially in Arizona. Consequently, the APSIM crop model indicates very low crop yields in this region. We suspect that the coarse resolution of reanalysis data could not resolve the relatively warm Sea Surface Temperature (SST) in the Gulf of California (GC), causing the SST to be up to 10 degrees lower than the climatology. In the Southwestern United States, a significant amount of precipitation is associated with North American Monsoon (NAM). During the monsoon season, the low-level moisture is advected to the Southwestern United States via the GC, which is known to be the dominant moisture source. Thus, high-resolution SST data in the GC is required for RCM simulations to accurately represent a reasonable amount of precipitation in the region, allowing reliable evaluation of the impacts on regional ecosystems.and evaluate impacts on regional ecosystems. To evaluate the influence of SST on agriculture in the Southwestern U.S., two sets of numerical simulations were constructed: a control, using unresolved SST of GC, and daily updated SST data from the MODIS satellite sensor. The meteorological drivers from each of the 6 year RCM runs were provided as input to the APSIM model to determine the crop yield. Analyses of the simulated crop production, and the interannual variation of the meteorological drivers, demonstrate the influence of SST on crop yields in the Southwestern United States.

  13. Using Discrete Event Simulation for Programming Model Exploration at Extreme-Scale: Macroscale Components for the Structural Simulation Toolkit (SST).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilke, Jeremiah J; Kenny, Joseph P.

    2015-02-01

    Discrete event simulation provides a powerful mechanism for designing and testing new extreme- scale programming models for high-performance computing. Rather than debug, run, and wait for results on an actual system, design can first iterate through a simulator. This is particularly useful when test beds cannot be used, i.e. to explore hardware or scales that do not yet exist or are inaccessible. Here we detail the macroscale components of the structural simulation toolkit (SST). Instead of depending on trace replay or state machines, the simulator is architected to execute real code on real software stacks. Our particular user-space threading frameworkmore » allows massive scales to be simulated even on small clusters. The link between the discrete event core and the threading framework allows interesting performance metrics like call graphs to be collected from a simulated run. Performance analysis via simulation can thus become an important phase in extreme-scale programming model and runtime system design via the SST macroscale components.« less

  14. Medium Fidelity Simulation of Oxygen Tank Venting

    NASA Technical Reports Server (NTRS)

    Sweet, Adam; Kurien, James; Lau, Sonie (Technical Monitor)

    2001-01-01

    The item to he cleared is a medium-fidelity software simulation model of a vented cryogenic tank. Such tanks are commonly used to transport cryogenic liquids such as liquid oxygen via truck, and have appeared on liquid-fueled rockets for decades. This simulation model works with the HCC simulation system that was developed by Xerox PARC and NASA Ames Research Center. HCC has been previously cleared for distribution. When used with the HCC software, the model generates simulated readings for the tank pressure and temperature as the simulated cryogenic liquid boils off and is vented. Failures (such as a broken vent valve) can be injected into the simulation to produce readings corresponding to the failure. Release of this simulation will allow researchers to test their software diagnosis systems by attempting to diagnose the simulated failure from the simulated readings. This model does not contain any encryption software nor can it perform any control tasks that might be export controlled.

  15. Impact of global warming on tropical cyclone genesis in coupled and forced simulations: role of SST spatial anomalies

    NASA Astrophysics Data System (ADS)

    Royer, Jean-François; Chauvin, Fabrice; Daloz, Anne-Sophie

    2010-05-01

    The response of tropical cyclones (TC) activity to global warming has not yet reached a clear consensus in the Fourth Assessment Report (AR4) published by the Intergovernmental Panel on Climate Change (IPCC, 2007) or in the recent scientific literature. Observed series are neither long nor reliable enough for a statistically significant detection and attribution of past TC trends, and coupled climate models give widely divergent results for the future evolution of TC activity in the different ocean basins. The potential importance of the spatial structure of the future SST warming has been pointed out by Chauvin et al. (2006) in simulations performed at CNRM with the ARPEGE-Climat GCM. The current presentation describes a new set of simulations that have been performed with the ARPEGE-Climat model to try to understand the possible role of SST patterns in the TC cyclogenesis response in 15 CMIP3 coupled simulations analysed by Royer et al (2009). The new simulations have been performed with the atmospheric component of the ARPEGE-Climat GCM forced in 10 year simulations by the SST patterns from each of 15 CMIP3 simulations with different climate model at the end of the 21st century according to scenario A2. The TC analysis is based on the computation of a Convective Yearly Genesis Parameter (CYGP) and the Genesis Potential Index (GPI). The computed genesis indices for each of the ARPEGE-Climat forced simulations is compared with the indices computed directly from the initial coupled simulation. The influence of SST patterns can then be more easily assessed since all the ARPEGE-Climat simulations are performed with the same atmospheric model, whereas the original simulations used models with different parameterization and resolutions. The analysis shows that CYGP or GPI anomalies obtained with ARPEGE are as variable between each other as those obtained originally by the different IPCC models. The variety of SST patterns used to force ARPEGE explains a large part of

  16. Tank Riser Pit Decontamination System (Pit Viper) Return on Investment and Break-Even Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Joan K.; Weimar, Mark R.; Balducci, Patrick J.

    2003-06-30

    This study assessed the cost benefit of Pit Viper deployment for 80 tank farm pits between October 1, 2003 and September 30, 2012 under the technical baseline for applicable double-shell tank (DST) and single-shell tank (SST) projects. After this assessment had been completed, the U.S. Department of Energy (DOE) Richland Operations Office (RL) and Office of River Protection (ORP) published the Hanford Performance Management Plan (August 2003), which accelerated the schedule for SST retrieval. Then, DOE/CH2M HILL contract modification M064 (October 2002) and The Integrated Mission Acceleration Plan (March 2003) further accelerated SST retrieval and closure schedules. Twenty-six to 40more » tanks must be retrieved by 2006. Thus the schedule for SST pit entries is accelerated and the number of SST pit entries is increased. This study estimates the return on investment (ROI) and the number of pits where Pit Viper deployment would break even or save money over current manual practices. The results of the analysis indicate a positive return on the federal investment for deployment of the Pit Viper provided it is used on a sufficient number of pits.« less

  17. An Assessment of the SST Simulation Using the Climate Forecast System Coupled to the SSiB Surface Model

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Xue, Y.; Huang, B.; Lee, J.; De Sales, F.

    2016-12-01

    A long term simulation has been conducted using the Climate Forecast System (CFSv2) coupled to the SSiB-2 land model, which consists of the Global Forecast System atmospheric model (GFS) and the Modular Ocean model - version 4 (MOM4) as the ocean component. This study evaluates the model's performance in simulating sea surface temperature (SST) mean state, trend, and inter-annual and decadal variabilities. The model is able to produce the reasonable spatial distribution of the SST climatology; however, it has prominent large scale biases. In the middle latitude of the Northern Hemisphere, major cold biases is close to the warm side of the large SST gradients, which may be associated with the weaker Kuroshio and Gulf Stream extensions that diffuse the SST gradient. IN addition, warm biases extend along the west coast of the North America continent to the high latitude, which may be related with excessive Ekman down-welling and solar radiation fluxes reaching to the surface due to the lack of cloud there. Warm biases also exist over the tropical cold tough areas in the Pacific and Atlantic. The global SST trend and interannual variations are well captured except for that in the south Hemisphere after year 2000, which is mainly contributed by the bias from the southern Pacific Ocean. Although the model fails to accurately produce ENSO events in proper years, it does reproduce the ENSO frequency well; they are skewed toward more warm events after 1990. The model also shows ability in SST decadal variation, such as the so-called inter-decadal Pacific oscillation (IPO); however, its phases seem to go reversely compared with the observation.

  18. Research on MMC-SST Oriented AC/DC Distribution System

    NASA Astrophysics Data System (ADS)

    Xie, Xifeng; Shi, Hua; Zuo, Jianglin; Zhang, Zhigang

    2018-01-01

    A modular multilevel converter-solid state transformer (MMC-SST) oriented AC/DC Distribution System is designed. Firstly, the topology structure is introduced, MMC is adopted in the input stage, multiple DC-DC converters are adopted in the isolation stage, and a Three-Phase Four-Leg inverter is adopted in the output stage. Then, the control strategy is analysed. Finally, simulation model and an experimental prototype of MMC-SST are built, simulation and experimental results show that topology and control strategy of MMC-SST are feasible.

  19. Numerical simulation of the atmospheric response ito the time-varying El Nino SST anomalies during May 1982 through October 1983

    NASA Technical Reports Server (NTRS)

    Fennessy, M. J.; Shukla, J.

    1988-01-01

    An attempt is made to simulate the atmospheric circulation anomalies corresponding to the observed SST anomalies in the Pacific Ocean for the 18-month period of May 1982 through October 1983. A GCM is first integrated for 25 months with monthly climatological boundary conditions of SST, soil moisture, sea, ice, and albedo. Starting from day 165 of this 'control' integration, which corresponds to May 1, the 18-month integration is carried out with the same boundary conditions except that the observed monthly SST anomalies for May 1982-October 1983 are added to the climatological values in the Pacific from 40 S to 60 N. The evolution of the model-simulated circulation and rainfall anomalies are compared to actual observations for the same period, and remarkable agreement is found.

  20. Relationship between Trends in Land Precipitation and Tropical SST Gradient

    NASA Technical Reports Server (NTRS)

    Chung, Chul Eddy; Ramanathan, V.

    2007-01-01

    In this study, we examined global zonal/annual mean precipitation trends. Land precipitation trend from 1951 to 2002 shows widespread drying between 10 S to 20 N but the trend from 1977 to 2002 shows partial recovery. Based on general circulation model sensitivity studies, we suggested that these features are driven largely by the meridional SST gradient trend in the tropics. Our idealized CCM3 experiments substantiated that land precipitation is more sensitive to meridional SST gradient than to an overall tropical warming. Various simulations produced for the IPCC 4th assessment report demonstrate that increasing CO2 increases SST in the entire tropics non-uniformly and increases land precipitation only in certain latitude belts, again pointing to the importance of SST gradient change. Temporally varying aerosols in the IPCC simulations alter meridional SST gradient and land precipitation substantially. Anthropogenic aerosol direct solar forcing without its effects on SST is shown by the CCM3 to have weak but non-negligible influence on land precipitation.

  1. Effect of Interfacial Turbulence and Accommodation Coefficient on CFD Predictions of Pressurization and Pressure Control in Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Kartuzova, Olga; Hylton, Sonya

    2015-01-01

    Laminar models agree closely with the pressure evolution and vapor phase temperature stratification but under-predict liquid temperatures. Turbulent SST k-w and k-e models under-predict the pressurization rate and extent of stratification in the vapor but represent liquid temperature distributions fairly well. These conclusions seem to equally apply to large cryogenic tank simulations as well as small scale simulant fluid pressurization cases. Appropriate turbulent models that represent both interfacial and bulk vapor phase turbulence with greater fidelity are needed. Application of LES models to the tank pressurization problem can serve as a starting point.

  2. Impacts of SST Patterns on Rapid Intensification of Typhoon Megi (2010)

    NASA Astrophysics Data System (ADS)

    Kanada, Sachie; Tsujino, Satoki; Aiki, Hidenori; Yoshioka, Mayumi K.; Miyazawa, Yasumasa; Tsuboki, Kazuhisa; Takayabu, Izuru

    2017-12-01

    Typhoon Megi (2010), a very intense tropical cyclone with a minimum central pressure of 885 hPa, was characterized by especially rapid intensification. We investigated this intensification process by a simulation experiment using a high-resolution (0.02° × 0.02°) three-dimensional atmosphere-ocean coupled regional model. We also performed a sensitivity experiment with a time-fixed sea surface temperature (SST). The coupled model successfully simulated the minimum central pressure of Typhoon Megi, whereas the fixed SST experiment simulated an excessively low minimum central pressure of 839 hPa. The simulation results also showed a close relationship between the radial SST profiles and the rapid intensification process. Because the warm sea increased near-surface water vapor and hence the convective available potential energy, the high SST in the eye region facilitated tall and intense updrafts inside the radius of maximum wind speed and led to the start of rapid intensification. In contrast, high SST outside this radius induced local secondary updrafts that inhibited rapid intensification even if the mean SST in the core region exceeded 29.0°C. These secondary updrafts moved inward and eventually merged with the primary eyewall updrafts. Then the storm intensified rapidly when the high SST appeared in the eye region. Thus, the changes in the local SST pattern around the storm center strongly affected the rapid intensification process by modulating the radial structure of core convection. Our results also show that the use of a high-resolution three-dimensional atmosphere-ocean coupled model offers promise for improving intensity forecasts of tropical cyclones.

  3. The Aqua-planet Experiment (APE): Response to Changed Meridional SST Profile

    NASA Technical Reports Server (NTRS)

    Williamson, David L.; Blackburn, Michael; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut; hide

    2013-01-01

    This paper explores the sensitivity of Atmospheric General Circulation Model (AGCM) simulations to changes in the meridional distribution of sea surface temperature (SST). The simulations are for an aqua-planet, a water covered Earth with no land, orography or sea- ice and with specified zonally symmetric SST. Simulations from 14 AGCMs developed for Numerical Weather Prediction and climate applications are compared. Four experiments are performed to study the sensitivity to the meridional SST profile. These profiles range from one in which the SST gradient continues to the equator to one which is flat approaching the equator, all with the same maximum SST at the equator. The zonal mean circulation of all models shows strong sensitivity to latitudinal distribution of SST. The Hadley circulation weakens and shifts poleward as the SST profile flattens in the tropics. One question of interest is the formation of a double versus a single ITCZ. There is a large variation between models of the strength of the ITCZ and where in the SST experiment sequence they transition from a single to double ITCZ. The SST profiles are defined such that as the equatorial SST gradient flattens, the maximum gradient increases and moves poleward. This leads to a weakening of the mid-latitude jet accompanied by a poleward shift of the jet core. Also considered are tropical wave activity and tropical precipitation frequency distributions. The details of each vary greatly between models, both with a given SST and in the response to the change in SST. One additional experiment is included to examine the sensitivity to an off-equatorial SST maximum. The upward branch of the Hadley circulation follows the SST maximum off the equator. The models that form a single precipitation maximum when the maximum SST is on the equator shift the precipitation maximum off equator and keep it centered over the SST maximum. Those that form a double with minimum on the equatorial maximum SST shift the double

  4. Simulation model of stratified thermal energy storage tank using finite difference method

    NASA Astrophysics Data System (ADS)

    Waluyo, Joko

    2016-06-01

    Stratified TES tank is normally used in the cogeneration plant. The stratified TES tanks are simple, low cost, and equal or superior in thermal performance. The advantage of TES tank is that it enables shifting of energy usage from off-peak demand for on-peak demand requirement. To increase energy utilization in a stratified TES tank, it is required to build a simulation model which capable to simulate the charging phenomenon in the stratified TES tank precisely. This paper is aimed to develop a novel model in addressing the aforementioned problem. The model incorporated chiller into the charging of stratified TES tank system in a closed system. The model was developed in one-dimensional type involve with heat transfer aspect. The model covers the main factors affect to degradation of temperature distribution namely conduction through the tank wall, conduction between cool and warm water, mixing effect on the initial flow of the charging as well as heat loss to surrounding. The simulation model is developed based on finite difference method utilizing buffer concept theory and solved in explicit method. Validation of the simulation model is carried out using observed data obtained from operating stratified TES tank in cogeneration plant. The temperature distribution of the model capable of representing S-curve pattern as well as simulating decreased charging temperature after reaching full condition. The coefficient of determination values between the observed data and model obtained higher than 0.88. Meaning that the model has capability in simulating the charging phenomenon in the stratified TES tank. The model is not only capable of generating temperature distribution but also can be enhanced for representing transient condition during the charging of stratified TES tank. This successful model can be addressed for solving the limitation temperature occurs in charging of the stratified TES tank with the absorption chiller. Further, the stratified TES tank can be

  5. An Assessment of the Potential Predictability of Drought Over the United States Based on Climate Model Simulations with Specified SST

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Wang, Hailan; Suarez, Max; Koster, Randal

    2010-01-01

    The USCLIV AR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. The runs were done with several global atmospheric models including NASA/NSIPP-l, NCEP/GFS, GFDLlAM2, and NCAR CCM3 and CAM3.5. Specific questions that the runs are designed to address include: What are mechanisms that maintain drought across the seasonal cycle and from one year to the next. To what extent can droughts develop independently of ocean variability due to year-to-year memory that may be inherent to the land. What is the role of the different ocean basins? Here we focus on the potential predictability of drought conditions over the United States. Specific issues addressed include the seasonality and regionality of the signal-to-noise ratios associated with Pacific and Atlantic SST forcing, and the sensitivity of the results to the climatological stationary waves simulated by the different AGCMs.

  6. Description of waste pretreatment and interfacing systems dynamic simulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garbrick, D.J.; Zimmerman, B.D.

    1995-05-01

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggestedmore » average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.« less

  7. NOAA OI SST Analysis

    Science.gov Websites

    will be referred to as OI.v2. The most significant change for the OI.v2 is the improved simulation of SST obs from sea ice data following a technique developed at the UK Met Office. This change has developed at the Climate Prediction Center using the method of Reynolds and Smith (1995) and Smith and

  8. CFD simulation of local and global mixing time in an agitated tank

    NASA Astrophysics Data System (ADS)

    Li, Liangchao; Xu, Bin

    2017-01-01

    The Issue of mixing efficiency in agitated tanks has drawn serious concern in many industrial processes. The turbulence model is very critical to predicting mixing process in agitated tanks. On the basis of computational fluid dynamics(CFD) software package Fluent 6.2, the mixing characteristics in a tank agitated by dual six-blade-Rushton-turbines(6-DT) are predicted using the detached eddy simulation(DES) method. A sliding mesh(SM) approach is adopted to solve the rotation of the impeller. The simulated flow patterns and liquid velocities in the agitated tank are verified by experimental data in the literature. The simulation results indicate that the DES method can obtain more flow details than Reynolds-averaged Navier-Stokes(RANS) model. Local and global mixing time in the agitated tank is predicted by solving a tracer concentration scalar transport equation. The simulated results show that feeding points have great influence on mixing process and mixing time. Mixing efficiency is the highest for the feeding point at location of midway of the two impellers. Two methods are used to determine global mixing time and get close result. Dimensionless global mixing time remains unchanged with increasing of impeller speed. Parallel, merging and diverging flow pattern form in the agitated tank, respectively, by changing the impeller spacing and clearance of lower impeller from the bottom of the tank. The global mixing time is the shortest for the merging flow, followed by diverging flow, and the longest for parallel flow. The research presents helpful references for design, optimization and scale-up of agitated tanks with multi-impeller.

  9. Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Liu, Baoliang; Lei, Jilin; Guan, Changtao; Huang, Bin

    2017-07-01

    A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system. The realizable k- ɛ turbulence model was applied to describe the flow, the discrete phase model (DPM) was applied to generate particle trajectories, and the governing equations are solved using the finite volume method. To validate this model, the numerical results were compared with data obtained from a full-scale physical model. The results show that: (1) the realizable k- ɛ model applied for turbulence modeling describes well the flow pattern in octagonal tanks, giving an average relative error of velocities between simulated and measured values of 18% from contour maps of velocity magnitudes; (2) the DPM was applied to obtain particle trajectories and to simulate the rate of particle removal from the tank. The average relative error of the removal rates between simulated and measured values was 11%. The DPM can be used to assess the self-cleaning capability of an octagonal tank; (3) a comprehensive account of the hydrodynamics within an octagonal tank can be assessed from simulations. The velocity distribution was uniform with an average velocity of 15 cm/s; the velocity reached 0.8 m/s near the inlet pipe, which can result in energy losses and cause wall abrasion; the velocity in tank corners was more than 15 cm/s, which suggests good water mixing, and there was no particle sedimentation. The percentage of particle removal for octagonal tanks was 90% with the exception of a little accumulation of ≤ 5 mm particle in the area between the inlet pipe and the wall. This study demonstrated a consistent numerical model of the hydrodynamics within octagonal tanks that can be further used in their design and optimization as well as promote the wide use of computational fluid dynamics in aquaculture engineering.

  10. Numerical simulation of a horizontal sedimentation tank considering sludge recirculation.

    PubMed

    Zhang, Wei; Zou, Zhihong; Sui, Jun

    2010-01-01

    Most research conducted on the concentration distribution of sediment in the sedimentation tank does not consider the role of the suction dredge. To analyze concentration distribution more accurately, a suspended sediment transportation model was constructed and the velocity field in the sedimentation tank was determined based on the influence of the suction dredge. An application model was then used to analyze the concentration distribution in the sedimentation tank when the suction dredge was fixed, with results showing that distribution was in accordance with theoretical analysis. The simulated value of the outlet concentration was similar to the experimental value, and the trends of the isoconcentration distribution curves, as well as the vertical distribution curves of the five monitoring sections acquired through simulations, were almost the same as curves acquired through experimentation. The differences between the simulated values and the experimental values were significant.

  11. Investigation of thermolytic hydrogen generation rate of tank farm simulated and actual waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C.; Newell, D.; Woodham, W.

    To support resolution of Potential Inadequacies in the Safety Analysis for the Savannah River Site (SRS) Tank Farm, Savannah River National Laboratory conducted research to determine the thermolytic hydrogen generation rate (HGR) with simulated and actual waste. Gas chromatography methods were developed and used with air-purged flow systems to quantify hydrogen generation from heated simulated and actual waste at rates applicable to the Tank Farm Documented Safety Analysis (DSA). Initial simulant tests with a simple salt solution plus sodium glycolate demonstrated the behavior of the test apparatus by replicating known HGR kinetics. Additional simulant tests with the simple salt solutionmore » excluding organics apart from contaminants provided measurement of the detection and quantification limits for the apparatus with respect to hydrogen generation. Testing included a measurement of HGR on actual SRS tank waste from Tank 38. A final series of measurements examined HGR for a simulant with the most common SRS Tank Farm organics at temperatures up to 140 °C. The following conclusions result from this testing.« less

  12. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T.; King, W.; Hay, M.

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions duringmore » tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.« less

  13. The infrared image simulation of the tank under different movement states

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Mu, Cheng-po; Peng, Ming-song; Dong, Qing-xian; Zhang, Rui-heng

    2017-07-01

    Tank, as a vital ground weapon, plays an irreplaceable role in the war. The article did the research of infrared image of the tank. Firstly, the 3D model of tank was established. And then the infrared radiation model of the target was constructed by analysing the infrared characteristics of the tank's different parts.. Finally the infrared radiation value of the tank under different states was calculated and the simulation of infrared characteristics of the tank under different states was done, which will provide reference for the research on infrared characteristics of the army's battlefield target.

  14. Low frequency North Atlantic SST variability: Weather noise forcing and coupled response

    NASA Astrophysics Data System (ADS)

    Fan, Meizhu

    A method to diagnose the causes of low frequency SST variability is developed, tested and applied in an ideal case and real climate. In the ideal case, a free simulation of the COLA CGCM is taken as synthetic observations. For real climate, we take NCEP reanalysis atmospheric data and Reynolds SST as observations. Both the synthetic and actual observation data show that weather noise is the main component of atmospheric variability at subtropics and high-latitude. Diagnoses of results from the ideal case suggest that most of the synthetic observed SST variability can be reproduced by the weather noise surface fluxes forcing. This includes the "observed" low frequency SST patterns in the North Atlantic and their corresponding time evolution. Among all the noise surface fluxes, heat flux plays a major role. The results from simulations using actual observations also suggest that the observed SST variability is mostly atmospheric weather noise forced. The regional atmospheric noise forcing, especially the heat flux noise forcing, is the major source of the low frequency SST variability in the North Atlantic. The observed SST tripole mode has about a 12 year period and it can be reasonably reproduced by the weather noise forcing in terms of its period, spatial pattern and variance. Based on our diagnosis, it is argued that the SST tripole is mainly forced by local atmospheric heat flux noise. The gyre circulation plays a secondary role: the anomalous gyre circulation advects mean thermal features across the inter-gyre boundary, and the mean gyre advection carries SST anomalies along the inter-gyre boundary. The diagnosis is compared with a delayed oscillator theory. We find that the delayed oscillator theory is not supported and that the SST tripole mode is forced by weather noise heat flux noise. However, the result may be model dependent.

  15. Comparison of the 1D flux theory with a 2D hydrodynamic secondary settling tank model.

    PubMed

    Ekama, G A; Marais, P

    2004-01-01

    The applicability of the 1D idealized flux theory (1DFT) for design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated from the 2D hydrodynamic model SettlerCAD using as a basis 35 full scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25 to 4.1 m side water depth, with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the sloping bottom shallow (1.5-2.5 m SWD) Dutch SSTs tested by STOWa and the Watts et al. SST, all with doubled SWDs, and the Darvill new (4.1 m) and old (2.5 m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also done. While the design of the internal features of the SST, such as baffling, have a marked influence on the effluent SS concentration for underloaded SSTs, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST, In the meantime until more information is obtained, it would appear that from the simulations so far that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais remains a reasonable value to apply in the design of full scale SSTs--for deep SSTs (4 m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5 m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, that this be avoided and that (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the

  16. SST Variation Due to Interactive Convective-Radiative Processes

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Shie, C.-L.; Johnson, D.; Simpson, J.; Li, X.; Sui, C.-H.

    2000-01-01

    The recent linking of Cloud-Resolving Models (CRMs) to Ocean-Mixed Layer (OML) models has provided a powerful new means of quantifying the role of cloud systems in ocean-atmosphere coupling. This is due to the fact that the CRM can better resolve clouds and cloud systems and allow for explicit cloud-radiation interaction. For example, Anderson (1997) applied an atmospheric forcing associated with a CRM simulated squall line to a 3-D OML model (one way or passive interaction). His results suggested that the spatial variability resulting from the squall forcing can last at least 24 hours when forced with otherwise spatially uniform fluxes. In addition, the sea surface salinity (SSS) variability continuously decreased following the forcing, while some of the SST variability remained when a diurnal mixed layer capped off the surface structure. The forcing used in the OML model, however, focused on shorter time (8 h) and smaller spatial scales (100-120 km). In this study, the 3-D Goddard Cumulus Ensemble Model (GCE; 512 x 512 x 23 cu km, 2-km horizontal resolution) is used to simulate convective active episodes occurring in the Western Pacific warm pool and Eastern Atlantic regions. The model is integrated for seven days, and the simulated results are coupled to an OML model to better understand the impact of precipitation and changes in the planetary boundary layer upon SST variation. We will specifically examine and compare the results of linking the OML model with various spatially-averaged outputs from GCE simulations (i.e., 2 km vs. 10-50 km horizontal resolutions), in order to help understand the SST sensitivity to multi-scale influences. This will allow us to assess the importance of explicitly simulated deep and shallow clouds, as well as the subgrid-scale effects (in coarse-model runs) upon SST variation. Results using both 1-D and 2-D OML models will be evaluated to assess the effects of horizontal advection.

  17. Assessing the applicability of the 1D flux theory to full-scale secondary settling tank design with a 2D hydrodynamic model.

    PubMed

    Ekama, G A; Marais, P

    2004-02-01

    The applicability of the one-dimensional idealized flux theory (1DFT) for the design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated with the two-dimensional computational fluid dynamics model SettlerCAD using as a basis 35 full-scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25-4.1m side water depth (SWD), with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the Watts et al. (Water Res. 30(9)(1996)2112) SST, with doubled SWDs and the Darvill new (4.1m) and old (2.5m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also performed. While the design of the internal features of the SST, such as baffling, has a marked influence on the effluent SS concentration while the SST is underloaded, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST. Until more information is obtained, it would appear from the simulations that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais (Water Pollut. Control 85(1)(1986)101) remains a reasonable value to apply in the design of full-scale SSTs-for deep SSTs (4m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, this be avoided and (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the

  18. Identifying and Investigating the Late-1960s Interhemispheric SST Shift

    NASA Astrophysics Data System (ADS)

    Friedman, A. R.; Lee, S. Y.; Liu, Y.; Chiang, J. C. H.

    2014-12-01

    The global north-south interhemispheric sea surface temperature (SST) difference experienced a pronounced and rapid decrease in the late 1960s, which has been linked to drying in the Sahel, South Asia, and East Asia. However, some basic questions about the interhemispheric SST shift remain unresolved, including its scale and whether the constituent changes in different basins were coordinated. In this study, we systematically investigate the spatial and temporal behavior of the late-1960s interhemispheric SST shift using ocean surface and subsurface observations. We also evaluate potential mechanisms using control and specific-forcing CMIP5 simulations. Using a regime shift detection technique, we identify the late-1960s shift as the most prominent in the historical observational SST record. We additionally examine the corresponding changes in upper-ocean heat content and salinity associated with the shift. We find that there were coordinated upper-ocean cooling and freshening in the subpolar North Atlantic, the region of the largest-magnitude SST decrease during the interhemispheric shift. These upper-ocean changes correspond to a weakened North Atlantic thermohaline circulation (THC). However, the THC decrease does not fully account for the rapid global interhemispheric SST shift, particularly the warming in the extratropical Southern Hemisphere.

  19. Numerical Simulation of Liquids Draining From a Tank Using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Sakri, Fadhilah Mohd; Sukri Mat Ali, Mohamed; Zaki Shaikh Salim, Sheikh Ahmad; Muhamad, Sallehuddin

    2017-08-01

    Accurate simulation of liquids draining is a challenging task. It involves two phases flow, i.e. liquid and air. In this study draining a liquid from a cylindrical tank is numerically simulated using OpenFOAM. OpenFOAM is an open source CFD package and it becomes increasingly popular among the academician and also industries. Comparisons with theoretical and results from previous published data confirmed that OpenFOAM is able to simulate the liquids draining very well. This is done using the gas-liquid interface solver available in the standard library of OpenFOAM. Additionally, this study was also able to explain the physics flow of the draining tank.

  20. Computational Fluid Dynamics (CFD) Simulations of Jet Mixing in Tanks of Different Scales

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin; Moder, Jeffrey

    2010-01-01

    For long-duration in-space storage of cryogenic propellants, an axial jet mixer is one concept for controlling tank pressure and reducing thermal stratification. Extensive ground-test data from the 1960s to the present exist for tank diameters of 10 ft or less. The design of axial jet mixers for tanks on the order of 30 ft diameter, such as those planned for the Ares V Earth Departure Stage (EDS) LH2 tank, will require scaling of available experimental data from much smaller tanks, as well designing for microgravity effects. This study will assess the ability for Computational Fluid Dynamics (CFD) to handle a change of scale of this magnitude by performing simulations of existing ground-based axial jet mixing experiments at two tank sizes differing by a factor of ten. Simulations of several axial jet configurations for an Ares V scale EDS LH2 tank during low Earth orbit (LEO) coast are evaluated and selected results are also presented. Data from jet mixing experiments performed in the 1960s by General Dynamics with water at two tank sizes (1 and 10 ft diameter) are used to evaluate CFD accuracy. Jet nozzle diameters ranged from 0.032 to 0.25 in. for the 1 ft diameter tank experiments and from 0.625 to 0.875 in. for the 10 ft diameter tank experiments. Thermally stratified layers were created in both tanks prior to turning on the jet mixer. Jet mixer efficiency was determined by monitoring the temperatures on thermocouple rakes in the tanks to time when the stratified layer was mixed out. Dye was frequently injected into the stratified tank and its penetration recorded. There were no velocities or turbulence quantities available in the experimental data. A commercially available, time accurate, multi-dimensional CFD code with free surface tracking (FLOW-3D from Flow Science, Inc.) is used for the simulations presented. Comparisons are made between computed temperatures at various axial locations in the tank at different times and those observed experimentally. The

  1. Effects of Doubled CO2 on Tropical Sea-Surface Temperature (SSTs) for Onset of Deep Convection and Maximum SST-GCM Simulations Based Inferences

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Walker, G. K.; Zhou, Y. P.; Schmidt, Gavin A.; Lau, K. M.; Cahalan, R. F.

    2008-01-01

    A primary concern of CO2-induced warming is the associated rise of tropical (10S-10N) seasurface temperatures (SSTs). GISS Model-E was used to produce two sets of simulations-one with the present-day and one with doubled CO2 in the atmosphere. The intrinsic usefulness of model guidance in the tropics was confirmed when the model simulated realistic convective coupling between SSTs and atmospheric soundings and that the simulated-data correlations between SSTs and 300 hPa moiststatic energies were found to be similar to the observed. Model predicted SST limits: (i) one for the onset of deep convection and (ii) one for maximum SST, increased in the doubled C02 case. Changes in cloud heights, cloud frequencies, and cloud mass-fractions showed that convective-cloud changes increased the SSTs, while warmer mixed-layer of the doubled CO2 contained approximately 10% more water vapor; clearly that would be conducive to more intense storms and hurricanes.

  2. Simulation of Hanford Tank 241-C-106 Waste Release into Tank 241-Y-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KP Recknagle; Y Onishi

    Waste stored in Hdord single-shell Tank 241-C-106 will be sluiced with a supernatant liquid from doubIe-shell Tank 241 -AY- 102 (AY-1 02) at the U.S. Department of Energy's Har@ord Site in Eastern Washington. The resulting slurry, containing up to 30 wtYo solids, will then be transferred to Tank AY-102. During the sluicing process, it is important to know the mass of the solids being transferred into AY- 102. One of the primary instruments used to measure solids transfer is an E+ densitometer located near the periphery of the tank at riser 15S. This study was undert.dcen to assess how wellmore » a densitometer measurement could represent the total mass of soiids transferred if a uniform lateral distribution was assumed. The study evaluated the C-1 06 slurry mixing and accumulation in Tank AY- 102 for the following five cases: Case 1: 3 wt'%0 slurry in 6.4-m AY-102 waste Case 2: 3 w-t% slurry in 4.3-m AY-102 waste Case 3: 30 wtYo slurry in 6.4-m AY-102 waste Case 4: 30 wt% slurry in 4.3-m AY-102 waste Case 5: 30 wt% slurry in 5. O-m AY-102 waste. The tirne-dependent, three-dimensional, TEMPEST computer code was used to simulate solid deposition and accumulation during the injection of the C-106 slurry into AY-102 through four injection nozzles. The TEMPEST computer code was applied previously to other Hanford tanks, AP-102, SY-102, AZ-101, SY-101, AY-102, and C-106, to model tank waste mixing with rotating pump jets, gas rollover events, waste transfer from one tank to another, and pump-out retrieval of the sluiced waste. The model results indicate that the solid depth accumulated at the densitometer is within 5% of the average depth accumulation. Thus the reading of the densitometer is expected to represent the total mass of the transferred solids reasonably well.« less

  3. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2017-02-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  4. A simulation for gravity fine structure recovery from high-low GRAVSAT SST data

    NASA Technical Reports Server (NTRS)

    Estes, R. H.; Lancaster, E. R.

    1976-01-01

    Covariance error analysis techniques were applied to investigate estimation strategies for the high-low SST mission for accurate local recovery of gravitational fine structure, considering the aliasing effects of unsolved for parameters. Surface density blocks of 5 deg x 5 deg and 2 1/2 deg x 2 1/2 deg resolution were utilized to represent the high order geopotential with the drag-free GRAVSAT configured in a nearly circular polar orbit at 250 km. altitude. GEOPAUSE and geosynchronous satellites were considered as high relay spacecraft. It is demonstrated that knowledge of gravitational fine structure can be significantly improved at 5 deg x 5 deg resolution using SST data from a high-low configuration with reasonably accurate orbits for the low GRAVSAT. The gravity fine structure recoverability of the high-low SST mission is compared with the low-low configuration and shown to be superior.

  5. CFD simulation of an unbaffled stirred tank reactor driven by a magnetic rod: assessment of turbulence models.

    PubMed

    Li, Jiajia; Deng, Baoqing; Zhang, Bing; Shen, Xiuzhong; Kim, Chang Nyung

    2015-01-01

    A simulation of an unbaffled stirred tank reactor driven by a magnetic stirring rod was carried out in a moving reference frame. The free surface of unbaffled stirred tank was captured by Euler-Euler model coupled with the volume of fluid (VOF) method. The re-normalization group (RNG) k-ɛ model, large eddy simulation (LES) model and detached eddy simulation (DES) model were evaluated for simulating the flow field in the stirred tank. All turbulence models can reproduce the tangential velocity in an unbaffled stirred tank with a rotational speed of 150 rpm, 250 rpm and 400 rpm, respectively. Radial velocity is underpredicted by the three models. LES model and RNG k-ɛ model predict the better tangential velocity and axial velocity, respectively. RNG k-ɛ model is recommended for the simulation of the flow in an unbaffled stirred tank with magnetic rod due to its computational effort.

  6. No Vent Tank Fill and Transfer Line Chilldown Analysis by Generalized Fluid System Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok

    2013-01-01

    The purpose of the paper is to present the analytical capability developed to model no vent chill and fill of cryogenic tank to support CPST (Cryogenic Propellant Storage and Transfer) program. Generalized Fluid System Simulation Program (GFSSP) was adapted to simulate charge-holdvent method of Tank Chilldown. GFSSP models were developed to simulate chilldown of LH2 tank in K-site Test Facility and numerical predictions were compared with test data. The report also describes the modeling technique of simulating the chilldown of a cryogenic transfer line and GFSSP models were developed to simulate the chilldown of a long transfer line and compared with test data.

  7. NCEP SST Analysis

    Science.gov Websites

    Branches Global Climate & Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Contact EMC , state and local government Web resources and services. Real-time, global, sea surface temperature (RTG_SST_HR) analysis For a regional map, click the desired area in the global SST analysis and anomaly maps

  8. The first experiments in SST-1

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Khan, Z.; Tanna, V. L.; Sharma, A. N.; Doshi, K. J.; Prasad, U.; Masand, H.; Kumar, Aveg; Patel, K. B.; Bhandarkar, M. K.; Dhongde, J. R.; Shukla, B. K.; Mansuri, I. A.; Varadarajulu, A.; Khristi, Y. S.; Biswas, P.; Gupta, C. N.; Sharma, D. K.; Raval, D. C.; Srinivasan, R.; Pandya, S. P.; Atrey, P. K.; Sharma, P. K.; Patel, P. J.; Patel, H. S.; Santra, P.; Parekh, T. J.; Dhanani, K. R.; Paravastu, Y.; Pathan, F. S.; Chauhan, P. K.; Khan, M. S.; Tank, J. K.; Panchal, P. N.; Panchal, R. N.; Patel, R. J.; George, S.; Semwal, P.; Gupta, P.; Mahesuriya, G. I.; Sonara, D. P.; Jayswal, S. P.; Sharma, M.; Patel, J. C.; Varmora, P. P.; Patel, D. J.; Srikanth, G. L. N.; Christian, D. R.; Garg, A.; Bairagi, N.; Babu, G. R.; Panchal, A. G.; Vora, M. M.; Singh, A. K.; Sharma, R.; Raju, D.; Kulkarni, S. V.; Kumar, M.; Manchanda, R.; Joisa, S.; Tahiliani, K.; Pathak, S. K.; Patel, K. M.; Nimavat, H. D.; Shah, P. R.; Chudasma, H. H.; Raval, T. Y.; Sharma, A. L.; Ojha, A.; Parghi, B. R.; Banaudha, M.; Makwana, A. R.; Chowdhuri, M. B.; Ramaiya, N.; kumar, A.; Raval, J. V.; Gupta, S.; Purohit, S.; Kaur, R.; Adhiya, A. N.; Jha, R.; Kumar, S.; Nagora, U. C.; Siju, V.; Thomas, J.; Chaudhari, V. R.; Patel, K. G.; Ambulkar, K. K.; Dalakoti, S.; Virani, C. G.; Parmar, P. R.; Thakur, A. L.; Das, A.; Bora, D.; the SST-1 Team

    2015-10-01

    A steady state superconducting tokamak (SST-1) has been commissioned after the successful experimental and engineering validations of its critical sub-systems. During the ‘engineering validation phase’ of SST-1; the cryostat was demonstrated to be leak-tight in all operational scenarios, 80 K thermal shields were demonstrated to be uniformly cooled without regions of ‘thermal runaway and hot spots’, the superconducting toroidal field magnets were demonstrated to be cooled to their nominal operational conditions and charged up to 1.5 T of the field at the major radius. The engineering validations further demonstrated the assembled SST-1 machine shell to be a graded, stress-strain optimized and distributed thermo-mechanical device, apart from the integrated vacuum vessel being validated to be UHV compatible etc. Subsequently, ‘field error components’ in SST-1 were measured to be acceptable towards plasma discharges. A successful breakdown in SST-1 was obtained in SST-1 in June 2013 assisted with electron cyclotron pre-ionization in the second harmonic mode, thus marking the ‘first plasma’ in SST-1 and the arrival of SST-1 into the league of contemporary steady state devices. Subsequent to the first plasma, successful repeatable plasma start-ups with E ˜ 0.4 V m-1, and plasma current in excess of 70 kA for 400 ms assisted with electron cyclotron heating pre-ionization at a field of 1.5 T have so far been achieved in SST-1. Lengthening the plasma pulse duration with lower hybrid current drive, confinement and transport in SST-1 plasmas and magnetohydrodynamic activities typical to large aspect ratio SST-1 discharges are presently being investigated in SST-1. In parallel, SST-1 has uniquely demonstrated reliable cryo-stable high field operation of superconducting TF magnets in the two-phase cooling mode, operation of vapour-cooled current leads with cold gas instead of liquid helium and an order less dc joint resistance in superconducting magnet winding

  9. Importance of the Annual Cycles of SST and Solar Irradiance for Circulation and Rainfall: A Climate Model Simulation Study

    NASA Technical Reports Server (NTRS)

    Sud, Yogesh C.; Lau, William K. M.; Walker, G. K.; Mehta, V. M.

    2001-01-01

    Annual cycle of climate and precipitation is related to annual cycle of sunshine and sea-surface temperatures. Understanding its behavior is important for the welfare of humans worldwide. For example, failure of Asian monsoons can cause widespread famine and grave economic disaster in the subtropical regions. For centuries meteorologists have struggled to understand the importance of the summer sunshine and associated heating and the annual cycle of sea-surface temperatures (SSTs) on rainfall in the subtropics. Because the solar income is pretty steady from year to year, while SSTs depict large interannual variability as consequence of the variability of ocean dynamics, the influence of SSTs on the monsoons are better understood through observational and modeling studies whereas the relationship of annual rainfall to sunshine remains elusive. However, using NASA's state of the art climate model(s) that can generate realistic climate in a computer simulation, one can answer such questions. We asked the question: if there was no annual cycle of the sunshine (and its associated land-heating) or the SST and its associated influence on global circulation, what will happen to the annual cycle of monsoon rains? By comparing the simulation of a 4-year integration of a baseline Control case with two parallel anomaly experiments: 1) with annual mean solar and 2) with annual mean sea-surface temperatures, we were able to draw the following conclusions: (1) Tropical convergence zone and rainfall which moves with the Sun into the northern and southern hemispheres, specifically over the Indian, African, South American and Australian regions, is strongly modulated by the annual cycles of SSTs as well as solar forcings. The influence of the annual cycle of solar heating over land, however, is much stronger than the corresponding SST influence for almost all regions, particularly the subtropics; (2) The seasonal circulation patterns over the vast land-masses of the Northern

  10. A Fuzzy Control System for Reducing Urban Runoff by a Stormwater Storage Tank

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Cai, Y.; Wang, J.

    2017-12-01

    Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. Most researches on SST were mainly the design, pollutants removal effect, and operation assessment. While there were few researches on the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormawter runoff. Firstly, the design of SST was investigated. A catchment area and return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff was analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.

  11. 3-D Numerical Simulation for Gas-Liquid Two-Phase Flow in Aeration Tank

    NASA Astrophysics Data System (ADS)

    Xue, R.; Tian, R.; Yan, S. Y.; Li, S.

    In the crafts of activated sludge treatment, oxygen supply and the suspending state of activated sludge are primary factors to keep biochemistry process carrying on normally. However, they are all controlled by aeration. So aeration is crucial. The paper focus on aeration, use CFD software to simulate the field of aeration tank which is designed by sludge load method. The main designed size of aeration tank is: total volume: 20 000 m3; corridor width: 8m; total length of corridors: 139m; number of corridors: 3; length of one single corridor: 48m; effective depth: 4.5m; additional depth: 0.5m. According to the similarity theory, a geometrical model is set up in proportion of 10:1. The way of liquid flow is submerge to avoid liquid flow out directly. The grid is plotted by dividing the whole computational area into two parts. The bottom part which contains gas pipe and gas exit hole and the above part which is the main area are plotted by tetrahedron and hexahedron respectively. In boundary conditions, gas is defined as the primary-phase, and liquid is defined as the secondary-phase. Choosing mixture model, two-phase flow field of aeration tank is simulated by solved the Continuity equation for the mixture, Momentum equation for the mixture, Volume fraction equation for the secondary phases and Relative velocity formula when gas velocity is 10m/s, 20m/s, 30m/s. what figure shows is the contour of velocity magnitude for the mixture phase when gas velocity is 20m/s. Through analysis, the simulation tendency is agreed with actual running of aeration tank. It is feasible to use mixture model to simulate flow field of aeration tank by fluent software. According to the simulation result, the better velocity of liquid or gas (the quantity of inlet air) can be chosen by lower cost, and also the performance of aeration tank can be forecast. It will be helpful for designing and operation.

  12. Preliminary Simulations of the Ullage Dynamics in Microgravity During the Jet Mixing Portion of Tank Pressure Control Experiments

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin; Moder, Jeffrey

    2015-01-01

    The results of CFD simulations of microgravity tank pressure control experiments performed on the Space Shuttle are presented. A 13.7 liter acrylic model tank was used in these experiments. The tank was filled to an 83 percent fill fraction with Freon refrigerant to simulate cryogenic propellants stored in space. In the experiments, a single liquid jet near the bottom of the tank was used for mixing the tank. Simulations at a range of jet Weber numbers were performed. Qualitative comparisons of the liquid and gas interface dynamics observed and recorded in the experiments and those computed are shown and discussed. The simulations were able to correctly capture jet penetration of the ullage, qualitatively reproduce ullage shapes and dynamics, as well as the final equilibrium position of the ullage.

  13. Preliminary Simulations of the Ullage Dynamics in Microgravity during the Jet Mixing Portion of Tank Pressure Control Experiments

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin; Moder, Jeffrey

    2015-01-01

    The results of CFD simulations of microgravity tank pressure control experiments performed on the Space Shuttle are presented. A 13.7 liter acrylic model tank was used in these experiments. The tank was filled to an 83 percent fill fraction with Freon refrigerant to simulate cryogenic propellants stored in space. In the experiments, a single liquid jet near the bottom of the tank was used for mixing the tank. Simulations at a range of jet Weber numbers were performed. Qualitative comparisons of the liquid and gas interface dynamics observed and recorded in the experiments and those computed are shown and discussed. The simulations were able to correctly capture jet penetration of the ullage, qualitatively reproduce ullage shapes and dynamics, as well as the final equilibrium position of the ullage.

  14. SST algorithms in ACSPO reanalysis of AVHRR GAC data from 2002-2013

    NASA Astrophysics Data System (ADS)

    Petrenko, B.; Ignatov, A.; Kihai, Y.; Zhou, X.; Stroup, J.

    2014-05-01

    In response to a request from the NOAA Coral Reef Watch Program, NOAA SST Team initiated reprocessing of 4 km resolution GAC data from AVHRRs flown onboard NOAA and MetOp satellites. The objective is to create a longterm Level 2 Advanced Clear-Sky Processor for Oceans (ACSPO) SST product, consistent with NOAA operations. ACSPO-Reanalysis (RAN) is used as input in the NOAA geo-polar blended Level 4 SST and potentially other Level 4 SST products. In the first stage of reprocessing (reanalysis 1, or RAN1), data from NOAA-15, -16, -17, -18, -19, and Metop-A and -B, from 2002-present have been processed with ACSPO v2.20, and matched up with quality controlled in situ data from in situ Quality Monitor (iQuam) version 1. The ~12 years time series of matchups were used to develop and explore the SST retrieval algorithms, with emphasis on minimizing spatial biases in retrieved SSTs, close reproduction of the magnitudes of true SST variations, and maximizing temporal, spatial and inter-platform stability of retrieval metrics. Two types of SST algorithms were considered: conventional SST regressions, and recently developed incremental regressions. The conventional equations were adopted in the EUMETSAT OSI-SAF formulation, which, according to our previous analyses, provide relatively small regional biases and well-balanced combination of precision and sensitivity, in its class. Incremental regression equations were specifically elaborated to automatically correct for model minus observation biases, always present when RTM simulations are employed. Improved temporal stability was achieved by recalculation of SST coefficients from matchups on a daily basis, with a +/-45 day window around the current date. This presentation describes the candidate SST algorithms considered for the next round of ACSPO reanalysis, RAN2.

  15. Single-Shell Tanks Leak Integrity Elements/ SX Farm Leak Causes and Locations - 12127

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, Crystal; Harlow, Don; Venetz, Theodore

    2012-07-01

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-91F Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1.more » Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal 1-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX- 111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and dry-wells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly

  16. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VENETZ TJ; WASHENFELDER D; JOHNSON J

    2012-01-25

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1.more » Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly

  17. Method for CFD Simulation of Propellant Slosh in a Spherical Tank

    NASA Technical Reports Server (NTRS)

    Benson, David J.; Mason, Paul A.

    2011-01-01

    Propellant sloshing can impart unwanted disturbances to spacecraft, especially if the spacecraft controller is driving the system at the slosh frequency. This paper describes the work performed by the authors in simulating propellant slosh in a spherical tank using computational fluid dynamics (CFD). ANSYS-CFX is the CFD package used to perform the analysis. A 42 in spherical tank is studied with various fill fractions. Results are provided for the forces on the walls and the frequency of the slosh. Snapshots of slosh animation give a qualitative understanding of the propellant slosh. The results show that maximum slosh forces occur at a tank fill fraction of 0.4 and 0.6 due to the amount of mass participating in the slosh and the room available for sloshing to occur. The slosh frequency increases as the tank fill fraction increases.

  18. Tank Waste Retrieval Lessons Learned at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodd, R.A.

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons ofmore » this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST salt-cake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the Tri- Party Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U.S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 ft{sup 3} in 530,000 gallon or larger tanks; 30 ft{sup 3} in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and

  19. Self-Pressurization of a Flightweight, Liquid Hydrogen Tank: Simulation and Comparison with Experiments

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.; Moder, Jeffrey P.

    2016-01-01

    This paper presents ANSYS Fluent simulation results and analysis for self-pressurization of a flightweight, cryogenic, liquid hydrogen tank in 1-g. These results are compared with experimental data, in particular, pressure evolution and temperature measurements at a set of sensors. The simulations can be analyzed to identify and quantify heat flows in the tank. Heat flows change over time and influence the self-pressurization process. The initial rate of self-pressurization is sensitive to the initial temperature profile near the interface. Uncertainty in saturation pressure data and the accuracy of experimental measurements complicate simulation of self-pressurization. Numerical issues encountered, and their resolution, are also explained.

  20. SST Patterns, Atmospheric Variability, and Inferred Sensitivities in the CMIP5 Model Archive

    NASA Astrophysics Data System (ADS)

    Marvel, K.; Pincus, R.; Schmidt, G. A.

    2017-12-01

    An emerging consensus suggests that global mean feedbacks to increasing temperature are not constant in time. If feedbacks become more positive in the future, the equilibrium climate sensitivity (ECS) inferred from recent observed global energy budget constraints is likely to be biased low. Time-varying feedbacks are largely tied to evolving sea-surface temperature patterns. In particular, recent anomalously cool conditions in the tropical Pacific may have triggered feedbacks that are not reproduced in equilibrium simulations where the tropical Pacific and Southern Ocean have had time to warm. Here, we use AMIP and CMIP5 historical simulations to explore the ECS that may be inferred over the recent historical period. We find that in all but one CMIP5 model, the feedbacks triggered by observed SST patterns are significantly less positive than those arising from historical simulations in which SST patterns are allowed to evolve unconstrained. However, there are substantial variations in feedbacks even when the SST pattern is held fixed, suggesting that atmospheric and land variability contribute to uncertainty in the estimates of ECS obtained from recent observations of the global energy budget.

  1. The numerical modeling the sensitivity of coastal wind and ozone concentration to different SST forcing

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Jung; Lee, Hwa Woon; Jeon, Won-Bae; Lee, Soon-Hwan

    2012-01-01

    This study evaluated an atmospheric and air quality model of the spatial variability in low-level coastal winds and ozone concentration, which are affected by sea surface temperature (SST) forcing with different thermal gradients. Several numerical experiments examined the effect of sea surface SST forcing on the coastal atmosphere and air quality. In this study, the RAMS-CAMx model was used to estimate the sensitivity to two different resolutions of SST forcing during the episode day as well as to simulate the low-level coastal winds and ozone concentration over a complex coastal area. The regional model reproduced the qualitative effect of SST forcing and thermal gradients on the coastal flow. The high-resolution SST derived from NGSST-O (New Generation Sea Surface Temperature Open Ocean) forcing to resolve the warm SST appeared to enhance the mean response of low-level winds to coastal regions. These wind variations have important implications for coastal air quality. A higher ozone concentration was forecasted when SST data with a high resolution was used with the appropriate limitation of temperature, regional wind circulation, vertical mixing height and nocturnal boundary layer (NBL) near coastal areas.

  2. Validation and optimization of SST k-ω turbulence model for pollutant dispersion within a building array

    NASA Astrophysics Data System (ADS)

    Yu, Hesheng; Thé, Jesse

    2016-11-01

    The prediction of the dispersion of air pollutants in urban areas is of great importance to public health, homeland security, and environmental protection. Computational Fluid Dynamics (CFD) emerges as an effective tool for pollutant dispersion modelling. This paper reports and quantitatively validates the shear stress transport (SST) k-ω turbulence closure model and its transitional variant for pollutant dispersion under complex urban environment for the first time. Sensitivity analysis is performed to establish recommendation for the proper use of turbulence models in urban settings. The current SST k-ω simulation is validated rigorously by extensive experimental data using hit rate for velocity components, and the "factor of two" of observations (FAC2) and fractional bias (FB) for concentration field. The simulation results show that current SST k-ω model can predict flow field nicely with an overall hit rate of 0.870, and concentration dispersion with FAC2 = 0.721 and FB = 0.045. The flow simulation of the current SST k-ω model is slightly inferior to that of a detached eddy simulation (DES), but better than that of standard k-ε model. However, the current study is the best among these three model approaches, when validated against measurements of pollutant dispersion in the atmosphere. This work aims to provide recommendation for proper use of CFD to predict pollutant dispersion in urban environment.

  3. Review of technologies for the pretreatment of retrieved single-shell tank waste at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, M.A.

    1992-08-01

    The purpose of the study reported here was to identify and evaluate innovative processes that could be used to pretreat mixed waste retrieved from the 149 single-shell tanks (SSTs) on the US Department of Energy's (DOE) Hanford site. The information was collected as part of the Single Shell Tank Waste Treatment project at Pacific Northwest Laboratory (PNL). The project is being conducted for Westinghouse Hanford Company under their SST Disposal Program.

  4. Review of technologies for the pretreatment of retrieved single-shell tank waste at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, M.A.

    1992-08-01

    The purpose of the study reported here was to identify and evaluate innovative processes that could be used to pretreat mixed waste retrieved from the 149 single-shell tanks (SSTs) on the US Department of Energy`s (DOE) Hanford site. The information was collected as part of the Single Shell Tank Waste Treatment project at Pacific Northwest Laboratory (PNL). The project is being conducted for Westinghouse Hanford Company under their SST Disposal Program.

  5. Simulation of Foam Divot Weight on External Tank Utilizing Least Squares and Neural Network Methods

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Coroneos, Rula M.

    2007-01-01

    Simulation of divot weight in the insulating foam, associated with the external tank of the U.S. space shuttle, has been evaluated using least squares and neural network concepts. The simulation required models based on fundamental considerations that can be used to predict under what conditions voids form, the size of the voids, and subsequent divot ejection mechanisms. The quadratic neural networks were found to be satisfactory for the simulation of foam divot weight in various tests associated with the external tank. Both linear least squares method and the nonlinear neural network predicted identical results.

  6. SST cooling along coastal Java and Sumatra during positive Indian Ocean Dipole events

    NASA Astrophysics Data System (ADS)

    Delman, A. S.; McClean, J.; Sprintall, J.; Talley, L. D.; Bryan, F.; Johnson, B. K.; Carton, J.

    2016-02-01

    The evolution of positive Indian Ocean Dipole (pIOD) events is driven in part by anomalous SST cooling near the coasts of Java and Sumatra. However, the mechanisms and timeline of surface temperature changes near these two islands are distinct. Satellite data and mixed layer budgets in a forced ocean model simulation with 0.1° spatial resolution were used to characterize the dominant influences on SST in each region during pIOD events. Along the south coast of Java, where upwelling from southeasterly trade winds happens seasonally in June-September, strengthening/weakening of the trade winds has little effect on the interannual variability of SST. Instead, remotely-forced upwelling Kelvin waves are the primary mechanism for producing anomalous Java SST cooling in the early stages of a pIOD event. Other mechanisms that affect Java SST anomalies include inflows from the interior Indonesian Seas, mesoscale eddies, and air-sea heat fluxes; these influences can hasten the decay of cool Java SST anomalies and therefore may impact the strength and duration of pIOD events. Along the west coast of Sumatra, surface cooling is initially delayed by a deeper thermocline and a salinity-stratified barrier layer. Hence upwelling Kelvin waves do not substantially affect SST near Sumatra during the first 2-3 months of Java SST cooling; however, they do help drive surface cooling near Sumatra once the barrier layer has been sufficiently eroded by waters of decreasing temperature and increasing salinity. Upwelling Kelvin wave activity in the equatorial Indian Ocean starting in April is also shown to be a robust predictor of pIOD events later in the calendar year.

