Sample records for tantalum niobium tungsten

  1. Efficacy of Tantalum Tungsten Alloys for Diffusion Barrier Applications

    NASA Astrophysics Data System (ADS)

    Smathers, D. B.; Aimone, P. R.

    2017-12-01

    Traditionally either Niobium, Tantalum or a combination of both have been used as diffusion barriers in Nb3Sn Multi-filament wire. Vanadium has also been used successfully but the ultimate RRR of the copper is limited unless an external shell of Niobium is included. Niobium is preferred over Tantalum when alternating current losses are not an issue as the Niobium will react to form Nb3Sn. Pure Tantalum tends to deform irregularly requiring extra starting thickness to ensure good barrier qualities. Our evaluations showed Tantalum lightly alloyed with 3 wt% Tungsten is compatible with the wire drawing process while deforming as well as or better than pure Niobium. Ta3wt%W has been processed as a single barrier and as a distributed barrier to fine dimensions. In addition, the higher modulus and strength of the Tantalum Tungsten alloy improves the overall tensile properties of the wire.

  2. Niobium and tantalum

    USGS Publications Warehouse

    Schulz, Klaus J.; Piatak, Nadine M.; Papp, John F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Niobium and tantalum are transition metals that are almost always found together in nature because they have very similar physical and chemical properties. Their properties of hardness, conductivity, and resistance to corrosion largely determine their primary uses today. The leading use of niobium (about 75 percent) is in the production of high-strength steel alloys used in pipelines, transportation infrastructure, and structural applications. Electronic capacitors are the leading use of tantalum for high-end applications, including cell phones, computer hard drives, and such implantable medical devices as pacemakers. Niobium and tantalum are considered critical and strategic metals based on the potential risks to their supply (because current production is restricted to only a few countries) and the significant effects that a restriction in supply would have on the defense, energy, high-tech industrial, and medical sectors.The average abundance of niobium and tantalum in bulk continental crust is relatively low—8.0 parts per million (ppm) niobium and 0.7 ppm tantalum. Their chemical characteristics, such as small ionic size and high electronic field strength, significantly reduce the potential for these elements to substitute for more common elements in rock-forming minerals and make niobium and tantalum essentially immobile in most aqueous solutions. Niobium and tantalum do not occur naturally as pure metals but are concentrated in a variety of relatively rare oxide and hydroxide minerals, as well as in a few rare silicate minerals. Niobium is primarily derived from the complex oxide minerals of the pyrochlore group ((Na,Ca,Ce)2(Nb,Ti,Ta)2(O,OH,F)7), which are found in some alkaline granite-syenite complexes (that is, igneous rocks containing sodium- or potassium-rich minerals and little or no quartz) and carbonatites (that is, igneous rocks that are more than 50 percent composed of primary carbonate minerals, by volume). Tantalum is derived mostly from the

  3. Semimicrodetermination of combined tantalum and niobium with selenous acid

    USGS Publications Warehouse

    Grimaldi, F.S.; Schnepfe, M.

    1959-01-01

    Tantalum and niobium are separated and determined gravimetrically by precipitation with selenous acid from highly acidic solutions in the absence of complexing agents. Hydrogen peroxide is used in the preparation of the solution and later catalytically destroyed during digestion of the precipitate. From 0.2 to 30 mg., separately or in mixtures, of niobium or tantalum pentoxide can be separated from mixtures containing 100 mg. each of the oxides of scandium, yttrium, cerium, vanadium, molybdenum, iron, aluminum, tin, lead, and bismuth with a single precipitation; and from 30 mg. of titanium dioxide, and 50 mg. each of the oxides of antimony and thorium, when present separately, with three precipitations. At least 50 mg. of uranium(VI) oxide can be separated with a single precipitation when present alone; otherwise, three precipitations may be needed. Zirconium does not interfere when the tantalum and niobium contents of the sample are small, but in general, zirconium as well as tungsten interfere. The method is applied to the determination of the earth acids in tantaloniobate ores.

  4. Tungsten-reinforced tantalum

    NASA Technical Reports Server (NTRS)

    Bacigalupi, R. J.; Breitwieser, R.

    1972-01-01

    Method is described for producing tungsten-reinforced tantalum, a material possessing the high temperature strength of tungsten and room temperature ductility and weldability of tantalum. This material is produced by bonding together and overlaying structure of tungsten wires with chemical vapor deposited tantalum.

  5. Niobium and tantalum: indispensable twins

    USGS Publications Warehouse

    Schulz, Klaus; Papp, John

    2014-01-01

    Niobium and tantalum are transition metals almost always paired together in nature. These “twins” are difficult to separate because of their shared physical and chemical properties. In 1801, English chemist Charles Hatchett uncovered an unknown element in a mineral sample of columbite; John Winthrop found the sample in a Massachusetts mine and sent it to the British Museum in London in 1734. The name columbium, which Hatchet named the new element, came from the poetic name for North America—Columbia—and was used interchangeably for niobium until 1949, when the name niobium became official. Swedish scientist Anders Ekberg discovered tantalum in 1802, but it was confused with niobium, because of their twinned properties, until 1864, when it was recognized as a separate element. Niobium is a lustrous, gray, ductile metal with a high melting point, relatively low density, and superconductor properties. Tantalum is a dark blue-gray, dense, ductile, very hard, and easily fabricated metal. It is highly conductive to heat and electricity and renowned for its resistance to acidic corrosion. These special properties determine their primary uses and make niobium and tantalum indispensable.

  6. Semimicrodetermination of tantalum with selenous acid

    USGS Publications Warehouse

    Grimaldi, F.S.; Schnepfe, M.M.

    1958-01-01

    Tantalum is separated and determined gravimetrically by precipitation with selenous acid from a highly acidic solution containing oxalic and tartaric acids. The method is selective for the determination of up to 30 mg. of tantalum pentoxide, and tolerates relatively large amounts of scandium, yttrium, cerium, titanium, zirconium, thorium, vanadium, niobium, molybdenum, tungsten, uranium, iron, aluminum, gallium, tin, lead, antimony, and bismuth. The separation of tantalum from niobium and titanium is not strictly quantitative, and correction is made colorimetrically for the small amounts of niobium and titanium co-precipitating with the tantalum. The method was applied to the determination of tantalum in tantaloniobate ores.

  7. International strategic minerals inventory summary report; niobium (columbium) and tantalum

    USGS Publications Warehouse

    Crockett, R.N.; Sutphin, D.M.

    1993-01-01

    Major world resources of niobium and tantalum are described in this summary report of information in the International Strategic Minerals Inventory (ISMI). ISMI is a cooperative data-collection effort of earth-science and mineral-resource agencies in Australia, Canada, the Federal Republic of Germany, the Republic of South Africa, the United Kingdom, and the United States of America. Part I of this report presents an overview of the resources and potential supply of niobium and tantalum based on inventory information; Part II contains tables of both geologic and mineral-resource information and includes production data collected by ISMI participants. Niobium is used principally as an alloying element in special steels and superalloys, and tantalum is used mainly in electronics. Minerals in the columbite-tantalite series are principal ore minerals of niobium and tantalum. Pyrochlore is a principal source of niobium. These minerals are found in carbonatite, certain rocks in alkaline igneous complexes, pegmatite, and placer deposits. ISMI estimates show that there are over 7 million metric tons of niobium and almost 0.5 million metric tons of tantalum in known deposits, outside of China and the former Soviet Union, for which reliable estimates have been made. Brazilian deposits, followed by Canadian deposits, contain by far the largest source of niobium. Tantalum production is spread widely among several countries, and Brazil and Canada are the most significant of these producers. Brazil's position is further strengthened by potential byproduct columbite from tin mining. Present economically exploitable resources of niobium appear to be sufficient for the near future, but Brazil will continue to be the predominant world supplier of ferrocolumbium. Tantalum, a byproduct of tin production, has been captive to the fluctuations of that market, but resources in pegmatite in Canada and Australia make it likely that future increases in the present modest demand will be met.

  8. ON THE GEOCHEMISTRY OF NIOBIUM AND TANTALUM IN CLAYS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pachadzhanov, D.N.

    1963-10-01

    With the aid of the spectral method with a preliminary enrichment in tannin, the niobium and tantalum content was determined in some humid and arid clays of the Russian platform. The investigated samples were composed of 354 specimens. The average content of niobium in humid clays is 0.0020%, of tantalum 0.00024% (the Nb/Ta ratio is 8.4) and in arid clays is respectively the content of niobium 0.00133% and the content of tantalum 0.00009% (the Nb/Ta ratio is 14.8). The average value of the content of niobium content for all studied clays is 0.00183% and of the tantalum content 0.00020%, themore » Nb/Ta ratio being 9.1. In clays an interconnection of niobium with tantalum, as well as with aluminium, titanium, zirconium, and hafnium was observed. However, on the background of this connection some separation of the named elements is noted. A tendency for the Nb/Ta ratio shift from the region of matter removal towards the center of the marine basin was observed. The study of niobium and tantalum distribution over different clay fractions showed that one part of elements is connected with zircon and titanium minerals in aleuosand fraction (0.1-- 0.01 mm). Another, approximately similar part is contained in the proper clay fraction (<0. 01 mm), the tantalum somewhat more concentrating in the aleurosand fraction and niobium in the clay fraction. (P.C.H.)« less

  9. A niobium oxide-tantalum oxide selector-memristor self-aligned nanostack

    NASA Astrophysics Data System (ADS)

    Diaz Leon, Juan J.; Norris, Kate J.; Yang, J. Joshua; Sevic, John F.; Kobayashi, Nobuhiko P.

    2017-03-01

    The integration of nonlinear current-voltage selectors and bi-stable memristors is a paramount step for reliable operation of crossbar arrays. In this paper, the self-aligned assembly of a single nanometer-scale device that contains both a selector and a memristor is presented. The two components (i.e., selector and memristor) are vertically assembled via a self-aligned fabrication process combined with electroforming. In designing the device, niobium oxide and tantalum oxide are chosen as materials for selector and memristor, respectively. The formation of niobium oxide is visualized by exploiting the self-limiting reaction between niobium and tantalum oxide; crystalline niobium (di)oxide forms at the interface between metallic niobium and tantalum oxide via electrothermal heating, resulting in a niobium oxide selector self-aligned to a tantalum oxide memristor. A steady-state finite element analysis is used to assess the electrothermal heating expected to occur in the device. Current-voltage measurements and structural/chemical analyses conducted for the virgin device, the electroforming process, and the functional selector-memristor device are presented. The demonstration of a self-aligned, monolithically integrated selector-memristor device would pave a practical pathway to various circuits based on memristors attainable at manufacturing scales.

  10. Alkali oxide-tantalum, niobium and antimony oxide ionic conductors

    NASA Technical Reports Server (NTRS)

    Roth, R. S.; Brower, W. S.; Parker, H. S.; Minor, D. B.; Waring, J. L.

    1975-01-01

    The phase equilibrium relations of four systems were investigated in detail. These consisted of sodium and potassium antimonates with antimony oxide and tantalum and niobium oxide with rubidium oxide as far as the ratio 4Rb2O:llB2O5 (B=Nb, Ta). The ternary system NaSbO3-Sb2O4-NaF was investigated extensively to determine the actual composition of the body centered cubic sodium antimonate. Various other binary and ternary oxide systems involving alkali oxides were examined in lesser detail. The phases synthesized were screened by ion exchange methods to determine mobility of the mobility of the alkali ion within the niobium, tantalum or antimony oxide (fluoride) structural framework. Five structure types warranted further investigation; these structure types are (1) hexagonal tungsten bronze (HTB), (2) pyrochlore, (3) the hybrid HTB-pyrochlore hexagonal ordered phases, (4) body centered cubic antimonates and (5) 2K2O:3Nb2O5. Although all of these phases exhibit good ion exchange properties only the pyrochlore was prepared with Na(+) ions as an equilibrium phase and as a low porosity ceramic. Sb(+3) in the channel interferes with ionic conductivity in this case, although relatively good ionic conductivity was found for the metastable Na(+) ion exchanged analogs of RbTa2O5F and KTaWO6 pyrochlore phases.

  11. NIOBIUM-TANTALUM SEPARATION

    DOEpatents

    Wilhelm, H.A.; Foos, R.A.

    1959-01-27

    The usual method for the separation of tantalum and niobium consists of a selective solvent extraction from an aqueous hydrofluoric acid solution of the metals. A difficulty encountered in this process is the fact that the corrosion problems associated with hydrofluoric acid are serious. It has been found that the corrosion caused by the hydrofluoric acid may be substantially reduced by adding to the acidic solution an amine, such as phenyl diethanolamine or aniline, and adjusting pH value to between 4 and 6.

  12. TUNGSTEN BRONZE RELATED NON-NOBLE ELECTROCATALYSTS.

    DTIC Science & Technology

    FUEL CELLS, *CATALYSTS), (*OXYGEN, *ELECTRODES), (* SILICIDES , ELECTRODES), (*CARBIDES, ELECTRODES), (*TUNGSTEN COMPOUNDS, *ELECTROCHEMISTRY...CATALYSTS, TITANIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, VANADIUM COMPOUNDS, NIOBIUM COMPOUNDS, TUNGSTEN COMPOUNDS, TANTALUM COMPOUNDS, MOLYBDENUM COMPOUNDS, SULFURIC ACID, CRYSTAL GROWTH, SODIUM COMPOUNDS

  13. Fabrication of a tantalum-clad tungsten target for LANSCE

    NASA Astrophysics Data System (ADS)

    Nelson, A. T.; O'Toole, J. A.; Valicenti, R. A.; Maloy, S. A.

    2012-12-01

    Development of a solid state bonding technique suitable to clad tungsten targets with tantalum was completed to improve operation of the Los Alamos Neutron Science Centers spallation target. Significant deterioration of conventional bare tungsten targets has historically resulted in transfer of tungsten into the cooling system through corrosion resulting in increased radioactivity outside the target and reduction of delivered neutron flux. The fabrication method chosen to join the tantalum cladding to the tungsten was hot isostatic pressing (HIP) given the geometry constraints of a cylindrical assembly and previous success demonstrated at KENS. Nominal HIP parameters of 1500 °C, 200 MPa, and 3 h were selected based upon previous work. Development of the process included significant surface engineering controls and characterization given tantalums propensity for oxide and carbide formation at high temperatures. In addition to rigorous acid cleaning implemented at each step of the fabrication process, a three layer tantalum foil gettering system was devised such that any free oxygen and carbon impurities contained in the argon gas within the HIP vessel was mitigated to the extent possible before coming into contact with the tantalum cladding. The result of the numerous controls and refined techniques was negligible coarsening of the native Ta2O5 surface oxide, no measureable oxygen diffusion into the tantalum bulk, and no detectable carburization despite use of argon containing up to 5 ppm oxygen and up to 40 ppm total CO, CO2, or organic contaminants. Post bond characterization of the interface revealed continuous bonding with a few microns of species interdiffusion.

  14. Constitutive behavior of tantalum and tantalum-tungsten alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.R.; Gray, G.T. III

    1996-10-01

    The effects of strain rate, temperature, and tungsten alloying on the yield stress and the strain-hardening behavior of tantalum were investigated. The yield and flow stresses of unalloyed Ta and tantalum-tungsten alloys were found to exhibit very high rate sensitivities, while the hardening rates in Ta and Ta-W alloys were found to be insensitive to strain rate and temperature at lower temperatures or at higher strain rates. This behavior is consistent with the observation that overcoming the intrinsic Peierls stress is shown to be the rate-controlling mechanism in these materials at low temperatures. The dependence of yield stress on temperaturemore » and strain rate was found to decrease, while the strain-hardening rate increased with tungsten alloying content. The mechanical threshold stress (MTS) model was adopted to model the stress-strain behavior of unalloyed Ta and the Ta-W alloys. Parameters for the constitutive relations for Ta and the Ta-W alloys were derived for the MTS model, the Johnson-Cook (JC), and the Zerilli-Armstrong (ZA) models. The results of this study substantiate the applicability of these models for describing the high strain-rate deformation of Ta and Ta-W alloys. The JC and ZA models, however, due to their use of a power strain-hardening law, were found to yield constitutive relations for Ta and Ta-W alloys that are strongly dependent on the range of strains for which the models were optimized.« less

  15. The preparation of pure niobium for neutron dosimetry purposes

    NASA Astrophysics Data System (ADS)

    Schulze, Klaus; Krehl, Michael

    1985-06-01

    A technique is described for the preparation of high purity niobium for use in fast neutron dosimetry. Based on results of known purification processes for niobium, an optimized method has been developed, consisting of: (1) a double electrolytic refining in an eutectic lithium-, sodium-, potassium-fluoride melt, containing fluoro-potassium niobate (K 2NbF 7), (2) electron beam float zone melting (EBFZM) in ultra high vacuum (UHV) and (3) UHV treatments. Starting with EBFZM of niobium of commercial quality (140 μg/g Ta, 35 μg/g W) the tantalum and tungsten contents were reduced by a first electrolysis to approximately 4 and 4 × 10 -2 μg/g, respectively. For a second electrolytic refining using a salt bath with extremely low tantalum and tungsten contents, this material was subjected to an additional EBFZM process. The niobium metal produced by this step was three times zone melted to reduce those elements (e.g. Fe, Co, Ni, O, N) which increased during the electrolyses. Material produced by this technique has impurity concentrations below 0.4 μg/g of tantalum and 10 -2 μg/g of tungsten. The concentration of the interstitials (C, O, N except H) is below the detection limit of classical analytical methods. A further reduction of the interstitials by annealing treatments in UHV of this material resulted in an electrical residual resistivity ratio (RRR) ρ(295 K)/ ρ(4.2 K) = 24 500 indicating an impurity concentration far below 1 μg/g.

  16. CONTRIBUTION TO THE GEOCHEMISTRY OF TANTALUM AND NIOBIUM IN THE HYDROTHERMAL-PNEUMATHOLYTIC PROCESS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beus, A.A.; Sitnin, A.A.

    1961-01-01

    S>Data obtained as a result of geochemical investigations show that tantalum and niobium are typical elements of high-temperature postmagmatic processes (early albitization, greysening) connected with granites. The separation of tantalum and niobium in the hydrothermal-pneumatholytic process (greysening stage), which leads to the concentration of tantalum in albitized and greysenized granites (40 to 100 times compared to the average content in granites) is connected with the different mobility and stability of their acido- complex compounds (in particular fluor- and oxyfluorcomplexes), the existence of which in greysening solutions is suggested. A natural analogy in the behavior of both elements in the processesmore » of postmagmatic metasomatose in granites and granitic pegmatites is suggested. (tr-auth)« less

  17. Niobium (columbium) and tantalum resources of Brazil

    USGS Publications Warehouse

    White, Max Gregg

    1975-01-01

    Most of the niobium resources of Brazil occur as pyrochlore in carbonatites within syenitic intrusives of Late Cretaceous to early Tertiary age in western Minas Gerais and southeastern Goils. Minor amounts of it are produced together with tantalum from columbite-tantalite concentrates from pegmatites and placers adjacent to them, in the Sao Joao del Rei district in south-central Minas Gerais. All the niobium and tantalum produced in Brazil is exported. The only pyrochlore mined is from the Barreiro carbonatite deposit near Araxa in Minas Gerais where concentrates and ferroniobium are produced. Exploration work for pyrochlore and other mineral resources are being undertaken on other carbonatites, particularly at Catalao I in southeast Goias and at Tapira and Serra Negra in western Minas Gerais. Annual production and export from the Barreiro deposit are about 8,000 metric tons of pyrochlore concentrate containing about 60 percent Nb205 and about 2,700 metric tons of ferroniobium with 63 percent Nb2O5. The annual production capacity of the Barreiro plant is 18,000 tons of concentrate and 4,000 tons of ferroniobium. Ore reserves of the Barreiro deposit in all categories are 380 million tons with percent Nb2O5. Annual production of tantalite-columbite from the Sao Joao del Rei district, most of which is exported to the United States, is about 290 tons, of which about 79 percent is tantalite and about percent is columbite. Reserves of tantalite-columbite in the Sao Joao del Rei district are about 43,000 tons of proved and 73,000 tons of probable ore.

  18. Fabrication of a Tantalum-Based Josephson Junction for an X-Ray Detector

    NASA Astrophysics Data System (ADS)

    Morohashi, Shin'ichi; Gotoh, Kohtaroh; Yokoyama, Naoki

    2000-06-01

    We have fabricated a tantalum-based Josephson junction for an X-ray detector. The tantalum layer was selected for the junction electrode because of its long quasiparticle lifetime, large X-ray absorption efficiency and stability against thermal cycling. We have developed a buffer layer to fabricate the tantalum layer with a body-centered cubic structure. Based on careful consideration of their superconductivity, we have selected a niobium thin layer as the buffer layer for fabricating the tantalum base electrode, and a tungsten thin layer for the tantalum counter electrode. Fabricated Nb/AlOx-Al/Ta/Nb and Nb/Ta/W/AlOx-Al/Ta/Nb Josephson junctions exhibited current-voltage characteristics with a low subgap leakage current.

  19. Development of high temperature materials for solid propellant rocket nozzle applications. [tantalum carbides-tungsten fiber composites

    NASA Technical Reports Server (NTRS)

    Manning, C. R., Jr.; Honeycutt, L., III

    1974-01-01

    Evaluation of tantalum carbide-tungsten fiber composites has been completed as far as weight percent carbon additions and weight percent additions of tungsten fiber. Extensive studies were undertaken concerning Young's Modulus and fracture strength of this material. Also, in-depth analysis of the embrittling effects of the extra carbon additions on the tungsten fibers has been completed. The complete fabrication procedure for the tantalum carbide-tungsten fiber composites with extra carbon additions is given. Microprobe and metallographic studies showed the effect of extra carbon on the tungsten fibers, and evaluation of the thermal shock parameter fracture strength/Young's Modulus is included.

  20. Clustering of transmutation elements tantalum, rhenium and osmium in tungsten in a fusion environment

    NASA Astrophysics Data System (ADS)

    You, Yu-Wei; Kong, Xiang-Shan; Wu, Xuebang; Liu, C. S.; Fang, Q. F.; Chen, J. L.; Luo, G.-N.

    2017-08-01

    The formation of transmutation solute-rich precipitates has been reported to seriously degrade the mechanical properties of tungsten in a fusion environment. However, the underlying mechanisms controlling the formation of the precipitates are still unknown. In this study, first-principles calculations are therefore performed to systemically determine the stable structures and binding energies of solute clusters in tungsten consisting of tantalum, rhenium and osmium atoms as well as irradiation-induced vacancies. These clusters are known to act as precursors for the formation of precipitates. We find that osmium can easily segregate to form clusters even in defect-free tungsten alloys, whereas extremely high tantalum and rhenium concentrations are required for the formation of clusters. Vacancies greatly facilitate the clustering of rhenium and osmium, while tantalum is an exception. The binding energies of vacancy-osmium clusters are found to be much higher than those of vacancy-tantalum and vacancy-rhenium clusters. Osmium is observed to strongly promote the formation of vacancy-rhenium clusters, while tantalum can suppress the formation of vacancy-rhenium and vacancy-osmium clusters. The local strain and electronic structure are analyzed to reveal the underlying mechanisms governing the cluster formation. Employing the law of mass action, we predict the evolution of the relative concentration of vacancy-rhenium clusters. This work presents a microscopic picture describing the nucleation and growth of solute clusters in tungsten alloys in a fusion reactor environment, and thereby explains recent experimental phenomena.

  1. Heat of combustion of tantalum-tungsten oxide thermite composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, Octavio G.; Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616; Kuntz, Joshua D.

    2010-12-15

    The heat of combustion of two distinctly synthesized stoichiometric tantalum-tungsten oxide energetic composites was investigated by bomb calorimetry. One composite was synthesized using a sol-gel (SG) derived method in which micrometric-scale tantalum is immobilized in a tungsten oxide three-dimensional nanostructured network structure. The second energetic composite was made from the mixing of micrometric-scale tantalum and commercially available (CA) nanometric tungsten oxide powders. The energetic composites were consolidated using the spark plasma sintering (SPS) technique under a 300 MPa pressure and at temperatures of 25, 400, and 500 C. For samples consolidated at 25 C, the density of the CA compositemore » is 61.65 {+-} 1.07% in comparison to 56.41 {+-} 1.19% for the SG derived composite. In contrast, the resulting densities of the SG composite are higher than the CA composite for samples consolidated at 400 and 500 C. The theoretical maximum density for the SG composite consolidated to 400 and 500 C are 81.30 {+-} 0.58% and 84.42 {+-} 0.62%, respectively. The theoretical maximum density of the CA composite consolidated to 400 and 500 C are 74.54 {+-} 0.80% and 77.90 {+-} 0.79%, respectively. X-ray diffraction analyses showed an increase of pre-reaction of the constituents with an increase in the consolidation temperature. The increase in pre-reaction results in lower stored energy content for samples consolidated to 400 and 500 C in comparison to samples consolidated at 25 C. (author)« less

  2. Synthesis, Consolidation and Characterization of Sol-gel Derived Tantalum-Tungsten Oxide Thermite Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, O

    2010-06-01

    Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3more » or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.« less

  3. Tantalum-tungsten oxide thermite composites prepared by sol-gel synthesis and spark plasma sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuntz, Joshua D.; Gash, Alexander E.; Cervantes, Octavio G.

    2010-08-15

    Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and the results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High-Pressure Spark Plasma Sintering (HPSPS) technique, on the sol-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sol-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta-WO{sub 3}) energetic composite was consolidated to a density of 9.17 g cm{sup -3}more » or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy. (author)« less

  4. Tantalum-Tungsten Oxide Thermite Composite Prepared by Sol-Gel Synthesis and Spark Plasma Sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, O; Kuntz, J; Gash, A

    2009-02-13

    Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the sol-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sol-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO{sub 3}) energetic composite was consolidated to a density of 9.17more » g.cm{sup -3} or 93% relative density. In addition those parts were consolidated without significant pre-reaction of the constituents, thus the sample retained its stored chemical energy.« less

  5. Thermal expansion method for lining tantalum alloy tubing with tungsten

    NASA Technical Reports Server (NTRS)

    Watson, G. K.; Whittenberger, J. D.; Mattson, W. F.

    1973-01-01

    A differential-thermal expansion method was developed to line T-111 (tantalum - 8 percent tungsten - 2 percent hafnium) tubing with a tungsten diffusion barrier as part of a fuel element fabrication study for a space power nuclear reactor concept. This method uses a steel mandrel, which has a larger thermal expansion than T-111, to force the tungsten against the inside of the T-111 tube. Variables investigated include lining temperature, initial assembly gas size, and tube length. Linear integrity increased with increasing lining temperature and decreasing gap size. The method should have more general applicability where cylinders must be lined with a thin layer of a second material.

  6. Effect of silicon, tantalum, and tungsten doping and polarization on bioactivity of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Dhal, Jharana

    Hydroxyapatite (HAp) ceramics has important applications as bone graft because of the structural and compositional similarities with bone tissue. However, inferior osteogenic capacity to bone and poor mechanical properties have been identified to be major disadvantages of synthetic HAp compared to the living bone tissue. The objective of the current study is to evaluate the effect of doping with higher valent cations (Tungsten, tantalum, and silicon) and polarization or combination of both on change in property of doped HAp and subsequent impact its bioactivity. In vitro study with human osteoblast cells was used to investigate the influences of doping and polarization on bone cell-materials interactions. The bioactivity of doped HAp was compared with pure HAp. Effect of doping and polarization on the change in HAp was investigated by monitoring change in mineral phases, stored charge, and activation energy of HAp. Activation energy of depolarization was used to explain the possible mechanism of polarization in doped samples. Bioactivity of HAp increased when doped with tantalum and tungsten. Polarization further increased the bioactivity of tungsten- and tantalum-doped samples. Increase in bioactivity on polarized and doped samples was attributed to increase in surface energy and increase in surface wettability. Whereas, an increase in bioactivity on doped unpolarized surface was attributed to change in microstructure. Polarized charge calculated from TSDC indicates that polarized charge decreases on tantalum- and tungsten-doped HAp. The decrease in polarized charge was attributed to the presence of significant amount of different phases that may hinder the ionic motion in doped samples. However, for silicon-doped HAp, TSDC study showed no difference in the mechanism of polarization between doped and undoped samples. Increase in silicon doping decreased the grain size though mechanism is not affected by grain size. Total stored charge decreased with increase in

  7. Method of low tantalum amounts determination in niobium and its compounds by ICP-OES technique.

    PubMed

    Smolik, Marek; Turkowska, Magdalena

    2013-10-15

    A method of determination of low amounts of tantalum in niobium and niobium compounds without its prior separation by means of inductively coupled plasma optical emission spectrometry (ICP-OES) has been worked out. The method involves dissolution of the analyzed samples of niobium as well as its various compounds (oxides, fluorides, chlorides, niobates(V)) in fluoride environments, precipitation of sparingly soluble niobic(tantalic) acid (Nb2O5(Ta2O5) · xH2O), converting them into soluble complex compounds by means of oxalic acid with addition of hydrogen peroxide and finally analyzing directly obtained solutions by ICP-OES. This method permits determination of Ta in niobium at the level of 10(-3)% with relatively good precision (≤ 8% RSD) and accuracy (recovery factor: 0.9-1.1). Relative differences in the results obtained by two independent methods (ICP-OES and ICP-MS) do not exceed 14%, and other elements present in niobium compounds (Ti, W, Zr, Hf, V, Mo, Fe, Cr) at the level of 10(-2)% do not affect determination. © 2013 Elsevier B.V. All rights reserved.

  8. Isolation of tungsten and tantalum isotopes without supports from. cap alpha. -particle-irradiated hafnium targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasita, S.M.; Iota, B.Z.; Malachkov, A.G.

    1985-11-01

    An extraction procedure has been developed for successive isolation of tungsten (/sup 178/W and /sup 181/W) and tantalum (/sup 179/Ta and /sup 182/Ta) isotopes without supports from ..cap alpha..particle-irradiated hafnium targets. The target, irradiated on a cyclotron, is dissolved in hydrofluoric acid. Tantalum isotopes are extracted with tributyl phosphate (TBP) from 1-5 M HF and are then reextracted with a 1:1 ammonia solution, and hydrofluoric acid is removed by heating. Tungsten isotopes are extracted with a chloroform solution or N-benzoyl-N-phenylhydroxylamine (BPHA) from 11-12 M H/sub 2/SO/sub 4/ or ..cap alpha..-benzoin oxime from 4.5-5.5 M H/sub 2/SO/sub 4/ and are thenmore » reextracted with a l:l ammonia solution. The yield of tungsten isotopes is not less than 95%, and the content of radioactive impurities of other isotopes is not more than 0.1%.« less

  9. METHOD OF MAKING TUNGSTEN FILAMENTS

    DOEpatents

    Frazer, J.W.

    1962-12-18

    A method of making tungsten filaments is described in which the tungsten is completely free of isotope impurities in the range of masses 234 to 245 for use in mass spectrometers. The filament comprises a tantalum core generally less than 1 mil in diameter having a coating of potassium-free tantalum-diffused tungsten molecularly bonded thereto. In the preferred process of manufacture a short, thin tantalum filament is first mounted between terminal posts mounted in insulated relation through a backing plate. The tungsten is most conveniently vapor plated onto the tantalum by a tungsten carbonyl vapor decomposition method having a critical step because of the tendency of the tantalum to volatilize at the temperature of operntion of the filament. The preferred recipe comprises volatilizing tantalum by resistance henting until the current drops by about 40%, cutting the voltage back to build up the tungsten, and then gradually building the temperature back up to balance the rate of tungsten deposition with the rate of tantalum volatilization. (AEC)

  10. Upgrading tantalum and niobium oxides content in Bangka tin slag with double leaching

    NASA Astrophysics Data System (ADS)

    Soedarsono, J. W.; Permana, S.; Hutauruk, J. K.; Adhyputra, R.; Rustandi, A.; Maksum, A.; Widana, K. S.; Trinopiawan, K.; Anggraini, M.