  7. Shaping climate change in the North Atlantic sector: The role of the atmospheric response to local SST changes vs. large-scale changes

    NASA Astrophysics Data System (ADS)

    Hand, Ralf; Keenlyside, Noel; Omrani, Nour-Eddine; Greatbatch, Richard; Bader, Jürgen

    2017-04-01

    Climate change simulations robustly show a warming hole in the sub-polar North Atlantic that results from slowing of the AMOC countering the global warming signal. Here we investigate how the distinct SST spatial structures, which include a sharpening of the Gulf Stream SST gradients, influence climate change in the NA sector in winter. For this we analyse the RCP8.5 scenario simulation of the MPI Earth System Model. Additional sensitivity experiments with the atmospheric model component, ECHAM5, are performed to deconstruct the effect of the local spatial structure of the SST change from those arising from large-scale warming of the ocean, remote SST pattern changes and changed radiative forcings. The MPI model simulation shows a signifcant decrease in precipitation to the south of the GS extension region in the future, despite a strong increase in underlying SST. While directly to the north there is a significant increase in precipitation. These distinct features in the precipitation response over the North Atlantic result from the local SST. Over the Gulf Stream, the differential structure of the precipitation changes reflects the changes of the local SST gradients there. Over the subpolar gyre the increase in precipitation is partly suppressed. In this region the Subpolar Gyre the weakened AMOC causes a SST warming, that is much weaker than the warming other regions of the ocean show at the same latitude. The large-scale response, which includes the overall increase in precipitation over the NA is due to the overall warming, remote SSTs and/or directly connected to the radiative forcing.

  8. A Wall-Distance-Free k-ω SST Turbulence Model

    NASA Astrophysics Data System (ADS)

    Gleize, Vincent; Burnley, Victor

    2001-11-01

    In the calculation of flows around aircraft and aerodynamic bodies, the Shear-Stress Transport (SST) model by Menter has been used extensively due to its good prediction of flows with adverse pressure gradients. One main drawback of this model is the need to calculate the distance from the wall. While this is not a serious drawback for steady state calculations on non-moving grids, this calculation can become very cumbersome and expensive for unsteady simulations, especially when using unstructured grids. In this case, the wall-distance needs to be determined after each iteration. To avoid this problem, a new model is proposed which provides the benefits of the SST correction and avoids the freestream dependency of the solution, while not requiring the wall-distance. The first results for a wide range of test cases show that this model produces very good agreement with experimental data for flows with adverse pressure gradients, separation zones and shock-boundary layer interactions, closely matching the results obtained with the original SST model. This model should be very useful for unsteady calculations, such as store separation, grid adaptation, and other practical flows.

  9. Gas Fuelling System for SST-1Tokamak

    NASA Astrophysics Data System (ADS)

    Dhanani, Kalpesh; Raval, D. C.; Khan, Ziauddin; Semwal, Pratibha; George, Siju; Paravastu, Yuvakiran; Thankey, Prashant; Khan, M. S.; Pradhan, Subrata

    2017-04-01

    SST-1 Tokamak, the first Indian Steady-state Superconducting experimental device is at present under operation in the Institute for Plasma Research. For plasma break down & initiation, piezoelectric valve based gas feed system is implemented as a primary requirement due to its precise control, easy handling, low construction and maintenance cost and its flexibility in the selection of the working gas. Hydrogen gas feeding with piezoelectric valve is used in the SST-1 plasma experiments. The piezoelectric valves used in SST-1 are remotely driven by a PXI based platform and are calibrated before each SST-1 plasma operation with precise control. This paper will present the technical development and the results of the gas fuelling system of SST-1.

  10. In Situ Quantification of [Re(CO)3]+ by Fluorescence Spectroscopy in Simulated Hanford Tank Waste.

    PubMed

    Branch, Shirmir D; French, Amanda D; Lines, Amanda M; Rapko, Brian M; Heineman, William R; Bryan, Samuel A

    2018-02-06

    A pretreatment protocol is presented that allows for the quantitative conversion and subsequent in situ spectroscopic analysis of [Re(CO) 3 ] + species in simulated Hanford tank waste. In this test case, the nonradioactive metal rhenium is substituted for technetium (Tc-99), a weak beta emitter, to demonstrate proof of concept for a method to measure a nonpertechnetate form of technetium in Hanford tank waste. The protocol encompasses adding a simulated waste sample containing the nonemissive [Re(CO) 3 ] + species to a developer solution that enables the rapid, quantitative conversion of the nonemissive species to a luminescent species which can then be detected spectroscopically. The [Re(CO) 3 ] + species concentration in an alkaline, simulated Hanford tank waste supernatant can be quantified by the standard addition method. In a test case, the [Re(CO) 3 ] + species was measured to be at a concentration of 38.9 μM, which was a difference of 2.01% from the actual concentration of 39.7 μM.

  11. Remote SST Forcing and Local Land-Atmosphere Moisture Coupling as Drivers of Amazon Temperature and Carbon Cycle Variability

    NASA Astrophysics Data System (ADS)

    Levine, P. A.; Xu, M.; Chen, Y.; Randerson, J. T.; Hoffman, F. M.

    2017-12-01

    Interannual variability of climatic conditions in the Amazon rainforest is associated with El Niño-Southern Oscillation (ENSO) and ocean-atmosphere interactions in the North Atlantic. Sea surface temperature (SST) anomalies in these remote ocean regions drive teleconnections with Amazonian surface air temperature (T), precipitation (P), and net ecosystem production (NEP). While SST-driven NEP anomalies have been primarily linked to T anomalies, it is unclear how much the T anomalies result directly from SST forcing of atmospheric circulation, and how much result indirectly from decreases in precipitation that, in turn, influence surface energy fluxes. Interannual variability of P associated with SST anomalies lead to variability in soil moisture (SM), which would indirectly affect T via partitioning of turbulent heat fluxes between the land surface and the atmosphere. To separate the direct and indirect influence of the SST signal on T and NEP, we performed a mechanism-denial experiment to decouple SST and SM anomalies. We used the Accelerated Climate Modeling for Energy (ACMEv0.3), with version 5 of the Community Atmosphere Model and version 4.5 of the Community Land Model. We forced the model with observed SSTs from 1982-2016. We found that SST and SM variability both contribute to T and NEP anomalies in the Amazon, with relative contributions depending on lag time and location within the Amazon basin. SST anomalies associated with ENSO drive most of the T variability at shorter lag times, while the ENSO-driven SM anomalies contribute more to T variability at longer lag times. SM variability and the resulting influence on T anomalies are much stronger in the eastern Amazon than in the west. Comparing modeled T with observations demonstrate that SST alone is sufficient for simulating the correct timing of T variability, but SM anomalies are necessary for simulating the correct magnitude of the T variability. Modeled NEP indicated that variability in carbon fluxes

  12. Dynamical diagnostics of the SST annual cycle in the eastern equatorial Pacific: Part II analysis of CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Ying; Jin, Fei-Fei

    2017-12-01

    In this study, a simple coupled framework established in Part I is utilized to investigate inter-model diversity in simulating the equatorial Pacific SST annual cycle (SSTAC). It demonstrates that the simulated amplitude and phase characteristics of SSTAC in models are controlled by two internal dynamical factors (the damping rate and phase speed) and two external forcing factors (the strength of the annual and semi-annual harmonic forcing). These four diagnostic factors are further condensed into a dynamical response factor and a forcing factor to derive theoretical solutions of amplitude and phase of SSTAC. The theoretical solutions are in remarkable agreement with observations and CMIP5 simulations. The great diversity in the simulated SSTACs is related to the spreads in these dynamic and forcing factors. Most models tend to simulate a weak SSTAC, due to their weak damping rate and annual harmonic forcing. The latter is due to bias in the meridional asymmetry of the annual mean state of the tropical Pacific, represented by the weak cross-equatorial winds in the cold tongue region.

  13. Colloid formation in Hanford sediments reacted with simulated tank waste.

    PubMed

    Mashal, Kholoud; Harsh, James B; Flury, Markus; Felmy, Andrew R; Zhao, Hongting

    2004-11-01

    Solutions of high pH, ionic strength, and aluminum concentration have leaked into the subsurface from underground waste storage tanks atthe Hanford Reservation in Washington State. Here, we test the hypothesis that these waste solutions alter and dissolve the native minerals present in the sediments and that colloidal (diameter < 2 microm) feldspathoids form. We reacted Hanford sediments with simulated solutions representative of Hanford waste tanks. The solutions consisted of 1.4 or 2.8 mol/kg NaOH, 0.125 or 0.25 mol/kg NaAlO4, and 3.7 mol/kg NaNO3 and were contacted with the sediments for a period of 25 or 40 days at 50 degrees C. The colloidal size fraction was separated from the sediments and characterized in terms of mineralogy, morphology, chemical composition, and electrophoretic mobility. Upon reaction with tank waste solutions, native minerals released Si and other elements into the solution phase. This Si precipitated with the Al present in the waste solutions to form secondary minerals, identified as the feldspathoids cancrinite and sodalite. The solution phase was modeled with the chemical equilibrium model GMIN for solution speciation and saturation indices with respect to sodalite and cancrinite. The amount of colloidal material in the sediments increased upon reaction with waste solutions. At the natural pH found in Hanford sediments (pH 8) the newly formed minerals are negatively charged, similar to the unreacted colloidal material present in the sediments. The formation of colloidal material in Hanford sediments upon reaction with tank waste solutions is an important aspect to consider in the characterization of Hanford tank leaks and may affect the fate of hazardous radionuclides present in the tank waste.

  14. SLUDGE BATCH 6/TANK 40 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, David

    2010-04-28

    Phase III simulant flowsheet testing was completed using the latest composition estimates for SB6/Tank 40 feed to DWPF. The goals of the testing were to determine reasonable operating conditions and assumptions for the startup of SB6 processing in the DWPF. Testing covered the region from 102-159% of the current DWPF stoichiometric acid equation. Nitrite ion concentration was reduced to 90 mg/kg in the SRAT product of the lowest acid run. The 159% acid run reached 60% of the DWPF Sludge Receipt and Adjustment Tank (SRAT) limit of 0.65 lb H2/hr, and then sporadically exceeded the DWPF Slurry Mix Evaporator (SME)more » limit of 0.223 lb H2/hr. Hydrogen generation rates peaked at 112% of the SME limit, but higher than targeted wt% total solids levels may have been partially responsible for rates seen. A stoichiometric factor of 120% met both objectives. A processing window for SB6 exists from 102% to something close to 159% based on the simulant results. An initial recommendation for SB6 processing is at 115-120% of the current DWPF stoichiometric acid equation. The addition of simulated Actinide Removal Process (ARP) and Modular Caustic Side Solvent Extraction Unit (MCU) streams to the SRAT cycle had no apparent impact on the preferred stoichiometric factor. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 120%, 118.4% with ARP/MCU, and 159% stoichiometry were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 36 hours of boiling in the SRAT. The 120% acid run reached 23% of the SRAT limit and 37% of the SME limit. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 29 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two processing issues, identified during SB6 Phase II flowsheet testing and qualification simulant testing, were monitored during Phase III. Mercury material balance closure was impacted by acid

  15. Alternative treatment for septic tank sludge: co-digestion with municipal solid waste in bioreactor landfill simulators.

    PubMed

    Valencia, R; den Hamer, D; Komboi, J; Lubberding, H J; Gijzen, H J

    2009-02-01

    Co-disposal of septic tank sludge had a positive effect on the municipal solid waste (MSW) stabilisation process in Bioreactor Landfill simulators. Co-disposal experiments were carried out using the Bioreactor Landfill approach aiming to solve the environmental problems caused by indiscriminate and inadequate disposal of MSW and especially of septic tank sludge. The simulator receiving septic tank sludge exhibited a 200 days shorter lag-phase as compared to the 350 days required by the control simulator to start the exponential biogas production. Additionally, the simulator with septic sludge apparently retained more moisture (>60% w/w), which enhanced the overall conversion of organic matter hence increasing the biogas production (0.60 m3 biogas kg(-1)VS(converted)) and removal efficiency of 60% for VS from the simulator. Alkaline pH values (pH>8.5) did not inhibit the biogas production; moreover it contributed to reduce partially the negative effects of NH(4)(+) (>2 g L(-1)) due to NH(3) volatilisation thus reducing the nitrogen content of the residues. Associated risks and hazards with septage disposal were practically eliminated as total coliform and faecal coliform contents were reduced by 99% and 100%, respectively at the end of the experiment. These results indicate that co-disposal has two direct benefits, including the safe and environmentally sound disposal of septic tank sludge and an improvement of the overall performance of the Bioreactor Landfill by increasing moisture retention and supplying a more acclimatised bacterial population.

  16. CFD simulation of mechanical draft tube mixing in anaerobic digester tanks.

    PubMed

    Meroney, Robert N; Colorado, P E

    2009-03-01

    Computational Fluid Dynamics (CFD) was used to simulate the mixing characteristics of four different circular anaerobic digester tanks (diameters of 13.7, 21.3, 30.5, and 33.5m) equipped with single and multiple draft impeller tube mixers. Rates of mixing of step and slug injection of tracers were calculated from which digester volume turnover time (DVTT), mixture diffusion time (MDT), and hydraulic retention time (HRT) could be calculated. Washout characteristics were compared to analytic formulae to estimate any presence of partial mixing, dead volume, short-circuiting, or piston flow. CFD satisfactorily predicted performance of both model and full-scale circular tank configurations.

  17. How much of the interannual variability of East Asian summer rainfall is forced by SST?

    NASA Astrophysics Data System (ADS)

    He, Chao; Wu, Bo; Li, Chunhui; Lin, Ailan; Gu, Dejun; Zheng, Bin; Zhou, Tianjun

    2016-07-01

    It is widely accepted that the interannual variability of East Asian summer rainfall is forced by sea surface temperature (SST), and SST anomalies are widely used as predictors of East Asian summer rainfall. But it is still not very clear what percentage of the interannual rainfall variability is contributed by SST anomalies. In this study, Atmospheric general circulation model simulations forced by observed interannual varying SST are compared with those forced by the fixed annual cycle of SST climatology, and their ratios of interannual variance (IAV) are analyzed. The output of 12 models from the 5th Phase of Coupled Model Intercomparison Project (CMIP5) are adopted, and idealized experiments are done by Community Atmosphere Model version 4 (CAM4). Both the multi-model median of CMIP5 models and CAM4 experiments show that only about 18 % of the IAV of rainfall over East Asian land (EAL) is explained by SST, which is significantly lower than the tropical western Pacific, but comparable to the mid-latitude western Pacific. There is no significant difference between the southern part and the northern part of EAL in the percentages of SST contribution. The remote SST anomalies regulates rainfall over EAL probably by modulating the horizontal water vapor transport rather than the vertical motion, since the horizontal water vapor transport into EAL is strongly modulated by SST but the vertical motion over EAL is not. Previous studies argued about the relative importance of tropical Indian Ocean and tropical Pacific Ocean to East Asian summer rainfall anomalies. Our idealized experiments performed by CAM4 suggest that the contributions from these two ocean basins are comparable to each other, both of which account for approximately 6 % of the total IAV of rainfall over EAL.

  18. Simulation tests of the optimization method of Hopfield and Tank using neural networks

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.

    1988-01-01

    The method proposed by Hopfield and Tank for using the Hopfield neural network with continuous valued neurons to solve the traveling salesman problem is tested by simulation. Several researchers have apparently been unable to successfully repeat the numerical simulation documented by Hopfield and Tank. However, as suggested to the author by Adams, it appears that the reason for those difficulties is that a key parameter value is reported erroneously (by four orders of magnitude) in the original paper. When a reasonable value is used for that parameter, the network performs generally as claimed. Additionally, a new method of using feedback to control the input bias currents to the amplifiers is proposed and successfully tested. This eliminates the need to set the input currents by trial and error.

  19. The effects of SST Gradients on Tropical Convective Systems and Implications for Tropical Cyclogenesis

    NASA Astrophysics Data System (ADS)

    Glazer, R.; Bourassa, M. A.; Hart, R. E.

    2013-12-01

    It has long been known that generally the warmer the sea surface temperature (SST), the more possible tropical cyclone (TC) genesis is, assuming the atmosphere is supportive. The conventional wisdom has been that - apart from what the TC cools through upwelling -- one value of SST represents the state of the ocean surface in the region of the storm's inner circulation. With the advent of the satellite era and fine resolution SST datasets now becoming available, we know that in reality there are gradients of SST across which developing TCs move. The influence of those gradients on tropical convection and TC genesis is largely unknown at this time. Previous studies have shown that SST gradients can significantly impact the overlying ocean surface winds leading to areas of enhanced convergence/divergence and Vorticity (Chelton et al. 2004; O'Neill et al. 2005, 2010). The magnitude of this effect approximately increases as the surface wind increases. Work by Minobe et al. (2008) concluded that a sharp SST Gradient, over the Gulf Stream for instance, could produce enough surface wind convergence to maintain a band of precipitation along the ocean front. An analysis of satellite derived SST data over the Atlantic shows that it is not uncommon for SST gradients of 2 C/200km or more to exist in the immediate environment of a Tropical System. The authors seek to understand whether the conclusions made in previous works can be applied in the case of a developing Tropical System and whether SST Gradients exist in the Tropical Atlantic to a degree that would influence the cyclogenesis process. To address this, the effects of SST gradients on tropical cyclogenesis processes are investigated using model simulations of the Weather Research and Forecasting Model (WRF). WRF is run at cloud permitting scales (2km) for real cases of co-location between a tropical system and an SST gradient exceeding 2 C/200km in the environment of the system. In subsequent runs to this control run

  20. Merging of multi-temporal SST data at South China Sea

    NASA Astrophysics Data System (ADS)

    Ng, H. G.; MatJafri, M. Z.; Abdullah, K.; Lim, H. S.

    2008-10-01

    The sea surface temperature (SST) mapping could be performed with a wide spatial and temporal extent in a reasonable time limit. The space-borne sensor of AVHRR was widely used for the purpose. However, the current SST retrieval techniques for infrared channels were limited only for the cloud-free area, because the electromagnetic waves in the infrared wavelengths could not penetrate the cloud. Therefore, the SST availability was low for the single image. To overcome this problem, we studied to produce the composite of three day's SST map. The diurnal changes of SST data are quite stable through a short period of time if no abrupt natural disaster occurrence. Therefore, the SST data of three consecutive days with nearly coincident daily time were merged in order to create a three day's composite SST data. The composite image could increase the SST availability. In this study, we acquired the level 1b AVHRR (Advanced Very High Resolution Radiometer) images from Malaysia Center of Remote Sensing (MACRES). The images were first preprocessed and the cloud and land areas were masked. We made some modifications on the technique of obtaining the threshold value for cloud masking. The SST was estimated by using the day split MCSST algorithm. The cloud free water pixels availability were computed and compared. The mean of SST for three day's composite data were calculated and a SST map was generated. The cloud free water pixels availability were computed and compared. The SST data availability was increased by merging the SST data.

  1. CFD simulation of liquid-liquid dispersions in a stirred tank bioreactor

    NASA Astrophysics Data System (ADS)

    Gelves, R.

    2013-10-01

    In this paper simulations were developed in order to allow the examinations of drop sizes in liquid-liquid dispersions (oil-water) in a stirred tank bioreactor using CFD simulations (Computational Fluid Dynamics). The effects of turbulence, rotating flow, drop breakage were simulated by using the k-e, MRF (Multiple Reference Frame) and PBM (Population Balance Model), respectively. The numerical results from different operational conditions are compared with experimental data obtained from an endoscope technique and good agreement is achieved. Motivated by these simulated and experimental results CFD simulations are qualified as a very promising tool for predicting hydrodynamics and drop sizes especially useful for liquid-liquid applications which are characterized by the challenging problem of emulsion stability due to undesired drop sizes.

  2. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumedmore » to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely.« less

  3. Investigating the impact of diurnal cycle of SST on the intraseasonal and climate variability

    NASA Astrophysics Data System (ADS)

    Tseng, W. L.; Hsu, H. H.; Chang, C. W. J.; Keenlyside, N. S.; Lan, Y. Y.; Tsuang, B. J.; Tu, C. Y.

    2016-12-01

    The diurnal cycle is a prominent feature of our climate system and the most familiar example of externally forced variability. Despite this it remains poorly simulated in state-of-the-art climate models. A particular problem is the diurnal cycle in sea surface temperature (SST), which is a key variable in air-sea heat flux exchange. In most models the diurnal cycle in SST is not well resolved, due to insufficient vertical resolution in the upper ocean mixed-layer and insufficiently frequent ocean-atmosphere coupling. Here, we coupled a 1-dimensional ocean model (SIT) to two atmospheric general circulation model (ECHAM5 and CAM5). In particular, we focus on improving the representations of the diurnal cycle in SST in a climate model, and investigate the role of the diurnal cycle in climate and intraseasonal variability.

  4. Role of Tropical Atlantic SST Variability as a Modulator of El Nino Teleconnections

    NASA Technical Reports Server (NTRS)

    Ham, Yoo-Geun; Sung, Mi-Kyung; An, Soon-II; Schubert, Siegfried D.; Kug, Jong-Seong

    2014-01-01

    The present study suggests that the off-equatorial North Atlantic (NATL) SST warming plays a significant role in modulating El Niño teleconnection and its impact on the North Atlantic and European regions. The El Niño events accompanied by NATL SST warming exhibit south-north dipole pattern over the Western Europe to Atlantic, while the ENSO teleconnection pattern without NATL warming exhibits a Rossby wave-like pattern confined over the North Pacific and western Atlantic. Especially, the El Niño events with NATL warming show positive (negative) geopotential-height anomalies over the North Atlantic (Western Europe) which resemble the negative phase of the NAO. Consistently, it is shown using a simple statistical model that NATL SSTA in addition to the tropical Pacific SSTA leads to better prediction on regional climate variation over the North Atlantic and European regions. This role of NATL SST on ENSO teleconnection is also validated and discussed in a long term simulation of coupled global circulation model (CGCM).

  5. Aerodynamic Simulation of the MARINTEK Braceless Semisubmersible Wave Tank Tests

    NASA Astrophysics Data System (ADS)

    Stewart, Gordon; Muskulus, Michael

    2016-09-01

    Model scale experiments of floating offshore wind turbines are important for both platform design for the industry as well as numerical model validation for the research community. An important consideration in the wave tank testing of offshore wind turbines are scaling effects, especially the tension between accurate scaling of both hydrodynamic and aerodynamic forces. The recent MARINTEK braceless semisubmersible wave tank experiment utilizes a novel aerodynamic force actuator to decouple the scaling of the aerodynamic forces. This actuator consists of an array of motors that pull on cables to provide aerodynamic forces that are calculated by a blade-element momentum code in real time as the experiment is conducted. This type of system has the advantage of supplying realistically scaled aerodynamic forces that include dynamic forces from platform motion, but does not provide the insights into the accuracy of the aerodynamic models that an actual model-scale rotor could provide. The modeling of this system presents an interesting challenge, as there are two ways to simulate the aerodynamics; either by using the turbulent wind fields as inputs to the aerodynamic model of the design code, or by surpassing the aerodynamic model and using the forces applied to the experimental turbine as direct inputs to the simulation. This paper investigates the best practices of modeling this type of novel aerodynamic actuator using a modified wind turbine simulation tool, and demonstrates that bypassing the dynamic aerodynamics solver of design codes can lead to erroneous results.

  6. In Situ Quantification of [Re(CO) 3] + by Fluorescence Spectroscopy in Simulated Hanford Tank Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branch, Shirmir D.; French, Amanda D.; Lines, Amanda M.

    A pretreatment protocol is presented that allows for the quantitative conversion and subsequent in situ spectroscopic analysis of [Re(CO)3]+ species in simulated Hanford tank waste. The protocol encompasses adding a simulated waste sample containing the non-emissive [Re(CO)3]+ species to a developer solution that enables the rapid, quantitative conversion of the non-emissive species to a luminescent species which can then be detected spectroscopically. The [Re(CO)3]+ species concentration in an alkaline, simulated Hanford tank waste supernatant can be quantified by the standard addition method. In a test case, the [Re(CO)3]+ species was measured to be at a concentration of 38.9 µM, whichmore » was a difference of 2.01% from the actual concentration of 39.7 µM.« less

  7. Impact of global SST gradients on the Mediterranean runoff changes across the Plio-Pleistocene transition

    NASA Astrophysics Data System (ADS)

    Colleoni, Florence; Cherchi, Annalisa; Masina, Simona; Brierley, Christopher M.

    2015-06-01

    This work explores the impact of the development of global meridional and zonal sea surface temperature (SST) gradients on the Mediterranean runoff variability during the Plio-Pleistocene transition, about 3 Ma. Results show that total annual mean Pliocene Mediterranean runoff is about 40% larger than during the preindustrial period due to more increased extratropical specific humidity. As a consequence of a weakened and extended Hadley cell, the Pliocene northwest Africa hydrological network produces a discharge 30 times larger than today. Our results support the conclusion that during the Pliocene, the Mediterranean water deficit was reduced relative to today due to a larger river discharge. By means of a stand-alone atmospheric general circulation model, we simulate the separate impact of extratropical and equatorial SST cooling on the Mediterranean runoff. While cooling the equatorial SST does not imply significant changes to the Pliocene Mediterranean hydrological budget, the extratropical SST cooling increases the water deficit due to a decrease in precipitation and runoff. Consequently, river discharge from this area reduces to preindustrial levels. The main teleconnections acting upon the Mediterranean area today, i.e., the North Atlantic Oscillation during winter and the "monsoon-desert" mechanism during summer already have a large influence on the climate of our Pliocene simulations. Finally, our results also suggest that in a climate state significantly warmer than today, changes of the Hadley circulation could potentially lead to increased water resources in northwest Africa.

  8. Simulated Van Allen Belts Generated by Plasma Thruster in Tank 5

    NASA Image and Video Library

    1966-09-21

    The model of the Earth housed inside Vacuum Tank 5 contained a coil which produced a magnetic field simulating that of the Earth. It was bombarded with a stream of ionized particles simulating the solar wind which impinges on the Earth's magnetic field. The bands or belts of luminous plasma seen in this image were suggestive of the Van Allen belts found around the Earth. Scientists at Lewis probed the plasma around the model and studied scaling laws in an attempt to find an explanation for the actual formation of the Van Allen belt.

  9. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  10. Numerical simulation of jet mixing concepts in Tank 241-SY-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trent, D.S.; Michener, T.E.

    The episodic gas release events (GRES) that have characterized the behavior of Tank 241-SY-101 for the past several years are thought to result from gases generated by the waste material in it that become trapped in the layer of settled solids at the bottom of the tank. Several concepts for mitigating the GREs have been proposed. One concept involves mobilizing the solid particles with mixing jets. The rationale behind this idea is to prevent formation of a consolidated layer of settled solids at the bottom of the tank, thus inhibiting the accumulation of gas bubbles in this layer. Numerical simulationsmore » were conducted using the TEMPEST computer code to assess the viability and effectiveness of the proposed jet discharge concepts and operating parameters. Before these parametric studies were commenced, a series of turbulent jet studies were conducted that established the adequacy of the TEMPEST code for this application. Configurations studied for Tank 241-SY-101 include centrally located downward discharging jets, draft tubes, and horizontal jets that are either stationary or rotating. Parameter studies included varying the jet discharge velocity, jet diameter, discharge elevation, and material properties. A total of 18 simulations were conducted and are reported in this document. The effect of gas bubbles on the mixing dynamics was not included within the scope of this study.« less

  11. Interbasin Differences in the Relationship between SST and Tropical Cyclone Intensification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, Gregory R.; Balaguru, Karthik; Hagos, Samson

    Sea surface temperature (SST) is one of the most important parameters for tropical cyclone (TC) intensification. Here it is shown that the impact of SST on TC intensification varies considerably from basin to basin, with SST explaining less than 3% of the variance in TC intensification rates in the Atlantic, 10% in the western North Pacific, and 17% in the eastern Pacific. Two main factors are shown to be responsible for these inter-basin differences. First, variability of SST along TCs’ tracks is considerably lower in the Atlantic. This is due to smaller horizontal SST gradients in the Atlantic compared tomore » the eastern Pacific and stronger damping of pre-storm SST’s contribution to TC intensification by the storm-induced cold SST wake in the Atlantic. The damping occurs because SST tends to vary in phase with TC- induced SST cooling: in the Gulf of Mexico and northwestern basin where SSTs are highest, TCs’ translation speeds are lowest and therefore their cold wakes are strongest. In addition to this SST effect, a second factor is that SST tends to vary out of phase with vertical wind shear and outflow temperature in the western Pacific, with high SST associated with weak wind shear and a cold upper troposphere. This strengthens the relationship between SST and TC intensification more in the western Pacific than in the eastern Pacific or Atlantic. Combined, these factors explain why pre-storm SST is such a poor predictor of TC intensification in the Atlantic compared to the eastern and western North Pacific.« less

  12. Tank 241-AZ-101 criticality assessment resulting from pump jet mixing: Sludge mixing simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Recknagle, K.

    Tank 241-AZ-101 (AZ-101) is one of 28 double-shell tanks located in the AZ farm in the Hanford Site`s 200 East Area. The tank contains a significant quantity of fissile materials, including an estimated 9.782 kg of plutonium. Before beginning jet pump mixing for mitigative purposes, the operations must be evaluated to demonstrate that they will be subcritical under both normal and credible abnormal conditions. The main objective of this study was to address a concern about whether two 300-hp pumps with four rotating 18.3-m/s (60-ft/s) jets can concentrate plutonium in their pump housings during mixer pump operation and cause amore » criticality. The three-dimensional simulation was performed with the time-varying TEMPEST code to determine how much the pump jet mixing of Tank AZ-101 will concentrate plutonium in the pump housing. The AZ-101 model predicted that the total amount of plutonium within the pump housing peaks at 75 g at 10 simulation seconds and decreases to less than 10 g at four minutes. The plutonium concentration in the entire pump housing peaks at 0.60 g/L at 10 simulation seconds and is reduced to below 0.1 g/L after four minutes. Since the minimum critical concentration of plutonium is 2.6 g/L, and the minimum critical plutonium mass under idealized plutonium-water conditions is 520 g, these predicted maximums in the pump housing are much lower than the minimum plutonium conditions needed to reach a criticality level. The initial plutonium maximum of 1.88 g/L still results in safety factor of 4.3 in the pump housing during the pump jet mixing operation.« less

  13. North American Tropical Cyclone Landfall and SST: A Statistical Model Study

    NASA Technical Reports Server (NTRS)

    Hall, Timothy; Yonekura, Emmi

    2013-01-01

    A statistical-stochastic model of the complete life cycle of North Atlantic (NA) tropical cyclones (TCs) is used to examine the relationship between climate and landfall rates along the North American Atlantic and Gulf Coasts. The model draws on archived data of TCs throughout the North Atlantic to estimate landfall rates at high geographic resolution as a function of the ENSO state and one of two different measures of sea surface temperature (SST): 1) SST averaged over the NA subtropics and the hurricane season and 2) this SST relative to the seasonal global subtropical mean SST (termed relSST). Here, the authors focus on SST by holding ENSO to a neutral state. Jackknife uncertainty tests are employed to test the significance of SST and relSST landfall relationships. There are more TC and major hurricane landfalls overall in warm years than cold, using either SST or relSST, primarily due to a basinwide increase in the number of storms. The signal along the coast, however, is complex. Some regions have large and significant sensitivity (e.g., an approximate doubling of annual major hurricane landfall probability on Texas from -2 to +2 standard deviations in relSST), while other regions have no significant sensitivity (e.g., the U.S. mid-Atlantic and Northeast coasts). This geographic structure is due to both shifts in the regions of primary TC genesis and shifts in TC propagation.

  14. CFD simulation of vertical linear motion mixing in anaerobic digester tanks.

    PubMed

    Meroney, Robert N; Sheker, Robert E

    2014-09-01

    Computational fluid dynamics (CFD) was used to simulate the mixing characteristics of a small circular anaerobic digester tank (diameter 6 m) equipped sequentially with 13 different plunger type vertical linear motion mixers and two different type internal draft-tube mixers. Rates of mixing of step injection of tracers were calculated from which active volume (AV) and hydraulic retention time (HRT) could be calculated. Washout characteristics were compared to analytic formulae to estimate any presence of partial mixing, dead volume, short-circuiting, or piston flow. Active volumes were also estimated based on tank regions that exceeded minimum velocity criteria. The mixers were ranked based on an ad hoc criteria related to the ratio of AV to unit power (UP) or AV/UP. The best plunger mixers were found to behave about the same as the conventional draft-tube mixers of similar UP.

  15. Projected SST trends across the Caribbean Sea based on PRECIS downscaling of ECHAM4, under the SRES A2 and B2 scenarios

    NASA Astrophysics Data System (ADS)

    Nurse, Leonard A.; Charlery, John L.

    2016-01-01

    The Caribbean Sea and adjacent land areas are highly sensitive to the projected impacts of global climate change. The countries bordering the Caribbean Sea depend heavily on coastal and marine assets as a major source of livelihood support. Rising sea surface temperatures (SSTs) are known to be associated with coral bleaching, ocean acidification, and other phenomena that threaten livelihoods in the region. The paucity of SST systematic observations in both the Caribbean Sea and adjoining Western Atlantic waters is a limiting factor in the projection of future climate change impacts on the region's marine resources. Remote sensing of SST by satellites began only within the last three decades and although the data collected so far might be insufficient to provide conclusive definitions of long-term SST variations in the Caribbean waters, these data along with the output from climate model simulations provide a useful basis for gaining further insights into plausible SST futures under IPCC SRES scenarios. In this paper, we examine the recent SST records from the NESDIS AVHRR satellite data and NOAA Optimum Interpolation (OI) sea surface temperature V2 and provide a comparative analysis of projected SST changes for the Caribbean Sea up to the end of the twenty-first century, under the SRES A2 and B2 scenarios' simulations of the sea surface skin temperatures (SSsT) using the Hadley Centre's regional model, PRECIS. The implications of these projected SST changes for bleaching of coral reefs, one of the region's most valuable marine resource, and for rainfall are also discussed.

  16. Interdecadal variability in pan-Pacific and global SST, revisited

    NASA Astrophysics Data System (ADS)

    Tung, Ka-Kit; Chen, Xianyao; Zhou, Jiansong; Li, King-Fai

    2018-05-01

    Interest in the "Interdecadal Pacific Oscillation (IPO)" in the global SST has surged recently on suggestions that the Pacific may be the source of prominent interdecadal variations observed in the global-mean surface temperature possibly through the mechanism of low-frequency modulation of the interannual El Nino-Southern Oscillation (ENSO) phenomenon. IPO was defined by performing empirical orthogonal function (EOF) analysis of low-pass filtered SST. The low-pass filtering creates its unique set of mathematical problems—in particular, mode mixing—and has led to some questions, many unanswered. To understand what these EOFs are, we express them first in terms of the recently developed pairwise rotated EOFs of the unfiltered SST, which can largely separate the high and low frequency bands without resorting to filtering. As reported elsewhere, the leading rotated dynamical modes (after the global warming trend) of the unfiltered global SST are: ENSO, Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). IPO is not among them. The leading principal component (PC) of the low-pass filtered global SST is usually defined as IPO and it is seen to comprise of ENSO, PDO and AMO in various proportions depending on the filter threshold. With decadal filtering, the contribution of the interannual ENSO is understandably negligible. The leading dynamical mode of the filtered global SST is mostly AMO, and therefore should not have been called the Interdecadal "Pacific" Oscillation. The leading dynamical mode of the filtered pan-Pacific SST is mostly PDO. This and other low-frequency variability that have the action center in the Pacific, from either the pan-Pacific or global SST, have near zero global mean.

  17. Application of numerical simulation on optimum design of two-dimensional sedimentation tanks in the wastewater treatment plant.

    PubMed

    Zeng, Guang-Ming; Zhang, Shuo-Fu; Qin, Xiao-Sheng; Huang, Guo-He; Li, Jian-Bing

    2003-05-01

    The paper establishes the relationship between the settling efficiency and the sizes of the sedimentation tank through the process of numerical simulation, which is taken as one of the constraints to set up a simple optimum designing model of sedimentation tank. The feasibility and advantages of this model based on numerical calculation are verified through the application of practical case.

  18. Application of RANS Simulations for Contact Time Predictions in Turbulent Reactor Tanks for Water Purification Process

    NASA Astrophysics Data System (ADS)

    Nickles, Cassandra; Goodman, Matthew; Saez, Jose; Issakhanian, Emin

    2016-11-01

    California's current drought has renewed public interest in recycled water from Water Reclamation Plants (WRPs). It is critical that the recycled water meets public health standards. This project consists of simulating the transport of an instantaneous conservative tracer through the WRP chlorine contact tanks. Local recycled water regulations stipulate a minimum 90-minute modal contact time during disinfection at peak dry weather design flow. In-situ testing is extremely difficult given flowrate dependence on real world sewage line supply and recycled water demand. Given as-built drawings and operation parameters, the chlorine contact tanks are modeled to simulate extreme situations, which may not meet regulatory standards. The turbulent flow solutions are used as the basis to model the transport of a turbulently diffusing conservative tracer added instantaneously to the inlet of the reactors. This tracer simulates the transport through advection and dispersion of chlorine in the WRPs. Previous work validated the models against experimental data. The current work shows the predictive value of the simulations.

  19. Equilibrium Atmospheric Response to North Atlantic SST Anomalies.

    NASA Astrophysics Data System (ADS)

    Kushnir, Yochanan; Held, Isaac M.

    1996-06-01

    The equilibrium general circulation model (GCM) response to sea surface temperature (SST) anomalies in the western North Atlantic region is studied. A coarse resolution GCM, with realistic lower boundary conditions including topography and climatological SST distribution, is integrated in perpetual January and perpetual October modes, distinguished from one another by the strength of the midlatitude westerlies. An SST anomaly with a maximum of 4°C is added to the climatological SST distribution of the model with both positive and negative polarity. These anomaly runs are compared to one another, and to a control integration, to determine the atmospheric response. In all cases warming (cooling) of the midlatitude ocean surface yields a warming (cooling) of the atmosphere over and to the east of the SST anomaly center. The atmospheric temperature change is largest near the surface and decreases upward. Consistent with this simple thermal response, the geopotential height field displays a baroclinic response with a shallow anomalous low somewhat downstream from the warm SST anomaly. The equivalent barotropic, downstream response is weak and not robust. To help interpret the results, the realistic GCM integrations are compared with parallel idealized model runs. The idealized model has full physics and a similar horizontal and vertical resolution, but an all-ocean surface with a single, permanent zonal asymmetry. The idealized and realistic versions of the GCM display compatible response patterns that are qualitatively consistent with stationary, linear, quasigeostrophic theory. However, the idealized model response is stronger and more coherent. The differences between the two model response patterns can be reconciled based on the size of the anomaly, the model treatment of cloud-radiation interaction, and the static stability of the model atmosphere in the vicinity of the SST anomaly. Model results are contrasted with other GCM studies and observations.

  20. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Kenneth L.

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinidesmore » under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.« less

  1. Dynamic one-dimensional modeling of secondary settling tanks and design impacts of sizing decisions.

    PubMed

    Li, Ben; Stenstrom, Michael K

    2014-03-01

    As one of the most significant components in the activated sludge process (ASP), secondary settling tanks (SSTs) can be investigated with mathematical models to optimize design and operation. This paper takes a new look at the one-dimensional (1-D) SST model by analyzing and considering the impacts of numerical problems, especially the process robustness. An improved SST model with Yee-Roe-Davis technique as the PDE solver is proposed and compared with the widely used Takács model to show its improvement in numerical solution quality. The improved and Takács models are coupled with a bioreactor model to reevaluate ASP design basis and several popular control strategies for economic plausibility, contaminant removal efficiency and system robustness. The time-to-failure due to rising sludge blanket during overloading, as a key robustness indicator, is analyzed to demonstrate the differences caused by numerical issues in SST models. The calculated results indicate that the Takács model significantly underestimates time to failure, thus leading to a conservative design. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The Dependence of Cloud-SST Feedback on Circulation Regime and Timescale

    NASA Astrophysics Data System (ADS)

    Middlemas, E.; Clement, A. C.; Medeiros, B.

    2017-12-01

    Studies suggest cloud radiative feedback amplifies internal variability of Pacific sea surface temperature (SST) on interannual-and-longer timescales, though only a few modeling studies have tested the quantitative importance of this feedback (Bellomo et al. 2014b, Brown et al. 2016, Radel et al. 2016 Burgman et al. 2017). We prescribe clouds from a previous control run in the radiation module in Community Atmospheric Model (CAM5-slab), a method called "cloud-locking". By comparing this run to a control run, in which cloud radiative forcing can feedback on the climate system, we isolate the effect of cloud radiative forcing on SST variability. Cloud-locking prevents clouds from radiatively interacting with atmospheric circulation, water vapor, and SST, while maintaining a similar mean state to the control. On all timescales, cloud radiative forcing's influence on SST variance is modulated by the circulation regime. Cloud radiative forcing amplifies SST variance in subsiding regimes and dampens SST variance in convecting regimes. In this particular model, a tug of war between latent heat flux and cloud radiative forcing determines the variance of SST, and the winner depends on the timescale. On decadal-and-longer timescales, cloud radiative forcing plays a relatively larger role than on interannual-and-shorter timescales, while latent heat flux plays a smaller role. On longer timescales, the absence of cloud radiative feedback changes SST variance in a zonally asymmetric pattern in the Pacific Ocean that resembles an IPO-like pattern. We also present an analysis of cloud feedback's role on Pacific SST variability among preindustrial control CMIP5 models to test the model robustness of our results. Our results suggest that circulation plays a crucial role in cloud-SST feedbacks across the globe and cloud radiative feedbacks cannot be ignored when studying SST variability on decadal-and-longer timescales.

  3. Quantifying uncertainty in coral Sr/Ca-based SST estimates from Orbicella faveolata: A basis for multi-colony SST reconstructions

    NASA Astrophysics Data System (ADS)

    Richey, J. N.; Flannery, J. A.; Toth, L. T.; Kuffner, I. B.; Poore, R. Z.

    2017-12-01

    The Sr/Ca in massive corals can be used as a proxy for sea surface temperature (SST) in shallow tropical to sub-tropical regions; however, the relationship between Sr/Ca and SST varies throughout the ocean, between different species of coral, and often between different colonies of the same species. We aimed to quantify the uncertainty associated with the Sr/Ca-SST proxy due to sample handling (e.g., micro-drilling or analytical error), vital effects (e.g., among-colony differences in coral growth), and local-scale variability in microhabitat. We examine the intra- and inter-colony reproducibility of Sr/Ca records extracted from five modern Orbicella faveolata colonies growing in the Dry Tortugas, Florida, USA. The average intra-colony absolute difference (AD) in Sr/Ca of the five colonies during an overlapping interval (1997-2008) was 0.055 ± 0.044 mmol mol-1 (0.96 ºC) and the average inter-colony Sr/Ca AD was 0.039 ± 0.01 mmol mol-1 (0.51 ºC). All available Sr/Ca-SST data pairs from 1997-2008 were combined and regressed against the HadISST1 gridded SST data set (24 ºN and 82 ºW) to produce a calibration equation that could be applied to O. faveolata specimens from throughout the Gulf of Mexico/Caribbean/Atlantic region after accounting for the potential uncertainties in Sr/Ca-derived SSTs. We quantified a combined error term for O. faveolata using the root-sum-square (RMS) of the analytical, intra-, and inter-colony uncertainties and suggest that an overall uncertainty of 0.046 mmol mol-1 (0.81 ºC, 1σ), should be used to interpret Sr/Ca records from O. faveolata specimens of unknown age or origin to reconstruct SST. We also explored how uncertainty is affected by the number of corals used in a reconstruction by iteratively calculating the RMS error for composite coral time-series using two, three, four, and five overlapping coral colonies. Our results indicate that maximum RMS error at the 95% confidence interval on mean annual SST estimates is 1.4 º

  4. SINDA/FLUINT Stratified Tank Modeling for Cryrogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara

    2014-01-01

    A general purpose SINDA/FLUINT (S/F) stratified tank model was created to simulate self-pressurization and axial jet TVS; Stratified layers in the vapor and liquid are modeled using S/F lumps.; The stratified tank model was constructed to permit incorporating the following additional features:, Multiple or singular lumps in the liquid and vapor regions of the tank, Real gases (also mixtures) and compressible liquids, Venting, pressurizing, and draining, Condensation and evaporation/boiling, Wall heat transfer, Elliptical, cylindrical, and spherical tank geometries; Extensive user logic is used to allow detailed tailoring - Don't have to rebuilt everything from scratch!!; Most code input for a specific case is done through the Registers Data Block:, Lump volumes are determined through user input:; Geometric tank dimensions (height, width, etc); Liquid level could be input as either a volume percentage of fill level or actual liquid level height

  5. Impact of High Resolution SST Data on Regional Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Case, Jonathon; LaFontaine, Frank; Vazquez, Jorge; Mattocks, Craig

    2010-01-01

    Past studies have shown that the use of coarse resolution SST products such as from the real-time global (RTG) SST analysis[1] or other coarse resolution once-a-day products do not properly portray the diurnal variability of fluxes of heat and moisture from the ocean that drive the formation of low level clouds and precipitation over the ocean. For example, the use of high resolution MODIS SST composite [2] to initialize the Advanced Research Weather Research and Forecast (WRF) (ARW) [3] has been shown to improve the prediction of sensible weather parameters in coastal regions [4][5}. In an extend study, [6] compared the MODIS SST composite product to the RTG SST analysis and evaluated forecast differences for a 6 month period from March through August 2007 over the Florida coastal regions. In a comparison to buoy data, they found that that the MODIS SST composites reduced the bias and standard deviation over that of the RTG data. These improvements led to significant changes in the initial and forecasted heat fluxes and the resulting surface temperature fields, wind patterns, and cloud distributions. They also showed that the MODIS composite SST product, produced for the Terra and Aqua satellite overpass times, captured a component of the diurnal cycle in SSTs not represented in the RTG or other one-a-day SST analyses. Failure to properly incorporate these effects in the WRF initialization cycle led to temperature biases in the resulting short term forecasts. The forecast impact was limited in some situations however, due to composite product inaccuracies brought about by data latency during periods of long-term cloud cover. This paper focuses on the forecast impact of an enhanced MODIS/AMSR-E composite SST product designed to reduce inaccuracies due data latency in the MODIS only composite product.

  6. Apollo oxygen tank stratification analysis, volume 2

    NASA Technical Reports Server (NTRS)

    Barton, J. E.; Patterson, H. W.

    1972-01-01

    An analysis of flight performance of the Apollo 15 cryogenic oxygen tanks was conducted with the variable grid stratification math model developed earlier in the program. Flight conditions investigated were the CMP-EVA and one passive thermal control period which exhibited heater temperature characteristics not previously observed. Heater temperatures for these periods were simulated with the math model using flight acceleration data. Simulation results (heater temperature and tank pressure) compared favorably with the Apollo 15 flight data, and it was concluded that tank performance was nominal. Math model modifications were also made to improve the simulation accuracy. The modifications included the addition of the effects of the tank wall thermal mass and an improved system flow distribution model. The modifications improved the accuracy of simulated pressure response based on comparisons with flight data.

  7. Oil Droplet Size Distribution and Optical Properties During Wave Tank Simulated Oil Spills

    NASA Astrophysics Data System (ADS)

    Conmy, R. N.; Venosa, A.; Courtenay, S.; King, T.; Robinson, B.; Ryan, S.

    2013-12-01

    Fate and transport of spilled petroleum oils in aquatic environments is highly dependent upon oil droplet behavior which is a function of chemical composition, dispersibility (natural and chemically-enhanced) and droplet size distribution (DSD) of the oil. DSD is influenced by mixing energy, temperature, salinity, pressure, presence of dissolved and particulate materials, flow rate of release, and application of dispersants. To better understand DSD and droplet behavior under varying physical conditions, flask-scale experiments are often insufficient. Rather, wave tank simulations allow for scaling to field conditions. Presented here are experiment results from the Bedford Institute of Oceanography wave tank facility, where chemically-dispersed (Corexit 9500; DOR = 1:20) Louisiana Sweet crude, IFO-120 and ANS crude oil were exposed to mixing energies to achieve dispersant effectiveness observed in the field. Oil plumes were simulated, both surface and subsea releases with varying water temperature and flow rate. Fluorometers (Chelsea Technologies Group AQUATracka, Turner Designs Cyclops, WET Labs Inc ECO) and particle size analyzers (Sequoia LISST) were used to track the dispersed plumes in the tank and characterize oil droplets. Sensors were validated with known oil volumes (down to 300 ppb) and measured Total Petroleum Hydrocarbons (TPH) and Benzene-Toluene-Ethylbenzene-Xylene (BTEX) values. This work has large implications for tracking surface and deep sea oil plumes with fluorescence and particle size analyzers, improved weathering and biodegradation estimates, and understanding the fate and transport of spill oil.

  8. The Relationships between Tropical Pacific and Atlantic SST and Northeast Brazil Monthly Precipitation.

    NASA Astrophysics Data System (ADS)

    Bertacchi Uvo, Cintia; Repelli, Carlos A.; Zebiak, Stephen E.; Kushnir, Yochanan

    1998-04-01

    The monthly patterns of northeast Brazil (NEB) precipitation are analyzed in relation to sea surface temperature (SST) in the tropical Pacific and Atlantic Oceans, using singular value decomposition. It is found that the relationships between precipitation and SST in both basins vary considerably throughout the rainy season (February-May). In January, equatorial Pacific SST is weakly correlated with precipitation in small areas of southern NEB, but Atlantic SST shows no significant correlation with regional precipitation. In February, Pacific SST is not well related to precipitation, but south equatorial Atlantic SST is positively correlated with precipitation over the northern Nordeste, the latter most likely reflecting an anomalously early (or late) southward migration of the ITCZ precipitation zone. During March, equatorial Pacific SST is negatively correlated with Nordeste precipitation, but no consistent relationship between precipitation and Atlantic SST is found. Atlantic SST-precipitation correlations for April and May are the strongest found among all months or either ocean. Precipitation in the Nordeste is positively correlated with SST in the south tropical Atlantic and negatively correlated with SST in the north tropical Atlantic. These relationships are strong enough to determine the structure of the seasonal mean SST-precipitation correlations, even though the corresponding patterns for the earlier months of the season are quite different. Pacific SST-precipitation correlations for April and May are similar to those for March. Extreme wet (dry) years for the Nordeste occur when both Pacific and Atlantic SST patterns for April and May occur simultaneously. A separate analysis reinforces previous findings in showing that SST in the tropical Pacific and the northern tropical Atlantic are positively correlated and that tropical Pacific-south Atlantic correlations are negligible.Time-lagged analyses show the potential for forecasting either seasonal mean

  9. TANK FARM CLOSURE - A NEW TWIST ON REGULATORY STRATEGIES FOR CLOSURE OF WASTE TANK RESIDUALS FOLLOWING NUREG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LEHMAN LL

    2008-01-23

    Waste from a number of single-shell tanks (SST) at the U.S. Department of Energy's (DOE) Hanford Site has been retrieved by CH2M HILL Hanford Group to fulfill the requirements of the 'Hanford Federal Facility Agreement and Consent Order (HFFACO) [1]. Laboratory analyses of the Hanford tank residual wastes have provided concentration data which will be used to determine waste classification and disposal options for tank residuals. The closure of tank farm facilities remains one of the most challenging activities faced by the DOE. This is due in part to the complicated regulatory structures that have developed. These regulatory structures aremore » different at each of the DOE sites, making it difficult to apply lessons learned from one site to the next. During the past two years with the passage of the Section 3116 of the 'Ronald Reagan Defense Authorization Act of 2005' (NDAA) [2] some standardization has emerged for Savannah River Site and the Idaho National Laboratory tank residuals. Recently, with the issuance of 'NRC Staff Guidance for Activities Related to US. Department of Energy Waste Determinations' (NUREG-1854) [3] more explicit options may be considered for Hanford tank residuals than are presently available under DOE Orders. NUREG-1854, issued in August 2007, contains several key pieces of information that if utilized by the DOE in the tank closure process, could simplify waste classification and streamline the NRC review process by providing information to the NRC in their preferred format. Other provisions of this NUREG allow different methods to be applied in determining when waste retrieval is complete by incorporating actual project costs and health risks into the calculation of 'technically and economically practical'. Additionally, the NUREG requires a strong understanding of the uncertainties of the analyses, which given the desire of some NRC/DOE staff may increase the likelihood of using probabilistic approaches to uncertainty analysis. The

  10. Remote sensing of SST in the coastal ocean and inland seas

    NASA Astrophysics Data System (ADS)

    Kostianoy, Andrey

    Sea Surface Temperature (SST) is the main oceanographic parameter widely used in oceanogra-phy that can be easily obtained from satellite measurements. Oceanic infrared remote sensing, based on the measurement of the thermal radiance emitted by the ocean, allows retrieving the SST corresponding to the temperature of the uppermost thin layer of the ocean. Theoretically the infrared signal only comes from the upper few microns "skin layer", therefore the thermal signatures cannot represent the dynamics of the mixed layer. But wind mixing during the daytime and nighttime convection mix the upper layer, so that SST usually is representative of that of the mixed layer. This is why nighttime passes of satellites are preferred for SST analysis. Since 1978 the Advanced Very High Resolution Radiometer (AVHRR), onboard the meteorolog-ical satellites of the NOAA series are widely used to derive SST maps. The temporal coverage is ensured by two-three NOAA satellites which provide 4-6 images/day over the globe with a swath of about 2800 km, the spatial resolution by a pixel of about 1.1 km, and thermal resolu-tion of about 0.1 deg. C. The typical data processing includes the retrieval of the SST from the combination of NN 3, 4, and 5 infrared channels of AVHRR, the geographical correction and localisation, with a generation of cloud and land masks. SST data can be then composed into daily to monthly (as well as season to yearly) maps/products. Moderate Resolution Imaging Spectroradiometer (MODIS)-Terra (since 2000) and -Aqua (since 2002), among the others, are the most known satellite instruments which increase the flow of the remote sensing SST data. In the regions with almost permanent cloudy conditions passive microwave radiometers are of vital importance for SST measurements, but they have significantly low spatial (25 km) and thermal (0.8 deg. C) resolution. Today, SST images/data are routinely acquired by satellite receiving stations worldwide including research vessels

  11. Annual Progress Report on the Development of Waste Tank Leak Monitoring and Detection and Mitigation Activities in Support of M-45-08

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DEFIGH PRICE, C.

    2000-09-25

    Milestone M-45-09E of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) [TPA 1996] requires submittal of an annual progress report on the development of waste tank leak detection, monitoring, and mitigation (LDMM) activities associated with the retrieval of waste from single-shell tanks (SSTs). This report details progress for fiscal year 2000, building on the current LDMM strategy and including discussion of technologies, applications, cost, schedule, and technical data. The report also includes discussion of demonstrations conducted and recommendations for additional testing. Tri-Party Agreement Milestones M-45-08A and M-45-08B required design and demonstration of LDMM systems for initialmore » retrieval of SST waste. These specific milestones have recently been deleted as part of the M-45-00A change package. Future LDMM development work has been incorporated into specific technology demonstration milestones and SST waste retrieval milestones in the M-45-03 and M-45-05 milestone series.« less

  12. Assimilating Satellite SST Observations into a Diurnal Cycle Model

    NASA Astrophysics Data System (ADS)

    Pimentel, S.; Haines, K.; Nichols, N. K.

    2006-12-01

    The wealth of satellite sea surface temperature (SST) data now available opens the possibility of large improvements in SST estimation. However the use of such data is not straight forward; a major difficulty in assimilating satellite observations is that they represent a near surface temperature, whereas in ocean models the top level represents the temperature at a greater depth. During the day, under favourable conditions of clear skies and calm winds, the near surface temperature is often seen to have a diurnal cycle that is picked up in satellite observations. Current ocean models do not have the vertical or temporal resolution to adequately represent this daytime warming. The usual approach is to discard daytime observations as they are considered diurnally `corrupted'. A new assimilation technique is developed here that assimilates observations into a diurnal cycle model. The diurnal cycle of SSTs are modelled using a 1-D mixed layer model with fine near surface resolution and 6 hourly forcing from NWP analyses. The accuracy of the SST estimates are hampered by uncertainties in the forcing data. The extent of diurnal SST warming at a particular location and time is predominately governed by a non-linear response to cloud cover and sea surface wind speeds which greatly affect the air-sea fluxes. The method proposed here combines infrared and microwave SST satellite observations in order to derive corrections to the cloud cover and wind speed values over the day. By adjusting the forcing, SST estimation and air-sea fluxes should be improved and are at least more consistent with each other. This new technique for assimilating SST data can be considered a tool for producing more accurate diurnal warming estimates.

  13. Identification of the receptors for somatostatin (SST) and cortistatin (CST) in chickens and investigation of the roles of cSST28, cSST14, and cCST14 in inhibiting cGHRH1-27NH2-induced growth hormone secretion in cultured chicken pituitary cells.

    PubMed

    Meng, Fengyan; Huang, Guian; Gao, Shunyu; Li, Juan; Yan, Zhenxin; Wang, Yajun

    2014-03-25

    Somatostatin receptors (SSTRs) are proposed to mediate the actions of somatostatin (SST) and its related peptide, cortistatin (CST), in vertebrates. However, the identity, functionality, and tissue expression of these receptors remain largely unknown in most non-mammalian vertebrates including birds. In this study, five SSTRs (named cSSTR1, cSSTR2, cSSTR3, cSSTR4, cSSTR5) were cloned from chicken brain by RT-PCR. Using a pGL3-CRE-luciferase reporter system, we demonstrated that activation of each cSSTR expressed in CHO cells by cSST28, cSST14 and cCST14 treatment could inhibit forskolin-induced luciferase activity of CHO cells, indicating the functional coupling of all cSSTRs to Gi protein(s). Interestingly, cSSTR1-4 expressed in CHO cells could be activated by cSST28, cSST14 and cCST14 with high potencies, suggesting that they may function as the receptors common for these peptides. In contrast, cSSTR5 could be potently activated by cSST28 only, indicating that it is a cSST28-specific receptor. Using RT-PCR, wide expression of cSSTRs was detected in chicken tissues including pituitary. In accordance with their expression in pituitary, cSST28, cSST14, and cCST14 were demonstrated to inhibit basal and novel cGHRH1-27NH2-induced GH secretion in cultured chicken pituitary cells dose-dependently (0-10nM) by Western blot analysis, suggesting the involvement of cSSTR(s) common for these peptides in mediating their inhibitory actions. Collectively, our study establishes a molecular basis to elucidate the roles of SST/CST in birds and provide insights into the roles of SST/CST in vertebrates, such as their conserved actions on pituitary. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. NCEP SST Analysis

    Science.gov Websites

    Branches Global Climate & Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Contact EMC Weather Service NWS logo - Click to go to the NWS homepage Environmental Modeling Center Home News Organization Search Go Search Polar Go MMAB SST Analysis Main page About MMAB Our Mission Our Personnel EMC

  15. Interactions Between the Thermohaline Circulation and Tropical Atlantic SST in a Coupled General Circulation Model

    NASA Technical Reports Server (NTRS)

    Miller, Ron; Jiang, Xing-Jian; Travis, Larry (Technical Monitor)

    2001-01-01

    Tropical Atlantic SST shows a (statistically well-defined) decadal time scale in a 104-year simulation of unforced variability by a coupled general circulation model (CGCM). The SST anomalies superficially resemble observed Tropical Atlantic variability (TAV), and are associated with changes in the atmospheric circulation. Brazilian rainfall is modulated with a decadal time scale, along with the strength of the Atlantic trade winds, which are associated with variations in evaporation and the net surface heat flux. However, in contrast to observed tropical Atlantic variability, the trade winds damp the associated anomalies in ocean temperature, indicating a negative feedback. Tropical SST anomalies in the CGCM, though opposed by the surface heat flux, are advected in from the Southern Hemisphere mid-latitudes. These variations modulate the strength of the thermohaline circulation (THC): warm, salty anomalies at the equator sink drawing cold, fresh mid-latitude water. Upon reaching the equator, the latter inhibit vertical overturning and advection from higher latitudes, which allows warm, salty anomalies to reform, returning the cycle to its original state. Thus, the cycle results from advection of density anomalies and the effect of these anomalies upon the rate of vertical overturning and surface advection. This decadal modulation of Tropical Atlantic SST and the thermohaline circulation is correlated with ocean heat transport to the Northern Hemisphere high latitudes and Norwegian Sea SST. Because of the central role of equatorial convection, we question whether this mechanism is present in the current climate, although we speculate that it may have operated in palaeo times, depending upon the stability of the tropical water column.

  16. The accuracy of SST retrievals from AATSR: An initial assessment through geophysical validation against in situ radiometers, buoys and other SST data sets

    NASA Astrophysics Data System (ADS)

    Corlett, G. K.; Barton, I. J.; Donlon, C. J.; Edwards, M. C.; Good, S. A.; Horrocks, L. A.; Llewellyn-Jones, D. T.; Merchant, C. J.; Minnett, P. J.; Nightingale, T. J.; Noyes, E. J.; O'Carroll, A. G.; Remedios, J. J.; Robinson, I. S.; Saunders, R. W.; Watts, J. G.

    The Advanced Along-Track Scanning Radiometer (AATSR) was launched on Envisat in March 2002. The AATSR instrument is designed to retrieve precise and accurate global sea surface temperature (SST) that, combined with the large data set collected from its predecessors, ATSR and ATSR-2, will provide a long term record of SST data that is greater than 15 years. This record can be used for independent monitoring and detection of climate change. The AATSR validation programme has successfully completed its initial phase. The programme involves validation of the AATSR derived SST values using in situ radiometers, in situ buoys and global SST fields from other data sets. The results of the initial programme presented here will demonstrate that the AATSR instrument is currently close to meeting its scientific objectives of determining global SST to an accuracy of 0.3 K (one sigma). For night time data, the analysis gives a warm bias of between +0.04 K (0.28 K) for buoys to +0.06 K (0.20 K) for radiometers, with slightly higher errors observed for day time data, showing warm biases of between +0.02 (0.39 K) for buoys to +0.11 K (0.33 K) for radiometers. They show that the ATSR series of instruments continues to be the world leader in delivering accurate space-based observations of SST, which is a key climate parameter.

  17. Remotely-sensed sea surface temperatuares (SST) of Northeaster Pacific Coastal Zones

    EPA Science Inventory

    Sea surface temperature (SST) is an important indicator of long-term trends and geographical temperature patterns; however there have been relatively few long-term records of SST in near-coastal habitats. In situ SST measurements are irregular in both space and time. Therefore, w...

  18. Some analyses of the chemistry and diffusion of SST exhaust materials during phase 3 of the wake period. [in lower stratosphere

    NASA Technical Reports Server (NTRS)

    Hilst, G. R.; Donaldson, C. D.; Contiliano, R. M.

    1973-01-01

    In the generally stably stratified lower stratosphere, SST exhaust plumes could spend a significant length of time in a relatively undispersed state. This effort has utilized invariant modeling techniques to simulate the separate and combined effects of atmospheric turbulence, turbulent diffusion, and chemical reactions of SST exhaust materials in the lower stratosphere. The primary results to date are: (1) The combination of relatively slow diffusive mixing and rapid chemical reactions during the Phase III wake period minimizes the effect of SST exhausts on O3 depletion by the so-called NOx catalytic cycle. While the SST-produced NO is substantially above background concentrations, it appears diffusive mixing of NO and O3 is simply too slow to produce the O3 depletions originally proposed. (2) The time required to dilute the SST exhaust plume may be a significant fraction of the total time these materials are resident in the lower stratosphere. If this is the case, then prior estimates of the environmental impact of these materials must be revised significantly downward.

  19. Development and Deployment of the Extended Reach Sluicing System (ERSS) for Retrieval of Hanford Single Shell Tank Waste. Draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Roger E.; Figley, Reed R.; Innes, A. G.

    2013-11-11

    A history of the evolution and the design development of Extended Reach Sluicer System (ERSS) is presented. Several challenges are described that had to be overcome to create a machine that went beyond the capabilities of prior generation sluicers to mobilize waste in Single Shell Tanks for pumping into Double Shell Tank receiver tanks. Off-the-shelf technology and traditional hydraulic fluid power systems were combined with the custom-engineered components to create the additional functionality of the ERSS, while still enabling it to fit within very tight entry envelope into the SST. Problems and challenges inevitably were encountered and overcome in waysmore » that enhance the state of the art of fluid power applications in such constrained environments. Future enhancements to the ERSS design are explored for retrieval of tanks with different dimensions and internal obstacles.« less

  20. Radio-Frequency Tank Eigenmode Sensor for Propellant Quantity Gauging

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Buchanan, David A.; Follo, Jeffrey C.; Vaden, Karl R.; Wagner, James D.; Asipauskas, Marius; Herlacher, Michael D.

    2010-01-01

    Although there are several methods for determining liquid level in a tank, there are no proven methods to quickly gauge the amount of propellant in a tank while it is in low gravity or under low-settling thrust conditions where propellant sloshing is an issue. Having the ability to quickly and accurately gauge propellant tanks in low-gravity is an enabling technology that would allow a spacecraft crew or mission control to always know the amount of propellant onboard, thus increasing the chances for a successful mission. The Radio Frequency Mass Gauge (RFMG) technique measures the electromagnetic eigenmodes, or natural resonant frequencies, of a tank containing a dielectric fluid. The essential hardware components consist of an RF network analyzer that measures the reflected power from an antenna probe mounted internal to the tank. At a resonant frequency, there is a drop in the reflected power, and these inverted peaks in the reflected power spectrum are identified as the tank eigenmode frequencies using a peak-detection software algorithm. This information is passed to a pattern-matching algorithm, which compares the measured eigenmode frequencies with a database of simulated eigenmode frequencies at various fill levels. A best match between the simulated and measured frequency values occurs at some fill level, which is then reported as the gauged fill level. The database of simulated eigenmode frequencies is created by using RF simulation software to calculate the tank eigenmodes at various fill levels. The input to the simulations consists of a fairly high-fidelity tank model with proper dimensions and including internal tank hardware, the dielectric properties of the fluid, and a defined liquid/vapor interface. Because of small discrepancies between the model and actual hardware, the measured empty tank spectra and simulations are used to create a set of correction factors for each mode (typically in the range of 0.999 1.001), which effectively accounts for

  1. Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PACQUET, E.A.

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineeringmore » case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.« less

  2. Novel sst2-selective somatostatin agonists. Three-dimensional consensus structure by NMR

    PubMed Central

    Grace, Christy Rani R.; Erchegyi, Judit; Koerber, Steven C.; Reubi, Jean Claude; Rivier, Jean; Riek, Roland

    2008-01-01

    The three-dimensional NMR structures of six octapeptide agonist analogues of somatostatin (SRIF) in the free form are described. These analogues, with the basic sequence H-DPhe/Phe2-c[Cys3-Xxx7-DTrp8-Lys9-Thr10-Cys14]-Thr-NH2 (the numbering refers to the position in native SRIF), with Xxx7 being Ala/Aph, exhibit potent and highly selective binding to human SRIF type 2 (sst2) receptors. The backbone of these sst2-selective analogues have the usual type-II’ β-turn reported in the literature for sst2/3/5-subtype-selective analogues. Correlating biological results and NMR studies led to the identification of the side chains of DPhe2, DTrp8 and Lys9 as the necessary components of the sst2 pharmacophore. This is the first study to show that the aromatic ring at position 7 (Phe7) is not critical for sst2 binding and that it plays an important role in sst3 and sst5 binding. This pharmacophore is therefore different from that proposed by others for sst2/3/5 analogues. PMID:16854054

  3. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks weremore » evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest

  4. QueSST Time-lapse

    NASA Image and Video Library

    2017-02-27

    Quiet Supersonic Technology (QueSST) X-plane in the 8x6 Supersonic Wind Tunnel at NASA Glenn Research Center. This time-lapse shows the model support structure buildup and balance checkout as well as the installation of the model in the test section.

  5. Simulation of Liquid Level, Temperature and Pressure Inside a 2000 Liter Liquid Hydrogen Tank During Truck Transportation

    NASA Astrophysics Data System (ADS)

    Takeda, Minoru; Nara, Hiroyuki; Maekawa, Kazuma; Fujikawa, Shizuichi; Matsuno, Yu; Kuroda, Tsuneo; Kumakura, Hiroaki

    Hydrogen is an ultimate energy source because only water is produced after the chemical reaction of hydrogen and oxygen. In the near future, a large amount of hydrogen, produced using sustainable/renewable energy, is expected to be consumed. Since liquid hydrogen (LH2) has the advantage of high storage efficiency, it is expected to be the ultimate medium for the worldwide storage and transportation of large amounts of hydrogen. To make a simulation model of the sloshing of LH2 inside a 2000 liter tank, simulation analyses of LH2 surface oscillation, temperature and pressure inside the tank during a truck transportation have been carried out using a multipurpose software ANSYS CFX. Numerical results are discussed in comparison with experimental results.

  6. North Atlantic SST Patterns and NAO Flavors

    NASA Astrophysics Data System (ADS)

    Rousi, E.; Rahmstorf, S.; Coumou, D.

    2017-12-01

    North Atlantic SST variability results from the interaction of atmospheric and oceanic processes. The North Atlantic Oscillation (NAO) drives changes in SST patterns but is also driven by them on certain time-scales. These interactions are not very well understood and might be affected by anthropogenic climate change. Paleo reconstructions indicate a slowdown of the Atlantic Meridional Overturning Circulation (AMOC) in recent decades leading to a pronounced cold anomaly ("cold blob") in the North Atlantic (Rahmstorf et al., 2015). The latter may favor NAO to be in its negative mode. In this work, sea surface temperature (SST) patterns are studied in relation to NAO variations, with the aim of discovering preferred states and understanding their interactions. SST patterns are analyzed with Self-Organizing Maps (SOM), a clustering technique that helps identify different spatial patterns and their temporal evolution. NAO flavors refer to different longitudinal positions and tilts of the NAO action centers, also defined with SOMs. This way the limitations of the basic, index-based, NAO-definition are overcome, and the method handles different spatially shapes associated with NAO. Preliminary results show the existence of preferred combinations of SSTs and NAO flavors, which in turn affect weather and climate of Europe and North America. The possible influence of the cold blob on European weather is discussed.

  7. Quiet Supersonic Technology (QueSST)

    NASA Image and Video Library

    2017-03-02

    Mechanical technician Dan Pitts prepares a scale model of Lockheed Martin's Quiet Supersonic Technology (QueSST) X-plane preliminary design for its first high-speed wind tunnel tests at NASA's Glenn Research Center.

  8. Rationale for Selection of Pesticides, Herbicides, and Related Compounds from the Hanford SST/DST Waste Considered for Analysis in Support of the Regulatory DQO (Privatization)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiemers, K.D.; Daling, P.; Meier, K.

    1999-01-04

    Regulated pesticides, herbicides, miticides, and fungicides were evaluated for their potential past and current use at the Hanford Site. The starting list of these compounds is based on regulatory analyte input lists discussed in the Regulatory DQO. Twelve pesticide, herbicide, miticide, and fungicide compounds are identified for analysis in the Hanford SST and DST waste in support of the Regulatory DQO. The compounds considered for additional analyses are non-detected, considered stable in the tank waste matrix, and of higher toxicity/carcinogenicity.

  9. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman-Pollard, J.R.

    1994-03-02

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handlingmore » and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.« less

  10. Locomotive fuel tank structural safety testing program : passenger locomotive fuel tank jackknife derailment load test.

    DOT National Transportation Integrated Search

    2010-08-01

    This report presents the results of a passenger locomotive fuel tank load test simulating jackknife derailment (JD) load. The test is based on FRA requirements for locomotive fuel tanks in the Title 49, Code of Federal Regulations (CFR), Part 238, Ap...

  11. A consistent modelling methodology for secondary settling tanks: a reliable numerical method.

    PubMed

    Bürger, Raimund; Diehl, Stefan; Farås, Sebastian; Nopens, Ingmar; Torfs, Elena

    2013-01-01

    The consistent modelling methodology for secondary settling tanks (SSTs) leads to a partial differential equation (PDE) of nonlinear convection-diffusion type as a one-dimensional model for the solids concentration as a function of depth and time. This PDE includes a flux that depends discontinuously on spatial position modelling hindered settling and bulk flows, a singular source term describing the feed mechanism, a degenerating term accounting for sediment compressibility, and a dispersion term for turbulence. In addition, the solution itself is discontinuous. A consistent, reliable and robust numerical method that properly handles these difficulties is presented. Many constitutive relations for hindered settling, compression and dispersion can be used within the model, allowing the user to switch on and off effects of interest depending on the modelling goal as well as investigate the suitability of certain constitutive expressions. Simulations show the effect of the dispersion term on effluent suspended solids and total sludge mass in the SST. The focus is on correct implementation whereas calibration and validation are not pursued.

  12. Initial results in SST-1 after up-gradation

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Khan, Z.; Tanna, V. L.; Prasad, U.; Paravastu, Y.; Raval, D. C.; Masand, H.; Kumar, Aveg; Dhongde, J. R.; Jana, S.; Kakati, B.; Patel, K. B.; Bhandarkar, M. K.; Shukla, B. K.; Ghosh, D.; Patel, H. S.; Parekh, T. J.; Mansuri, I. A.; Dhanani, K. R.; Varadharajulu, A.; Khristi, Y. S.; Biswas, P.; Gupta, C. N.; George, S.; Semwal, P.; Sharma, D. K.; Gulati, H. K.; Mahajan, K.; Praghi, B. R.; Banaudha, M.; Makwana, A. R.; Chudasma, H. H.; Kumar, M.; Manchanda, R.; Joisa, Y. S.; Asudani, K.; Pandya, S. N.; Pathak, S. K.; Banerjee, S.; Patel, P. J.; Santra, P.; Pathan, F. S.; Chauhan, P. K.; Khan, M. S.; Thankey, P. L.; Prakash, A.; Panchal, P. N.; Panchal, R. N.; Patel, R. J.; Mahsuria, G. I.; Sonara, D. P.; Patel, K. M.; Jayaswal, S. P.; Sharma, M.; Patel, J. C.; Varmora, P.; Srikanth, G. L. N.; Christian, D. R.; Garg, A.; Bairagi, N.; Babu, G. R.; Panchal, A. G.; Vora, M. M.; Singh, A. K.; Sharma, R.; Nimavat, H. D.; Shah, P. R.; Purwar, G.; Raval, T. Y.; Sharma, A. L.; Ojha, A.; Kumar, S.; Ramaiya, N. K.; Siju, V.; Gopalakrishna, M. V.; Kumar, A.; Sharma, P. K.; Atrey, P. K.; Kulkarni, SV; Ambulkar, K. K.; Parmar, P. R.; Thakur, A. L.; Raval, J. V.; Purohit, S.; Mishra, P. K.; Adhiya, A. N.; Nagora, U. C.; Thomas, J.; Chaudhari, V. K.; Patel, K. G.; Dalakoti, S.; Virani, C. G.; Gupta, S.; Kumar, Ajay; Chaudhari, B.; Kaur, R.; Srinivasan, R.; Raju, D.; Kanabar, D. H.; Jha, R.; Das, A.; Bora, D.

    2017-04-01

    SST-1 Tokamak has recently completed the 1st phase of up-gradation with successful installation and integration of all its First Wall components. The First Wall of SST-1 comprises of ∼ 3800 high heat flux compatible graphite tiles being assembled and installed on 132 CuCrZr heat sink back plates engraved with ∼ 4 km of leak tight baking and cooling channels in five major sub groups equipped with ∼ 400 sensors and weighing ∼ 6000 kg in total in thirteen isolated galvanic and six isolated hydraulic circuits. The phase-1 up-gradation spectrum also includes addition of Supersonic Molecular Beam Injection (SMBI) both on the in-board and out-board side, installation of fast reciprocating probes, adding some edge plasma probe diagnostics in the SOL region, installation and integration of segmented and up-down symmetric radial coils aiding/controlling plasma rotations, introduction of plasma position feedback and density controls etc. Post phase-I up-gradation spanning from Nov 2014 till June 2016, initial plasma experiments in up-graded SST-1 have begun since Aug 2016 after a brief engineering validation period in SST-1. The first experiments in SST-1 have revealed interesting aspects on the ‘eddy currents in the First Wall support structures’ influencing the ‘magnetic Null evolution dynamics’ and the subsequent plasma start-up characteristics after the ECH pre-ionization, the influence of the first walls on the ‘field errors’ and the resulting locked modes observed, the magnetic index influencing the evolution of the equilibrium of the plasma column, low density supra-thermal electron induced discharges and normal ohmic discharges etc. Presently; repeatable ohmic discharges regimes in SST-1 having plasma currents in excess of 65 KA (qa ∼ 3.8, BT = 1.5 T) with a current ramp rates ∼ 1.2 MA/s over a duration of ∼ 300 ms with line averaged densities ∼ 0.8 × 1019 and temperatures ∼ 200 eV with copious MHD signatures have been experimentally

  13. Potential predictability and actual skill of Boreal Summer Tropical SST and Indian summer monsoon rainfall in CFSv2-T382: Role of initial SST and teleconnections

    NASA Astrophysics Data System (ADS)

    Pillai, Prasanth A.; Rao, Suryachandra A.; Das, Renu S.; Salunke, Kiran; Dhakate, Ashish

    2017-10-01

    The present study assess the potential predictability of boreal summer (June through September, JJAS) tropical sea surface temperature (SST) and Indian summer monsoon rainfall (ISMR) using high resolution climate forecast system (CFSv2-T382) hindcasts. Potential predictability is computed using relative entropy (RE), which is the combined effect of signal strength and model spread, while the correlation between ensemble mean and observations represents the actual skill. Both actual and potential skills increase as lead time decreases for Niño3 index and equatorial East Indian Ocean (EEIO) SST anomaly and both the skills are close to each other for May IC hindcasts at zero lead. At the same time the actual skill of ISMR and El Niño Modoki index (EMI) are close to potential skill for Feb IC hindcasts (3 month lead). It is interesting to note that, both actual and potential skills are nearly equal, when RE has maximum contribution to individual year's prediction skill and its relationship with absolute error is insignificant or out of phase. The major contribution to potential predictability is from ensemble mean and the role of ensemble spread is limited for Pacific SST and ISMR hindcasts. RE values are able to capture the predictability contribution from both initial SST and simultaneous boundary forcing better than ensemble mean, resulting in higher potential skill compared to actual skill for all ICs. For Feb IC hindcasts at 3 month lead time, initial month SST (Feb SST) has important predictive component for El Niño Modoki and ISMR leading to higher value of actual skill which is close to potential skill. This study points out that even though the simultaneous relationship between ensemble mean ISMR and global SST is similar for all ICs, the predictive component from initial SST anomalies are captured well by Feb IC (3 month lead) hindcasts only. This resulted in better skill of ISMR for Feb IC (3 month lead) hindcasts compared to May IC (0 month lead

  14. Overall behaviour of PFC integrated SST-1 vacuum system

    NASA Astrophysics Data System (ADS)

    Khan, Ziauddin; Raval, Dilip C.; Paravasu, Yuvakiran; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; George, Siju; Shoaib, Mohammad; Prakash, Arun; Babu, Gattu R.; Thankey, Prashant; Pathan, Firozkhan S.; Pradhan, Subrata

    2017-04-01

    As a part of phase-I up-gradation of Steady-state Superconducting Tokamak (SST-1), Graphite Plasma Facing Components (PFCs) have been integrated inside SST-1 vacuum vessel as a first wall (FW) during Nov 14 and May 2015. The SST-1 FW has a total surface area of the installed PFCs exposed to plasma is ∼ 40 m2 which is nearly 50% of the total surface area of stainless steel vacuum chamber (∼75 m2). The volume of the vessel within the PFCs is ∼ 16 m3. After the integration of PFCs, the entire vessel as well as the PFC cooling/baking circuits has been qualified with an integrated helium leak tightness of < 1.0 x 10-8 mbar 1/s. The pumping system of the SST-1 vacuum vessel comprises of one number of Roots’ pump, four numbers of turbomolecular pumps and a cryopump. After the initial pump down, the PFCs were baked at 250 °C for nearly 20 hours employing hot nitrogen gas to remove the absorbed water vapours. Thereafter, Helium glow discharges cleaning were carried out towards the removal of surface impurities. The pump down characteristics of SST-1 vacuum chamber and the changes in the residual gaseous impurities after the installation of the PFCs will be discussed in this paper.

  15. Seismic instantaneous frequency extraction based on the SST-MAW

    NASA Astrophysics Data System (ADS)

    Liu, Naihao; Gao, Jinghuai; Jiang, Xiudi; Zhang, Zhuosheng; Wang, Ping

    2018-06-01

    The instantaneous frequency (IF) extraction of seismic data has been widely applied to seismic exploration for decades, such as detecting seismic absorption and characterizing depositional thicknesses. Based on the complex-trace analysis, the Hilbert transform (HT) can extract the IF directly, which is a traditional method and susceptible to noise. In this paper, a robust approach based on the synchrosqueezing transform (SST) is proposed to extract the IF from seismic data. In this process, a novel analytical wavelet is developed and chosen as the basic wavelet, which is called the modified analytical wavelet (MAW) and comes from the three parameter wavelet. After transforming the seismic signal into a sparse time-frequency domain via the SST taking the MAW (SST-MAW), an adaptive threshold is introduced to improve the noise immunity and accuracy of the IF extraction in a noisy environment. Note that the SST-MAW reconstructs a complex trace to extract seismic IF. To demonstrate the effectiveness of the proposed method, we apply the SST-MAW to synthetic data and field seismic data. Numerical experiments suggest that the proposed procedure yields the higher resolution and the better anti-noise performance compared to the conventional IF extraction methods based on the HT method and continuous wavelet transform. Moreover, geological features (such as the channels) are well characterized, which is insightful for further oil/gas reservoir identification.

  16. SST-Forced Seasonal Simulation and Prediction Skill for Versions of the NCEP/MRF Model.

    NASA Astrophysics Data System (ADS)

    Livezey, Robert E.; Masutani, Michiko; Jil, Ming

    1996-03-01

    The feasibility of using a two-tier approach to provide guidance to operational long-lead seasonal prediction is explored. The approach includes first a forecast of global sea surface temperatures (SSTs) using a coupled general circulation model, followed by an atmospheric forecast using an atmospheric general circulation model (AGCM). For this exploration, ensembles of decade-long integrations of the AGCM driven by observed SSTs and ensembles of integrations of select cases driven by forecast SSTs have been conducted. The ability of the model in these sets of runs to reproduce observed atmospheric conditions has been evaluated with a multiparameter performance analysis.Results have identified performance and skill levels in the specified SST runs, for winters and springs over the Pacific/North America region, that are sufficient to impact operational seasonal predictions in years with major El Niño-Southern Oscillation (ENSO) episodes. Further, these levels were substantially reproduced in the forecast SST runs for 1-month leads and in many instances for up to one-season leads. In fact, overall the 0- and 1-month-lead forecasts of seasonal temperature over the United States for three falls and winters with major ENSO episodes were substantially better than corresponding official forecasts. Thus, there is considerable reason to develop a dynamical component for the official seasonal forecast process.

  17. Runtime and Pressurization Analyses of Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Field, Robert E.; Ryan, Harry M.; Ahuja, Vineet; Hosangadi, Ashvin; Lee, Chung P.

    2007-01-01

    Multi-element unstructured CFD has been utilized at NASA SSC to carry out analyses of propellant tank systems in different modes of operation. The three regimes of interest at SSC include (a) tank chill down (b) tank pressurization and (c) runtime propellant draw-down and purge. While tank chill down is an important event that is best addressed with long time-scale heat transfer calculations, CFD can play a critical role in the tank pressurization and runtime modes of operation. In these situations, problems with contamination of the propellant by inclusion of the pressurant gas from the ullage causes a deterioration of the quality of the propellant delivered to the test article. CFD can be used to help quantify the mixing and propellant degradation. During tank pressurization under some circumstances, rapid mixing of relatively warm pressurant gas with cryogenic propellant can lead to rapid densification of the gas and loss of pressure in the tank. This phenomenon can cause serious problems during testing because of the resulting decrease in propellant flow rate. With proper physical models implemented, CFD can model the coupling between the propellant and pressurant including heat transfer and phase change effects and accurately capture the complex physics in the evolving flowfields. This holds the promise of allowing the specification of operational conditions and procedures that could minimize the undesirable mixing and heat transfer inherent in propellant tank operation. It should be noted that traditional CFD modeling is inadequate for such simulations because the fluids in the tank are in a range of different sub-critical and supercritical states and elaborate phase change and mixing rules have to be developed to accurately model the interaction between the ullage gas and the propellant. We show a typical run-time simulation of a spherical propellant tank, containing RP-1 in this case, being pressurized with room-temperature nitrogen at 540 R. Nitrogen

  18. Dynamic modelling of an adsorption storage tank using a hybrid approach combining computational fluid dynamics and process simulation

    USGS Publications Warehouse

    Mota, J.P.B.; Esteves, I.A.A.C.; Rostam-Abadi, M.

    2004-01-01

    A computational fluid dynamics (CFD) software package has been coupled with the dynamic process simulator of an adsorption storage tank for methane fuelled vehicles. The two solvers run as independent processes and handle non-overlapping portions of the computational domain. The codes exchange data on the boundary interface of the two domains to ensure continuity of the solution and of its gradient. A software interface was developed to dynamically suspend and activate each process as necessary, and be responsible for data exchange and process synchronization. This hybrid computational tool has been successfully employed to accurately simulate the discharge of a new tank design and evaluate its performance. The case study presented here shows that CFD and process simulation are highly complementary computational tools, and that there are clear benefits to be gained from a close integration of the two. ?? 2004 Elsevier Ltd. All rights reserved.

  19. Possible relationship between East Indian Ocean SST and tropical cyclone affecting Korea

    NASA Astrophysics Data System (ADS)

    Kim, J. Y.; Choi, K. S.; Kim, B. J.

    2014-12-01

    In this study, a strong negative correlation was found between East Indian Ocean (EIO) SST and frequency of summertime tropical cyclone (TC) affecting Korea.For the Warm EIO SST years, the TCs mostly occurred in the southwestern region of tropical and subtropical western Pacific, and migrated west toward the southern coast of China and Indochinese peninsula through the South China Sea. This is because the anomalous easterlies, induced by the development of anomalous anticyclone (weakening of monsoon trough) from the tropical central Pacific to the southern coast of China, served as the steering flows for the westward migration of TCs. In contrast, for the cold EIO SST years, the TCs mostly occurred in the northeastern region of tropical and subtropical western Pacific, and migrated toward Korea and Japan located in the mid-latitudes of East Asia through the East China Sea. This is because the northeastward retreat of subtropical western North Pacific high (SWNPH) was more distinct for the cold EIO SST years compared to the warm EIO SST years. Therefore, the TCs of warm EIO SST years weakened or dissipated shortly due to the effect of geographical features as they land on the southern coast of China and Indochinese peninsula, whereas the TCs of cold EIO SST years had stronger intensity than the TCs of warm EIO SST years as sufficient energy is supplied from the ocean while moving toward Korea and Japan.

  20. A USCLVAR Multi-Model Assessment of the Impact of SST Anomalies and Land-Atmosphere Feedbacks on Drought

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2009-01-01

    The USCLIVAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include, What are the mechanisms that maintain drought across the seasonal cycle and from one year to the next? What is the role of the leading patterns of SST variability, and what are the physical mechanisms linking the remote SST forcing to regional drought, including the role of land-atmosphere coupling? The runs were carried out with five different atmospheric general circulation models (AGCMs), and one coupled atmosphere-ocean model in which the model was continuously nudged to the imposed SST forcing. This talk provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino/Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic Multi-decadal Oscillation (AMO), and a global trend pattern. One of the key findings is that all the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the U.S. tends to occur when the two oceans have anomalies of opposite sign. That is, a cold Pacific and warm Atlantic tend to produce the largest precipitation reductions, whereas a warm Pacific and cold Atlantic tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of

  1. Mean gravity anomalies from a combination of Apollo/ATS 6 and GEOS 3/ATS 6 SST tracking campaigns. [Satellite to Satellite Tracking

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Klosko, S. M.; Wells, W. T.

    1982-01-01

    Advances in satellite tracking data accuracy and coverage over the past 15 years have led to major improvements in global geopotential models. But the spacial resolution of the gravity field obtained solely from satellite dynamics sensed by tracking data is still of the order of 1000 km. Attention is given to an approach which will provide information regarding the fine structure of the gravity field on the basis of an application of local corrections to the global field. According to this approach, a basic satellite to satellite tracked (SST) range-rate measurement is constructed from the link between a ground station, a geosynchronous satellite (ATS 6), and a near-earth satellite (Apollo or GEOS 3). Attention is given to a mathematical model, the simulation of SST gravity anomaly estimation accuracies, a gravity anomaly estimation from GEOS 3/ATS 6 and Apollo/ATS 6 SST observations, and an evaluation of the mean gravity anomalies determined from SST.

  2. Scrape off layer modelling studies for SST-I

    NASA Astrophysics Data System (ADS)

    Warrier, M.; Jaishankar, S.; Deshpande, S.; Coster, D.; Schneider, R.; Chaturvedi, S.; Srinivasan, R.; Braams, B. J.; SST Team

    SOL modelling results for SST-1 (SST Team, Proceedings of the 16th IEEE/NPSS Symposium on Fusion Engineering, Champaign, IL, vol. II, 1995, p. 481) show a sheath limited flow regime. This is due to the low edge densities required by lower hybrid current drive (LHCD), coupled with high power input per unit volume. Coupled plasma-neutral transport studies using B2-Eirene [R. Schneider et al., J. Nucl. Mater. 196-198 (1992) 810] show significantly high charge exchange losses and radiated power from the core. It also shows that the heat flux to the inner divertor is higher than that to the outer divertor due to thinner inner SOL widths. The Monte-Carlo neutral transport code DEGAS [D. Heifitz et al., J. Comput. Phys. 46 (1982) 309] was used to optimise the baffle plate geometry and it was seen that a configuration where the baffle plate shields the main plasma from the divertor strike point results in reduced backflow of neutrals. The divertor erosion code DIVER (M. Warrier et al., SST Divertor Modelling Report, 1996-1997) was used to predict a steady state operating temperature for the SST divertor plate lying in the range 750-1000°C for which the erosion will be minimum.

  3. Asymmetric response of the equatorial Pacific SST to climate warming and cooling

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Liu, F.; Lu, J.

    2017-12-01

    The response of the equatorial Pacific Ocean to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model (CESM). Results show a strong asymmetry in SST changes. In the eastern equatorial Pacific (EEP), the warming responding to the positive forcing exceeds the cooling to the negative forcing; while in the western equatorial Pacific (WEP), it is the other way around and the cooling surpasses the warming. This leads to a zonal dipole asymmetric structure, with positive values in the east and negative values in the west. A surface heat budget analysis suggests that the SST asymmetry is mainly resulted from the oceanic horizontal advection and vertical entrainment, with both of their linear and nonlinear components playing a role. For the linear component, its change appears to be more significant over the EEP (WEP) in the positive (negative) forcing scenario, favoring the seesaw pattern of the SST asymmetry. For the nonlinear component, its change acts to warm (cool) the EEP (WEP) in both scenarios, also favorable for the development of the SST asymmetry. Additional experiments with a slab ocean confirm the dominant role of ocean dynamical processes for this SST asymmetry. The net surface heat flux, in contrast, works to reduce the SST asymmetry through its shortwave radiation and latent heat flux components, with the former being related to the nonlinear relationship between SST and convection, and the latter being attributable to Newtonian damping and air-sea stability effects. The suppressing effect of shortwave radiation on SST asymmetry is further verified by partially coupled overriding experiments.

  4. STRONTIUM-90 LIQUID CONCENTRATION SOLUBILITY CORRELATION IN THE HANFORD TANK WASTE OPERATIONS SIMULATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOHL, T.; PLACE, D.; WITTMAN, R.

    2004-08-05

    A new correlation was developed to estimate the concentration of strontium-90 in a waste solution based on total organic carbon. This correlation replaces the strontium-90 wash factors, and when applied in the Hanford Tank Waste Operations Simulator, significantly reduced the estimated quantity of strontium-90 in the delivered low-activity waste feed. This is thought to be a more realistic estimate of strontium-90 than using the wash-factor method.

  5. Interannual to Decadal SST Variability in the Tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Wang, G.; Newman, M.; Han, W.

    2017-12-01

    The Indian Ocean has received increasing attention in recent years for its large impacts on regional and global climate. However, due mainly to the close interdependence of the climate variation within the Tropical Pacific and the Indian Ocean, the internal sea surface temperature (SST) variability within the Indian Ocean has not been studied extensively on longer time scales. In this presentation we will show analysis of the interannual to decadal SST variability in the Tropical Indian Ocean in observations and Linear Inverse Model (LIM) results. We also compare the decoupled Indian Ocean SST variability from the Pacific against fully coupled one based on LIM integrations, to test the factors influence the features of the leading SST modes in the Indian Ocean. The result shows the Indian Ocean Basin (IOB) mode, which is strongly related to global averaged SST variability, passively responses to the Pacific variation. Without tropical Indo-Pacific coupling interaction, the intensity of IOB significantly decreases by 80%. The Indian Ocean Dipole (IOD) mode demonstrates its independence from the Pacific SST variability since the IOD does not change its long-term characteristics at all without inter-basin interactions. The overall SSTA variance decreases significantly in the Tropical Indian Ocean in the coupling restricted LIM runs, especially when the one-way impact from the Pacific to the Indian Ocean is turned off, suggesting that most of the variability in the Indian Ocean comes from the Pacific influence. On the other hand, the Indian Ocean could also transport anomalies to the Pacific, making the interaction a complete two-way process.

  6. Effect of Antifoam Agent on Oxidative Leaching of Hanford Tank Sludge Simulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapko, Brian M.; Jones, Susan A.; Lumetta, Gregg J.

    2010-02-26

    Oxidative leaching of simulant tank waste containing an antifoam agent (AFA) to reduce the chromium content of the sludge was tested using permanganate as the oxidant in 0.25 M NaOH solutions. AFA is added to the waste treatment process to prevent foaming. The AFA, Dow Corning Q2-3183A, is a surface-active polymer that consists of polypropylene glycol, polydimethylsiloxane, octylphenoxy polyethoxy ethanol, treated silica, and polyether polyol. Some of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste slurries contain high concentrations of undissolved solids that would exhibit undesirable behavior without AFA addition. These tests were conducted to determine the effectmore » of the AFA on oxidative leaching of Cr(III) in waste by permanganate. It has not previously been determined what effect AFA has on the permanganate reaction. This study was conducted to determine the effect AFA has on the oxidation of the chromium, plus plutonium and other criticality-related elements, specifically Fe, Ni and Mn. During the oxidative leaching process, Mn is added as liquid permanganate solution and is converted to an insoluble solid that precipitates as MnO2 and becomes part of the solid waste. Caustic leaching was performed followed by an oxidative leach at either 25°C or 45°C. Samples of the leachate and solids were collected at each step of the process. Initially, Battelle-Pacific Northwest Division (PNWD) was contracted by Bechtel National, Inc. to perform these further scoping studies on oxidative alkaline leaching. The data obtained from the testing will be used by the WTP operations to develop procedures for permanganate dosing of Hanford tank sludge solids during oxidative leaching. Work was initially conducted under contract number 24590-101-TSA-W000-00004. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) operating Contract DE-AC05-76RL01830. In summary, this report describes work focused on

  7. Comparison of two turbulence models in simulating an axisymmetric jet evolving into a tank

    NASA Astrophysics Data System (ADS)

    Zidouni Kendil, F.; Danciu, D.-V.; Lucas, D.; Bousbia Salah, A.; Mataoui, A.

    2011-12-01

    Experiments and computational fluid dynamics (CFD) simulations have been carried out to investigate a turbulent water jet plunging into a tank filled with the same liquid. To avoid air bubble entrainment which may be caused by surface instabilities, the free falling length of the jet is set to zero. For both impinging region and recirculation zone, measurements are made using Particle Image Velocimetry (PIV). Instantaneous- and time-averaged velocity fields are obtained. Numerical data is obtained on the basis of both κ - epsilon and SSG (Speziale, Sarkar and Gatski) of Reynolds Stresses Turbulent Model (RSM) in three dimensional frame and compared to experimental results via the axial velocity and turbulent kinetic energy. For axial distances lower than 5cm from the jet impact point, the axial velocity matches well the measurements, using both models. A progressive difference is found near the jet for higher axial distances from the jet impact point. Nevertheless, the turbulence kinetic energy agrees very well with the measurements when applying the SSG-RSM model for the lower part of the tank, whereas it is underestimated in the upper region. Inversely, the κ - epsilon model shows better results in the upper part of the water tank and underestimates results for the lower part of the water tank. From the overall results, it can be concluded that, for single phase flow, the κ - epsilon model describes well the average axial velocity, whereas the turbulence kinetic energy is better represented by the SSG-RSM model.

  8. Asymmetric Response of the Equatorial Pacific SST to Climate Warming and Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fukai; Luo, Yiyong; Lu, Jian

    The response of the equatorial Pacific Ocean to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model (CESM). Results show a strong asymmetry in SST changes. In the eastern equatorial Pacific (EEP), the warming responding to the positive forcing exceeds the cooling to the negative forcing; while in the western equatorial Pacific (WEP), it is the other way around and the cooling surpasses the warming. This leads to a zonal dipole asymmetric structure, with positive values in the east and negative values in the west. A surface heat budget analysis suggests that themore » SST asymmetry is mainly resulted from the oceanic horizontal advection and vertical entrainment, with both of their linear and nonlinear components playing a role. For the linear component, its change appears to be more significant over the EEP (WEP) in the positive (negative) forcing scenario, favoring the seesaw pattern of the SST asymmetry. For the nonlinear component, its change acts to warm (cool) the EEP (WEP) in both scenarios, also favorable for the development of the SST asymmetry. Additional experiments with a slab ocean confirm the dominant role of ocean dynamical processes for this SST asymmetry. The net surface heat flux, in contrast, works to reduce the SST asymmetry through its shortwave radiation and latent heat flux components, with the former being related to the nonlinear relationship between SST and convection, and the latter being attributable to Newtonian damping and air-sea stability effects. The suppressing effect of shortwave radiation on SST asymmetry is further verified by partially coupled overriding experiments.« less

  9. Interdecadal Change in SST Anomalies Associated with Winter Rainfall over South China

    NASA Astrophysics Data System (ADS)

    Liantong, Z.

    2012-04-01

    The present study investigates the interdecadal change in winter (January-February-March, or "JFM") rainfall over South China and in South China JFM rainfall-sea surface temperature (SST) relationship by using station observations for the period of 1958-2002, the Met Office Hadley Center's SST data for the period of 1900-2008, and the ERA-40 re-analysis for the period of 1958-2002. It is found that the relationship between South China JFM rainfall and SST experienced an obvious interdecadal change around the year 1978. The analyses show that the JFM rainfall anomalies during 1960-1977 and 1978-2002 were closely associated with the South China Sea (SCS) SST and El Niño-Southern Oscillation (ENSO), respectively. Moreover, southwesterly anomalies at 700 hPa dominate over the South China Sea for positive SCS SST anomaly years during 1960-1977, and for El Niño years during 1978-2002, respectively. These wind anomalies, which are associated with the enhancement of the western Pacific subtropical high, transport more moisture into South China, favoring increases in rainfall. KEY WORDS: ENSO; SCS SST; South China winter rainfall, western Pacific subtropical high.

  10. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: prototype technologies goals and strategies for the future SST

    NASA Astrophysics Data System (ADS)

    Marchiori, Gianpietro; Busatta, Andrea; Giacomel, Stefano; Folla, Ivan; Valsecchi, Marco; Canestrari, Rodolfo; Bonnoli, Giacomo; Cascone, Enrico; Conconi, Paolo; Fiorini, Mauro; Giro, Enrico; La Palombara, Nicola; Pareschi, Giovanni; Perri, Luca; Rodeghiero, Gabriele; Sironi, Giorgia; Stringhetti, Luca; Toso, Giorgio; Tosti, Gino; Pellicciari, Carlo

    2014-07-01

    The Cherenkov Telescope Array (CTA) observatory will represent the next generation of Imaging Atmospheric Cherenkov Telescope. Using a combination of large-, medium-, and small-scale telescopes (LST, MST, SST, respectively), it will explore the Very High Energy domain from a few tens of GeVup to about few hundreds of TeV with unprecedented sensitivity, angular resolution and imaging quality. In this framework, the Italian ASTRI program, led by the Italian National Institute of Astrophysics (INAF) developed a 4-meter class telescope, which will adopt an aplanatic, wide-field, double-reflection optical layout in a Schwarzschild- Couder configuration. Within this program INAF assigned to the consortium between Galbiati Group and EIE Group the construction, assembly and tests activities of the prototype named ASTRI SST-2M. On the basis of the lesson learnt from the prototype, other telescopes will be produced, starting from a re-design phase, in order to optimize performances and the overall costs and production schedule for the CTA-SST telescope. This paper will firstly give an overview of the concept for the SST prototype mount structure. In this contest, the technologies adopted for the design, manufacturing and tests of the entire system will be presented. Moreover, a specific focus on the challenges of the prototype and the strategies associated with it will be provided, in order to outline the near future performance goals for this type of Cherenkov telescopes employed for Gamma ray science.

  11. Assessing the relative influence of surface soil moisture and ENSO SST on precipitation predictability over the contiguous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jin-Ho; Leung, Lai-Yung R.

    This study assesses the relative influence of soil moisture memory and tropical sea surface temperature (SST) in seasonal rainfall over the contiguous United States. Using observed precipitation, the NINO3.4 index and soil moisture and evapotranspiration simulated by a land surface model for 61 years, analysis was performed using partial correlations to evaluate to what extent land surface and SST anomaly of El Niño and Southern Oscillation (ENSO) can affect seasonal precipitation over different regions and seasons. Results show that antecedent soil moisture is as important as concurrent ENSO condition in controlling rainfall anomalies over the U.S., but they generally dominatemore » in different seasons with SST providing more predictability during winter while soil moisture, through its linkages to evapotranspiration and snow water, has larger influence in spring and early summer. The proposed methodology is applicable to climate model outputs to evaluate the intensity of land-atmosphere coupling and its relative importance.« less

  12. Nonlinear responses of southern African rainfall to forcing from Atlantic SST in a high-resolution regional climate model

    NASA Astrophysics Data System (ADS)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, high resolution satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA) are used as a basis for undertaking model experiments using a state-of-the-art regional climate model. The MIRA dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the regional climate model's domain size are briefly presented, before a comparison of simulated daily rainfall from the model with the satellite-derived dataset. Secondly, simulations of current climate and rainfall extremes from the model are compared to the MIRA dataset at daily timescales. Finally, the results from the idealised SST experiments are presented, suggesting highly nonlinear associations between rainfall extremes

  13. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  14. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  15. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  16. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  17. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains the interim change notice for sample preparation methods. Covered are: acid digestion for metals analysis, fusion of Hanford tank waste solids, water leach of sludges/soils/other solids, extraction procedure toxicity (simulate leach in landfill), sample preparation for gamma spectroscopy, acid digestion for radiochemical analysis, leach preparation of solids for free cyanide analysis, aqueous leach of solids for anion analysis, microwave digestion of glasses and slurries for ICP/MS, toxicity characteristic leaching extraction for inorganics, leach/dissolution of activated metal for radiochemical analysis, extraction of single-shell tank (SST) samples for semi-VOC analysis, preparation and cleanup of hydrocarbon- containing samples for VOCmore » and semi-VOC analysis, receiving of waste tank samples in onsite transfer cask, receipt and inspection of SST samples, receipt and extrusion of core samples at 325A shielded facility, cleaning and shipping of waste tank samplers, homogenization of solutions/slurries/sludges, and test sample preparation for bioassay quality control program.« less

  19. Psychometric Properties of the Persian Version of the Simple Shoulder Test (SST) Questionnaire.

    PubMed

    Ebrahimzadeh, Mohammad H; Vahedi, Ehsan; Baradaran, Aslan; Birjandinejad, Ali; Seyyed-Hoseinian, Seyyed-Hadi; Bagheri, Farshid; Kachooei, Amir Reza

    2016-10-01

    To validate the Persian version of the simple shoulder test in patients with shoulder joint problems. Following Beaton`s guideline, translation and back translation was conducted. We reached to a consensus on the Persian version of SST. To test the face validity in a pilot study, the Persian SST was administered to 20 individuals with shoulder joint conditions. We enrolled 148 consecutive patients with shoulder problem to fill the Persian SST, shoulder specific measure including Oxford shoulder score (OSS) and two general measures including DASH and SF-36. To measure the test-retest reliability, 42 patients were randomly asked to fill the Persian-SST for the second time after one week. Cronbach's alpha coefficient was used to demonstrate internal consistency over the 12 items of Persian-SST. ICC for the total questionnaire was 0.61 showing good and acceptable test-retest reliability. ICC for individual items ranged from 0.32 to 0.79. The total Cronbach's alpha was 0.84 showing good internal consistency over the 12 items of the Persian-SST. Validity testing showed strong correlation between SST and OSS and DASH. The correlation with OSS was positive while with DASH scores was negative. The correlation was also good to strong with all physical and most mental subscales of the SF-36. Correlation coefficient was higher with DASH and OSS in compare to SF-36. Persian version of SST found to be valid and reliable instrument for shoulder joint pain and function assessment in Iranian population.

  20. Separating the Effects of Tropical Atlantic and Pacific SST-driven Climate Variability on Amazon Carbon Exchange

    NASA Astrophysics Data System (ADS)

    Liptak, J.; Keppel-Aleks, G.

    2016-12-01

    Amazon forests store an estimated 25% percent of global terrestrial carbon per year1, 2, but the responses of Amazon carbon uptake to climate change is highly uncertain. One source of this uncertainty is tropical sea surface temperature variability driven by teleconnections. El Nino-Southern Oscillation (ENSO) is a key driver of year-to-year Amazon carbon exchange, with associated temperature and precipitation changes favoring net carbon storage in La Nina years, and net carbon release during El Nino years3. To determine how Amazon climate and terrestrial carbon fluxes react to ENSO alone and in concert with other SST-driven teleconnections such as the Atlantic Multidecadal Oscillation (AMO), we force the atmosphere (CAM5) and land (CLM4) components of the CESM(BGC) with prescribed monthly SSTs over the period 1950—2014 in a Historical control simulation. We then run an experiment (PAC) with time-varying SSTs applied only to the tropical equatorial Pacific Ocean, and repeating SST seasonal cycle climatologies elsewhere. Limiting SST variability to the equatorial Pacific indicates that other processes enhance ENSO-driven Amazon climate anomalies. Compared to the Historical control simulation, warming, drying and terrestrial carbon loss over the Amazon during El Nino periods are lower in the PAC simulation, especially prior to 1990 during the cool phase of the AMO. Cooling, moistening, and net carbon uptake during La Nina periods are also reduced in the PAC simulation, but differences are greater after 1990 during the warm phase of the AMO. By quantifying the relationships among climate drivers and carbon fluxes in the Historical and PAC simulations, we both assess the sensitivity of these relationships to the magnitude of ENSO forcing and quantify how other teleconnections affect ENSO-driven Amazon climate feedbacks. We expect that these results will help us improve hypotheses for how Atlantic and Pacific climate trends will affect future Amazon carbon carbon

  1. A spurious warming trend in the NMME equatorial Pacific SST hindcasts

    NASA Astrophysics Data System (ADS)

    Shin, Chul-Su; Huang, Bohua

    2017-06-01

    Using seasonal hindcasts of six different models participating in the North American Multimodel Ensemble project, the trend of the predicted sea surface temperature (SST) in the tropical Pacific for 1982-2014 at each lead month and its temporal evolution with respect to the lead month are investigated for all individual models. Since the coupled models are initialized with the observed ocean, atmosphere, land states from observation-based reanalysis, some of them using their own data assimilation process, one would expect that the observed SST trend is reasonably well captured in their seasonal predictions. However, although the observed SST features a weak-cooling trend for the 33-year period with La Niña-like spatial pattern in the tropical central-eastern Pacific all year round, it is demonstrated that all models having a time-dependent realistic concentration of greenhouse gases (GHG) display a warming trend in the equatorial Pacific that amplifies as the lead-time increases. In addition, these models' behaviors are nearly independent of the starting month of the hindcasts although the growth rates of the trend vary with the lead month. This key characteristic of the forecasted SST trend in the equatorial Pacific is also identified in the NCAR CCSM3 hindcasts that have the GHG concentration for a fixed year. This suggests that a global warming forcing may not play a significant role in generating the spurious warming trend of the coupled models' SST hindcasts in the tropical Pacific. This model SST trend in the tropical central-eastern Pacific, which is opposite to the observed one, causes a developing El Niño-like warming bias in the forecasted SST with its peak in boreal winter. Its implications for seasonal prediction are discussed.

  2. Architectural Design for European SST System

    NASA Astrophysics Data System (ADS)

    Utzmann, Jens; Wagner, Axel; Blanchet, Guillaume; Assemat, Francois; Vial, Sophie; Dehecq, Bernard; Fernandez Sanchez, Jaime; Garcia Espinosa, Jose Ramon; Agueda Mate, Alberto; Bartsch, Guido; Schildknecht, Thomas; Lindman, Niklas; Fletcher, Emmet; Martin, Luis; Moulin, Serge

    2013-08-01

    The paper presents the results of a detailed design, evaluation and trade-off of a potential European Space Surveillance and Tracking (SST) system architecture. The results have been produced in study phase 1 of the on-going "CO-II SSA Architectural Design" project performed by the Astrium consortium as part of ESA's Space Situational Awareness Programme and are the baseline for further detailing and consolidation in study phase 2. The sensor network is comprised of both ground- and space-based assets and aims at being fully compliant with the ESA SST System Requirements. The proposed ground sensors include a surveillance radar, an optical surveillance system and a tracking network (radar and optical). A space-based telescope system provides significant performance and robustness for the surveillance and tracking of beyond-LEO target objects.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAMS TL; GUILLOT S

    Scoping laboratory scale tests were performed at the Chemical Engineering Department of the Georgia Institute of Technology (Georgia Tech), and the Hanford 222-S Laboratory, involving double-shell tank (DST) and single-shell tank (SST) Hanford waste simulants. These tests established the viability of the Lithium Hydrotalcite precipitation process as a solution to remove aluminum and recycle sodium hydroxide from the Hanford tank waste, and set the basis of a validation test campaign to demonstrate a Technology Readiness Level of 3.

  4. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J.; Click, D.; Lambert, D.

    2011-11-16

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from Hmore » Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the

  5. Novel, potent, and radio-iodinatable somatostatin receptor 1 (sst1) selective analogues.

    PubMed

    Erchegyi, Judit; Cescato, Renzo; Grace, Christy Rani R; Waser, Beatrice; Piccand, Véronique; Hoyer, Daniel; Riek, Roland; Rivier, Jean E; Reubi, Jean Claude

    2009-05-14

    The proposed sst(1) pharmacophore (J. Med. Chem. 2005, 48, 523-533) derived from the NMR structures of a family of mono- and dicyclic undecamers was used to design octa-, hepta-, and hexamers with high affinity and selectivity for the somatostatin sst(1) receptor. These compounds were tested for their in vitro binding properties to all five somatostatin (SRIF) receptors using receptor autoradiography; those with high SRIF receptor subtype 1 (sst(1)) affinity and selectivity were shown to be agonists when tested functionally in a luciferase reporter gene assay. Des-AA(1,4-6,10,12,13)-[DTyr(2),DAgl(NMe,2naphthoyl)(8),IAmp(9)]-SRIF-Thr-NH(2) (25) was radio-iodinated ((125)I-25) and specifically labeled sst(1)-expressing cells and tissues. 3D NMR structures were calculated for des-AA(1,4-6,10,12,13)-[DPhe(2),DTrp(8),IAmp(9)]-SRIF-Thr-NH(2) (16), des-AA(1,2,4-6,10,12,13)-[DAgl(NMe,2naphthoyl)(8),IAmp(9)]-SRIF-Thr-NH(2) (23), and des-AA(1,2,4-6,10,12,13)-[DAgl(NMe,2naphthoyl)(8),IAmp(9),Tyr(11)]-SRIF-NH(2) (27) in DMSO. Though the analogues have the sst(1) pharmacophore residues at the previously determined distances from each other, the positioning of the aromatic residues in 16, 23, and 27 is different from that described earlier, suggesting an induced fit mechanism for sst(1) binding of these novel, less constrained sst(1)-selective family members.

  6. Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Nawaz, Kashif; Baxter, Van D.

    Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus watermore » tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. In conclusion, the HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.« less

  7. Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser

    DOE PAGES

    Shen, Bo; Nawaz, Kashif; Baxter, Van D.; ...

    2017-10-31

    Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus watermore » tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. In conclusion, the HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.« less

  8. Research advances and challenges in one-dimensional modeling of secondary settling tanks--a critical review.

    PubMed

    Li, Ben; Stenstrom, M K

    2014-11-15

    Sedimentation is one of the most important processes that determine the performance of the activated sludge process (ASP), and secondary settling tanks (SSTs) have been frequently investigated with the mathematical models for design and operation optimization. Nevertheless their performance is often far from satisfactory. The starting point of this paper is a review of the development of settling theory, focusing on batch settling and the development of flux theory, since they played an important role in the early stage of SST investigation. The second part is an explicit review of the established 1-D SST models, including the relevant physical law, various settling behaviors (hindered, transient, and compression settling), the constitutive functions, and their advantages and disadvantages. The third part is a discussion of numerical techniques required to solve the governing equation, which is usually a partial differential equation. Finally, the most important modeling challenges, such as settleability description, settling behavior understanding, are presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Effect of Radiative Cooling on Cloud-SST Relationship within the Tropical Pacific Region

    NASA Technical Reports Server (NTRS)

    Sui, Chung-Hsiung; Ho, Chang-Hoi; Chou, Ming-Dah; Lau, Ka-Ming; Li, Xiao-Fan; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A recent analysis found a negative correlation between the area-mean cloud amount and the corresponding mean Sea Surface Temperature (SST) within the cloudy areas. The SST-cloud relation becomes more evident when the SST contrast between warm pool and surrounding cold pool (DSST) in the tropical Pacific is stronger than normal. The above feature is related to the finding that the strength of subsidence over the cold pool is limited by radiative cooling because of its small variability. As a result, the area of radiatively-driven subsidence must expand in response to enhanced low-boundary forcing due to SST warming or enhanced basin-scale DSST. This leads to more cloud free regions and less cloudy regions. The increased ratio of cloud-free areas to cloudy areas leads to more high SST areas (>29.50C) due to enhanced solar radiation.

  10. DEMONSTRATION OF THE NEXT-GENERATION CAUSTIC-SIDE SOLVENT EXTRACTION SOLVENT WITH 2-CM CENTRIFUGAL CONTRACTORS USING TANK 49H WASTE AND WASTE SIMULANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.; Peters, T.; Crowder, M.