    2018-03-01

    Tantalum has become one of the 14 types of critical materials where the level of its availability is assumed as the midterm critical metal. Benefits of the element tantalum in the electronics field increased the deficit balance of supply / demand, as more variations of electronic products developed. The tantalum experts calculated the level of availability until 2020. Base on the previous studies, tin slag is a secondary source of tantalum and niobium. This study uses tin slag from Bangka, Indonesia, abbreviated, Bangka Tin Slag (BTS). BTS was roasted, water quenched and sieved, abbreviated BTS-RQS.BTS was roasted, water quenched and sieved, abbreviated BTS-RQS.BTS-RQS was roasted at a temperature 700□C given sample code BTS-R700QS, while roasted at 800°C given sample code BTS-R800QS.A variable leaching experiment on BTS-R700QS was solvent concentration variable and on BTS-R800QS was time variable. The entire residue was characterized by X-Ray Fluorescence (XRF), and the optimum results are on the BTS-R800QS leaching into 5 M NaOH for 20 min followed by 5M HCl for 50 min, with content of Ta2O5 and Nb2O51.56% and 1.11%, respectively. The result of XRF measurement showed was the increasing of TNO content due to the increasing solvent concentration and time of acid leaching. The discussion of thermodynamics this study used was HSC Chemistry 6 as a supporting data.

  11. A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C

    PubMed Central

    Li, Mengran; Zhao, Mingwen; Li, Feng; Zhou, Wei; Peterson, Vanessa K.; Xu, Xiaoyong; Shao, Zongping; Gentle, Ian; Zhu, Zhonghua

    2017-01-01

    The slow activity of cathode materials is one of the most significant barriers to realizing the operation of solid oxide fuel cells below 500 °C. Here we report a niobium and tantalum co-substituted perovskite SrCo0.8Nb0.1Ta0.1O3−δ as a cathode, which exhibits high electroactivity. This cathode has an area-specific polarization resistance as low as ∼0.16 and ∼0.68 Ω cm2 in a symmetrical cell and peak power densities of 1.2 and 0.7 W cm−2 in a Gd0.1Ce0.9O1.95-based anode-supported fuel cell at 500 and 450 °C, respectively. The high performance is attributed to an optimal balance of oxygen vacancies, ionic mobility and surface electron transfer as promoted by the synergistic effects of the niobium and tantalum. This work also points to an effective strategy in the design of cathodes for low-temperature solid oxide fuel cells. PMID:28045088

  12. In vivo comparison of tantalum, tungsten, and bismuth enteric contrast agents to complement intravenous iodine for double-contrast dual-energy CT of the bowel

    PubMed Central

    Rathnayake, Samira; Mongan, John; Torres, Andrew S.; Colborn, Robert; Gao, Dong-Wei; Yeh, Benjamin M; Fu, Yanjun

    2016-01-01

    To assess the ability of dual-energy CT (DECT) to separate intravenous contrast of bowel wall from intraluminal contrast, we scanned 16 rabbits on a clinical DECT scanner: n=3 using only iodinated intravenous contrast; and n=13 double-contrast enhanced scans using iodinated intravenous contrast and experimental enteric non-iodinated contrast agents in the bowel lumen (5 bismuth-, 4 tungsten-, and 4 tantalum-based). Representative image pairs from conventional CT images and DECT iodine density maps of small bowel (116 pairs from 232 images) were viewed by four abdominal imaging attending radiologists to independently score each comparison pair on a visual analog scale (−100 to +100%) for: 1) preference in small bowel wall visualization; and 2) preference in completeness of intraluminal enteric contrast subtraction. Median small bowel wall visualization was scored 39 and 42 percentage points (95% CI: 30–44% and 36–45%, p<0.001 both) higher at double-contrast DECT than at conventional CT with enteric tungsten and tantalum contrast, respectively. Median small bowel wall visualization at double-contrast DECT was scored 29 and 35 percentage points (95% CI: 20–35% and 33–39%, p<0.001 both) higher with enteric tungsten and tantalum, respectively, than with bismuth contrast. Median completeness of intraluminal enteric contrast subtraction in double-contrast DECT iodine density maps was scored 28 and 29 percentage points (95% CI: 15–31% and 28–33%, p<0.001 both) higher with enteric tungsten and tantalum, respectively, than with bismuth contrast. Results suggest that in vivo double-contrast DECT with iodinated intravenous and either tantalum- or tungsten-based enteric contrast provide better visualization of small bowel than conventional CT. PMID:26892945

  13. STUDIES ON ANALYTICAL METHODS FOR TRACE ELEMENTS IN METALS BY USING RADIOACTIVE ISOTOPE. III. DETERMINATION OF TANTALUM BY MEANS OF ISOTOPE DILUTION METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amano, H.

    1959-10-01

    The determination of tantalum by the isotope dilution method in the presence of niobium was investigated by the use of the radioisotope Ta/sup 185/. Tantalum was separated from niobium as tantalum-tannin precipitate under the optimum conditions of a pH of 1.9 to 2.5 and a tantalum/niobium ratio of up to 1/ 50. If niobium was present in amounts 100 times or more that of tantalum, reprecipitation was needed. The reciprocal of the specific activity of tanthlum pentoxide precipitate was in a linear relation to the change in the amount of tantalum added. The recommended method gave an accurate result inmore » the determination of tantalum in steal. (auth)« less

  14. Mineral resource of the month: niobium (columbium)

    USGS Publications Warehouse

    Papp, John F.

    2007-01-01

    It’s not just diamonds associated with conflict in Africa. Coltan, short for columbite-tantalite (a blend of niobium — also called columbium — and tantalum minerals), is linked with the recent conflicts in the Congo that involved several African countries. The metallic ore, which is processed to separate out niobium and the very valuable tantalum (see Geotimes, August 2004), is believed to be smuggled out and sold to help finance the armed conflicts.

  15. High strength forgeable tantalum base alloy

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1975-01-01

    Increasing tungsten content of tantalum base alloy to 12-15% level will improve high temperature creep properties of existing tantalum base alloys while retaining their excellent fabrication and welding characteristics.

  16. Metallic transfer between metals in sliding contact examined by auger emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1972-01-01

    Metallic transfer between polycrystalline metals in sliding contact was examined. Hemispherical riders of iron, nickel, and cobalt were slid on tungsten, tantalum, niobium, and molybdenum disks in ultrahigh vacuum. Auger emission spectroscopy was used to monitor the elemental composition of the disk surfaces. Iron, nickel, and cobalt transferred to tungsten, whereas only cobalt transferred to tantalum, niobium, and molybdenum. The results of this investigation are discussed in terms of the cohesive energy and strain hardening characteristics of the specimen materials.

  17. Development of tungsten-tantalum generator

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Babich, J.; Jhingran, S. G.

    1985-01-01

    The purpose of this project was to develop a useable tungsten (W)/tantalum (Ta) generator. Ta-178 is formed following the decay of its parent, W-178 (half-life: 21.7d) and has a half life of 9.3 minutes in turn yielding stable Hf-178. The decay of the parent isotope (W-178) occurs entirely by electron capture to the 9.3 minute Ta-178 state, without feeding the high spin Ta-178 isomer (half life 2.2 hours). In Ta-178 decay, 99.2% of the disintegrations proceed by electron capture and 0.18% by positron emission. Electron capture results in a 61.2% branch to the ground state of Hf-178 and 33.7% to the first excited state at 93 1KeV. The most prominent features of the radionuclide's energy spectrum are the hafnium characteristic radiation peaks with energies between 54.6 and 65.0 KeV. The radiation exposure dose of Ta-118 was calculated to be approximately one-twentieth that of Tc-99m on a per millicurie basis. A twenty-fold reduction in radiation exposure from Ta-178 compared with Tc-99m means that the usual administered dose can be increased three or four times, greatly increasing statistical accuracy while reducing radiation exposure by a factor of five.

  18. Conflict minerals in the compute sector: estimating extent of tin, tantalum, tungsten, and gold use in ICT products.

    PubMed

    Fitzpatrick, Colin; Olivetti, Elsa; Miller, Reed; Roth, Richard; Kirchain, Randolph

    2015-01-20

    Recent legislation has focused attention on the supply chains of tin, tungsten, tantalum, and gold (3TG), specifically those originating from the eastern part of the Democratic Republic of Congo. The unique properties of these so-called “conflict minerals” lead to their use in many products, ranging from medical devices to industrial cutting tools. This paper calculates per product use of 3TG in several information, communication, and technology (ICT) products such as desktops, servers, laptops, smart phones, and tablets. By scaling up individual product estimates to global shipment figures, this work estimates the influence of the ICT sector on 3TG mining in covered countries. The model estimates the upper bound of tin, tungsten, tantalum, and gold use within ICT products to be 2%, 0.1%, 15%, and 3% of the 2013 market share, respectively. This result is projected into the future (2018) based on the anticipated increase in ICT device production.

  19. Thermal shock and erosion resistant tantalum carbide ceramic material

    NASA Technical Reports Server (NTRS)

    Honeycutt, L., III; Manning, C. R. (Inventor)

    1978-01-01

    Ceramic tantalum carbide artifacts with high thermal shock and mechanical erosion resistance are provided by incorporating tungsten-rhenium and carbon particles in a tantalum carbide matrix. The mix is sintered by hot pressing to form the ceramic article which has a high fracture strength relative to its elastic modulus and thus has an improved thermal shock and mechanical erosion resistance. The tantalum carbide is preferable less than minus 100 mesh, the carbon particles are preferable less than minus 100 mesh, and the tungsten-rhenium particles are preferable elongate, having a length to thickness ratio of at least 2/1. Tungsten-rhenium wire pieces are suitable as well as graphite particles.

  20. Heat Treatment of Tantalum and Niobium Powders Prepared by Magnesium-Thermic Reduction

    NASA Astrophysics Data System (ADS)

    Orlov, V. M.; Prokhorova, T. Yu.

    2017-11-01

    Changes in the specific surface area and porous structure of tantalum and niobium powders, which were prepared by magnesium-thermic reduction of Ta2O5, Mg4Ta2O9, and Mg4Nb2O9 oxide compounds and subjected to heat treatments at temperatures of 600-1500°C, have been studied. It is noted that, owing to the mesoporous structure of the magnesium-thermic powders, the decrease in the surface area during heat treatment, first of all, is related to a decrease in the amount of pores less than 10 nm in size. The heat treatment of a reacting mass is shown to allow us to correct the specific surface area of the powder without any increase in the oxygen content in it. Data on the effect of heat treatment conditions on the specific charge of capacitor anodes are reported.

  1. Radiopharmaceutical composition containing tantalum-178 and process therefor

    DOEpatents

    Neirinckx, Rudi D.; Holman, B. Leonard; Davis, Michael A.; Harris, Gale I.

    1989-05-16

    A physiologically acceptable solution of tantalum-178 having an activity of 0.1 to 200 millicuries per milliliter of tantalum-178 solution is provided. The solution is obtained from tungsten-178 bound to a column of an anion exchange resin which forms tantalum-178 in situ by eluting the column with a hydrochloric acid solution containing hydrogen peroxide to form an acidic solution of tantalum-178. The acidic solution of tantalum-178 then is neutralized.

  2. Activation energy of tantalum-tungsten oxide thermite reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, Octavio G.; Munir, Zuhair A.; Chemical Engineering and Materials Science, University of California, Davis, CA

    2011-01-15

    The activation energy of a sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the high-pressure spark plasma sintering (HPSPS) technique at 300 and 400 C. The ignition temperatures were investigated under high heating rates (500-2000 C min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Samples consolidated at 300 C exhibit an abrupt change in temperature response prior to the main ignition temperature. This change in temperature response is attributed to the crystallization of the amorphous WO{sub 3} in the SG derivedmore » Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465 to 670 C. The activation energies of the SG derived Ta-WO{sub 3} thermite composite consolidated at 300 and 400 C were determined to be 38{+-} 2 kJ mol{sup -1} and 57 {+-} 2 kJ mol{sup -1}, respectively. (author)« less

  3. Hydrometallurgical Separation of Niobium and Tantalum: A Fundamental Approach

    NASA Astrophysics Data System (ADS)

    Nete, Motlalepula; Purcell, Walter; Nel, Johann T.

    2016-02-01

    A mixture of pure Ta2O5 and Nb2O5 was dissolved using two different fluxes, namely NH4F·HF and Na2HPO4/NaH2PO4·H2O. Selective precipitation and ion exchange were used as separation techniques. Selective precipitation using p-phenylediamine in a fluoride matrix resulted in the isolation of 73(3)% tantalum accompanied by 23(5)% niobium. A separation factor of 11(4) was obtained. A single solvent extraction step using methyl-isobutyl ketone at a 4 M H2SO4 yielded excellent Ta and Nb separation in the fluoride solution with 80% of the Ta and only 2% Nb recovered in the organic layer. A two-step extraction recovered 100% Ta at 0.5-4 M H2SO4 with a separation factor of ~2000. A study of the extraction mechanism indicated that the stability of the protonated compounds such as H2TaF7/H2NbOF5 is in the extraction and separation determining steps in this process. A K' (double de-protonated constant) of approximately 0.2 was calculated for H2TaF7. Only 91.7% Nb and 73.4% Ta were recovered from anion separation using strong Amberlite resin and 96.1% Nb and 52.3% using the weak Dowex Marathon resin from fluoride dissolution.

  4. Thermochemistry of tantalum-wall cooling system with lithium and sodium working fluids

    NASA Technical Reports Server (NTRS)

    Tower, L. K.

    1972-01-01

    Plots are presented which show the distribution of oxygen between liquid lithium and tantalum or niobium, and between liquid sodium and tantalum at elevated temperatures. Additional plots showing the composition of the gas phase above the solutions of oxygen and alkali metal are presented. The use of the plots is illustrated by an example tantalum heat pipe filled with lithium.

  5. The effect of low energy helium ion irradiation on tungsten-tantalum (W-Ta) alloys under fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Gonderman, S.; Tripathi, J. K.; Novakowski, T. J.; Sizyuk, T.; Hassanein, A.

    2017-08-01

    Currently, tungsten remains the best candidate for plasma-facing components (PFCs) for future fusion devices because of its high melting point, low erosion, and strong mechanical properties. However, continued investigation has shown tungsten to undergo severe morphology changes under fusion-like conditions. These results motivate the study of innovative PFC materials which are resistant to surface morphology evolution. The goal of this work is to examine tungsten-tantalum (W-Ta) alloys, a potential PFC material, and their response to low energy helium ion irradiation. Specifically, W-Ta samples are exposed to 100 eV helium irradiations with a flux of 1.15 × 1021 ions m-2 s-1, at 873 K, 1023 K, and 1173 K for 1 h duration. Scanning electron microscopy (SEM) reveals significant changes in surface deterioration due to helium ion irradiation as a function of both temperature and tantalum concentration in W-Ta samples. X-Ray Diffraction (XRD) studies show a slight lattice parameter expansion in W-Ta alloy samples compared to pure W samples. The observed lattice parameter expansion in W-Ta alloy samples (proportional to increasing Ta wt.% concentrations) reflect significant differences observed in the evolution of surface morphology, i.e., fuzz development processes for both increasing Ta wt.% concentration and target temperature. These results suggest a correlation between the observed morphology differences and the induced crystal structure change caused by the presence of tantalum. Shifts in the XRD peaks before and after 100 eV helium irradiation with a flux of 1.15 × 1021 ions m-2 s-1, 1023 K, for 1 h showed a significant difference in the magnitude of the shift. This has suggested a possible link between the atomic spacing of the material and the accumulated damage. Ongoing research is needed on W-Ta alloys and other innovative materials for their application as irradiation resistant materials in future fusion or irradiation environments.

  6. Niobium powder synthesized by calciothermic reduction of niobium hydroxide for use in capacitors

    NASA Astrophysics Data System (ADS)

    Baba, Masahiko; Kikuchi, Tatsuya; Suzuki, Ryosuke O.

    2015-03-01

    Metallic niobium powder was produced for applications in electric capacitors via calciothermic reduction of niobium hydroxide in molten CaCl2. Sub-micrometer spherical metallic particles with coral-like morphologies reflected the particle size of the starting oxide powder. A fine powder was obtained from the mixtures of niobium hydroxide and CaO or Ca(OH)2, respectively. Sintered pellets of the metallic powder showed a higher capacitance (CV) than those of the simply reduced powder without pre-treatment, because the shrinkage during sintering was smaller. The CV was as large as that of commercially sintered pellets for tantalum capacitors. Therefore, this niobium powder would act as a higher-voltage capacitor by applying chemical anodic treatment at higher voltages, and lower oxygen content in the reduced power could realize a lower leak current.

  7. Addition of oxygen to and distribution of oxides in tantalum alloy T-111 at low concentrations

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1975-01-01

    Oxygen was added at 820 and 990 C at an oxygen pressure of about .0003 torr. The technique permitted predetermined and reproducible oxygen doping of the tantalum alloy (T-111). Based on the temperature dependency of the doping reaction, it was concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the tantalum and tungsten oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and oxygen from other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C but not at 820 C. The vaporization of WO3 has no apparent effect on the doping reaction.

  8. Conducting metal oxide and metal nitride nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst supportmore » in a fuel cell.« less

  9. Neutron displacement cross-sections for tantalum and tungsten at energies up to 1 GeV

    NASA Astrophysics Data System (ADS)

    Broeders, C. H. M.; Konobeyev, A. Yu.; Villagrasa, C.

    2005-06-01

    The neutron displacement cross-section has been evaluated for tantalum and tungsten at energies from 10 -5 eV up to 1 GeV. The nuclear optical model, the intranuclear cascade model combined with the pre-equilibrium and evaporation models were used for the calculations. The number of defects produced by recoil atoms nuclei in materials was calculated by the Norgett, Robinson, Torrens model and by the approach combining calculations using the binary collision approximation model and the results of the molecular dynamics simulation. The numerical calculations were done using the NJOY code, the ECIS96 code, the MCNPX code and the IOTA code.

  10. The Effect of Tungsten and Niobium on the Stress Relaxation Rates of Disk Alloy CH98

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2003-01-01

    Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickel-base superalloy disks with 1300 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, CH98, is a promising candidate for gas turbine engines and is being studied in NASA s Advanced Subsonic Technology (AST) program. For large disks, residual stresses generated during quenching from solution heat treatment are often reduced by a stabilization heat treatment, in which the disk is heated to 1500 to 1600 F for several hours followed by a static air cool. The reduction in residual stress levels lessens distortion during machining of disks. However, previous work on CH98 has indicated that stabilization treatments decrease creep capability. Additions of the refractory elements tungsten and niobium improve tensile and creep properties after stabilization, while maintaining good crack growth resistance at elevated temperatures. As the additions of refractory elements increase creep capability, they might also effect stress relaxation rates and therefore the reduction in residual stress levels obtained for a given stabilization treatment. To answer this question, the stress relaxation rates of CH98 with and without tungsten and niobium additions are compared in this paper for temperatures and times generally employed in stabilization treatments on modern disk alloys.

  11. The interface in tungsten fiber reinforced niobium metal-matrix composites. Final Report Ph.D. Thesis - Case Western Reserve Univ., Cleveland, OH

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni L.

    1989-01-01

    The creep resistance of tungsten fiber reinforced niobium metal-matrix composites was evaluated. The interface region between the fiber and matrix was characterized by microhardness and electron probe microanalysis measurements which indicated that its properties were between those of fiber and matrix. However, the measured properties of the composite exceeded those calculated by the rule of mixtures even when the interface zone was assumed to retain all the strength of the fiber. The composite structure appeared to enhance the strengths of both the fibers and the matrix above what they exhibited in stand-alone tests. The effect of fiber orientation and matrix alloy composition on the fiber/matrix interface were also evaluated. Small alloying additions of zirconium and tungsten to the niobium matrix affected the creep resistance of the composites only slightly. A decrease in the creep resistance of the composite with increasing zirconium content in the matrix was ascribed to an increase in the diffusion rate of the fiber/matrix interdiffusion reaction, and a slight increase in the creep resistance of the composite was observed with an addition of 9 w percent tungsten to the matrix. In addition, Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending on the fiber orientation relative to the stress axis.

  12. Activation Energy of Tantalum-Tungsten Oxide Thermite Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, O; Kuntz, J; Gash, A

    2010-02-25

    The activation energy of a high melting temperature sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the High Pressure Spark Plasma Sintering (HPSPS) technique to 300 and 400 C to produce pellets with dimensions of 5 mm diameter by 1.5 mm height. A custom built ignition setup was developed to measure ignition temperatures at high heating rates (500-2000 C {center_dot} min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Unlike the 400 C samples, results show that the samples consolidated to 300more » C undergo an abrupt change in temperature response prior to ignition. This change in temperature response has been attributed to the crystallization of the amorphous WO{sub 3} in the SG derived Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465-670 C. The activation energy of the SG derived Ta-WO{sup 3} thermite composite consolidated to 300 and 400 C were determined to be 37.787 {+-} 1.58 kJ {center_dot} mol{sup -1} and 57.381 {+-} 2.26 kJ {center_dot} mol{sup -1}, respectively.« less

  13. Multi-physics transient simulation of monolithic niobium dioxide-tantalum dioxide memristor-selector structures

    NASA Astrophysics Data System (ADS)

    Sevic, John F.; Kobayashi, Nobuhiko P.

    2017-10-01

    Self-assembled niobium dioxide (NbO2) thin-film selectors self-aligned to tantalum dioxide (TaO2) memristive memory cells are studied by a multi-physics transient solution of the heat equation coupled to the nonlinear current continuity equation. While a compact model can resolve the quasi-static bulk negative differential resistance (NDR), a self-consistent coupled transport formulation provides a non-equilibrium picture of NbO2-TaO2 selector-memristor operation ab initio. By employing the drift-diffusion transport approximation, a finite element method is used to study the dynamic electrothermal behavior of our experimentally obtained selector-memristor devices, showing that existing conditions are suitable for electroformation of NbO2 selector thin-films. Both transient and steady-state simulations support our theory, suggesting that the phase change due to insulator-metal transition is responsible for NbO2 selector NDR in our as-fabricated selector-memristor devices. Simulation results further suggest that TiN nano-via may play a central role in electroforming, as its dimensions and material properties establish the mutual electrothermal interaction between TiN nano-via and the selector-memristor.

  14. Understanding the interdiffusion behavior and determining the long term stability of tungsten fiber reinforced niobium-base matrix composite systems

    NASA Technical Reports Server (NTRS)

    Tien, John K.

    1990-01-01

    The long term interdiffusional stability of tungsten fiber reinforced niobium alloy composites is addressed. The matrix alloy that is most promising for use as a high temperature structural material for reliable long-term space power generation is Nb1Zr. As an ancillary project to this program, efforts were made to assess the nature and kinetics of interphase reaction between selected beryllide intermetallics and nickel and iron aluminides.

  15. New Structural Materials

    DTIC Science & Technology

    1989-03-25

    3887) Tantalum Carbide (TaC) 4150 (3877) Niobium Carbide 4023 (3750) Carbon (Graphite) 3970 (3697) Zirconium Carbide 3805 (3532) Tungsten 3643 3643...process. Some fibers, especially those made of tungsten , silicon carbide, and zirconia, survived the reaction conditions. However, the ceramic bodies...displayed cracks and voids. Examination by SEM of cross’sections of the reacted parts made with tungsten fibers disclosed the presence of "whiskers

  16. Topical Report Tantalum – 2.5% Tungsten Machinability Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. J. Lazarus

    2009-09-02

    Protection Association (NFPA). NFPA 484, Standard for Combustible Metals, Chapter 9 Tantalum and Annex E, supplemental Information on Tantalum require cutting oil be used when machining tantalum because it burns at such a high temperature that it breaks down the water in a water-based metalworking fluid (MWF). The NFPA guide devotes approximately 20 pages to this material. The Kansas City Plant (KCP) uses Fuchs Lubricants Ecocut Base 44 LVC as a MWF. This is a highly chlorinated oil with a high flash point (above 200° F). The chlorine is very helpful in preventing BUE (Built Up Edge) that occurs frequentlymore » with this very gummy material. The Ecocut is really a MWF additive that Fuchs uses to add chlorinated fats to other non-chlorinated MWF.« less

  17. Ultraviolet spectrophotometric determination of tantalum with pyrogallol

    USGS Publications Warehouse

    Dinnin, J.I.

    1953-01-01

    In a search for a more rapid method for the determination of tantalum in rocks and minerals, an intensive study was made of the tantalum-pyrogallol reaction recommended by Platanov and Krivoshlikov, and a better modified spectrophotometric procedure is given. The improved method consists in measuring the absorbancy of the tantalum-pyrogallol complex at 325 m?? in 4N hydrochloric acid and a fixed concentration (0.0175M) of ammonium oxalate. Beer's law is followed for the concentration range up to 40 ?? per ml. Sensitivity in terms of molar absorbancy index is 4775. Most interferences are additive in character and readily correctable. Separations or major corrections are required in the presence of significant amounts of molybdenum, tungsten, antimony, and uranium. The method has been successfully applied to three ores previously analyzed by gravimetric techniques. The method affords greater speed, sensitivity, and reproducibility in the determination of tantalum in rocks and minerals. A more reliable technique for preparing standard solutions of tantalum has been developed.

  18. Determination of niobium in the parts per million range in rocks

    USGS Publications Warehouse

    Grimaldi, F.S.

    1960-01-01

    A modified niobium thiocyanate spectrophotometric procedure relatively insensitive to titanium interference is presented. Elements such as tungsten, molybdenum, vanadium, and rhenium, which seriously interfere in the spectrophotometric determination of niobium, are separated by simple sodium hydroxide fusion and leach; iron and magnesium are used as carriers for the niobium. Tolerance limits are given for 28 elements in the spectrophotometric method. Specific application is made to the determination of niobium in the parts per million range in rocks. The granite G-1 contains 0.0022% niobium and the diabase W-1 0.00096% niobium.

  19. Method of producing microporous joints in metal bodies

    DOEpatents

    Danko, Joseph C.

    1982-01-01

    Tungsten is placed in contact with either molybdenum, tantalum, niobium, vanadium, rhenium, or other metal of atoms having a different diffusion coefficient than tungsten. The metals are heated so that the atoms having the higher diffusion coefficient migrate to the metal having the lower diffusion rate, leaving voids in the higher diffusion coefficient metal. Heating is continued until the voids are interconnected.

  20. Niobium-aluminum base alloys having improved, high temperature oxidation resistance

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor); Stephens, Joseph R. (Inventor)

    1991-01-01

    A niobium-aluminum base alloy having improved oxidation resistance at high temperatures and consisting essentially of 48%-52% niobium, 36%-42% aluminum, 4%-10% chromium, 0%-2%, more preferably 1%-2%, silicon and/or tungsten with tungsten being preferred, and 0.1%-2.0% of a rare earth selected from the group consisting of yttrium, ytterbium and erbium. Parabolic oxidation rates, k.sub.p, at 1200.degree. C. range from about 0.006 to 0.032 (mg/cm.sup.2).sup.2 /hr. The new alloys also exhibit excellent cyclic oxidation resistance.

  1. Standard methods for chemical analysis of steel, cast iron, open-hearth iron, and wrought iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1973-01-01

    Methods are described for determining manganese, phosphorus, sulfur, selenium, copper, nickel, chromium, vanadium, tungsten, titanium, lead, boron, molybdenum ( alpha -benzoin oxime method), zirconium (cupferron --phosphate method), niobium and tantalum (hydrolysis with perchloric and sulfurous acids (gravimetric, titrimetric, and photometric methods)), and beryllium (oxide method). (DHM)

  2. Dissolution kinetics of small amounts of oxygen in tantalum alloy T-111 and internal oxide displacement reactions during annealing

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1976-01-01

    Oxygen was added to T-111 (Ta-8W-2Hf, wt. %) at 820 and 990 C at an oxygen pressure of about 0.0003 torr. The technique employed permitted predetermined and reproducible doping of T-111 up to 3.0 at. % oxygen. Based on the temperature dependence of the doping reaction, it is concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the latter oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and of other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high-temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C. The vaporization of WO3 has no apparent affect on the doping reaction.

  3. Nanoporous titanium niobium oxide and titanium tantalum oxide compositions and their use in anodes of lithium ion batteries

    DOEpatents

    Dai, Sheng; Guo, Bingkun; Sun, Xiao-Guang; Qiao, Zhenan

    2017-10-31

    Nanoporous metal oxide framework compositions useful as anodic materials in a lithium ion battery, the composition comprising metal oxide nanocrystals interconnected in a nanoporous framework and having interconnected channels, wherein the metal in said metal oxide comprises titanium and at least one metal selected from niobium and tantalum, e.g., TiNb.sub.2-x Ta.sub.xO.sub.y (wherein x is a value from 0 to 2, and y is a value from 7 to 10) and Ti.sub.2Nb.sub.10-vTa.sub.vO.sub.w (wherein v is a value from 0 to 2, and w is a value from 27 to 29). A novel sol gel method is also described in which sol gel reactive precursors are combined with a templating agent under sol gel reaction conditions to produce a hybrid precursor, and the precursor calcined to form the anodic composition. The invention is also directed to lithium ion batteries in which the nanoporous framework material is incorporated in an anode of the battery.

  4. Conflict minerals from the Democratic Republic of the Congo: global tantalum processing plants, a critical part of the tantalum supply chain

    USGS Publications Warehouse

    Papp, John F.

    2014-01-01

    Post-beneficiation processing plants (generally called smelters and refineries) for 3TG mineral ores and concentrates were identified by company and industry association representatives as being the link in the 3TG mineral supply chain through which these minerals can be traced to their source of origin (mine). The determination of the source of origin is critical to the development of a complete and transparent conflict-free mineral supply chain. Tungsten processing plants were the subject of the first fact sheet in this series published by USGS NMIC in August 2014. Background information about historical conditions and multinational stakeholders’ voluntary due diligence guidance for minerals from conflict-affected and high-risk areas is presented in the tungsten fact sheet. This fact sheet, the second in a series about 3TG minerals, focuses on the tantalum supply chain by listing selected processors that produced tantalum materials commercially worldwide during 2013–14. It does not provide any information regarding the sources of material processed in these facilities.

  5. Compatibility of refractory materials for nuclear reactor poison control systems

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.

    1974-01-01

    Metal-clad poison rods have been considered for the control system of an advanced space power reactor concept studied at the NASA Lewis Research Center. Such control rods may be required to operate at temperatures of about 140O C. Selected poison materials (including boron carbide and the diborides of zirconium, hafnium, and tantalum) were subjected to 1000-hour screening tests in contact with candidate refractory metal cladding materials (including tungsten and alloys of tantalum, niobium, and molybdenum) to assess the compatibility of these materials combinations at the temperatures of interest. Zirconium and hafnium diborides were compatible with refractory metals at 1400 C, but boron carbide and tantalum diboride reacted with the refractory metals at this temperature. Zirconium diboride also showed promise as a reaction barrier between boron carbide and tungsten.

  6. Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers

    NASA Technical Reports Server (NTRS)

    Skalare, Anders; McGrath, William; Bumble, Bruce; LeDuc, Henry

    2004-01-01

    A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere.

  7. Niobium-Matrix-Composite High-Temperature Turbine Blades

    NASA Technical Reports Server (NTRS)

    Kaplan, Richard B.; Tuffias, Robert H.; La Ferla, Raffaele; Heng, Sangvavann; Harding, John T.

    1995-01-01

    High-temperture composite-material turbine blades comprising mainly niobium matrices reinforced with refractory-material fibers being developed. Of refractory fibrous materials investigated, FP-AL(2)0(3), tungsten, and polymer-based SiC fibers most promising. Blade of this type hollow and formed in nearly net shape by wrapping mesh of reinforcing refractory fibers around molybdenum mandrel, then using thermal-gradient chemical-vapor infiltration (CVI) to fill interstices with niobium. CVI process controllable and repeatable, and kinetics of both deposition and infiltration well understood.