    2011-09-27

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. Conclusions from this work include the following. The CSSX process is capable of reducing {sup 137}Cs in high level radioactivemore » waste by a factor of more than 40,000 using five extraction, two scrub, and five strip stages. Tests demonstrated extraction and strip section stage efficiencies of greater than 93% for the Tank 49H waste test and greater than 88% for the simulant waste test. During a test with HLW, researchers processed 39 liters of Tank 49H solution and the waste raffinate had an average decontamination factor (DF) of 6.78E+04, with a maximum of 1.08E+05. A simulant waste solution ({approx}34.5 liters) with an initial Cs concentration of 83.1 mg/L was processed and had an average DF greater than 5.9E+03, with a maximum DF of greater than 6.6E+03. The difference may be attributable to differences in contactor stage efficiencies. Test results showed the solvent can be stripped of cesium and recycled for {approx}25 solvent turnovers without the occurrence of any measurable solvent degradation or negative effects from minor components. Based on the performance of the 12-stage 2-cm apparatus with the Tank 49H HLW, the projected DF for MCU with seven extraction, two scrub, and seven strip stages operating at a nominal efficiency of 90% is {approx}388,000. At 95% stage efficiency, the DF in MCU would be {approx}3.2 million. Carryover of organic solvent in aqueous streams (and aqueous in

  11. Wintertime atmospheric response to decadal SST anomalies in the North Pacific frontal zone and its relationship to dominant atmospheric internal variability

    NASA Astrophysics Data System (ADS)

    Okajima, S.; Nakamura, H.; Nishii, K.; Miyasaka, T.; Kuwano-Yoshida, A.; Taguchi, B.

    2016-02-01

    A decadal-scale warm SST anomaly observed in the North Pacific subarctic frontal zone (SAFZ) tends to accompany a basin-scale anticyclonic anomaly in the troposphere that peaks in January. A set of sensitivity experiments conducted with an AGCM simulates an anticyclonic ensemble response over the North Pacific in January. As observed, the simulated anticyclonic response is in equivalent barotropic structure and maintained mainly through energy conversion from the ensemble mean circulation realized under the climatological SST, suggesting that the anomaly may have a characteristic of a dynamical mode. Conversion of both available potential energy (APE) and kinetic energy (KE) from the mean flow is important for the observed anomaly, while only the former is important for the model response. This is because the model response is located to the north of the jet core region whereas the observed anomaly is straddling the jet exit region, which appears to be in correspondence to the northwestward displacement of the center of the dominant atmospheric internal variability in our model relative to the observed center. Transient eddy feedback forcing also acts to maintain the observed anomaly rather efficiently, while its efficiency is much lower for the simulated response, which seems to be consistent with the poleward displacement of the anticyclonic response from the jet and stormtrack axes. A multi-decadal integration of our coupled GCM also suggests that atmospheric internal variability may be important for determining atmospheric response to the decadal SST variability of the SAFZ.

  12. Heat flux exchange estimation by using ATSR SST data in TOGA area

    NASA Astrophysics Data System (ADS)

    Xue, Yong; Lawrence, Sean P.; Llewellyn-Jones, David T.

    1995-12-01

    The study of phenomena such as ENSO requires consideration of the dynamics and thermodynamics of the coupled ocean-atmosphere system. The dynamic and thermal properties of the atmosphere and ocean are directly affected by air-sea transfers of fluxes of momentum, heat and moisture. In this paper, we present results of turbulent heat fluxes calculated by using two years (1992 and 1993) monthly average TOGA data and ATSR SST data in TOGA area. A comparison with published results indicates good qualitative agreement. Also, we compared the results of heat flux exchange by using ATSR SST data and by using the TOGA bucket SST data. The ATSR SST data set has been shown to be useful in helping to estimate the large space scale heat flux exchange.

  13. SST algorithm based on radiative transfer model

    NASA Astrophysics Data System (ADS)

    Mat Jafri, Mohd Z.; Abdullah, Khiruddin; Bahari, Alui

    2001-03-01

    An algorithm for measuring sea surface temperature (SST) without recourse to the in-situ data for calibration has been proposed. The algorithm which is based on the recorded infrared signal by the satellite sensor is composed of three terms, namely, the surface emission, the up-welling radiance emitted by the atmosphere, and the down-welling atmospheric radiance reflected at the sea surface. This algorithm requires the transmittance values of thermal bands. The angular dependence of the transmittance function was modeled using the MODTRAN code. Radiosonde data were used with the MODTRAN code. The expression of transmittance as a function of zenith view angle was obtained for each channel through regression of the MODTRAN output. The Ocean Color Temperature Scanner (OCTS) data from the Advanced Earth Observation Satellite (ADEOS) were used in this study. The study area covers the seas of the North West of Peninsular Malaysia region. The in-situ data (ship collected SST values) were used for verification of the results. Cloud contaminated pixels were masked out using the standard procedures which have been applied to the Advanced Very High Resolution Radiometer (AVHRR) data. The cloud free pixels at the in-situ sites were extracted for analysis. The OCTS data were then substituted in the proposed algorithm. The appropriate transmittance value for each channel was then assigned in the calculation. Assessment for the accuracy was made by observing the correlation and the rms deviations between the computed and the ship collected values. The results were also compared with the results from OCTS multi- channel sea surface temperature algorithm. The comparison produced high correlation values. The performance of this algorithm is comparable with the established OCTS algorithm. The effect of emissivity on the retrieved SST values was also investigated. SST map was generated and contoured manually.

  14. Implementation plan for underground waste storage tank surveillance and stabilization improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dukelow, G.T.; Maupin, V.D.; Mihalik, L.A.

    1989-04-01

    Several studies have addressed the need to upgrade the methods currently used for surveillance of underground waste storage tanks, particularly single-shell tanks (SST), which are susceptible to leaks and intrusions. Fifty tasks were proposed to enhance the existing surveillance program; however, prudent budget management dictates that only the tasks with the highest potential for success be selected and funded. This plan identifies fourteen inexpensive improvements that may be implemented in less than two years. Recent developments stress the need to complete interim stabilization of these tanks more quickly than now budgeted and to identify methods to salvage or eliminate themore » interstitial liquid left behind after saltwell jet-pumping. The plan calls for the use of available resources to remove saltwell liquid from SSTs as rapidly as possible rather than committing to new surveillance technologies that might not lead to near-term improvements. This plan describes the selection criteria and provides cost estimates and schedules for implementing the recommendations of the task forces. The proposed improvements result in completion of jet-pumping in FY 1994, two years ahead of the current FY 1996 milestone. While the accelerated plan requires more funding in the early years, the total cost will be the same as completing the work in FY 1996.« less

  15. Assessment of Tank 241-S-112 Liquid Waste Mixing in Tank 241-SY-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Yasuo; Trent, Donald S.; Wells, Beric E.

    The objectives of this study were to evaluate mixing of liquid waste from Tank 241-S-112 with waste in Tank 241-SY-101 and to determine the properties of the resulting waste for the cross-site transfer to avoid potential double-shell tank corrosion and pipeline plugging. We applied the time-varying, three-dimensional computer code TEMPEST to Tank SY-101 as it received the S-112 liquid waste. The model predicts that temperature variations in Tank SY-101 generate a natural convection flow that is very slow, varying from about 7 x 10{sup -5} to 1 x 10{sup -3} ft/sec (0.3 to about 4 ft/hr) in most areas. Thus,more » natural convection would eventually mix the liquid waste in SY-101 but would be very slow to achieve nearly complete mixing. These simulations indicate that the mixing of S-112 and SY-101 wastes in Tank SY-101 is a very slow process, and the density difference between the two wastes would further limit mixing. It is expected to take days or weeks to achieve relatively complete mixing in Tank SY-101.« less

  16. Impact of the global SST gradients changes on the Antarctic ice sheet surface mass balance through the Plio/Pliocene transition

    NASA Astrophysics Data System (ADS)

    Colleoni, Florence; Florindo, Fabio; McKay, Robert; Golledge, Nicholas; Sangiorgi, Francesca; Montoli, Enea; Masina, Simona; Cherchi, Annalisa; De Santis, Laura

    2017-04-01

    Sea Surface Temperatures (SST) reconstructions have shown that the Pliocene global zonal and meridional temperature gradients were different from today, implying changes of atmospheric and oceanic circulations, and thus of the main teleconnections. The impact of the main atmospheric teleconnections on the surface mass balance (SMB) of the Antarctic ice sheet (AIS) in the past has been seldom investigated. The ANDRILL marine record have shown that at the end of the Pliocene, the ice sheet expanded in the Ross Sea concomitantly with the expansion of the sea ice cover. This would have enhanced the formation of bottom waters that in turn, would have fostered upwelling along the West African coast and along the coast of Peru. The impact of Antarctica on the tropical climate dynamics has been shown by previous studies. To close the loop, this work investigates the impact of the tropical and high-latitude SST cooling on the main atmospheric teleconnections and then on the Antarctic SMB through the Plio/Pleistocene transition. Idealized Atmospheric General Circulation Model simulations are performed, in which high-latitude and tropical SST cooling are prescribed starting from the Pliocene SST. The atmospheric conditions obtained are then used to force an ice sheet model and a stand-alone energy balance model to investigate the impact on the SMB of the two main atmospheric teleconnections active in the Southern Hemisphere, namely the Southern Annular Mode (SAM) and the Pacific-South-American oscillation (PSA. In agreement with ANDRILL marine records, results show that the Easterlies strengthen along the Antarctic coasts during the Plio/Pleistocene transition. This, however, occurs only after cooling the tropical SSTs in the AGCM simulations. More importantly, the cooling of the tropical SST, through the strengthening of the PSA, has the largest influence on the spatial distribution of the climatic anomalies over Antarctica. This explains most of the SMB patterns simulated

  17. Recent SST trends and Flood Disasters in Brazil

    NASA Astrophysics Data System (ADS)

    Yamashiki, Y.; Behera, S. K.; Inoue, S.; Netrananda, S.; Silva, R. D.; Takara, K. T.; Yamagata, T.

    2010-12-01

    We analyzed recent variations in the sea surface temperature (SST) anomalies of Pacific and Atlantic Oceans to understand their roles in extreme discharge of Amazon River Basin. In general, higher than monthly average discharge appears when La Niña condition forms and lower than monthly average discharge appears when El Niño condition forms. We also investigated the relationship between SST anomalies and recent floods in Brazil during the period of 1980-2010. Most severe floods (e.g. 2003 and 2010 Rio de Janeiro-São Paulo Flood) in austral summer occurred when El Niño Modoki appears in the Pacific Ocean. In addition, warm waters in tropical South Atlantic Ocean between American and African Coast also helped the moisture convergence to the affected region. Floods in some other locations (for example, Itaipava flood occurred in Maranhao State in 2008) occurred when a La Niña Modoki appeared in Pacific Ocean. These flood disasters in Brazil associated with climate phenomena may increase due to warmer SST trend under the global warming stress.

  18. Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system.

    PubMed

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2017-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts.

  19. Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system

    PubMed Central

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2018-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts. PMID:29628531

  20. Assimilation for Skin SST in the NASA GEOS Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2017-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modelling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near-surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extend beyond the thermal infrared bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld insitu buoy measurement of near-surface SST. Evaluation of forecast skill scores show neutral to marginal benefit from the modified Ts.

  1. Radio frequency tank eigenmode sensor for propellant quantity gauging

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A. (Inventor)

    2013-01-01

    A method for measuring the quantity of fluid in a tank may include the steps of selecting a match between a measured set of electromagnetic eigenfrequencies and a simulated plurality of sets of electromagnetic eigenfrequencies using a matching algorithm, wherein the match is one simulated set of electromagnetic eigenfrequencies from the simulated plurality of sets of electromagnetic eigenfrequencies, and determining the fill level of the tank based upon the match.

  2. Sinda/Fluint Stratfied Tank Modeling

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara A.

    2014-01-01

    A general purpose SINDA/FLUINT (S/F) stratified tank model was created and used to simulate the Ksite1 LH2 liquid self-pressurization tests as well as axial jet mixing within the liquid region of the tank. The S/F model employed the use of stratified layers, i.e. S/F lumps, in the vapor ullage as well as in the liquid region. The model was constructed to analyze a general purpose stratified tank that could incorporate the following features: Multiple or singular lumps in the liquid and vapor regions of the tank, Real gases (also mixtures) and compressible liquids, Venting, pressurizing, and draining, Condensation and evaporation/boiling, Wall heat transfer, Elliptical, cylindrical, and spherical tank geometries. Extensive user logic was used to allow for tailoring of the above features to specific cases. Most of the code input for a specific case could be done through the Registers Data Block.

  3. The Pacific SST response to volcanic eruptions over the past millennium based on the CESM-LME

    NASA Astrophysics Data System (ADS)

    Man, W.; Zuo, M.

    2017-12-01

    The impact of the northern hemispheric, tropical and southern hemispheric volcanic eruptions on the Pacific sea surface temperature (SST) and its mechanism are investigated using the Community Earth System Model Last Millennium Ensemble. Analysis of the simulations indicates that the Pacific SST features a significant El Niño-like pattern a few months after the northern hemispheric and tropical eruptions, and with a weaker such tendency after the southern hemispheric eruptions. Furthermore, the Niño3 index peaks lagging one and a half years after the northern hemispheric and tropical eruptions. Two years after all three types of volcanic eruptions, a La Niña-like pattern over the equatorial Pacific is observed, which seems to form an El Niño-Southern Oscillation (ENSO) cycle. In addition, the westerly anomalies at 850 hPa over the western-to-central Pacific appear ahead of the warm SST; hence, the El Niño-like warming over the eastern Pacific can be attributed to the weakening of the trade winds. We further examined the causes of westerly anomalies and find that a shift of the intertropical convergence zone (ITCZ) can explain the El Niño-like response to the northern hemispheric eruptions, which is not applicable for tropical or southern hemispheric eruptions. Instead, the reduction in the zonal equatorial SST gradient through the ocean dynamical thermostat mechanism, combined with the land-sea thermal contrast between the Maritime Continent (MC) and the surrounding ocean and the divergent wind induced by the decreased precipitation over the MC, can trigger the westerly anomalies over the equatorial Pacific, which is applicable for all three types of eruptions.

  4. SELENE mission: mathematical model for SST Doppler measurements

    NASA Astrophysics Data System (ADS)

    Ping, J.; Kono, Y.; Kawano, N.; Hanada, H.; Matsumoto, K.

    2001-09-01

    Japanese lunar exploration mission, SELENE, has been planned to be launched into space by using H II-a rocket in the Summer of 2004. This mission is composed of 3 subsatellites, a main lunar orbiter, a relay satellite and a free flying VLBI radio source. One of its main scientific objectives is the estimation of high order and degree spherical harmonic coefficients for the lunar gravity field. Different tracking methods will be employed in SELENE. The key tracking method is 4 way Satellite-to-Satellite Tracking (SST) technique. By this way, the tracking data can be obtained through the relay when the low altitude main orbiter is flying at the far-side of the Moon and can not be "seen" from the Earth. To success the historical tracking data, a complete coverage of Doppler tracking from an orbiter at sufficiently low altitude with high tracking accuracy can be obtained. The 4 way SST has various configurations. For SELENE, the SST tracking mode is introduced here, the mathematical relation between range rate and 4 way Doppler count number is established, and a data processing stream frame by using GEODYN II is suggested.

  5. A simulation for gravity fine structure recovery from low-low GRAVSAT SST data

    NASA Technical Reports Server (NTRS)

    Estes, R. H.; Lancaster, E. R.

    1976-01-01

    Covariance error analysis techniques were applied to investigate estimation strategies for the low-low SST mission for accurate local recovery of gravitational fine structure, considering the aliasing effects of unsolved for parameters. A 5 degree by 5 degree surface density block representation of the high order geopotential was utilized with the drag-free low-low GRAVSAT configuration in a circular polar orbit at 250 km altitude. Recovery of local sets of density blocks from long data arcs was found not to be feasible due to strong aliasing effects. The error analysis for the recovery of local sets of density blocks using independent short data arcs demonstrated that the estimation strategy of simultaneously estimating a local set of blocks covered by data and two "buffer layers" of blocks not covered by data greatly reduced aliasing errors.

  6. The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations

    USGS Publications Warehouse

    Anderson, J.L.; Balaji, V.; Broccoli, A.J.; Cooke, W.F.; Delworth, T.L.; Dixon, K.W.; Donner, L.J.; Dunne, K.A.; Freidenreich, S.M.; Garner, S.T.; Gudgel, R.G.; Gordon, C.T.; Held, I.M.; Hemler, R.S.; Horowitz, L.W.; Klein, S.A.; Knutson, T.R.; Kushner, P.J.; Langenhost, A.R.; Lau, N.-C.; Liang, Z.; Malyshev, S.L.; Milly, P.C.D.; Nath, M.J.; Ploshay, J.J.; Ramaswamy, V.; Schwarzkopf, M.D.; Shevliakova, E.; Sirutis, J.J.; Soden, B.J.; Stern, W.F.; Thompson, L.A.; Wilson, R.J.; Wittenberg, A.T.; Wyman, B.L.

    2004-01-01

    The configuration and performance of a new global atmosphere and land model for climate research developed at the Geophysical Fluid Dynamics Laboratory (GFDL) are presented. The atmosphere model, known as AM2, includes a new gridpoint dynamical core, a prognostic cloud scheme, and a multispecies aerosol climatology, as well as components from previous models used at GFDL. The land model, known as LM2, includes soil sensible and latent heat storage, groundwater storage, and stomatal resistance. The performance of the coupled model AM2-LM2 is evaluated with a series of prescribed sea surface temperature (SST) simulations. Particular focus is given to the model's climatology and the characteristics of interannual variability related to El Nin??o-Southern Oscillation (ENSO). One AM2-LM2 integration was perfor med according to the prescriptions of the second Atmospheric Model Intercomparison Project (AMIP II) and data were submitted to the Program for Climate Model Diagnosis and Intercomparison (PCMDI). Particular strengths of AM2-LM2, as judged by comparison to other models participating in AMIP II, include its circulation and distributions of precipitation. Prominent problems of AM2-LM2 include a cold bias to surface and tropospheric temperatures, weak tropical cyclone activity, and weak tropical intraseasonal activity associated with the Madden-Julian oscillation. An ensemble of 10 AM2-LM 2 integrations with observed SSTs for the second half of the twentieth century permits a statistically reliable assessment of the model's response to ENSO. In general, AM2-LM2 produces a realistic simulation of the anomalies in tropical precipitation and extratropical circulation that are associated with ENSO. ?? 2004 American Meteorological Society.

  7. The application of super wavelet finite element on temperature-pressure coupled field simulation of LPG tank under jet fire

    NASA Astrophysics Data System (ADS)

    Zhao, Bin

    2015-02-01

    Temperature-pressure coupled field analysis of liquefied petroleum gas (LPG) tank under jet fire can offer theoretical guidance for preventing the fire accidents of LPG tank, the application of super wavelet finite element on it is studied in depth. First, review of related researches on heat transfer analysis of LPG tank under fire and super wavelet are carried out. Second, basic theory of super wavelet transform is studied. Third, the temperature-pressure coupled model of gas phase and liquid LPG under jet fire is established based on the equation of state, the VOF model and the RNG k-ɛ model. Then the super wavelet finite element formulation is constructed using the super wavelet scale function as interpolating function. Finally, the simulation is carried out, and results show that the super wavelet finite element method has higher computing precision than wavelet finite element method.

  8. Assessing the applicability of organic SST proxies in an upwelling region (Arabian Sea)

    NASA Astrophysics Data System (ADS)

    Lattaud, J.; van Erk, M. R.; Reichart, G. J.; Schulz, H.; S Sinninghe Damsté, J.; Schouten, S.

    2017-12-01

    Multiple organic proxies have the potential to reconstruct sea surface temperature (SST), but their behaviour is not completely understood within upwelling areas. This holds in particular for the recently developed Long chain Diol Index1 (LDI), based on the ratio of 1,15-diols over 1,13-diols, both likely produced by Eustigmatophytes. We tested the applicability of the LDI by comparing it to the more established temperature proxies TEX86 and Uk¢37 in a sediment core (spanning the last 76 ky) from the northern Arabian Sea and in surface sediments (Pakistan margin). In the surface sediments, Uk¢37- and LDI-SSTs agree well with annual mean SST, but the TEX86-SST substantially overestimates SST. A better agreement is observed, when the 0-200 m TEX86 calibration is used, suggesting TEX86 reflects subsurface temperatures. The results from the sediment core reveal that the SST records differ in absolute reconstructed temperature and show different patterns. TEX86 subsurface temperatures show a continuous increase toward the Holocene and no stadial/interstadial differences, while the LDI-SST is constant around 26°C with the exception of some short-term cooling events during periods of intensified upwelling. The Uk¢37-SST varies between 22 and 26°C and follows the global δ18Obenthic foram curve and thus is representing mean annual SST in this region3. During stadials, the reduced monsoon and low upwelling intensity resulted in warming of the subsurface waters2, as indicated by higher TEX86 temperatures, while global cooling led to colder surface waters as reflected in lower Uk¢37-SSTs, thus reducing the thermal gradient in the water column2. During the interstadials, which are periods of strong upwelling3, there is a high proportion of 1,14-diols (>40%). This probably disturbs the LDI-SST signal because the diatoms that produce the 1,14-diols are also generating small amounts of the 1,13-diols4. This suggests that care has to be taken in applying the LDI in upwelling

  9. Study on ambient noise generated from breaking waves simulated by a wave maker in a tank

    NASA Astrophysics Data System (ADS)

    Wei, Ruey-Chang; Chan, Hsiang-Chih

    2002-11-01

    This paper studies ambient noise in the surf zone that was simulated by a piston-type wave maker in a tank. The experiment analyzed the bubbles of a breaking wave by using a hydrophone to receive the acoustic signal, and the images of bubbles were recorded by a digital video camera to observe the distribution of the bubbles. The slope of the simulated seabed is 1:5, and the dimensions of the water tank are 35 m x1 m x1.2 m. The studied parameters of ambient noise generated by breaking wave bubbles were wave height, period, and water depth. Short-time Fourier transform was applied to obtain the acoustic spectrum of bubbles, MATLAB programs were used to calculate mean sound pressure level, and determine the number of bubbles. Bubbles with resonant frequency from 0.5 to 10 kHz were studied, counted from peaks in the spectrum. The number of bubbles generated by breaking waves could be estimated by the bubbles energy distributions. The sound pressure level of ambient noise was highly related to the wave height and period, with correlation coefficient 0.7.

  10. Correlation models for waste tank sludges and slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, L.A.; Trent, D.S.

    This report presents the results of work conducted to support the TEMPEST computer modeling under the Flammable Gas Program (FGP) and to further the comprehension of the physical processes occurring in the Hanford waste tanks. The end products of this task are correlation models (sets of algorithms) that can be added to the TEMPEST computer code to improve the reliability of its simulation of the physical processes that occur in Hanford tanks. The correlation models can be used to augment, not only the TEMPEST code, but other computer codes that can simulate sludge motion and flammable gas retention. This reportmore » presents the correlation models, also termed submodels, that have been developed to date. The submodel-development process is an ongoing effort designed to increase our understanding of sludge behavior and improve our ability to realistically simulate the sludge fluid characteristics that have an impact on safety analysis. The effort has employed both literature searches and data correlation to provide an encyclopedia of tank waste properties in forms that are relatively easy to use in modeling waste behavior. These properties submodels will be used in other tasks to simulate waste behavior in the tanks. Density, viscosity, yield strength, surface tension, heat capacity, thermal conductivity, salt solubility, and ammonia and water vapor pressures were compiled for solutions and suspensions of sodium nitrate and other salts (where data were available), and the data were correlated by linear regression. In addition, data for simulated Hanford waste tank supernatant were correlated to provide density, solubility, surface tension, and vapor pressure submodels for multi-component solutions containing sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate.« less

  11. Operational use of high-resolution sst in a coupled sea ice-ocean model

    NASA Astrophysics Data System (ADS)

    Albretsen, A.

    2003-04-01

    A high-latitude, near real time, sea surface temperature (SST) product with 10 km resolution is developed at the Norwegian Meteorological Institute (met.no) through the EUMETSAT project OSI-SAF (Ocean and Sea Ice Satellite Application Facility). The product covers the Atlantic Ocean from 50N to 90N and is produced twice daily. A digitized SST and sea ice map is produced manually once a week at the Ice Mapping Service at met.no using all available information from the previous week. This map is the basis for a daily SST analysis, in which the most recent OSI-SAF SST products are successively overlaid. The resulting SST analysis field is then used in a simple data assimilation scheme in a coupled ice-ocean model to perform daily 10 days forecasts of ocean and sea ice variables. Also, the associated OSI-SAF sea ice concentration product, built from different polar orbiting satellites, is assimilated into the sea ice model. Preliminary estimates of impact on forecast skill and error statistics will be presented.

  12. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  13. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  14. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  15. The US CLIVAR Working Group on Drought: A Multi-Model Assessment of the Impact of SST Anomalies on Regional Drought

    NASA Astrophysics Data System (ADS)

    Schubert; Drought Working Group, S.

    2008-12-01

    The USCLIVAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include: What are mechanisms that maintain drought across the seasonal cycle and from one year to the next. What is the role of the land? What is the role of the different ocean basins, including the impact of El Nino/Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the Atlantic Multi-decadal Oscillation (AMO), and warming trends in the global oceans? The runs were done with several global atmospheric models including NASA/NSIPP-1, NCEP/GFS, GFDL/AM2, and NCAR CCM3 and CAM3. In addition, runs were done with the NCEP CFS (coupled atmosphere-ocean) model by employing a novel adjustment technique to nudge the coupled model towards the imposed SST forcing patterns. This talk provides an overview of the experiments and some initial results.

  16. The US CLIVAR Working Group on Drought: A Multi-Model Assessment of the Impact of SST Anomalies on Regional Drought

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2008-01-01

    The US CLIVAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include: What are mechanisms that maintain drought across the seasonal cycle and from one year to the next. What is the role of the land? What is the role of the different ocean basins, including the impact of EL Nino/Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the Atlantic Multi-decadal Oscillation (AMO), and warming trends in the global oceans? The runs were done with several global atmospheric models including NASA/NSIPP-1, NCEP/GFS, GFDL/AM2, and NCAR CCM3 and CAM3. In addition, runs were done with the NCEP CFS (coupled atmosphere-ocean) model by employing a novel adjustment technique to nudge the coupled model towards the imposed SST forcing patterns. This talk provides an overview of the experiments and some initial results.

  17. Seasonal trends of ACSPO VIIRS SST product characterized by the differences in orbital overlaps for various water types

    NASA Astrophysics Data System (ADS)

    Arnone, Robert; Vandermeulen, Ryan; Ignatov, Alexander; Cayula, Jean François

    2015-05-01

    The uncertainty of the Advanced Clear-Sky Processor for Oceans (ACSPO) Sea Surface Temperature (SST) products from the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite is examined using consecutive orbital overlaps in coastal waters of the Gulf of Mexico. The overlapping region on the left and right side of the VIIRS swath at 23-35 degree latitude covers approximately 500 pixels, which occur within 100 minutes and can provide a total of 4 SST products (2 day and 2 night) per day. By assuming the ocean SST should be similar on each side of the swath in this short time period, diel changes are examined and the uncertainty of SST retrieval is determined by comparing with buoy-derived SST. The VIIRS ACSPO product from NOAA STAR was used to determine the difference in SST within the overlapping regions. These SST changes are evaluated between consecutive orbits to validate the accuracy of SST algorithms on each side of the swath at high sensor angles. The SST product differences across the swath can result from surface glint, sensor angular impacts and sensor characteristics such as half angle mirror side (HAM) and calibration. The absolute diurnal SST changes that can occur within 100 minutes are evaluated with the buoy and VIIRS-derived SST. Sensitivity of the SST to water types is evaluated by measuring diurnal differences for open ocean, shelf and coastal waters. The 100 minute VIIRS SST overlap shows the capability to monitor the diurnal ocean heating and cooling which are associated with water mass optical absorption. The seasonal trends of the difference in SST at the overlaps for these water masses were tracked on a monthly basis. The unique capability of using the same VIIRS sensor for self-characterization can provide a method to define the uncertainty of ocean products and characterize the diurnal changes for different water types.

  18. A Tropical View of Atlantic Multidecadal SST Variability over the Last Two Millennia

    NASA Astrophysics Data System (ADS)

    Wurtzel, J. B.; Black, D. E.; Thunell, R.; Peterson, L. C.; Tappa, E. J.; Rahman, S.

    2011-12-01

    Instrumental and proxy-reconstructions show the existence of a 60-80 year periodicity in Atlantic sea surface temperature (SST), known as the Atlantic Multidecadal Oscillation (AMO). The AMO is correlated with circum-tropical Atlantic climate phenomena such as Sahel and Nordeste rainfall, as well as Atlantic hurricane patterns. Though it has been suggested that the AMO is controlled by thermohaline circulation, much debate exists as to whether the SST fluctuations are a result of anthropogenic forcing or natural climate variability. Our ability to address this issue has been limited by instrumental SST records that rarely extend back more than 50-100 years and proxy reconstructions that are largely terrestrial-based. Here we present a high-resolution marine sediment-derived reconstruction of seasonal tropical Atlantic SSTs from the Cariaco Basin spanning the past two millennia that is correlated with instrumental SSTs and the AMO for the period of overlap. The full record demonstrates that seasonality is largely controlled by variations in winter/spring SST. Wavelet analysis of the proxy data suggest that variability in the 60-80 year band evolved 250 years ago, while 40-60 year periodicities dominate earlier parts of the record. At least over the last millennia, multidecadal- and centennial- scale SST variability in the tropical Atlantic appears related to Atlantic meridional overturning circulation (AMOC) fluctuations and its associated northward heat transport that in turn may be driven by solar variability. An inverse correlation between the tropical proxy annual average SST record and Δ14C indicates that the tropics experienced positive SST anomalies during times of reduced solar activity, possibly as a result of decreased AMOC strength (Figure 1).

  19. Simscape Modeling of a Custom Closed-Volume Tank

    NASA Technical Reports Server (NTRS)

    Fischer, Nathaniel P.

    2015-01-01

    The library for Mathworks Simscape does not currently contain a model for a closed volume fluid tank where the ullage pressure is variable. In order to model a closed-volume variable ullage pressure tank, it was necessary to consider at least two separate cases: a vertical cylinder, and a sphere. Using library components, it was possible to construct a rough model for the cylindrical tank. It was not possible to construct a model for a spherical tank, using library components, due to the variable area. It was decided that, for these cases, it would be preferable to create a custom library component to represent each case, using the Simscape language. Once completed, the components were added to models, where filling and draining the tanks could be simulated. When the models were performing as expected, it was necessary to generate code from the models and run them in Trick (a real-time simulation program). The data output from Trick was then compared to the output from Simscape and found to be within acceptable limits.

  20. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  1. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  2. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  3. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  4. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  5. Development and Evaluation of an Airplane Fuel Tank Ullage Composition Model. Volume 2. Experimental Determination of Airplane Fuel Tank Ullage Compositions

    DTIC Science & Technology

    1987-10-01

    Airplane Fuel Tank Ullage Compositions ~C A. J. Roth BOEING MILITARY AIRPLANE COMPANY P. 0. Box 3707 Seattle, Washington 98124-2207 October 1987 FINAL...controlled mission simulations were made using the ModComp computer to control the Simulated Aircraft Fuel Tank Environment ( SAFTEI facility at Wright...of this report. iii PREFACE This is a final report of work conducted under F33615-84-C-2431 and submitted by the Boeing Military Airplane Company

  6. Influence of SST anomalies in low latitudes on atmospheric heat transport to the Arctic

    NASA Astrophysics Data System (ADS)

    Alekseev, Genrikh; Kuzmina, Svetlana; Glok, Natalia

    2017-04-01

    The purpose of the study is to assess the influence of SST anomalies in the low latitudes of the Atlantic, Indian and Pacific oceans to climatic change of the winter atmospheric meridional heat transport (MAHT) to the Arctic and to propose the mechanisms of this influence. Estimates of sensible and latent heat transport to the Arctic through the "Atlantic Gate" at 70 ° N in winter (December-February) 1980-2015 fulfilled on base ERA / Interim and monthly SST from HadISST were used. Multi-dimensional cross-correlation analysis was applied. The area and month in each ocean were found with maximal correlations between SST and winter MAHT. Mean SST in selected areas for each month of 1980-2015 were calculated and its correlations with MAHT were estimated. The correlation coefficients equal from 0.57 to 0.42, and after removing the noise increased up to 0.75 with MAHT lag from 27 to 30 months. The SST and MAHT series include together with positive trend the 5-7 years fluctuations. The mechanism of SST anomalies influence on winter MAHT to the Arctic includes the interaction of atmospheric (Hadley and Ferrel circulations, jet streams, NAO) and oceanic (Gulf Stream, the North Atlantic, the Norwegian currents) circulation patterns. To justify the proposed scheme the evaluation of the links between SST anomalies, the NAO index, the Atlantic water inflow to the Barents Sea, are investigated. The study is supported with RFBR project 15-05-03512.

  7. IceTop tank response to muons

    NASA Astrophysics Data System (ADS)

    Demirörs, L.; Beimforde, M.; Eisch, J.; Madsen, J.; Niessen, P.; Spiczak, G.M.; Stoyanov, S.; Tilav, S

    The calibration of the surface air shower array of IceCube - IceTop is based on identifying and understanding the muon response of each IceTop tank. Special calibration runs are carried out throughout the year and are supplemented with austral season measurements with tagging telescope for vertical muons. The vertical equivalent muon (VEM) charge value of each tank is determined and monitored by keeping track of its variation with time and temperature. We also study muons that stop and decay in the tank. The energy spectrum of the electrons from muon decay (Michel spectrum) is well known with maximum energy of 53 MeV. This energy is usually deposited inside the tank and can also be used as a calibration tool. We use both these spectra and compare them to a Monte Carlo simulation to gain a better understanding of the tank properties.

  8. A comparison of Argo nominal surface and near-surface temperature for validation of AMSR-E SST

    NASA Astrophysics Data System (ADS)

    Liu, Zenghong; Chen, Xingrong; Sun, Chaohui; Wu, Xiaofen; Lu, Shaolei

    2017-05-01

    Satellite SST (sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST (near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature ( 5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00-15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed (<5 m/s) and columnar water vapor >28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.

  9. The Use of Neural Networks in Identifying Error Sources in Satellite-Derived Tropical SST Estimates

    PubMed Central

    Lee, Yung-Hsiang; Ho, Chung-Ru; Su, Feng-Chun; Kuo, Nan-Jung; Cheng, Yu-Hsin

    2011-01-01

    An neural network model of data mining is used to identify error sources in satellite-derived tropical sea surface temperature (SST) estimates from thermal infrared sensors onboard the Geostationary Operational Environmental Satellite (GOES). By using the Back Propagation Network (BPN) algorithm, it is found that air temperature, relative humidity, and wind speed variation are the major factors causing the errors of GOES SST products in the tropical Pacific. The accuracy of SST estimates is also improved by the model. The root mean square error (RMSE) for the daily SST estimate is reduced from 0.58 K to 0.38 K and mean absolute percentage error (MAPE) is 1.03%. For the hourly mean SST estimate, its RMSE is also reduced from 0.66 K to 0.44 K and the MAPE is 1.3%. PMID:22164030

  10. Shall we upgrade one-dimensional secondary settler models used in WWTP simulators? - An assessment of model structure uncertainty and its propagation.

    PubMed

    Plósz, Benedek Gy; De Clercq, Jeriffa; Nopens, Ingmar; Benedetti, Lorenzo; Vanrolleghem, Peter A

    2011-01-01

    In WWTP models, the accurate assessment of solids inventory in bioreactors equipped with solid-liquid separators, mostly described using one-dimensional (1-D) secondary settling tank (SST) models, is the most fundamental requirement of any calibration procedure. Scientific knowledge on characterising particulate organics in wastewater and on bacteria growth is well-established, whereas 1-D SST models and their impact on biomass concentration predictions are still poorly understood. A rigorous assessment of two 1-DSST models is thus presented: one based on hyperbolic (the widely used Takács-model) and one based on parabolic (the more recently presented Plósz-model) partial differential equations. The former model, using numerical approximation to yield realistic behaviour, is currently the most widely used by wastewater treatment process modellers. The latter is a convection-dispersion model that is solved in a numerically sound way. First, the explicit dispersion in the convection-dispersion model and the numerical dispersion for both SST models are calculated. Second, simulation results of effluent suspended solids concentration (XTSS,Eff), sludge recirculation stream (XTSS,RAS) and sludge blanket height (SBH) are used to demonstrate the distinct behaviour of the models. A thorough scenario analysis is carried out using SST feed flow rate, solids concentration, and overflow rate as degrees of freedom, spanning a broad loading spectrum. A comparison between the measurements and the simulation results demonstrates a considerably improved 1-D model realism using the convection-dispersion model in terms of SBH, XTSS,RAS and XTSS,Eff. Third, to assess the propagation of uncertainty derived from settler model structure to the biokinetic model, the impact of the SST model as sub-model in a plant-wide model on the general model performance is evaluated. A long-term simulation of a bulking event is conducted that spans temperature evolution throughout a summer

  11. NAS Report Reveals Dangers From SST

    ERIC Educational Resources Information Center

    Fowler, Jo Ann V.

    1973-01-01

    Reported are some harmful effects of supersonic travel on humans and other living organisms. Slight decreases in ozone concentration as a result of emissions from the SST aircrafts reduce absorption of ultraviolet radiation. Effects of this may include skin cancer, distort balance of activity in cells and have a deleterious effect on insects and…

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reidel, Stephen P.

    This chapter summarizes the geology of the single-shell tank (SST) farms in the context of the region’s geologic history. This chapter is based on the information in the geology data package for the SST waste management areas and SST RFI Appendix E, which builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  13. MCNP Simulations of Measurement of Insulation Compaction in the Cryogenic Rocket Fuel Tanks at Kennedy Space Center by Fast/Thermal Neutron Techniques

    NASA Technical Reports Server (NTRS)

    Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.; Arens, E. E.

    2010-01-01

    MCNP simulations have been run to evaluate the feasibility of using a combination of fast and thermal neutrons as a nondestructive method to measure of the compaction of the perlite insulation in the liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC). Perlite is a feldspathic volcanic rock made up of the major elements Si, AI, Na, K and 0 along with some water. When heated it expands from four to twenty times its original volume which makes it very useful for thermal insulation. The cryogenic tanks at Kennedy Space Center are spherical with outer diameters of 69-70 feet and lined with a layer of expanded perlite with thicknesses on the order of 120 cm. There is evidence that some of the perlite has compacted over time since the tanks were built 1965, affecting the thermal properties and possibly also the structural integrity of the tanks. With commercially available portable neutron generators it is possible to produce simultaneously fluxes of neutrons in two energy ranges: fast (14 Me V) and thermal (25 me V). The two energy ranges produce complementary information. Fast neutrons produce gamma rays by inelastic scattering, which is sensitive to Fe and O. Thermal neutrons produce gamma rays by prompt gamma neutron activation (PGNA) and this is sensitive to Si, Al, Na, K and H. The compaction of the perlite can be measured by the change in gamma ray signal strength which is proportional to the atomic number densities of the constituent elements. The MCNP simulations were made to determine the magnitude of this change. The tank wall was approximated by a I-dimensional slab geometry with an 11/16" outer carbon steel wall, an inner stainless wall and 120 cm thick perlite zone. Runs were made for cases with expanded perlite, compacted perlite or with various void fractions. Runs were also made to simulate the effect of adding a moderator. Tallies were made for decay-time analysis from t=0 to 10 ms; total detected gamma

  14. The single mirror small size telescope (SST-1M) of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Bilnik, W.; Borkowski, J.; Cadoux, F.; Christov, A.; della Volpe, D.; Favre, Y.; Heller, M.; Kasperek, J.; Lyard, E.; Marszałek, A.; Moderski, R.; Montaruli, T.; Porcelli, A.; Prandini, E.; Rajda, P.; Rameez, M.; Schioppa, E., Jr.; Troyano Pujadas, I.; Zietara, K.; Blocki, J.; Bogacz, L.; Bulik, T.; Frankowski, A.; Grudzinska, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Lalik, K.; Mach, E.; Mandat, D.; Michałowski, J.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Stawarz, L.; Stodulska, M.; Stodulski, M.; Toscano, S.; Walter, R.; WiÈ©cek, M.; Zagdański, A.

    2016-07-01

    The Small Size Telescope with Single Mirror (SST-1M) is one of the proposed types of Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA). The CTA south array will be composed of about 100 telescopes, out of which about 70 are of SST class, which are optimized for the detection of gamma rays in the energy range from 5 TeV to 300 TeV. The SST-1M implements a Davies-Cotton optics with a 4 m dish diameter with a field of view of 9°. The Cherenkov light produced in atmospheric showers is focused onto a 88 cm wide hexagonal photo-detection plane, composed of 1296 custom designed large area hexagonal silicon photomultipliers (SiPM) and a fully digital readout and trigger system. The SST-1M camera has been designed to provide high performance in a robust as well as compact and lightweight design. In this contribution, we review the different steps that led to the realization of the telescope prototype and its innovative camera.

  15. The Role of SST and Large-Scale Dynamical Motions on the Onset and Shutdown of the Super Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    O'Brien, T. A.; Kashinath, K.; Collins, W.

    2015-12-01

    Over warm tropical oceans the increase in greenhouse trapping with increasing SST is faster than that of the surface emission, resulting in a decrease in outgoing longwave radiation at the top of the atmosphere (OLR) when SST increases, also known as the super greenhouse effect (SGE). If SGE is directly linked to SST changes, there are profound implications for positive climate feedbacks in the tropics. However, a number of studies in the last 20 years have provided compelling evidence that the OLR-SST relationship is coincidental rather than causal. These studies suggested that the onset of SGE is dominated by the large-scale dynamics, and that the apparent OLR-SST relationships disappear when individual large-scale regimes are considered. We show that these conclusions are contingent on the quality of the datasets used in the analysis, and that modern satellite observations and reanalyses support a strong relationship between SGE and SST. We find that the SGE occurs across all dynamical regimes, suggesting that this may be related primarily to SST rather than large-scale dynamics. We also find that the discontinuity in the relationship between OLR and SST at high SST (29.5 C), i.e. the shutdown of SGE, also occurs across almost all dynamical regimes, suggesting that this behavior may also be strongly linked to SST. Collectively, these results suggest that the SGE may actually be controlled by SST. Work is ongoing to understand the robustness of this new result to other datasets, to understand whether SST is truly the controlling variable, and to understand the mechanism by which OLR could decrease with increasing SST even under strongly subsiding conditions.

  16. DOTA-Derivatives of Octreotide Dicarba-Analogs with High Affinity for Somatostatin sst2,5 Receptors.

    PubMed

    Pratesi, Alessandro; Ginanneschi, Mauro; Lumini, Marco; Papini, Anna M; Novellino, Ettore; Brancaccio, Diego; Carotenuto, Alfonso

    2017-01-01

    In vivo somatostatin receptor scintigraphy is a valuable method for the visualization of human endocrine tumors and their metastases. In fact, peptide ligands of somatostatin receptors (sst's) conjugated with chelating agents are in clinical use. We have recently developed octreotide dicarba-analogs, which show interesting binding profiles at sst's. In this context, it was mandatory to explore the possibility that our analogs could maintain their activity also upon conjugation with DOTA. In this paper, we report and discuss the synthesis, binding affinity and conformational preferences of three DOTA-conjugated dicarba-analogs of octreotide. Interestingly, two conjugated analogs exhibited nanomolar affinities on sst 2 and sst 5 somatostatin receptor subtypes.

  17. The Sulfate Transporter SST1 Is Crucial for Symbiotic Nitrogen Fixation in Lotus japonicus Root Nodules

    PubMed Central

    Krusell, Lene; Krause, Katja; Ott, Thomas; Desbrosses, Guilhem; Krämer, Ute; Sato, Shusei; Nakamura, Yasukazu; Tabata, Satoshi; James, Euan K.; Sandal, Niels; Stougaard, Jens; Kawaguchi, Masayoshi; Miyamoto, Ai; Suganuma, Norio; Udvardi, Michael K.

    2005-01-01

    Symbiotic nitrogen fixation (SNF) by intracellular rhizobia within legume root nodules requires the exchange of nutrients between host plant cells and their resident bacteria. Little is known at the molecular level about plant transporters that mediate such exchanges. Several mutants of the model legume Lotus japonicus have been identified that develop nodules with metabolic defects that cannot fix nitrogen efficiently and exhibit retarded growth under symbiotic conditions. Map-based cloning of defective genes in two such mutants, sst1-1 and sst1-2 (for symbiotic sulfate transporter), revealed two alleles of the same gene. The gene is expressed in a nodule-specific manner and encodes a protein homologous with eukaryotic sulfate transporters. Full-length cDNA of the gene complemented a yeast mutant defective in sulfate transport. Hence, the gene was named Sst1. The sst1-1 and sst1-2 mutants exhibited normal growth and development under nonsymbiotic growth conditions, a result consistent with the nodule-specific expression of Sst1. Data from a previous proteomic study indicate that SST1 is located on the symbiosome membrane in Lotus nodules. Together, these results suggest that SST1 transports sulfate from the plant cell cytoplasm to the intracellular rhizobia, where the nutrient is essential for protein and cofactor synthesis, including nitrogenase biosynthesis. This work shows the importance of plant sulfate transport in SNF and the specialization of a eukaryotic transporter gene for this purpose. PMID:15805486

  18. Evaluation of NASA GEOS-ADAS Modeled Diurnal Warming Through Comparisons to SEVIRI and AMSR2 SST Observations

    NASA Astrophysics Data System (ADS)

    Gentemann, C. L.; Akella, S.

    2018-02-01

    An analysis of the ocean skin Sea Surface Temperature (SST) has been included in the Goddard Earth Observing System (GEOS) - Atmospheric Data Assimilation System (ADAS), Version 5 (GEOS-ADAS). This analysis is based on the GEOS atmospheric general circulation model (AGCM) that simulates near-surface diurnal warming and cool skin effects. Analysis for the skin SST is performed along with the atmospheric state, including Advanced Very High Resolution Radiometer (AVHRR) satellite radiance observations as part of the data assimilation system. One month (September, 2015) of GEOS-ADAS SSTs were compared to collocated satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and Advanced Microwave Scanning Radiometer 2 (AMSR2) SSTs to examine how the GEOS-ADAS diurnal warming compares to the satellite measured warming. The spatial distribution of warming compares well to the satellite observed distributions. Specific diurnal events are analyzed to examine variability within a single day. The dependence of diurnal warming on wind speed, time of day, and daily average insolation is also examined. Overall the magnitude of GEOS-ADAS warming is similar to the warming inferred from satellite retrievals, but several weaknesses in the GEOS-AGCM simulated diurnal warming are identified and directly related back to specific features in the formulation of the diurnal warming model.

  19. Homologous upregulation of sst2 somatostatin receptor expression in the rat arcuate nucleus in vivo.

    PubMed

    Tannenbaum, G S; Turner, J; Guo, F; Videau, C; Epelbaum, J; Beaudet, A

    2001-07-01

    In vitro studies using various cell systems have provided conflicting results regarding homologous regulation of somatostatin (SRIH) receptors, and information on whether SRIH regulates the expression of its own receptors in vivo is lacking. In the present study we examined, by in situ hybridization, the effects of pretreatment with the sst2-preferring SRIH analog, octreotide, in vivo, on mRNA levels of two SRIH receptor subtypes, sst1 and sst2, in rat brain and pituitary. (125)I-[DTrp(8)]-SRIH binding was also measured in these regions. Three hours after the iv injection of 50 microg octreotide to conscious adult male rats, there was a 46% increase (p < 0.01) in the labeling density of sst2 mRNA-expressing cells in the hypothalamic arcuate nucleus compared to normal saline-pretreated controls, but not in any of the other brain regions examined. Computer-assisted image analysis revealed that 3 h exposure to octreotide significantly (p < 0.01) augmented both the number and labeling density of sst2 mRNA-expressing cells in the arcuate nucleus, compared to those in saline-treated controls. By contrast, within the anterior pituitary gland, in vivo exposure to octreotide did not affect the expression of sst2 mRNA. No changes in sst1 mRNA-expressing cells were observed after octreotide treatment in any of the regions measured, indicating that the observed effects were homologous, i.e. specific of the receptor subtype stimulated. Octreotide pretreatment was also without effect on the density of (125)I-[DTrp(8)]-SRIH binding in either the arcuate nucleus or pituitary. These results demonstrate, for the first time, that SRIH preexposure in vivo upregulates the expression of a subtype of its own receptors, sst2, within the central nervous system. They further suggest that pretreatment with SRIH in vivo does not cause sst2 receptor desensitization in arcuate nucleus and pituitary. Such homologous regulatory mechanisms may play an important role in the neuroendocrine control

  20. Numerical Modeling of Propellant Boil-Off in a Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.; Sass, J. P.; Fesmire, J. E.

    2007-01-01

    A numerical model to predict boil-off of stored propellant in large spherical cryogenic tanks has been developed. Accurate prediction of tank boil-off rates for different thermal insulation systems was the goal of this collaboration effort. The Generalized Fluid System Simulation Program, integrating flow analysis and conjugate heat transfer for solving complex fluid system problems, was used to create the model. Calculation of tank boil-off rate requires simultaneous simulation of heat transfer processes among liquid propellant, vapor ullage space, and tank structure. The reference tank for the boil-off model was the 850,000 gallon liquid hydrogen tank at Launch Complex 39B (LC- 39B) at Kennedy Space Center, which is under study for future infrastructure improvements to support the Constellation program. The methodology employed in the numerical model was validated using a sub-scale model and tank. Experimental test data from a 1/15th scale version of the LC-39B tank using both liquid hydrogen and liquid nitrogen were used to anchor the analytical predictions of the sub-scale model. Favorable correlations between sub-scale model and experimental test data have provided confidence in full-scale tank boil-off predictions. These methods are now being used in the preliminary design for other cases including future launch vehicles

  1. Computational Analyses of Pressurization in Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Mattick, Stephen; Lee, Chun P.; Field, Robert E.; Ryan, Harry

    2008-01-01

    A) Advanced Gas/Liquid Framework with Real Fluids Property Routines: I. A multi-fluid formulation in the preconditioned CRUNCH CFD(Registered TradeMark) code developed where a mixture of liquid and gases can be specified: a) Various options for Equation of state specification available (from simplified ideal fluid mixtures, to real fluid EOS such as SRK or BWR models). b) Vaporization of liquids driven by pressure value relative to vapor pressure and combustion of vapors allowed. c) Extensive validation has been undertaken. II. Currently working on developing primary break-up models and surface tension effects for more rigorous phase-change modeling and interfacial dynamics B) Framework Applied to Run-time Tanks at Ground Test Facilities C) Framework Used For J-2 Upper Stage Tank Modeling: 1) NASA MSFC tank pressurization: a) Hydrogen and oxygen tank pre-press, repress and draining being modeled at NASA MSFC. 2) NASA AMES tank safety effort a) liquid hydrogen and oxygen are separated by a baffle in the J-2 tank. We are modeling pressure rise and possible combustion if a hole develops in the baffle and liquid hydrogen leaks into the oxygen tank. Tank pressure rise rates simulated and risk of combustion evaluated.

  2. Response of ethylene propylene diene monomer rubber (EPDM) to simulant Hanford tank waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NIGREY,PAUL J.

    2000-02-01

    This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the author performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposuresmore » to the waste simulant at 18, 50, and 60 C. Ethylene propylene diene monomer (EPDM) rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. The author has determined that EPDM rubber has excellent resistance to radiation, this simulant, and a combination of these factors. These results suggest that EPDM is an excellent seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.« less

  3. The role of SST on the South American atmospheric circulation during January, February and March 2001

    NASA Astrophysics Data System (ADS)

    Drumond, Anita Rodrigues De Moraes; Ambrizzi, Tércio

    2005-06-01

    Precipitation deficits were observed over southeastern, northeastern and Central Brazil during the 2001 Austral Summer. They contributed to the worsening of the energy crisis that was occurring in the country. A low-level anomalous anticyclonic circulation observed over eastern Brazil enhanced the deviation of moisture transport that usually occurs from the Amazon Basin to southeastern Brazil and inhibited the occurrence of South Atlantic Convergence Zone events in that period. However, an anomalous low-level northerly moisture flux was observed over the La Plata Basin, and positive precipitation anomalies occurred over Bolivia, Paraguay, northeastern Argentina and southern Brazil. Using the ensemble technique, a numerical study was carried out to investigate the role of different sea surface temperature (SST) forcings observed over this anomalous South American atmospheric circulation. Reynolds SST monthly means were used as boundary conditions to study the influence of South Atlantic, South Indian, South Pacific and Equatorial Pacific oceans. The simulations were run from September 2000 to April 2001 using the Community Climate Model version 3.6 General Circulation Model. Ten integrations using different initial conditions were done to each experiment. Numerical experiments suggested that the combined influence of South Pacific and Equatorial Pacific oceans could be responsible for the drought observed over Central Brazil. These experiments simulated the low-level anticyclonic anomaly observed over eastern Brazil. However, both experiments have poorly reproduced the intensity of the anomalous low-level northerly moisture flux observed over the La Plata Basin. Therefore, the intensity of the simulated precipitation anomalies over the subtropical regions was much weaker than observed.

  4. On the spread of changes in marine low cloud cover in climate model simulations of the 21st century

    NASA Astrophysics Data System (ADS)

    Qu, Xin; Hall, Alex; Klein, Stephen A.; Caldwell, Peter M.

    2014-05-01

    In 36 climate change simulations associated with phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5), changes in marine low cloud cover (LCC) exhibit a large spread, and may be either positive or negative. Here we develop a heuristic model to understand the source of the spread. The model's premise is that simulated LCC changes can be interpreted as a linear combination of contributions from factors shaping the clouds' large-scale environment. We focus primarily on two factors—the strength of the inversion capping the atmospheric boundary layer (measured by the estimated inversion strength, EIS) and sea surface temperature (SST). For a given global model, the respective contributions of EIS and SST are computed. This is done by multiplying (1) the current-climate's sensitivity of LCC to EIS or SST variations, by (2) the climate-change signal in EIS or SST. The remaining LCC changes are then attributed to changes in greenhouse gas and aerosol concentrations, and other environmental factors. The heuristic model is remarkably skillful. Its SST term dominates, accounting for nearly two-thirds of the intermodel variance of LCC changes in CMIP3 models, and about half in CMIP5 models. Of the two factors governing the SST term (the SST increase and the sensitivity of LCC to SST perturbations), the SST sensitivity drives the spread in the SST term and hence the spread in the overall LCC changes. This sensitivity varies a great deal from model to model and is strongly linked to the types of cloud and boundary layer parameterizations used in the models. EIS and SST sensitivities are also estimated using observational cloud and meteorological data. The observed sensitivities are generally consistent with the majority of models as well as expectations from prior research. Based on the observed sensitivities and the relative magnitudes of simulated EIS and SST changes (which we argue are also physically reasonable), the heuristic model predicts LCC

  5. Early Student Support for SST Control by Subsurface Mixing during Indian Ocean Monsoons

    DTIC Science & Technology

    2015-09-30

    Lee and Rainville), and NRL (Wijesekera). OBJECTIVES The objectives of this project are to: 1. use satellite-measured SSS , SST, and SSH to...forcing, and 5. synthesize the above information and products to examine links and feedbacks between the SST and SSS of the SLD and local precipitation

  6. 4. TOPSIDE VIEW FROM UPPER DECK LOOKING DOWN INTO TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. TOPSIDE VIEW FROM UPPER DECK LOOKING DOWN INTO TANK WITH SHUTTLE CARGO BAY MOCK-UP AT BOTTOM OF 40 FOOT TANK. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  7. 5. TOPSIDE VIEW FROM UPPER DECK LOOKING DOWN INTO TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. TOPSIDE VIEW FROM UPPER DECK LOOKING DOWN INTO TANK WITH SHUTTLE CARGO BAY MOCK-UP AT BOTTOM OF 40 FOOT TANK. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  8. Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models

    NASA Astrophysics Data System (ADS)

    Jošt, D.; Škerlavaj, A.; Lipej, A.

    2012-11-01

    Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.

  9. Development of a Thermodynamic Model for the Hanford Tank Waste Operations Simulator - 12193

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Robert; Seniow, Kendra

    The Hanford Tank Waste Operations Simulator (HTWOS) is the current tool used by the Hanford Tank Operations Contractor for system planning and assessment of different operational strategies. Activities such as waste retrievals in the Hanford tank farms and washing and leaching of waste in the Waste Treatment and Immobilization Plant (WTP) are currently modeled in HTWOS. To predict phase compositions during these activities, HTWOS currently uses simple wash and leach factors that were developed many years ago. To improve these predictions, a rigorous thermodynamic framework has been developed based on the multi-component Pitzer ion interaction model for use with severalmore » important chemical species in Hanford tank waste. These chemical species are those with the greatest impact on high-level waste glass production in the WTP and whose solubility depends on the processing conditions. Starting with Pitzer parameter coefficients and species chemical potential coefficients collated from open literature sources, reconciliation with published experimental data led to a self-consistent set of coefficients known as the HTWOS Pitzer database. Using Gibbs energy minimization with the Pitzer ion interaction equations in Microsoft Excel,1 a number of successful predictions were made for the solubility of simple mixtures of the chosen species. Currently, this thermodynamic framework is being programmed into HTWOS as the mechanism for determining the solid-liquid phase distributions for the chosen species, replacing their simple wash and leach factors. Starting from a variety of open literature sources, a collection of Pitzer parameters and species chemical potentials, as functions of temperature, was tested for consistency and accuracy by comparison with available experimental thermodynamic data (e.g., osmotic coefficients and solubility). Reconciliation of the initial set of parameter coefficients with the experimental data led to the development of the self

  10. Modeling and simulation of large scale stirred tank

    NASA Astrophysics Data System (ADS)

    Neuville, John R.