  8. Effects of in situ dual ion beam (He+ and D+) irradiation with simultaneous pulsed heat loading on surface morphology evolution of tungsten-tantalum alloys

    NASA Astrophysics Data System (ADS)

    Gonderman, S.; Tripathi, J. K.; Sinclair, G.; Novakowski, T. J.; Sizyuk, T.; Hassanein, A.

    2018-02-01

    The strong thermal and mechanical properties of tungsten (W) are well suited for the harsh fusion environment. However, increasing interest in using tungsten as plasma-facing components (PFCs) has revealed several key issues. These potential roadblocks necessitate more investigation of W and other alternative W based materials exposed to realistic fusion conditions. In this work, W and tungsten-tantalum (W-Ta) alloys were exposed to single (He+) and dual (He+  +  D+) ion irradiations with simultaneous pulsed heat loading to elucidate PFCs response under more realistic conditions. Laser only exposer revealed significantly more damage in W-Ta samples as compared to pure W samples. This was due to the difference in the mechanical properties of the two different materials. Further erosion studies were conducted to evaluate the material degradation due to transient heat loading in both the presence and absence of He+ and/or D+ ions. We concluded that erosion of PFC materials was significantly enhanced due to the presence of ion irradiation. This is important as it demonstrates that there are key synergistic effects resulting from more realistic fusion loading conditions that need to be considered when evaluating the response of plasma facing materials.

  9. The tantalum-cased tantalum capacitor

    NASA Technical Reports Server (NTRS)

    Moynihan, J. D.

    1977-01-01

    Tantalum-cased tantalum capacitors were tested with regard to temperature stability, capacitance ratio, surge current capabilities, shock, vibration, and thermal shock. They were found to be superior to the conventional wet slug tantalum capacitor cased in silver, since they are more resistant to sulfuric acid. The tantalum-cased tantalum capacitors are widely accepted for use in critical electronic equipment because of their excellent performance and reliability.

  10. Field determination of microgram quantities of niobium in rocks

    USGS Publications Warehouse

    Ward, F.N.; Marranzino, A.P.

    1955-01-01

    A rapid, simple, and moderately accurate method was needed for the determination of traces of niobium in rocks. The method developed is based on the reaction of niobium(V) with thiocyanate ion in a 4M hydrochloric acid and 0.5M tartaric acid medium, after which the complex is extracted with ethyl ether. The proposed procedure is applicable to rocks containing from 50 to 2000 p.p.m. of niobium, and, with modifications, can be used on rocks containing larger amounts. Five determinations on two rocks containing 100 p.p.m. or less of niobium agree within 5 p.p.m. of the mean, and the confidence limits at the 95% level are, respectively, ??6 and ??4 p.p.m. The addition of acetone to the ether extract of the niobium thiocyanate inhibits the polymerization of the thiocyanate ion and stabilizes the solution for at least 20 hours. The proposed procedure permits the determination of 20 ?? of niobium in the presence of 1000 ?? of iron, titanium, or uranium; 500 ?? of vanadium; or 100 ?? of tungsten or molybdenum or both.

  11. Ductile tungsten-nickel-alloy and method for manufacturing same

    DOEpatents

    Ludwig, Robert L.

    1978-01-01

    The tensile elongation of a tungsten-nickel-iron alloy containing essentially 95 weight percent reprocessed tungsten, 3.5 weight percent nickel, and 1.5 weight percent iron is increased from a value of less than about 1 percent up to about 23 percent by the addition of less than 0.5 weight percent of a reactive metal consisting of niobium and zirconium.

  12. Niobium hyperfine structure in crystal calcium tungstate

    NASA Technical Reports Server (NTRS)

    Tseng, D. L.; Kikuchi, C.

    1972-01-01

    A study of the niobium hyperfine structure in single crystal calcium tungstate was made by the combination of the technique of electron paramagnetic resonance and electron nuclear double resonance (EPR/ENDOR). The microwave frequency was about 9.4 GHz and the radio frequency from 20MHz to 70 MHz. The rare earth ions Nd(3+), U(3+), or Tm(3+) were added as the charge compensator for Nb(5+). To create niobium paramagnetic centers, the sample was irradiated at 77 deg K with a 10 thousand curie Co-60 gamma source for 1 to 2 hours at a dose rate of 200 K rads per hour and then transferred quickly into the cavity. In a general direction of magnetic field, the spectra showed 4 sets of 10 main lines corresponding to 4 nonequivalent sites of niobium with I = 9/2. These 4 sets of lines coalesced into 2 sets of 10 in the ab-plane and into a single set of 10 along the c-axis. This symmetry suggested that the tungsten ions are substituted by the niobium ions in the crystal.

  13. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  14. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  15. Packed bed carburization of tantalum and tantalum alloy

    DOEpatents

    Lopez, Peter C.; Rodriguez, Patrick J.; Pereyra, Ramiro A.

    1999-01-01

    Packed bed carburization of a tantalum or tantalum alloy object. A method for producing corrosion-resistant tantalum or tantalum alloy objects is described. The method includes the steps of placing the object in contact with a carburizing pack, heating the packed object in vacuum furnace to a temperature whereby carbon from the pack diffuses into the object forming grains with tantalum carbide along the grain boundaries, and etching the surface of the carburized object. This latter step removes tantalum carbides from the surface of the carburized tantalum object while leaving the tantalum carbide along the grain boundaries.

  16. Packed bed carburization of tantalum and tantalum alloy

    DOEpatents

    Lopez, P.C.; Rodriguez, P.J.; Pereyra, R.A.

    1999-06-29

    Packed bed carburization of a tantalum or tantalum alloy object is disclosed. A method for producing corrosion-resistant tantalum or tantalum alloy objects is described. The method includes the steps of placing the object in contact with a carburizing pack, heating the packed object in vacuum furnace to a temperature whereby carbon from the pack diffuses into the object forming grains with tantalum carbide along the grain boundaries, and etching the surface of the carburized object. This latter step removes tantalum carbides from the surface of the carburized tantalum object while leaving the tantalum carbide along the grain boundaries. 4 figs.

  17. The effect of tantalum and carbon on the structure/properties of a single crystal nickel-base superalloy. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Nguyen, H. C.

    1984-01-01

    The microstructure, phase chemistry, and creep and hot tensile properties were studied as a function of tantalum and carbon levels in Mar-M247 type single crystal alloys. Microstructural studies showed that several types of carbides (MC, M23C6 and M5C) are present in the normal carbon (0.10 wt % C) alloys after heat treatment. In general, the composition of the MC carbides changes from titanium rich to tantalum rich as the tantalum level in the alloy increases. Small M23C6 carbides are present in all alloys. Tungsten rich M6C carbides are also observed in the alloy containing no tantalum. No carbides are present in the low carbon (0.01 wt % C) alloy series. The morphology of gamma prime is observed to be sensitive to heat treatment and tantalum level in the alloy. Cuboidal gamma prime is present in all the as cast structures. After heat treatment, the gamma prime precipitates tend to have a more spheroidal like morphology, and this tendency increases as the tantalum level decreases. On prolonged aging, the gamma prime reverts back to a cuboidal morphology or under stress at high temperatures, forms a rafted structure. The weight fraction and lattice parameter of the spheroidal gamma prime increases with increasing tantalum content. Changes in the phase chemistry of the gamma prime matrix and gamma prime have also been analyzed using phase extraction techniques. The partitioning ratio decreases for tungsten and aluminum and increases for tantalum as the tantalum content increases for both alloy series; no significant changes occur in the partitioning ratios of the other alloying elements. A reduction in secondary creep rate and an increase in rupture time result from increasing the tantalum content and decreasing the carbon level.

  18. Effects of alloy composition in alleviating embrittlement problems associated with the tantalum alloy T-111

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1975-01-01

    The causes of aging embrittlement in T-111 (Ta-8W-2Hf) and the effect of alloy modification were investigated. Results show that T-111 possesses a critical combination of tungsten and hafnium that leads to loss in ductility at -196 C after aging near 1040 C. It was found that this occurs because tungsten enhances hafnium segregation to grain boundaries, which also leads to increased susceptibility to hydrogen embrittlement. Aging embrittlement was not observed in tantalum alloys with reduced tungsten or hafnium contents; most of the alloys studied have lower strengths than T-111 and exhibit susceptibility to hydrogen embrittlement.

  19. The role of electronegativity on the extent of nitridation of group 5 metals as revealed by reactions of tantalum cluster cations with ammonia molecules.

    PubMed

    Arakawa, Masashi; Ando, Kota; Fujimoto, Shuhei; Mishra, Saurabh; Patwari, G Naresh; Terasaki, Akira

    2018-05-10

    Reactions of the free tantalum cation, Ta+, and tantalum cluster cations, Tan+ (n = 2-10), with ammonia are presented. The reaction of the monomer cation, Ta+, with two molecules of NH3 leads to the formation of TaN2H2+ along with release of two H2 molecules. The dehydrogenation occurs until the formal oxidation number of the tantalum atom reaches +5. On the other hand, all the tantalum cluster cations, Tan+, react with two molecules of NH3 and form TanN2+ with the release of three H2 molecules. Further exposure to ammonia showed that TanNmH+ and TanNm+ are produced through successive reactions; a pure nitride and three H2 molecules are formed for every other NH3 molecule. The nitridation occurred until the formal oxidation number of the tantalum atoms reaches +5 as in the case of TaN2H2+ in contrast to other group 5 elements, i.e., vanadium and niobium, which have been reported to produce nitrides with lower oxidation states. The present results on small gas-phase metal-nitride clusters show correlation with their bulk properties: tantalum is known to form bulk nitrides in the oxidation states of either +5 (Ta3N5) or +3 (TaN), whereas vanadium and niobium form nitrides in the oxidation state of +3 (VN and NbN). Along with DFT calculations, these findings reveal that nitridation is driven by the electron-donating ability of group 5 elements, i.e., electronegativity of the metal plays a key role in determining the composition of the metal nitrides.

  20. Protected Nuclear Fuel Element

    DOEpatents

    Kittel, J. H.; Schumar, J. F.

    1962-12-01

    A stainless steel-clad actinide metal fuel rod for use in fast reactors is reported. In order to prevert cladding failures due to alloy formation between the actinide metal and the stainless steel, a mesh-like sleeve of expanded metal is interposed between them, the sleeve metal being of niobium, tantalum, molybdenum, tungsten, zirconium, or vanadium. Liquid alkali metal is added as a heat transfer agent. (AEC)

  1. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Michael David; Lewis, Rupert M.

    The present invention relates to the use of gallium beam lithography to form superconductive structures. Generally, the method includes exposing a surface to gallium to form an implanted region and then removing material adjacent to and/or below that implanted region. In particular embodiments, the methods herein provide microstructures and nanostructures in any useful substrate, such as those including niobium, tantalum, tungsten, or titanium.

  3. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  4. Electrical Properties of Heavily Doped Niobium Pentoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valletta, R.

    An analysis of the resistivity and thermoelectric power of heavily doped Nb 2O 5 [over-all composition (Nb 1-xW x) 2O 5 where x varies from 0.0025 to 0.15] shows that mixed valence semiconduction has been observed. The major factor determining the value of the thermoelectric power at high temperatures appears to be an entropy of mixing term. In samples with x > 0.10, it is concluded that the electrons can be trapped on tungsten ions as well as niobium ions. The low-temperature resistivity data indicate that the conduction mechanism is not simply described at temperatures where the tungsten impurity ionsmore » are incompletely ionized.« less

  5. Progress on a high current density low cost Niobium3Tin conductor scaleable to modern niobium titanium production

    NASA Astrophysics Data System (ADS)

    Zeitlin, Bruce A.; Pyon, Taeyoung; Gregory, Eric; Scanlan, R. M.

    2002-05-01

    A number of configurations of a mono element internal tin conductor (MEIT) were fabricated designed to explore the effect of local ratio, niobium content, and tin content on the overall current density. Critical current densities on four configurations were measured, two to 17T. Current density as a function of filament size was also measured with filaments sizes ranging from 1.8 to 7.1 microns. A Nb60wt%Ta barrier was also explored as a means to reduce the high cost of the Tantalum barrier. The effectiveness of radial copper channels in high Nb conductors is also evaluated. Results are used to suggest designs for more optimized conductors.

  6. Hardness behavior of binary and ternary niobium alloys at 77 and 300 K

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1974-01-01

    The effects of alloy additions of zirconium, hafnium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, and iridium on the hardness of niobium was determined. Both binary and ternary alloys were investigated by means of hardness tests at 77 K and 300 K. Results showed that atomic size misfit plays a dominant role in controlling hardness of binary niobium alloys. Alloy softening, which occurred at dilute solute additions, is most likely due to an extrinsic mechanism involving interaction between solute elements and interstitial impurities.

  7. METHOD OF FORMING TANTALUM SILICIDE ON TANTALUM SURFACES

    DOEpatents

    Bowman, M.G.; Krikorian, N.H.

    1961-10-01

    A method is described for forming a non-corrosive silicide coating on tantalum. The coating is made through the heating of trirhenium silicides in contact with the tantalum object to approximately 1400 deg C at which temperature trirhenium silicide decomposes into rhenium and gaseous silicons. The silicon vapor reacts with the tantalum surface to form a tantalum silicide layer approximately 10 microns thick. (AEC)

  8. The oxidation of TaBe sub 12 and NbBe sub 12 coatings on niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtright, E.L.

    1990-01-01

    The oxidation behavior of tantalum and niobium beryllide coatings on niobium were evaluated. Intermetallic bond layers consisting of Ir{sub 3}Ta and Ir{sub 3}Nb were used to butter the large thermal expansion mismatch between the beryllide coatings and underlying niobium substrate. All coatings were applied by Triode Sputtering except for a final environmental protection layer of stabilized zirconia deposited by RF Diode using a ceramic target. Severe delamination and spalling occurred during cyclic oxidation exposure, even at temperatures as low as 925{degrees}C, indicating that the bond layer did not prevent the differential expansion stresses from reaching the delamination failure threshold, particularlymore » at the edges and corners. Hot pressed samples of the two beryllide compounds were also exposed to a similar cyclic oxidation history, but, in contrast to the coatings, exhibited excellent oxidation resistance to temperatures as high as 1370{degrees}C. 9 refs., 8 figs., 1 tab.« less

  9. Transition of dislocation glide to shear transformation in shocked tantalum

    DOE PAGES

    Hsiung, Luke L.; Campbell, Geoffrey H.

    2017-02-28

    A TEM study of pure tantalum and tantalum-tungsten alloys explosively shocked at a peak pressure of 30 GPa (strain rate: ~1 x 10 4 sec -1) is presented. While no ω (hexagonal) phase was found in shock-recovered pure Ta and Ta-5W that contain mainly a low-energy cellular dislocation structure, shock-induced ω phase was found to form in Ta-10W that contains evenly distributed dislocations with a stored dislocation density higher than 1 x 10 12 cm -2. The TEM results clearly reveal that shock-induced α (bcc) → ω (hexagonal) shear transformation occurs when dynamic recovery reactions which lead the formation low-energymore » cellular dislocation structure become largely suppressed in Ta-10W shocked under dynamic (i.e., high strain-rate and high-pressure) conditions. A novel dislocation-based mechanism is proposed to rationalize the transition of dislocation glide to twinning and/or shear transformation in shock-deformed tantalum. Lastly, twinning and/or shear transformation take place as an alternative deformation mechanism to accommodate high-strain-rate straining when the shear stress required for dislocation multiplication exceeds the threshold shear stresses for twinning and/or shear transformation.« less

  10. Modification of surface properties of copper-refractory metal alloys

    DOEpatents

    Verhoeven, John D.; Gibson, Edwin D.

    1993-10-12

    The surface properties of copper-refractory metal (CU-RF) alloy bodies are modified by heat treatments which cause the refractory metal to form a coating on the exterior surfaces of the alloy body. The alloys have a copper matrix with particles or dendrites of the refractory metal dispersed therein, which may be niobium, vanadium, tantalum, chromium, molybdenum, or tungsten. The surface properties of the bodies are changed from those of copper to that of the refractory metal.

  11. Metal alloy coatings and methods for applying

    DOEpatents

    Merz, Martin D.; Knoll, Robert W.

    1991-01-01

    A method of coating a substrate comprises plasma spraying a prealloyed feed powder onto a substrate, where the prealloyed feed powder comprises a significant amount of an alloy of stainless steel and at least one refractory element selected from the group consisting of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The plasma spraying of such a feed powder is conducted in an oxygen containing atmosphere and forms an adherent, corrosion resistant, and substantially homogenous metallic refractory alloy coating on the substrate.

  12. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  13. Peralkaline and peraluminous granites and related mineral deposits of the Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Elliott, James E.

    1983-01-01

    Existing geochemical and geologic data for many parts of the Arabian Shield were compiled as a basis for evaluating the resource potential of the granites of the Shield. Commodities associated with granites that have potential for economic mineral deposits include tin, tungsten, molybdenum, beryllium, niobium, tantalum, zirconium, uranium, thorium, rare-earth elements, and fluorite. Prospecting methods useful in discriminating those granites having significant economic potential include reconnaissance geologic mapping, petrographic and mineralogic studies, geochemical sampling of rock and wadi sediment, and radiometric surveying.

  14. Process for recovering niobium from uranium-niobium alloys

    DOEpatents

    Wallace, Steven A.; Creech, Edward T.; Northcutt, Walter G.

    1983-01-01

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.

  15. Process for recovering niobium from uranium-niobium alloys

    DOEpatents

    Wallace, S.A.; Creech, E.T.; Northcutt, W.G.

    1982-09-27

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and form a precipitate of niobium stannide, then separating the precipitate from the acid.

  16. Copper-tantalum alloy

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1986-07-15

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  17. All-alkoxide synthesis of strontium-containing metal oxides

    DOEpatents

    Boyle, Timothy J.

    2001-01-01

    A method for making strontium-containing metal-oxide ceramic thin films from a precursor liquid by mixing a strontium neo-pentoxide dissolved in an amine solvent and at least one metal alkoxide dissolved in a solvent, said at least one metal alkoxide selected from the group consisting of alkoxides of calcium, barium, bismuth, cadmium, lead, titanium, tantalum, hafnium, tungsten, niobium, zirconium, yttrium, lanthanum, antimony, chromium and thallium, depositing a thin film of the precursor liquid on a substrate, and heating the thin film in the presence of oxygen at between 550 and 700.degree. C.

  18. Low resistance barrier layer for isolating, adhering, and passivating copper metal in semiconductor fabrication

    DOEpatents

    Weihs, Timothy P.; Barbee, Jr., Troy W.

    2002-01-01

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  19. All-tantalum electrolytic capacitor

    NASA Technical Reports Server (NTRS)

    Green, G. E., Jr.

    1977-01-01

    Device uses single-compression tantalum-to-tantalum seal. Single-compression seal allows better utilization of volume within device. As result of all-tantalum case and lengthened cathode, electrical parameters, particularly equivalent series resistance and capacitance stability, improved over silver-cased capacitor.

  20. Electrodeposition of Tantalum and Tantalum-Chromium Alloys

    DTIC Science & Technology

    1980-05-01

    Electrochem Soc, 112, 840 (1965). 7Ibid, 113,60 (1966). 8Ibid, 113.66 (1966). J. Wurm, "European Conference on the Development of Molten Salts Applica...Chem. 35, 161-3 (1887). 16. J. Wurm, "European Conference on the Development of Molten Salts Applica- tions," Extended Abstracts and Proceedings, pp...Metals Tantalum Tantalum-Chromium Alloys Chromium Coating Fused Salt Electrolyte Electrodeposition FLINAK 20. ABSTRACT (Continue on reverse

  1. Towards sustainable processing of columbite group minerals: elucidating the relation between dielectric properties and physico-chemical transformations in the mineral phase.

    PubMed

    Sanchez-Segado, Sergio; Monti, Tamara; Katrib, Juliano; Kingman, Samuel; Dodds, Chris; Jha, Animesh

    2017-12-21

    Current methodologies for the extraction of tantalum and niobium pose a serious threat to human beings and the environment due to the use of hydrofluoric acid (HF). Niobium and tantalum metal powders and pentoxides are widely used for energy efficient devices and components. However, the current processing methods for niobium and tantalum metals and oxides are energy inefficient. This dichotomy between materials use for energy applications and their inefficient processing is the main motivation for exploring a new methodology for the extraction of these two oxides, investigating the microwave absorption properties of the reaction products formed during the alkali roasting of niobium-tantalum bearing minerals with sodium bicarbonate. The experimental findings from dielectric measurement at elevated temperatures demonstrate an exponential increase in the values of the dielectric properties as a result of the formation of NaNbO 3 -NaTaO 3 solid solutions at temperatures above 700 °C. The investigation of the evolution of the dielectric properties during the roasting reaction is a key feature in underpinning the mechanism for designing a new microwave assisted high-temperature process for the selective separation of niobium and tantalum oxides from the remainder mineral crystalline lattice.

  2. Metastable tantalum oxide formation during the devitrification of amorphous tantalum thin films

    DOE PAGES

    Donaldson, Olivia K.; Hattar, Khalid; Trelewicz, Jason R.

    2016-07-04

    Microstructural evolution during the devitrification of amorphous tantalum thin films synthesized via pulsed laser deposition was investigated using in situ transmission electron microscopy (TEM) combined with ex situ isothermal annealing, bright-field imaging, and electron-diffraction analysis. The phases formed during crystallization and their stability were characterized as a function of the chamber pressure during deposition, devitrification temperature, and annealing time. A range of metastable nanocrystalline tantalum oxides were identified following devitrification including multiple orthorhombic oxide phases, which often were present with, or evolved to, the tetragonal TaO 2 phase. While the appearance of these phases indicated the films were evolving tomore » the stable form of tantalum oxide—monoclinic tantalum pentoxide—it was likely not achieved for the conditions considered due to an insufficient amount of oxygen present in the films following deposition. Nevertheless, the collective in situ and ex situ TEM analysis applied to thin film samples enabled the isolation of a number of metastable tantalum oxides. As a result, new insights were gained into the transformation sequence and stability of these nanocrystalline phases, which presents opportunities for the development of advanced tantalum oxide-based dielectric materials for novel memristor designs.« less

  3. Separation of Niobium and Tantalum Pentafluoride by Selective Precipitation Using p-Phenylenediamine

    NASA Astrophysics Data System (ADS)

    Nete, M.; Purcell, W.; Nel, J. T.

    2016-11-01

    The similarity between Ta and Nb chemistry makes it difficult to find the appropriate reagents and chemical reactions for the separation of the two elements. This study investigated the precipitation behavior of TaF5 and NbF5 with p-phenylenediamine (PPDA). PPDA preferentially precipitated Nb from a 1:1 ratio of NbF5 and TaF5. Niobium recoveries of >80%, and only 4% Ta, were found in the precipitate of the reaction between (Nb/Ta)F5 and PPDA in ethanol. A separation factor of 100(9) indicated the potential for successful separation of Nb and Ta in a fluoride environment. A spectrophotometric study of the formation ratio of the newly formed Nb compound indicated a 1:1 metal:ligand ratio.

  4. Passivated niobium cavities

    DOEpatents

    Myneni, Ganapati Rao [Yorktown, VA; Hjorvarsson, Bjorgvin [Lagga Arby, SE; Ciovati, Gianluigi [Newport News, VA

    2006-12-19

    A niobium cavity exhibiting high quality factors at high gradients is provided by treating a niobium cavity through a process comprising: 1) removing surface oxides by plasma etching or a similar process; 2) removing hydrogen or other gases absorbed in the bulk niobium by high temperature treatment of the cavity under ultra high vacuum to achieve hydrogen outgassing; and 3) assuring the long term chemical stability of the niobium cavity by applying a passivating layer of a superconducting material having a superconducting transition temperature higher than niobium thereby reducing losses from electron (cooper pair) scattering in the near surface region of the interior of the niobium cavity. According to a preferred embodiment, the passivating layer comprises niobium nitride (NbN) applied by reactive sputtering.

  5. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, C.L.

    1993-08-31

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1,800 C and 30 PSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  6. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1993-01-01

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  7. High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1994-01-01

    Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2200.degree. C. and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made.

  8. High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, C.L.

    1994-08-09

    Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2,200 C and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made. 1 fig.

  9. Alkali metal-refractory metal biphase electrode for AMTEC

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor); Bankston, Clyde P. (Inventor); Cole, Terry (Inventor); Khanna, Satish K. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Wheeler, Bob L. (Inventor)

    1989-01-01

    An electrode having increased output with slower degradation is formed of a film applied to a beta-alumina solid electrolyte (BASE). The film comprises a refractory first metal M.sup.1 such as a platinum group metal, suitably platinum or rhodium, capable of forming a liquid or a strong surface adsorption phase with sodium at the operating temperature of an alkali metal thermoelectric converter (AMTEC) and a second refractory metal insoluble in sodium or the NaM.sup.1 liquid phase such as a Group IVB, VB or VIB metal, suitably tungsten, molybdenum, tantalum or niobium. The liquid phase or surface film provides fast transport through the electrode while the insoluble refractory metal provides a structural matrix for the electrode during operation. A trilayer structure that is stable and not subject to deadhesion comprises a first, thin layer of tungsten, an intermediate co-deposited layer of tungsten-platinum and a thin surface layer of platinum.

  10. INTERACTION OF INTERSTITIAL CLUSTERS WITH RHENIUM, OSMIUM, AND TANTALUM IN TUNGSTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Kurtz, Richard J.

    2016-09-01

    In the previous semi annual report, we explored the stability of interstitial clusters in W up to size seven. In this report, we study the binding of those clusters to Re, Os, and Ta atoms. For each cluster size, the three most stable configurations are considered to average the binding property. The average binding energy to a Re decreases from 0.79 eV for a size-1 cluster (a [111] dumbbell) to 0.65 eV for a size-7 cluster. For Os, the binding decreases from 1.61 eV for a [111] dumbbell to 1.34 eV for a size-7 cluster. Tantalum is repulsive to interstitialmore » clusters with binding energy ranges from -0.61 eV for a [111] dumbbell to -0.5 eV for a size-7 cluster.« less

  11. Mineral-deposit model for lithium-cesium-tantalum pegmatites

    USGS Publications Warehouse

    Bradley, Dwight C.; McCauley, Andrew D.; Stillings, Lisa L.

    2017-06-20

    -order criteria are an orogenic hinterland setting, appropriate regional metamorphic grades, and the presence of evolved granites and common granitic pegmatites. New LCT pegmatites are most likely to be found near known deposits. Pegmatites tend to show a regional mineralogical and geochemical zoning pattern with respect to the inferred parental granite, with the greatest enrichment in the more distal pegmatites. Mineral-chemical trends in common pegmatites that can point toward an evolved LCT pegmatite include: increasing rubidium in potassium feldspar, increasing lithium in white mica, increasing manganese in garnet, and increasing tantalum and manganese in columbite-tantalite. Most LCT pegmatite bodies show a distinctive internal zonation featuring four zones: border, wall, intermediate (where lithium, cesium, and tantalum are generally concentrated), and core. This zonation is expressed both in cross section and map view; thus, what may appear to be a common pegmatite may instead be the edge of a mineralized body.Neither lithium-cesium-tantalum pegmatites nor their parental granites are likely to cause serious environmental concerns. Soils and country rock surrounding a LCT pegmatite, as well as waste from mining operations, may be enriched in characteristic elements relative to global average soil and bedrock values. These elements may include lithium, cesium, tantalum, beryllium, boron, fluorine, phosphorus, manganese, gallium, rubidium, niobium, tin, and hafnium. Among this suite of elements, however, the only ones that might present a concern for environmental health are beryllium and fluorine, which are included in the U.S. Environmental Protection Agency drinking-water regulations with maximum contaminant levels of 4 micrograms per liter and 4 milligrams per liter, respectively.

  12. Tantalum recycling in the United States in 1998

    USGS Publications Warehouse

    Cunningham, Larry D.

    2001-01-01

    This report describes the flow of tantalum in the United States in 1998 with emphasis on the extent to which tantalum was recycled/reused. Tantalum was mostly recycled from new scrap that was generated during the manufacture of tantalum-related electronic components and new and old scrap products of tantalum-containing cemented carbides and superalloys. In 1998, about 210 metric tons of tantalum was recycled/reused, with about 43% derived from old scrap. The tantalum recycling rate was calculated to be 21%, and tantalum scrap recycling efficiency, 35%.

  13. Metal/ceramic composites with high hydrogen permeability

    DOEpatents

    Dorris, Stephen E.; Lee, Tae H.; Balachandran, Uthamalingam

    2003-05-27

    A membrane for separating hydrogen from fluids is provided comprising a sintered homogenous mixture of a ceramic composition and a metal. The metal may be palladium, niobium, tantalum, vanadium, or zirconium or a binary mixture of palladium with another metal such as niobium, silver, tantalum, vanadium, or zirconium.

  14. Method of making tantalum capacitors

    DOEpatents

    McMillan, April D.; Clausing, Robert E.; Vierow, William F.

    1998-01-01

    A method for manufacturing tantalum capacitors includes preparing a tantalum compact by cold pressing tantalum powder, placing the compact, along with loose refractory metal powder, in a microwave-transparent casket to form an assembly, and heating the assembly for a time sufficient to effect at least partial sintering of the compact and the product made by the method.

  15. Process for manufacturing tantalum capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1993-01-01

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  16. Process for manufacturing tantalum capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  17. Fabrication of Titanium-Niobium-Zirconium-Tantalium Alloy (TNZT) Bioimplant Components with Controllable Porosity by Spark Plasma Sintering

    PubMed Central

    Rechtin, Jack; Torresani, Elisa; Ivanov, Eugene; Olevsky, Eugene

    2018-01-01

    Spark Plasma Sintering (SPS) is used to fabricate Titanium-Niobium-Zirconium-Tantalum alloy (TNZT) powder—based bioimplant components with controllable porosity. The developed densification maps show the effects of final SPS temperature, pressure, holding time, and initial particle size on final sample relative density. Correlations between the final sample density and mechanical properties of the fabricated TNZT components are also investigated and microstructural analysis of the processed material is conducted. A densification model is proposed and used to calculate the TNZT alloy creep activation energy. The obtained experimental data can be utilized for the optimized fabrication of TNZT components with specific microstructural and mechanical properties suitable for biomedical applications. PMID:29364165

  18. Additively manufactured porous tantalum implants.

    PubMed

    Wauthle, Ruben; van der Stok, Johan; Amin Yavari, Saber; Van Humbeeck, Jan; Kruth, Jean-Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-03-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of its good biocompatibility. In this study selective laser melting technology was used for the first time to manufacture highly porous pure tantalum implants with fully interconnected open pores. The architecture of the porous structure in combination with the material properties of tantalum result in mechanical properties close to those of human bone and allow for bone ingrowth. The bone regeneration performance of the porous tantalum was evaluated in vivo using an orthotopic load-bearing bone defect model in the rat femur. After 12 weeks, substantial bone ingrowth, good quality of the regenerated bone and a strong, functional implant-bone interface connection were observed. Compared to identical porous Ti-6Al-4V structures, laser-melted tantalum shows excellent osteoconductive properties, has a higher normalized fatigue strength and allows for more plastic deformation due to its high ductility. It is therefore concluded that this is a first step towards a new generation of open porous tantalum implants manufactured using selective laser melting. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Thermal hydraulic design and decay heat removal of a solid target for a spallation neutron source

    NASA Astrophysics Data System (ADS)

    Takenaka, N.; Nio, D.; Kiyanagi, Y.; Mishima, K.; Kawai, M.; Furusaka, M.

    2005-08-01

    Thermal hydraulic design and thermal stress calculations were conducted for a water-cooled solid target irradiated by a MW-class proton beam for a spallation neutron source. Plate type and rod bundle type targets were examined. The thickness of the plate and the diameter of the rod were determined based on the maximum and the wall surface temperature. The thermal stress distributions were calculated by a finite element method (FEM). The neutronics performance of the target is roughly proportional to its average density. The averaged densities of the designed targets were calculated for tungsten plates, tantalum clad tungsten plates, tungsten rods sheathed by tantalum and Zircaloy and they were compared with mercury density. It was shown that the averaged density was highest for the tungsten plates and was high for the tantalum cladding tungsten plates, the tungsten rods sheathed by tantalum and Zircaloy in order. They were higher than or equal to that of mercury for the 1 2 MW proton beams. Tungsten target without the cladding or the sheath is not practical due to corrosion by water under irradiation condition. Therefore, the tantalum cladding tungsten plate already made successfully by HIP and the sheathed tungsten rod are the candidate of high performance solid targets. The decay heat of each target was calculated. It was low enough low compared to that of ISIS for the target without tantalum but was about four times as high as that of ISIS when the thickness of the tantalum cladding was 0.5 mm. Heat removal methods of the decay heat with tantalum were examined. It was shown that a special cooling system was required for the target exchange when tantalum was used for the target. It was concluded that the tungsten rod target sheathed with stainless steel or Zircaloy was the most reliable from the safety considerations and had similar neutronics performance to that of mercury.

  20. High density hexagonal boron nitride prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1992-01-01

    Boron nitride powder with less than or equal to the oxygen content of starting powder (down to 0.5% or less) is hot isostatically pressed in a refractory metal container to produce hexagonal boron nitride with a bulk density greater than 2.0 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.21 g/cc. Complex shapes can be made.

  1. Effects of Processing Variables on Tantalum Nitride by Reactive-Ion-Assisted Magnetron Sputtering Deposition

    NASA Astrophysics Data System (ADS)

    Wei, Chao‑Tsang; Shieh, Han‑Ping D.

    2006-08-01

    The binary compound tantalum nitride (TaN) and ternary compounds tantalum tungsten nitrides (Ta1-xWxNy) exhibit interesting properties such as high melting point, high hardness, and chemical inertness. Such nitrides were deposited on a tungsten carbide (WC) die and silicon wafers by ion-beam-sputter evaporation of the respective metal under nitrogen ion-assisted deposition (IAD). The effects of N2/Ar flux ratio, post annealing, ion-assisted deposition, deposition rate, and W doping in coating processing variables on hardness, load critical scratching, oxidation resistance, stress and surface roughness were investigated. The optimum N2/Ar flux ratios in view of the hardness and critical load of TaN and Ta1-xWxNy films were ranged from 0.9 to 1.0. Doping W into TaN to form Ta1-xWxNy films led significant increases in hardness, critical load, oxidation resistance, and reduced surface roughness. The optimum doping ratio was [W/(W+Ta)]=0.85. From the deposition rate and IAD experiments, the stress in the films is mainly contributed by sputtering atoms. The lower deposition rate at a high N2/Ar flux ratio resulted in a higher compressive stress. A high compressive residual stress accounts for a high hardness. The relatively high compressive stress was attributed primarily to peening by atoms, ions and electrons during film growth, the Ta1-xWxNy films showed excellent hardness and strength against a high temperature, and sticking phenomena can essentially be avoided through their use. Ta1-xWxNy films showed better performance than the TaN film in terms of mechanical properties and oxidation resistance.

  2. Mineral resource of the month: tantalum

    USGS Publications Warehouse

    ,

    2011-01-01

    The article offers information on a rare transition metal called tantalum. It says that the blue-gray mineral resource was discovered in 1801 or 1802 and was used for capacitors in 1940. It adds that the tantalite ore and other minerals in the ore should be separated in order to generate concentrates of tantalum. The use of tantalum are also cited.

  3. Alkali oxide-tantalum oxide and alkali oxide-niobium oxide ionic conductors

    NASA Technical Reports Server (NTRS)

    Roth, R. S.; Parker, H. S.; Brower, W. S.; Minor, D.

    1974-01-01

    A search was made for new cationic conducting phases in alkali-tantalate and niobate systems. The phase equilibrium diagrams were constructed for the six binary systems Nb2O5-LiNbO3, Nb2O5-NaNbO3, Nb2O5-KNbO3, Ta2O5-NaTaO3, Ta2O5-LiTaO3, and Ta2O5-KTaO3. Various other binary and ternary systems were also examined. Pellets of nineteen phases were evaluated (by the sponsoring agency) by dielectric loss measurements. Attempts were made to grow large crystals of eight different phases. The system Ta2O5-KTaO3 contains at least three phases which showed peaks in dielectric loss vs. temperature. All three contain structures related to the tungsten bronzes with alkali ions in non-stoichiometric crystallographic positions.

  4. Synthesis and characterization of homo- and heterobimetallic niobium v and tantalum v peroxo-polyaminocarboxylato complexes and their use as single or multiple molecular precursors for Nb-Ta mixed oxides

    NASA Astrophysics Data System (ADS)

    Bayot, Daisy; Degand, Matthieu; Devillers, Michel

    2005-09-01

    New water-soluble bimetallic peroxo complexes of niobium V and/or tantalum V with high-denticity polyaminocarboxylate ligands have been prepared, characterized from the spectroscopic point of view, and used as molecular precursors for Nb-Ta mixed oxides. Four new homobimetallic complexes, (gu) 3[Nb 2(O 2) 4(dtpaO 3)]·3H 2O 1, (gu) 3[Ta 2(O 2) 4(dtpaO 3)]·5H 2O 2, (gu) 3[Nb 2(O 2) 4(HtthaO 4)]·2H 2O 4 and (gu) 3[Ta 2(O 2) 4(HtthaO 4)]·3H 2O 5 and the corresponding heterometallic complexes, (gu) 3[NbTa(O 2) 4(dtpaO 3)]·2.5H 2O 3 and (gu) 3[NbTa(O 2) 4(HtthaO 4)]·2H 2O 6 have been obtained. In these compounds, the in situ oxidation of the nitrogen atoms of the PAC ligands into N-oxide groups has been evidenced by IR spectroscopy and mass spectrometry. The thermal treatment of the homonuclear complexes in air at 700 or 800 °C, depending on the Ta content, provided Nb 2O 5 or Ta 2O 5 while the heteronuclear compounds led to the solid solution TaNbO 5. BET and SEM measurements have been carried out and comparison of the morphology of the samples prepared from homo- and heterometallic precursors is discussed.

  5. METHOD OF PRODUCING NIOBIUM METAL

    DOEpatents

    Wilhelm, H.A.; Stevens, E.R.

    1960-05-24

    A process is given for preparing ductile niobium metal by the reduction of niobium pentoxide with carbon. The invention resides in the addition, to the reaction mass, of from 0.05 to 0.4 atom of titanium (in the form of metallic titanium, titanium carbide, and/or titanium oxide) per one mole of niobium pentoxide. The mixture is heated under subatmospheric pressure to above 1300 deg C but below the melting point of niobium, and the carbon- and oxygen-free niobium sponge obtained is cooled under reduced pressure.

  6. Performance comparison: Aluminum electrolytic and solid tantalum capacitor

    NASA Technical Reports Server (NTRS)

    Hawthornthwaite, B. G.; Piper, J.; Holland, H. W.

    1981-01-01

    Several key electrical and environmental parameters of latest technology aluminum electrolytic and solid tantalum capacitors were evaluated in terms of price fluctuations of tantalum metal. Performance differences between solid tantalums and aluminum electrolytics are examined.

  7. Tantalum-based semiconductors for solar water splitting.

    PubMed

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong

    2014-07-07

    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  8. Tantalum-copper alloy and method for making

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1984-11-06

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  9. Tantalum-copper alloy and method for making

    DOEpatents

    Schmidt, F.A.; Verhoeven, J.D.; Gibson, E.D.

    1983-06-01

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  10. Method of preparing copper-dendritic composite alloys for mechanical reduction

    DOEpatents

    Verhoeven, John D.; Gibson, Edwin D.; Schmidt, Frederick A.; Spitzig, William A.

    1988-01-01

    Copper-dendritic composite alloys are prepared for mechanical reduction to increase tensile strength by dispersing molten droplets of the composite alloy into an inert gas; solidifying the droplets in the form of minute spheres or platelets; and compacting a mass of the spheres or platelets into an integrated body. The spheres preferably have diameters of from 50 to 2000 .mu.m, and the platelets thicknesses of 100 to 2000 .mu.m. The resulting spheres or platelets will contain ultra-fine dendrites which produce higher strengths on mechanical reduction of the bodies formed therefrom, or comparable strengths at lower reduction values. The method is applicable to alloys of copper with vanadium, niobium, tantalum, chromium, molybdenum, tungsten, iron and cobalt.

  11. Conflict minerals from the Democratic Republic of the Congo: global tungsten processing plants, a critical part of the tungsten supply chain

    USGS Publications Warehouse

    Bermúdez-Lugo, Omayra

    2014-01-01

    The U.S. Geological Survey (USGS) analyzes supply chains to identify and define major components of mineral and material flows from ore extraction, through intermediate forms, to a final product. Two major reasons necessitate these analyses: (1) to identify risks associated with the supply of critical and strategic minerals to the United States and (2) to provide greater supply chain transparency so that policymakers have the information necessary to ensure domestic legislation compliance. This fact sheet focuses on the latter. The USGS National Minerals Information Center has been asked by governmental and non-governmental organizations to provide information on tin, tantalum, tungsten, and gold (collectively known as “3TG minerals”) processing facilities worldwide in response to U.S. legislation aimed at removing the link between the trade in these minerals and civil unrest in the Democratic Republic of the Congo. Post beneficiation processing plants (smelters and refineries) of 3TG mineral ores and concentrates were identified by company and industry association representatives as being the link in the 3TG mineral supply chain through which these minerals can be traced to their source of origin (mine); determining the point of origin is critical to establishing a transparent conflict mineral supply chain. This fact sheet, the first in a series of 3TG mineral fact sheets, focuses on the tungsten supply chain by listing plants that consume tungsten concentrates to produce ammonium paratungstate and ferrotungsten worldwide.

  12. Purification of tantalum by plasma arc melting

    DOEpatents

    Dunn, Paul S.; Korzekwa, Deniece R.

    1999-01-01

    Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  13. Embedded Weapons-Grade Tungsten Alloy Shrapnel Rapidly Induces Metastatic High-Grade Rhabdomyosarcomas in F344 Rats

    PubMed Central

    Kalinich, John F.; Emond, Christy A.; Dalton, Thomas K.; Mog, Steven R.; Coleman, Gary D.; Kordell, Jessica E.; Miller, Alexandra C.; McClain, David E.

    2005-01-01

    Continuing concern regarding the potential health and environmental effects of depleted uranium and lead has resulted in many countries adding tungsten alloy (WA)-based munitions to their battlefield arsenals as replacements for these metals. Because the alloys used in many munitions are relatively recent additions to the list of militarily relevant metals, very little is known about the health effects of these metals after internalization as embedded shrapnel. Previous work in this laboratory developed a rodent model system that mimicked shrapnel loads seen in wounded personnel from the 1991 Persian Gulf War. In the present study, we used that system and male F344 rats, implanted intramuscularly with pellets (1 mm × 2 mm cylinders) of weapons-grade WA, to simulate shrapnel wounds. Rats were implanted with 4 (low dose) or 20 pellets (high dose) of WA. Tantalum (20 pellets) and nickel (20 pellets) served as negative and positive controls, respectively. The high-dose WA-implanted rats (n = 46) developed extremely aggressive tumors surrounding the pellets within 4–5 months after implantation. The low-dose WA-implanted rats (n = 46) and nickel-implanted rats (n = 36) also developed tumors surrounding the pellets but at a slower rate. Rats implanted with tantalum (n = 46), an inert control metal, did not develop tumors. Tumor yield was 100% in both the low- and high-dose WA groups. The tumors, characterized as high-grade pleomorphic rhabdomyosarcomas by histopathology and immunohistochemical examination, rapidly metastasized to the lung and necessitated euthanasia of the animal. Significant hematologic changes, indicative of polycythemia, were also observed in the high-dose WA-implanted rats. These changes were apparent as early as 1 month postimplantation in the high-dose WA rats, well before any overt signs of tumor development. These results point out the need for further studies investigating the health effects of tungsten and tungsten-based alloys. PMID:15929896

  14. Study of constitution diagram aluminum-tantalum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glazov, V.M.; Mal'tsev, M.V.; Chistyakov, Y.D.

    1988-10-20

    Alloys of aluminum with tantalum were for the first time obtained by aluminothermic method in 1868 by Moriniak. Later these alloys were studied in the works of Schirmeister (1915) and Brouwer (1938), moreover Brouwer established that tantalum with aluminum forms the chemical compound TaA1, which has tetragonal crystal lattice with parameters a=5.422 angstroms and c=8.536 angstroms (1). However despite the fact that alloys of aluminum with tantalum long ago are obtained already, constitution diagram of this system is not studied until recently. In connection with the application of tantalum as the modifying additive in aluminum alloys an emergency in themore » construction of this diagram, without the knowledge by which it is not possible to give the correct explanation of the mechanism of the very process of the modification of primary grain. For this purpose was undertaken this work. Russian translations.« less

  15. Proton in SRF Niobium

    NASA Astrophysics Data System (ADS)

    Wallace, John Paul

    2011-03-01

    Hydrogen is a difficult impurity to physically deal with in superconducting radio frequency (SRF) niobium, therefore, its properties in the metals should be well understood to allow the metal's superconducting properties to be optimized for minimum loss in the construction of resonant accelerator cavities. It is known that hydrogen is a paramagnetic impurity in niobium from NMR studies. This paramagnetism and its effect on superconducting properties are important to understand. To that end analytical induction measurements aimed at isolating the magnetic properties of hydrogen in SRF niobium are introduced along with optical reflection spectroscopy which is also sensitive to the presence of hydrogen. From the variety, magnitude and rapid kinetics found in the optical and magnetic properties of niobium contaminated with hydrogen forced a search for an atomic model. This yielded quantum mechanical description that correctly generates the activation energy for diffusion of the proton and its isotopes not only in niobium but the remaining metals for which data is available. This interpretation provides a frame work for understanding the individual and collective behavior of protons in metals.

  16. Method of surface preparation of niobium

    DOEpatents

    Srinivasan-Rao, Triveni; Schill, John F.

    2003-01-01

    The present invention is for a method of preparing a surface of niobium. The preparation method includes polishing, cleaning, baking and irradiating the niobium surface whereby the resulting niobium surface has a high quantum efficiency.

  17. Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component

    NASA Technical Reports Server (NTRS)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2009-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  18. Methods of repairing a substrate

    NASA Technical Reports Server (NTRS)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2011-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  19. Silver-hafnium braze alloy

    DOEpatents

    Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.

    2003-12-16

    A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.

  20. Method of preparing copper-dendritic composite alloys for mechanical reduction

    DOEpatents

    Verhoeven, J.D.; Gibson, E.D.; Schmidt, F.A.; Spitzig, W.A.

    1988-09-13

    Copper-dendritic composite alloys are prepared for mechanical reduction to increase tensile strength by dispersing molten droplets of the composite alloy into an inert gas; solidifying the droplets in the form of minute spheres or platelets; and compacting a mass of the spheres or platelets into an integrated body. The spheres preferably have diameters of from 50 to 2,000 [mu]m, and the platelets thicknesses of 100 to 2,000 [mu]m. The resulting spheres or platelets will contain ultra-fine dendrites which produce higher strengths on mechanical reduction of the bodies formed therefrom, or comparable strengths at lower reduction values. The method is applicable to alloys of copper with vanadium, niobium, tantalum, chromium, molybdenum, tungsten, iron and cobalt. 3 figs.

  1. Deep-ocean ferromanganese crusts and nodules

    USGS Publications Warehouse

    Hein, James R.; Koschinsky, Andrea

    2014-01-01

    Ferromanganese crusts and nodules may provide a future resource for a large variety of metals, including many that are essential for emerging high- and green-technology applications. A brief review of nodules and crusts provides a setting for a discussion on the latest (past 10 years) research related to the geochemistry of sequestration of metals from seawater. Special attention is given to cobalt, nickel, titanium, rare earth elements and yttrium, bismuth, platinum, tungsten, tantalum, hafnium, tellurium, molybdenum, niobium, zirconium, and lithium. Sequestration from seawater by sorption, surface oxidation, substitution, and precipitation of discrete phases is discussed. Mechanisms of metal enrichment reflect modes of formation of the crusts and nodules, such as hydrogenetic (from seawater), diagenetic (from porewaters), and mixed diagenetic–hydrogenetic processes.

  2. High temperature coatings for gas turbines

    DOEpatents

    Zheng, Xiaoci Maggie

    2003-10-21

    Coating for high temperature gas turbine components that include a MCrAlX phase, and an aluminum-rich phase, significantly increase oxidation and cracking resistance of the components, thereby increasing their useful life and reducing operating costs. The aluminum-rich phase includes aluminum at a higher concentration than aluminum concentration in the MCrAlX alloy, and an aluminum diffusion-retarding composition, which may include cobalt, nickel, yttrium, zirconium, niobium, molybdenum, rhodium, cadmium, indium, cerium, iron, chromium, tantalum, silicon, boron, carbon, titanium, tungsten, rhenium, platinum, and combinations thereof, and particularly nickel and/or rhenium. The aluminum-rich phase may be derived from a particulate aluminum composite that has a core comprising aluminum and a shell comprising the aluminum diffusion-retarding composition.

  3. Structure refinement for tantalum nitrides nanocrystals with various morphologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lianyun; School of Science, Beijing Jiaotong University, 3 Shang Yuan Cun, Haidian District, Beijing 100044; Huang, Kai

    2012-07-15

    Graphical abstract: Tantalum nitrides nanocrystals with various phases and morphologies for the first time have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. Highlights: ► The spherical TaN, cuboidal TaN{sub 0.83} and TaN{sub 0.5} nanocrystals have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. ► The crystal structures of different tantalum nitrides were determined by Rietveld refinement on the X-ray diffraction data and the examinations of electron microcopies. ► The specific surface area of the tantalum nitrides powders was around 10 m{supmore » 2} g{sup −1}. ► Tantalum nitrides powders could be suitable for capacitor with high specific capacitance. -- Abstract: Tantalum nitrides (TaN{sub x}) nanocrystals with different phase and morphology have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. The crystal structures of tantalum nitrides were determined by Rietveld refinement based on the X-ray diffraction data. The morphologies of various tantalum nitrides nanocrystals in high quality were analyzed through the electron microcopies examinations. The spherical TaN nanoparticles, cuboidal TaN{sub 0.83} and TaN{sub 0.5} nanocrystals have been selectively prepared at different annealing temperatures. In addition, the specific surface areas of the tantalum nitrides nanocrystals measured by BET method were around 9.87–11.64 m{sup 2} g{sup −1}, indicating that such nano-sized tantalum nitrides could be suitable for capacitor with high specific capacitance.« less

  4. METHOD FOR COATING GRAPHITE WITH NIOBIUM CARBIDE

    DOEpatents

    Kane, J.S.; Carpenter, J.H.; Krikorian, O.H.

    1962-01-16

    A method is given for coating graphite with a hard, tenacious layer of niobium carbide up to 30 mils or more thick. The method makes use of the discovery that niobium metal, if degassed and heated rapidly below the carburization temperature in contact with graphite, spreads, wets, and penetrates the graphite without carburization. The method includes the obvious steps of physically contacting niobium powders or other physical forms of niobium with graphite, degassing the assembly below the niobium melting point, e.g., 1400 deg C, heating to about 2200 to 2400 deg C within about 15 minutes while outgassing at a high volume throughput, and thereafter carburizing the niobium. (AEC)

  5. Effect of aging at 1040 C (1900 F) on the ductility and structure of a tantalum alloy, T-111

    NASA Technical Reports Server (NTRS)

    Watson, G. K.; Stephens, J. R.

    1972-01-01

    The post-aging embrittlement of T-111 (tantalum - 8-percent tungsten - 2-percent hafnium) following exposure for up to about 10,000 hours at 1040 C in either vacuum or liquid lithium was investigated for sheet and tubing samples. This thermal aging was shown to greatly increase the sensitivity of T-111 to hydrogen embrittlement during subsequent room temperature specimen processing or testing. The hydrogen embrittlement problem can be avoided by preventing exposure to the T-111 to moisture during post-aging processing or testing. Aging at 1040 C also resulted in formation of HfO2 particles at grain boundaries, which may contribute to the observed embrittlement.

  6. Development of a fused slurry silicide coating for the protection of tantalum alloys

    NASA Technical Reports Server (NTRS)

    Packer, C. M.; Perkins, R. A.

    1974-01-01

    Results are reported of a research program to develop a reliable high-performance, fused slurry silicide protective coating for a tantalum-10 tungsten alloy for use at 1427 to 1538 C at 0.1 to 10 torr air pressure under cyclic temperature conditions. A review of silicide coating performance under these conditions indicated that the primary wear-out mode is associated with widening of hairline fissures in the coating. Consideration has been given to modifying the oxidation products that form on the coating surface to provide a seal for these fissures and to minimize their widening. On the basis of an analysis of the phase relationships between silica and various other oxides, a coating having the slurry composition 2.5Mn-33Ti-64.5Si was developed that is effective in the pressure range from 1 to 10 torr.

  7. Large grain cavities from pure niobium ingot

    DOEpatents

    Myneni, Ganapati Rao [Yorktown, VA; Kneisel, Peter [Williamsburg, VA; Cameiro, Tadeu [McMurray, PA

    2012-03-06

    Niobium cavities are fabricated by the drawing and ironing of as cast niobium ingot slices rather than from cold rolled niobium sheet. This method results in the production of niobium cavities having a minimum of grain boundaries at a significantly reduced cost as compared to the production of such structures from cold rolled sheet.

  8. Scintillation Breakdowns in Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2008-01-01

    Scintillations in solid tantalum capacitors are momentarily local breakdowns terminated by a self-healing or conversion to a high-resistive state of the manganese oxide cathode. This conversion effectively caps the defective area of the tantalum pentoxide dielectric and prevents short-circuit failures. Typically, this type of breakdown has no immediate catastrophic consequences and is often considered as nuisance rather than a failure. Scintillation breakdowns likely do not affect failures of parts under surge current conditions, and so-called "proofing" of tantalum chip capacitors, which is a controllable exposure of the part after soldering to voltages slightly higher than the operating voltage to verify that possible scintillations are self-healed, has been shown to improve the quality of the parts. However, no in-depth studies of the effect of scintillations on reliability of tantalum capacitors have been performed so far. KEMET is using scintillation breakdown testing as a tool for assessing process improvements and to compare quality of different manufacturing lots. Nevertheless, the relationship between failures and scintillation breakdowns is not clear, and this test is not considered as suitable for lot acceptance testing. In this work, scintillation breakdowns in different military-graded and commercial tantalum capacitors were characterized and related to the rated voltages and to life test failures. A model for assessment of times to failure, based on distributions of breakdown voltages, and accelerating factors of life testing are discussed.

  9. 21 CFR 886.3100 - Ophthalmic tantalum clip.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... blood vessels in the eye. (b) Classification. Class II (special controls). The device is exempt from the...) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3100 Ophthalmic tantalum clip. (a) Identification. An ophthalmic tantalum clip is a malleable metallic device intended to be implanted permanently...

  10. Perovskite phase thin films and method of making

    DOEpatents

    Boyle, Timothy J.; Rodriguez, Mark A.

    2000-01-01

    The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

  11. Vapor deposition of hardened niobium

    DOEpatents

    Blocher, Jr., John M.; Veigel, Neil D.; Landrigan, Richard B.

    1983-04-19

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  12. Development of Coatings for Tantalum Alloy Nozzle Vanes

    NASA Technical Reports Server (NTRS)

    Stetson, A. R.; Wimber, R. T.

    1967-01-01

    A group of silicide coatings developed for the T222 tantalum-base alloy have afforded over 600 hours of protection at 1600 and 2400 F during cyclic exposure in air. These coatings were applied in two steps. A modifier alloy was applied by slurry techniques and was sintered in vacuum prior to siliciding by pack cementation in argon. Application of the modifier alloy by pack cementation was found to be much less effective. The addition of titanium and vanadium to molybdenum and tungsten yielded beneficial modifier alloys, whereas the addition of chromium showed no improvement. After siliciding, the 15Ti- 35W-15V-35Mo modifier alloy exhibited the best performance; one sample survived 1064 hours of oxidation at 2400 F. This same coating was the only coating to reproducibly provide 600 hours of protection at both 1600 and 2400 F; in the second and third of three experiments, involving oxidation of three to five specimens at each temperature in each experiment, no failures were observed in 600 hours of testing. The slurry coatings were also shown to protect the Cb752 and D43 columbium-base alloys.

  13. Process for alloying uranium and niobium

    DOEpatents

    Holcombe, Cressie E.; Northcutt, Jr., Walter G.; Masters, David R.; Chapman, Lloyd R.

    1991-01-01

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  14. Application of diffusion barriers to the refractory fibers of tungsten, columbium, carbon and aluminum oxide

    NASA Technical Reports Server (NTRS)

    Douglas, F. C.; Paradis, E. L.; Veltri, R. D.

    1973-01-01

    A radio frequency powered ion-plating system was used to plate protective layers of refractory oxides and carbide onto high strength fiber substrates. Subsequent overplating of these combinations with nickel and titanium was made to determine the effectiveness of such barrier layers in preventing diffusion of the overcoat metal into the fibers with consequent loss of fiber strength. Four substrates, five coatings, and two metal matrix materials were employed for a total of forty material combinations. The substrates were tungsten, niobium, NASA-Hough carbon, and Tyco sapphire. The diffusion-barrier coatings were aluminum oxide, yttrium oxide, titanium carbide, tungsten carbide with 14% cobalt addition, and zirconium carbide. The metal matrix materials were IN 600 nickel and Ti 6/4 titanium. Adhesion of the coatings to all substrates was good except for the NASA-Hough carbon, where flaking off of the oxide coatings in particular was observed.

  15. Method of nitriding niobium to form a superconducting surface

    DOEpatents

    Kelley, Michael J.; Klopf, John Michael; Singaravelu, Senthilaraja

    2014-08-19

    A method of forming a delta niobium nitride .delta.-NbN layer on the surface of a niobium object including cleaning the surface of the niobium object; providing a treatment chamber; placing the niobium object in the treatment chamber; evacuating the chamber; passing pure nitrogen into the treatment chamber; focusing a laser spot on the niobium object; delivering laser fluences at the laser spot until the surface of the niobium object reaches above its boiling temperature; and rastering the laser spot over the surface of the niobium object.

  16. Hafnium radioisotope recovery from irradiated tantalum

    DOEpatents

    Taylor, Wayne A.; Jamriska, David J.

    2001-01-01

    Hafnium is recovered from irradiated tantalum by: (a) contacting the irradiated tantalum with at least one acid to obtain a solution of dissolved tantalum; (b) combining an aqueous solution of a calcium compound with the solution of dissolved tantalum to obtain a third combined solution; (c) precipitating hafnium, lanthanide, and insoluble calcium complexes from the third combined solution to obtain a first precipitate; (d) contacting the first precipitate of hafnium, lanthanide and calcium complexes with at least one fluoride ion complexing agent to form a fourth solution; (e) selectively adsorbing lanthanides and calcium from the fourth solution by cationic exchange; (f) separating fluoride ion complexing agent product from hafnium in the fourth solution by adding an aqueous solution of ferric chloride to obtain a second precipitate containing the hafnium and iron; (g) dissolving the second precipitate containing the hafnium and iron in acid to obtain an acid solution of hafnium and iron; (h) selectively adsorbing the iron from the acid solution of hafnium and iron by anionic exchange; (i) drying the ion exchanged hafnium solution to obtain hafnium isotopes. Additionally, if needed to remove residue remaining after the product is dried, dissolution in acid followed by cation exchange, then anion exchange, is performed.

  17. One hundred angstrom niobium wire

    NASA Technical Reports Server (NTRS)

    Cline, H. E.; Rose, R. M.; Wulff, J.

    1968-01-01

    Composite of fine niobium wires in copper is used to study the size and proximity effects of a superconductor in a normal matrix. The niobium rod was drawn to a 100 angstrom diameter wire on a copper tubing.

  18. Intense photoluminescence from amorphous tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Zhu, Minmin; Zhang, Zhengjun; Miao, Wei

    2006-07-01

    Tantalum oxide films were deposited on silicon substrates at a temperature of ˜450°C by heating a pure tantalum foil in a rough vacuum. The films were amorphous in structure and consisted of fully oxidized Ta2O5 and (TaOx, x <2.5) suboxides. This feature resulted in strong visible light emission from the films further oxidized in the air at temperatures of 200-300°C. The mechanism for this photoluminescence behavior of the amorphous tantalum oxide films was also investigated and discussed. This study suggests that wide-band-gap materials could act as effective visible light emitters and provides a simple route to synthesize such materials.

  19. Recommended values of clean metal surface work functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derry, Gregory N., E-mail: gderry@loyola.edu; Kern, Megan E.; Worth, Eli H.

    2015-11-15

    A critical review of the experimental literature for measurements of the work functions of clean metal surfaces of single-crystals is presented. The tables presented include all results found for low-index crystal faces except cases that were known to be contaminated surfaces. These results are used to construct a recommended value of the work function for each surface examined, along with an uncertainty estimate for that value. The uncertainties are based in part on the error distribution for all measured work functions in the literature, which is included here. The metals included in this review are silver (Ag), aluminum (Al), goldmore » (Au), copper (Cu), iron (Fe), iridium (Ir), molybdenum (Mo), niobium (Nb), nickel (Ni), palladium (Pd), platinum (Pt), rhodium (Rh), ruthenium (Ru), tantalum (Ta), and tungsten (W)« less

  20. Electronic structure and charge transport in nonstoichiometric tantalum oxide

    NASA Astrophysics Data System (ADS)

    Perevalov, T. V.; Gritsenko, V. A.; Gismatulin, A. A.; Voronkovskii, V. A.; Gerasimova, A. K.; Aliev, V. Sh; Prosvirin, I. A.

    2018-06-01

    The atomic and electronic structure of nonstoichiometric oxygen-deficient tantalum oxide TaO x<2.5 grown by ion beam sputtering deposition was studied. The TaO x film content was analyzed by x-ray photoelectron spectroscopy and by quantum-chemistry simulation. TaO x is composed of Ta2O5, metallic tantalum clusters and tantalum suboxides. A method for evaluating the stoichiometry parameter of TaO x from the comparison of experimental and theoretical photoelectron valence band spectra is proposed. The charge transport properties of TaO x were experimentally studied and the transport mechanism was quantitatively analyzed with four theoretical dielectric conductivity models. It was found that the charge transport in almost stoichiometric and nonstoichiometric tantalum oxide can be consistently described by the phonon-assisted tunneling between traps.

  1. High Temperature Evaluation of Tantalum Capacitors - Test 1

    DOE Data Explorer

    Cieslewski, Grzegorz

    2014-09-28

    Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

  2. 2017 NEPP Tasks Update for Ceramic and Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2017-01-01

    This presentation gives an overview of current NEPP tasks on ceramic and tantalum capacitors and plans for the future. It includes tasks on leakage currents, gas generation and case deformation in wet tantalum capacitors; ESR degradation and acceleration factors in MnO2 and polymer cathode capacitors. Preliminary results on the effect of moisture on degradation of reverse currents in MnO2 tantalum capacitors are discussed. Latest results on mechanical characteristics of MLCCs and modeling of degradation of leakage currents in BME capacitors with defects are also presented.

  3. METHOD OF PROTECTING TANTALUM CRUCIBLES AGAINST REACTION WITH MOLTEN URANIUM

    DOEpatents

    Feder, H.M.; Chellew, N.R.

    1960-08-16

    Tantalum crucibles against reaction with molten uranium by contacting the surfaces to be protected with metallic boron (as powder, vapor, or suspension in a liquid-volatilenonreacting medium, such as acetone and petroleum oil) at about 1800 deg C in vacuum, discontinuing contact with the boron, and heating the crucibles to a temperature of between 1800 aad 2000 deg C, whereby the tantalum boride formed in the first heating step is converted to tantalum monoboride.