    The purpose of this dissertation is to provide a written record of the evaluation performed on the DWPF mixing process by the construction of numerical models that resemble the geometry of this process. There were seven numerical models constructed to evaluate the DWPF mixing process and four pilot plants. The models were developed with Fluent software and the results from these models were used to evaluate the structure of the flow field and the power demand of the agitator. The results from the numerical models were compared with empirical data collected from these pilot plants that had been operated at an earlier date. Mixing is commonly used in a variety ways throughout industry to blend miscible liquids, disperse gas through liquid, form emulsions, promote heat transfer and, suspend solid particles. The DOE Sites at Hanford in Richland Washington, West Valley in New York, and Savannah River Site in Aiken South Carolina have developed a process that immobilizes highly radioactive liquid waste. The radioactive liquid waste at DWPF is an opaque sludge that is mixed in a stirred tank with glass frit particles and water to form slurry of specified proportions. The DWPF mixing process is composed of a flat bottom cylindrical mixing vessel with a centrally located helical coil, and agitator. The helical coil is used to heat and cool the contents of the tank and can improve flow circulation. The agitator shaft has two impellers; a radial blade and a hydrofoil blade. The hydrofoil is used to circulate the mixture between the top region and bottom region of the tank. The radial blade sweeps the bottom of the tank and pushes the fluid in the outward radial direction. The full scale vessel contains about 9500 gallons of slurry with flow behavior characterized as a Bingham Plastic. Particles in the mixture have an abrasive characteristic that cause excessive erosion to internal vessel components at higher impeller speeds. The desire for this mixing process is to ensure the

  11. Pasireotide and octreotide antiproliferative effects and sst2 trafficking in human pancreatic neuroendocrine tumor cultures.

    PubMed

    Mohamed, Amira; Blanchard, Marie-Pierre; Albertelli, Manuela; Barbieri, Federica; Brue, Thierry; Niccoli, Patricia; Delpero, Jean-Robert; Monges, Genevieve; Garcia, Stephane; Ferone, Diego; Florio, Tullio; Enjalbert, Alain; Moutardier, Vincent; Schonbrunn, Agnes; Gerard, Corinne; Barlier, Anne; Saveanu, Alexandru

    2014-10-01

    Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) raise difficult therapeutic problems despite the emergence of targeted therapies. Somatostatin analogs (SSA) remain pivotal therapeutic drugs. However, the tachyphylaxis and the limited antitumoral effects observed with the classical somatostatin 2 (sst2) agonists (octreotide and lanreotide) led to the development of new SSA, such as the pan sst receptor agonist pasireotide. Our aim was to compare the effects of pasireotide and octreotide on cell survival, chromogranin A (CgA) secretion, and sst2 phosphorylation/trafficking in pancreatic NET (pNET) primary cells from 15 tumors. We established and characterized the primary cultures of human pancreatic tumors (pNETs) as powerful preclinical models for understanding the biological effects of SSA. At clinically relevant concentrations (1-10 nM), pasireotide was at least as efficient as octreotide in inhibiting CgA secretion and cell viability through caspase-dependent apoptosis during short treatments, irrespective of the expression levels of the different sst receptors or the WHO grade of the parental tumor. Interestingly, unlike octreotide, which induces a rapid and persistent partial internalization of sst2 associated with its phosphorylation on Ser341/343, pasireotide did not phosphorylate sst2 and induced a rapid and transient internalization of the receptor followed by a persistent recycling at the cell surface. These results provide the first evidence, to our knowledge, of striking differences in the dynamics of sst2 trafficking in pNET cells treated with the two SSAs, but with similar efficiency in the control of CgA secretion and cell viability. © 2014 Society for Endocrinology.

  12. Lead us not into tanktation: a simulation modelling approach to gain insights into incentives for sporting teams to tank.

    PubMed

    Tuck, Geoffrey N; Whitten, Athol R

    2013-01-01

    Annual draft systems are the principal method used by teams in major sporting leagues to recruit amateur players. These draft systems frequently take one of three forms: a lottery style draft, a weighted draft, or a reverse-order draft. Reverse-order drafts can create incentives for teams to deliberately under-perform, or tank, due to the perceived gain from obtaining quality players at higher draft picks. This paper uses a dynamic simulation model that captures the key components of a win-maximising sporting league, including the amateur player draft, draft choice error, player productivity, and between-team competition, to explore how competitive balance and incentives to under-perform vary according to league characteristics. We find reverse-order drafts can lead to some teams cycling between success and failure and to other teams being stuck in mid-ranking positions for extended periods of time. We also find that an incentive for teams to tank exists, but that this incentive decreases (i) as uncertainty in the ability to determine quality players in the draft increases, (ii) as the number of teams in the league reduces, (iii) as team size decreases, and (iv) as the number of teams adopting a tanking strategy increases. Simulation models can be used to explore complex stochastic dynamic systems such as sports leagues, where managers face difficult decisions regarding the structure of their league and the desire to maintain competitive balance.

  13. Lead Us Not into Tanktation: A Simulation Modelling Approach to Gain Insights into Incentives for Sporting Teams to Tank

    PubMed Central

    Tuck, Geoffrey N.; Whitten, Athol R.

    2013-01-01

    Annual draft systems are the principal method used by teams in major sporting leagues to recruit amateur players. These draft systems frequently take one of three forms: a lottery style draft, a weighted draft, or a reverse-order draft. Reverse-order drafts can create incentives for teams to deliberately under-perform, or tank, due to the perceived gain from obtaining quality players at higher draft picks. This paper uses a dynamic simulation model that captures the key components of a win-maximising sporting league, including the amateur player draft, draft choice error, player productivity, and between-team competition, to explore how competitive balance and incentives to under-perform vary according to league characteristics. We find reverse-order drafts can lead to some teams cycling between success and failure and to other teams being stuck in mid-ranking positions for extended periods of time. We also find that an incentive for teams to tank exists, but that this incentive decreases (i) as uncertainty in the ability to determine quality players in the draft increases, (ii) as the number of teams in the league reduces, (iii) as team size decreases, and (iv) as the number of teams adopting a tanking strategy increases. Simulation models can be used to explore complex stochastic dynamic systems such as sports leagues, where managers face difficult decisions regarding the structure of their league and the desire to maintain competitive balance. PMID:24312243

  14. Minimizing a Wireless Passive LC-Tank Sensor to Monitor Bladder Pressure: A Simulation Study.

    PubMed

    Melgaard, Jacob; Struijk, Johannes J; Rijkhoff, Nico J M

    2017-01-01

    In this simulation study, a wireless passive LC-tank sensor system was characterized. Given the application of continuous bladder monitoring, a specific system was proposed in terms of coil geometries and electronic circuitry. Coupling coefficients were spatially mapped by simulation, as a function of both coil distance, and longitudinal and transverse translation of the sensor relative to the antenna. Further, two interrogation schemes were outlined. One was an auto-balancing bridge for computing the sensor-system impedance. In this case, the theoretical noise limit of the analogue part of the system was found by simulations. As the full system is not necessary for obtaining a pressure reading from the sensor, a simplified circuit more suited for an implantable system was deduced. For this system, both the analogue and digital parts were simulated. First, the required ADC resolution for operating the system at a given coupling was found by simulations in the noise-free case. Then, for one selected typical operational point, noise was added gradually, and through Monte-Carlo type simulations, the system performance was obtained. Combining these results, it was found that it at least is possible to operate the proposed system for distances up to 12 mm, or equivalently for coupling coefficients above 0.005. In this case a 14 bit ADC is required, and a carrier SNR of 27 dB can be tolerated.

  15. A comparison between general circulation model simulations using two sea surface temperature datasets for January 1979

    NASA Technical Reports Server (NTRS)

    Ose, Tomoaki; Mechoso, Carlos; Halpern, David

    1994-01-01

    Simulations with the UCLA atmospheric general circulation model (AGCM) using two different global sea surface temperature (SST) datasets for January 1979 are compared. One of these datasets is based on Comprehensive Ocean-Atmosphere Data Set (COADS) (SSTs) at locations where there are ship reports, and climatology elsewhere; the other is derived from measurements by instruments onboard NOAA satellites. In the former dataset (COADS SST), data are concentrated along shipping routes in the Northern Hemisphere; in the latter dataset High Resolution Infrared Sounder (HIRS SST), data cover the global domain. Ensembles of five 30-day mean fields are obtained from integrations performed in the perpetual-January mode. The results are presented as anomalies, that is, departures of each ensemble mean from that produced in a control simulation with climatological SSTs. Large differences are found between the anomalies obtained using COADS and HIRS SSTs, even in the Northern Hemisphere where the datasets are most similar to each other. The internal variability of the circulation in the control simulation and the simulated atmospheric response to anomalous forcings appear to be linked in that the pattern of geopotential height anomalies obtained using COADS SSTs resembles the first empirical orthogonal function (EOF 1) in the control simulation. The corresponding pattern obtained using HIRS SSTs is substantially different and somewhat resembles EOF 2 in the sector from central North America to central Asia. To gain insight into the reasons for these results, three additional simulations are carried out with SST anomalies confined to regions where COADS SSTs are substantially warmer than HIRS SSTs. The regions correspond to warm pools in the northwest and northeast Pacific, and the northwest Atlantic. These warm pools tend to produce positive geopotential height anomalies in the northeastern part of the corresponding oceans. Both warm pools in the Pacific produce large

  16. Long-term variations of SST and heat content in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Huonsou-gbo, Aubains; Servain, Jacques; Caniaux, Guy; Araujo, Moacyr; Bourlès, Bernard; Veleda, Doris

    2015-04-01

    Recent studies (eg. Wen et al. 2010; Servain et al. 2014) suggest that subsurface processes influence the interannual variability of sea surface temperature (SST) in the tropical Atlantic through the Meridional Overturning Circulation (MOC) with time lags of several months. In this study, we used observed SST and Ocean heat content to test such hypothesis during the period 1964-2013. First results indicate great similarities in the positive linear trends of monthly standardized anomalies of SST, upper ocean heat content (0-500m) and deeper ocean heat content (500-2000m) averaged over the whole Atlantic Ocean. Strong positive trends of SST and deeper heat content occurred in the equatorial Atlantic, while a strong positive trend of the upper heat content was observed in the northeast Atlantic. These positive trends were the highest during the last two decades. The lagged positive correlation patterns between upper heat content anomalies over the whole gridded Atlantic Ocean and SST anomalies averaged over the equatorial region (60°W-15°E; 10°N-10°S) show a slow temporal evolution, which is roughly in agreement with the upper MOC. More detailed works about the mechanism, as well as about the origin of the highest positive trend of the deeper heat content in the equatorial region, are presently under investigation. References Servain J., G. Caniaux, Y. K. Kouadio, M. J. McPhaden, M. Araujo (2014). Recent climatic trends in the tropical Atlantic. Climate Dynamics, Vol. 43, 3071-3089, DOI 10.1007/s00382-014-2168-7.

  17. Failure Diagnosis for the Holdup Tank System via ISFA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huijuan; Bragg-Sitton, Shannon; Smidts, Carol

    This paper discusses the use of the integrated system failure analysis (ISFA) technique for fault diagnosis for the holdup tank system. ISFA is a simulation-based, qualitative and integrated approach used to study fault propagation in systems containing both hardware and software subsystems. The holdup tank system consists of a tank containing a fluid whose level is controlled by an inlet valve and an outlet valve. We introduce the component and functional models of the system, quantify the main parameters and simulate possible failure-propagation paths based on the fault propagation approach, ISFA. The results show that most component failures in themore » holdup tank system can be identified clearly and that ISFA is viable as a technique for fault diagnosis. Since ISFA is a qualitative technique that can be used in the very early stages of system design, this case study provides indications that it can be used early to study design aspects that relate to robustness and fault tolerance.« less

  18. Microgravity Propellant Tank Geyser Analysis and Prediction

    NASA Technical Reports Server (NTRS)

    Thornton, Randall J.; Hochstein, John I.; Turner, James E. (Technical Monitor)

    2001-01-01

    An established correlation for geyser height prediction of an axial jet inflow into a microgravity propellant tank was analyzed and an effort to develop an improved correlation was made. The original correlation, developed using data from ethanol flow in small-scale drop tower tests, uses the jet-Weber number and the jet-Bond number to predict geyser height. A new correlation was developed from the same set of experimental data using the jet-Weber number and both the jet-Bond number and tank-Bond number to describe the geyser formation. The resulting correlation produced nearly a 40% reduction in geyser height predictive error compared to the original correlation with experimental data. Two additional tanks were computationally modeled in addition to the small-scale tank used in the drop tower testing. One of these tanks was a 50% enlarged small-scale tank and the other a full-scale 2 m radius tank. Simulations were also run for liquid oxygen and liquid hydrogen. Results indicated that the new correlation outperformed the original correlation in geyser height prediction under most circumstances. The new correlation has also shown a superior ability to recognize the difference between flow patterns II (geyser formation only) and III (pooling at opposite end of tank from the bulk fluid region).

  19. Semianalytic Satellite Theory (SST): Mathematical Algorithms

    DTIC Science & Technology

    1994-01-01

    orbital state of a satellite with an equinoctial element set (a,,. •a 6...applied to a wide variety of orbit element sets . The equinoctial elements were chosen for SST because the variational equations for the equinoctial ...Shaver, 1980]. 2.1.1 Definition of the Equinoctial Elements There are six elements in the equinoctial element set : a, = a sernimajor axis a2 = h a3 =

  20. The Mg - SST relationship in mollusc shells: is there a rule? Examples from three tropical species

    NASA Astrophysics Data System (ADS)

    Lazareth, C. E.; Guzmán, N.; Lecornec, F.; Cabioch, G.; Ortlieb, L.

    2009-04-01

    The geochemistry of mollusc shells is currently viewed as a powerful tool for paleoenvironmental reconstructions. Indeed, molluscs are ubiquitous animals, with a worldly geographical and environmental distribution, providing various environmental records. Moreover, mollusc shells are abundantly found in fossil and archaeological settings. In the paleoclimatic reconstructions, the sea-surface temperatures (SST) are a key parameter. If shell stable oxygen isotope signatures can provide accurate SST records, this proxy is also influenced by the water isotopic composition. To find another tracer which would depend on the SST solely, the relationship between Mg content changes in mollusc shell and SST has been investigated for a few years. Nevertheless, if the reliability of shell Mg as SST tracer has been proven in some species, this is clearly not a "universal" and definitive rule. To reconstruct the past tropical SSTs, Mg calibration studies were undertaken on Concholepas concholepas (gastropod, South America), Protothaca thaca (bivalve, South America) and Tridacna squamosa (bivalve, New Caledonia). The very high-resolution (infra-daily) analyses of the C. concholepas gastropod revealed a significant metabolism control, at the nyctemeral scale, on the Mg incorporation into the calcite shell layer. Over a two months period, the Mg fluctuations in C. concholepas shell do not match with the SST instrumental measurements. Mg content changes along the aragonitic shell growth axis of several living P. thaca from a same Peruvian site are significantly different indicating no relationship between Mg and SST. The Mg variations measured in a Chilean P. thaca shell are, surprisingly, similar to variations of the instrumental SST. Unless this quite reliable relationship between P. thaca shell and SST is confirmed, and that the inter-site difference in Mg response to environmental forcing is understood, P. thaca shell Mg cannot be used as SST proxy. Lastly, a preliminary work

  1. Temperature Stratification in a Cryogenic Fuel Tank

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Smelyanskiy, Vadim; Boschee, Jacob; Foygel, Michael Gregory

    2013-01-01

    A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It accounts for cryogenic propellant loading, storage, and unloading in the conditions of normal, increased, and micro- gravity. The model involves multiple horizontal control volumes in both liquid and ullage spaces. Temperature and velocity boundary layers at the tank walls are taken into account by using correlation relations. Heat exchange involving the tank wall is considered by means of the lumped-parameter method. By employing basic conservation laws, the model takes into consideration the major multi-phase mass and energy exchange processes involved, such as condensation-evaporation of the hydrogen, as well as flows of hydrogen liquid and vapor in the presence of pressurizing helium gas. The model involves a liquid hydrogen feed line and a tank ullage vent valve for pressure control. The temperature stratification effects are investigated, including in the presence of vent valve oscillations. A simulation of temperature stratification effects in a generic cryogenic tank has been implemented in Matlab and results are presented for various tank conditions.

  2. Vertical Motion Changes Related to North-East Brazil Rainfall Variability: a GCM Simulation

    NASA Astrophysics Data System (ADS)

    Roucou, Pascal; Oribe Rocha de Aragão, José; Harzallah, Ali; Fontaine, Bernard; Janicot, Serge

    1996-08-01

    The atmospheric structure over north-east Brazil during anomalous rainfall years is studied in the 11 levels of the outputs of the Laboratoire de Météorologie Dynamique atmospheric general circulation model (LMD AGCM). Seven 19-year simulations were performed using observed sea-surface temperature (SST) corresponding to the period 1970- 1988. The ensemble mean is calculated for each month of the period, leading to an ensemble-averaged simulation. The simulated March-April rainfall is in good agreement with observations. Correlations of simulated rainfall and three SST indices relative to the equatorial Pacific and northern and southern parts of the Atlantic Ocean exhibit stronger relationships in the simulation than in the observations. This is particularly true with the SST gradient in the Atlantic (Atlantic dipole). Analyses on 200 ;hPa velocity potential, vertical velocity, and vertical integral of the zonal component of mass flux are performed for years of abnormal rainfall and positive/negative SST anomalies in the Pacific and Atlantic oceans in March-April during the rainy season over the Nordeste region. The results at 200 hPa show a convergence anomaly over Nordeste and a divergence anomaly over the Pacific concomitant with dry seasons associated with warm SST anomalies in the Pacific and warm (cold) waters in the North (South) Atlantic. During drought years convection inside the ITCZ indicated by the vertical velocity exhibits a displacement of the convection zone corresponding to a northward migration of the ITCZ. The east-west circulation depicted by the zonal divergent mass flux shows subsiding motion over Nordeste and ascending motion over the Pacific in drought years, accompanied by warm waters in the eastern Pacific and warm/cold waters in northern/southern Atlantic. Rainfall variability of the Nordeste rainfall is linked mainly to vertical motion and SST variability through the migration of the ITCZ and the east-west circulation.

  3. Highly Increased 125I-JR11 Antagonist Binding In Vitro Reveals Novel Indications for sst2 Targeting in Human Cancers.

    PubMed

    Reubi, Jean Claude; Waser, Beatrice; Mäcke, Helmut; Rivier, Jean

    2017-02-01

    There is recent in vitro and in vivo evidence that somatostatin receptor subtype 2 (sst 2 ) antagonists are better tools to target neuroendocrine tumors (NETs) than sst 2 agonists. Indeed, antagonists bind to a greater number of sst 2 sites than agonists. Whether sst 2 antagonists could be used successfully to target non-NETs, expressing low sst 2 density, is unknown. Here, we compare quantitatively 125 I-JR11 sst 2 antagonist binding in vitro with that of the sst 2 agonist 125 I-Tyr 3 -octreotide in large varieties of non-NET and NET. In vitro receptor autoradiography was performed with 125 I-JR11 and 125 I-Tyr 3 -octreotide in cancers from prostate, breast, colon, kidney, thyroid, and lymphoid tissues as well as NETs as reference. In general, 125 I-JR11 binds to many more sst 2 sites than 125 I-Tyr 3 -octreotide. In 13 breast cancers, 8 had a low binding (mean density, 844 ± 168 dpm/mg of tissue) with the agonist whereas 12 had a high binding (mean density, 4,447 ± 1,128 dpm/mg of tissue) with the antagonist. All 12 renal cell cancers showed a low binding of sst 2 with the agonist (mean density, 348 ± 49 dpm/mg of tissue) whereas all cases had a high sst 2 binding with the antagonist (mean density, 3,777 ± 582 dpm/mg of tissue). One of 5 medullary thyroid cancers was positive with the agonist, whereas 5 of 5 were positive with the antagonist. In 15 non-Hodgkin lymphomas, many more sst 2 sites were labeled with the antagonist than with the agonist. In 14 prostate cancers, none had sst 2 binding with the agonist and only 4 had a weak binding with the antagonist. None of 17 colon cancers showed sst 2 sites with the agonist, and only 3 cases were weakly positive with the antagonist. In the various tumor types, adjacent sst 2 -expressing tissues such as vessels, lymphocytes, nerves, mucosa, or stroma were more strongly labeled with the antagonist than with the agonist. The reference NET cases, incubated with a smaller amount of tracer, were also found to have many

  4. Fluid interaction with spinning toroidal tanks

    NASA Technical Reports Server (NTRS)

    Fester, D. A.; Anderson, J. E.

    1977-01-01

    An experimental study was conducted to evaluate propellant behavior in spinning torroidal tanks that could be used in a retropropulsion system of an advanced outer-planet Pioneer orbiter. Information on propellant slosh and settling and on ullage orientation and stability was obtained. The effects of axial acceleration, spin rate, spin-rate change, and spacecraft wobble, both singly and in combination, were evaluated using a one-eighth scale transparent tank in one-g and low-g environments. Liquid loadings ranged from 5% to 96% full. The impact of a surface tension acquisition device was assessed by comparison with bare-tank results. The testing simulated the behavior of the fluorine/hydrazine and nitrogen textroxide/monomethylhydrazine propellants. Results are presented that indicate that no major fluid behavior problems would be encountered with any of the four propellants in the toroidal tanks of a spin-stabilized orbiter spacecraft.

  5. Modeling SST gradient changes, the hydrological cycle response, and deep water formation in the North Pacific

    NASA Astrophysics Data System (ADS)

    Burls, N.; Ford, H. L.; Fedorov, A. V.; Jahn, A.; Jacobs, P.

    2017-12-01

    The absence of deep-water formation and a deep meridional overturning cell in the modern North Pacific has been attributed to the relatively fresh surface conditions in the subarctic. These conditions are, in turn, best explained by the local excess of precipitation over evaporation in the northern Pacific due to net moisture transport from the Atlantic to the Pacific and/or moisture transport associated with the Asian monsoon. Some studies link the lack of deep-water formation in the Pacific directly to its occurrence in the Atlantic via the Atlantic-Pacific seesaw effect and idealized experiments indicate that the smaller width of the Atlantic predisposes it to higher salinity and deep-water formation. We have conducted a series of coupled model experiments across which global mean temperatures and large-scale meridional SST gradients are varied. We perturb either atmospheric CO2 concentrations or the meridional gradient in cloud radiative forcing and run each experiment out to 3000 years so that the deep ocean has equilibrated. As the strength of the meridional temperature gradient decreases across our experiments, a Pacific Meridional Overturning Circulation develops. The strength of this Pacific Meridional Overturning Circulation generally increases as the gradient weakens. In one of these experiments where the meridional SST gradient most closely resembles Pliocene reconstructions, a PMOC exists of comparable in strength to the modern AMOC. We will describe how the hydrological cycle response to reduced meridional SST gradients acts to increase the strength of the PMOC across our sensitivity experiments. Additionally, we will discuss our effort to include carbon isotopes in our Pliocene-like simulation for data-model comparisons. Calcium carbonate accumulation data from Subarctic North Pacific Site 882 and new and previously published carbon isotope records from the Pacific appear to support our modelling results suggesting that weaker meridonal SST gradients

  6. Fuel Tank Non-Nuclear Vulnerability Test Program

    DTIC Science & Technology

    1975-02-01

    configurations and structures , for all the threat velocities and obli~quities, alid for all the different fuel tank conditions. This is very unrealistic and can...of operational aircraft. It is, ot. course, imtpractical to simiul~ate all the potential conditions, threat variables, structural materials, and...simulate the structural members of the aircraft to which the aircraft skin and fuel tank walls are attached. The effect that paint, on the aircraft

  7. Effect of ENSO on the variability of SST and Chlorophyll-a in Java Sea

    NASA Astrophysics Data System (ADS)

    Wirasatriya, Anindya; Prasetyawan, Indra B.; Triyono, Chandra D.; Muslim; Maslukah, Lilik

    2018-02-01

    Sea surface temperature (SST) and chlorophyll-a (Chl-a) are two parameters often used for identifying the marine productivity. Located at the maritime continent, the variability of SST and Chl-a in the Indonesian seas is influenced by El Niño Southern Oscillation (ENSO). The previous studies showed that the effect of El Niño tend to decrease SST and increase Chl-a in the areas within the Indonesian seas. Using long time observation of satellite data (2003-2016), it was found different result in Java Sea. Since Java Sea has strong seasonal variability influenced by monsoon wind, the effect of ENSO depend on the season. During southeast monsoon season, El Niño (La Niña) tend to increase (decrease) the speed of southeasterly wind cause the decrease or increase of SST. On the contrary, during northwest monsoon season, El Niño (La Niña) tend to decrease (increase) the speed of northwesterly wind cause the increase (decrease) of SST. The dependence of Chl-a on wind speed is only observed in the off shore which exhibit the strong seasonal variation. However, the effect of ENSO on the variability of Chl-a is not robust since the effected amplitude is less than the RMSE of Chl-a data.

  8. Simulation of different types of ENSO impacts on South Asian Monsoon in CCSM4

    NASA Astrophysics Data System (ADS)

    Islam, Siraj ul; Tang, Youmin

    2017-02-01

    It has been found in observation that there are different types of influences of El Nino Southern Oscillation (ENSO) on the South Asian Monsoon (SAM). A correct description and representation of these teleconnections is critical for climate models to simulate and predict SAM. In this study, we examine these teleconnections in NCAR CAM4 and CCSM4 models, including the strength and weakness of these models in preserving different types of ENSO-SAM relationships. By using observational and simulation dataset, the composite analysis, based on specific selection criteria, is performed for both SAM rainfall and the eastern equatorial Pacific sea surface temperature (SST) anomalies. Anomalous SAM rainfall is characterized in three different types i.e. the indirect influence of the SST anomalies of preceding winter (DJF-only), direct influence of the SST anomalies of concurrent summer (JJAS-only) and the combined influence of both preceding winter and concurrent summer (DJF&JJAS). The analysis reveals that CAM4 uncoupled simulation can reasonably well reproduce the anomalous SAM rainfall in DJF-only and DJF&JJAS types whereas the model fails to simulate the anomalous rainfall in the JJAS-only type. The better performance of CAM4, particularly in DJF&JJAS type, comes from its realistic simulation of moisture content and thermal contrast. Its failure to preserve the ENSO-SAM relationship of JJAS-only type is due to the absence of ENSO induced warming in Northern Indian Ocean via atmospheric circulation which is indirectly linked to the lack of air-sea coupling. The role of Indian Ocean in controlling the ENSO-SAM teleconnections of the DJF&JJAS type is further investigated using CAM4 sensitivity experiments. It is found that in absence of Indian Ocean SST, the anomalous SAM summer rainfall suppresses in the DJF&JJAS type, suggesting the important modulation by Indian Ocean SST probably through the preceding winter equatorial Pacific SST forcing and the atmospheric

  9. Orbitally-resolved SST Changes during the EOT: Results from IODP 342 Expedition

    NASA Astrophysics Data System (ADS)

    Liu, Z.; He, Y.; Wilson, P. A.; Pagani, M.

    2014-12-01

    Sea surface temperature (SST) changes during the Eocene-Oligocene climate transition were characterized by substantial cooling at high latitudes and less cooling in low latitudes, with little information from mid-latitudes so far. Taking advantage of the newly retrieved drift sediments from the IODP 342 Expedition, we aim to reconstruct SST changes at the mid-latitude Newfoundland region, at an unprecedented orbital resolution from Site U1411. During the period investigated, 32-36 Ma, the alkenone UK'37 values range from 0.65 to 0.95, with values all greater than 0.80 before the transition and lower values (<0.80) occurring approximately at the eccentricity minimum nodes after the transition. No immediate cooling associated with Oi-1 glaciation was observed. During the Oligocene, SSTs during warm epochs (corresponding to eccentricity maxima) were not significantly cooler than before. Overall, SST fluctuations appear to be modulated by orbital changes throughout the record, although more apparent due to larger amplitude of SST variability after the transition. We thus hypothesize that the mid-latitude Newfoundland region was largely bathed by low-latitude warm waters during the transition and that polar waters (fronts) reached to the region occasionally at periods of eccentricity minimum nodes during the Oligocene.

  10. Simulation of Rainfall Variability Over West Africa

    NASA Astrophysics Data System (ADS)

    Bader, J.; Latif, M.

    The impact of sea surface temperature (SST) and vegetation on precipitation over West Africa is investigated with the atmospheric general circulation model ECHAM4.x/T42. Ensemble experiments -driven with observed SST- show that At- lantic SST has a significant influence on JJA precipitation over West Africa. Four- teen experiments were performed in which the climatological SST was enhanced or decreased by one Kelvin in certain ocean areas. Changing SST in the eastern tropi- cal Atlantic only caused significant changes along the Guinea Coast, with a positive SSTA increasing rainfall and a negative reducing it. The response was nearly linear. Changing SST in other ocean areas caused significant changes over West Africa, es- pecially in the Sahel area. The response is found to be non linear, with only negative SSTA leading to significant reduction in Sahel rainfall. Also, the impact of the SSTAs from the different ocean regions was not additive with respect to the rainfall. Four simulations with a coupled model (the simple dynamic vegetation model (SVege) and the ECHAM4-AGCM were coupled) were also performed, driven with observed SST from 1945 to 1998. The standard ECHAM-AGCM -forced by the same observed SST- was able to reproduce the drying trend from the fifties to the mid-eighties in the Sahel, but failed to mirror the magnitude of the rainfall anomalies. The coupled model was not only able to reproduce this drying trend, but was also able to better reproduce the amplitudes of the rainfall anomalies. The dynamic vegetation acted like an amplifier, increasing the SST induced rainfall anomalies.

  11. Demonstration of SST value as EBVs descriptor in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Valentini, E.; Filipponi, F.; Nguyen Xuan, A.; Taramelli, A.

    2017-12-01

    Sea Surface Temperature is an Essential Climate and Ocean Variable (ECV - EOV) able to capture critical scales in the seascape warming patterns and to highlight the exceeding of thresholds. This presentation addresses the changes of the SST in the last three decades over the Mediterranean Sea, a "Large Marine Ecosystem (LME)", in order to speculate the value of such powerful variable, as proxy for the assessment of ecosystem state in terms of ecosystem structures, functions and composition key descriptor. Time series of daily SST for the period 1982-2016, estimated from multi-sensor satellite data and provided by Copernicus Marine Environment Monitoring Service (CMEMS-EU) are used to perform different statistical analysis on common fish species. Results highlight the critical conditions, the general trends as well as the spatial and temporal patterns, in terms of thermal growth, vitality and stress influence on selected fish species. Results confirm a constant increasing trend in SST with an average rise of 1.4° C in the past thirty years. The variance associated to the average trend is not constant across the entire Mediterranean Sea opening the way to multiple scenarios for fish growth and vitality in the diverse sub-basins. A major effort is oriented in addressing the cross-scale ecological interactions to assess the feasibility of using SST as descriptor for Essential Biodiversity Variables, able to prioritize areas and to feed operational tools for planning and management in the Mediterranean LME.

  12. Development and Testing of a Mobile Platform for Tank Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nance, T.A.

    2001-01-16

    tethers as the mobile platform moves the spray system across the tank floor. Both the crawler and spray systems are designed to be retrievable. Development of the tank cleaning system was evaluated using a performance test program. The tests evaluated the spray system dynamics, the crawler's fit through the riser, the crawler landing in mocked up tank with simulant, the crawler's traction, and the crawler and spray system mating. Initial testing verified the crawler platform was compatible with the dynamics produced by the spray system. The riser fit test confirmed that a dedicated riser is required for deployment of the crawler and the spray system. The crawler traction test defined the capabilities of the crawler at different levels of simulant. Deployment testing through a mockup riser verified the basic system processes. Finally, testing of the complete system in a full-scale mockup with sludge simulant was performed to evaluate the tank cleaning ability of the crawler. This paper describes th e tank conditions, the tank closure process, the development of the crawler and spray system, and the testing program and results used to evaluate the mobile platform and spray system.« less

  13. Cyclic Cryogenic Thermal-Mechanical Testing of an X-33/RLV Liquid Oxygen Tank Concept

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin

    1999-01-01

    An important step in developing a cost-effective, reusable, launch vehicle is the development of durable, lightweight, insulated, cryogenic propellant tanks. Current cryogenic tanks are expendable so most of the existing technology is not directly applicable to future launch vehicles. As part of the X-33/Reusable Launch Vehicle (RLV) Program, an experimental apparatus developed at the NASA Langley Research Center for evaluating the effects of combined, cyclic, thermal and mechanical loading on cryogenic tank concepts was used to evaluate cryogenic propellant tank concepts for Lockheed-Martin Michoud Space Systems. An aluminum-lithium (Al 2195) liquid oxygen tank concept, insulated with SS-1171 and PDL-1034 cryogenic insulation, is tested under simulated mission conditions, and the results of those tests are reported. The tests consists of twenty-five simulated Launch/Abort missions and twenty-five simulated flight missions with temperatures ranging from -320 F to 350 F and a maximum mechanical load of 71,300 lb. in tension.

  14. Comprehensive testing to measure the response of butyl rubber to Hanford tank waste simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NIGREY,PAUL J.

    This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the authors performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposuresmore » to the waste simulant at 18, 50, and 60 C. Butyl rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. From the analyses, they determined that butyl rubber has relatively good resistance to radiation, this simulant, and a combination of these factors. These results suggest that butyl rubber is a relatively good seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.« less

  15. Atmospheric Response to Zonal Variations in Midlatitude SST: Transient and Stationary Eddies and Their Feedback(.

    NASA Astrophysics Data System (ADS)

    Inatsu, Masaru; Mukougawa, Hitoshi; Xie, Shang-Ping

    2003-10-01

    Midwinter storm track response to zonal variations in midlatitude sea surface temperatures (SSTs) has been investigated using an atmospheric general circulation model under aquaplanet and perpetual-January conditions. Zonal wavenumber-1 SST variations with a meridionally confined structure are placed at various latitudes. Having these SST variations centered at 30°N leads to a zonally localized storm track, while the storm track becomes nearly zonally uniform when the same SST forcing is moved farther north at 40° and 50°N. Large (small) baroclinic energy conversion north of the warm (cold) SST anomaly near the axis of the storm track (near 40°N) is responsible for the large (small) storm growth. The equatorward transfer of eddy kinetic energy by the ageostrophic motion and the mechanical damping are important to diminish the storm track activity in the zonal direction.Significant stationary eddies form in the upper troposphere, with a ridge (trough) northeast of the warm (cold) SST anomaly at 30°N. Heat and vorticity budget analyses indicate that zonally localized condensational heating in the storm track is the major cause for these stationary eddies, which in turn exert a positive feedback to maintain the localized storm track by strengthening the vertical shear near the surface. These results indicate an active role of synoptic eddies in inducing deep, tropospheric-scale response to midlatitude SST variations. Finally, the application of the model results to the real atmosphere is discussed.

  16. Elemental Water Impact Test: Phase 2 36-Inch Aluminum Tank Head

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA simulations of water landing impacts. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. EWIT Phase 2 featured a 36-inch aluminum tank head. The tank head was outfitted with one accelerometer, twelve pressure transducers, three string potentiometers, and four strain gages. The tank head was dropped from heights of 1 foot and 2 feet. The focus of this report is the correlation of analytical models against test data. As a measure of prediction accuracy, peak responses from the baseline LS-DYNA model were compared to peak responses from the tests.

  17. Two-dimensional numerical simulation of flow around three-stranded rope

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng

    2016-08-01

    Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.

  18. A 'two-tank' seasonal storage concept for solar space heating of buildings

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Connor, D. W.; Mueller, R. O.

    This paper presents an analysis of a novel 'two-tank' water storage system, consisting of a large primary water tank for seasonal storage of solar energy plus a much smaller secondary water tank for storage of solar energy collected during the heating season. The system offers the advantages of high collection efficiency during the early stages of the heating season, a period when the temperature of the primary tank is generally high. By preferentially drawing energy from the small secondary tank to meet load, its temperature can be kept well below that of the larger primary tank, thereby providing a lower-temperature source for collector inlet fluid. The resulting improvement in annual system efficiency through the addition of a small secondary tank is found to be substantial - for the site considered in the paper (Madison, Wisconsin), the relative percentage gain in annual performance is in the range of 10 to 20%. A simple computer model permits accurate hour-by-hour transient simulation of thermal performance over a yearly cycle. The paper presents results of detailed simulations of collectors and storage sizing and design trade-offs for solar energy systems supplying 90% to 100% of annual heating load requirements.

  19. The problem of pollution for the SST

    NASA Technical Reports Server (NTRS)

    Ferri, A.

    1977-01-01

    A qualitative review of the possible effects of the exhaust gases discharged by a large fleet of SST's in the upper atmosphere is given. The review indicates the importance of the NO production in the exhaust gases. The mechanism of NO formation by the combustion process is described. A method for reduction of the NO formation is presented.

  20. AGCM hindcasts with SST and other forcings: Responses from global to agricultural scales

    NASA Astrophysics Data System (ADS)

    Shah, Kathryn Pierce; Rind, David; Druyan, Leonard; Lonergan, Patrick; Chandler, Mark

    2000-08-01

    Multiple realizations of the 1969-1998 time period have been simulated by the GISS AGCM to explore its responsiveness to accumulated forcings, particularly over sensitive agricultural regions. A microwave radiative transfer postprocessor has produced the AGCM lower tropospheric, tropospheric, and lower stratospheric brightness temperature (Tb) time series for correlations with microwave sounding unit (MSU) time series. AGCM regional surface air temperature and precipitation were also correlated with GISTEMP temperature data and with rain gage data. Seven realizations by the AGCM were forced solely by observed sea surface temperatures. Subsequent runs hindcast January 1969 through April 1998 with an accumulation of forcings: observed sea surface temperatures (SSTs), greenhouse gases, stratospheric volcanic aerosols, stratospheric and tropospheric ozone, and tropospheric sulfate and black carbon aerosols. Lower stratospheric Tb correlations between the AGCM and the MSU for 1979-1998 reached as high as 0.93 globally given SST, greenhouse gases, volcanic aerosol, and stratospheric ozone forcings. Midtropospheric Tb correlations reached as high as 0.66 globally and 0.84 across the equatorial, 20°S-20°N band. Oceanic lower tropospheric Tb correlations were less high at 0.59 globally and 0.79 across the equatorial band. Of the sensitive agricultural areas considered, Nordeste in northeastern Brazil was simulated best with midtropospheric Tb correlations up to 0.80. The two other agricultural regions, in Africa and in the northern midlatitudes, suffered from higher levels of non-SST-induced variability. Zimbabwe had a maximum midtropospheric correlation of 0.54, while the U.S. Corn Belt reached only 0.25. Hindcast surface temperatures and precipitation were also correlated with observations, up to 0.46 and 0.63, respectively, for Nordeste. Correlations between AGCM and observed time series improved with addition of certain atmospheric forcings in zonal bands but not in

  1. Interior of Vacuum Tank at the Electric Propulsion Laboratory

    NASA Image and Video Library

    1961-08-21

    Interior of the 20-foot diameter vacuum tank at the NASA Lewis Research Center’s Electric Propulsion Laboratory. Lewis researchers had been studying different electric rocket propulsion methods since the mid-1950s. Harold Kaufman created the first successful ion engine, the electron bombardment ion engine, in the early 1960s. These engines used electric power to create and accelerate small particles of propellant material to high exhaust velocities. Electric engines have a very small thrust, but can operate for long periods of time. The ion engines are often clustered together to provide higher levels of thrust. The Electric Propulsion Laboratory, which began operation in 1961, contained two large vacuum tanks capable of simulating a space environment. The tanks were designed especially for testing ion and plasma thrusters and spacecraft. The larger 25-foot diameter tank included a 10-foot diameter test compartment to test electric thrusters with condensable propellants. The portals along the chamber floor lead to the massive exhauster equipment that pumped out the air to simulate the low pressures found in space.

  2. Assessment of Global Forecast Ocean Assimilation Model (FOAM) using new satellite SST data

    NASA Astrophysics Data System (ADS)

    Ascione Kenov, Isabella; Sykes, Peter; Fiedler, Emma; McConnell, Niall; Ryan, Andrew; Maksymczuk, Jan

    2016-04-01

    There is an increased demand for accurate ocean weather information for applications in the field of marine safety and navigation, water quality, offshore commercial operations, monitoring of oil spills and pollutants, among others. The Met Office, UK, provides ocean forecasts to customers from governmental, commercial and ecological sectors using the Global Forecast Ocean Assimilation Model (FOAM), an operational modelling system which covers the global ocean and runs daily, using the NEMO (Nucleus for European Modelling of the Ocean) ocean model with horizontal resolution of 1/4° and 75 vertical levels. The system assimilates salinity and temperature profiles, sea surface temperature (SST), sea surface height (SSH), and sea ice concentration observations on a daily basis. In this study, the FOAM system is updated to assimilate Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) SST data. Model results from one month trials are assessed against observations using verification tools which provide a quantitative description of model performance and error, based on statistical metrics, including mean error, root mean square error (RMSE), correlation coefficient, and Taylor diagrams. A series of hindcast experiments is used to run the FOAM system with AMSR2 and SEVIRI SST data, using a control run for comparison. Results show that all trials perform well on the global ocean and that largest SST mean errors were found in the Southern hemisphere. The geographic distribution of the model error for SST and temperature profiles are discussed using statistical metrics evaluated over sub-regions of the global ocean.

  3. SST and OLR relationship during Indian summer monsoon: a coupled climate modelling perspective

    NASA Astrophysics Data System (ADS)

    Chaudhari, Hemantkumar S.; Hazra, Anupam; Pokhrel, Samir; Chakrabarty, Chandrima; Saha, Subodh Kumar; Sreenivas, P.

    2018-04-01

    The study mainly investigates sea surface temperature (SST) and outgoing longwave radiation (OLR) relationships in coupled climate model. To support the analysis, high-level cloud and OLR relationship is also investigated. High-level cloud and OLR relationship depicts significant negative correlation over the entire monsoon regime. Coupled climate model is able to produce the same. SST and OLR relationship in observation also depicts significant negative relationship, in particular, over the Equatorial Eastern Indian Ocean (EIO) region. Climate Forecast System version 2 (CFSv2) is able to portray the negative relationship over EIO region; however, it is underestimated as compared to observation. Significant negative correlations elucidate that local SSTs regulate the convection and further it initiates Bjerknes feedback in the central Indian Ocean. It connotes that SST anomalies during monsoon period tend to be determined by oceanic forcing. The heat content of the coastal Bay of Bengal shows highest response to EIO SST by a lag of 1 month. It suggests that the coastal region of the Bay of Bengal is marked by coastally trapped Kelvin waves, which might have come from EIO at a time lag of 1 month. Sea surface height anomalies, depth at 20 °C isotherms and depth at 26 isotherms also supports the above hypothesis. Composite analysis based on EIO index and coupled climate model sensitivity experiments also suggest that the coastal Bay of Bengal region is marked by coastally trapped Kelvin waves, which are propagated from EIO at a time lag of 1 month. Thus, SST and OLR relationship pinpoints that the Bay of Bengal OLR (convection) is governed by local ocean-atmospheric coupling, which is influenced by the delayed response from EIO brought forward through oceanic planetary waves at a lag of 1 month. These results have utmost predictive value for seasonal and extended range forecasting. Thus, OLR and SST relationship can constitute a pivotal role in investigating the

  4. Operational and troubleshooting experiences in the SST-1 cryogenic system

    NASA Astrophysics Data System (ADS)

    Mahesuria, G.; Panchal, P.; Panchal, R.; Patel, R.; Sonara, D.; Gupta, N. C.; Srikanth, G. L. N.; Christian, D.; Garg, A.; Bairagi, N.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Tank, J.; Tanna, V. L.; Pradhan, S.

    2014-01-01

    Recently, the cooldown and current charging campaign have been carried out towards the demonstration of the first successful plasma discharge in the steady state superconducting Tokomak (SST-1). The SST-1 machine consists of cable-in-conduit wound superconducting toroidal as well as poloidal coils, cooled using 1.3 kW at 4.5 K helium refrigerator -cum- liquefier (HRL) system. The cryo system provides the two-phase helium at 0.13 MPa at 4.5 K as well as forced-flow pressurized helium at 0.4 MPa and in addition to 7 g-s-1 liquefaction capacity required for the current leads and other cold mass at 4.5 K. The entire integrated cold masses having different thermo hydraulic resistances cooled with the SST-1 HRL in optimised process parameters. In order to maintain different levels of temperatures and to facilitate smooth and reliable cooldown, warm-up, normal operations as well as to handle abnormal events such as, quench or utilities failures etc., exergy efficient process are adopted for the helium refrigerator-cum-liquefier (HRL) with an installed equivalent capacity of 1.3 kW at 4.5 K. Using the HRL, the cold mass of about 40 tons is being routinely cooled down from ambient temperature to 4.5 K with an average cooldown rate of 0.75 - 1 K-h-1. Long-term cryogenic stable conditions were obtained within 15 days in the superconducting coils and their connecting feeders. Afterwards, all of the cold mass is warmed-up in a controlled manner to ambient temperature. In this paper, we report the recent operational results of the cryogenic system during the first plasma discharge in SST-1 as well as the troubleshooting experiences of the cryogenic plant related hardware.

  5. sST2 translation is regulated by FGF2 via an hnRNP A1-mediated IRES-dependent mechanism.

    PubMed

    Kunze, Michael M; Benz, Fabienne; Brauß, Thilo F; Lampe, Sebastian; Weigand, Julia E; Braun, Johannes; Richter, Florian M; Wittig, Ilka; Brüne, Bernhard; Schmid, Tobias

    2016-07-01

    Translation is an energy-intensive process and tightly regulated. Generally, translation is initiated in a cap-dependent manner. Under stress conditions, typically found within the tumor microenvironment in association with e.g. nutrient deprivation or hypoxia, cap-dependent translation decreases, and alternative modes of translation initiation become more important. Specifically, internal ribosome entry sites (IRES) facilitate translation of specific mRNAs under otherwise translation-inhibitory conditions. This mechanism is controlled by IRES trans-acting factors (ITAF), i.e. by RNA-binding proteins, which interact with and determine the activity of selected IRESs. We aimed at characterizing the translational regulation of the IL-33 decoy receptor sST2, which was enhanced by fibroblast growth factor 2 (FGF2). We identified and verified an IRES within the 5'UTR of sST2. Furthermore, we found that MEK/ERK signaling contributes to FGF2-induced, sST2-IRES activation and translation. Determination of the sST2-5'UTR structure by in-line probing followed by deletion analyses identified 23 nucleotides within the sST2-5'UTR to be required for optimal IRES activity. Finally, we show that the RNA-binding protein heterogeneous ribonucleoprotein A1 (hnRNP A1) binds to the sST2-5'UTR, acts as an ITAF, and thus controls the activity of the sST2-IRES and consequently sST2 translation. Specifically, FGF2 enhances nuclear-cytoplasmic translocation of hnRNP A1, which requires intact MEK/ERK activity. In summary, we provide evidence that the sST2-5'UTR contains an IRES element, which is activated by a MEK/ERK-dependent increase in cytoplasmic localization of hnRNP A1 in response to FGF2, enhancing the translation of sST2. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Liquid oxygen sloshing in Space Shuttle External Tank

    NASA Technical Reports Server (NTRS)

    Kannapel, M. D.; Przekwas, A. J.; Singhal, A. K.; Costes, N. C.

    1987-01-01

    This paper describes a numerical simulation of the hydrodynamics within the liquid oxygen tank of the Space Shuttle External Tank during liftoff. Before liftoff, the tank is filled with liquid oxygen (LOX) to approximately 97 percent with the other 3 percent containing gaseous oxygen (GOX) and helium. During liftoff, LOX is drained from the bottom of the tank, and GOX is pumped into the tank's ullage volume. There is a delay of several seconds before the GOX reaches the tank which causes the ullage pressure to decrease for several seconds after liftoff; this pressure 'slump' is a common phenomenon in rocket propulsion. When four slosh baffles were removed from the tank, the ullage gas pressure dropped more rapidly than in all previous flights. The purpose of this analysis was to determine whether the removal of the baffles could have caused the increased pressure 'slump' by changing the LOX surface dynamics. The results show that the LOX surface undergoes very high vertical accelerations (up to 5 g) and, therefore, splashing almost certainly occurs. The number of baffles does not affect the surface if the structural motion is assumed; but, the number of baffles may affect the structural motion of the tank.

  7. Contrasting Indian Ocean SST Variability With and Without ENSO Influence: A Coupled Atmosphere-Ocean GCM Study

    NASA Technical Reports Server (NTRS)

    Yu, Jin-Yi; Lau, K. M.

    2004-01-01

    In this study, we perform experiments with a coupled atmosphere-ocean general circulation model (CGCM) to examine ENSO's influence on the interannual sea surface temperature (SST) variability of the tropical Indian Ocean. The control experiment includes both the Indian and Pacific Oceans in the ocean model component of the CGCM (the Indo-Pacific Run). The anomaly experiment excludes ENSOs influence by including only the Indian Ocean while prescribing monthly-varying climatological SSTs for the Pacific Ocean (the Indian-Ocean Run). In the Indo-Pacific Run, an oscillatory mode of the Indian Ocean SST variability is identified by a multi-channel singular spectral analysis (MSSA). The oscillatory mode comprises two patterns that can be identified with the Indian Ocean Zonal Mode (IOZM) and a basin-wide warming/cooling mode respectively. In the model, the IOZM peaks about 3-5 months after ENSO reaches its maximum intensity. The basin mode peaks 8 months after the IOZM. The timing and associated SST patterns suggests that the IOZM is related to ENSO, and the basin- wide warming/cooling develops as a result of the decay of the IOZM spreading SST anomalies from western Indian Ocean to the eastern Indian Ocean. In contrast, in the Indian-Ocean Run, no oscillatory modes can be identified by the MSSA, even though the Indian Ocean SST variability is characterized by east-west SST contrast patterns similar to the IOZM. In both control and anomaly runs, IOZM-like SST variability appears to be associated with forcings from fluctuations of the Indian monsoon. Our modeling results suggest that the oscillatory feature of the IOZM is primarily forced by ENSO.

  8. Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks

    NASA Technical Reports Server (NTRS)

    Lopez, Alfredo; Grayson, Gary D.; Chandler, Frank O.; Hastings, Leon J.; Heyadat, Ali

    2007-01-01

    A computational fluid dynamics (CFD) model is developed to simulate pressure control of an ellipsoidal-shaped liquid hydrogen tank under external heating in normal gravity. Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered within the vessel that injects cooler liquid into the tank, mixing the contents and reducing tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own vapor with liquid density varying with temperature only and a fully compressible ullage. The axisymmetric model is developed using a custom version of the commercially available FLOW-31) software. Quantitative model validation is ,provided by engineering checkout tests performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper Stage_ Technology Demonstrator (STUSTD) program. The engineering checkout tests provide cryogenic tank self-pressurization test data at various heat leaks and tank fill levels. The predicted self-pressurization rates, ullage and liquid temperatures at discrete locations within the STUSTD tank are in good agreement with test data. The work presented here advances current CFD modeling capabilities for cryogenic pressure control and helps develop a low cost CFD-based design process for space hardware.

  9. Minutes of the Tank Waste Science Panel Meeting March 25--27, 1992. Hanford Tank Safety Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schutz, W W; Consultant, Wellington, Delaware; Strachan, D M

    Discussions from the seventh meeting of the Tank Waste Science are presented in Colorado. The subject areas included the generation of gases in Tank 241-SY-101, the possible use of sonication as a mitigation method, and analysis for organic constituents in core samples. Results presented and discussed include: Ferrocyanides appear to be rapidly dissolved in 1M NaOH; upon standing in the laboratory at ambient conditions oxalate precipitates from simulated wastes containing HEDTA. This suggests that one of the main components in the solids in Tank 241-SY-101 is oxalate; hydrogen evolved from waste samples from Tank 241-SY-101 is five times that observedmore » in the off gas from the tank; data suggest that mitigation of Tank 241-SY-101 will not cause a high release of dissolved N{sub 2}O; when using a slurry for radiation studies, a portion of the generated gases is very difficult to remove. To totally recover the generated gases, the solids must first be dissolved. This result may have an impact on mitigation by mixing if the gases are not released. Using {sup 13}C-labeled organics in thermal degradation studies has allowed researchers to illucidate much of the kinetic mechanism for the degradation of HEDTA and glycolate. In addition to some of the intermediate, more complex organic species, oxalate, formate, and CO{sub 2} were identified; and analytic methods for organics in radioactive complex solutions such as that found in Tank 241-SY-101 have been developed and others continue to be developed.« less

  10. Impact of Gulf Stream SST biases on the global atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Lee, Robert W.; Woollings, Tim J.; Hoskins, Brian J.; Williams, Keith D.; O'Reilly, Christopher H.; Masato, Giacomo

    2018-02-01

    The UK Met Office Unified Model in the Global Coupled 2 (GC2) configuration has a warm bias of up to almost 7 K in the Gulf Stream SSTs in the winter season, which is associated with surface heat flux biases and potentially related to biases in the atmospheric circulation. The role of this SST bias is examined with a focus on the tropospheric response by performing three sensitivity experiments. The SST biases are imposed on the atmosphere-only configuration of the model over a small and medium section of the Gulf Stream, and also the wider North Atlantic. Here we show that the dynamical response to this anomalous Gulf Stream heating (and associated shifting and changing SST gradients) is to enhance vertical motion in the transient eddies over the Gulf Stream, rather than balance the heating with a linear dynamical meridional wind or meridional eddy heat transport. Together with the imposed Gulf Stream heating bias, the response affects the troposphere not only locally but also in remote regions of the Northern Hemisphere via a planetary Rossby wave response. The sensitivity experiments partially reproduce some of the differences in the coupled configuration of the model relative to the atmosphere-only configuration and to the ERA-Interim reanalysis. These biases may have implications for the ability of the model to respond correctly to variability or changes in the Gulf Stream. Better global prediction therefore requires particular focus on reducing any large western boundary current SST biases in these regions of high ocean-atmosphere interaction.

  11. Assessing the Utility of Seasonal SST Forecasts to the Fisheries Management Process: a Pacific Sardine Case Study

    NASA Astrophysics Data System (ADS)

    Tommasi, D.; Stock, C. A.

    2016-02-01

    It is well established that environmental fluctuations affect the productivity of numerous fish stocks. Recent advances in prediction capability of dynamical global forecast systems, such as the state of the art NOAA Geophysical Fluid dynamics Laboratory (GFDL) 2.5-FLOR model, allow for climate predictions of fisheries-relevant variables at temporal scales relevant to the fishery management decision making process. We demonstrate that the GFDL FLOR model produces skillful seasonal SST anomaly predictions over the continental shelf , where most of the global fish yield is generated. The availability of skillful SST projections at this "fishery relevant" scale raises the potential for better constrained estimates of future fish biomass and improved harvest decisions. We assessed the utility of seasonal SST coastal shelf predictions for fisheries management using the case study of Pacific sardine. This fishery was selected because it is one of the few to already incorporate SST into its harvest guideline, and show a robust recruitment-SST relationship. We quantified the effectiveness of management under the status quo harvest guideline (HG) and under alternative HGs including future information at different levels of uncertainty. Usefulness of forecast SST to management was dependent on forecast uncertainty. If the standard deviation of the SST anomaly forecast residuals was less than 0.65, the alternative HG produced higher long-term yield and stock biomass, and reduced the probability of either catch or stock biomass falling below management-set threshold values as compared to the status quo. By contrast, probability of biomass falling to extremely low values increased as compared to the status quo for all alternative HGs except for a perfectly known future SST case. To safeguard against occurrence of such low probability but costly events, a harvest cutoff biomass also has to be implemented into the HG.

  12. Central administration of pansomatostatin agonist ODT8-SST prevents abdominal surgery-induced inhibition of circulating ghrelin, food intake and gastric emptying in rats

    PubMed Central

    STENGEL, A.; GOEBEL-STENGEL, M.; WANG, L.; LUCKEY, A.; HU, E.; RIVIER, J.; TACHÉ, Y.

    2011-01-01

    Background Activation of brain somatostatin receptors (sst1-5) with the stable pan-sst1-5 somatostatin agonist, ODT8-SST blocks acute stress and central corticotropin-releasing factor (CRF)-mediated activation of endocrine adrenal sympathetic responses. Brain CRF signaling is involved in delaying gastric emptying (GE) immediately post surgery. We investigated whether activation of brain sst signaling pathways modulates surgical stress-induced inhibition of gastric emptying and food intake. Methods Fasted rats were injected intracisternally (i.c.) with somatostatin agonists and underwent laparotomy and 1-min cecal palpation. GE of a non-nutrient solution and circulating acyl and desacyl ghrelin levels were assessed 50 min post surgery. Food intake was monitored for 24h. Key results The abdominal surgery-induced inhibition of GE (65%), food intake (73% at 2h) and plasma acyl ghrelin levels (67%) was completely prevented by ODT8-SST (1μg/rat, i.c.). The selective sst5 agonist, BIM-23052 prevented surgery-induced delayed GE, whereas selective sst1, sst2 or sst4 agonists had no effect. However, the selective sst2 agonist, S-346-011 (1μg/rat, i.c.) counteracted the abdominal surgery-induced inhibition of acyl ghrelin and food intake but not the delayed GE. The ghrelin receptor antagonist, [D-Lys3]-GHRP-6 (0.93 mg/kg, intraperitoneal, i.p.) blocked i.p. ghrelin-induced increased GE, while not influencing i.c. ODT8-SST-induced prevention of delayed GE and reduced food intake after surgery. Conclusions & Inferences ODT8-SST acts in the brain to prevent surgery-induced delayed GE likely via activating sst5. ODT8-SST and the sst2 agonist prevent the abdominal surgery-induced decrease in food intake and plasma acyl ghrelin indicating dissociation between brain somatostatin signaling involved in preventing surgery-induced suppression of GE and feeding response. PMID:21569179

  13. Comparison of global sst analyses for atmospheric data assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phoebus, P.A.; Cummings, J.A.