  4. Extreme Response in Tension and Compression of Tantalum

    NASA Astrophysics Data System (ADS)

    Remington, Tane Perry

    This research on a model bcc metal, tantalum, has three components: the study of tensile failure; defects generated under a nanoindenter; and dislocation velocities in an extreme regime generated by pulsed lasers. The processes of dynamic failure by spalling were established in nano, poly, and mono crystalline tantalum in recovery experiments following laser compression and release. The process of spall was characterized by different techniques: optical microscopy, scanning electron microscopy, microcomputerized tomography and electron backscatter diffraction. Additionally, the pull back signal was measured by VISAR and the pressure decay was compared with HYADES simulations. There are clear differences in the microscopic fracture mechanisms, dictated by the grain sizes. In the nano and poly crystals, spalling occurred by ductile fracture favoring grain boundaries. In the monocrystals, grain boundaries are absent, and the process was of ductile failure by void initiation, growth and coalescence. The spall strength of single crystalline tantalum was higher than the poly and nano crystals. It was experimentally confirmed that spall strength in tantalum increases with strain rate. In order to generate dislocations close to the surface, single crystalline tantalum with orientations (100), (110) and (111) was nanoindented with a Berkovich tip. Atomic force microscopy showed pile-ups of dislocations around the perimeter of the nanoindentations. Sections of nanoindentations were focused ion beam cut into transmission electron microscope foils. The mechanisms of deformation under a nanoindentation in tantalum were identified and quantified. Molecular dynamics simulations were conducted and the simulated plastic deformation proceeds by the formation of nanotwins, which rapidly evolve into shear dislocation loops. Dislocation densities under the indenter were estimated experimentally (~1.2 x 1015 m-2), by MD (~7 x1015 m-2) and through an analytical calculation (2.6--19 x10

  5. PROCESS OF COATING GRAPHITE WITH NIOBIUM-TITANIUM CARBIDE

    DOEpatents

    Halden, F.A.; Smiley, W.D.; Hruz, F.M.

    1961-07-01

    A process of coating graphite with niobium - titanium carbide is described. It is found that the addition of more than ten percent by weight of titanium to niobium results in much greater wetting of the graphite by the niobium and a much more adherent coating. The preferred embodiment comprises contacting the graphite with a powdered alloy or mixture, degassing simultaneously the powder and the graphite, and then heating them to a high temperature to cause melting, wetting, spreading, and carburization of the niobium-titanium powder.

  6. The hardness, microstructure, and pitting resistance of austenitic stainless steel Fe25Ni15Cr with the addition of tungsten, niobium, and vanadium

    NASA Astrophysics Data System (ADS)

    Prifiharni, Siska; Anwar, Moch. Syaiful; Nikitasari, Arini; Mabruri, Efendi

    2018-05-01

    In this work, the effect of 2% W, 1%Nb, and 1% V addition on the hardness, microstructure, and pitting resistance to austenitic stainless steel Fe25Ni15Cr was investigated. The specimens were prepared in induction melting furnace, followed by homogenizing at 1100°C for 24 h. Then, the specimens were solution treated at 975°C for 2 h followed by water quenching and aging at 725°C for 15 h. The hardness was measured by using Rockwell hardness B, and metallographic observation was conducted using optical microscope and SEM-EDS. The results show that the increament of W, Nb, and V in the austenitic stainless steel Fe25Ni15Crby increased the hardness. The metal carbide precipitation occurred at grain boundaries in niobium free alloy. The addition of Nb in the alloy promotes the Laves phase transformation, and addition of V increase Nb content in the Laves phase. Laves phase formation in alloys containing niobium during aging heat treatments lead to an increase in hardness. Addition of W, Nb, and V also increase pitting resistance of the Fe25Ni15Cr austenitic stainless steel. This can be attributed to an increasing level of niobium in the matrix.

  7. Creep resistant high temperature martensitic steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followedmore » by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.« less

  8. Creep resistant high temperature martensitic steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followedmore » by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.« less

  9. Multi-scale Modeling of Plasticity in Tantalum.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Hojun; Battaile, Corbett Chandler.; Carroll, Jay

    In this report, we present a multi-scale computational model to simulate plastic deformation of tantalum and validating experiments. In atomistic/ dislocation level, dislocation kink- pair theory is used to formulate temperature and strain rate dependent constitutive equations. The kink-pair theory is calibrated to available data from single crystal experiments to produce accurate and convenient constitutive laws. The model is then implemented into a BCC crystal plasticity finite element method (CP-FEM) model to predict temperature and strain rate dependent yield stresses of single and polycrystalline tantalum and compared with existing experimental data from the literature. Furthermore, classical continuum constitutive models describingmore » temperature and strain rate dependent flow behaviors are fit to the yield stresses obtained from the CP-FEM polycrystal predictions. The model is then used to conduct hydro- dynamic simulations of Taylor cylinder impact test and compared with experiments. In order to validate the proposed tantalum CP-FEM model with experiments, we introduce a method for quantitative comparison of CP-FEM models with various experimental techniques. To mitigate the effects of unknown subsurface microstructure, tantalum tensile specimens with a pseudo-two-dimensional grain structure and grain sizes on the order of millimeters are used. A technique combining an electron back scatter diffraction (EBSD) and high resolution digital image correlation (HR-DIC) is used to measure the texture and sub-grain strain fields upon uniaxial tensile loading at various applied strains. Deformed specimens are also analyzed with optical profilometry measurements to obtain out-of- plane strain fields. These high resolution measurements are directly compared with large-scale CP-FEM predictions. This computational method directly links fundamental dislocation physics to plastic deformations in the grain-scale and to the engineering-scale applications. Furthermore

  10. Synthesis and characterization of homo- and heterobimetallic niobium{sup v} and tantalum{sup v} peroxo-polyaminocarboxylato complexes and their use as single or multiple molecular precursors for Nb-Ta mixed oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayot, Daisy; Degand, Matthieu; Devillers, Michel

    2005-09-15

    New water-soluble bimetallic peroxo complexes of niobium{sup V} and/or tantalum{sup V} with high-denticity polyaminocarboxylate ligands have been prepared, characterized from the spectroscopic point of view, and used as molecular precursors for Nb-Ta mixed oxides. Four new homobimetallic complexes (gu){sub 3}[Nb{sub 2}(O{sub 2}){sub 4}(dtpaO{sub 3})].3H{sub 2}O 1 (gu){sub 3}[Ta{sub 2}(O{sub 2}){sub 4}(dtpaO{sub 3})].5H{sub 2}O 2 (gu){sub 3}[Nb{sub 2}(O{sub 2}){sub 4}(HtthaO{sub 4})].2H{sub 2}O 4 and (gu){sub 3}[Ta{sub 2}(O{sub 2}){sub 4}(HtthaO{sub 4})].3H{sub 2}O 5 and the corresponding heterometallic complexes (gu){sub 3}[NbTa(O{sub 2}){sub 4}(dtpaO{sub 3})].2.5H{sub 2}O 3 and (gu){sub 3}[NbTa(O{sub 2}){sub 4}(HtthaO{sub 4)}].2H{sub 2}O 6 have been obtained. In these compounds, the in situmore » oxidation of the nitrogen atoms of the PAC ligands into N-oxide groups has been evidenced by IR spectroscopy and mass spectrometry. The thermal treatment of the homonuclear complexes in air at 700 or 800 deg. C, depending on the Ta content, provided Nb{sub 2}O{sub 5} or Ta{sub 2}O{sub 5} while the heteronuclear compounds led to the solid solution TaNbO{sub 5}. BET and SEM measurements have been carried out and comparison of the morphology of the samples prepared from homo- and heterometallic precursors is discussed.« less

  11. Development and Applications of Porous Tantalum Trabecular Metal Enhanced Titanium Dental Implants

    PubMed Central

    Bencharit, Sompop; Byrd, Warren C.; Altarawneh, Sandra; Hosseini, Bashir; Leong, Austin; Reside, Glenn; Morelli, Thiago; Offenbacher, Steven

    2013-01-01

    Statement of Problem Porous tantalum trabecular metal has recently been incorporated in titanium dental implants as a new form of implant surface enhancement. However, there is little information on the applications of this material in implant dentistry. Methods We, therefore review the current literature on the basic science and clinical uses of this material. Results Porous tantalum metal is used to improve the contact between osseous structure and dental implants; and therefore presumably facilitate osseointegration. Success of porous tantalum metal in orthopedic implants led to the incorporation of porous tantalum metal in the design of root-from endosseous titanium implants. The porous tantalum three-dimensional enhancement of titanium dental implant surface allows for combining bone ongrowth together with bone ingrowth, or osseoincorporation. While little is known about the biological aspect of the porous tantalum in the oral cavity, there seems to be several possible advantages of this implant design. This article reviews the biological aspects of porous tantalum enhanced titanium dental implants, in particular the effects of anatomical consideration and oral environment to implant designs. Conclusions We propose here possible clinical situations and applications for this type of dental implant. Advantages and disadvantages of the implants as well as needed future clinical studies are discussed. PMID:23527899

  12. INFLUENCE OF HIGH-ENERGY FORMING ON THE BEHAVIOR OF MATERIALS (EINFLUSS DER HOCHENERGIEUMFORMUNG AUF DAS WERKSTOFFVERHALTEN),

    DTIC Science & Technology

    MATERIAL FORMING, METALS), (*METALS, MECHANICAL PROPERTIES), EXPLOSIVE FORMING, ELECTROFORMING, HYDROFORMING (MECHANICAL), IRON, STEEL, NICKEL, NIOBIUM, TENSILE PROPERTIES, TANTALUM, DEFORMATION, EAST GERMANY.

  13. Surface cracking and melting of different tungsten grades under transient heat and particle loads in a magnetized coaxial plasma gun

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; Sakuma, I.; Iwamoto, D.; Kitagawa, Y.; Fukumoto, N.; Nagata, M.; Ueda, Y.

    2013-07-01

    Surface damage of pure tungsten (W), W alloys with 2 wt.% tantalum (W-Ta) and vacuum plasma spray (VPS) W coating on a reduced activation material of ferritic steel (F82H) due to repetitive ELM-like pulsed (˜0.3 ms) deuterium plasma irradiation has been investigated by using a magnetized coaxial plasma gun. Surface cracks appeared on a pure W sample exposed to 10 plasma pulses of ˜0.3 MJ m-2, while a W-Ta sample did not show surface cracks with similar pulsed plasma irradiation. The energy density threshold for surface cracking was significantly increased by the existence of the alloying element of tantalum. No surface morphology change of a VPS W coated F82H sample was observed under 10 plasma pulses of ˜0.3 MJ m-2, although surface melting and cracks in the resolidification layer occurred at higher energy density of ˜0.9 MJ m-2. There was no indication of exfoliation of the W coating from the substrate of F82H after the pulsed plasma exposures.

  14. World War II, tantalum, and the evolution of modern cranioplasty technique.

    PubMed

    Flanigan, Patrick; Kshettry, Varun R; Benzel, Edward C

    2014-04-01

    Cranioplasty is a unique procedure with a rich history. Since ancient times, a diverse array of materials from coconut shells to gold plates has been used for the repair of cranial defects. More recently, World War II greatly increased the demand for cranioplasty procedures and renewed interest in the search for a suitable synthetic material for cranioprostheses. Experimental evidence revealed that tantalum was biologically inert to acid and oxidative stresses. In fact, the observation that tantalum did not absorb acid resulted in the metal being named after Tantalus, the Greek mythological figure who was condemned to a pool of water in the Underworld that would recede when he tried to take a drink. In clinical use, malleability facilitated a single-stage cosmetic repair of cranial defects. Tantalum became the preferred cranioplasty material for more than 1000 procedures performed during World War II. In fact, its use was rapidly adopted in the civilian population. During World War II and the heyday of tantalum cranioplasty, there was a rapid evolution in prosthesis implantation and fixation techniques significantly shaping how cranioplasties are performed today. Several years after the war, acrylic emerged as the cranioplasty material of choice. It had several clear advantages over its metallic counterparts. Titanium, which was less radiopaque and had a more optimal thermal conductivity profile (less thermally conductive), eventually supplanted tantalum as the most common metallic cranioplasty material. While tantalum cranioplasty was popular for only a decade, it represented a significant breakthrough in synthetic cranioplasty. The experiences of wartime neurosurgeons with tantalum cranioplasty played a pivotal role in the evolution of modern cranioplasty techniques and ultimately led to a heightened understanding of the necessary attributes of an ideal synthetic cranioplasty material. Indeed, the history of tantalum cranioplasty serves as a model for innovative

  15. Tin-tungsten mineralizing processes in tungsten vein deposits: Panasqueira, Portugal

    NASA Astrophysics Data System (ADS)

    Lecumberri-Sanchez, P.; Pinto, F.; Vieira, R.; Wälle, M.; Heinrich, C. A.

    2015-12-01

    Tungsten has a high heat resistance, density and hardness, which makes it widely applied in industry (e.g. steel, tungsten carbides). Tungsten deposits are typically magmatic-hydrothermal systems. Despite the economic significance of tungsten, there are no modern quantitative analytical studies of the fluids responsible for the formation of its highest-grade deposit type (tungsten vein deposits). Panasqueira (Portugal) is a tungsten vein deposit, one of the leading tungsten producers in Europe and one of the best geologically characterized tungsten vein deposits. In this study, compositions of the mineralizing fluids at Panasqueira have been determined through combination of detailed petrography, microthermometric measurements and LA-ICPMS analyses, and geochemical modeling has been used to determine the processes that lead to tungsten mineralization. We characterized the fluids related to the various mineralizing stages in the system: the oxide stage (tin and tungsten mineralization), the sulfide stage (chalcopyrite and sphalerite mineralization) and the carbonate stage. Thus, our results provide information on the properties of fluids related with specific paragenetic stages. Furthermore we used those fluid compositions in combination with host rock mineralogy and chemistry to evaluate which are the controlling factors in the mineralizing process. This study provides the first quantitative analytical data on fluid composition for tungsten vein deposits and evaluates the controlling mineralization processes helping to determine the mechanisms of formation of the Panasqueira tin-tungsten deposit and providing additional geochemical constraints on the local distribution of mineralization.

  16. Niobium oxide compositions and methods for using same

    DOEpatents

    Goodenough, John B; Han, Jian-Tao

    2014-02-11

    The disclosure relates a niobium oxide useful in anodes of secondary lithium ion batteries. Such niobium oxide has formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7, wherein 0.ltoreq.x.ltoreq.3, 0.ltoreq.y.ltoreq.1, and M represents Ti or Zr. The niobium oxide may be in the form of particles, which may be carbon coated. The disclosure also relates to an electrode composition containing at least one or more niobium oxides of formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7. The disclosure further relates to electrodes, such as anodes, and batteries containing at least one or more niobium oxides of formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7. Furthermore, the disclosure relates to methods of forming the above.

  17. Tantalum coatings for inertial confinement fusion dry wall designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, L.H.; Green, L.

    1996-12-31

    The coating on a dry first wall inertial confinement fusion reactor must survive the target explosion and be ductile, inexpensive, and compatible with the materials in the target, i.e. have a high atomic number Z. Calculations indicate that tantalum is the best choice for the coating material. As a test of this design 1 mm tantalum coatings were plasma sprayed onto ferrite steel tubes. They were then subjected to 100 heating-cooling cycles which simulated the stressful thermal cycling which would be encountered during five years of plant startups and shutdowns. The coatings were undamaged and continued to bond well tomore » the steel. Furthermore, chemical reactions should not degrade tantalum coatings.« less

  18. Niobium-bearing arsenides and germanides from elemental mixtures not involving niobium: a new twist to an old problem in solid-state synthesis.

    PubMed

    Baranets, Sviatoslav; He, Hua; Bobev, Svilen

    2018-05-01

    Three isostructural transition-metal arsenides and germanides, namely niobium nickel arsenide, Nb 0.92(1) NiAs, niobium cobalt arsenide, NbCoAs, and niobium nickel germanide, NbNiGe, were obtained as inadvertent side products of high-temperature reactions in sealed niobium containers. In addition to reporting for the very first time the structures of the title compounds, refined from single-crystal X-ray diffraction data, this article also serves as a reminder that niobium containers may not be suitable for the synthesis of ternary arsenides and germanides by traditional high-temperature reactions. Synthetic work involving alkali or alkaline-earth metals, transition or early post-transition metals, and elements from groups 14 or 15 under such conditions may yield Nb-containing products, which at times could be the major products of such reactions.

  19. Stability of Tungsten-Rhenium Thermocouples in the Range from 0 °C to 1500 °C

    NASA Astrophysics Data System (ADS)

    Ogura, H.; Izuchi, M.; Tamba, J.

    2011-12-01

    The effect of exposure up to 1500 °C on emf values of type C (95 % tungsten 5 % rhenium vs. 74 % tungsten 26 % rhenium) thermocouples were evaluated. Three thermocouples consisting of thermocouple wires of 0.5 mm diameter, twin-bore beryllia tubes, and tantalum sheaths were prepared. After three type C thermocouples were calibrated in the range from 0 °C to 1550 °C, which confirmed insignificant difference among them, the drifts of two among them were measured at the palladium-carbon (Pd-C) eutectic point (1492 °C). They indicated a similar tendency, where the emf of thermocouples increased rapidly within the first 30 h, and after that, decreased gradually. To investigate the mechanism of the drift, the inhomogeneities of thermocouples were examined at 160 °C using a water heat-pipe furnace during the drift measurements at the Pd-C eutectic point. It was found that the increase of emf within the first 30 h exposure at around 1500 °C was caused by the emf change due to inhomogeneity above 700 °C, and after that, the decrease of emf was caused by that around 1400 °C.

  20. 40 CFR 421.110 - Applicability: Description of the primary columbium-tantalum subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE... the production of columbium or tantalum by primary columbium-tantalum facilities. [49 FR 8817, Mar. 8...

  1. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOEpatents

    Singh, P.; Vasilow, T.R.; Richards, V.L.

    1996-05-14

    The invention is comprised of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb{sub x}Ta{sub y}Ce{sub 1{minus}x{minus}y}O{sub 2} where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same is also described. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell, characterized by a first electrode; an electrically conductive interlayer of niobium and/or tantalum doped cerium oxide deposited over at least a first portion of the first electrode; an interconnect deposited over the interlayer; a solid electrolyte deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode deposited over the solid electrolyte. The interlayer is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode, an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer is a dense yttria stabilized zirconium oxide, the interconnect layer is a dense, doped lanthanum chromite, and the second electrode, a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy. 5 figs.

  2. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOEpatents

    Singh, Prabhakar; Vasilow, Theodore R.; Richards, Von L.

    1996-01-01

    The invention comprises of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb.sub.x Ta.sub.y Ce.sub.1-x-y O.sub.2 where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell (10), characterized by a first electrode (12); an electrically conductive interlayer (14) of niobium and/or tantalum doped cerium oxide deposited over at least a first portion (R) of the first electrode; an interconnect (16) deposited over the interlayer; a solid electrolyte (18) deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode (20) deposited over the solid electrolyte. The interlayer (14) is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode (12), an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer (18) is a dense yttria stabilized zirconium oxide, the interconnect layer (16) is a dense, doped lanthanum chromite, and the second electrode (20), a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell (10) can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy.

  3. Development Study of Cartridge/Crucible Tube Materials

    NASA Technical Reports Server (NTRS)

    McKechnie, Timothy N.; ODell, Scott J.

    1998-01-01

    The limitations of traditional alloys and the desire for improved performance for components is driving the increased utilization of refractory metals in tile space industry. From advanced propulsion systems to high temperature furnace components for microgravity processing, refractory metals are being used for their high melting temperatures and inherent chemical stability. Techniques have been developed to produce near net shape refractory metal components utilizing vacuum plasma spraying. Material utilization is very high, and laborious machining can be avoided. As-spray formed components have been tested and found to perform adequately. However, increased mechanical and thermal properties are needed. To improve these properties, post processing thermal treatments such as hydrogen sintering and vacuum annealing have been performed. Components formed from alloys of tungsten, rhenium, tantalum, niobium, and molybdenum are discussed and a metallurgical analyses detailing the results are presented. A qualitative comparison of mechanical properties is also included.

  4. Reliability Effects of Surge Current Testing of Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2007-01-01

    Solid tantalum capacitors are widely used in space applications to filter low-frequency ripple currents in power supply circuits and stabilize DC voltages in the system. Tantalum capacitors manufactured per military specifications (MIL-PRF-55365) are established reliability components and have less than 0.001% of failures per 1000 hours (the failure rate is less than 10 FIT) for grades D or S, thus positioning these parts among electronic components with the highest reliability characteristics. Still, failures of tantalum capacitors do happen and when it occurs it might have catastrophic consequences for the system. This is due to a short-circuit failure mode, which might be damaging to a power supply, and also to the capability of tantalum capacitors with manganese cathodes to self-ignite when a failure occurs in low-impedance applications. During such a failure, a substantial amount of energy is released by exothermic reaction of the tantalum pellet with oxygen generated by the overheated manganese oxide cathode, resulting not only in destruction of the part, but also in damage of the board and surrounding components. A specific feature of tantalum capacitors, compared to ceramic parts, is a relatively large value of capacitance, which in contemporary low-size chip capacitors reaches dozens and hundreds of microfarads. This might result in so-called surge current or turn-on failures in the parts when the board is first powered up. Such a failure, which is considered as the most prevalent type of failures in tantalum capacitors [I], is due to fast changes of the voltage in the circuit, dV/dt, producing high surge current spikes, I(sub sp) = Cx(dV/dt), when current in the circuit is unrestricted. These spikes can reach hundreds of amperes and cause catastrophic failures in the system. The mechanism of surge current failures has not been understood completely yet, and different hypotheses were discussed in relevant literature. These include a sustained scintillation

  5. Pure Niobium as a Pressure Vessel Material

    NASA Astrophysics Data System (ADS)

    Peterson, T. J.; Carter, H. F.; Foley, M. H.; Klebaner, A. L.; Nicol, T. H.; Page, T. M.; Theilacker, J. C.; Wands, R. H.; Wong-Squires, M. L.; Wu, G.

    2010-04-01

    Physics laboratories around the world are developing niobium superconducting radio frequency (SRF) cavities for use in particle accelerators. These SRF cavities are typically cooled to low temperatures by direct contact with a liquid helium bath, resulting in at least part of the helium container being made from pure niobium. In the U.S., the Code of Federal Regulations allows national laboratories to follow national consensus pressure vessel rules or use of alternative rules which provide a level of safety greater than or equal to that afforded by ASME Boiler and Pressure Vessel Code. Thus, while used for its superconducting properties, niobium ends up also being treated as a material for pressure vessels. This report summarizes what we have learned about the use of niobium as a pressure vessel material, with a focus on issues for compliance with pressure vessel codes. We present results of a literature search for mechanical properties and tests results, as well as a review of ASME pressure vessel code requirements and issues.

  6. Advanced Wet Tantalum Capacitors: Design, Specifications and Performance

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2016-01-01

    Insertion of new types of commercial, high volumetric efficiency wet tantalum capacitors in space systems requires reassessment of the existing quality assurance approaches that have been developed for capacitors manufactured to MIL-PRF-39006 requirements. The specifics of wet electrolytic capacitors is that leakage currents flowing through electrolyte can cause gas generation resulting in building up of internal gas pressure and rupture of the case. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. This presentation gives a review of specifics of the design, performance, and potential reliability risks associated with advanced wet tantalum capacitors. Problems related to setting adequate requirements for DPA, leakage currents, hermeticity, stability at low and high temperatures, ripple currents for parts operating in vacuum, and random vibration testing are discussed. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  7. Advanced Wet Tantalum Capacitors: Design, Specifications and Performance

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2017-01-01

    Insertion of new types of commercial, high volumetric efficiency wet tantalum capacitors in space systems requires reassessment of the existing quality assurance approaches that have been developed for capacitors manufactured to MIL-PRF-39006 requirements. The specifics of wet electrolytic capacitors is that leakage currents flowing through electrolyte can cause gas generation resulting in building up of internal gas pressure and rupture of the case. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. This presentation gives a review of specifics of the design, performance, and potential reliability risks associated with advanced wet tantalum capacitors. Problems related to setting adequate requirements for DPA, leakage currents, hermeticity, stability at low and high temperatures, ripple currents for parts operating in vacuum, and random vibration testing are discussed. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  8. Tribological performance of polycrystalline tantalum-carbide-incorporated diamond films on silicon substrates

    NASA Astrophysics Data System (ADS)

    Ullah, Mahtab; Rana, Anwar Manzoor; Ahmed, E.; Malik, Abdul Sattar; Shah, Z. A.; Ahmad, Naseeb; Mehtab, Ujala; Raza, Rizwan

    2018-05-01

    Polycrystalline tantalum-carbide-incorporated diamond coatings have been made on unpolished side of Si (100) wafer by hot filament chemical vapor deposition process. Morphology of the coatings has been found to vary from (111) triangular-facetted to predominantly (111) square-faceted by increasing the concentration of tantalum carbide. The results have been compared to those of a diamond reference coating with no tantalum content. An increase in roughness has been observed with the increase of tantalum carbide (TaC) due to change in morphology of the diamond films. It is noticed that roughness of the coatings increases as grains become more square-faceted. It is found that diamond coatings involving tantalum carbide are not as resistant as diamond films with no TaC content and the coefficient of friction for such coatings with microcrystalline grains can be manipulated to 0·33 under high vacuum of 10-7 Torr. Such a low friction coefficient value enhances tribological behavior of unpolished Si substrates and can possibly be used in sliding applications.

  9. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire

    NASA Astrophysics Data System (ADS)

    Riesch, J.; Han, Y.; Almanstötter, J.; Coenen, J. W.; Höschen, T.; Jasper, B.; Zhao, P.; Linsmeier, Ch; Neu, R.

    2016-02-01

    For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself.

  10. Tungsten foil laminate for structural divertor applications - Joining of tungsten foils

    NASA Astrophysics Data System (ADS)

    Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou

    2013-05-01

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  11. Anomalous softening of yield strength in tantalum at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Qiumin, E-mail: j-qm@163.com; Wu, Qiang; Xu, Ji-an

    2015-02-07

    The pressure dependence of the yield strength of tantalum was investigated experimentally up to 101 GPa at room temperature using a diamond anvil cell. A yield strength softening is observed between 52 and 84 GPa, whereas a normal trend is observed below 52 GPa and above 84 GPa. The onset pressure of the softening is in agreement with previous results obtained by the pressure gradient method and shock wave experiments. This unusual strength softening in tantalum is not related with structural transformation, preferred orientation, or material damage. Our measurements indicate that microscopic deviatoric strain is the major reason for the observed strength softening inmore » tantalum.« less

  12. Gadolinium-148 and other spallation production cross section measurements for accelerator target facilities

    NASA Astrophysics Data System (ADS)

    Kelley, Karen Corzine

    At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as "nuclear facilities." Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is the motivation for measuring the Gadolinium-148 production cross section from tungsten. In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148 production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 mum thin tungsten, tantalum, and gold foils and 10 mum thin aluminum activation foils. In addition, spallation yields were determined for many short-lived and long-lived spallation products with these foils using gamma and alpha spectroscopy and compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2 and MCNPX. The cumulative Gadolinium-148 production cross section measured from tantalum, tungsten, and gold for incident 600-MeV protons were 15.2 +/- 4.0, 8.31 +/- 0.92, and 0.591 +/- 0.155, respectively. The average production cross sections measured at 800 MeV were 28.6 +/- 3.5, 19.4 +/- 1.8, and 3.69 +/- 0.50 for tantalum, tungsten, and gold, respectively. These cumulative

  13. Quasi-Static Compression and Tensile Stress-Strain Curves, Tantalum - 10% Tungsten and 300 Grade Maraging Steel

    DTIC Science & Technology

    1986-05-01

    available high density metal. It was investigated as a practical substitute for ballistic tungsten or uranium alloys. It was also used as a core material... PPM ) H ɝ ɝ ɝ C ᝺ ណ ណ N 12 ɝ 7 0 41 អ 60 Si ម ម Ti ង V ង ង ង Cr ᝺ ង ង Fe ង ម ម Co ង ᝺ ᝺ Ni ង ង ង Cu...3M Tri-M- ite WETORDRY trademark silicon carbide paper, wet with a trichloroethane base coolant, to remove about 0.05 mm in the center. An 0.1

  14. Investigating the oxidation mechanism of tantalum nanoparticles at high heating rates

    NASA Astrophysics Data System (ADS)

    DeLisio, Jeffery B.; Wang, Xizheng; Wu, Tao; Egan, Garth C.; Jacob, Rohit J.; Zachariah, Michael R.

    2017-12-01

    Reduced diffusion length scales and increased specific surface areas of nanosized metal fuels have recently demonstrated increased reaction rates for these systems, increasing their relevance in a wide variety of applications. The most commonly employed metal fuel, aluminum, tends to oxidize rapidly near its melting point (660 °C) in addition to undergoing a phase change of the nascent oxide shell. To further expand on the understanding of nanosized metal fuel oxidation, tantalum nanoparticles were studied due to their high melting point (3017 °C) in comparison to aluminum. Both traditional slow heating rate and in-situ high heating rate techniques were used to probe the oxidation of tantalum nanoparticles in oxygen containing environments in addition to nanothermite mixtures. When oxidized by gas phase oxygen, the oxide shell of the tantalum nanoparticles rapidly crystallized creating cracks that may attribute to enhanced oxygen diffusion into the particle. In the case of tantalum based nanothermites, oxide shell crystallization was shown to induce reactive sintering with the metal oxide resulting in a narrow range of ignition temperatures independent of the metal oxide used. The oxidation mechanism was modeled using the Deal-Grove model to extract rate parameters, and theoretical burn times for tantalum based nanocomposites were calculated.

  15. High heat flux properties of pure tungsten and plasma sprayed tungsten coatings

    NASA Astrophysics Data System (ADS)

    Liu, X.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.; Yang, L.; Xu, Z.

    2004-08-01

    High heat flux properties of pure tungsten and plasma sprayed tungsten coatings on carbon substrates have been studied by annealing and cyclic heat loading. The recrystallization temperature and an activation energy QR=126 kJ/mol for grain growth of tungsten coating by vacuum plasma spray (VPS) were estimated, and the microstructural changes of multi-layer tungsten and rhenium interface pre-deposited by physical vapor deposition (PVD) with anneal temperature were investigated. Cyclic load tests indicated that pure tungsten and VPS-tungsten coating could withstand 1000 cycles at 33-35 MW/m 2 heat flux and 3 s pulse duration, and inert gas plasma spray (IPS)-tungsten coating showed local cracks by 300 cycles but did not induce failure by further cycles. However, the failure of pure tungsten and VPS-tungsten coating by fatigue cracking was observed under higher heat load (55-60 MW/m 2) for 420 and 230 cycles, respectively.

  16. Defeating Hard and Deeply Buried Targets in 2035

    DTIC Science & Technology

    2012-02-15

    Hafnium Carbide 12.2 33 722 120 3000 Tantalum 16.4 24 680 113 3017 Tantalum Carbide 14.3 28 746 124 3880 Tungsten 19.3 21 550 92 3422 Tungsten ...lethality. Concepts for employing the weapon included “vertical delivery with the bomb detonated at or just outside portal, skip bomb with short fuse (first...or second contact), skip bomb with long fuse (penetrate door, maximize distance down adits [underground facility entrances or passages]), and

  17. Mineral Resource of the Month: Niobium

    USGS Publications Warehouse

    Papp, John F.

    2014-01-01

    Niobium, also called columbium, is a transition metal with a very high melting point. It is in greatest demand in industrialized countries, like the United States, because of its defense-related uses in the aerospace, energy and transportation industries. Niobium is used mostly to make high-strength, low-alloy (HSLA) steel and stainless steel. HSLA steels are used in large-diameter pipes for oil and natural gas pipelines and automobile wheels.