    1995-03-17

    Traditionally, atmospheric models were executed using a climatological estimate of the sea surface temperature (SST) to define the marine boundary layer. More recently, particularly since the deployment of remote sensing instruments and the advent of multichannel SST observations atmospheric models have been improved by using more timely estimates of the actual state of the ocean. Typically, some type of objective analysis is performed using the data from satellites along with ship, buoy, and bathythermograph observations, and perhaps even climatology, to produce a weekly or daily analysis of global SST. Some of the earlier efforts to produce real-time global temperature analysesmore » have been described by Clancy and Pollak (1983) and Reynolds (1988). However, just as new techniques have been developed for atmospheric data assimilation, improvements have been made to ocean data assimilation systems as well. In 1988, the U.S. Navy`s Fleet Numerical Meteorology and Oceanography Center (FNMOC) implemented a global three-dimensional ocean temperature analysis that was based on the optimum interpolation methodology (Clancy et al., 1990). This system, the Optimum Thermal Interpolation System (OTIS 1.0), was initially distributed on a 2.50 resolution grid, and was later modified to generate fields on a 1.250 grid (OTIS 1.1; Clancy et al., 1992). Other optimum interpolation-based analyses (OTIS 3.0) were developed by FNMOC to perform high-resolution three-dimensional ocean thermal analyses in areas with strong frontal gradients and clearly defined water mass characteristics.« less

  14. Investigation of Damping Physics and CFD Tool Validation for Simulation of Baffled Tanks at Variable Slosh Amplitude

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeffrey

    2016-01-01

    from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (h/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.

  15. Spontaneous cocoa bean fermentation carried out in a novel-design stainless steel tank: influence on the dynamics of microbial populations and physical-chemical properties.

    PubMed

    de Melo Pereira, Gilberto Vinícius; Magalhães, Karina Teixeira; de Almeida, Euziclei Gonzaga; da Silva Coelho, Irene; Schwan, Rosane Freitas

    2013-02-01

    Spontaneous cocoa bean fermentations carried out in a novel-design 40-kg-capacity stainless steel tank (SST) was studied in parallel to traditional Brazilian methods of fermentation in wooden boxes (40-kg-capacity wooden boxes (WB1) and 600-kg-capacity wooden boxes (WB2)) using a multiphasic approach that entailed culture-dependent and -independent microbiological analyses of fermenting cocoa bean pulp samples and target metabolite analyses of both cocoa pulp and cotyledons. Both microbiological approaches revealed that the dominant species of major physiological roles were the same for fermentations in SST, relative to boxes. These species consisted of Saccharomyces cerevisiae and Hanseniaspora sp. in the yeast group; Lactobacillus fermentum and L. plantarum in the lactic acid bacteria (LAB) group; Acetobacter tropicalis belonging to the acetic acid bacteria (AAB) group; and Bacillus subtilis in the Bacillaceae family. A greater diversity of bacteria and non-Saccharomyces yeasts was observed in box fermentations. Additionally, a potentially novel AAB belonging to the genus Asaia was isolated during fermentation in WB1. Cluster analysis of the rRNA genes-PCR-DGGE profiles revealed a more complex picture of the box samples, indicating that bacterial and yeast ecology were fermentation-specific processes (wooden boxes vs. SST). The profile of carbohydrate consumption and fermentation products in the pulp and beans showed similar trends during both fermentation processes. However, the yeast-AAB-mediated conversion of carbohydrates into ethanol, and subsequent conversion of ethanol into acetic acid, was achieved with greater efficiency in SST, while temperatures were generally higher during fermentation in wooden boxes. With further refinements, the SST model may be useful in designing novel bioreactors for the optimisation of cocoa fermentation with starter cultures. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtainedmore » from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as

  17. Enhanced influence of early-spring tropical Indian Ocean SST on the following early-summer precipitation over Northeast China

    NASA Astrophysics Data System (ADS)

    Han, Tingting; He, Shengping; Wang, Huijun; Hao, Xin

    2017-04-01

    The relationship between the tropical Indian Ocean (TIO) and East Asian summer monsoon/precipitation has been documented in many studies. However, the precursor signals of summer precipitation in the TIO sea surface temperature (SST), which is important for climate prediction, have drawn little attention. This study identified a strong relationship between early-spring TIO SST and subsequent early-summer precipitation in Northeast China (NEC) since the late 1980s. For 1961-1986, the correlations between early-spring TIO SST and early-summer NEC precipitation were statistically insignificant; for 1989-2014, they were positively significant. Since the late 1980s, the early-spring positive TIO SST anomaly was generally followed by a significant anomalous anticyclone over Japan; that facilitated anomalous southerly winds over NEC, conveying more moisture from the North Pacific. Further analysis indicated that an early TIO SST anomaly showed robust persistence into early summer. However, the early-summer TIO SST anomaly displayed a more significant influence on simultaneous atmospheric circulation and further affected NEC precipitation since the late 1980s. In 1989-2014, the early-summer Hadley and Ferrell cell anomalies associated with simultaneous TIO SST anomaly were much more significant and extended further north to mid-latitudes, which provided a dynamic foundation for the TIO-mid-latitude connection. Correspondingly, the TIO SST anomaly could lead to significant divergence anomalies over the Mediterranean. The advections of vorticity by the divergent component of the flow effectively acted as a Rossby wave source. Thus, an apparent Rossby wave originated from the Mediterranean and propagated east to East Asia; that further influenced the NEC precipitation through modulation to the atmospheric circulation (e.g., surface wind, moisture, vertical motion).

  18. Impact of SST on heavy rainfall events on eastern Adriatic during SOP1 of HyMeX

    NASA Astrophysics Data System (ADS)

    Ivatek-Šahdan, Stjepan; Stanešić, Antonio; Tudor, Martina; Odak Plenković, Iris; Janeković, Ivica

    2018-02-01

    The season of late summer and autumn is favourable for intensive precipitation events (IPE) in the central Mediterranean. During that period the sea surface is warm and contributes to warming and moistening of the lowest portion of the atmosphere, particularly the planetary boundary layer (PBL). Adriatic sea is surrounded by mountains and the area often receives substantial amounts of precipitation in short time (24 h). The IPEs are a consequence of convection triggered by topography acting on the southerly flow that has brought the unstable air to the coastline. Improvement in prediction of high impact weather events is one of the goals of The Hydrological cycle in the Mediterranean eXperiment (HyMeX). This study examines how precipitation patterns change in response to different SST forcing. We focus on the IPEs that occurred on the eastern Adriatic coast during the first HyMeX Special observing period (SOP1, 6 September to 5 November 2012). The operational forecast model ALADIN uses the same SST as the global meteorological model (ARPEGE from Meteo France), as well as the forecast lateral boundary conditions (LBCs). First we assess the SST used by the operational atmospheric model ALADIN and compare it to the in situ measurements, ROMS ocean model, OSTIA and MUR analyses. Results of this assessment show that SST in the eastern Adriatic was overestimated by up to 10 K during HyMeX SOP1 period. Then we examine the sensitivity of 8 km and 2 km resolution forecasts of IPEs to the changes in the SST during whole SOP1 with special attention to the intensive precipitation event in Rijeka. Forecast runs in both resolutions are performed for the whole SOP1 using different SST fields prescribed at initial time and kept constant during the model forecast. Categorical verification of 24 h accumulated precipitation did not show substantial improvement in verification scores when more realistic SST was used. Furthermore, the results show that the impact of introducing

  19. A USCLIVAR Project to Assess and Compare the Responses of Global Climate Models to Drought-Related SST Forcing Patterns: Overview and Results

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Wang, Hailan; Koster, Randal; Weaver, Scott; Gutzler, David; Dai, Aiguo; Delworth, Tom; Deser, Clara; Findell, Kristen; Fu, Rong; hide

    2009-01-01

    The USCLI VAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include: What are the mechanisms that maintain drought across the seasonal cycle and from one year to the next? What is the role of the leading patterns of SST variability, and what are the physical mechanisms linking the remote SST forcing to regional drought, including the role of land-atmosphere coupling? The runs were carried out with five different atmospheric general circulation models (AGCM5), and one coupled atmosphere-ocean model in which the model was continuously nudged to the imposed SST forcing. This paper provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino/Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic Multi-decadal Oscillation (AMO), and a global trend pattern. One of the key findings is that all the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the U.S. tends to occur when the two oceans have anomalies of opposite sign. That is, a cold Pacific and warm Atlantic tend to produce the largest precipitation reductions, whereas a warm Pacific and cold Atlantic tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of

  20. GCM Hindcasts for SST Forced Climate Variability over Agriculturally Intensive Regions

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Shah, Kathryn P.; Chandler, Mark A.; Rind, David

    1998-01-01

    The ability to forecast seasonal climate is of great practical interest. One of the most obvious benefits would be agriculture, for which various preparations (planting, machinery, irrigation, manpower) would be enabled. The expectation of being able to make such forecasts far enough in advance (on the order of 9 months) hinges on components of the system with the longest persistence or predictability. The mixed results of El Nino forecasts has raised the hope that tropical Pacific sea surface temperatures (SST) fall into this category. For agriculturally-relevant forecasts to be made, and utilized, requires several conditions. The SST in the regions that affect agricultural areas must be forecast successfully, many months in advance. The climate response to such sea surface temperatures must then be ascertained, either through the use of historical empirical studies or models (e.g., GCMS). For practical applications, the agricultural production must be strongly influenced by climate, and farmers on either the local level or through commercial concerns must be able to adjust to using such forecasts. In a continuing series of papers, we will explore each of these components. This article concerns the question of utilizing SST to forecast the climate in several regions of agricultural production. We optimize the possibility of doing so successfully by using observed SST in a hindcast mode (i.e., a perfect forecast), and we also use the globally observed values (rather than just those from the tropical Pacific, for which predictability has been shown). This then is the ideal situation; in subsequent papers we will explore degrading the results by using only tropical Pacific SSTs, and then using only

  1. HYDRAULIC CHARACTERISTICS OF SEWER SEDIMENT GATE FLUSHING TANKS: LABORATORY FLUME STUDIES

    EPA Science Inventory

    The objective of this study was to test the performance of gate flushing tanks, simulated in a laboratory flume, to remove sediments from combined sewers and storage tanks. A significant amount of sediment/debris/sludge may accumulate at the bottom of a sewer during dry weather o...

  2. HYDRAULIC CHARACTERISTICS OF SEWER SEDIMENT GATE-FLUSHING TANKS: LABORATORY FLUME STUDIES

    EPA Science Inventory

    The objective of this study was to test the performance of gate-flushing tanks, simulated in a laboratory flume, to remove sediments from combined sewers and storage tanks. A significant amount of sediment/debris/sludge may accumulate at the bottom of a sewer during dry weather o...

  3. MEASUREMENT AND ANALYSIS OF ADSISTOR AND FIGARO GAS SENSORS USED FOR UNDERGROUND STORAGE TANK LEAK DETECTION

    EPA Science Inventory

    Two different sensor technologies and their properties were analyzed. he nalysis simulated a leak which occurs from an underground storage tank. igaro gas sensors and the Adsistor gas sensor were tested in simulated underground storage tank nvironments using the Carnegie Mellon R...

  4. The General Circulation Model Response to a North Pacific SST Anomaly: Dependence on Time Scale and Pattern Polarity.

    NASA Astrophysics Data System (ADS)

    Kushnir, Yochanan; Lau, Ngar-Cheung

    1992-04-01

    A general circulation model was integrated with perpetual January conditions and prescribed sea surface temperature (SST) anomalies in the North Pacific. A characteristic pattern with a warm region centered northeast of Hawaii and a cold region along the western seaboard of North America was alternately added to and subtracted from the climatological SST field. Long 1350-day runs, as well as short 180-day runs, each starting from different initial conditions, were performed. The results were compared to a control integration with climatological SSTs.The model's quasi-stationary response does not exhibit a simple linear relationship with the polarity of the prescribed SST anomaly. In the short runs with a negative SST anomaly over the central ocean, a large negative height anomaly, with an equivalent barotropic vertical structure, occurs over the Gulf of Alaska. For the same SST forcing, the long run yields a different response pattern in which an anomalous high prevails over northern Canada and the Alaskan Peninsula. A significant reduction in the northward heat flux associated with baroclinic eddies and a concomitant reduction in convective heating occur along the model's Pacific storm track. In the runs with a positive SST anomaly over the central ocean, the average height response during the first 90-day period of the short runs is too weak to be significant. In the subsequent 90-day period and in the long run an equivalent barotropic low occurs downstream from the warm SST anomaly. All positive anomaly runs exhibit little change in baroclinic eddy activity or in the patterns of latent heat release. Horizontal momentum transports by baroclinic eddies appear to help sustain the quasi-stationary response in the height field regardless of the polarity of the SST anomaly. These results emphasize the important role played by baroclinic eddies in determining the quasi-stationary response to midlatitude SST anomalies. Differences between the response patterns of the

  5. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  6. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  7. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  8. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  9. Error Estimation of Pathfinder Version 5.3 SST Level 3C Using Three-way Error Analysis

    NASA Astrophysics Data System (ADS)

    Saha, K.; Dash, P.; Zhao, X.; Zhang, H. M.

    2017-12-01

    One of the essential climate variables for monitoring as well as detecting and attributing climate change, is Sea Surface Temperature (SST). A long-term record of global SSTs are available with observations obtained from ships in the early days to the more modern observation based on in-situ as well as space-based sensors (satellite/aircraft). There are inaccuracies associated with satellite derived SSTs which can be attributed to the errors associated with spacecraft navigation, sensor calibrations, sensor noise, retrieval algorithms, and leakages due to residual clouds. Thus it is important to estimate accurate errors in satellite derived SST products to have desired results in its applications.Generally for validation purposes satellite derived SST products are compared against the in-situ SSTs which have inaccuracies due to spatio/temporal inhomogeneity between in-situ and satellite measurements. A standard deviation in their difference fields usually have contributions from both satellite as well as the in-situ measurements. A real validation of any geophysical variable must require the knowledge of the "true" value of the said variable. Therefore a one-to-one comparison of satellite based SST with in-situ data does not truly provide us the real error in the satellite SST and there will be ambiguity due to errors in the in-situ measurements and their collocation differences. A Triple collocation (TC) or three-way error analysis using 3 mutually independent error-prone measurements, can be used to estimate root-mean square error (RMSE) associated with each of the measurements with high level of accuracy without treating any one system a perfectly-observed "truth". In this study we are estimating the absolute random errors associated with Pathfinder Version 5.3 Level-3C SST product Climate Data record. Along with the in-situ SST data, the third source of dataset used for this analysis is the AATSR reprocessing of climate (ARC) dataset for the corresponding

  10. Radiosonde observational evidence of the influence of extreme SST gradient upon atmospheric meso-scale circulation

    NASA Astrophysics Data System (ADS)

    Nishikawa, H.; Tachibana, Y.; Udagawa, Y.

    2012-12-01

    Although the influence of the anomalous midlatitude SST upon atmospheric local circulation has been getting common in particular over the Kuroshio and the Gulf Stream regions, observational studies on the influence of the Okhotsk Sea, which is to the north of the Kuroshio, upon the atmospheric local circulation is much less than those of the Kuroshio. The climate of the Okhotsk SST is very peculiar. Extremely cold SST spots, whose summertime SST is lower than 5 Celsius degrees, are formed around Kuril Islands. Because SSTs are generally determined by local air-sea interaction as well as temperature advection, it is very difficult to isolate only the oceanic influence upon the atmosphere. The SST in this cold spot is, however, dominated by the tidal mixing, which is independent of the atmospheric processes. This unique condition may ease the account for the oceanic influence only. Although the SST environment of the Okhotsk Sea is good for understanding the oceanic influence upon the atmosphere, only a few studies has been executed in this region because of the difficulty of observations by research vessels in this region, where territory problems between Japan and Russia is unsolved. Because of the scant of direct observation, the Okhotsk Sea was still mysterious. In 2006 August, GPS radiosonde observation was carried out by Russian research vessel Khromov in the Sea of Okhotsk by the cooperation between Japan and Russia, and strong SST gradient of about 7 Celsius degrees/10km was observed around the Kuril Islands. The purpose of this study is to demonstrate observational finding of meso-scale atmospheric anticyclonic circulation influenced by the cold oceanic spot around the Kuril Island. The summaries of the observation are as follows. Meso-scale atmospheric ageostrophic anticyclonic circulation in the atmospheric marine-boundary layer is observed in and around the cold spot. A high air pressure area as compared with other surrounding areas is also located at the

  11. Development of a Pressure Box to Evaluate Reusable-Launch-Vehicle Cryogenic-Tank Panels

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Sikora, Joseph; Maguire, James F.; Winn, Peter M.

    1996-01-01

    A cryogenic pressure-box test machine has been designed and is being developed to test full-scale reusable-launch-vehicle cryogenic-tank panels. This machine is equipped with an internal pressurization system, a cryogenic cooling system, and a heating system to simulate the mechanical and thermal loading conditions that are representative of a reusable-launch-vehicle mission profile. The cryogenic cooling system uses liquid helium and liquid nitrogen to simulate liquid hydrogen and liquid oxygen tank internal temperatures. A quartz lamp heating system is used for heating the external surface of the test panels to simulate cryogenic-tank external surface temperatures during re-entry of the launch vehicle. The pressurization system uses gaseous helium and is designed to be controlled independently of the cooling system. The tensile loads in the axial direction of the test panel are simulated by means of hydraulic actuators and a load control system. The hoop loads in the test panel are reacted by load-calibrated turnbuckles attached to the skin and frame elements of the test panel. The load distribution in the skin and frames can be adjusted to correspond to the tank structure by using these turnbuckles. The seal between the test panel and the cryogenic pressure box is made from a reinforced Teflon material which can withstand pressures greater than 52 psig at cryogenic temperatures. Analytical results and tests on prototype test components indicate that most of the cryogenic-tank loading conditions that occur in flight can be simulated in the cryogenic pressure-box test machine.

  12. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  13. Physics-Based Fragment Acceleration Modeling for Pressurized Tank Burst Risk Assessments

    NASA Technical Reports Server (NTRS)

    Manning, Ted A.; Lawrence, Scott L.

    2014-01-01

    As part of comprehensive efforts to develop physics-based risk assessment techniques for space systems at NASA, coupled computational fluid and rigid body dynamic simulations were carried out to investigate the flow mechanisms that accelerate tank fragments in bursting pressurized vessels. Simulations of several configurations were compared to analyses based on the industry-standard Baker explosion model, and were used to formulate an improved version of the model. The standard model, which neglects an external fluid, was found to agree best with simulation results only in configurations where the internal-to-external pressure ratio is very high and fragment curvature is small. The improved model introduces terms that accommodate an external fluid and better account for variations based on circumferential fragment count. Physics-based analysis was critical in increasing the model's range of applicability. The improved tank burst model can be used to produce more accurate risk assessments of space vehicle failure modes that involve high-speed debris, such as exploding propellant tanks and bursting rocket engines.

  14. Precipitation of nitrate-cancrinite in Hanford Tank Sludge.

    PubMed

    Buck, E C; McNamara, B K

    2004-08-15

    The chemistry of underground storage tanks containing high-level waste at the Hanford Site in Washington State is an area of continued research interest. Thermodynamic models have predicted the formation of analcime and clinoptilolite in Hanford tanks, rather than cancrinite; however, these predictions were based on carbonate-cancrinite. We report the first observation of a nitrate-cancrinite [possibly Na8(K,Cs)(AlSiO4)6(NO3)2 x nH2O] extracted from a Hanford tank 241-AP-101 sample that was evaporated to 6, 8, and 10 M NaOH concentrations. The nitrate-cancrinite phase formed spherical aggregates (4 microm in diameter) that consisted of platy hexagonal crystals (approximately 0.2 microm thick). Cesium-137 was concentrated in these aluminosilicate structures. These phases possessed a morphology identical to that of nitrate-cancrinite synthesized using simulant tests of nonradioactive tank waste, supporting the contention that it is possible to develop nonradioactive artificial sludges. This investigation points to the continued importance of understanding the solubility of NO3-cancrinite and related phases. Knowledge of the detailed structure of actual phases in the tank waste helps with thermodynamic modeling of tank conditions and waste processing.

  15. Commissioning and experimental validation of SST-1 plasma facing components

    NASA Astrophysics Data System (ADS)

    Paravastu, Yuvakiran; Raval, Dilip; Khan, Ziauddin; Patel, Hitesh; Biswas, Prabal; Parekh, Tejas; George, Siju; Santra, Prosenjit; Ramesh, Gattu; ArunPrakash, A.; Thankey, Prashant; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; Jaiswal, Snehal; Chauhan, Pradeep; Pradhan, Subrata

    2017-04-01

    Plasma facing components of SST-1 are designed to withstand an input heat load of 1.0 MW/m2. They protect vacuum vessel, auxiliary heating source i.e. RF antennas, NBI and other in-vessel diagnostic from the plasma particles and high radiative heat loads. PFC’s are positioned symmetric to mid-plane to accommodate with circular, single and double null configuration. Graphite is used as plasma facing material, back made of copper alloy and SS cooling/baking tubes are brazed on copper alloy back plates for efficient heat removal of incident heat flux. Benchmarking of PFC assembly was first carried out in prototype vacuum vessel of SST-1 to develop understanding and methodology of co-ordinate measurements. Based on such hands-on-experience, the final assembly of PFC’s in vacuum vessel of SST-1 was carried out. Initially, PFC’s are to be baked at 250 °C for wall conditioning followed with cooling for heat removal of incident heat flux during long pulse plasma operation. For this purpose, the supply and return headers are designed and installed inside the vacuum vessel in such a way that it will cater water as well as hot nitrogen gas depending up on the cycle. This paper will discuss the successful installation of PFC’s and its plasma operation respecting all design criteria.

  16. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  17. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  18. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  19. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  20. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  1. ENSO related SST anomalies and relation with surface heat fluxes over south Pacific and Atlantic

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Nuncio, M.; Satheesan, K.

    2017-07-01

    The role of surface heat fluxes in Southern Pacific and Atlantic Ocean SST anomalies associated with El Nino Southern Oscillation (ENSO) is studied using observation and ocean reanalysis products. A prominent dipole structure in SST anomaly is found with a positive (negative) anomaly center over south Pacific (65S-45S, 120W-70W) and negative (positive) one over south Atlantic (50S-30S, 30W-0E) during austral summer (DJF) of El Nino (LaNina). During late austral spring-early summer (OND) of El Nino (LaNina), anomalous northerly (southerly) meridional moisture transport and a positive (negative) sea level pressure anomaly induces a suppressed (enhanced) latent heat flux from the ocean surface over south Pacific. This in turn results in a shallower than normal mixed layer depth which further helps in development of the SST anomaly. Mixed layer thins further due to anomalous shortwave radiation during summer and a well developed SST anomaly evolves. The south Atlantic pole exhibits exactly opposite characteristics at the same time. The contribution from the surface heat fluxes to mixed layer temperature change is found to be dominant over the advective processes over both the basins. Net surface heat fluxes anomaly is also found to be maximum during late austral spring-early summer period, with latent heat flux having a major contribution to it. The anomalous latent heat fluxes between atmosphere and ocean surface play important role in the growth of observed summertime SST anomaly. Sea-surface height also shows similar out-of-phase signatures over the two basins and are well correlated with the ENSO related SST anomalies. It is also observed that the magnitude of ENSO related anomalies over the southern ocean are weaker in LaNina years than in El Nino years, suggesting an intensified tropics-high latitude tele-connection during warm phases of ENSO.

  2. Analysis of simulated hypervelocity impacts on a titanium fuel tank from the Salyut 7 space station

    NASA Astrophysics Data System (ADS)

    Jantou, V.; McPhail, D. S.; Chater, R. J.; Kearsley, A.

    2006-07-01

    The aim of this project was to gain a better understanding of the microstructural effects of hypervelocity impacts (HVI) in titanium alloys. We investigated a titanium fuel tank recovered from the Russian Salyut 7 space station, which was launched on April 19, 1982 before being destroyed during an un-controlled re-entry in 1991, reportedly scattering debris over parts of South America. Several sections were cut out from the tank in order to undergo HVI simulations using a two-stage light gas gun. In addition, a Ti-6Al-4V alloy was studied for further comparison. The crater morphologies produced were successfully characterised using microscope-based white light interferometry (Zygo ® Corp, USA), while projectile remnants were identified via secondary ion mass spectrometry (SIMS). Microstructural alterations were investigated using focused ion beam (FIB) milling and depth profiling, as well as transmission electron microscopy (TEM). There was evidence of a very high density of dislocations in the vicinity of the crater. The extent of the deformation was localised in a region of about one to two radii of the impact craters. No notable differences were observed between the titanium alloys used during the hypervelocity impact tests.

  3. A Marine Aerosol Reference Tank system as a breaking wave analogue

    NASA Astrophysics Data System (ADS)

    Stokes, M. D.; Deane, G. B.; Prather, K.; Bertram, T. H.; Ruppel, M. J.; Ryder, O. S.; Brady, J. M.; Zhao, D.

    2012-12-01

    In order to better understand the processes governing the production of marine aerosols a repeatable, controlled method for their generation is required. The Marine Aerosol Reference Tank (MART) has been designed to closely approximate oceanic conditions by producing an evolving bubble plume and surface foam patch. The tank utilizes an intermittently plunging sheet of water and large volume tank reservoir to simulate turbulence, plume and foam formation, and is monitored volumetrically and acoustically to ensure the repeatability of conditions.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reidel, Stephen P.; Chamness, Mickie A.

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The purpose of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reidel, Steve P.; Chamness, Mickie A.

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The focus of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  6. Seasonal differences of model predictability and the impact of SST in the Pacific

    NASA Astrophysics Data System (ADS)

    Lang, X. M.; Wang, H. J.

    2005-01-01

    Both seasonal potential predictability and the impact of SST in the Pacific on the forecast skill over China are investigated by using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics under the Chinese Academy of Sciences (IAP9L-ACCM). For each year during 1970 to 1999, the ensemble consists of seven integrations started from consecutive observational daily atmospheric fields and forced by observational monthly SST. For boreal winter, spring and summer, the variance ratios of the SST-forced variability to the total variability and the differences in the spatial correlation coefficients of seasonal mean fields in special years versus normal years are computed respectively. It follows that there are slightly inter-seasonal differences in the model potential predictability in the Tropics. At northern middle and high latitudes, prediction skill is generally low in spring and relatively high either in summer for surface air temperature and middle and upper tropospheric geopotential height or in winter for wind and precipitation. In general, prediction skill rises notably in western China, especially in northwestern China, when SST anomalies (SSTA) in the Ni (n) over tildeo-3 region are significant. Moreover, particular attention should be paid to the SSTA in the North Pacific (NP) if one aims to predict summer climate over the eastern part of China, i.e., northeastern China, North China and southeastern China.

  7. Influences of Local Sea-Surface Temperatures and Large-scale Dynamics on Monthly Precipitation Inferred from Two 10-year GCM-Simulations

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Walker, G. K.; Zhou, Y.; Lau, W. K.-M.

    2007-01-01

    Two parallel sets of 10-year long: January 1, 1982 to December 31, 1991, simulations were made with the finite volume General Circulation Model (fvGCM) in which the model integrations were forced with prescribed sea-surface temperature fields (SSTs) available as two separate SST-datasets. One dataset contained naturally varying monthly SSTs for the chosen period, and the oth& had the 12-monthly mean SSTs for the same period. Plots of evaporation, precipitation, and atmosphere-column moisture convergence, binned by l C SST intervals show that except for the tropics, the precipitation is more strongly constrained by large-scale dynamics as opposed to local SST. Binning data by SST naturally provided an ensemble average of data contributed from disparate locations with same SST; such averages could be expected to mitigate all location related influences. However, the plots revealed: i) evaporation, vertical velocity, and precipitation are very robust and remarkably similar for each of the two simulations and even for the data from 1987-ENSO-year simulation; ii) while the evaporation increased monotonically with SST up to about 27 C, the precipitation did not; iii) precipitation correlated much better with the column vertical velocity as opposed to SST suggesting that the influence of dynamical circulation including non-local SSTs is stronger than local-SSTs. The precipitation fields were doubly binned with respect to SST and boundary-layer mass and/or moisture convergence. The analysis discerned the rate of change of precipitation with local SST as a sum of partial derivative of precipitation with local SST plus partial derivative of precipitation with boundary layer moisture convergence multiplied by the rate of change of boundary-layer moisture convergence with SST (see Eqn. 3 of Section 4.5). This analysis is mathematically rigorous as well as provides a quantitative measure of the influence of local SST on the local precipitation. The results were recast to

  8. Error Estimation in an Optimal Interpolation Scheme for High Spatial and Temporal Resolution SST Analyses

    NASA Technical Reports Server (NTRS)

    Rigney, Matt; Jedlovec, Gary; LaFontaine, Frank; Shafer, Jaclyn

    2010-01-01

    Heat and moisture exchange between ocean surface and atmosphere plays an integral role in short-term, regional NWP. Current SST products lack both spatial and temporal resolution to accurately capture small-scale features that affect heat and moisture flux. NASA satellite is used to produce high spatial and temporal resolution SST analysis using an OI technique.

  9. Monitoring and trend mapping of sea surface temperature (SST) from MODIS data: a case study of Mumbai coast.

    PubMed

    Azmi, Samee; Agarwadkar, Yogesh; Bhattacharya, Mohor; Apte, Mugdha; Inamdar, Arun B

    2015-04-01

    Sea surface temperature (SST) is one of the most important parameters in monitoring ecosystem health in the marine and coastal environment. Coastal ecosystem is largely dependent on ambient temperature and temperature fronts for marine/coastal habitat and its sustainability. Hence, thermal pollution is seen as a severe threat for ecological health of coastal waters across the world. Mumbai is one of the largest metropolises of the world and faces severe domestic and industrial effluent disposal problem, of which thermal pollution is a major issue with policy-makers and environmental stakeholders. This study attempts to understand the long-term SST variation in the coastal waters off Mumbai, on the western coast of India, and to identify thermal pollution zones. Analysis of SST trends in the near-coastal waters for the pre- and post-monsoon seasons from the year 2004 to the year 2010 has been carried out using Moderate Resolution Imaging Spectro-radiometer (MODIS) Thermal Infra-red (TIR) bands. SST is calculated with the help of bands 31 and 32 using split window method. Several statistical operations were then applied to find the seasonal averages in SST and the standard deviation of SST in the study area. Maximum variation in SST was found within a perpendicular distance of 5 km from the shoreline during the study period. Also, a warm water mass was found to form consistently off coast during the winter months. Several anthropogenic sources of thermal pollution could be identified which were found to impact various locations along the coast.

  10. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... of Tank Cars § 180.519 Periodic retest and inspection of tank cars other than single-unit tank car...

  11. Model of the Radio Frequency (RF) Excitation Response from Monopole and Dipole Antennas in a Large Scale Tank

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Zimmerli, Gregory A.

    2012-01-01

    Good antenna-mode coupling is needed for determining the amount of propellant in a tank through the method of radio frequency mass gauging (RFMG). The antenna configuration and position in a tank are important factors in coupling the antenna to the natural electromagnetic modes. In this study, different monopole and dipole antenna mounting configurations and positions were modeled and responses simulated in a full-scale tank model with the transient solver of CST Microwave Studio (CST Computer Simulation Technology of America, Inc.). The study was undertaken to qualitatively understand the effect of antenna design and placement within a tank on the resulting radio frequency (RF) tank spectrum.

  12. Performance of Superconducting Current Feeder System for SST-1

    NASA Astrophysics Data System (ADS)

    Garg, A.; Nimavat, H.; Shah, P.; Patel, K.; Sonara, D.; Srikanth, G. L. N.; Bairagi, N.; Christian, D.; Patel, R.; Mahesuria, G.; Panchal, R.; Panchal, P.; Sharma, R.; Purwar, G.; Singh, G. K.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    Superconducting (SC) Current Feeder System (CFS) for SST-1 (Steady state superconducting Tokamak was installed and commissioned in 2012. Since then, it has been operating successfully in successive plasma campaigns. The aim of this system is to transfer electric current from power supply at ambient temperature to SC magnets which are at 4.5 K. It consists of 10 kA vapour cooled current leads, Nb-Ti/Cu bus-bars, liquid nitrogen cooled radiation shield and liquid/vapour helium circuits. This system had been operated reliably in different scenario such as initial cool- down, electric current (ramp-up, ramp down and long-time steady state condition), cold with no current and in quench etc. In addition to this, it has fulfilled the long term operation with SST-1 with current flat top of 4.7 kA for more than 20,000 seconds. This paper highlights operational performance along with results in different aspects.

  13. Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Ying, Jun; Huang, Ping; Lian, Tao; Tan, Hongjian

    2018-05-01

    An excessive cold tongue is a common bias among current climate models, and considered an important source of bias in projections of tropical Pacific climate change under global warming. Specifically, the excessive cold tongue bias is closely related to the tropical Pacific SST warming (TPSW) pattern. In this study, we reveal that two processes are the critical mechanisms by which the excessive cold tongue bias influences the projection of the TPSW pattern, based on 32 models from phase 5 of Coupled Model Intercomparison Projection (CMIP5). On the one hand, by assuming that the shortwave (SW) radiation to SST feedback is linearly correlated to the cold tongue SST, the excessive cold tongue bias can induce an overly weak negative SW-SST feedback in the central Pacific, which can lead to a positive SST warming bias in the central to western Pacific (around 150°E-140°W). Moreover, the overly weak local atmospheric dynamics response to SST is a key process of the overly weak SW-SST feedback, compared with the cloud response to atmospheric dynamics and the SW radiation response to cloud. On the other hand, the overly strong ocean zonal overturning circulation associated with the excessive cold tongue bias results in an overestimation of the ocean dynamical thermostat effect, with enhanced ocean stratification under global warming, leading to a negative SST warming bias in the central and eastern Pacific (around 170°W-120°W). These two processes jointly form a positive SST warming bias in the western Pacific, contributing to a La Niña-like warming bias. Therefore, we suggest a more realistic climatological cold tongue SST is needed for a more reliable projection of the TPSW pattern.

  14. Simulated Tank Anti-Armor Gunnery System (STAGS-TOW).

    DTIC Science & Technology

    1983-05-01

    to train TOW gunners. It is derived from a model previously developed for DRAGON. The system employs a terrain board with model enemy armored vehicles ...gunnery training. TOW is a crew-portable, heavy anti-tank weapon designed to attack and defeat armored vehicles and field fortifications. The missile is...a target area, converts the infrared energy to electrical signals and then to visible light and displays the visible light as a real-time scene for

  15. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE SHELL TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BROWN MH

    2008-11-13

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program.

  16. Contributions of the atmosphere-land and ocean-sea ice model components to the tropical Atlantic SST bias in CESM1

    NASA Astrophysics Data System (ADS)

    Song, Z.; Lee, S. K.; Wang, C.; Kirtman, B. P.; Qiao, F.

    2016-02-01

    In order to identify and quantify intrinsic errors in the atmosphere-land and ocean-sea ice model components of the Community Earth System Model version 1 (CESM1) and their contributions to the tropical Atlantic sea surface temperature (SST) bias in CESM1, we propose a new method of diagnosis and apply it to a set of CESM1 simulations. Our analyses of the model simulations indicate that both the atmosphere-land and ocean-sea ice model components of CESM1 contain large errors in the tropical Atlantic. When the two model components are fully coupled, the intrinsic errors in the two components emerge quickly within a year with strong seasonality in their growth rates. In particular, the ocean-sea ice model contributes significantly in forcing the eastern equatorial Atlantic warm SST bias in early boreal summer. Further analysis shows that the upper thermocline water underneath the eastern equatorial Atlantic surface mixed layer is too warm in a stand-alone ocean-sea ice simulation of CESM1 forced with observed surface flux fields, suggesting that the mixed layer cooling associated with the entrainment of upper thermocline water is too weak in early boreal summer. Therefore, although we acknowledge the potential importance of the westerly wind bias in the western equatorial Atlantic and the low-level stratus cloud bias in the southeastern tropical Atlantic, both of which originate from the atmosphere-land model, we emphasize here that solving those problems in the atmosphere-land model alone does not resolve the equatorial Atlantic warm bias in CESM1.

  17. On a more rigorous gravity field processing for future LL-SST type gravity satellite missions

    NASA Astrophysics Data System (ADS)

    Daras, I.; Pail, R.; Murböck, M.

    2013-12-01

    In order to meet the augmenting demands of the user community concerning accuracies of temporal gravity field models, future gravity missions of low-low satellite-to-satellite tracking (LL-SST) type are planned to carry more precise sensors than their precedents. A breakthrough is planned with the improved LL-SST measurement link, where the traditional K-band microwave instrument of 1μm accuracy will be complemented by an inter-satellite ranging instrument of several nm accuracy. This study focuses on investigations concerning the potential performance of the new sensors and their impact in gravity field solutions. The processing methods for gravity field recovery have to meet the new sensor standards and be able to take full advantage of the new accuracies that they provide. We use full-scale simulations in a realistic environment to investigate whether the standard processing techniques suffice to fully exploit the new sensors standards. We achieve that by performing full numerical closed-loop simulations based on the Integral Equation approach. In our simulation scheme, we simulate dynamic orbits in a conventional tracking analysis to compute pseudo inter-satellite ranges or range-rates that serve as observables. Each part of the processing is validated separately with special emphasis on numerical errors and their impact in gravity field solutions. We demonstrate that processing with standard precision may be a limiting factor for taking full advantage of new generation sensors that future satellite missions will carry. Therefore we have created versions of our simulator with enhanced processing precision with primarily aim to minimize round-off system errors. Results using the enhanced precision show a big reduction of system errors that were present at the standard precision processing even for the error-free scenario, and reveal the improvements the new sensors will bring into the gravity field solutions. As a next step, we analyze the contribution of

  18. Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hedayat, Ali; Lopez, Alfredo; Grayson, Gary D.; Chandler, Frank O.; Hastings, Leon J.

    2008-01-01

    A computational fluid dynamics (CFD) model is developed to simulate pressure control of an ellipsoidal-shaped liquid hydrogen tank under external heating in low gravity. Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered within the vessel that injects cooler liquid into the tank, mixing the contents and reducing tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own vapor with liquid density varying with temperature only and a fully compressible ullage. The axisymmetric model is developed using a custom version of the commercially available FLOW-3D software and simulates low gravity extrapolations of engineering checkout tests performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper Stage Technology Demonstrator (STUSTD) program. Model results illustrate that stable low gravity liquid-gas interfaces are maintained during all phases of the pressure control cycle. Steady and relatively smooth ullage pressurization rates are predicted. This work advances current low gravity CFD modeling capabilities for cryogenic pressure control and aids the development of a low cost CFD-based design process for space hardware.

  19. Think Tanks

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A new inspection robot from Solex Robotics Systems was designed to eliminate hazardous inspections of petroleum and chemical storage tanks. The submersible robot, named Maverick, is used to inspect the bottoms of tanks, keeping the tanks operational during inspection. Maverick is able to provide services that will make manual tank inspections obsolete. While the inspection is conducted, Maverick's remote human operators remain safe outside of the tank. The risk to human health and life is now virtually eliminated. The risk to the environment is also minimal because there is a reduced chance of spillage from emptying and cleaning the tanks, where previously, tons of pollutants were released through the process of draining and refilling.

  20. Sub-diurnal Variation of SST Gradients in Infrared Satellite Data

    NASA Astrophysics Data System (ADS)

    Salter, J. P.; Cornillon, P. C.; Clayson, C. A.

    2016-02-01

    Ocean fronts are known to influence many physical, biological, and chemical processes including ocean mixing, air-sea interaction, cloud and wind patterns, and marine productivity. Satellite-derived Sea Surface Temperature (SST) measurements are an invaluable tool in studying ocean fronts because of the large spatial and temporal coverage of satellite data, extending back as far as the early 1980s. One of the limitations to satellite-derived ocean fronts is that they provide no information about the underlying vertical structure; furthermore, the dynamics on sub-diurnal time scales for ocean fronts are poorly understood. In this poster we examine the daily signal of SST gradient magnitudes for the eastern Mediterranean sea as the first step in quantifying a subset of ocean fronts globally and how they vary on sub-diurnal time scales. We find that mean gradient magnitude in summer months increases and peaks around 2-4 PM Local Sun Time (LST). We find that the peak in summer months results from an increase in the magnitude of weaker gradients while the magnitude of the strongest gradients decrease; however, the weaker gradients contribute more strongly to the mean signal, resulting in the increase. The mid-afternoon peak in SST gradient magnitude disappears in winter with only a suggestion of a peak earlier in the day although the paucity of cloud free data in winter precludes making a statistically significant statement in this regard.

  1. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  2. WASTE CONDITIONING FOR TANK HEEL TRANSFER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.A. Ebadian, Ph.D.

    1999-01-01

    This report summarizes the research carried out at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) for the fiscal year 1998 (FY98) under the Tank Focus Area (TFA) project ''Waste Conditioning for Tank Slurry Transfer.'' The objective of this project is to determine the effect of chemical and physical properties on the waste conditioning process and transfer. The focus of this research consisted in building a waste conditioning experimental facility to test different slurry simulants under different conditions, and analyzing their chemical and physical properties. This investigation would provide experimental data and analysis results that can make the tankmore » waste conditioning process more efficient, improve the transfer system, and influence future modifications to the waste conditioning and transfer system. A waste conditioning experimental facility was built in order to test slurry simulants. The facility consists of a slurry vessel with several accessories for parameter control and sampling. The vessel also has a lid system with a shaft-mounted propeller connected to an air motor. In addition, a circulation system is connected to the slurry vessel for simulant cooling and heating. Experimental data collection and analysis of the chemical and physical properties of the tank slurry simulants has been emphasized. For this, one waste slurry simulant (Fernald) was developed, and another two simulants (SRS and Hanford) obtained from DOE sites were used. These simulants, composed of water, soluble metal salts, and insoluble solid particles, were used to represent the actual radioactive waste slurries from different DOE sites. The simulants' chemical and physical properties analyzed include density, viscosity, pH, settling rate, and volubility. These analyses were done to samples obtained from different experiments performed at room temperature but different mixing time and strength. The experimental results indicate

  3. Operational experience with the supercritical helium during the TF coils tests campaign of SST-1

    NASA Astrophysics Data System (ADS)

    Panchal, Rohitkumar Natvarlal; Patel, Rakesh; Tank, Jignesh; Mahesuria, Gaurang; Sonara, Dashrath; Tanna, Vipul; Patel, Jayant; Srikanth, G. L. N.; Singh, Manoj; Patel, Ketan; Christian, Dikens; Garg, Atul; Bairagi, Nitn; Gupta, Manoj Kumar; Nimavat, Hiren; Shah, Pankil; Sharma, Rajiv; Pradhan, Subrata

    2012-06-01

    Under the 'SST-1 mission mandate' recently, all the sixteen Steady State Superconducting Tokamak (SST-1) Toroidal Field (TF) magnets have been successfully tested at their nominal currents of 10000 A in cold under supercritical helium (SHe) flow conditions. The TF magnets test campaign have begun in an experimental cryostat since June 2010 with the SST-1 Helium cryogenics facility, which is a 1.3 kW at 4.5 K helium refrigerator-cum-liquefier (HRL) system. The HRL provides ~300 g-s-1supercritical helium (SHe) with cold circulator (CC) as well as ~ 60 g-s-1 without cold circulator to fulfill the forced flow cooling requirements of SST- 1 magnets. In case of single TF coil tests, we can adjust HRL process parameters such that an adequate amount of required supercritical helium is available without the cold circulator. In this paper, the complete process is describing the Process Flow Diagram (PFD) of 1.3 kW at 4.5 K HRL, techniques to generate supercritical helium without using the cold-circulator and the results of the cooldown, steady state characteristics and experience of supercritical helium operations during the TF coils test campaign have been discussed.

  4. Experimental and analytical study of cryogenic propellant boiloff to develop and verify alternate pressurization concepts for Space Shuttle external tank using a scaled down tank

    NASA Technical Reports Server (NTRS)

    Akyuzlu, K. M.; Jones, S.; Meredith, T.

    1993-01-01

    Self pressurization by propellant boiloff is experimentally studied as an alternate pressurization concept for the Space Shuttle external tank (ET). The experimental setup used in the study is an open flow system which is composed of a variable area test tank and a recovery tank. The vacuum jacketed test tank is geometrically similar to the external LOx tank for the Space Shuttle. It is equipped with instrumentation to measure the temperature and pressure histories within the liquid and vapor, and viewports to accommodate visual observations and Laser-Doppler Anemometry measurements of fluid velocities. A set of experiments were conducted using liquid Nitrogen to determine the temperature stratification in the liquid and vapor, and pressure histories of the vapor during sudden and continuous depressurization for various different boundary and initial conditions. The study also includes the development and calibration of a computer model to simulate the experiments. This model is a one-dimensional, multi-node type which assumes the liquid and the vapor to be under non-equilibrium conditions during the depressurization. It has been tested for a limited number of cases. The preliminary results indicate that the accuracy of the simulations is determined by the accuracy of the heat transfer coefficients for the vapor and the liquid at the interface which are taken to be the calibration parameters in the present model.

  5. The Impact of Surface Boundary Forcing on Simulation of the 1998 Summer Drought Over the US Midwest Using Factor Separation Technique

    NASA Technical Reports Server (NTRS)

    Stein, Uri; Fox-Rabinovitz, Michael

    1999-01-01

    The factor separation (FS) technique has been utilized to evaluate quantitatively the impact of surface boundary forcings on simulation of the 1988 summer drought over the Midwestern part of the U.S. The four surface boundary forcings used are: (1)Sea Surface Temperature (SST), (2) soil moisture, (3) snow cover, and (4) sea ice. The Goddard Earth Observing System(GEOS) General Circulation Model (GCM) is used to simulate the 1988 U.S. drought. A series of sixteen simulations are performed with climatological and real 1988 surface boundary conditions. The major single and mutual synergistic factors/impacts are analyzed. The results show that SST and soil moisture are the major single pro-drought factors. The couple synergistic effect of SST and soil moisture is the major anti-drought factor. The triple synergistic impact of SST, soil moisture, and snow cover is the strongest pro-drought impact and is, therefore, the main contributor to the generation of the drought. The impact of the snow cover and sea ice anomalies for June 1988 on the drought is significant only when combined with the SST and soil moisture anomalies.

  6. Reusable LH2 tank technology demonstration through ground test

    NASA Technical Reports Server (NTRS)

    Bianca, C.; Greenberg, H. S.; Johnson, S. E.

    1995-01-01

    The paper presents the project plan to demonstrate, by March 1997, the reusability of an integrated composite LH2 tank structure, cryogenic insulation, and thermal protection system (TPS). The plan includes establishment of design requirements and a comprehensive trade study to select the most suitable Reusable Hydrogen Composite Tank system (RHCTS) within the most suitable of 4 candidate structural configurations. The 4 vehicles are winged body with the capability to deliver 25,000 lbs of payload to a circular 220 nm, 51.6 degree inclined orbit (also 40,000 lbs to a 28.5 inclined 150 nm orbit). A prototype design of the selected RHCTS is established to identify the construction, fabrication, and stress simulation and test requirements necessary in an 8 foot diameter tank structure/insulation/TPS test article. A comprehensive development test program supports the 8 foot test article development and involves the composite tank itself, cryogenic insulation, and integrated tank/insulation/TPS designs. The 8 foot diameter tank will contain the integrated cryogenic insulation and TPS designs resulting from this development and that of the concurrent lightweight durable TPS program. Tank ground testing will include 330 cycles of LH2 filling, pressurization, body loading, depressurization, draining, and entry heating.

  7. Multiproxy Reduced-Dimension Reconstruction of Holocene Tropical Pacific SST Fields and Indian Monsoon Variability

    NASA Astrophysics Data System (ADS)

    Gill, E.; Rajagopalan, B.; Molnar, P. H.; Marchitto, T. M., Jr.; Kushnir, Y.

    2016-12-01

    We develop a multiproxy reduced-dimension methodology that blends magnesium calcium (Mg/Ca) and alkenone (UK'37) paleo sea surface temperature (SST) records from the eastern and western equatorial Pacific to recreate snapshots of full field SSTs and zonal wind anomalies from 10 to 2 ka BP in 2000-year increments. In the reconstruction, the zonal SST difference (average west Pacific SST minus average east Pacific SST) is largest at 10 ka (0.26°C), with coldest SST anomalies of -0.9°C in the eastern equatorial Pacific and concurrent easterly maximum zonal wind anomalies of 7 m s-1 throughout the central Pacific. From 10 to 2 ka, the entire equatorial Pacific warms, but at a faster rate in the east than in the west. These patterns are broadly consistent with previous inferences of reduced El Niño-Southern Oscillation variability associated with a cooler and/or "La Niña-like" state during the early to middle Holocene. At present there is a strong negative correlation between tropical pacific SSTs and Indian summer monsoon strength. Assuming ENSO-monsoon teleconnections were the same during early Holocene, we would expect a cooler tropical Pacific to enhance the summer Indian monsoon. To test this idea, we used the same tropical Pacific SST proxy records and a similar reduced-dimension technique to reconstruct fields of Arabian Sea wind-stress curl and Indian summer monsoon precipitation. Reconstructions for 10 ka reveal wind-stress curl anomalies of 30% greater than present day off the coastlines of Oman and Yemen, which suggest greater coastal upwelling and an enhanced monsoon jet during this time. Spatial rainfall reconstructions reveal the greatest difference in precipitation at 10 ka over the core monsoon region ( 20-60% greater than present day). Specifically, reconstructions from 10 ka reveal 40-60% greater rainfall over North West India, a region home to abundant paleo-lake records spanning the Holocene but is at present remarkably dry ( 200-450 mm of annual

  8. Radiation measurements and doses at SST altitudes

    NASA Technical Reports Server (NTRS)

    Foelsche, T.

    1972-01-01

    Radiation components and dose equivalents due to galactic and solar cosmic rays in the high atmosphere, especially at SST altitudes, are presented. The dose equivalent rate for the flight personnel flying 500 hours per year in cruise altitudes of 60,000-65,000 feet (18-19.5 km) in high magnetic latitudes is about 0.75-1.0 rem per year averaged over the solar cycle, or about 15-20 percent of the maximum permissible dose rate.

  9. In-Tank Elutriation Test Report And Independent Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, H. H.; Adamson, D. J.; Qureshi, Z. H.

    2011-04-13

    grown in size over a period of decades. 2. The radionuclides were apparently either in the form of soluble compounds, like cesium, or micrometer sized particles of actinide oxides or hydroxides. 3. After the initial tank retrieval the tank contained cobble which is not conducive to elutriation. Only after the tank contents were treated with thousands of gallons of 50 wt% caustic, were the solids converted to sand which is compatible with elutriation. Discussions between SRNL and PNNL resulted in plans to test elutriation in two phases; in Phase 1 particles would be separated by differences in settling velocity in an existing scaled tank with its associated hardware and in Phase 2 additional hardware, such as a hydrocyclone, would be added downstream to separate slow settling partciels from liquid. Phase 1 of in-tank elutriation was tested for Proof of Principle in theEngineering Development Laboratory of SRNL in a 41" diameter, 87 gallon tank. The tank had been previously used as a 1/22 scale model of Hanford Waste Tank AY-102. The objective of the testing was to determine which tank operating parameters achieved the best separation between fast- and slow-settling particles. For Phase 1 testing a simulated waste tank supernatant, slow-settling particles and fast-settling particles were loaded to the scaled tank. Because this was a Proof of Principle test, readily available solids particles were used that represented fast-settling and slow-settling particles. The tank contents were agitated using rotating mixer jet pumps (MJP) which suspended solids while liquids and solids were drawn out of the tank with a suction tube. The goal was to determine the optimum hydraulic operating conditions to achieve clean separation in which the residual solids in the tank were nearly all fast-settling particles and the solids transferred out of the tank were nearly all slow-settling particles. Tests were conducted at different pump jet velocities, suction tube diameters and suction tube

  10. Research on liquid sloshing performance in vane type tank under microgravity

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Li, Y.; Liu, J. T.; Liang, J. Q.

    2016-05-01

    Propellant management device (PMD) in vane type tank mainly comprises of vane type structure parts, whose performance of restraining liquid sloshing should satisfy spacecraft requirements of high stabilization and fast orbital maneuver. Aiming at liquid sloshing performance in vane type tank under microgravity environment, gas-liquid flow model based on the volume of fluid (VOF) method was put forward, and via numerical simulation liquid sloshing performances of vane type PMD with anti-sloshing baffles and without anti-sloshing baffles in microgravity were analyzed and compared. Simulation results reveal that liquid sloshing performance of vane type PMD with anti-sloshing baffles is markedly superior vane type PMD without anti-sloshing baffles and the baffles make liquid surface become stable fast. Then by comparing between results of microgravity experiments and results of numerical simulations, they are very similar. According to present research, vane type PMD with antisloshing baffles has better effects on restraining liquid sloshing and is able to restrain observably propellant sloshing in tanks in order to satisfy spacecraft requirements of high stabilization and fast orbital maneuver.

  11. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tank. (2) A new vessel of 70,000 tons DWT or more must have at least two slop tanks. (b) Capacity. Slop tanks must have the total capacity to retain oily mixtures from cargo tank washings, oil residue, and ballast water containing an oily mixture of 3 percent or more of the oil carrying capacity. Two percent...

  12. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  13. Experimental and numerical study of underwater beam propagation in a Rayleigh-Bénard turbulence tank.

    PubMed

    Nootz, Gero; Matt, Silvia; Kanaev, Andrey; Judd, Kyle P; Hou, Weilin

    2017-08-01

    The propagation of a laser beam through Rayleigh-Bénard (RB) turbulence is investigated experimentally and by way of numerical simulation. For the experimental part, a focused laser beam transversed a 5  m×0.5  m×0.5  m water filled tank lengthwise. The tank is heated from the bottom and cooled from the top to produce convective RB turbulence. The effect of the turbulence on the beam is recorded on the exit of the beam from the tank. From the centroid motion of the beam, the index of refraction structure constant Cn2 is determined. For the numerical efforts RB turbulence is simulated for a tank of the same geometry. The simulated temperature fields are converted to the index of refraction distributions, and Cn2 is extracted from the index of refraction structure functions, as well as from the simulated beam wander. To model the effect on beam propagation, the simulated index of refraction fields are converted to discrete index of refraction phase screens. These phase screens are then used in a split-step beam propagation method to investigate the effect of the turbulence on a laser beam. The beam wander as well as the index of refraction structure parameter Cn2 determined from the experiment and simulation are compared and found to be in good agreement.

  14. Recording Images Observed Using Ripple Tanks

    ERIC Educational Resources Information Center

    Auty, Geoff

    2018-01-01

    Diagrams and photographs (or computer simulations) should not replace effective observations of the wave properties that can be illustrated using a ripple tank, but they can provide support when discussing and revising what has been observed. This article explains and illustrates a route towards successful photography, which is much easier with…

  15. Seasonal predictions of equatorial Atlantic SST in a low-resolution CGCM with surface heat flux correction

    NASA Astrophysics Data System (ADS)

    Dippe, Tina; Greatbatch, Richard; Ding, Hui

    2016-04-01

    The dominant mode of interannual variability in tropical Atlantic sea surface temperatures (SSTs) is the Atlantic Niño or Zonal Mode. Akin to the El Niño-Southern Oscillation in the Pacific sector, it is able to impact the climate both of the adjacent equatorial African continent and remote regions. Due to heavy biases in the mean state climate of the equatorial-to-subtropical Atlantic, however, most state-of-the-art coupled global climate models (CGCMs) are unable to realistically simulate equatorial Atlantic variability. In this study, the Kiel Climate Model (KCM) is used to investigate the impact of a simple bias alleviation technique on the predictability of equatorial Atlantic SSTs. Two sets of seasonal forecasting experiments are performed: An experiment using the standard KCM (STD), and an experiment with additional surface heat flux correction (FLX) that efficiently removes the SST bias from simulations. Initial conditions for both experiments are generated by the KCM run in partially coupled mode, a simple assimilation technique that forces the KCM with observed wind stress anomalies and preserves SST as a fully prognostic variable. Seasonal predictions for both sets of experiments are run four times yearly for 1981-2012. Results: Heat flux correction substantially improves the simulated variability in the initialization runs for boreal summer and fall (June-October). In boreal spring (March-May), however, neither the initialization runs of the STD or FLX-experiments are able to capture the observed variability. FLX-predictions show no consistent enhancement of skill relative to the predictions of the STD experiment over the course of the year. The skill of persistence forecasts is hardly beat by either of the two experiments in any season, limiting the usefulness of the few forecasts that show significant skill. However, FLX-forecasts initialized in May recover skill in July and August, the peak season of the Atlantic Niño (anomaly correlation

  16. Contrasting spatial structures of Atlantic Multidecadal Oscillation between observations and slab ocean model simulations

    NASA Astrophysics Data System (ADS)

    Sun, Cheng; Li, Jianping; Kucharski, Fred; Xue, Jiaqing; Li, Xiang

    2018-04-01

    The spatial structure of Atlantic multidecadal oscillation (AMO) is analyzed and compared between the observations and simulations from slab ocean models (SOMs) and fully coupled models. The observed sea surface temperature (SST) pattern of AMO is characterized by a basin-wide monopole structure, and there is a significantly high degree of spatial coherence of decadal SST variations across the entire North Atlantic basin. The observed SST anomalies share a common decadal-scale signal, corresponding to the basin-wide average (i. e., the AMO). In contrast, the simulated AMO in SOMs (AMOs) exhibits a tripole-like structure, with the mid-latitude North Atlantic SST showing an inverse relationship with other parts of the basin, and the SOMs fail to reproduce the observed strong spatial coherence of decadal SST variations associated with the AMO. The observed spatial coherence of AMO SST anomalies is identified as a key feature that can be used to distinguish the AMO mechanism. The tripole-like SST pattern of AMOs in SOMs can be largely explained by the atmosphere-forced thermodynamics mechanism due to the surface heat flux changes associated with the North Atlantic Oscillation (NAO). The thermodynamic forcing of AMOs by the NAO gives rise to a simultaneous inverse NAO-AMOs relationship at both interannual and decadal timescales and a seasonal phase locking of the AMOs variability to the cold season. However, the NAO-forced thermodynamics mechanism cannot explain the observed NAO-AMO relationship and the seasonal phase locking of observed AMO variability to the warm season. At decadal timescales, a strong lagged relationship between NAO and AMO is observed, with the NAO leading by up to two decades, while the simultaneous correlation of NAO with AMO is weak. This lagged relationship and the spatial coherence of AMO can be well understood from the view point of ocean dynamics. A time-integrated NAO index, which reflects the variations in Atlantic meridional overturning

  17. Characterization of Slosh Damping for Ortho-Grid and Iso-Grid Internal Tank Structures

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; Sansone, Marco D.; Eberhart, Chad J.; West, Jeffrey S.