  18. High efficiency tantalum-based ceramic composite structures

    NASA Technical Reports Server (NTRS)

    Stewart, David A. (Inventor); Leiser, Daniel B. (Inventor); DiFiore, Robert R. (Inventor); Katvala, Victor W. (Inventor)

    2010-01-01

    Tantalum-based ceramics are suitable for use in thermal protection systems. These composite structures have high efficiency surfaces (low catalytic efficiency and high emittance), thereby reducing heat flux to a spacecraft during planetary re-entry. These ceramics contain tantalum disilicide, molybdenum disilicide and borosilicate glass. The components are milled, along with a processing aid, then applied to a surface of a porous substrate, such as a fibrous silica or carbon substrate. Following application, the coating is then sintered on the substrate. The composite structure is substantially impervious to hot gas penetration and capable of surviving high heat fluxes at temperatures approaching 3000.degree. F. and above.

  19. Deuterium desorption from ion-irradiated tantalum and effects on surface morphology

    NASA Astrophysics Data System (ADS)

    Novakowski, T. J.; Sundaram, A.; Tripathi, J. K.; Gonderman, S.; Hassanein, A.

    2018-06-01

    Compared to tungsten (W), tantalum (Ta) has shown superior resistance to helium (He)-induced surface morphology changes under fusion-relevant irradiation conditions. However, Ta is also expected to have a stronger interaction with hydrogen isotopes, potentially limiting its use as a plasma-facing material. Despite these concerns, detailed investigations on hydrogen irradiation effects on Ta are scarce. In this study, pristine and fuzzy (He+ ion-irradiated) Ta samples are irradiated with 120 eV deuterium (D) ions at various temperatures and examined with a combination of thermal desorption spectroscopy (TDS), scanning electron microscopy (SEM), and optical reflectivity. TDS reveals discrete D desorption temperatures at 660 and 760 K, corresponding to trapping energies of 1.82 and 2.11 eV, respectively. Although D is retained in Ta both in higher quantities and at higher temperatures compared to W, extreme surface temperatures expected in tokamak divertors may exceed these desorption temperatures and counteract retention. Furthermore, this study indicates that Ta is relatively resistant to adverse surface structuring under D+ ion irradiation. In fact, D+ is shown to prevent and suppress Ta fuzz formation in sequential D+/He+ ion irradiation experiments. While further investigations are needed to elucidate this behavior, these initial investigations show a strong potential for the use of Ta as a PFC material.

  20. SRF MATERIALS OTHER THAN NIOBIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valente, Anne-Marie

    2008-02-12

    For the past three decades, bulk niobium has been the material of choice for SRF cavity applications. Alternative materials, mainly Nb compounds and A15 compounds have been investigated with moderate effort in the past. In the recent years, RF cavity performance has approached the theoretical limit for bulk niobium. For further improvement of RF cavity performance for future accelerator projects, research interest is renewed towards alternative materials to niobium. A few laboratories around the world are now investigating superconductors with higher transition temperature Tc for application to SRF cavities. This paper gives an overview of the results obtained and challengesmore » encountered for Nb compounds and A15 compounds, as well as for MgB2, for SRF cavity applications. An interesting alternative has been recently proposed by Alex Gurevich with the Superconductor-Insulator-Superconductor multilayer approach. This could potentially lead to further improvement in RF cavity performance using the benefit of the higher critical field Hc of higher-Tc superconductors without being limited with their lower Hc1.« less

  1. Analysis of Weibull Grading Test for Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2010-01-01

    Weibull grading test is a powerful technique that allows selection and reliability rating of solid tantalum capacitors for military and space applications. However, inaccuracies in the existing method and non-adequate acceleration factors can result in significant, up to three orders of magnitude, errors in the calculated failure rate of capacitors. This paper analyzes deficiencies of the existing technique and recommends more accurate method of calculations. A physical model presenting failures of tantalum capacitors as time-dependent-dielectric-breakdown is used to determine voltage and temperature acceleration factors and select adequate Weibull grading test conditions. This, model is verified by highly accelerated life testing (HALT) at different temperature and voltage conditions for three types of solid chip tantalum capacitors. It is shown that parameters of the model and acceleration factors can be calculated using a general log-linear relationship for the characteristic life with two stress levels.

  2. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption intomore » interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.« less

  3. Publications - SR 41 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    ; Mercury; Minerals; Minerals Report; Mining; Mining Methods; Molybdenum; Nickel; Niobium; Peat; Platinum ; Production Data; Radioactive Minerals; Resource Assessment; Sand and Gravel; Silver; Soapstone; Tantalum

  4. Deuterium depth profile quantification in a ASDEX Upgrade divertor tile using secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ghezzi, F.; Caniello, R.; Giubertoni, D.; Bersani, M.; Hakola, A.; Mayer, M.; Rohde, V.; Anderle, M.; ASDEX Upgrade Team

    2014-10-01

    We present the results of a study where secondary ion mass spectrometry (SIMS) has been used to obtain depth profiles of deuterium concentration on plasma facing components of the first wall of the ASDEX Upgrade tokamak. The method uses primary and secondary standards to quantify the amount of deuterium retained. Samples of bulk graphite coated with tungsten or tantalum-doped tungsten are independently profiled with three different SIMS instruments. Their deuterium concentration profiles are compared showing good agreement. In order to assess the validity of the method, the integrated deuterium concentrations in the coatings given by one of the SIMS devices is compared with nuclear reaction analysis (NRA) data. Although in the case of tungsten the agreement between NRA and SIMS is satisfactory, for tantalum-doped tungsten samples the discrepancy is significant because of matrix effect induced by tantalum and differently eroded surface (W + Ta always exposed to plasma, W largely shadowed). A further comparison where the SIMS deuterium concentration is obtained by calibrating the measurements against NRA values is also presented. For the tungsten samples, where no Ta induced matrix effects are present, the two methods are almost equivalent.The results presented show the potential of the method provided that the standards used for the calibration reproduce faithfully the matrix nature of the samples.

  5. Imaging of radiation damage using complementary field ion microscopy and atom probe tomography.

    PubMed

    Dagan, Michal; Hanna, Luke R; Xu, Alan; Roberts, Steve G; Smith, George D W; Gault, Baptiste; Edmondson, Philip D; Bagot, Paul A J; Moody, Michael P

    2015-12-01

    Radiation damage in tungsten and a tungsten-tantalum alloy, both of relevance to nuclear fusion research, has been characterized using a combination of field ion microscopy (FIM) imaging and atom probe tomography (APT). While APT provides 3D analytical imaging with sub-nanometer resolution, FIM is capable of imaging the arrangements of single atoms on a crystal lattice and has the potential to provide insights into radiation induced crystal damage, all the way down to its smallest manifestation--a single vacancy. This paper demonstrates the strength of combining these characterization techniques. In ion implanted tungsten, it was found that atomic scale lattice damage is best imaged using FIM. In certain cases, APT reveals an identifiable imprint in the data via the segregation of solute and impurities and trajectory aberrations. In a W-5at%Ta alloy, a combined APT-FIM study was able to determine the atomic distribution of tantalum inside the tungsten matrix. An indirect method was implemented to identify tantalum atoms inside the tungsten matrix in FIM images. By tracing irregularities in the evaporation sequence of atoms imaged with FIM, this method enables the benefit of FIM's atomic resolution in chemical distinction between the two species. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Recovery of niobium from irradiated targets

    DOEpatents

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1994-01-01

    A process for selective separation of niobium from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected form the group consisting of molybdenum, biobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the cationic resin; adjusting the pH of the second ion-containing solution to within a range of from about 5.0 to about 6.0; contacting the pH adjusting second ion-containing solution with a dextran-based material for a time to selectively separate niobium from the solution and recovering the niobium from the dextran-based material.

  7. Ductilisation of tungsten (W): Tungsten laminated composites

    DOE PAGES

    Reiser, Jens; Garrison, Lauren M.; Greuner, Henri; ...

    2017-08-02

    Here we elucidate the mechanisms of plastic deformation and fracture of tungsten laminated composites. Furthermore our results suggest that the mechanical response of the laminates is governed by the plastic deformation of the tungsten plies. In most cases, the impact of the interlayer is of secondary importance.

  8. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

  9. The Tri-lab Tantalum Strength Consortium

    NASA Astrophysics Data System (ADS)

    Flicker, Dawn G.; Arsenlis, Thomas A.; Austin, Ryan; Barton, Nathan R.; Benage, John F.; Bronkhorst, Curt A.; Brown, Justin L.; Brown, Staci L.; Buttler, William T.; Shen, Shuh-Rong; Dattelbaum, Dana M.; Fensin, Sayu J.; Gray, George T., III; Lane, J. Matthew D.; Lim, Hojun; Luscher, D. J.; Mattsson, Thomas R.; McNabb, Dennis P.; Remington, Bruce A.; Park, Hye-Sook; Prisbrey, Shon T.; Prime, Michael B.; Scharff, Robert J.; Schraad, Mark W.; Sun, Amy C.

    2017-06-01

    A Tri-lab consortium of experimentalists and theorists at SNL, LLNL, and LANL is joining forces to better understand tantalum strength across an unprecedented range of loading conditions. The team is collecting and comparing tantalum strength data from Hopkinson bar, Taylor cylinder, guns, Z, Omega and the NIF. These experiments, all using Ta from a single lot, span pressures from tenths to hundreds of GPa and strain rates from 103 to 107. New experiments are underway to provide more overlap between the platforms. The experiments are being simulated with a variety of models in order to determine which processes are important under which conditions. The presentation will show results to date. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  10. Observation of oxide particles below the apparent oxygen solubility limit in tantalum

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1973-01-01

    The apparent solubility of oxygen in polycrystalline tantalum as determined by the X-ray diffraction lattice parameter technique is about 1.63 atomic percent at 820 C. However, oxide particles were identified in samples containing as low as 0.5 atomic percent of oxygen. These oxide particles were present at the grain boundaries and within the grains. The number of oxide particles increased with increasing oxygen concentration in tantalum. The presence of oxide particles suggests that the true solubility of oxygen in the polycrystalline tantalum metal is probably significantly lower than that reported in the literature.

  11. Simultaneous determination of tantalum and hafnium in silicates by neutron activation analysis

    USGS Publications Warehouse

    Greenland, L.P.

    1968-01-01

    A neutron activation procedure suitable for the routine determination of tantalum and hafnium in silicates is described. The irradiated sample is fused with sodium peroxide and leached, and the insoluble hydroxides are dissolved in dilute hydrofluoric acid-hydrochloric acid. After LaF3 and AgCl scavenges, tantalum and hafnium are separated by anion exchange. Tantalum is obtained radiochemically pure; 233Pa and 95Zr contaminants in the hafnium fraction are resolved by ??-ray spectrometry. The chemical yield of the procedure is detemined after counting by re-irradiation. Values for the 8 U.S. Geological Survey standard rocks are reported. ?? 1968.

  12. Synthesis of Coral-Like Tantalum Oxide Films via Anodization in Mixed Organic-Inorganic Electrolytes

    PubMed Central

    Yu, Hongbin; Zhu, Suiyi; Yang, Xia; Wang, Xinhong; Sun, Hongwei; Huo, Mingxin

    2013-01-01

    We report a simple method to fabricate nano-porous tantalum oxide films via anodization with Ta foils as the anode at room temperature. A mixture of ethylene glycol, phosphoric acid, NH4F and H2O was used as the electrolyte where the nano-porous tantalum oxide could be synthesized by anodizing a tantalum foil for 1 h at 20 V in a two–electrode configuration. The as-prepared porous film exhibited a continuous, uniform and coral-like morphology. The diameters of pores ranged from 30 nm to 50 nm. The pores interlaced each other and the depth was about 150 nm. After calcination, the as-synthesized amorphous tantalum oxide could be crystallized to the orthorhombic crystal system. As observed in photocatalytic experiments, the coral-like tantalum oxide exhibited a higher photocatalytic activity for the degradation of phenol than that with a compact surface morphology, and the elimination rate of phenol increased by 66.7%. PMID:23799106

  13. Mechanical properties of niobium radio-frequency cavities

    DOE PAGES

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; ...

    2015-07-02

    Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 722 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structure have been conducted up to the tensile strength of the material. Finite-element analysismore » of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young's modulus value of 88.5 GPa and a Poisson's ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities with large crystals are comparable to those of cavities made of fine-grain niobium.« less

  14. Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies

    NASA Astrophysics Data System (ADS)

    Skoog, Shelby A.; Kumar, Girish; Goering, Peter L.; Williams, Brian; Stiglich, Jack; Narayan, Roger J.

    2016-06-01

    Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.

  15. Ferroelectric capacitor with reduced imprint

    DOEpatents

    Evans, Jr., Joseph T.; Warren, William L.; Tuttle, Bruce A.; Dimos, Duane B.; Pike, Gordon E.

    1997-01-01

    An improved ferroelectric capacitor exhibiting reduced imprint effects in comparison to prior art capacitors. A capacitor according to the present invention includes top and bottom electrodes and a ferroelectric layer sandwiched between the top and bottom electrodes, the ferroelectric layer comprising a perovskite structure of the chemical composition ABO.sub.3 wherein the B-site comprises first and second elements and a dopant element that has an oxidation state greater than +4. The concentration of the dopant is sufficient to reduce shifts in the coercive voltage of the capacitor with time. In the preferred embodiment of the present invention, the ferroelectric element comprises Pb in the A-site, and the first and second elements are Zr and Ti, respectively. The preferred dopant is chosen from the group consisting of Niobium, Tantalum, and Tungsten. In the preferred embodiment of the present invention, the dopant occupies between 1 and 8% of the B-sites.

  16. Carbide and carbonitride surface treatment method for refractory metals

    DOEpatents

    Meyer, G.A.; Schildbach, M.A.

    1996-12-03

    A carbide and carbonitride surface treatment method for refractory metals is provided, in steps including, heating a part formed of boron, chromium, hafnium, molybdenum, niobium, tantalum, titanium, tungsten or zirconium, or alloys thereof, in an evacuated chamber and then introducing reaction gases including nitrogen and hydrogen, either in elemental or water vapor form, which react with a source of elemental carbon to form carbon-containing gaseous reactants which then react with the metal part to form the desired surface layer. Apparatus for practicing the method is also provided, in the form of a carbide and carbonitride surface treatment system including a reaction chamber, a source of elemental carbon, a heating subassembly and a source of reaction gases. Alternative methods of providing the elemental carbon and the reaction gases are provided, as well as methods of supporting the metal part, evacuating the chamber with a vacuum subassembly and heating all of the components to the desired temperature. 5 figs.

  17. Feasibility of EB Welded Hastelloy X and Combination of Refractory Metals

    NASA Technical Reports Server (NTRS)

    Martinez, Diana A.

    2004-01-01

    As NASA continues to expand its horizon, exploration and discovery creates the need of advancement in technology. The Jupiter Icy Moon Orbiter's (JIMO) mission to explore and document the outer surfaces, rate the possibility of holding potential life forms, etc. within the three moons (Callisto, Ganymede, and Europa) proves to be challenging. The orbiter itself consists of many sections including: the nuclear reactor and the power conversion system, the radiator panels, and the thrusters and antenna. The nuclear reactor serves as a power source, and if successfully developed, can operate for extended periods. During the duration of my tenure at NASA Glenn Research Center's (NASA GRC) Advanced Metallics Branch, I was assigned to assist Frank J. Ritzert on analyzing the feasibility of the Electron Beam Welded Hastelloy X (HX), a nickel-based superalloy, to Niobium- 1 %Zirconium (Nb-1 Zr) and other refractory metals/alloys including Tantalum, Molybdenum, Tungsten, and Rhenium alloys. This welding technique is going to be used for the nuclear reactor within JIMO.

  18. Carbide and carbonitride surface treatment method for refractory metals

    DOEpatents

    Meyer, Glenn A.; Schildbach, Marcus A.

    1996-01-01

    A carbide and carbonitride surface treatment method for refractory metals is provided, in steps including, heating a part formed of boron, chromium, hafnium, molybdenum, niobium, tantalum, titanium, tungsten or zirconium, or alloys thereof, in an evacuated chamber and then introducing reaction gases including nitrogen and hydrogen, either in elemental or water vapor form, which react with a source of elemental carbon to form carbon-containing gaseous reactants which then react with the metal part to form the desired surface layer. Apparatus for practicing the method is also provided, in the form of a carbide and carbonitride surface treatment system (10) including a reaction chamber (14), a source of elemental carbon (17), a heating subassembly (20) and a source of reaction gases (23). Alternative methods of providing the elemental carbon (17) and the reaction gases (23) are provided, as well as methods of supporting the metal part (12), evacuating the chamber (14) with a vacuum subassembly (18) and heating all of the components to the desired temperature.

  19. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VIImore » of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.« less

  20. Nanocomposite anode materials for sodium-ion batteries

    DOEpatents

    Manthiram, Arumugam; Kim Il, Tae; Allcorn, Eric

    2016-06-14

    The disclosure relates to an anode material for a sodium-ion battery having the general formula AO.sub.x--C or AC.sub.x--C, where A is aluminum (Al), magnesium (Mg), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zirconium (Zr), molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), silicon (Si), or any combinations thereof. The anode material also contains an electrochemically active nanoparticles within the matrix. The nanoparticle may react with sodium ion (Na.sup.+) when placed in the anode of a sodium-ion battery. In more specific embodiments, the anode material may have the general formula M.sub.ySb-M'O.sub.x--C, Sb-MO.sub.x--C, M.sub.ySn-M'C.sub.x--C, or Sn-MC.sub.x--C. The disclosure also relates to rechargeable sodium-ion batteries containing these materials and methods of making these materials.

  1. Braze system and method for reducing strain in a braze joint

    DOEpatents

    Cadden, Charles H.; Goods, Steven H.; Prantil, Vincent C.

    2004-05-11

    A system for joining a pair of structural members having widely differing coefficients of thermal expansion is disclosed. A mechanically "thick" foil is made by dispersing a refractory metal powder, such as molybdenum, niobium, tantalum, or tungsten into a quantity of a liquid, high expansion metal such as copper, silver, or gold, casting an ingot of the mixture, and then cutting sections of the ingot about 1 mm thick to provide the foil member. These foil members are shaped, and assembled between surfaces of structural members for joining, together with a layer of a braze alloy on either side of the foil member capable of wetting both the surfaces of the structural members and the foil. The assembled body is then heated to melt the braze alloy and join the assembled structure. The foil member subsequently absorbs the mechanical strain generated by the differential contraction of the cooling members that results from the difference in the coefficients of thermal expansion of the members.

  2. Static ferroelectric memory transistor having improved data retention

    DOEpatents

    Evans, Jr., Joseph T.; Warren, William L.; Tuttle, Bruce A.

    1996-01-01

    An improved ferroelectric FET structure in which the ferroelectric layer is doped to reduce retention loss. A ferroelectric FET according to the present invention includes a semiconductor layer having first and second contacts thereon, the first and second contacts being separated from one another. The ferroelectric FET also includes a bottom electrode and a ferroelectric layer which is sandwiched between the semiconductor layer and the bottom electrode. The ferroelectric layer is constructed from a perovskite structure of the chemical composition ABO.sub.3 wherein the B site comprises first and second elements and a dopant element that has an oxidation state greater than +4 in sufficient concentration to impede shifts in the resistance measured between the first and second contacts with time. The ferroelectric FET structure preferably comprises Pb in the A-site. The first and second elements are preferably Zr and Ti, respectively. The preferred B-site dopants are Niobium, Tantalum, and Tungsten at concentrations between 1% and 8%.

  3. The Role of the Component Metals in the Toxicity of Military-Grade Tungsten Alloy

    PubMed Central

    Emond, Christy A.; Vergara, Vernieda B.; Lombardini, Eric D.; Mog, Steven R.; Kalinich, John F.

    2015-01-01

    Tungsten-based composites have been recommended as a suitable replacement for depleted uranium. Unfortunately, one of these mixtures composed of tungsten (W), nickel (Ni) and cobalt (Co) induced rhabdomyosarcomas when implanted into the leg muscle of laboratory rats and mice to simulate a shrapnel wound. The question arose as to whether the neoplastic effect of the mixture could be solely attributed to one or more of the metal components. To investigate this possibility, pellets with one or two of the component metals replaced with an identical amount of the biologically-inert metal tantalum (Ta) were manufactured and implanted into the quadriceps of B6C3F1 mice. The mice were followed for two years to assess potential adverse health effects. Implantation with WTa, CoTa or WNiTa resulted in decreased survival, but not to the level reported for WNiCo. Sarcomas in the implanted muscle were found in 20% of the CoTa-implanted mice and 5% of the WTa- and WCoTa-implanted rats and mice, far below the 80% reported for WNiCo-implanted mice. The data obtained from this study suggested that no single metal is solely responsible for the neoplastic effects of WNiCo and that a synergistic effect of the three metals in tumor development was likely. PMID:29051474

  4. Effect of Post-HALT Annealing on Leakage Currents in Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2010-01-01

    Degradation of leakage currents is often observed during life testing of tantalum capacitors and is sometimes attributed to the field-induced crystallization in amorphous anodic tantalum pentoxide dielectrics. However, degradation of leakage currents and the possibility of annealing of degraded capacitors have not been investigated yet. In this work the effect of annealing after highly accelerated life testing (HALT) on leakage currents in various types of solid tantalum capacitors was analyzed. Variations of leakage currents with time during annealing at temperatures from 125 oC to 180 oC, thermally stimulated depolarization (TSD) currents, and I-V characteristics were measured to understand the conduction mechanism and the reason for current degradation. Annealing resulted in a gradual decrease of leakage currents and restored their initial values. Repeat HALT after annealing resulted in reproducible degradation of leakage currents. The observed results are explained based on ionic charge instability (drift/diffusion of oxygen vacancies) in the tantalum pentoxide dielectrics using a modified Schottky conduction mechanism.

  5. The Evaluation of Hydroxyapatite (HA) Coated and Uncoated Porous Tantalum for Biomedical Material Applications

    NASA Astrophysics Data System (ADS)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-04-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  6. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  7. Cost Estimate for Molybdenum and Tantalum Refractory Metal Alloy Flow Circuit Concepts

    NASA Technical Reports Server (NTRS)

    Hickman, Robert R.; Martin, James J.; Schmidt, George R.; Godfroy, Thomas J.; Bryhan, A.J.

    2010-01-01

    The Early Flight Fission-Test Facilities (EFF-TF) team at NASA Marshall Space Flight Center (MSFC) has been tasked by the Naval Reactors Prime Contract Team (NRPCT) to provide a cost and delivery rough order of magnitude estimate for a refractory metal-based lithium (Li) flow circuit. The design is based on the stainless steel Li flow circuit that is currently being assembled for an NRPCT task underway at the EFF-TF. While geometrically the flow circuit is not representative of a final flight prototype, knowledge has been gained to quantify (time and cost) the materials, manufacturing, fabrication, assembly, and operations to produce a testable configuration. This Technical Memorandum (TM) also identifies the following key issues that need to be addressed by the fabrication process: Alloy selection and forming, cost and availability, welding, bending, machining, assembly, and instrumentation. Several candidate materials were identified by NRPCT including molybdenum (Mo) alloy (Mo-47.5 %Re), tantalum (Ta) alloys (T-111, ASTAR-811C), and niobium (Nb) alloy (Nb-1 %Zr). This TM is focused only on the Mo and Ta alloys, since they are of higher concern to the ongoing effort. The initial estimate to complete a Mo-47%Re system ready for testing is =$9,000k over a period of 30 mo. The initial estimate to complete a T-111 or ASTAR-811C system ready for testing is =$12,000k over a period of 36 mo.

  8. Surface processing for bulk niobium superconducting radio frequency cavities

    NASA Astrophysics Data System (ADS)

    Kelly, M. P.; Reid, T.

    2017-04-01

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2-4 mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single- or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies on real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and ‘nitrogen doping’ of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.

  9. Surface processing for bulk niobium superconducting radio frequency cavities

    DOE PAGES

    Kelly, M. P.; Reid, T.

    2017-02-21

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2-4mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single-or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies onmore » real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and 'nitrogen doping' of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.« less

  10. Surface processing for bulk niobium superconducting radio frequency cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, M. P.; Reid, T.

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2-4mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single-or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies onmore » real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and 'nitrogen doping' of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.« less

  11. Tantalum modified ferritic iron base alloys

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.; Blankenship, C. P. (Inventor)

    1977-01-01

    Strong ferritic alloys of the Fe-CR-Al type containing 0.4% to 2% tantalum were developed. These alloys have improved fabricability without sacrificing high temperature strength and oxidation resistance in the 800 C (1475 F) to 1040 C (1900 F) range.

  12. Determination of niobium in rocks by an isotope dilution spectrophotometric method

    USGS Publications Warehouse

    Greenland, L.P.; Campbell, E.Y.

    1970-01-01

    Rocks and minerals are fused with sodium peroxide in the presence of carrierfree 95Nb. The fusion cake is leached with water and the precipitate dissolved in hydrofluoric-sulfuric acid mixture. Niobium is extracted into methyl isobutyl ketone and further purified by ion exchange. The amount of niobium is determined spectrophotometrically with 4-(2-pyridylazo)-resorcinol, and the chemical yield of the separations determined by counting 95Nb. This procedure is faster and less sensitive to interferences than previously proposed methods for determining niobium in rocks.The high purity of the separated niobium makes the method applicable to nearly all matrices. ?? 1970.

  13. Effect of Compressive Stresses on Leakage Currents in Microchip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2012-01-01

    Microchip tantalum capacitors are manufactured using new technologies that allow for production of small size capacitors (down to EIA case size 0402) with volumetric efficiency much greater than for regular chip capacitors. Due to a small size of the parts and leadless design they might be more sensitive to mechanical stresses that develop after soldering onto printed wiring boards (PWB) compared to standard chip capacitors. In this work, the effect of compressive stresses on leakage currents in capacitors has been investigated in the range of stresses up to 200 MPa. Significant, up to three orders of magnitude, variations of currents were observed after the stress exceeds a certain critical level that varied from 10 MPa to 180 MPa for capacitors used in this study. A stress-induced generation of electron traps in tantalum pentoxide dielectric is suggested to explain reversible variations of leakage currents in tantalum capacitors. Thermo-mechanical characteristics of microchip capacitors have been studied to estimate the level of stresses caused by assembly onto PWB and assess the risk of stress-related degradation and failures. Keywords: tantalum capacitors, leakage current, soldering, reliability, mechanical stress.

  14. The preparation of tantalum powder using a MR-EMR combination process

    NASA Astrophysics Data System (ADS)

    Yoon, Jae Sik; Kim, Byung Il

    2007-04-01

    In the conventional metallothermic reduction (MR) process used to obtain tantalum powder in batch-type operation, it is difficult to control the morphology and location of the tantalum deposits. In contrast, an electronically mediated reaction (EMR) process is capable of overcoming this difficulty. It has the advantage of being a continuous process, but has the disadvantage of a poor reduction yield. A process known as the MR-EMR combination process is able to overcome the shortcomings of the MR and EMR processes. In this study, an MR-EMR combination process is applied to the production of tantalum powder via sodium reduction of K2TaF7. In the MR-EMR combination process, the total charge passed through an external circuit and the average particle size (FSSS) increase as the reduction temperature increases. In addition, the proportion of fine particles (-325 mesh) decreases as the reduction temperature increasess. The tantalum yield improved from 65 to 74% as the reduction temperature increased. Taking into account the charge, impurities, morphology, particle size and yield, a reduction temperature of 1123 K was found to be optimum for the MR-EMR combination process.

  15. Deuterium trapping in tungsten

    NASA Astrophysics Data System (ADS)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  16. Crystallography and Morphology of Niobium Carbide in As-Cast HP-Niobium Reformer Tubes

    NASA Astrophysics Data System (ADS)

    Buchanan, Karl G.; Kral, Milo V.

    2012-06-01

    The microstructures of two as-cast heats of niobium-modified HP stainless steels were characterized. Particular attention was paid to the interdendritic niobium-rich carbides formed during solidification of these alloys. At low magnifications, these precipitates are grouped in colonies of similar lamellae. Higher magnifications revealed that the lamellae actually obtain two distinct morphologies. The type I morphology exhibits broad planar interfaces with a smooth platelike shape. Type II lamellae have undulating interfaces and an overall reticulated shape. To provide further insight into the origin of these two different morphologies, the microstructure and crystallography of each have been studied in detail using high resolution scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (electron backscatter diffraction (EBSD), selected area diffraction (SAD), and convergent beam electron diffraction (CBED)), and energy dispersive X-ray spectroscopy.

  17. High temperature fuel/emitter system for advanced thermionic fuel elements

    NASA Astrophysics Data System (ADS)

    Moeller, Helen H.; Bremser, Albert H.; Gontar, Alexander; Fiviesky, Evgeny

    1997-01-01

    Specialists in space applications are currently focusing on bimodal power systems designed to provide both electric power and thermal propulsion (Kennedy, 1994 and Houts, 1995). Our work showed that thermionics is a viable technology for nuclear bimodal power systems. We demonstrated that materials for a thermionic fuel-emitter combination capable of performing at operating temperatures of 2473 K are not only possible but available. The objective of this work, funded by the US Department of Energy, Office of Space and Defense Power Systems, was to evaluate the compatibility of fuel material consisting of an uranium carbide/tantalum carbide solid solution with an emitter material consisting of a monocrystalline tungsten-niobium alloy. The uranium loading of the fuel material was 70 mole% uranium carbide. The program was successfully accomplished by a B&W/SIA LUTCH team. Its workscope was integrated with tasks being performed at both Babcock & Wilcox, Lynchburg Research Center, Lynchburg, Virginia, and SIA LUTCH, Podolsk, Russia. Samples were fabricated by LUTCH and seven thermal tests were performed in a hydrogen atmosphere. The first preliminary test was performed at 2273 K by LUTCH, and the remaining six tests were performed At B&W. Three tests were performed at 2273 K, two at 2373 K, and the final test at 2473 K. The results showed that the fuel and emitter materials were compatible in the presence of hydrogen. No evidence of liquid formation, dissolution of the uranium carbide from the uranium carbide/tantalum carbide solid solution, or diffusion of the uranium into the monocrystalline tungsten alloy was observed. Among the highlights of the program was the successful export of the fuel samples from Russia and their import into the US by commercial transport. This paper will discuss the technical aspects of this work.

  18. Reliability of High-Voltage Tantalum Capacitors. Parts 3 and 4)

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2010-01-01

    Weibull grading test is a powerful technique that allows selection and reliability rating of solid tantalum capacitors for military and space applications. However, inaccuracies in the existing method and non-adequate acceleration factors can result in significant, up to three orders of magnitude, errors in the calculated failure rate of capacitors. This paper analyzes deficiencies of the existing technique and recommends more accurate method of calculations. A physical model presenting failures of tantalum capacitors as time-dependent-dielectric-breakdown is used to determine voltage and temperature acceleration factors and select adequate Weibull grading test conditions. This model is verified by highly accelerated life testing (HALT) at different temperature and voltage conditions for three types of solid chip tantalum capacitors. It is shown that parameters of the model and acceleration factors can be calculated using a general log-linear relationship for the characteristic life with two stress levels.

  19. Nonresonant valence-to-core x-ray emission spectroscopy of niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravel, Bruce; Kropf, A. Jeremy; Yang, Dali

    The valence-to-core (V2C) portion of x-ray emission spectroscopy (XES) measures the electron states close to the Fermi level. These states are involved in bonding, thus providing a measure of the chemistry of the material. For this paper, we show the V2C XES spectra for several niobium compounds. The Kβ" peak in the V2C XES results from the transition of a ligand 2s electron into the 1s core-hole of the niobium, a transition allowed by hybridization with the niobium 4p . This location in energy of this weak peak shows a strong ligand dependence, thus providing a sensitive probe of themore » ligand environment about the niobium.« less

  20. Nonresonant valence-to-core x-ray emission spectroscopy of niobium

    DOE PAGES

    Ravel, Bruce; Kropf, A. Jeremy; Yang, Dali; ...

    2018-03-23

    The valence-to-core (V2C) portion of x-ray emission spectroscopy (XES) measures the electron states close to the Fermi level. These states are involved in bonding, thus providing a measure of the chemistry of the material. For this paper, we show the V2C XES spectra for several niobium compounds. The Kβ" peak in the V2C XES results from the transition of a ligand 2s electron into the 1s core-hole of the niobium, a transition allowed by hybridization with the niobium 4p . This location in energy of this weak peak shows a strong ligand dependence, thus providing a sensitive probe of themore » ligand environment about the niobium.« less

  1. Surface nanotexturing of tantalum by laser ablation in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barmina, E V; Simakin, Aleksandr V; Shafeev, Georgii A

    2009-01-31

    Surface nanotexturing of tantalum by ablation with short laser pulses in water has been studied experimentally using three ablation sources: a neodymium laser with a pulse duration of 350 ps, an excimer laser (248 nm) with a pulse duration of 5 ps and a Ti:sapphire laser with a pulse duration of 180 fs. The morphology of the nanotextured surfaces has been examined using a nanoprofilometer and field emission scanning electron microscope. The results demonstrate that the average size of the hillocks produced on the target surface depends on the laser energy density and is {approx}200 nm at an energy densitymore » approaching the laser-melting threshold of tantalum and a pulse duration of 350 ps. Their surface density reaches 10{sup 6} cm{sup -2}. At a pulse duration of 5 ps, the average hillock size is 60-70 nm. Nanotexturing is accompanied by changes in the absorption spectrum of the tantalum surface in the UV and visible spectral regions. The possible mechanisms of surface nanotexturing and potential applications of this effect are discussed. (nanostructures)« less

  2. Tantalum protective coatings for fusion reactor applications

    NASA Astrophysics Data System (ADS)

    Brossa, Francesco; Piatti, Giovanni; Bardy, Michel

    Tantalum has a very low sputtering yield, high melting point, low vapour pressure and good mechanical properties at low and high temperatures, so it is a very interesting candidate for the first wall and blanket structural components. Tantalum coatings overcome the problems of fabrication and joining bulk Ta, thus reducing also dead weight and cost. Ta coatings were produced by chemical vapour deposition and plasma spraying on four conventional structural materials: Al, Cu, AISI 316 L and Inconel 600. The conditions which improve adherence have been studied. The composition of the films was determined by chemical means and by X-ray analysis. Metallographie examination was employed to define the morphological structure of the deposits. The adherence of the coatings was determined by subjecting the samples to bend tests and to thermal shocks.

  3. A Review of the Science and Technology of Cathodes from the Viewpoint of Spacecraft TWT Applications

    DTIC Science & Technology

    1980-06-01

    thermionic emitters for various applications. Of the pure metals, only tungsten , rhenium , and tantalum have sufficiently high melting temperatures to yield...the activation process. These ele- ments, carbon , zirconium, magnesium, manganese, aluminum, silicon, and, perhaps, tungsten , were originally added to...in the cavity. The porous tungsten plug has a density between 73 to 83% of the maxi- mum theoretical density of tungsten . The carbonates are

  4. Effects of severe stressing on tantalum capacitors

    NASA Technical Reports Server (NTRS)

    Shakar, J. F.; Fairfield, E. H.

    1981-01-01

    The ultimate capabilities of an all tantalum capacitor were determined and evaluated. The evaluation included: 175 C life; 100 cycle thermal shock; 70 g random vibration; 3000 g shock; and 90 C ase ripple current.

  5. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells

    PubMed Central

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2018-01-01

    Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as transmission electron microscopy (TEM). The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs) were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta2O5 nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro. PMID:29614022

  6. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells.

    PubMed

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2018-04-03

    Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as transmission electron microscopy (TEM). The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs) were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta₂O₅ nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.

  7. Direct Electrochemical Preparation of Cobalt, Tungsten, and Tungsten Carbide from Cemented Carbide Scrap

    NASA Astrophysics Data System (ADS)

    Xiao, Xiangjun; Xi, Xiaoli; Nie, Zuoren; Zhang, Liwen; Ma, Liwen

    2017-02-01

    A novel process of preparing cobalt, tungsten, and tungsten carbide powders from cemented carbide scrap by molten salt electrolysis has been investigated in this paper. In this experiment, WC-6Co and NaCl-KCl salt were used as sacrificial anode and electrolyte, respectively. The dissolution potential of cobalt and WC was determined by linear sweep voltammetry to be 0 and 0.6 V ( vs Ag/AgCl), respectively. Furthermore, the electrochemical behavior of cobalt and tungsten ions was investigated by a variety of electrochemical techniques. Results of cyclic voltammetry (CV) and square-wave voltammetry show that the cobalt and tungsten ions existed as Co2+ and W2+ on melts, respectively. The effect of applied voltage, electrolysis current, and electrolysis times on the composition of the product was studied. Results showed that pure cobalt powder can be obtained when the electrolysis potential is lower than 0.6 V or during low current and short times. Double-cathode and two-stage electrolysis was utilized for the preparation of cobalt, tungsten carbide, and tungsten powders. Additionally, X-ray diffraction results confirm that the product collected at cathodes 1 and 2 is pure Co and WC, respectively. Pure tungsten powder was obtained after electrolysis of the second part. Scanning electron microscope results show that the diameters of tungsten, tungsten carbide, and cobalt powder are smaller than 100, 200, and 200 nm, respectively.

  8. Ceramic-metal composite article and joining method

    DOEpatents

    Kang, Shinhoo; Selverian, John H.; Kim, Hans J.; Dunn, Edmund M.; Kim, Kyung S.

    1992-01-01

    A ceramic-metal article including a ceramic rod, a metal rod, and a braze joining the ceramic and metal rods at a braze area of a coaxial bore in the metal rod. The bore gradually decreases in diameter, having an inward seat area sized for close sliding fit about the ceramic, a larger brazing area near the joint end, and a void area intermediate the braze and seat areas. The ceramic is seated without brazing in the bore seat area. The side wall between the brazing area and the metal outer surface is about 0.030-0.080 inch. The braze includes an inner braze layer, an outer braze layer, and an interlayer about 0.030-0.090 inch thick. A shoulder between the brazing and void areas supports the interlayer during bonding while preventing bonding between the void area and the ceramic member, leaving a void space between the void area and the ceramic member. A venting orifice extends generally radially through the metal member from the outer surface to the void space. The braze layers are palladium, platinum, gold, silver, copper, nickel, indium, chromium, molybdenum, niobium, iron, aluminum, or alloys thereof. Preferred is a gold-palladium-nickel brazing alloy. The interlayer is nickel, molybdenum, copper, tantalum, tungsten, niobium, aluminum, cobalt, iron, or an alloy thereof.

  9. Ceramic-metal composite article and joining method

    DOEpatents

    Kang, S.; Selverian, J.H.; Kim, H.J.; Dunn, E.M.; Kim, K.S.

    1992-04-28

    A ceramic-metal article including a ceramic rod, a metal rod, and a braze joining the ceramic and metal rods at a braze area of a coaxial bore in the metal rod is described. The bore gradually decreases in diameter, having an inward seat area sized for close sliding fit about the ceramic, a larger brazing area near the joint end, and a void area intermediate the braze and seat areas. The ceramic is seated without brazing in the bore seat area. The side wall between the brazing area and the metal outer surface is about 0.030-0.080 inch. The braze includes an inner braze layer, an outer braze layer, and an interlayer about 0.030-0.090 inch thick. A shoulder between the brazing and void areas supports the interlayer during bonding while preventing bonding between the void area and the ceramic member, leaving a void space between the void area and the ceramic member. A venting orifice extends generally radially through the metal member from the outer surface to the void space. The braze layers are palladium, platinum, gold, silver, copper, nickel, indium, chromium, molybdenum, niobium, iron, aluminum, or alloys thereof. Preferred is a gold-palladium-nickel brazing alloy. The interlayer is nickel, molybdenum, copper, tantalum, tungsten, niobium, aluminum, cobalt, iron, or an alloy thereof. 4 figs.

  10. Random Vibration Testing of Advanced Wet Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2015-01-01

    Advanced wet tantalum capacitors allow for improved performance of power supply systems along with substantial reduction of size and weight of the systems that is especially beneficial for space electronics. Due to launch-related stresses, acceptance testing of all space systems includes random vibration test (RVT). However, many types of advanced wet tantalum capacitors cannot pass consistently RVT at conditions specified in MIL-PRF-39006, which impedes their use in space projects. This requires a closer look at the existing requirements, modes and mechanisms of failures, specifics of test conditions, and acceptance criteria. In this work, different lots of advanced wet tantalum capacitors from four manufacturers have been tested at step stress random vibration conditions while their currents were monitored before, during, and after the testing. It has been shown that the robustness of the parts and their reliability are mostly due to effective self-healing processes and limited current spiking or minor scintillations caused by RVT do not increase the risk of failures during operation. A simple model for scintillations events has been used to simulate current spiking during RVT and optimize test conditions. The significance of scintillations and possible effects of gas generation have been discussed and test acceptance criteria for limited current spiking have been suggested.

  11. Effects of substrate temperature on properties of pulsed dc reactively sputtered tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Jain, Pushkar; Juneja, Jasbir S.; Bhagwat, Vinay; Rymaszewski, Eugene J.; Lu, Toh-Ming; Cale, Timothy S.

    2005-05-01

    The effects of substrate heating on the stoichiometry and the electrical properties of pulsed dc reactively sputtered tantalum oxide films over a range of film thickness (0.14 to 5.4 μm) are discussed. The film stoichiometry, and hence the electrical properties, of tantalum oxide films; e.g., breakdown field, leakage current density, dielectric constant, and dielectric loss are compared for two different cases: (a) when no intentional substrate/film cooling is provided, and (b) when the substrate is water cooled during deposition. All other operating conditions are the same, and the film thickness is directly related to deposition time. The tantalum oxide films deposited on the water-cooled substrates are stoichiometric, and exhibit excellent electrical properties over the entire range of film thickness. ``Noncooled'' tantalum oxide films are stoichiometric up to ~1 μm film thickness, beyond that the deposited oxide is increasingly nonstoichiometric. The presence of partially oxidized Ta in thicker (>~1 μm) noncooled tantalum oxide films causes a lower breakdown field, higher leakage current density, higher apparent dielectric constant, and dielectric loss. The growth of nonstoichiometric tantalum oxide in thicker noncooled films is attributed to decreased surface oxygen concentration due to oxygen recombination and desorption at higher film temperatures (>~100 °C). The quantitative results presented reflect experience with a specific piece of equipment; however, the procedures presented can be used to characterize deposition processes in which film stoichiometry can change.

  12. Machine Gun Liner Bond Strength

    DTIC Science & Technology

    2007-08-01

    explosive bonding of pure tantalum, several tantalum alloys, and Stellite 25 (an alloy of cobalt, chrome , nickel, and tungsten) in a liner...smoothly as elastic stresses increase in the plug and liner. At a certain level of displacement, the load reaches a peak and then drops sharply. The

  13. Guidelines for the selection and application of tantalum electrolytic capacitors in highly reliable equipment

    NASA Technical Reports Server (NTRS)

    Holladay, A. M.

    1978-01-01

    Guidelines are given for the selection and application of three types of tantalum electrolytic capacitors in current use in the design of electrical and electronic circuits for space flight missions. In addition, the guidelines supplement requirements of existing military specifications used in the procurement of capacitors. A need exists for these guidelines to assist designers in preventing some of the recurring, serious problems experienced with tantalum electrolytic capacitors in the recent past. The three types of capacitors covered by these guidelines are; solid, wet foil, and tantalum cased wet slug.

  14. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    NASA Astrophysics Data System (ADS)

    Richardson, M.; Sankaranarayanan, S. K. R. S.; Bhethanabotla, V. R.

    2014-06-01

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  15. Electronic transitions of tantalum monofluoride

    NASA Astrophysics Data System (ADS)

    Ng, K. F.; Zou, Wenli; Liu, Wenjian; Cheung, A. S.-C.

    2017-03-01

    The electronic transition spectrum of the tantalum monofluoride (TaF) molecule in the spectral region between 448 and 560 nm has been studied using the technique of laser-ablation/reaction free jet expansion and laser induced fluorescence spectroscopy. The TaF molecule was produced by reacting laser-ablated tantalum atoms with sulfur hexafluoride gas seeded in argon. Twenty-two vibrational bands with resolved rotational structure have been recorded and analyzed, which were organized into seven electronic transitions. The X3Σ-(0+) state has been identified to be the ground state and the determined equilibrium bond length, re, and vibrational frequency, ωe, are 1.8184 Å and 700.1 cm-1, respectively. The low-lying Λ-S states and Ω sub-states of TaF were also theoretically studied at the MRCISD+Q level of theory with spin-orbit coupling. The Ω = 0+ and 2 sub-states from the -3Σ and 3Φ state have been found to be the ground and the first excited states, respectively, which agrees well with our experimental determinations. This work represents the first experimental investigation of the molecular structure of the TaF molecule.

  16. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    DOE PAGES

    Buchenauer, Dean A.; Karnesky, Richard A.; Fang, Zhigang Zak; ...

    2016-03-25

    Here, to address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungstenmore » being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D 2 pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation of the temperature for brittle membranes above the ductile-to-brittle transition temperature.« less

  17. First-Principles Study of Carbon and Vacancy Structures in Niobium

    DOE PAGES

    Ford, Denise C.; Zapol, Peter; Cooley, Lance D.

    2015-04-03

    The interstitial chemical impurities hydrogen, oxygen, nitrogen, and carbon are important for niobium metal production, and particularly for the optimization of niobium SRF technology. These atoms are present in refined sheets and can be absorbed into niobium during processing treatments, resulting in changes to the residual resistance and the performance of SRF cavities. A first-principles approach is taken to study the properties of carbon in niobium, and the results are compared and contrasted with the properties of the other interstitial impurities. The results indicate that C will likely form precipitates or atmospheres around defects rather than strongly bound complexes withmore » other impurities. Based on the analysis of carbon and hydrogen near niobium lattice vacancies and small vacancy chains and clusters, the formation of extended carbon chains and hydrocarbons is not likely to occur. Association of carbon with hydrogen atoms can, however, occur through the strain fields created by interstitial binding of the impurity atoms. In conclusion, calculated electronic densities of states indicate that interstitial C may have a similar effect as interstitial O on the superconducting transition temperature of Nb.« less

  18. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron Christopher; Sarobol, Pylin; Argibay, Nicolas

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. Wemore » demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.« less

  19. Synthesis, characterization, and catalytic application of ordered mesoporous carbon–niobium oxide composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Juan-Li; Gao, Shuang; Liu, Chun-Ling

    2014-11-15

    Graphical abstract: The ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process. - Highlights: • Ordered mesoporous carbon–niobium oxide composites were synthesized. • The content of Nb{sub 2}O{sub 5} in the composites could be tuned from 38 to 75%. • Niobium species were highly dispersed in amorphous carbon framework walls. • The composites exhibited good catalytic performance in the dehydration of fructose. - Abstract: Ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process using phenolic resol as carbon source, niobium chloride asmore » precursor and amphiphilic triblock copolymer Pluronic F127 as template. The resulting materials were characterized using a combination of techniques including differential scanning calorimetry–thermogravimetric analysis, N{sub 2} physical adsorption, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results show that with increasing the content of Nb{sub 2}O{sub 5} from 38 to 75% the specific surface area decreases from 306.4 to 124.5 m{sup 2} g{sup −1}, while the ordered mesoporous structure is remained. Niobium species is well dispersed in the amorphous carbon framework. The mesoporous carbon–niobium oxide composites exhibit high catalytic activity in the dehydration of fructose to 5-hydroxymethylfurfural. A 100% conversion of fructose and a 76.5% selectivity of 5-hydroxymethylfurfural were obtained over the carbon–niobium oxide composite containing 75% Nb{sub 2}O{sub 5} under the investigated reaction conditions.« less

  20. Performance and Reliability of Solid Tantalum Capacitors at Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2006-01-01

    Performance of different types of solid tantalum capacitors was evaluated at room and low temperatures, down to 15 K. The effect of temperature on frequency dependencies of capacitance, effective series resistances (ESR), leakage currents, and breakdown voltages has been investigated and analyzed. To assess thermo-mechanical robustness of the parts, several groups of loose capacitors and those soldered on FR4 boards were subjected to multiple (up to 500) temperature cycles between room temperature and 77 K. Experiments and mathematical modeling have shown that degradation in tantalum capacitors at low temperatures is mostly due to increasing resistance of the manganese cathode layer, resulting in substantial decrease of the roll-off frequency. Absorption currents follow a power law, I approximately t(sup -m), with the exponent m varying from 0.8 to 1.1. These currents do not change significantly at cryogenic conditions and the value of the exponent remains the same down to 15 K. Variations of leakage currents with voltage can be described by Pool-Frenkel and Schottky mechanisms of conductivity, with the Schottky mechanism prevailing at cryogenic conditions. Breakdown voltages of tantalum capacitors increase and the probability of scintillations decreases at cryogenic temperatures. However, breakdown voltages measured during surge current testing decrease at liquid nitrogen (LN) compared to room-temperature conditions. Results of temperature cycling suggest that tantalum capacitors are capable of withstanding multiple exposures to cryogenic conditions, but the probability of failures varies for different part types.

  1. Structural phase transitions in niobium oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Yuvakkumar, R.; Hong, Sun Ig

    2015-09-01

    Niobium oxide nanocrystals were successfully synthesized employing the green synthesis method. Phase formation, microstructure and compositional properties of 1, 4 and 7 days incubation treated samples after calcinations at 450 °C were examined using X-ray diffraction, Raman, photoluminescence (PL), infrared, X-ray photoelectron spectra and transmission electron microscopic characterizations. It was observed that phase formation of Nb2O5 nanocrystals was dependent upon the incubation period required to form stable metal oxides. The characteristic results clearly revealed that with increasing incubation and aging, the transformation of cubic, orthorhombic and monoclinic phases were observed. The uniform heating at room temperature (32 °C) and the ligation of niobium atoms due to higher phenolic constituents of utilized rambutan during aging processing plays a vital role in structural phase transitions in niobium oxide nanocrystals. The defects over a period of incubation and the intensities of the PL spectra changing over a period of aging were related to the amount of the defects induced by the phase transition.

  2. High strength uranium-tungsten alloys

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  3. Processing of Niobium-Lined M240 Machine Gun Barrels

    DTIC Science & Technology

    2014-11-01

    different materials (the gun steel and the niobium liner). A large chunk of the niobium liner in barrel 2 was torn away from the end of the liner at...it to increase the frictional bond between the liner and gun steel . The barrels with liners were hammer forged by FN. FN experienced some...

  4. Tantalum-based thin film coatings for wear resistant arthroprostheses.

    PubMed

    Balagna, C; Faga, M G; Spriano, S

    2011-10-01

    Cobalt-chromium-molybdenum alloys with high carbon content (HC-CoCrMo) are widely used as materials for arthroprosthesis, in particular in metal-on-metal (MoM) hip joints. In spite of their good wear and corrosion resistance, production of metallic wear particles and metal ion release will occur on a large time-scale. An enhancement of the metal ion level in the patient's blood and urine is often reported in clinical data. Hypersensitivity, inflammatory response and cell necrosis can occur as consequence. So implants on young patients and women on childbearing age are not so widespread. The aim of this research is the realization of a thin film coating in order to improve the biocompatibility of Co-based alloys and to reduce debris production, ion release and citotoxicity. The innovative process consists of a thermal treatment in molten salts, in order to obtain a tantalum enriched thin film coating. Tantalum is chosen because it is considered a biocompatible metal with high corrosion resistance and low ion release. Three HC-CoCrMo alloys, produced by different manufacturing processes, are tested as substrates. The coating is a thin film of TaC or it can be composed by a multilayer of two tantalum carbides and metallic tantalum, depending on the temperature of the treatment and on the carbon content of the substrate. The thin films as well the substrates are characterized from the structural, chemical and morphological point of view. Moreover mechanical behaviour of treated and untreated materials is analyzed by means of nanohardness, scratch and ball-on-disc wear tests. The coating increases the mechanical and tribological properties of HC-CoCrMo.

  5. Deformation and recrystallization behavior of super high-purity niobium for SRF cavity

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Y.; Doryo, H.; Yuasa, M.; Miyamoto, H.; Yamanaka, M.

    2017-05-01

    Deformation and recyrstallization behavior of pure niobium was investigated in order to clarify the origin of its low hydro-formability despite of its high ductility comparable with pure iron. It was found that pure niobium exhibits lower strain hardening in cold rolling compared with pure iron. Furthermore, in post-deformation annealing, the hardness of niobium decreased monotonously with an increase of temperature, and the typical sharp drop by recrystallization was not evident. This softening behavior was contrasted with the high-purity iron. It is suggested that niobium exhibit the so-called in-situ recrystallization possibly because of low elastic modulus and low accumulative plastic strain energy in spite of high melting temperature. The low hydro-formability of pure niobium sheets or tubes is caused by its low strain hardening and its unique plastic anisotropy which is associated with this recovered residual rolled texture.

  6. A preliminary deposit model for lithium-cesium-tantalum (LCT) pegmatites

    USGS Publications Warehouse

    Bradley, Dwight; McCauley, Andrew

    2013-01-01

    This report is part of an effort by the U.S. Geological Survey to update existing mineral deposit models and to develop new ones. We emphasize practical aspects of pegmatite geology that might directly or indirectly help in exploration for lithium-cesium-tantalum (LCT) pegmatites, or for assessing regions for pegmatite-related mineral resource potential. These deposits are an important link in the world’s supply chain of rare and strategic elements, accounting for about one-third of world lithium production, most of the tantalum, and all of the cesium.

  7. Deformation of Cases in High Capacitance Value Wet Tantalum Capacitors under Environmental Stresses

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2016-01-01

    Internal gas pressure in hermetic wet tantalum capacitors is created by air, electrolyte vapor, and gas generated by electrochemical reactions at the electrodes. This pressure increases substantially with temperature and time of operation due to excessive leakage currents. Deformation of the case occurs when the internal pressure exceeds pressure of the environments and can raise significantly when a part operates in space. Contrary to the cylinder case wet tantalum capacitors that have external sealing by welding and internal sealing provided by the Teflon bushing and crimping of the case, no reliable internal sealing exists in the button case capacitors. Single seal design capacitors are used for high capacitance value wet tantalum capacitors manufactured per DLA L&M drawings #04003, 04005, and 10011, and require additional analysis to assure their reliable application in space systems. In this work, leakage currents and case deformation of button case capacitors were measured during different environmental test conditions. Recommendations for derating, screening and qualification testing are given. This work is a continuation of a series of NEPP reports related to quality and reliability of wet tantalum capacitors.

  8. SRF niobium characterization using SIMS and FIB-TEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevie, F. A.

    2015-12-04

    Our understanding of superconducting radio frequency (SRF) accelerator cavities has been improved by elemental analysis at high depth resolution and by high magnification microscopy. This paper summarizes the technique development and the results obtained on poly-crystalline, large grain, and single crystal SRF niobium. Focused ion beam made possible sample preparation using transmission electron microscopy and the images obtained showed a very uniform oxide layer for all samples analyzed. Secondary ion mass spectrometry indicated the presence of a high concentration of hydrogen and the hydrogen content exhibited a relationship with improvement in performance. Depth profiles of carbon, nitrogen, and oxygen didmore » not show major differences with heat treatment. Niobium oxide less than 10 nm thick was shown to be an effective hydrogen barrier. Niobium with titanium contamination showed unexpected performance improvement.« less

  9. SEPARATION OF URANIUM FROM ZIRCONIUM AND NIOBIUM BY SOLVENT EXTRACTION

    DOEpatents

    Voiland, E.E.

    1958-05-01

    A process for separation of the uranium from zirconium and/or niobium values contained in 3 to 7M aqueous nitric acid solutions is described. This is accomplished by adding phosphoric acid anions to the nitric acid solution containing the uranium, zirconium, and/or niobium in an amount sufficient to make the solution 0.05 to 0.2M in phosphate ion and contacting the solution with an organic water-immiscible solvent such as MEK, whereby the uranyl values are taken up by the extract phase while the zirconium and niobium preferentially remain in the aqueous raffinate.

  10. Superconducting characteristics in purified tantalum-foils

    NASA Astrophysics Data System (ADS)

    Hu, Qinghua; Wang, Zhihe

    2018-07-01

    We have conducted extensive investigations on the electrical transport and magnetization on a purified tantalum foil with extremely sharp resistive transition (transition width ΔTc < 0.02 K) at 0 T and residual resistivity ratio ρ290K/ρ5K= 16.75. Many effects, such as anisotropic field-induced resistive broadening and second peak of the magnetization-hysteresis loop, are observed in the sample. The maximum upper critical field determined by criteria of R/Rn = 0.9 is about 1.08 T rather weak compared to that in cuprate and/or iron-based superconductors. Although the value of upper critical field Hc2(0) and the field dependence of effective pinning energy U show that the flux pinning potential is weaker, the critical current density Jc(2 K, 0 T) = 1.145 × 105 A/cm2 and the effect of second peak indicate that there should be higher collective vortex pinning potential in the tantalum foil. The carriers are dominated by holes with the density n = 6.6 × 1022/cm3.

  11. Catalytic Hydroamination of Alkynes and Norbornene with Neutral and Cationic Tantalum Imido Complexes

    PubMed Central

    Anderson, Laura L.; Arnold, John; Bergman, Robert G.

    2005-01-01

    Several tantalum imido complexes have been synthesized and shown to efficiently catalyze the hydroamination of internal and terminal alkynes. An unusual hydroamination/hydroarylation reaction of norbornene catalyzed by a highly electrophilic cationic tantalum imido complex is also reported. Factors affecting catalyst activity and selectivity are discussed along with mechanistic insights gained from stoichiometric reactions. PMID:15255680

  12. DEVELOPMENT OF NIOBIUM-BASE ALLOYS. Period covered January 1, 1956 to March 1, 1957

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begley, R.T. ed.

    1957-11-01

    The flow and fracture characteristics of commercial purity powder metallurgy niobium were investigated in the range 250 to --196 deg C. Niobium was found to undergo a ductile-brittle transition in the range --125 to --196 deg C, and the transition temperature range of niobium was found to be less affected by the presence of interstitial impurities than many other body-centered cubic metals. The creeprupture properties of powder metallurgy niobium were investigated at 982 and 1O93 deg C (1800 and 2OOO deg F), and the 100-hour rupture strength of commercial niobium in vacuum was determined to be sigdicantiy greater than unalloyedmore » molybdenum. The creep-rupture results suggest that small quantities of gaseous contaminants may be responslble for the high strength of commercial niobium at elevated temperatures. The oxidation behavior of nioblum was investigated in the temperature range 350 to 7OO C. At the higher temperatures, oxidation followed a linear rate law. Between 500 and 625 deg C, the rate of oxidation was found to be nearly independent of temperature. Oxygen and nitrogen contamination of welding atmospheres was studied to determine its effect on the weld properties of niobium. Nitrogen was establlshed to be very detrimental to the mechanical properties of niobium welds. High-purity niobium, having a hardness of less than 60 VPN, was produced by cage-zone refinieg techniques. (auth)« less

  13. Characterization of Tantalum Polymer Capacitors

    NASA Technical Reports Server (NTRS)

    Spence, Penelope

    2012-01-01

    Overview Reviewed data Caution must be taken when accelerating test conditions Data not useful to establish an acceleration model Introduction of new failure mechanism skewing results Evidence of Anti-Wear-Out De-doping of polymer Decreased capacitance Increased ESR Not dielectric breakdown Needs further investigation Further investigation into tantalum polymer capacitor technology Promising acceleration model for Manufacturer A Possibility for use in high-reliability space applications with suitable voltage derating.

  14. Physically-based strength model of tantalum incorporating effects of temperature, strain rate and pressure

    DOE PAGES

    Lim, Hojun; Battaile, Corbett C.; Brown, Justin L.; ...

    2016-06-14

    In this work, we develop a tantalum strength model that incorporates e ects of temperature, strain rate and pressure. Dislocation kink-pair theory is used to incorporate temperature and strain rate e ects while the pressure dependent yield is obtained through the pressure dependent shear modulus. Material constants used in the model are parameterized from tantalum single crystal tests and polycrystalline ramp compression experiments. It is shown that the proposed strength model agrees well with the temperature and strain rate dependent yield obtained from polycrystalline tantalum experiments. Furthermore, the model accurately reproduces the pressure dependent yield stresses up to 250 GPa.more » The proposed strength model is then used to conduct simulations of a Taylor cylinder impact test and validated with experiments. This approach provides a physically-based multi-scale strength model that is able to predict the plastic deformation of polycrystalline tantalum through a wide range of temperature, strain and pressure regimes.« less

  15. Vacuum pyrolysis characteristics and parameter optimization of recycling organic materials from waste tantalum capacitors.

    PubMed

    Chen, Zhenyang; Niu, Bo; Zhang, Lingen; Xu, Zhenming

    2018-01-15

    Recycling rare metal tantalum from waste tantalum capacitors (WTCs) is significant to alleviate the shortage of tantalum resource. However, environmental problems will be caused if the organic materials from WTCs are improperly disposed. This study presented a promising vacuum pyrolysis technology to recycle the organic materials from WTCs. The organics removal rate could reach 94.32wt% according to TG results. The optimal parameters were determined as 425°C, 50Pa and 30min on the basis of response surface methodology (RSM). The oil yield and residual rate was 18.09wt% and 74.94wt%, respectively. All pyrolysis products can be recycled through a reasonable route. Besides, to deeply understand the pyrolysis process, the pyrolysis mechanism was also proposed based on the product and free radical theory. This paper provides an efficient process for recycling the organic material from WTCs, which can facilitate the following tantalum recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Corrosion resistance of porous binary tantalum and titanium carbides of various composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artyunina, N.P.; Komratov, G.N.; Bolonova, E.A.

    1993-12-20

    Resistance of porous binary tantalum and titanium carbides in solutions of mineral acids and their mixtures, of several organic acids, and of ammonium and potassium hydroxide was studied. It has been shown that as the content of tantalum in a material increases its resistance in solutions of oxidizing acids is improved, but it is reduced in solutions of sulfuric and hydrofluoric acids and also in solutions of potassium hydroxide.

  17. Studies of Niobium Thin Film Produced by Energetic Vacuum Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genfa Wu; Anne-Marie Valente; H. Phillips

    2004-05-01

    An energetic vacuum deposition system has been used to study deposition energy effects on the properties of niobium thin films on copper and sapphire substrates. The absence of working gas avoids the gaseous inclusions commonly seen with sputtering deposition. A biased substrate holder controls the deposition energy. Transition temperature and residual resistivity ratio of the niobium thin films at several deposition energies are obtained together with surface morphology and crystal orientation measurements by AFM inspection, XRD and TEM analysis. The results show that niobium thin films on sapphire substrate exhibit the best cryogenic properties at deposition energy around 123 eV.more » The TEM analysis revealed that epitaxial growth of film was evident when deposition energy reaches 163 eV for sapphire substrate. Similarly, niobium thin film on copper substrate shows that film grows more oriented with higher deposition energy and grain size reaches the scale of the film thickness at the deposition energy around 153 eV.« less

  18. Process for the generation of .alpha., .beta.-unsaturated carboxylic acids and esters using niobium catalyst

    DOEpatents

    Gogate, Makarand Ratnakav; Spivey, James Jerome; Zoeller, Joseph Robert

    1999-01-01

    A process using a niobium catalyst includes the step of reacting an ester or carboxylic acid with oxygen and an alcohol in the presence a niobium catalyst to respectively produce an .alpha.,.beta.-unsaturated ester or carboxylic acid. Methanol may be used as the alcohol, and the ester or carboxylic acid may be passed over the niobium catalyst in a vapor stream containing oxygen and methanol. Alternatively, the process using a niobium catalyst may involve the step of reacting an ester and oxygen in the presence the niobium catalyst to produce an .alpha.,.beta.-unsaturated carboxylic acid. In this case the ester may be a methyl ester. In either case, niobium oxide may be used as the niobium catalyst with the niobium oxide being present on a support. The support may be an oxide selected from the group consisting of silicon oxide, aluminum oxide, titanium oxide and mixtures thereof. The catalyst may be formed by reacting niobium fluoride with the oxide serving as the support. The niobium catalyst may contain elemental niobium within the range of 1 wt % to 70 wt %, and more preferably within the range of 10 wt % to 30 wt %. The process may be operated at a temperature from 150 to 450.degree. C. and preferably from 250 to 350.degree. C. The process may be operated at a pressure from 0.1 to 15 atm. absolute and preferably from 0.5-5 atm. absolute. The flow rate of reactants may be from 10 to 10,000 L/kg.sub.(cat) /h, and preferably from 100 to 1,000 L/kg.sub.(cat) /h.