    2016-01-01

    Grid stiffened tank structures such as Ortho-Grid and Iso-Grid are widely used in cryogenic tanks for providing stiffening to the tank while reducing mass, compared to tank walls of constant cross-section. If the structure is internal to the tank, it will positively affect the fluid dynamic behavior of the liquid propellant, in regard to fluid slosh damping. As NASA and commercial companies endeavor to explore the solar system, vehicles will by necessity become more mass efficient, and design margin will be reduced where possible. Therefore, if the damping characteristics of the Ortho-Grid and Iso-Grid structure is understood, their positive damping effect can be taken into account in the systems design process. Historically, damping by internal structures has been characterized by rules of thumb and for Ortho-Grid, empirical design tools intended for slosh baffles of much larger cross-section have been used. There is little or no information available to characterize the slosh behavior of Iso-Grid internal structure. Therefore, to take advantage of these structures for their positive damping effects, there is much need for obtaining additional data and tools to characterize them. Recently, the NASA Marshall Space Flight Center conducted both sub-scale testing and computational fluid dynamics (CFD) simulations of slosh damping for Ortho-Grid and Iso-Grid tanks for cylindrical tanks containing water. Enhanced grid meshing techniques were applied to the geometrically detailed and complex Ortho-Grid and Iso-Grid structures. The Loci-STREAM CFD program with the Volume of Fluid Method module for tracking and locating the water-air fluid interface was used to conduct the simulations. The CFD simulations were validated with the test data and new empirical models for predicting damping and frequency of Ortho-Grid and Iso-Grid structures were generated.

  18. Performance of Regional Climate Model in Simulating Monsoon Onset Over Indian Subcontinent

    NASA Astrophysics Data System (ADS)

    Bhatla, R.; Mandal, B.; Verma, Shruti; Ghosh, Soumik; Mall, R. K.

    2018-06-01

    The performance of various Convective Parameterization Schemes (CPSs) of Regional Climate Model version 4.3 (RegCM-4.3) for simulation of onset phase of Indian summer monsoon (ISM) over Kerala was studied for the period of 2001-2010. The onset date and its associated spatial variation were simulated using RegCM-4.3 four core CPS, namely Kuo, Tiedtke, Emanuel and Grell; and with two mixed convection schemes Mix98 (Emanuel over land and Grell over ocean) and Mix99 (Grell over land and Emanuel over ocean) on the basis of criteria given by the India Meteorological Department (IMD) (Pai and Rajeevan in Indian summer monsoon onset: variability and prediction. National Climate Centre, India Meteorological Department, 2007). It has been found that out of six CPS, two schemes, namely Tiedtke and Mix99 simulated the onset date properly. The onset phase is characterized with several transition phases of atmosphere. Therefore, to study the thermal response or the effect of different sea surface temperature (SST), namely ERA interim (ERSST) and weekly optimal interpolation (OI_WK SST) on Indian summer monsoon, the role of two different types of SST has been used to investigate the simulated onset date. In addition, spatial atmospheric circulation pattern during onset phase were analyzed using reanalyze dataset of ERA Interim (EIN15) and National Oceanic and Atmospheric Administration (NOAA), respectively, for wind and outgoing long-wave radiation (OLR) pattern. Among the six convective schemes of RegCM-4.3 model, Tiedtke is in good agreement with actual onset dates and OI_WK SST forcing is better for simulating onset of ISM over Kerala.

  19. Cryogenic Tank Modeling for the Saturn AS-203 Experiment

    NASA Technical Reports Server (NTRS)

    Grayson, Gary D.; Lopez, Alfredo; Chandler, Frank O.; Hastings, Leon J.; Tucker, Stephen P.

    2006-01-01

    A computational fluid dynamics (CFD) model is developed for the Saturn S-IVB liquid hydrogen (LH2) tank to simulate the 1966 AS-203 flight experiment. This significant experiment is the only known, adequately-instrumented, low-gravity, cryogenic self pressurization test that is well suited for CFD model validation. A 4000-cell, axisymmetric model predicts motion of the LH2 surface including boil-off and thermal stratification in the liquid and gas phases. The model is based on a modified version of the commercially available FLOW3D software. During the experiment, heat enters the LH2 tank through the tank forward dome, side wall, aft dome, and common bulkhead. In both model and test the liquid and gases thermally stratify in the low-gravity natural convection environment. LH2 boils at the free surface which in turn increases the pressure within the tank during the 5360 second experiment. The Saturn S-IVB tank model is shown to accurately simulate the self pressurization and thermal stratification in the 1966 AS-203 test. The average predicted pressurization rate is within 4% of the pressure rise rate suggested by test data. Ullage temperature results are also in good agreement with the test where the model predicts an ullage temperature rise rate within 6% of the measured data. The model is based on first principles only and includes no adjustments to bring the predictions closer to the test data. Although quantitative model validation is achieved or one specific case, a significant step is taken towards demonstrating general use of CFD for low-gravity cryogenic fluid modeling.

  20. The Aqua-Planet Experiment (APE): CONTROL SST Simulation

    NASA Technical Reports Server (NTRS)

    Blackburn, Michael; Williamson, David L.; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut; hide

    2013-01-01

    Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different models. Basic features of the aqua-planet climate are characterised by comparison with Earth. The models display a wide range of behaviour. The balanced component of the tropospheric mean flow, and mid-latitude eddy covariances subject to budget constraints, vary relatively little among the models. In contrast, differences in damping in the dynamical core strongly influence transient eddy amplitudes. Historical uncertainty in modelled lower stratospheric temperatures persists in APE.Aspects of the circulation generated more directly by interactions between the resolved fluid dynamics and parameterized moist processes vary greatly. The tropical Hadley circulation forms either a single or double inter-tropical convergence zone (ITCZ) at the equator, with large variations in mean precipitation. The equatorial wave spectrum shows a wide range of precipitation intensity and propagation characteristics. Kelvin mode-like eastward propagation with remarkably constant phase speed dominates in most models. Westward propagation, less dispersive than the equatorial Rossby modes, dominates in a few models or occurs within an eastward propagating envelope in others. The mean structure of the ITCZ is related to precipitation variability, consistent with previous studies.The aqua-planet global energy balance is unknown but the models produce a surprisingly large range of top of atmosphere global net flux, dominated by differences in shortwave reflection by clouds. A number of newly developed models, not optimised for Earth climate, contribute to this. Possible reasons for differences in the optimised models are discussed.The aqua-planet configuration is intended as one component of an

  1. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and... liquid tank car tanks. ...

  2. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  3. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  4. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  5. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  6. Carboxyl-terminal multi-site phosphorylation regulates internalization and desensitization of the human sst2 somatostatin receptor.

    PubMed

    Lehmann, Andreas; Kliewer, Andrea; Schütz, Dagmar; Nagel, Falko; Stumm, Ralf; Schulz, Stefan

    2014-04-25

    The somatostatin receptor 2 (sst2) is the pharmacological target of somatostatin analogs that are widely used in the diagnosis and treatment of human neuroendocrine tumors. We have recently shown that the stable somatostatin analogs octreotide and pasireotide (SOM230) stimulate distinct patterns of sst2 receptor phosphorylation and internalization. Like somatostatin, octreotide promotes the phosphorylation of at least six carboxyl-terminal serine and threonine residues namely S341, S343, T353, T354, T356 and T359, which in turn leads to a robust receptor endocytosis. Unlike somatostatin, pasireotide stimulates a selective phosphorylation of S341 and S343 of the human sst2 receptor followed by a partial receptor internalization. Here, we show that exchange of S341 and S343 by alanine is sufficient to block pasireotide-driven internalization, whereas mutation of T353, T354, T356 and T359 to alanine is required to strongly inhibited both octreotide- and somatostatin-induced internalization. Yet, combined mutation of T353, T354, T356 and T359 is not sufficient to prevent somatostatin-driven β-arrestin mobilization and receptor desensitization. Replacement of all fourteen carboxyl-terminal serine and threonine residues by alanine completely abrogates sst2 receptor internalization and β-arrestin mobilization in HEK293 cells. Together, our findings demonstrate for the first time that agonist-selective sst2 receptor internalization is regulated by multi-site phosphorylation of its carboxyl-terminal tail. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. The Impact of the Atlantic Cold Tongue on West African Monsoon Onset in Regional Model Simulations for 1998-2002

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Fulakeza, Matthew B.

    2014-01-01

    The Atlantic cold tongue (ACT) develops during spring and early summer near the Equator in the Eastern Atlantic Ocean and Gulf of Guinea. The hypothesis that the ACT accelerates the timing of West African monsoon (WAM) onset is tested by comparing two regional climate model (RM3) simulation ensembles. Observed sea surface temperatures (SST) that include the ACT are used to force a control ensemble. An idealized, warm SST perturbation is designed to represent lower boundary forcing without the ACT for the experiment ensemble. Summer simulations forced by observed SST and reanalysis boundary conditions for each of five consecutive years are compared to five parallel runs forced by SST with the warm perturbation. The article summarizes the sequence of events leading to the onset of the WAM in the Sahel region. The representation of WAM onset in RM3 simulations is examined and compared to Tropical Rainfall Measuring Mission (TRMM), Global Precipitation Climatology Project (GPCP) and reanalysis data. The study evaluates the sensitivity of WAM onset indicators to the presence of the ACT by analysing the differences between the two simulation ensembles. Results show that the timing of major rainfall events and therefore theWAM onset in the Sahel are not sensitive to the presence of the ACT. However, the warm SST perturbation does increase downstream rainfall rates over West Africa as a consequence of enhanced specific humidity and enhanced northward moisture flux in the lower troposphere.

  8. RF assisted Glow Discharge Condition experiment for SST-1 Tokamak

    NASA Astrophysics Data System (ADS)

    Raval, Dilip; Khan, Ziauddin; George, Siju; Dhanani, Kalpeshkumar R.; Paravastu, Yuvakiran; Semwal, Pratibha; Thankey, Prashant; Shoaib Khan, Mohammad; Kakati, Bharat; Pradhan, Subrata

    2017-04-01

    Impurity control reduces the radiation loss from plasma and hence enhances the plasma operation. Oxygen and water vapors are the most common impurities in tokamak devices. Water vapour can be reduced with extensive baking while in order to have a significant reduction in oxygen it is necessary to use glow discharge condition (GDC). RF assisted glow discharge cleaning system will be implemented to remove low z impurities at PFC installed SST-1 vacuum vessel. A RF assisted Glow discharge conditioning is studied at laboratory to find the optimum operating parameters in a view to implement at SST-1 tokamak. Helium is used as a fuel gas in the present experiment. It is observed that the ultimate impurity level is reduced significantly below to the accepted level for plasma operation after RF assisted GDC. The experimental findings of RF assisted Glow discharge conditioning is discussed in details in this paper.

  9. Liquid Motion in a Rotating Tank Experiment (LME)

    NASA Technical Reports Server (NTRS)

    Deffenbaugh, D. M.; Dodge, F. T.; Green, S. T.

    1998-01-01

    The Liquid Motion Experiment (LME), which flew on STS 84 in May 1997, was an investigation of liquid motions in spinning, nutating tanks. LME was designed to quantify the effects of such liquid motions on the stability of spinning spacecraft, which are known to be adversely affected by the energy dissipated by the liquid motions. The LME hardware was essentially a spin table which could be forced to nutate at specified frequencies at a constant cone angle, independently of the spin rate. Cylindrical and spherical test tanks, partially filled with liquids of different viscosities, were located at the periphery of the spin table to simulate a spacecraft with off-axis propellant tanks; one set of tanks contained generic propellant management devices (PMDs). The primary quantitative data from the flight tests were the liquid-induced torques exerted on the tanks about radial and tangential axes through the center of the tank. Visual recordings of the liquid oscillations also provided qualitative information. The flight program incorporated two types of tests: sine sweep tests, in which the spin rate was held constant and the nutation frequency varied over a wide range; and sine dwell test, in which both the spin rate and the nutation frequency were held constant. The sine sweep tests were meant to investigate all the prominent liquid resonant oscillations and the damping of the resonances, and the sine dwell tests were meant to quantify the viscous energy dissipation rate of the liquid oscillations for steady state conditions. The LME flight data were compared to analytical results obtained from two companion IR&D programs at Southwest Research Institute. The comparisons indicated that the models predicted the observed liquid resonances, damping, and energy dissipation rates for many test conditions but not for all. It was concluded that improved models and CFD simulations are needed to resolve the differences. This work is ongoing under a current IR&D program.

  10. Uncertainty in detecting trend: a new criterion and its applications to global SST

    NASA Astrophysics Data System (ADS)

    Lian, Tao

    2017-10-01

    In most parts of the global ocean, the magnitude of the long-term linear trend in sea surface temperature (SST) is much smaller than the amplitude of multi-scale internal variation. One can thus use a specific period in a much longer record to arbitrarily determine the sign of long-term trend, which is statistically significant, in regional SST. This could lead to a controversial conclusion on how global SST responded to the anthropogenic forcing in the recent history. In this study, the uncertainty in the linear trend due to multi-scale internal variation is theoretically investigated. It is found that the "estimated" trend will not change its sign only when its magnitude is greater than a theoretical threshold that scales the influence from the multi-scale internal variation. Otherwise, the sign of the "estimated" trend may depend on the period used. The new criterion is found to be superior over the existing methods when the de-trended time series is dominated by the oscillatory term. Applying this new criterion to a global SST reconstruction from 1881 to 2013 reveals that the influences from multi-scale internal variation on the sign of "estimated" linear trend cannot be excluded in most parts of the Pacific, the southern Indian Ocean and the northern Atlantic; therefore, the warming or/and cooling trends found in these regions cannot be interpreted as the consequences of anthropogenic forcing. It's also suggested that the recent hiatus can be explained by combined uncertainty from internal variations at the interannual and decadal time scales.

  11. Uncertainty in Detecting Trend: A New Criterion and Its Applications to Global SST

    NASA Astrophysics Data System (ADS)

    Lian, Tao

    2017-04-01

    In most parts of the global ocean, the magnitude of the long-term linear trend in sea surface temperature (SST) is much smaller than the amplitude of multi-scale internal variation. One can thus use a specific period in a much longer record to arbitrarily determine the sign of long-term trend, which is statistically significant, in regional SST. This could lead to a controversial conclusion on how global SST responded to the anthropogenic forcing in the recent history. In this study, the uncertainty in the linear trend due to multi-scale internal variation is theoretically investigated. It is found that the "estimated" trend will not change its sign only when its magnitude is greater than a theoretical threshold that scales the influence from the multi-scale internal variation. Otherwise, the sign of the "estimated" trend may depend on the period used. The new criterion is found to be superior over the existing methods when the de-trended time series is dominated by the oscillatory term. Applying this new criterion to a global SST reconstruction from 1881 to 2013 reveals that the influences from multi-scale internal variation on the sign of "estimated" linear trend cannot be excluded in most parts of the Pacific, the southern Indian Ocean and the northern Atlantic; therefore, the warming or/and cooling trends found in these regions cannot be interpreted as the consequences of anthropogenic forcing. It's also suggested that the recent hiatus can be explained by combined uncertainty from internal variations at the interannual and decadal time scales.

  12. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to...

  13. A numerical study of linear and nonlinear kinematic models in fish swimming with the DSD/SST method

    NASA Astrophysics Data System (ADS)

    Tian, Fang-Bao

    2015-03-01

    Flow over two fish (modeled by two flexible plates) in tandem arrangement is investigated by solving the incompressible Navier-Stokes equations numerically with the DSD/SST method to understand the differences between the geometrically linear and nonlinear models. In the simulation, the motions of the plates are reconstructed from a vertically flowing soap film tunnel experiment with linear and nonlinear kinematic models. Based on the simulations, the drag, lift, power consumption, vorticity and pressure fields are discussed in detail. It is found that the linear and nonlinear models are able to reasonably predict the forces and power consumption of a single plate in flow. Moreover, if multiple plates are considered, these two models yield totally different results, which implies that the nonlinear model should be used. The results presented in this work provide a guideline for future studies in fish swimming.

  14. In-flight and simulated aircraft fuel temperature measurements

    NASA Technical Reports Server (NTRS)

    Svehla, Roger A.

    1990-01-01

    Fuel tank measurements from ten flights of an L1011 commercial aircraft are reported for the first time. The flights were conducted from 1981 to 1983. A thermocouple rake was installed in an inboard wing tank and another in an outboard tank. During the test periods of either 2 or 5 hr, at altitudes of 10,700 m (35,000 ft) or higher, either the inboard or the outboard tank remained full. Fuel temperature profiles generally developed in the expected manner. The bulk fuel was mixed by natural convection to a nearly uniform temperature, especially in the outboard tank, and a gradient existed at the bottom conduction zone. The data indicated that when full, the upper surface of the inboard tank was wetted and the outboard tank was unwetted. Companion NASA Lewis Research Center tests were conducted in a 0.20 cubic meter (52 gal) tank simulator of the outboard tank, chilled on the top and bottom, and insulated on the sides. Even though the simulator tank had no internal components corresponding to the wing tank, temperatures agreed with the flight measurements for wetted upper surface conditions, but not for unwetted conditions. It was concluded that if boundary conditions are carefully controlled, simulators are a useful way of evaluating actual flight temperatures.

  15. Baking and helium glow discharge cleaning of SST-1 Tokamak with graphite plasma facing components

    NASA Astrophysics Data System (ADS)

    Semwal, P.; Khan, Z.; Raval, D. C.; Dhanani, K. R.; George, S.; Paravastu, Y.; Prakash, A.; Thankey, P.; Ramesh, G.; Khan, M. S.; Saikia, P.; Pradhan, S.

    2017-04-01

    Graphite plasma facing components (PFCs) were installed inside the SST-1 vacuum vessel. Prior to installation, all the graphite tiles were baked at 1000 °C in a vacuum furnace operated below 1.0 × 10-5 mbar. However due to the porous structure of graphite, they absorb a significant amount of water vapour from air during the installation process. Rapid desorption of this water vapour requires high temperature bake-out of the PFCs at ≥ 250 °C. In SST-1 the PFCs were baked at 250 °C using hot nitrogen gas facility to remove the absorbed water vapour. Also device with large graphite surface area has the disadvantage that a large quantity of hydrogen gets trapped inside it during plasma discharges which makes density control difficult. Helium glow discharge cleaning (He-GDC) effectively removes this stored hydrogen as well as other impurities like oxygen and hydrocarbon within few nano-meters from the surface by particle induced desorption. Before plasma operation in SST-1 tokamak, both baking of PFCs and He-GDC were carried out so that these impurities were removed effectively. The mean desorption yield of hydrogen was found to be 0.24. In this paper the results of baking and He-GDC experiments of SST-1 will be presented in detail.

  16. Genome-Scale Analysis Reveals Sst2 as the Principal Regulator of Mating Pheromone Signaling in the Yeast Saccharomyces cerevisiae†

    PubMed Central

    Chasse, Scott A.; Flanary, Paul; Parnell, Stephen C.; Hao, Nan; Cha, Jiyoung Y.; Siderovski, David P.; Dohlman, Henrik G.

    2006-01-01

    A common property of G protein-coupled receptors is that they become less responsive with prolonged stimulation. Regulators of G protein signaling (RGS proteins) are well known to accelerate G protein GTPase activity and do so by stabilizing the transition state conformation of the G protein α subunit. In the yeast Saccharomyces cerevisiae there are four RGS-homologous proteins (Sst2, Rgs2, Rax1, and Mdm1) and two Gα proteins (Gpa1 and Gpa2). We show that Sst2 is the only RGS protein that binds selectively to the transition state conformation of Gpa1. The other RGS proteins also bind Gpa1 and modulate pheromone signaling, but to a lesser extent and in a manner clearly distinct from Sst2. To identify other candidate pathway regulators, we compared pheromone responses in 4,349 gene deletion mutants representing nearly all nonessential genes in yeast. A number of mutants produced an increase (sst2, bar1, asc1, and ygl024w) or decrease (cla4) in pheromone sensitivity or resulted in pheromone-independent signaling (sst2, pbs2, gas1, and ygl024w). These findings suggest that Sst2 is the principal regulator of Gpa1-mediated signaling in vivo but that other proteins also contribute in distinct ways to pathway regulation. PMID:16467474

  17. Water tank installed at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2009-01-01

    A water tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen water, liquid oxygen (LOX) and isopropyl alcohol (IPA) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  18. Water tank installed at A-3 Test Stand

    NASA Image and Video Library

    2009-08-13

    A water tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen water, liquid oxygen (LOX) and isopropyl alcohol (IPA) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  19. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100 and...

  20. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100 and...

  1. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100 and...

  2. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  3. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  4. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  5. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  6. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  7. Investigation of Damping Physics and CFD Tool Validation for Simulation of Baffled Tanks at Variable Slosh Amplitude

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2016-01-01

    Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involves the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations were mainly carried out by extensive experiments. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between the empirical Miles equation and experimental measurements, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use Computational Fluid Dynamics (CFD) technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. Loci-STREAM-VOF, a well validated CFD solver developed at NASA MSFC, is applied to study the vorticity field around a baffle and around the fluid-gas interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data is then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (d/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.

  8. Cool Down Experiences with the SST-1 Helium Cryogenics System before and after Current Feeders System Modification

    NASA Astrophysics Data System (ADS)

    Patel, R.; Panchal, P.; Panchal, R.; Tank, J.; Mahesuriya, G.; Sonara, D.; Srikanth, G. L. N.; Garg, A.; Bairagi, N.; Christian, D.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Gupta, N. C.; Prasad, U.; Sharma, A. N.; Tanna, V. L.; Pradhan, S.

    The SST-1 machine comprises a superconducting magnet system (SCMS), which includes TF and PF magnets. In order to charge the SCMS, we need superconducting current feeders consisting of SC feeders and vapor cooled current leads (VCCLs). We have installed all 10 (+/-) pairs of VCCLs for the TF and PF systems. While conducting initial engineering validation of the SST-1 machine, our prime objective was to produce circular plasma using only the TF system. During the SST-1 campaign I to VI, we have to stop the PF magnets cooling in order to get the cryo- stable conditions for current charging of the TF magnets system. In that case, the cooling of the PF current leads is not essential. It has been also observed that after aborting the PF system cooling, there was a limited experimental window of TF operation. Therefore, in the recent SST-1 campaign-VII, we removed the PF current leads (9 pairs) and kept only single (+/-) pair of the 10,000 A rated VCCLs to realize the charging of the TF system for the extended window of operation. We have observed a better cryogenic stability in the TF magnets after modifications in the CFS. In this paper, we report the comparison of the cool down performance for the SST-1 machine operation before and after modifications of the current feeders system.

  9. The Challenge of Simulating the Regional Climate over Florida

    NASA Astrophysics Data System (ADS)

    Misra, V.; Mishra, A. K.

    2015-12-01

    In this study we show that the unique geography of the peninsular Florida with close proximity to strong mesoscale surface ocean currents among other factors warrants the use of relatively high resolution climate models to project Florida's hydroclimate. In the absence of such high resolution climate models we highlight the deficiencies of two relatively coarse spatial resolution CMIP5 models with respect to the warm western boundary current of the Gulf Stream. As a consequence it affects the coastal SST and the land-ocean contrast, affecting the rainy summer seasonal precipitation accumulation over peninsular Florida. We also show this through two sensitivity studies conducted with a regional coupled ocean atmosphere model with different bathymetries that dislocate and modulate the strength of the Gulf Stream that locally affects the SST in the two simulations. These studies show that a stronger and more easterly displaced Gulf Stream produces warmer coastal SST's along the Atlantic coast of Florida that enhances the precipitation over peninsular Florida relative to the other regional climate model simulation. However the regional model simulations indicate that variability of wet season rainfall variability in peninsular Florida becomes less dependent on the land-ocean contrast with a stronger Gulf Stream current.

  10. A feasibility study of developing toroidal tanks for a spinning spacecraft. Part 2: Evaluation of fluid behavior in spinning toroidal tanks

    NASA Technical Reports Server (NTRS)

    Anderson, J. E.

    1974-01-01

    An experimental program was conducted for the purpose of evaluating propellant behavior characteristics in spinning toroidal tanks. The effects of typical mission requirements, and related phenomena upon propellant slosh and settling, and orientation and stability of the ullage were investigated in a subscale model tank under both one-g and low-g acceleration environments. Specific conditions included were axial acceleration, spin rate, spinrate change, and spacecraft wobble, both singly and in combination. Methanol and water in combination with appropriate spin-rates and accelerations of the scale model system were used to simulate the behavior of fluorine, nitrogen tetroxide, monomethylhydrazine, and hydrazine. The experimental results indicate that no major fluid behavior problems would be encountered with the use of toroidal tanks containing any of the four propellants in a proposed spin-stabilized orbiter spacecraft.

  11. Reexamination of the relation between depth of the Antarctic ozone hole, and equatorial QBO and SST, 1962-1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angell, J.K.

    1993-08-06

    This paper reports on an examination of previous data to see if a correlation can be found between the average depth of the Antarctic ozone hole, and the equatorial quasi-biennial oscillation (QBO) and/or sea surface temperature (SST). Data from the period 1962 to 1992 is examined. The only ozone data which spans this period is the Dobson total ozone data from the South Pole. The data considered is the average from mid October through November. The 50 mb zonal wind at Singapore is taken as a measure of the QBO. The average SST in the region 12S - 2N, 180Wmore » - 90W, the El Nino region, is taken for the SST value. The objective of this correlation is for predictive purposes. There is a weak correlation to the QBO, and a much weaker correlation to the SST from this data set.« less

  12. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  13. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT... tank car tanks. Editorial Note: At 66 FR 45186, Aug. 28, 2001, an amendment published amending a table...

  14. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  15. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  16. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  17. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  18. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  19. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  20. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances ofmore » the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.« less

  1. POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

    2007-03-29

    amount of sludge and the level of dilution for the mixture. (5) Blending the size-reduced zeolite into larger quantities of sludge can reduce the amount of preferential settling. (6) Periodic dilution or resuspension due to sludge washing or other mixing requirements will increase the chances of preferential settling of the zeolite solids. (7) Mixtures of Purex sludge and size-reduced zeolite did not produce yield stresses greater than 200 Pascals for settling times less than thirty days. Most of the sludge-zeolite blends did not exceed 50 Pascals. These mixtures should be removable by current pump technology if sufficient velocities can be obtained. (8) The settling rate of the sludge-zeolite mixtures is a function of the ionic strength (or supernate density) and the zeolite- sludge mixing ratio. (9) Simulant tests indicate that leaching of Si may be an issue for the processed Tank 19 mound material. (10) Floating zeolite fines observed in water for the jet-eductor system and size-reduced zeolite were not observed when the size-reduced zeolite was blended with caustic solutions, indicating that the caustic solutions cause the fines to agglomerate. Based on the test programs described in this report, the potential for successfully removing Tank 18/19 mound material from Tank 7 with the current slurry pump technology requires the reduction of the particle size of the Tank 18/19 mound material.« less

  2. Detection of bone disease by hybrid SST-watershed x-ray image segmentation

    NASA Astrophysics Data System (ADS)

    Sanei, Saeid; Azron, Mohammad; Heng, Ong Sim

    2001-07-01

    Detection of diagnostic features from X-ray images is favorable due to the low cost of these images. Accurate detection of the bone metastasis region greatly assists physicians to monitor the treatment and to remove the cancerous tissue by surgery. A hybrid SST-watershed algorithm, here, efficiently detects the boundary of the diseased regions. Shortest Spanning Tree (SST), based on graph theory, is one of the most powerful tools in grey level image segmentation. The method converts the images into arbitrary-shape closed segments of distinct grey levels. To do that, the image is initially mapped to a tree. Then using RSST algorithm the image is segmented to a certain number of arbitrary-shaped regions. However, in fine segmentation, over-segmentation causes loss of objects of interest. In coarse segmentation, on the other hand, SST-based method suffers from merging the regions belonged to different objects. By applying watershed algorithm, the large segments are divided into the smaller regions based on the number of catchment's basins for each segment. The process exploits bi-level watershed concept to separate each multi-lobe region into a number of areas each corresponding to an object (in our case a cancerous region of the bone,) disregarding their homogeneity in grey level.

  3. 33 CFR 157.147 - Similar tank design: Inspections on foreign tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Similar tank design: Inspections... § 157.147 Similar tank design: Inspections on foreign tank vessels. (a) If a foreign tank vessel has..., for only one of those tanks to be inspected under § 157.140(a)(1). (b) Only one tank of a group of...

  4. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  5. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  6. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  7. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  8. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  9. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  10. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  11. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  12. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...

  13. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In...

  14. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...

  15. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...

  16. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  17. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  18. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  19. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  20. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  1. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  2. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification DOT-107A * * * * seamless steel tank...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  3. ADM. Tanks: from left to right: fuel oil tank, fuel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADM. Tanks: from left to right: fuel oil tank, fuel pump house (TAN-611), engine fuel tank, water pump house, water storage tank. Camera facing northwest. Not edge of shielding berm at left of view. Date: November 25, 1953. INEEL negative no. 9217 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  4. Numerical Methods for the Analysis of Power Transformer Tank Deformation and Rupture Due to Internal Arcing Faults

    PubMed Central

    Yan, Chenguang; Hao, Zhiguo; Zhang, Song; Zhang, Baohui; Zheng, Tao

    2015-01-01

    Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3MJ and a 6.3MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers. PMID:26230392

  5. Numerical Methods for the Analysis of Power Transformer Tank Deformation and Rupture Due to Internal Arcing Faults.

    PubMed

    Yan, Chenguang; Hao, Zhiguo; Zhang, Song; Zhang, Baohui; Zheng, Tao

    2015-01-01

    Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3 MJ and a 6.3 MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers.

  6. An assessment of TropFlux and NCEP air-sea fluxes on ROMS simulations over the Bay of Bengal region

    NASA Astrophysics Data System (ADS)

    Dey, Dipanjan; Sil, Sourav; Jana, Sudip; Pramanik, Saikat; Pandey, P. C.

    2017-12-01

    This study presents an assessment of the TropFlux and the National Centers for Environmental Prediction (NCEP) reanalysis air-sea fluxes in simulating the surface and subsurface oceanic parameters over the Bay of Bengal (BoB) region during 2002-2014 using the Regional Ocean Modelling System (ROMS). The assessment has been made by comparing the simulated fields with in-situ and satellite observations. The simulated surface and subsurface temperatures in the TropFlux forced experiment (TropFlux-E) show better agreement with the Research Moored Array for African-Asian-Australian Monsoon Analysis (RAMA) and Argo observations than the NCEP forced experiment (NCEP-E). The BoB domain averaged sea surface temperature (SST) simulated in the NCEP-E is consistently cooler than the satellite SST, with a root mean square error (RMSE) of 0.79 °C. Moreover, NCEP-E shows a limitation in simulating the observed seasonal cycle of the SST due to substantial underestimation of the pre-monsoon SST peak. These limitations are mostly due to the lower values of the NCEP net heat flux. The seasonal and interannual variations of SST in the TropFlux-E are better comparable to the observations with correlations and skills more than 0.80 and 0.90 respectively. However, SST is overestimated during summer monsoon periods mainly due to higher net heat flux. The superiority of TropFlux forcing over the NCEP reanalysis can also be seen when simulating the interannual variabilities of the magnitude and vertical extent of Wyrtki jets at two equatorial RAMA buoy locations. The jet is weaker in the NCEP-E relative to the TropFlux-E and observations. The simulated sea surface height anomalies (SSHA) from both the experiments are able to capture the regions of positive and negative SSHA with respect to satellite-derived altimeter data with better performance in the TropFlux-E. The speed of the westward propagating Rossby wave along 18°N in the TropFlux-E is found to be about 4.7 cm/s, which is close to

  7. Simulating Pliocene warmth and a permanent El Niño-like state: The role of cloud albedo

    DOE PAGES

    Burls, N. J.; Fedorov, A. V.

    2014-09-13

    We present that available evidence suggests that during the early Pliocene (4–5 Ma) the mean east-west sea surface temperature (SST) gradient in the equatorial Pacific Ocean was significantly smaller than today, possibly reaching only 1–2°C. The meridional SST gradients were also substantially weaker, implying an expanded ocean warm pool in low latitudes. Subsequent global cooling led to the establishment of the stronger, modern temperature gradients. Given our understanding of the physical processes that maintain the present-day cold tongue in the east, warm pool in the west and hence sharp temperature contrasts, determining the key factors that maintained early Pliocene climatemore » still presents a challenge for climate theories and models. This study demonstrates how different cloud properties could provide a solution. We show that a reduction in the meridional gradient in cloud albedo can sustain reduced meridional and zonal SST gradients, an expanded warm pool and warmer thermal stratification in the ocean, and weaker Hadley and Walker circulations in the atmosphere. Having conducted a range of hypothetical modified cloud albedo experiments, we arrive at our Pliocene simulation, which shows good agreement with proxy SST data from major equatorial and coastal upwelling regions, the tropical warm pool, middle and high latitudes, and available subsurface temperature data. As suggested by the observations, the simulated Pliocene-like climate sustains a robust El Niño-Southern Oscillation despite the reduced mean east-west SST gradient. In conclusion, our results demonstrate that cloud albedo changes may be a critical element of Pliocene climate and that simulating the meridional SST gradient correctly is central to replicating the geographical patterns of Pliocene warmth.« less

  8. Numerical Simulation of Atmospheric Response to Pacific Tropical Instability Waves(.

    NASA Astrophysics Data System (ADS)

    Small, R. Justin; Xie, Shang-Ping; Wang, Yuqing

    2003-11-01

    Tropical instability waves (TIWs) are 1000-km-long waves that appear along the sea surface temperature (SST) front of the equatorial cold tongue in the eastern Pacific. The study investigates the atmospheric planetary boundary layer (PBL) response to TIW-induced SST variations using a high-resolution regional climate model. An investigation is made of the importance of pressure gradients induced by changes in air temperature and moisture, and vertical mixing, which is parameterized in the model by a 1.5-level turbulence closure scheme. Significant turbulent flux anomalies of sensible and latent heat are caused by changes in the air sea temperature and moisture differences induced by the TIWs. Horizontal advection leads to the occurrence of the air temperature and moisture extrema downwind of the SST extrema. High and low hydrostatic surface pressures are then located downwind of the cold and warm SST patches, respectively. The maximum and minimum wind speeds occur in phase with SST, and a thermally direct circulation is created. The momentum budget indicates that pressure gradient, vertical mixing, and horizontal advection dominate. In the PBL the vertical mixing acts as a frictional drag on the pressure-gradient-driven winds. Over warm SST the mixed layer deepens relative to over cold SST. The model simulations of the phase and amplitude of wind velocity, wind convergence, and column-integrated water vapor perturbations due to TIWs are similar to those observed from satellite and in situ data.

  9. Eastern equatorial Pacific sea surface temperature annual cycle in the Kiel climate model: simulation benefits from enhancing atmospheric resolution

    NASA Astrophysics Data System (ADS)

    Wengel, C.; Latif, M.; Park, W.; Harlaß, J.; Bayr, T.

    2018-05-01

    A long-standing difficulty of climate models is to capture the annual cycle (AC) of eastern equatorial Pacific (EEP) sea surface temperature (SST). In this study, we first examine the EEP SST AC in a set of integrations of the coupled Kiel Climate Model, in which only atmosphere model resolution differs. When employing coarse horizontal and vertical atmospheric resolution, significant biases in the EEP SST AC are observed. These are reflected in an erroneous timing of the cold tongue's onset and termination as well as in an underestimation of the boreal spring warming amplitude. A large portion of these biases are linked to a wrong simulation of zonal surface winds, which can be traced back to precipitation biases on both sides of the equator and an erroneous low-level atmospheric circulation over land. Part of the SST biases also is related to shortwave radiation biases related to cloud cover biases. Both wind and cloud cover biases are inherent to the atmospheric component, as shown by companion uncoupled atmosphere model integrations forced by observed SSTs. Enhancing atmosphere model resolution, horizontal and vertical, markedly reduces zonal wind and cloud cover biases in coupled as well as uncoupled mode and generally improves simulation of the EEP SST AC. Enhanced atmospheric resolution reduces convection biases and improves simulation of surface winds over land. Analysis of a subset of models from the Coupled Model Intercomparison Project phase 5 (CMIP5) reveals that in these models, very similar mechanisms are at work in driving EEP SST AC biases.

  10. Predictive value of serum sST2 in preschool wheezers for development of asthma with high FeNO.

    PubMed

    Ketelaar, M E; van de Kant, K D; Dijk, F N; Klaassen, E M; Grotenboer, N S; Nawijn, M C; Dompeling, E; Koppelman, G H

    2017-11-01

    Wheezing is common in childhood. However, current prediction models of pediatric asthma have only modest accuracy. Novel biomarkers and definition of subphenotypes may improve asthma prediction. Interleukin-1-receptor-like-1 (IL1RL1 or ST2) is a well-replicated asthma gene and associates with eosinophilia. We investigated whether serum sST2 predicts asthma and asthma with elevated exhaled NO (FeNO), compared to the commonly used Asthma Prediction Index (API). Using logistic regression modeling, we found that serum sST2 levels in 2-3 years-old wheezers do not predict doctors' diagnosed asthma at age 6 years. Instead, sST2 predicts a subphenotype of asthma characterized by increased levels of FeNO, a marker for eosinophilic airway inflammation. Herein, sST2 improved the predictive value of the API (AUC=0.70, 95% CI 0.56-0.84), but had also significant predictive value on its own (AUC=0.65, 95% CI 0.52-0.79). Our study indicates that sST2 in preschool wheezers has predictive value for the development of eosinophilic airway inflammation in asthmatic children at school age. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  11. Investigating the Uncertainty in Global SST Trends Due to Internal Variations Using an Improved Trend Estimator

    NASA Astrophysics Data System (ADS)

    Lian, Tao; Shen, Zheqi; Ying, Jun; Tang, Youmin; Li, Junde; Ling, Zheng

    2018-03-01

    A new criterion was proposed recently to measure the influence of internal variations on secular trends in a time series. When the magnitude of the trend is greater than a theoretical threshold that scales the influence from internal variations, the sign of the estimated trend can be interpreted as the underlying long-term change. Otherwise, the sign may depend on the period chosen. An improved least squares method is developed here to further reduce the theoretical threshold and is applied to eight sea surface temperature (SST) data sets covering the period 1881-2013 to investigate whether there are robust trends in global SSTs. It is found that the warming trends in the western boundary regions, the South Atlantic, and the tropical and southern-most Indian Ocean are robust. However, robust trends are not found in the North Pacific, the North Atlantic, or the South Indian Ocean. The globally averaged SST and Indian Ocean Dipole indices are found to have robustly increased, whereas trends in the zonal SST gradient across the equatorial Pacific, Niño 3.4 SST, and the Atlantic Multidecadal Oscillation indices are within the uncertainty range associated with internal variations. These results indicate that great care is required when interpreting SST trends using the available records in certain regions and indices. It is worth noting that the theoretical threshold can be strongly influenced by low-frequency oscillations, and the above conclusions are based on the assumption that trends are linear. Caution should be exercised when applying the theoretical threshold criterion to real data.

  12. Influence of secondary settling tank performance on suspended solids mass balance in activated sludge systems.

    PubMed

    Patziger, M; Kainz, H; Hunze, M; Józsa, J

    2012-05-01

    Secondary settling is the final step of the activated sludge-based biological waste water treatment. Secondary settling tanks (SSTs) are therefore an essential unit of producing a clear effluent. A further important function of SSTs is the sufficient thickening to achieve highly concentrated return sludge and biomass within the biological reactor. In addition, the storage of activated sludge is also needed in case of peak flow events (Ekama et al., 1997). Due to the importance of a high SST performance the problem has long been investigated (Larsen, 1977; Krebs, 1991; Takács et al., 1991; Ekama et al., 1997; Freimann, 1999; Patziger et al., 2005; Bürger et al., 2011), however, a lot of questions are still to solve regarding e.g. the geometrical features (inflow, outflow) and operations (return sludge control, scraper mechanism, allowable maximum values of surface overflow rates). In our study we focused on SSTs under dynamic load considering both the overall unsteady behaviour and the features around the peaks, investigating the effect of various sludge return strategies as well as the inlet geometry on SST performance. The main research tool was a FLUENT-based novel mass transport model consisting of two modules, a 2D axisymmetric SST model and a mixed reactor model of the biological reactor (BR). The model was calibrated and verified against detailed measurements of flow and concentration patterns, sludge settling, accompanied with continuous on-line measurement of in- and outflow as well as returned flow rates of total suspended solids (TSS) and water. As to the inlet arrangement a reasonable modification of the geometry could result in the suppression of the large scale flow structures of the sludge-water interface thus providing a significant improvement in the SST performance. Furthermore, a critical value of the overflow rate (q(crit)) was found at which a pronounced large scale circulation pattern develops in the vertical plane, the density current in

  13. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  14. Mount control system of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Antolini, Elisa; Tosti, Gino; Tanci, Claudio; Bagaglia, Marco; Canestrari, Rodolfo; Cascone, Enrico; Gambini, Giorgio; Nucciarelli, Giuliano; Pareschi, Giovanni; Scuderi, Salvo; Stringhetti, Luca; Busatta, Andrea; Giacomel, Stefano; Marchiori, Gianpietro; Manfrin, Cristiana; Marcuzzi, Enrico; Di Michele, Daniele; Grigolon, Carlo; Guarise, Paolo

    2016-08-01

    The ASTRI SST-2M telescope is an end-to-end prototype proposed for the Small Size class of Telescopes (SST) of the future Cherenkov Telescope Array (CTA). The prototype is installed in Italy at the INAF observing station located at Serra La Nave on Mount Etna (Sicily) and it was inaugurated in September 2014. This paper presents the software and hardware architecture and development of the system dedicated to the control of the mount, health, safety and monitoring systems of the ASTRI SST-2M telescope prototype. The mount control system installed on the ASTRI SST-2M telescope prototype makes use of standard and widely deployed industrial hardware and software. State of the art of the control and automation industries was selected in order to fulfill the mount related functional and safety requirements with assembly compactness, high reliability, and reduced maintenance. The software package was implemented with the Beckhoff TwinCAT version 3 environment for the software Programmable Logical Controller (PLC), while the control electronics have been chosen in order to maximize the homogeneity and the real time performance of the system. The integration with the high level controller (Telescope Control System) has been carried out by choosing the open platform communications Unified Architecture (UA) protocol, supporting rich data model while offering compatibility with the PLC platform. In this contribution we show how the ASTRI approach for the design and implementation of the mount control system has made the ASTRI SST-2M prototype a standalone intelligent machine, able to fulfill requirements and easy to be integrated in an array configuration such as the future ASTRI mini-array proposed to be installed at the southern site of the Cherenkov Telescope Array (CTA).

  15. Impact of tropical Atlantic sea-surface temperature biases on the simulated atmospheric circulation and precipitation over the Atlantic region: An ECHAM6 model study

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Bader, Jürgen

    2017-09-01

    As many coupled atmosphere-ocean general circulation models, the coupled Earth System Model developed at the Max Planck Institute for Meteorology suffers from severe sea-surface temperature (SST) biases in the tropical Atlantic. We performed a set of SST sensitivity experiments with its atmospheric model component ECHAM6 to understand the impact of tropical Atlantic SST biases on atmospheric circulation and precipitation. The model was forced by a climatology of observed global SSTs to focus on simulated seasonal and annual mean state climate. Through the superposition of varying tropical Atlantic bias patterns extracted from the MPI-ESM on top of the control field, this study investigates the relevance of the seasonal variation and spatial structure of tropical Atlantic biases for the simulated response. Results show that the position and structure of the Intertropical Convergence Zone (ITCZ) across the Atlantic is significantly affected, exhibiting a dynamically forced shift of annual mean precipitation maximum to the east of the Atlantic basin as well as a southward shift of the oceanic rain belt. The SST-induced changes in the ITCZ in turn affect seasonal rainfall over adjacent continents. However not only the ITCZ position but also other effects arising from biases in tropical Atlantic SSTs, e.g. variations in the wind field, change the simulation of precipitation over land. The seasonal variation and spatial pattern of tropical Atlantic SST biases turns out to be crucial for the simulated atmospheric response and is essential for analyzing the contribution of SST biases to coupled model mean state biases. Our experiments show that MPI-ESM mean-state biases in the Atlantic sector are mainly driven by SST biases in the tropical Atlantic while teleconnections from other basins seem to play a minor role.

  16. High frequency solar influence revealed in sclerosponge-derived Caribbean SST record

    NASA Astrophysics Data System (ADS)

    Estrella, J.; Winter, A.; Sherman, C.; Mangini, A.

    2012-12-01

    We present a high-resolution (annual) record of the Caribbean mixed layer temperature at different depths derived from oxygen isotopic ratios obtained from the sclerosponge Ceratoporella nicholsoni. Sclerosponges precipitate their calcium carbonate skeleton in equilibrium with their surrounding environment and are capable of living at depths down to 200 m. The sponges for this project were collected off the coasts of Puerto Rico and the US Virgin Islands in northeastern Caribbean Sea. The records obtained extend from the early 1500's to the present and suggest that the Northeastern Caribbean was 1 - 2 °C cooler during the Little Ice Age than present conditions and that sea surface temperature (SST) has been rising at an average linear rate of 0.009 °C yr-1 since the mid 1800's, three times faster than the World Ocean. Wavelet time series analysis of our records suggests that Caribbean SST variability is regulated by the sunspot cycle, especially when the total solar irradiance is high, at what time the SSTs and the sunspot cycle are highly coupled. Our findings suggest a SST response to solar influence of 0.40 °C (W/m2)-1, almost twice that of the World Ocean. Deceleration of the Caribbean Current is proposed as a possible reason for this disparity. Further work is currently being done on other sponges and other calcium carbonate proxies to examine the extension of this forcing in other climate phenomena.

  17. TANK48 CFD MODELING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.

    2011-05-17

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitativemore » mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the

  18. LRC-QueSST-14x22-video-file

    NASA Image and Video Library

    2017-09-19

    Researchers at NASA's Langley Research Center in Hampton, Virginia, installed a 15-percent scale model of the Quiet Supersonic Technology (QueSST) preliminary design of a Low-Boom Flight Demonstration (LBFD) aircraft in the 14- by- 22-Foot Subsonic Tunnel. Data from six weeks of wind tunnel tests will characterize the design's low-speed aerodynamic performance. The testing will build on work done earlier this year at NASA's Glenn Research Center in Cleveland, Ohio.

  19. Cloning of TaSST genes associated with water soluble carbohydrate content in bread wheat stems and development of a functional marker.

    PubMed

    Dong, Yan; Zhang, Yan; Xiao, Yonggui; Yan, Jun; Liu, Jindong; Wen, Weie; Zhang, Yong; Jing, Ruilian; Xia, Xianchun; He, Zhonghu

    2016-05-01

    We cloned TaSST genes, developed a gene-specific marker for TaSST-D1, and identified three QTL in the Doumai/Shi 4185 RIL population. TaSST-D1 is within one of the three QTL. Sucrose:sucrose-1-fructosyltransferase (1-SST), a critical enzyme in the fructan biosynthetic pathway, is significantly and positively associated with water soluble carbohydrate (WSC) content in bread wheat stems. In the present study, wheat 1-SST genes (TaSST) were isolated and located on chromosomes 4A, 7A and 7D. Sequence analysis of TaSST-D1 revealed 15 single nucleotide polymorphisms (SNP) in the third exon between cultivars with higher and lower WSC content. A cleaved amplified polymorphism sequence (CAPS) marker, WSC7D, based on the polymorphism at position 1216 (C-G) was developed to discriminate the two alleles. WSC7D was located on chromosome 7DS using a recombinant inbred line (RIL) population from a Doumai/Shi 4185 cross, and a set of Chinese Spring nullisomic-tetrasomic lines. TaSST-D1 co-segregated with the CAPS marker WSC7D and was linked to SNP marker BS00108793_51 on chromosome 7DS at a genetic distance of 6.1 cM. It explained 8.8, 10.9, and 11.3% of the phenotypic variances in trials at Beijing and Shijiazhuang as well as the averaged data from those environments, respectively. Two additional QTL (QWSC.caas-4BS and QWSC.caas-7AS) besides TaSST-D1 were mapped in the RIL population. One hundred and forty-nine Chinese wheat cultivars and advanced lines tested in four environments were used to validate a highly significant (P < 0.01) association between WSC7D and WSC content in wheat stems. WSC7D can be used as a gene-specific marker for improvement of stem WSC content in wheat breeding programs.

  20. Remote and Local Influences in Forecasting Pacific SST: a Linear Inverse Model and a Multimodel Ensemble Study

    NASA Astrophysics Data System (ADS)

    Faggiani Dias, D.; Subramanian, A. C.; Zanna, L.; Miller, A. J.

    2017-12-01

    Sea surface temperature (SST) in the Pacific sector is well known to vary on time scales from seasonal to decadal, and the ability to predict these SST fluctuations has many societal and economical benefits. Therefore, we use a suite of statistical linear inverse models (LIMs) to understand the remote and local SST variability that influences SST predictions over the North Pacific region and further improve our understanding on how the long-observed SST record can help better guide multi-model ensemble forecasts. Observed monthly SST anomalies in the Pacific sector (between 15oS and 60oN) are used to construct different regional LIMs for seasonal to decadal prediction. The forecast skills of the LIMs are compared to that from two operational forecast systems in the North American Multi-Model Ensemble (NMME) revealing that the LIM has better skill in the Northeastern Pacific than NMME models. The LIM is also found to have comparable forecast skill for SST in the Tropical Pacific with NMME models. This skill, however, is highly dependent on the initialization month, with forecasts initialized during the summer having better skill than those initialized during the winter. The forecast skill with LIM is also influenced by the verification period utilized to make the predictions, likely due to the changing character of El Niño in the 20th century. The North Pacific seems to be a source of predictability for the Tropics on seasonal to interannual time scales, while the Tropics act to worsen the skill for the forecast in the North Pacific. The data were also bandpassed into seasonal, interannual and decadal time scales to identify the relationships between time scales using the structure of the propagator matrix. For the decadal component, this coupling occurs the other way around: Tropics seem to be a source of predictability for the Extratropics, but the Extratropics don't improve the predictability for the Tropics. These results indicate the importance of temporal

  1. CFD analysis of aircraft fuel tanks thermal behaviour

    NASA Astrophysics Data System (ADS)

    Zilio, C.; Longo, G. A.; Pernigotto, G.; Chiacchio, F.; Borrelli, P.; D'Errico, E.

    2017-11-01

    This work is carried out within the FP7 European research project TOICA (Thermal Overall Integrated Conception of Aircraft, http://www.toica-fp7.eu/). One of the tasks foreseen for the TOICA project is the analysis of fuel tanks as possible heat sinks for future aircrafts. In particular, in the present paper, commercial regional aircraft is considered as case study and CFD analysis with the commercial code STAR-CCM+ is performed in order to identify the potential capability to use fuel stored in the tanks as a heat sink for waste heat dissipated by other systems. The complex physical phenomena that characterize the heat transfer inside liquid fuel, at the fuel-ullage interface and inside the ullage are outlined. Boundary conditions, including the effect of different ground and flight conditions, are implemented in the numerical simulation approach. The analysis is implemented for a portion of aluminium wing fuel tank, including the leading edge effects. Effect of liquid fuel transfer among different tank compartments and the air flow in the ullage is included. According to Fuel Tank Flammability Assessment Method (FTFAM) proposed by the Federal Aviation Administration, the results are exploited in terms of exponential time constants and fuel temperature difference to the ambient for the different cases investigated.

  2. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  3. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  4. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  5. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.

    PubMed

    Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin

    2016-01-01

    The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground.

  6. Evaluation of fluid behavior in spinning toroidal tanks

    NASA Technical Reports Server (NTRS)

    Anderson, J. E.; Fester, D. A.; Dugan, D. W.

    1976-01-01

    An experimental study was conducted to evaluate propellant behavior in spinning toroidal tanks that could be used in a retro-propulsion system of an advanced outer-planet Pioneer orbiter. Information on propellant slosh and settling and on ullage orientation and stability was obtained. The effects of axial acceleration, spin rate, spin rate change, and spacecraft wobble, both singly and in combination, were evaluated using a 1/8-scale transparent tank in one-g and low-g environments. Liquid loadings ranged from 5% to 96% full. The impact of a surface tension acquisition device was assessed. Testing simulated the behavior of F2/N2H4 and N2O4/MMH propellants. Results are presented which indicate no major fluid behavior problems would be encountered with any of the four propellants in the toroidal tanks of a spin-stabilized orbiter spacecraft.

  7. Mechanistic prediction of fission-gas behavior during in-cell transient heating tests on LWR fuel using the GRASS-SST and FASTGRASS computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J; Gehl, S M

    1979-01-01

    GRASS-SST and FASTGRASS are mechanistic computer codes for predicting fission-gas behavior in UO/sub 2/-base fuels during steady-state and transient conditions. FASTGRASS was developed in order to satisfy the need for a fast-running alternative to GRASS-SST. Althrough based on GRASS-SST, FASTGRASS is approximately an order of magnitude quicker in execution. The GRASS-SST transient analysis has evolved through comparisons of code predictions with the fission-gas release and physical phenomena that occur during reactor operation and transient direct-electrical-heating (DEH) testing of irradiated light-water reactor fuel. The FASTGRASS calculational procedure is described in this paper, along with models of key physical processes included inmore » both FASTGRASS and GRASS-SST. Predictions of fission-gas release obtained from GRASS-SST and FASTGRASS analyses are compared with experimental observations from a series of DEH tests. The major conclusions is that the computer codes should include an improved model for the evolution of the grain-edge porosity.« less

  8. Mechanism of ENSO influence on the South Asian monsoon rainfall in global model simulations

    NASA Astrophysics Data System (ADS)

    Joshi, Sneh; Kar, Sarat C.

    2018-02-01

    Coupled ocean atmosphere global climate models are increasingly being used for seasonal scale simulation of the South Asian monsoon. In these models, sea surface temperatures (SSTs) evolve as coupled air-sea interaction process. However, sensitivity experiments with various SST forcing can only be done in an atmosphere-only model. In this study, the Global Forecast System (GFS) model at T126 horizontal resolution has been used to examine the mechanism of El Niño-Southern Oscillation (ENSO) forcing on the monsoon circulation and rainfall. The model has been integrated (ensemble) with observed, climatological and ENSO SST forcing to document the mechanism on how the South Asian monsoon responds to basin-wide SST variations in the Indian and Pacific Oceans. The model simulations indicate that the internal variability gets modulated by the SSTs with warming in the Pacific enhancing the ensemble spread over the monsoon region as compared to cooling conditions. Anomalous easterly wind anomalies cover the Indian region both at 850 and 200 hPa levels during El Niño years. The locations and intensity of Walker and Hadley circulations are altered due to ENSO SST forcing. These lead to reduction of monsoon rainfall over most parts of India during El Niño events compared to La Niña conditions. However, internally generated variability is a major source of uncertainty in the model-simulated climate.

  9. REMOVAL OF TANK AND SEWER SEDIMENT BY GATE FLUSHING: COMPUTATIONAL FLUID DYNAMICS MODEL STUDIES

    EPA Science Inventory

    This presentation will discuss the application of a computational fluid dynamics 3D flow model to simulate gate flushing for removing tank/sewer sediments. The physical model of the flushing device was a tank fabricated and installed at the head-end of a hydraulic flume. The fl...

  10. Fuel tank integrity research : fuel tank analyses and test plans

    DOT National Transportation Integrated Search

    2013-04-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. Fuel tank research is being performed to : determine strategies for increasing the fuel tank impact : resistance to ...

  11. Numerical simulation of low gravity draining. [computerized simulation of liquid sloshing in cylindrical tanks, and boundary value problems

    NASA Technical Reports Server (NTRS)

    Bizzell, G. D.; Crane, G. E.

    1976-01-01

    A boundary value problem was solved numerically for a liquid that is assumed to be inviscid and incompressible, having a motion that is irrotational and axisymmetric, and having a constant (5 degrees) solid-liquid contact angle. The avoidance of excessive mesh distortion, encountered with strictly Lagrangian or Eulerian kinematics, was achieved by introducing an auxiliary kinematic velocity field along the free surface in order to vary the trajectories used in integrating the ordinary differential equations simulating the moving boundary. The computation of the velocity potential was based upon a nonuniform triangular mesh which was automatically revised to varying depths to accommodate the motion of the free surface. These methods permitted calculation of draining induced axisymmetric slosh through the many (or fractional) finite amplitude oscillations that can occur depending upon the balance of draining, gravitational, and surface tension forces. Velocity fields, evolution of the free surface with time, and liquid residual volumes were computed for three and one half decades of Weber number and for two Bond numbers, tank fill levels, and drain radii. Comparisons with experimental data are very satisfactory.

  12. Numerical Modeling of Propellant Boiloff in Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.

    2007-01-01

    This Technical Memorandum (TM) describes the thermal modeling effort undertaken at Marshall Space Flight Center to support the Cryogenic Test Laboratory at Kennedy Space Center (KSC) for a study of insulation materials for cryogenic tanks in order to reduce propellant boiloff during long-term storage. The Generalized Fluid System Simulation program has been used to model boiloff in 1,000-L demonstration tanks built for testing the thermal performance of glass bubbles and perlite insulation. Numerical predictions of boiloff rate and ullage temperature have been compared with the measured data from the testing of demonstration tanks. A satisfactory comparison between measured and predicted data has been observed for both liquid nitrogen and hydrogen tests. Based on the experience gained with the modeling of the demonstration tanks, a numerical model of the liquid hydrogen storage tank at launch complex 39 at KSC was built. The predicted boiloff rate of hydrogen has been found to be in good agreement with observed field data. This TM describes three different models that have been developed during this period of study (March 2005 to June 2006), comparisons with test data, and results of parametric studies.

  13. Design criteria monograph for metal tanks and tank components

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Significant elements in detail tank design are wall and end structures, weld joints at bulkhead and attachment junctures, and ports and access openings. Additional design considerations are influence and effect of fabrication processes on tank component design, and finally, testing and inspection that are required to establish confidence in tank design.

  14. Sloshing in the Liquid Hydrogen and Liquid Oxygen Propellant Tanks After Main Engine Cut Off

    NASA Technical Reports Server (NTRS)

    Kim, Sura; West, Jeff

    2011-01-01

    NASA Marshall Space Flight Center is designing and developing the Main Propulsion System (MPS) for Ares launch vehicles. Propellant sloshing in the liquid hydrogen (LH2) and liquid oxygen (LO2) propellant tanks after Main Engine Cut Off (MECO) was modeled using the Volume of Fluid (VOF) module of the computational fluid dynamics code, CFD-ACE+. The present simulation shows that there is substantial sloshing side forces acting on the LH2 tank during the deceleration of the vehicle after MECO. The LH2 tank features a side wall drain pipe. The side loads result from the residual propellant mass motion in the LH2 tank which is initiated by the stop of flow into the drain pipe at MECO. The simulations show that radial force on the LH2 tank wall is less than 50 lbf and the radial moment calculated based up through the center of gravity of the vehicle is predicted to be as high as 300 lbf-ft. The LO2 tank features a bottom dome drain system and is equipped with sloshing baffles. The remaining LO2 in the tank slowly forms a liquid column along the centerline of tank under the zero gravity environments. The radial force on the LO2 tank wall is predicted to be less than 100 lbf. The radial moment calculated based on the center of gravity of the vehicle is predicted as high as 4500 lbf-ft just before MECO and dropped down to near zero after propellant draining stopped completely.

  15. Oil viscosity limitation on dispersibility of crude oil under simulated at-sea conditions in a large wave tank.

    PubMed

    Trudel, Ken; Belore, Randy C; Mullin, Joseph V; Guarino, Alan

    2010-09-01

    This study determined the limiting oil viscosity for chemical dispersion of oil spills under simulated sea conditions in the large outdoor wave tank at the US National Oil Spill Response Test Facility in New Jersey. Dispersant effectiveness tests were completed using crude oils with viscosities ranging from 67 to 40,100 cP at test temperature. Tests produced an effectiveness-viscosity curve with three phases when oil was treated with Corexit 9500 at a dispersant-to-oil ratio of 1:20. The oil viscosity that limited chemical dispersion under simulated at-sea conditions was in the range of 18,690 cP to 33,400 cP. Visual observations and measurements of oil concentrations and droplet size distributions in the water under treated and control slicks correlated well with direct measurements of effectiveness. The dispersant effectiveness versus oil viscosity relationship under simulated at sea conditions at Ohmsett was most similar to those from similar tests made using the Institut Francais du Pétrole and Exxon Dispersant Effectiveness (EXDET) test methods. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Ring stability of underground toroidal tanks

    NASA Astrophysics Data System (ADS)

    Lubis, Asnawi; Su'udi, Ahmad

    2017-06-01

    The design of pressure vessels subjected to internal pressure is governed by its strength, while the design of pressure vessels subjected to external pressure is governed by its stability, which is for circular cross-section is called the ring stability. This paper presented the results of finite element study of ring stability of circular toroidal tank without stiffener under external pressure. The tank was placed underground and external pressure load from soil was simulated as pressure at the top of the vessel along 30° circumferentially. One might ask the reason for choosing toroidal rather than cylindrical tank. Preliminary finite element studies showed that toroidal shells can withstand higher external pressure than cylindrical shells. In this study, the volume of the tank was fixed for 15,000 litters. The buckling external pressure (pL) was calculated for radius ratio (R/r) of 2, 3, and 4. The corresponding cross-section radiuses were 724.3 mm, 632.7 mm, and 574.9 mm, respectively. The selected element type was SHELL 281 from the ANSYS element library. To obtain the buckling load, the arc-length method was used in the nonlinear analysis. Both material and geometric nonlinearities were activated during the analysis. The conclusion of this study is that short-radius and thin-walled toroidal shell produces higher buckling load.

  17. Idealized modeling of convective organization with changing sea surface temperatures using multiple equilibria in weak temperature gradient simulations

    NASA Astrophysics Data System (ADS)

    Sentić, Stipo; Sessions, Sharon L.

    2017-06-01

    The weak temperature gradient (WTG) approximation is a method of parameterizing the influences of the large scale on local convection in limited domain simulations. WTG simulations exhibit multiple equilibria in precipitation; depending on the initial moisture content, simulations can precipitate or remain dry for otherwise identical boundary conditions. We use a hypothesized analogy between multiple equilibria in precipitation in WTG simulations, and dry and moist regions of organized convection to study tropical convective organization. We find that the range of wind speeds that support multiple equilibria depends on sea surface temperature (SST). Compared to the present SST, low SSTs support a narrower range of multiple equilibria at higher wind speeds. In contrast, high SSTs exhibit a narrower range of multiple equilibria at low wind speeds. This suggests that at high SSTs, organized convection might occur with lower surface forcing. To characterize convection at different SSTs, we analyze the change in relationships between precipitation rate, atmospheric stability, moisture content, and the large-scale transport of moist entropy and moisture with increasing SSTs. We find an increase in large-scale export of moisture and moist entropy from dry simulations with increasing SST, which is consistent with a strengthening of the up-gradient transport of moisture from dry regions to moist regions in organized convection. Furthermore, the changes in diagnostic relationships with SST are consistent with more intense convection in precipitating regions of organized convection for higher SSTs.

  18. Sensitivity of the Tropical Atmospheric Energy Balance to ENSO-Related SST Changes: Comparison of Climate Model Simulations to Observed Responses

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Fitzjarrald, Dan; Marshall, Susan; Oglesby, Robert; Roads, John; Arnold, James E. (Technical Monitor)

    2001-01-01

    This paper focuses on how fresh water and radiative fluxes over the tropical oceans change during ENSO warm and cold events and how these changes affect the tropical energy balance. At present, ENSO remains the most prominent known mode of natural variability at interannual time scales. While this natural perturbation to climate is quite distinct from possible anthropogenic changes in climate, adjustments in the tropical water and energy budgets during ENSO may give insight into feedback processes involving water vapor and cloud feedbacks. Although great advances have been made in understanding this phenomenon and realizing prediction skill over the past decade, our ability to document the coupled water and energy changes observationally and to represent them in climate models seems far from settled (Soden, 2000 J Climate). In a companion paper we have presented observational analyses, based principally on space-based measurements which document systematic changes in rainfall, evaporation, and surface and top-of-atmosphere (TOA) radiative fluxes. Here we analyze several contemporary climate models run with observed SSTs over recent decades and compare SST-induced changes in radiation, precipitation, evaporation, and energy transport to observational results. Among these are the NASA / NCAR Finite Volume Model, the NCAR Community Climate Model, the NCEP Global Spectral Model, and the NASA NSIPP Model. Key disagreements between model and observational results noted in the recent literature are shown to be due predominantly to observational shortcomings. A reexamination of the Langley 8-Year Surface Radiation Budget data reveals errors in the SST surface longwave emission due to biased SSTs. Subsequent correction allows use of this data set along with ERBE TOA fluxes to infer net atmospheric radiative heating. Further analysis of recent rainfall algorithms provides new estimates for precipitation variability in line with interannual evaporation changes inferred from

  19. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  20. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  1. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  2. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Special requirements for class 114A * * * tank car... SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  3. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes... car tanks. ...

  4. Thermal Modeling and Analysis of a Cryogenic Tank Design Exposed to Extreme Heating Profiles

    NASA Technical Reports Server (NTRS)

    Stephens, Craig A.; Hanna, Gregory J.

    1991-01-01

    A cryogenic test article, the Generic Research Cryogenic Tank, was designed to qualitatively simulate the thermal response of transatmospheric vehicle fuel tanks exposed to the environment of hypersonic flight. One-dimensional and two-dimensional finite-difference thermal models were developed to simulate the thermal response and assist in the design of the Generic Research Cryogenic Tank. The one-dimensional thermal analysis determined the required insulation thickness to meet the thermal design criteria and located the purge jacket to eliminate the liquefaction of air. The two-dimensional thermal analysis predicted the temperature gradients developed within the pressure-vessel wall, estimated the cryogen boiloff, and showed the effects the ullage condition has on pressure-vessel temperatures. The degree of ullage mixing, location of the applied high-temperature profile, and the purge gas influence on insulation thermal conductivity had significant effects on the thermal behavior of the Generic Research Cryogenic Tank. In addition to analysis results, a description of the Generic Research Cryogenic Tank and the role it will play in future thermal structures and transatmospheric vehicle research at the NASA Dryden Flight Research Facility is presented.

  5. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  6. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  7. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  8. The Uncertainty of Long-term Linear Trend in Global SST Due to Internal Variation

    NASA Astrophysics Data System (ADS)

    Lian, Tao

    2016-04-01

    In most parts of the global ocean, the magnitude of the long-term linear trend in sea surface temperature (SST) is much smaller than the amplitude of local multi-scale internal variation. One can thus use the record of a specified period to arbitrarily determine the value and the sign of the long-term linear trend in regional SST, and further leading to controversial conclusions on how global SST responds to global warming in the recent history. Analyzing the linear trend coefficient estimated by the ordinary least-square method indicates that the linear trend consists of two parts: One related to the long-term change, and the other related to the multi-scale internal variation. The sign of the long-term change can be correctly reproduced only when the magnitude of the linear trend coefficient is greater than a theoretical threshold which scales the influence from the multi-scale internal variation. Otherwise, the sign of the linear trend coefficient will depend on the phase of the internal variation, or in the other words, the period being used. An improved least-square method is then proposed to reduce the theoretical threshold. When apply the new method to a global SST reconstruction from 1881 to 2013, we find that in a large part of Pacific, the southern Indian Ocean and North Atlantic, the influence from the multi-scale internal variation on the sign of the linear trend coefficient can-not be excluded. Therefore, the resulting warming or/and cooling linear trends in these regions can-not be fully assigned to global warming.

  9. Evaluation and Testing of IONSIV IE-911 for the Removal of Cesium-137 from INEEL Tank Waste and Dissolved Calcines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. R. Mann; T. A. Todd; K. N. Brewer

    1999-04-01

    Development of waste treatment processes for the remediation of radioactive wastes is currently underway. A number of experiments were performed at the Idaho Nuclear Technology and Environmental Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) with the commercially available sorbent material, IONSIV IE-911, crystalline silicotitanate (CST), manufactured by UOP LLC. The purpose of this work was to evaluate the removal efficiency, sorbent capacity and selectivity of CST for removing Cs-137 from actual and simulated acidic tank waste in addition to dissolved pilot-plant calcine solutions. The scope of this work included batch contact tests performed with non-radioactivemore » dissolved Al and Run-64 pilot plant calcines in addition to simulants representing the average composition of tank waste. Small-scale column tests were performed with actual INEEL tank WM-183 waste, tank waste simulant, dissolved Al and Run-64 pilot plant calcine solutions. Small-scale column experiments using actual WM-183 tank waste resulted in fifty-percent Cs-137 breakthrough at approximately 589 bed volumes. Small-scale column experiments using the tank waste simulant displayed fifty-percent Cs-137 breakthrough at approximately 700 bed volumes. Small-scale column experiments using dissolved Al calcine simulant displayed fifty-percent Cs-137 breakthrough at approximately 795 bed volumes. Column experiments with dissolved Run-64, pilot plant calcine did not reach fifty-percent breakthrough throughout the test.« less

  10. Isopropyl alcohol tank installed at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2009-01-01

    An isopropyl alcohol (IPA) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen IPA, water and liquid oxygen (LOX) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  11. Liquid oxygen tank installed at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2009-01-01

    A liquid oxygen (LOX) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen LOX, isopropyl alcohol (IPA) and water tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  12. Liquid oxygen tank installed at A-3 Test Stand

    NASA Image and Video Library

    2009-09-18

    A liquid oxygen (LOX) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen LOX, isopropyl alcohol (IPA) and water tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  13. Isopropyl alcohol tank installed at A-3 Test Stand

    NASA Image and Video Library

    2009-09-18

    An isopropyl alcohol (IPA) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen IPA, water and liquid oxygen (LOX) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  14. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109...

  15. Tank 241-C-112 vapor sampling and analysis tank characterization report. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huckaby, J.L.

    1995-05-31

    Tank 241-C-112 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-C-112 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  16. On Simulating the Mid-western-us Drought of 1988 with a GCM

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Mocko, D. M.; Lau, William K.-M.; Atlas, R.

    2002-01-01

    The primary cause of the midwestern North American drought in the summer of 1988 has been identified to be the La Nina SST anomalies. Yet with the SST anomalies prescribed, this drought has not been simulated satisfactorily by any general circulation model. Seven simulation-experiments, each containing an ensemble of 4-sets of simulations, were conducted with the GEOS GCM for both 1987 and 1988. All simulations started from January 1 and continued through the end of August. In the first baseline case, Case 1, only the SST anomalies and some vegetation parameters were prescribed, while everything else (such as soil moisture, snow-cover, and clouds) was interactive. The GCM did produce some of the circulation features of a drought over North America, but they could only be identified on the planetary scales. The 1988 minus 1987 precipitation differences show that the GCM was successful in simulating reduced precipitation in the mid-west, but the accompanying circulation anomalies were not well simulated, leading one to infer that the GCM has simulated the drought for the wrong reason. To isolate the causes for this unremarkable circulation, analyzed winds and soil moisture were prescribed in Case 2 and Case 3 as continuous updates by direct replacement of the GCM-predicted fields. These cases show that a large number of simulation biases emanate from wind biases that are carried into the North American region from surroundings regions. Inclusion of soil moisture also helps to ameliorate the strong feedback, perhaps even stronger than that of the real atmosphere, between soil moisture and precipitation. Case 2 simulated one type of surface temperature anomaly pattern, whereas Case 3 with the prescribed soil moisture produced another.

  17. SST Control by Subsurface Mixing During Indian Ocean Monsoons

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. SST Control by Subsurface Mixing during Indian Ocean ...quantify the variability in upper ocean mixing associated with changes in barrier layer thickness and strength across the BoB and under different...These objectives directly target the fundamental role that upper ocean dynamics play in the complex air-sea interactions of the northern Indian Ocean

  18. Liquid rocket metal tanks and tank components

    NASA Technical Reports Server (NTRS)

    Wagner, W. A.; Keller, R. B. (Editor)

    1974-01-01

    Significant guidelines are presented for the successful design of aerospace tanks and tank components, such as expulsion devices, standpipes, and baffles. The state of the art is reviewed, and the design criteria are presented along with recommended practices. Design monographs are listed.

  19. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  20. High current lightning test of space shuttle external tank lightning protection system

    NASA Technical Reports Server (NTRS)

    Mumme, E.; Anderson, A.; Schulte, E. H.

    1977-01-01

    During lift-off, the shuttle launch vehicle (external tank, solid rocket booster and orbiter) may be subjected to a lightning strike. Tests of a proposed lightning protection method for the external tank and development materials which were subjected to simulated lightning strikes are described. Results show that certain of the high resistant paint strips performed remarkably well in diverting the 50 kA lightning strikes.

  1. Summary of Atmospheric Ionizing AIR Research: SST-Present

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; deAngelis, G.; Friedberg, W.; Clem, J. M.

    2003-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray (GCR) exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of the radiation exposure limits by the International Commission on Radiological Protection with the classification of aircrew as radiation workers renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  2. Interannual variability of western North Pacific SST anomalies and its impact on North Pacific and North America

    NASA Astrophysics Data System (ADS)

    Park, Jae-Heung; An, Soon-Il; Kug, Jong-Seong

    2017-12-01

    In this study, the interannual variability of sea surface temperature (SST) and its atmospheric teleconnection over the western North Pacific (WNP) toward the North Pacific/North America during boreal winter are investigated. First, we defined the WNP mode as the first empirical orthogonal function (EOF) mode of SST anomalies over the WNP region (100-165°E, 0-35°N), of which the principle component time-series are significantly correlated with several well-known climate modes such as the warm pool mode which is the second EOF mode of the tropical to North Pacific SST anomalies, North Pacific oscillation (NPO), North Pacific gyre oscillation (NPGO), and central Pacific (CP)-El Niño at 95% confidence level, but not correlated with the eastern Pacific (EP)-El Niño. The warm phase of the WNP mode (sea surface warming) is initiated by anomalous southerly winds through reduction of wind speed with the background of northerly mean winds over the WNP during boreal winter, i.e., reduced evaporative cooling. Meanwhile, the atmospheric response to the SST warming pattern and its diabatic heating further enhance the southerly wind anomaly, referred to the wind-evaporation-SST (WES) feedback. Thus, the WNP mode is developed and maintained through winter until spring, when the northerly mean wind disappears. Furthermore, it is also known that anomalous upper-level divergence associated with WNP mode leads to the NPO-like structure over the North Pacific and the east-west pressure contrast pattern over the North America through Rossby wave propagation, impacting the climate over the North Pacific and North America.

  3. Influence of Kuroshio SST front in the East China Sea on the climatological evolution of Meiyu rainband

    NASA Astrophysics Data System (ADS)

    Xu, Mimi; Xu, Haiming; Ren, Huijun

    2018-02-01

    The influence of Kuroshio sea surface temperature (SST) front in the East China Sea (ECS) on the temporal evolution of climatological Meiyu rainband was investigated using a suite of high-resolution satellite observations and a reanalysis dataset from 2000 to 2011. During the northward seasonal march of Meiyu rainband from the warmer flank of the SST front to the colder flank, the climatological rainband strength weakened substantially despite large-scale environment became more conducive to intensify precipitation. A sharp reduction in occurrence frequency of precipitation with relatively shallower depth and smaller intensity was responsible for the weakening of Meiyu rainband. During the northward migration of Meiyu rainband, individual precipitation events became deeper and more intensive, and the contribution of convective precipitation to the rainband was enhanced, associated with the seasonal northward extension of high convective instability region over the ECS. The characteristics of Meiyu rainband evolution were generally supported by cloud observations. When Meiyu rainband was located on the warmer flank of the SST front, local enhanced mean surface wind convergence and variance of convergence at synoptic timescale by the warm SST of the Kuroshio favored strong surface convergence that may trigger precipitation. A detailed moisture budget analysis revealed that the major part of moisture for Meiyu precipitation was supplied by low-level wind convergence, with much smaller contribution from moisture advection. The variation of climatological precipitation associated with Meiyu northward migration depended on SST modulation of both surface evaporation and low-level moisture convergence over the ECS.

  4. The ICT monitoring system of the ASTRI SST-2M prototype proposed for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Gianotti, F.; Bruno, P.; Tacchini, A.; Conforti, V.; Fioretti, V.; Tanci, C.; Grillo, A.; Leto, G.; Malaguti, G.; Trifoglio, M.

    2016-08-01

    In the framework of the international Cherenkov Telescope Array (CTA) observatory, the Italian National Institute for Astrophysics (INAF) has developed a dual mirror, small sized, telescope prototype (ASTRI SST-2M), installed in Italy at the INAF observing station located at Serra La Nave, Mt. Etna. The ASTRI SST-2M prototype is the basis of the ASTRI telescopes that will form the mini-array proposed to be installed at the CTA southern site during its preproduction phase. This contribution presents the solutions implemented to realize the monitoring system for the Information and Communication Technology (ICT) infrastructure of the ASTRI SST-2M prototype. The ASTRI ICT monitoring system has been implemented by integrating traditional tools used in computer centers, with specific custom tools which interface via Open Platform Communication Unified Architecture (OPC UA) to the Alma Common Software (ACS) that is used to operate the ASTRI SST-2M prototype. The traditional monitoring tools are based on Simple Network Management Protocol (SNMP) and commercial solutions and features embedded in the devices themselves. They generate alerts by email and SMS. The specific custom tools convert the SNMP protocol into the OPC UA protocol and implement an OPC UA server. The server interacts with an OPC UA client implemented in an ACS component that, through the ACS Notification Channel, sends monitor data and alerts to the central console of the ASTRI SST-2M prototype. The same approach has been proposed also for the monitoring of the CTA onsite ICT infrastructures.

  5. Interhemispheric SST gradient trends in the Indian Ocean prior to and during the recent global warming hiatus

    NASA Astrophysics Data System (ADS)

    Dong, L.; McPhaden, M. J.

    2016-12-01

    Sea surface temperatures (SSTs) have been rising for decades in the Indian Ocean in response to greenhouse gas forcing. However, in this study we show that during the recent hiatus in global warming, a striking interhemispheric gradient in Indian Ocean SST trends developed around 2000, with relatively weak or little warming to the north of 10°S and accelerated warming to the south of 10oS. We present evidence from a wide variety of data sources that this interhemispheric gradient in SST trends is forced primarily by an increase of Indonesian Throughflow (ITF) transport from the Pacific into the Indian Ocean induced by stronger Pacific trade winds. This increased transport led to a depression of the thermocline that facilitated SST warming presumably through a reduction in the vertical turbulent transport of heat in the southern Indian Ocean. Surface wind changes in the Indian Ocean linked to the enhanced Walker circulation also may have contributed to thermocline depth variations and associated SST changes, with downwelling favorable wind stress curls between 10oS and 20oS and upwelling favorable wind stress curls between the equator and 10oS. In addition, the anomalous southwesterly wind stresses off the coast of Somalia favored intensified coastal upwelling and off-shore advection of upwelled water, which would have led to reduced warming of the northern Indian Ocean. Though highly uncertain, lateral heat advection associated with the ITF and surface heat fluxes may also have played a role in forming the interhemispheric SST gradient change.

  6. Process optimization of helium cryo plant operation for SST-1 superconducting magnet system

    NASA Astrophysics Data System (ADS)

    Panchal, P.; Panchal, R.; Patel, R.; Mahesuriya, G.; Sonara, D.; Srikanth G, L. N.; Garg, A.; Christian, D.; Bairagi, N.; Sharma, R.; Patel, K.; Shah, P.; Nimavat, H.; Purwar, G.; Patel, J.; Tanna, V.; Pradhan, S.

    2017-02-01

    Several plasma discharge campaigns have been carried out in steady state superconducting tokamak (SST-1). SST-1 has toroidal field (TF) and poloidal field (PF) superconducting magnet system (SCMS). The TF coils system is cooled to 4.5 - 4.8 K at 1.5 - 1.7 bar(a) under two phase flow condition using 1.3 kW helium cryo plant. Experience revealed that the PF coils demand higher pressure heads even at lower temperatures in comparison to TF coils because of its longer hydraulic path lengths. Thermal run away are observed within PF coils because of single common control valve for all PF coils in distribution system having non-uniform lengths. Thus it is routine practice to stop the cooling of PF path and continue only TF cooling at SCMS inlet temperature of ˜ 14 K. In order to achieve uniform cool down, different control logic is adopted to make cryo stable system. In adopted control logic, the SCMS are cooled down to 80 K at constant inlet pressure of 9 bar(a). After authorization of turbine A/B, the SCMS inlet pressure is gradually controlled by refrigeration J-T valve to achieve stable operation window for cryo system. This paper presents process optimization for cryo plant operation for SST-1 SCMS.

  7. A Comparison Between SST and AOT Derived from AVHRR and MODIS Data in the Frame of the CREPAD Program

    NASA Astrophysics Data System (ADS)

    Robles-Gonzalez, Cristina; Fernandez-Renau, Alix; Lopez Gordillo, Noelia; Sevilla, Angel Garcia; Suarez, Juana Santana

    2010-12-01

    Since 1997, the INTA-CREPAD (Centre for REception, Processing, Archiving and Dissemination of Earth Observation Data) program distributes freely some of the most demanded low-resolution remote sensing products: SST, Ocean Chl-a, NDVI, AOD... The data input for such products are captured at the Canary Space Station (Centro Espacial de Canarias, CEC). The data sensors received at the station and used in the CREPAD program are AVHRR, SEAWIFS and MODIS. In this study SST and AOD retrieved by CREPAD algorithms from AVHRR and the SEADAS derived SST and AOD from MODIS have compared. SST values agree very well within 0.1±0.5oC and the coefficient of correlation of the images is 0.9. AOD validation gives good results taking into account the differences in the algorithms used. Mean AOD difference at 0.630 μm is 0.01±0.05 and the correlation coefficient is 0.6.

  8. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  9. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  10. Performance of a hypersonic hot fuselage structure with a carbon dioxide frost projected, nonintegral cryogenic tank

    NASA Technical Reports Server (NTRS)

    Sharpe, E. L.; Jackson, L. R.

    1975-01-01

    A model which consisted of a hot structure and a nonintegral tank protected by a carbon dioxide frost thermal protection system was tested under the following conditions: (1) room temperature loading and (2) heating and loading corresponding to the Mach 8 flight of an air-breathing launch vehicle. In the simulated flight tests, liquid nitrogen inside the tank was withdrawn at the rate fuel would be consumed. Prior to each simulated flight test, carbon dioxide was cryodeposited in the insulation surrounding the tank; during the tests, subliming CO2 frost absorbed heat and provided a purge gas for the space between the tank and the structure. A method of flame spraying the joints between panels with a nickel-aluminum material was developed to prevent excessive leakage of the purge gas through the outer structure. The tests indicated that the hot structure (with a joint repaired by riveting), the nonintegral tank and suspension system, and the carbon dioxide frost thermal protection system provide a workable concept with predictable performance.

  11. CFM technologies for space transportation: Multipurpose hydrogen testbed system definition and tank procurement

    NASA Technical Reports Server (NTRS)

    Fox, E. C.; Kiefel, E. R.; Mcintosh, G. L.; Sharpe, J. B.; Sheahan, D. R.; Wakefield, M. E.

    1993-01-01

    The development of a test bed tank and system for evaluating cryogenic fluid management technologies in a simulated upper stage liquid hydrogen tank is covered. The tank is 10 ft long and is 10 ft in diameter, and is an ASME certified tank constructed of 5083 aluminum. The tank is insulated with a combination of sprayed on foam insulation, covered by 45 layers of double aluminized mylar separated by dacron net. The mylar is applied by a continuous wrap system adapted from commercial applications, and incorporates variable spacing between the mylar to provide more space between those layers having a high delta temperature, which minimizes heat leak. It also incorporates a unique venting system which uses fewer large holes in the mylar rather than the multitude of small holes used conventionally. This significantly reduces radiation heat transfer. The test bed consists of an existing vacuum chamber at MSFC, the test bed tank and its thermal control system, and a thermal shroud (which may be heated) surrounding the tank. Provisions are made in the tank and chamber for inclusion of a variety of cryogenic fluid management experiments.

  12. In-place burning of crude oil in broken ice: 1985 testing at OHMSETT (Oil and Hazardous Materials Simulated Environmental Test Tank)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, N.K.; Diaz, A.

    1985-08-01

    In January and March of 1985, in-place oil burning tests were conducted at the U.S. Environmental Protection Agency's Oil and Hazardous Materials Simulated Environmental Test Tank. (OHMSETT) facility in Leonardo, New Jersey. In-place combustion of Prudhoe Bay and Amauligak crude oil slicks was attempted in varying ice coverages, oil conditions, and ambient conditions. An emulsion of Amauligak crude oil and water was also ignited three times and burned in 80% ice cover, removing nearly 50% of the emulsion.

  13. Tank vapor mitigation requirements for Hanford Tank Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks,more » are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.« less

  14. Revisiting the Processes That Determine Wintertime Intraseasonal SST Variability in the Thermocline Ridge of the Tropical South Indian Ocean

    NASA Astrophysics Data System (ADS)

    Han, W.; Li, Y.; Shinoda, T.; Wang, C.; Ravichandran, M.; Wang, J. W.

    2014-12-01

    Intraseasonal sea surface temperature (SST) variability over the Seychelles-Chagos thermocline ridge (SCTR) induced by boreal wintertime Madden-Julian oscillations (MJOs) is investigated by performing a series of OGCM experiments with improved model configuration and the recently available high quality satellite forcing fields. The impact of the ocean interannual variation of the thermocline depth -represented by the depth of 20C isotherm (D20) - in the SCTR is also assessed. The OGCM main run solution agrees well with the observations. The results show that for the 2001-2011 period, surface shortwave radiation (SWR), turbulent heat fluxes associated with wind speed, and wind stress-driven ocean dynamical processes are all important in causing the MJO-related intraseasonal SST variability in the SCTR region. Overall, forcing by SWR contributes ~31%, and forcing by winds (via both surface turbulent heat flux and ocean dynamics) contributes ~62%. The contribution of turbulent heat flux associated with wind speed is ~39% and that of wind-stress driven ocean dynamics is ~23%. The contribution of ocean dynamics, however, is considerably larger during strong ("prime") MJO events under "strong" thermocline condition. The overall effect of interannual variability of D20 on intraseasonal SST during 2001-2011 is significant in the eastern part of the SCTR (70E-85E), where the intraseasonal SST amplitudes are strengthened by about 20%. In general, a shallower/deeper SCTR favors larger/smaller SST responses to the MJO forcing. In the eastern SCTR, both the heat flux forcing and entrainment are greatly amplified under the strong SCTR condition, but only slightly suppressed under the weak SCTR condition, leading to an overall strengthening effect on intraseasonal SST variability.

  15. Sea Surface Salinity Variability from Simulations and Observations: Preparing for Aquarius

    NASA Technical Reports Server (NTRS)

    Jacob, S. Daniel; LeVine, David M.

    2010-01-01

    Oceanic fresh water transport has been shown to play an important role in the global hydrological cycle. Sea surface salinity (SSS) is representative of the surface fresh water fluxes and the upcoming Aquarius mission scheduled to be launched in December 2010 will provide excellent spatial and temporal SSS coverage to better estimate the net exchange. In most ocean general circulation models, SSS is relaxed to climatology to prevent model drift. While SST remains a well observed variable, relaxing to SST reduces the range of SSS variability in the simulations (Fig.1). The main objective of the present study is to simulate surface tracers using a primitive equation ocean model for multiple forcing data sets to identify and establish a baseline SSS variability. The simulated variability scales are compared to those from near-surface argo salinity measurements.

  16. Understanding the Central Equatorial African long-term drought using AMIP-type simulations

    NASA Astrophysics Data System (ADS)

    Hua, Wenjian; Zhou, Liming; Chen, Haishan; Nicholson, Sharon E.; Jiang, Yan; Raghavendra, Ajay

    2018-02-01

    Previous studies show that Indo-Pacific sea surface temperature (SST) variations may help to explain the observed long-term drought during April-May-June (AMJ) since the 1990s over Central equatorial Africa (CEA). However, the underlying physical mechanisms for this drought are still not clear due to observation limitations. Here we use the AMIP-type simulations with 24 ensemble members forced by observed SSTs from the ECHAM4.5 model to explore the likely physical processes that determine the rainfall variations over CEA. We not only examine the ensemble mean (EM), but also compare the "good" and "poor" ensemble members to understand the intra-ensemble variability. In general, EM and the "good" ensemble member can simulate the drought and associated reduced vertical velocity and anomalous anti-cyclonic circulation in the lower troposphere. However, the "poor" ensemble members cannot simulate the drought and associated circulation patterns. These contrasts indicate that the drought is tightly associated with the tropical Walker circulation and atmospheric teleconnection patterns. If the observational circulation patterns cannot be reproduced, the CEA drought will not be captured. Despite the large intra-ensemble spread, the model simulations indicate an essential role of SST forcing in causing the drought. These results suggest that the long-term drought may result from tropical Indo-Pacific SST variations associated with the enhanced and westward extended tropical Walker circulation.

  17. Design and Implementation of the MSL Cruise Propulsion Tank Heaters

    NASA Technical Reports Server (NTRS)

    Krylo, Robert; Mikhaylov, Rebecca; Cucullu, Gordon; Watkins, Brenda

    2008-01-01

    This slide presentation reviews the design and the implementation of the heaters for the Mars Science Laboratory (MSL). The pressurized tanks store hydrazine that freezes at 2 C, this means that heaters are required to keep the hydrazine and the helium at 36 C for the trip to Mars. Using the TMG software the heat loss was analyzed, and a thermal model simulates a half full tank which yielded a 13W heating requirement for each hemisphere. Views of the design, and the heater are included.

  18. External Tank Program - Legacy of Success

    NASA Technical Reports Server (NTRS)

    Pilet, Jeffery C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle; Welzyn, Kenneth

    2011-01-01

    welding was a substantial technology development incorporated during the Program. Automated thermal protection system application processes were developed for the majority of the tank surface. Material obsolescence was an issue throughout the multi-decade program. Process controls were implemented to assure cleanliness in the production environment, to control contaminants, and to preclude corrosion. Each tank was accepted via rigorous inspections, including non-destructive evaluation techniques, proof testing, and all systems testing. In the post STS-107 era, the project focused on ascent debris risk reduction. This was accomplished via stringent process controls, post flight assessment using substantially improved imagery, and selective redesigns. These efforts were supported with a number of test programs to simulate combined environments. The debris risk was reduced by two orders of magnitude. During this time a major natural disaster was overcome when hurricane Katrina damaged the manufacturing facility. Numerous lessons from these efforts, the manufacturing and material processing issues, the key design features, and evolution of the design will be discussed.

  19. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  20. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  1. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  2. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  3. Global Meteorological Drought: A Synthesis of Current Understanding with a Focus on SST Drivers of Precipitation Deficits

    NASA Technical Reports Server (NTRS)

    Schubert, S.; Stewart, R.; Wang, H.; Barlow, M.; Berbery, H.; Cai, W.; Hoerling, M.; Kanikicharla, K.; Koster, R.; Lyon, B.; hide

    2016-01-01

    Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST anomalies), land surface feedbacks, and radiative forcings. The synthesis is primarily based on regionally-focused articles submitted to the Global Drought Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales, the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia, Australia, and the Maritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India), the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, as well as central and eastern Canada stand out as regions with little SST-forced impacts on precipitation interannual time scales. Decadal changes in SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation of the late 1990s 'climate shifts' in the Pacific and Atlantic SST. Key remaining research challenges include (i) better quantification of unforced and forced atmospheric variability as well as land/atmosphere feedbacks, (ii) better understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought.

  4. Assembly & Metrology of First Wall Components of SST-1

    NASA Astrophysics Data System (ADS)

    Parekh, Tejas; Santra, Prosenjit; Biswas, Prabal; Patel, Hiteshkumar; Paravastu, Yuvakiran; Jaiswal, Snehal; Chauhan, Pradeep; Babu, Gattu Ramesh; A, Arun Prakash; Bhavsar, Dhaval; Raval, Dilip C.; Khan, Ziauddin; Pradhan, Subrata

    2017-04-01

    First Wall Components (FWC) of SST-1 tokamak, which are in the immediate vicinity of plasma comprises of limiters, divertors, baffles, passive stabilizers are designed to operate long duration (1000 s) discharges of elongated plasma. All FWC consists of a copper alloy heat sink modules with SS cooling tubes brazed onto it, graphite tiles acting as armour material facing the plasma, and are mounted to the vacuum vessels with suitable Inconel support structures at ring & port locations. The FWC are very recently assembled and commissioned successfully inside the vacuum vessel of SST-1 undergoing a meticulous planning of assembly sequence, quality checks at every stage of the assembly process. This paper will present the metrology aspects & procedure of each FWC, both outside the vacuum vessel, and inside the vessel, assembly tolerances, tools, equipment and jig/fixtures, used at each stage of assembly, starting from location of support bases on vessel rings, fixing of copper modules on support structures, around 3800 graphite tile mounting on 136 copper modules with proper tightening torques, till final toroidal and poloidal geometry of the in-vessel components are obtained within acceptable limits, also ensuring electrical continuity of passive stabilizers to form a closed saddle loop, electrical isolation of passive stabilizers from vacuum vessel.

  5. The influence of model resolution on the simulated sensitivity of North Atlantic tropical cyclone maximum intensity to sea surface temperature

    DOE PAGES

    Strazzo, S. E.; Elsner, J. B.; LaRow, T. E.; ...

    2016-07-10

    Global climate models (GCMs) are routinely relied upon to study the possible impacts of climate change on a wide range of meteorological phenomena, including tropical cyclones (TCs). Previous studies addressed whether GCMs are capable of reproducing observed TC frequency and intensity distributions. This research builds upon earlier studies by examining how well GCMs capture the physically relevant relationship between TC intensity and SST. Specifically, the influence of model resolution on the ability of a GCM to reproduce the sensitivity of simulated TC intensity to SST is examined for the MRI-AGCM (20 km), the GFDL-HiRAM (50 km), the FSU-COAPS (0.94°) model,more » and two versions of the CAM5 (1° and 0.25°). Results indicate that while a 1°C increase in SST corresponds to a 5.5–7.0 m s -1 increase in observed maximum intensity, the same 1°C increase in SST is not associated with a statistically significant increase in simulated TC maximum intensity for any of the models examined. However, it also is shown that the GCMs all capably reproduce the observed sensitivity of potential intensity to SST. The models generate the thermodynamic environment suitable for the development of strong TCs over the correct portions of the Nort h Atlantic basin, but strong simulated TCs do not develop over these areas, even for models that permit Category 5 TCs. This result supports the notion that direct simulation of TC eyewall convection is necessary to accurately represent TC intensity and intensification processes in climate models, although additional explanations are also explored.« less

  6. Two Distinct Roles of Atlantic SSTs in ENSO Variability: North Tropical Atlantic SST and Atlantic Nino

    NASA Technical Reports Server (NTRS)

    Ham, Yoo-Geun; Kug, Jong-Seong; Park, Jong-Yeon

    2013-01-01

    Two distinct roles of the Atlantic sea surface temperatures (SSTs), namely, the North Tropical Atlantic (NTA) SST and the Atlantic Nino, on the El Nino-Southern Oscillation (ENSO) variability are investigated using the observational data from 1980 to 2010 and coupled model experiments. It appears that the NTA SST and the Atlantic Nino can be used as two independent predictors for predicting the development of ENSO events in the following season. Furthermore, they are likely to be linked to different types of El Nino events. Specifically, the NTA SST cooling during February, March, and April contributes to the central Pacific warming at the subsequent winter season, while the negative Atlantic Nino event during June, July, and August contributes to enhancing the eastern Pacific warming. The coupled model experiments support these results. With the aid of a lagged inverse relationship, the statistical forecast using two Atlantic indices can successfully predict various ENSO indices.

  7. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW...

  8. Differential Draining of Parallel-Fed Propellant Tanks in Morpheus and Apollo Flight

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric; Guardado, Hector; Hernandez, Humberto; Desai, Pooja

    2015-01-01

    Parallel-fed propellant tanks are an advantageous configuration for many spacecraft. Parallel-fed tanks allow the center of gravity (cg) to be maintained over the engine(s), as opposed to serial-fed propellant tanks which result in a cg shift as propellants are drained from tank one tank first opposite another. Parallel-fed tanks also allow for tank isolation if that is needed. Parallel tanks and feed systems have been used in several past vehicles including the Apollo Lunar Module. The design of the feedsystem connecting the parallel tank is critical to maintain balance in the propellant tanks. The design must account for and minimize the effect of manufacturing variations that could cause delta-p or mass flowrate differences, which would lead to propellant imbalance. Other sources of differential draining will be discussed. Fortunately, physics provides some self-correcting behaviors that tend to equalize any initial imbalance. The question concerning whether or not active control of propellant in each tank is required or can be avoided or not is also important to answer. In order to provide data on parallel-fed tanks and differential draining in flight for cryogenic propellants (as well as any other fluid), a vertical test bed (flying lander) for terrestrial use was employed. The Morpheus vertical test bed is a parallel-fed propellant tank system that uses passive design to keep the propellant tanks balanced. The system is operated in blow down. The Morpheus vehicle was instrumented with a capacitance level sensor in each propellant tank in order to measure the draining of propellants in over 34 tethered and 12 free flights. Morpheus did experience an approximately 20 lb/m imbalance in one pair of tanks. The cause of this imbalance will be discussed. This paper discusses the analysis, design, flight simulation vehicle dynamic modeling, and flight test of the Morpheus parallel-fed propellant. The Apollo LEM data is also examined in this summary report of the

  9. LABORATORY REPORT ON THE REMOVAL OF PERTECHNETATE FROM TANK 241-AN-105 SIMULANT USING PUROLITE A530E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUNCAN JB; HAGERTY KJ, MOORE WP; JOHNSON JM

    2012-04-17

    This report documents the laboratory testing and analyses as directed under the test plan, LAB-PLN-11-00010, Evaluation of Technetium Ion Exchange Material against Hanford Double Shell Tank Supernate Simulate with Pertechnetate. Technetium (Tc-99) is a major fission product from nuclear reactors, and because it has few applications outside of scientific research, most of the technetium will ultimately be disposed of as nuclear waste. The radioactive decay of Tc-99 to ruthenium 99 (Ru-99) produces a low energy {beta}{sup -} particle (0.1 MeV max). However, due to its fairly long half-life (t{sub 1/2} = 2.13E05 years), Tc-99 is a major source of radiationmore » in low-level waste (UCRL-JRNL-212334, Current Status of the Thermodynamic Data for Technetium and its Compounds and Aqueous Species). Technetium forms the soluble oxy anion, TcO{sub 4}{sup -} under aerobic conditions. This anion is very mobile in groundwater and poses a health risk (ANL, Radiological and Chemical Fact Sheets to Support Health Risk Analyses for Contaminated Areas). It has been demonstrated that Purolite{reg_sign} A530E is highly effective in removing TcO{sub 4}{sup -} from a water matrix (RPP-RPT-23199, The Removal of Technetium-99 from the Effluent Treatment Facility Basin 44 Waste Using Purolite A-530E, Reillex HPQ, and Sybron IONAC SR-7 Ion Exchange Resins). Purolite{reg_sign} A530E is the commercial product of the Oak Ridge National Laboratory's Biquat{trademark} resin (Gu, B. et. ai, Development of Novel Bifunctional Anion-Exchange Resins with Improved Selectivity for Pertechnetate Sorption from Contaminated Groundwater). Further work has demonstrated that technetium-loaded A530E achieves a leachability index in Cast Stone of 12.5 (ANSI/ASN-16.1-2003, Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-term Test Procedure) as reported in RPP-RPT-39195, Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine. This effort

  10. Constraining the models' response of tropical low clouds to SST forcings using CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Cesana, G.; Del Genio, A. D.; Ackerman, A. S.; Brient, F.; Fridlind, A. M.; Kelley, M.; Elsaesser, G.

    2017-12-01

    Low-cloud response to a warmer climate is still pointed out as being the largest source of uncertainty in the last generation of climate models. To date there is no consensus among the models on whether the tropical low cloudiness would increase or decrease in a warmer climate. In addition, it has been shown that - depending on their climate sensitivity - the models either predict deeper or shallower low clouds. Recently, several relationships between inter-model characteristics of the present-day climate and future climate changes have been highlighted. These so-called emergent constraints aim to target relevant model improvements and to constrain models' projections based on current climate observations. Here we propose to use - for the first time - 10 years of CALIPSO cloud statistics to assess the ability of the models to represent the vertical structure of tropical low clouds for abnormally warm SST. We use a simulator approach to compare observations and simulations and focus on the low-layered clouds (i.e. z < 3.2km) as well the more detailed level perspective of clouds (40 levels from 0 to 19km). Results show that in most models an increase of the SST leads to a decrease of the low-layer cloud fraction. Vertically, the clouds deepen namely by decreasing the cloud fraction in the lowest levels and increasing it around the top of the boundary-layer. This feature is coincident with an increase of the high-level cloud fraction (z > 6.5km). Although the models' spread is large, the multi-model mean captures the observed variations but with a smaller amplitude. We then employ the GISS model to investigate how changes in cloud parameterizations affect the response of low clouds to warmer SSTs on the one hand; and how they affect the variations of the model's cloud profiles with respect to environmental parameters on the other hand. Finally, we use CALIPSO observations to constrain the model by determining i) what set of parameters allows reproducing the observed

  11. Calibration of the Concorde radiation detection instrument and measurements at SST altitude.

    DOT National Transportation Integrated Search

    1971-06-01

    Performance tests were carried out on a solar cosmic radiation detection instrument developed for the Concorde SST. The instrument calibration curve (log dose-rate vs instrument reading) was reasonably linear from 0.004 to 1 rem/hr for both gamma rad...

  12. Design of new central solenoid for SST-1

    NASA Astrophysics Data System (ADS)

    Prasad, Upendra; Pradhan, Subrata; Ghate, Mahesh; Raj, Piyush; Tanna, V. L.; Khan, Ziauddin; Roy, Swati; Santra, Prosenjit; Biswas, Prabal; Sharma, A. N.; Khristi, Yohan; Kanaber, Deven; Varmora, Pankaj

    2017-04-01

    The key role of central solenoid (CS) magnet of a Tokamak is for gas breakdown, ramp up and maintaining of plasma current. The magnetic flux change in CS along with other PF coils generates magnetic null and induces electric field in toroidal direction. The induced toroidal electric field accelerates the residual electrons which collide with the neutrals and an avalanche takes place which led to the net plasma in the vacuum vessel of a Tokamak. In order to maximize the CS volt-sec capability, the higher magnetic field with a greater magnetic flux linkage is necessary. In order to facilitate all these requirements of SST-1 a new superconducting CS has been designed for SST-1. The design of new central solenoid has two bases; first one is physics and second is smart engineering in limited bore diameter of ∼ 655 mm. The physics basis of the design includes volt-sec storage capacity of ∼ 0.8 volt-sec, magnetic field null around 0.2 m over major radius of 1.1 m and toroidal electric field of ∼ 0.3 volt/m. The engineering design of new CS consists of Nb3Sn cable in conduit conductor (CICC) of operating current of 14 kA @ 4.5 K at 6 T, consolidated winding pack, smart quench detection system, protection system, housing cryostat and conductor terminations and joint design. The winding pack consists of 576 numbers of turns distributed in four layers with 0.75 mm FRP tape soaked with cyanide Easter based epoxy resin turn insulation and 3 mm of ground insulation. The interlayer low resistance (∼1 nΩ) terminal praying hand joints at 14 kA at 4.5 K has been designed for making winding pack continuous. The total height of winding pack is 2500 mm. The stored energy of this winding pack is ∼ 3 MJ at 14 kA of operating current. The expected heat load at cryogenic temperature is ∼ 10 W per layer, which requires helium mass flow rate of 1.4 g/s at 1.4 bars @ 4.5 K. The typical diameter and height of housing cryostat are 650 mm and 2563 mm with 80 K shield respectively

  13. An investigation of CMIP5 model biases in simulating the impacts of central Pacific El Niño on the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Feng, Juan; Chen, Wen; Gong, Hainan; Ying, Jun; Jiang, Wenping

    2018-06-01

    The delayed impacts of the central Pacific (CP) El Niño on the East Asian summer monsoon (EASM) are evaluated by comparing historical runs from Coupled Model Intercomparison Project Phase 5 models against reanalysis data. In observations, an anomalous western North Pacific anticyclone (WNPAC), linking CP El Niño to the EASM, forms due to the transition of sea surface temperature (SST) warming into SST cooling over the CP, which generates a WNPAC through a Gill-Matsuno response. In comparison with the observational result, only one-third of the models (i.e., the type-I models) capture a weaker and smaller WNPAC, whereas the other two-thirds (i.e., the type-II models) fail to reproduce a WNPAC. The simulation biases in both of type-I models and type-II models mainly arise from an unrealistic, long-lasting CP El Niño warming, which causes a north Indian Ocean SST warming bias in models through air-sea interaction process. This north Indian Ocean SST warming generates the WNPAC through capacitor effects, which is different from the WNPAC formation mechanism in observations. This discrepancy leads to simulation biases in type-I models. In type-II models, the unrealistic CP El Niño warming persists into summer, which produces an anomalous cyclone over the central-western Pacific. The opposite effect of the CP and north Indian Ocean SST warming on the WNP atmospheric circulation leads to disappearance of the WNPAC. Hence, large simulation biases are produced in type-II models. Further analysis demonstrates the slow decay of CP El Niño is caused by the unrealistically simulated climatological SST, which creates strong warm meridional oceanic advection and results in a sustained CP El Niño warming.

  14. The effect of SST emissions on the earth's ozone layer

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Turco, R. P.

    1974-01-01

    The work presented here is directed toward assessment of environmental effects of the supersonic transport (SST). The model used for the purpose includes vertical eddy transport and the photochemistry of the O-H-N system. It is found that the flight altitude has a pronounced effect on ozone depletion. The largest ozone reduction occurs for NO deposition above an altitude of 20 km.

  15. Submersible optical sensors exposed to chemically dispersed crude oil: wave tank simulations for improved oil spill monitoring.

    PubMed

    Conmy, Robyn N; Coble, Paula G; Farr, James; Wood, A Michelle; Lee, Kenneth; Pegau, W Scott; Walsh, Ian D; Koch, Corey R; Abercrombie, Mary I; Miles, M Scott; Lewis, Marlon R; Ryan, Scott A; Robinson, Brian J; King, Thomas L; Kelble, Christopher R; Lacoste, Jordanna

    2014-01-01

    In situ fluorometers were deployed during the Deepwater Horizon (DWH) Gulf of Mexico oil spill to track the subsea oil plume. Uncertainties regarding instrument specifications and capabilities necessitated performance testing of sensors exposed to simulated, dispersed oil plumes. Dynamic ranges of the Chelsea Technologies Group AQUAtracka, Turner Designs Cyclops, Satlantic SUNA and WET Labs, Inc. ECO, exposed to fresh and artificially weathered crude oil, were determined. Sensors were standardized against known oil volumes and total petroleum hydrocarbons and benzene-toluene-ethylbenzene-xylene measurements-both collected during spills, providing oil estimates during wave tank dilution experiments. All sensors estimated oil concentrations down to 300 ppb oil, refuting previous reports. Sensor performance results assist interpretation of DWH oil spill data and formulating future protocols.

  16. Tank characterization report for double-shell tank 241-AW-105

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, L.M.

    1997-06-05

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for double-shell tank 241-AW-105. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AW-105 waste; and to provide a standard characterization of this waste in terms of a best-basis inventorymore » estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone Characterization. information presented in this report originated from sample analyses and known historical sources. While only the results of a recent sampling event will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-AW-105 is provided in Appendix A, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. The recent sampling event listed, as well as pertinent sample data obtained before 1996, are summarized in Appendix B along with the sampling results. The results of the 1996 grab sampling event satisfied the data requirements specified in the sampling and analysis plan (SAP) for this tank. In addition, the tank headspace flammability was measured, which

  17. Experimental Study of an On-board Fuel Tank Inerting System

    NASA Astrophysics Data System (ADS)

    Wu, Fei; Lin, Guiping; Zeng, Yu; Pan, Rui; Sun, Haoyang

    2017-03-01

    A simulated aircraft fuel tank inerting system was established and experiments were conducted to investigate the performance of the system. The system uses hollow fiber membrane which is widely used in aircraft as the air separation device and a simplified 20% scale multi compartment fuel tank as the inerting object. Experiments were carried out to investigate the influences of different operating parameters on the inerting effectiveness of the system, including NEA (nitrogen-enriched air) flow rate, NEA oxygen concentration, NEA distribution, pressure of bleeding air and fuel load of the tank. Results showed that for the multi compartment fuel tank, concentrated flow washing inerting would cause great differences throughout the distribution of oxygen concentration in the fuel tank, and inerting dead zone would exist. The inerting effectiveness was greatly improved and the ullage oxygen concentration of the tank would reduce to 12% successfully when NEA entered three compartments evenly. The time span of a complete inerting process reduced obviously with increasing NEA flow rate and decreasing NEA concentration, but the trend became weaker gradually. However, the reduction of NEA concentration will decrease the utilization efficiency of the bleeding air. In addition, the time span can also be reduced by raising the pressure of bleeding air, which will improve the bleeding air utilization efficiency at the same time. The time span decreases linearly as the fuel load increases.

  18. The prognostic value of sST2 and galectin-3 considering different aetiologies in non-ischaemic heart failure.

    PubMed

    Binas, David; Daniel, Hanna; Richter, Anette; Ruppert, Volker; Schlüter, Klaus-Dieter; Schieffer, Bernhard; Pankuweit, Sabine

    2018-01-01

    Several studies indicate a prognostic value of sST2 and galectin-3 in heart failure (HF). While previous studies focused on ischaemic cause of HF, we investigated the role of sST2 and galectin-3 in patients with non-ischaemic dilated cardiomyopathy (DCM). sST2 and galectin-3 serum concentrations were measured in 262 subjects with DCM. Survival rates were determined for all-cause mortality (ACM) and cardiac mortality (CM). In a univariate model, sST2 as a continuous variable was a predictor of ACM (HR 1.05; 95% CI 1.03 to 1.07, P<0.001) and CM (HR 1.03; 95% CI 1.00 to 1.06, P=0.040). In the subgroup of patients with inflammatory and/or viral DCM (DCMi⋎viral), the endpoints ACM (HR 1.10; 95% CI 1.05 to 1.17, P<0.001) and CM (HR 1.10; 95% CI 1.02 to 1.18, P=0.013) were significant. In the subgroup of patients with idiopathic DCM, the endpoint ACM (HR 1.04; 95% CI 1.01 to 1.07, P=0.019) was significant. In a multivariate model, the prognostic value of the sST2 main group remained intact for ACM (HR 1.04; 95% CI 1.02 to 1.07, P=0.003).Univariate and multivariate analysis of galectin-3 as continuous variable did not show any significant result. However, in a quartile model, intermediate values of galectin-3 were significantly associated with a lower event rate of ACM and CM. The study revealed that sST2 predicts ACM and CM in patients with non-ischaemic HF and could be useful especially in patients with inflammatory background. Our findings that intermediate levels of galectin-3 allow for better prognosis were new and different to other investigations. NCT03090425; Results.

  19. Influence of equatorial QBO (quasi-biennial oscillation) and SST (sea-surface temperature) on polar total ozone, and the 1990 Antarctic ozone hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angell, J.K.

    1990-09-01

    Based on data through 1989, comparisons are made between the variation of total ozone at Resolute, Canada (75{degree}N) and South Pole, and the variation of low-stratospheric temperature at Singapore (reflecting the equatorial QBO) and SST in eastern equatorial Pacific (reflecting the ENSO phenomenon). Total-ozone variations at Resolute have been more closely related to the QBO, whereas the total-ozone variations at South Pole appear to have been almost equally related to QBO and SST. When the average of 50 mb and 30 mb June-July-August (JJA) values of Singapore temperature ({bar T}) increased from one year to the next, the decrease inmore » South Pole springtime total ozone for the same years averaged 21 {plus minus} 14% greater than when {bar T} decreased. When the JJA values of equatorial SST increased from one year to the next, the decrease in South Pole springtime total ozone for the same years averaged 18 {plus minus} 12% greater than when SST decreased. In the 6 cases when JJA values of both Singapore {bar T} and equatorial SST increased from one year to the next, the spring values of South Pole total ozone have decreased, whereas in the 6 cases when both {bar T} and SST decreased from one year to the next, South Pole total ozone has increased. Both Singapore {bar T} and equatorial SST will probably be warmer in JJA of 1990 than they were in JJA of 1989 suggesting, based on these previous relations, an even deeper Antarctic ozone hole in 1990 than in 1989 and ending the biennial variation in depth of the hole of the last 6 years.« less

  20. External Tank - The Structure Backbone

    NASA Technical Reports Server (NTRS)

    Welzyn, Kenneth; Pilet, Jeffrey C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle

    2011-01-01

    simulate combined environments. Processing improvements included development and use of low spray guns for foam application, additional human factors considerations for production, use of high fidelity mockups during hardware processing with video review, improved tank access, extensive use of non destructive evaluation, and producibility enhancements. Design improvements included redesigned bipod fittings, a bellows heater, a feedline camera active during ascent flight, removal of the protuberance airload ramps, redesigned ice frost ramps, and titanium brackets replaced aluminum brackets on the liquid oxygen feedline. Post flight assessment improved due to significant addition of imagery assets, greatly improving situational awareness. The debris risk was reduced by two orders of magnitude. During this time a major natural disaster was overcome when Katrina damaged the manufacturing facility. Numerous lessons from these efforts are documented within the paper.