  19. Influence of Wall Material on VUV Emission from Hydrogen Plasma in H- Source

    NASA Astrophysics Data System (ADS)

    Bacal, M.; Glass-Maujean, M.; Ivanov, A. A., Jr; Nishiura, M.; Sasao, M.; Wada, M.

    2002-11-01

    The study of VUV emission from a hydrogen plasma produced in a filament discharge in a magnetic multicusp device showed that the use of tantalum and tungsten filaments leads to significant differences in the spectra. The effect of the filament material is interpreted in terms of the fresh film of this material, deposited on the wall. The synthetic spectrum convoluted with our apparatus function for the conditions of this experiment (gas temperature 500 K, electron energy 100 eV) agrees roughly well with the spectrum obtained with tungsten covered walls, but not with the spectrum obtained with tantalum covered walls. We show that in the case of tungsten covered walls the E-V singlet excitation is indeed a two-step Franck-Condon transition, going through either B or C state from an initial H2 molecule with v"=0, added to a Franck-Condon transition to highly excited states cascading to the B or C states. The excitation process to high v" states in the case of tantalum covered walls is a three step process, in which the first step is the formation by recombinative desorption on the wall of a vibrationally excited molecule with v"=1 or 2, which serves as the initial molecule in the subsequent E-V excitation through the B state. The results indicate a larger recombination coefficient of atoms on the tantalum covered wall.

  20. Initial Assessment of CSA Group Niobium Boron Based Coatings on 4340 Steel

    DTIC Science & Technology

    2017-07-01

    Technical Report ARWSB-TR-17026 Initial Assessment of CSA Group Niobium- Boron Based Coatings on 4340 Steel C.P. Mulligan...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Initial Assessment of CSA Group Niobium- Boron Based Coatings on 4340...metallographic mounts reported as (1) thin and (2) thick Niobium- Boron (Nb-B) type coatings on steel. CSA Group is interested in providing coatings for potential

  1. THE COLORIMETRIC DETERMINATION OF VANADIUM IN NIOBIUM-VANADIUM ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Articolo, O.J.

    1959-06-26

    A procedure is described for the analysis of vanadium in niobium-- vanadium alloys in the range >0.1% vanadium with an accuracy of better than 3%. The method was applied to the analysis of niobium alloys in which the nominal per cent vanadium varied between 0.3 to 4.6%. The sample is dissolved in a mixture of nitric and hydrofluoric acid and then evaporated to fumes with sulfuric acid. The niobium is hydrolyzed with sulfurous acid and separated from the vanadium by filtration. Hydrogen peroxide is added to the filtrate to form a reddish brown complex with the vanadium. The optical densitymore » of the resulting solution is obtained at 450 m mu on a model B Beckman spectrophotometer. (auth)« less

  2. Mineral resource of the month: tungsten

    USGS Publications Warehouse

    Shedd, Kim B.

    2012-01-01

    The article offers information on tungsten. It says that tungsten is a metal found in chemical compounds such as in the scheelite and ore minerals wolframite. It states that tungsten has the highest melting point and it forms a compound as hard as diamond when combined with carbon. It states that tungsten can be used as a substitute for lead in fishing weights, ammunition, and hunting shot. Moreover, China started to export tungsten materials and products instead of tungsten raw materials.

  3. [Short-term curative effects of Tantalum rod treatment in early avascular necrosis].

    PubMed

    Ye, Fu-Sheng; Ni, Zhe-Ji; Chu, Xiao-Bing; He, Bang-Jian; Li, Ju; Tong, Pei-Jian

    2013-08-01

    To explore the recent clinical curative effect of Tantalum rod in treating the early avascular necrosis. From January 2008 to November 2008, the 25 patients (39 hips) with early avascular necrosis accepted tantalum rod placement and included 9 males (11 hips) and 16 females (28 hips) with an average age of 37 years old ranging from 18 to 74 years old. Four patients (6 hips) caused by Alcoholic, 6 patients (8 hips) by hormone, 2 cases (2 hips) by traumatic, 13 cases (23 hips) by idiopathic. Steinberg preoperative stage involved 7 hips in period I, 24 hips in period II, 8 hips in period III. Curative effect analysis included preoperative and postoperative Harris score, radiographic changes and hip replacement for follow-up to accept the end of the femoral head survival rate. All patients were followed up for 6 to 47 months (averaged 37.4 months). All 12 hips imaging appeard progress,including tantalum rod exit in 1 hip, hip hemiarthroplasty collapse in 3 hips, the area increased to avascular necrosis in 8 hips. Six hips accepted total hip replacement, including imaging progress in 5 hips (41.7%, 5/12), no imaging progress in 1 hip (3.7%,1/27). All hips' Kaplan-Meier survival curves showed 6-month survival rate was (97.4 +/- 2.5)% after tantalum stick insertion, 1-year survival rate was (94.7 +/- 3.6), and 2-year survival rate was (88.6 +/- 5.4)%, 3-year survival rate was (72.5 +/- 11.2). It is effective for treatment of avascular necrosis of femoral head in Steinberg I and II by Tantalum rod, and it can effectively relieve femoral head replacement time.

  4. Method for etching thin films of niboium and niobium-containing compounds for preparing superconductive circuits

    DOEpatents

    Kampwirth, R.T.; Schuller, I.K.; Falco, C.M.

    1979-11-23

    An improved method of preparing thin film superconducting electrical circuits of niobium or niobium compounds is provided in which a thin film of the niobium or niobium compound is applied to a nonconductive substrate and covered with a layer of photosensitive material. The sensitive material is in turn covered with a circuit pattern exposed and developed to form a mask of the circuit in photoresistive material on the surface of the film. The unmasked excess niobium film is removed by contacting the substrate with an aqueous etching solution of nitric acid, sulfuric acid, and hydrogen fluoride, which will rapidly etch the niobium compound without undercutting the photoresist. A modification of the etching solution will permit thin films to be lifted from the substrate without further etching.

  5. The effects of argon ion bombardment on the corrosion resistance of tantalum

    NASA Astrophysics Data System (ADS)

    Ramezani, A. H.; Sari, A. H.; Shokouhy, A.

    2017-02-01

    Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.

  6. Extraction spectrophotometric determination of niobium in rocks with sulfochlorophenol S

    USGS Publications Warehouse

    Childress, A.E.; Greenland, L.P.

    1980-01-01

    After acid decomposition and potassium pyrosulfate fusion, niobium (1-26 ppm) is separated from interfering elements by extraction into methyl isobutyl ketone from 6 M H2SO4-2 M HF and back-extracted into water. The niobium-sulfochloro-phenol S complex is extracted into amyl alcohol. ?? 1980.

  7. Development of quantitative atomic modeling for tungsten transport study using LHD plasma with tungsten pellet injection

    NASA Astrophysics Data System (ADS)

    Murakami, I.; Sakaue, H. A.; Suzuki, C.; Kato, D.; Goto, M.; Tamura, N.; Sudo, S.; Morita, S.

    2015-09-01

    Quantitative tungsten study with reliable atomic modeling is important for successful achievement of ITER and fusion reactors. We have developed tungsten atomic modeling for understanding the tungsten behavior in fusion plasmas. The modeling is applied to the analysis of tungsten spectra observed from plasmas of the large helical device (LHD) with tungsten pellet injection. We found that extreme ultraviolet (EUV) emission of W24+ to W33+ ions at 1.5-3.5 nm are sensitive to electron temperature and useful to examine the tungsten behavior in edge plasmas. We can reproduce measured EUV spectra at 1.5-3.5 nm by calculated spectra with the tungsten atomic model and obtain charge state distributions of tungsten ions in LHD plasmas at different temperatures around 1 keV. Our model is applied to calculate the unresolved transition array (UTA) seen at 4.5-7 nm tungsten spectra. We analyze the effect of configuration interaction on population kinetics related to the UTA structure in detail and find the importance of two-electron-one-photon transitions between 4p54dn+1- 4p64dn-14f. Radiation power rate of tungsten due to line emissions is also estimated with the model and is consistent with other models within factor 2.

  8. An exploration in mineral supply chain mapping using tantalum as an example

    USGS Publications Warehouse

    Soto-Viruet, Yadira; Menzie, W. David; Papp, John F.; Yager, Thomas R.

    2013-01-01

    This report uses the supply chain of tantalum (Ta) to investigate the complexity of mineral and metal supply chains in general and show how they can be mapped. A supply chain is made up of all the manufacturers, suppliers, information networks, and so forth, that provide the materials and parts that go into making up a final product. The mineral portion of the supply chain begins with mineral material in the ground (the ore deposit); extends through a series of processes that include mining, beneficiation, processing (smelting and refining), semimanufacture, and manufacture; and continues through transformation of the mineral ore into concentrates, refined mineral commodities, intermediate forms (such as metals and alloys), component parts, and, finally, complex products. This study analyses the supply chain of tantalum beginning with minerals in the ground to many of the final goods that contain tantalum.

  9. Welding Niobium Bearing HSLA Steels 'Myths and Magic'

    NASA Astrophysics Data System (ADS)

    Kirkwood, Phil

    Niobium is not currently added to ferritic steels with the specific objective of improving weldability and is more likely to be present to harness its combined beneficial effects on strength and toughness. Nevertheless, as carbon levels in many classes of HSLA steel, are progressively reduced, there is an increasing awareness that, amongst the microalloying elements, niobium is uniquely placed to deliver the mechanical property combinations that modern specifications demand and simultaneously deliver a `bonus' by way of enhanced weldability.

  10. Thermocouples of tantalum and rhenium alloys for more stable vacuum-high temperature performance

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1977-01-01

    Thermocouples of the present invention provide stability and performance reliability in systems involving high temperatures and vacuums by employing a bimetallic thermocouple sensor wherein each metal of the sensor is selected from a group of metals comprising tantalum and rhenium and alloys containing only those two metals. The tantalum, rhenium thermocouple sensor alloys provide bare metal thermocouple sensors having advantageous vapor pressure compatibilities and performance characteristics. The compatibility and physical characteristics of the thermocouple sensor alloys of the present invention result in improved emf, temperature properties and thermocouple hot junction performance. The thermocouples formed of the tantalum, rhenium alloys exhibit reliability and performance stability in systems involving high temperatures and vacuums and are adaptable to space propulsion and power systems and nuclear environments.

  11. Tantalum capacitor behavior under fast transient overvoltages. [circuit protection against lightning

    NASA Technical Reports Server (NTRS)

    Zill, J. A.; Castle, K. D.

    1974-01-01

    Tantalum capacitors were tested to determine failure time when subjected to short-duration, high-voltage surges caused by lightning strikes. Lightning is of concern to NASA because of possible damage to critical spacecraft circuits. The test was designed to determine the minimum time for tantalum capacitor failure and the amount of overvoltage a capacitor could survive, without permanent damage, in 100 microseconds. All tested exhibited good recovery from the transient one-shot pulses with no failure at any voltage, forward or reverse, in less than 25 microseconds.

  12. SU-E-J-201: Position Verification in Breast Cancer Radiotherapy Using Tantalum Clips in the Lumpectomy Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santvoort, J van; Van der Drift, M; Kuipers, J

    2014-06-01

    Purpose: To find out whether tantalum surgical clips can be used for online position verification in treatment of the lumpectomy cavity (LC) in breast cancer patients. Tantalum is a high density metal that could be visible on Electronic Portal Images (EPIs) and be an affordable alternative to gold markers. Clips are considered more representative for the LC position than nearby bony structures. Methods: In twelve patients the surgeon had placed 2 to 5 tantalum clips in the LC. The AP and lateral fields used for portal imaging, were adapted. In doing so, both bony structures and tantalum clips were visiblemore » on EPIs. The following analyses were performed:1. Image degradation, with respect to delineating the CTV, of the axial CT slices by artefacts because of the tantalum clips was evaluated by a radiation oncologist;2. The visibility of the tantalum clips on the EPIs was evaluated by four radiation therapists (RTTs);3. Bony anatomy and tantalum clip matches were performed on the same images independently by two observers. Results: 1. Delineation of the CTV by the radiation oncologist was not hampered by CT image artefacts because of the clips.2. The mean score for visibility of the clips on the EPIs, analysed by the four RTTs, was 5.6 on a scale of 10 (range 3.9 – 8.0).3. In total 12 patients with 16 fractions each were analysed. The differences between clip match and bone match are significant with a mean vector length of 5.2 mm (SD 1.9 mm) for the difference. Conclusion: Results of matches on tantalum clips as compared to matches on bony structures differ substantially. Therefore clip matches can result in smaller CTV to PTV margins than bone matches. Visibility of the clips on EPIs is sufficient, so they can be an alternative to gold markers.« less

  13. The application of porous tantalum cylinder to the repair of comminuted bone defects: a study of rabbit firearm injuries

    PubMed Central

    Ren, Bo; Zhai, Zhenbo; Guo, Kai; Liu, Yanpu; Hou, Weihuan; Zhu, Qingsheng; Zhu, Jinyu

    2015-01-01

    The aim of this study is to investigate the effect of porous tantalum material in repair tibial defects caused by firearm injuries in a rabbit model. A multifunctional biological impact machine was used to establish a rabbit tibial defect model of firearm injury. Porous tantalum rods were processed into a hollow cylinder. Kirschner wires were used for intramedullary fixation. We compared the differences of the bone ingrowth of the porous tantalum material by gross observations, X-rays and histological evaluations. The radiographic observations revealed that fibrous tissue covered the material surface after 4 weeks, and periosteal reactions and new bone callus extending materials appeared after 8 weeks. After 16 weeks, the calluses of the firearm injury group were completely wrapped around a porous tantalum material. The group with the highest Lane-Sandhu X-rays cores was the firearm injury and tantalum implant group, and the blank control group exhibited the lowest scores. The histological evaluations revealed that the presence of new bone around the biomaterial had grown into the porous tantalum. By the 16th week, the areas of bone tissue of the firearm injury group was significant higher than that of non-firearm injury group (P<0.05). The comminuted fractures treated with tantalum cylinders exhibited greater bone ingrowth in the firearm injury group. In conditions of firearm injuries, the porous tantalum biomaterial exhibited bone ingrowth that was beneficial to the treatment of bone defects. PMID:26131078

  14. Polarographic determination of tungsten in rocks

    USGS Publications Warehouse

    Reichen, L.E.

    1954-01-01

    This work was undertaken to develop a simpler and faster method than the classical gravimetric procedure for the determination of tungsten in rocks and ores. A new polarographic wave of tungsten is obtained in a supporting electrolyte of dilute hydrochloric acid containing tartrate ion. This permits the determination of tungsten both rapidly and accurately. No precipitation of the tungsten is necessary, and only the iron need be separated from the tungsten. The accuracy is within the limits of a polarographic procedure; comparison of polarographic and gravimetric results is given. The method reduces appreciably the amount of time ordinarily consumed in determination of tungsten.

  15. Global Tungsten Demand and Supply Forecast

    NASA Astrophysics Data System (ADS)

    Dvořáček, Jaroslav; Sousedíková, Radmila; Vrátný, Tomáš; Jureková, Zdenka

    2017-03-01

    An estimate of the world tungsten demand and supply until 2018 has been made. The figures were obtained by extrapolating from past trends of tungsten production from1905, and its demand from 1964. In addition, estimate suggestions of major production and investment companies were taken into account with regard to implementations of new projects for mining of tungsten or possible termination of its standing extraction. It can be assumed that tungsten supply will match demand by 2018. This suggestion is conditioned by successful implementation of new tungsten extraction projects, and full application of tungsten recycling methods.

  16. High-acoustic-impedance tantalum oxide layers for insulating acoustic reflectors.

    PubMed

    Capilla, Jose; Olivares, Jimena; Clement, Marta; Sangrador, Jesús; Iborra, Enrique; Devos, Arnaud

    2012-03-01

    This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended for use as high-impedance films of acoustic reflectors for solidly mounted resonators operating in the gigahertz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed dc powers, and substrate biases. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is assessed by deriving the mass density from X-ray reflectometry measurements and the acoustic velocity from picosecond acoustic spectroscopy and the analysis of the frequency response of the test resonators.

  17. High strength uranium-tungsten alloy process

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  18. 78 FR 42584 - Bureau of International Security and Nonproliferation: Report to Congress Pursuant to Section...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ...-finished metals such as aluminum and steel, coal, and software for integrating industrial processes. We...; boron; cobalt; copper; copper infiltrated tungsten; copper- beryllium; graphite; hastelloy; inconel; magnesium; molybdenum; nickel; niobium; silver infiltrated tungsten; steels (including, but not limited to...

  19. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    NASA Astrophysics Data System (ADS)

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2015-02-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. Large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  20. Precipitation of hydrides in high purity niobium after different treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkov, F.; Romanenko, A.; Trenikhina, Y.

    Precipitation of lossy non-superconducting niobium hydrides represents a known problem for high purity niobium in superconducting applications. Using cryogenic optical and laser confocal scanning microscopy we have directly observed surface precipitation and evolution of niobium hydrides in samples after different treatments used for superconducting RF cavities for particle acceleration. Precipitation is shown to occur throughout the sample volume, and the growth of hydrides is well described by the fast diffusion-controlled process in which almost all hydrogen is precipitated atmore » $T=140$~K within $$\\sim30$$~min. 120$$^{\\circ}$$C baking and mechanical deformation are found to affect hydride precipitation through their influence on the number of nucleation and trapping centers.« less

  1. Effect of Reverse Bias Stress on Leakage Currents and Breakdown Voltages of Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2011-01-01

    The majority of solid tantalum capacitors are produced by high-temperature sintering of a fine tantalum powder around a tantalum wire followed by electrolytic anodization that forms a thin amorphous Ta2O5 dielectric layer and pyrolysis of manganese nitrite on the oxide to create a conductive manganese dioxide electrode. A contact to tantalum wire is used as anode terminal and to the manganese layer as a cathode terminal of the device. This process results in formation of an asymmetric Ta -- Ta2O5 -- MnO2 capacitor that has different characteristics at forward (positive bias applied to tantalum) and reverse (positive bias applied to manganese cathode) voltages. Reverse bias currents might be several orders of magnitude larger than forward leakage currents so I-V characteristics of tantalum capacitors resemble characteristics of semiconductor rectifiers. Asymmetric I-V characteristics of Ta -- anodic Ta2O5 systems have been observed at different top electrode materials including metals, electrolytes, conductive polymers, and manganese oxide thus indicating that this phenomenon is likely related to the specifics of the Ta -- Ta2O5 interface. There have been multiple attempts to explain rectifying characteristics of capacitors employing anodic tantalum pentoxide dielectrics. A brief review of works related to reverse bias (RB) behavior of tantalum capacitors shows that the mechanism of conduction in Ta -- Ta2O5 systems is still not clear and more testing and analysis is necessary to understand the processes involved. If tantalum capacitors behave just as rectifiers, then the assessment of the safe reverse bias operating conditions would be a relatively simple task. Unfortunately, these parts can degrade with time under reverse bias significantly, and this further complicates analysis of the I-V characteristics and establishing safe operating areas of the parts. On other hand, time dependence of reverse currents might provide additional information for investigation of

  2. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.

    1999-11-23

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  3. Deposition and characterization of magnetron sputtered bcc tantalum

    NASA Astrophysics Data System (ADS)

    Patel, Anamika

    The goal of this thesis was to provide scientific and technical research results for developing and characterizing tantalum (Ta) coatings on steel substrates deposited by DC magnetron sputtering. Deposition of tantalum on steel is of special interest for the protection it offers to surfaces, e.g. the surfaces of gun barrels against the erosive wear of hot propellant gases and the mechanical damage caused by the motion of launching projectiles. Electro-plated chromium is presently most commonly used for this purpose; however, it is considered to be carcinogenic in its hexavalent form. Tantalum is being investigated as non-toxic alternative to chromium and also because of its superior protective properties in these extreme environments. DC magnetron sputtering was chosen for this investigation of tantalum coatings on steel substrates because it is a versatile industrial proven process for deposition of metals. Sputter deposited Ta films can have two crystallographic structures: (1) body center cubic (bcc) phase, characterized by high toughness and high ductility and (2) a tetragonal beta phase characterized by brittleness and a tendency to fail under stress. It was found in this work that the bcc Ta coatings on steel can be obtained reliably by either of two methods: (1) depositing Ta on a submicron, stoichiometric TaN seed layer reactively sputtered on unheated steel and (2) depositing Ta directly on steel heated above a critical temperature. For argon sputtering gas this critical temperature was found to be 400°C at a pressure of 5 mtorr. With the heavier krypton gas, this critical temperature is reduced to 350°C. X-ray diffraction (XRD) was used to investigate the structure of tantalum and nitride films, and the composition of the nitride films was measured by nuclear reaction analyses (NRA), which were used to study in detail the enhancement of the bcc phase of Ta on steel. The scratch adhesion tests performed with a diamond hemispherical tip of radius 200 mum

  4. Draft critical mineral list—Summary of methodology and background information—U.S. Geological Survey technical input document in response to Secretarial Order No. 3359

    USGS Publications Warehouse

    Fortier, Steven M.; Nassar, Nedal T.; Lederer, Graham W.; Brainard, Jamie; Gambogi, Joseph; McCullough, Erin A.

    2018-02-16

    Pursuant to the Presidential Executive Order (EO) No. 13817, “A Federal Strategy to Ensure Secure and Reliable Supplies of Critical Minerals,” the Secretary of the Interior, in coordination with the Secretary of Defense, and in consultation with the heads of other relevant executive departments and agencies, was tasked with developing and submitting a draft list of minerals defined as “critical minerals” to the Federal Register within 60 days of the issue of the EO (December 20, 2017).Based on an analysis by the U.S. Geological Survey and other U.S. Government agencies, using multiple criteria, 35 minerals or mineral material groups have been identified that are currently (February 2018) considered critical. These include the following: aluminum (bauxite), antimony, arsenic, barite, beryllium, bismuth, cesium, chromium, cobalt, fluorspar, gallium, germanium, graphite (natural), hafnium, helium, indium, lithium, magnesium, manganese, niobium, platinum group metals, potash, rare earth elements group, rhenium, rubidium, scandium, strontium, tantalum, tellurium, tin, titanium, tungsten, uranium, vanadium, and zirconium. The categorization of minerals as critical may change during the course of the review process and is thus provisional.

  5. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.; Davis, John W.

    2000-07-18

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  6. Gleeble Testing of Tungsten Samples

    DTIC Science & Technology

    2013-02-01

    as a diffusion barrier to prevent the tungsten samples from fusing to the tungsten carbide inserts at elevated temperatures. After the anvils were...anvils with removable tungsten carbide inserts. The inserts were 19.05 mm (0.75 in) in diameter and 25.4 mm (1 in) long; they were purchased from...rhenium are shown in tables 6 and 7 and figure 7. The sample tested at 1300 °C, T4, partially embedded into the tungsten carbide (WC) inserts during

  7. Mineral resource of the month: tantalum

    USGS Publications Warehouse

    Cunningham, Larry D.

    2004-01-01

    Tantalum is a metal that is critical to the United States because of its defense-related applications in aircraft, missiles and radio communications. It is ductile, easily fabricated, highly resistant to corrosion by acids, a good conductor of heat and electricity, and has a high melting point. Tantalum’s first commercial usage was as filament material in incandescent electric lamps in the early 1900s.

  8. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo.

    PubMed

    Wei, Xiaowei; Zhao, Dewei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-03-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum-host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. © 2016 by the Society for Experimental Biology and Medicine.

  9. Niobium oxide nanocolumns formed via anodic alumina with modulated pore diameters

    NASA Astrophysics Data System (ADS)

    Pligovka, A.; Zakhlebayeva, A.; Lazavenka, A.

    2018-03-01

    Niobium oxide nanocolumns with modulated diameters were formed for the first time. An Al/Nb bilayer specimen was prepared by successive sputter-deposition of 300 nm niobium layer and 1200 nm aluminum layer onto silicon wafer. Regular anodic alumina matrix with modulated pore diameters was formed by sequential anodization of initial specimen in tartaric acid at 180 V, and in oxalic acid at 37 V. Further potentiodynamic reanodization of the specimen up to 400 V causes the simultaneous growth of 440 nm continuous niobium oxide layer beneath the alumina film and two types of an array of oxide nanocolumns (thick – with 100 nm width and 630 nm high and thin – with 25 nm width and 170 nm high), which are the filling of the alumina pores. The morphology of the formed anodic niobium oxide nanocolumns with modulated diameters was determined by field emission scanning electron microscopy. The formed nanostructures can be used for perspective devices of nano- and optoelectronics such as photonic crystals.

  10. Investigation of niobium surface structure and composition for improvement of superconducting radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Trenikhina, Yulia

    Nano-scale investigation of intrinsic properties of niobium near-surface is a key to control performance of niobium superconducting radio-frequency cavities. Mechanisms responsible for the performance limitations and their empirical remedies needs to be justified in order to reproducibly control fabrication of SRF cavities with desired characteristics. The high field Q-slope and mechanism behind its cure (120°C mild bake) were investigated by comparison of the samples cut out of the cavities with high and low dissipation regions. Material evolution during mild field Q-slope nitrogen treatment was characterized using the coupon samples as well as samples cut out of nitrogen treated cavity. Evaluation of niobium near-surface state after some typical and novel cavity treatments was accomplished. Various TEM techniques, SEM, XPS, AES, XRD were used for the structural and chemical characterization of niobium near-surface. Combination of thermometry and structural temperature-dependent comparison of the cavity cutouts with different dissipation characteristics revealed precipitation of niobium hydrides to be the reason for medium and high field Q-slopes. Step-by-step effect of the nitrogen treatment processing on niobium surface was studied by analytical and structural characterization of the cavity cutout and niobium samples, which were subject to the treatment. Low concentration nitrogen doping is proposed to explain the benefit of nitrogen treatment. Chemical characterization of niobium samples before and after various surface processing (Electropolishing (EP), 800°C bake, hydrofluoric acid (HF) rinsing) showed the differences that can help to reveal the microscopic effects behind these treatments as well as possible sources of surface contamination.

  11. Tensile properties from room temperature to 1315 C of tungsten-lined tantalum-alloy (T-111) tubing fabricated by hot isostatic pressing

    NASA Technical Reports Server (NTRS)

    Buzzard, R. J.; Metroka, R. R.

    1974-01-01

    The effects were studied of a thin tungsten liner on the tensile properties of T-111 tubing considered for fuel cladding in a space power nuclear reactor concept. The results indicate that the metallurgically bonded liner had no appreciable effects on the properties of the T-111 tubing. A hot isostatic pressing method used to apply the liners is described along with a means for overcoming the possible embrittling effects of hydrogen contamination.

  12. Presence of Tungsten-Containing Fibers in Tungsten Refining and Manufacturing Processes

    PubMed Central

    Mckernan, John L.; Toraason, Mark A.; Fernback, Joseph E.; Petersen, Martin R.

    2009-01-01

    In tungsten refining and manufacturing processes, a series of tungsten oxides are typically formed as intermediates in the production of tungsten powder. The present study was conducted to characterize airborne tungsten-containing fiber dimensions, elemental composition and concentrations in the US tungsten refining and manufacturing industry. During the course of normal employee work activities, seven personal breathing zone and 62 area air samples were collected and analyzed using National Institute for Occupational Safety and Health (NIOSH) fiber sampling and counting methods to determine dimensions, composition and airborne concentrations of fibers. Mixed models were used to identify relationships between potential determinants and airborne fiber concentrations. Results from transmission electron microscopy analyses indicated that airborne fibers with length >0.5 μm, diameter >0.01 μm and aspect ratios ≥3:1 were present on 35 of the 69 air samples collected. Overall, the airborne fibers detected had a geometric mean length ≈3 μm and diameter ≈0.3 μm. Ninety-seven percent of the airborne fibers identified were in the thoracic fraction (i.e. aerodynamic diameter ≤ 10 μm). Energy dispersive X-ray spectrometry results indicated that airborne fibers prior to the carburization process consisted primarily of tungsten and oxygen, with other elements being detected in trace quantities. Based on NIOSH fiber counting ‘B’ rules (length > 5 μm, diameter < 3 μm and aspect ratio ≥ 5:1), airborne fiber concentrations ranged from below the limit of detection to 0.085 fibers cm−3, with calcining being associated with the highest airborne concentrations. The mixed model procedure indicated that process temperature had a marginally significant relationship to airborne fiber concentration. This finding was expected since heated processes such as calcining created the highest airborne fiber concentrations. The finding of airborne tungsten-containing fibers in

  13. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo

    PubMed Central

    Wei, Xiaowei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-01-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum–host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. PMID:26843518

  14. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    DOE PAGES

    Kneisel, P.; Ciovati, G.; Dhakal, P.; ...

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities mademore » from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of E acc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.« less

  15. Antimicrobial activity of tantalum oxide coatings decorated with Ag nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Huiliang, E-mail: hlc@mail.sic.ac.cn; Meng, Fanhao; Liu, Xuanyong, E-mail: xyliu@mail.sic.ac.cn

    Silver plasma immersion ion implantation was used to decorate silver nanoparticles (Ag NPs) on tantalum oxide (TO) coatings. The coatings acted against bacterial cells (Staphylococcus epidermidis) in the dark by disrupting their integrity. The action was independent of silver release and likely driven by the electron storage capability of the Schottky barriers established at the interfaces between Ag NPs and the TO support. Moreover, no apparent side effect on the adhesion and differentiation of rat bone mesenchymal stem cells was detected when using Ag NPs-modified TO coatings. These results demonstrate that decoration of tantalum oxide using Ag NPs could bemore » a promising procedure for improving the antibacterial properties for orthopedic and dental implants.« less

  16. Interaction of tungsten with tungsten carbide in a copper melt

    NASA Astrophysics Data System (ADS)

    Bodrova, L. E.; Goida, E. Yu.; Pastukhov, E. A.; Marshuk, L. A.; Popova, E. A.

    2013-07-01

    The chemical interaction between tungsten and tungsten carbide in a copper melt with the formation of W2C at 1300°C is studied. It is shown that the mechanical activation of a composition consisting of copper melt + W and WC powders by low-temperature vibrations initiates not only the chemical interaction of its solid components but also their refinement.

  17. Tungsten Filament Fire

    ERIC Educational Resources Information Center

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  18. Application of pyrolysis to recycling organics from waste tantalum capacitors.

    PubMed

    Niu, Bo; Chen, Zhenyang; Xu, Zhenming

    2017-08-05

    Tantalum capacitors (TCs) are widely used in electronic appliances. The rapid replacement of electronic products results in generating large amounts of waste TCs (WTCs). WTCs, rich in valuable tantalum, are considered as high quality tantalum resources for recycling. However, environmental pollution will be caused if the organics of WTCs were not properly disposed. Therefore, effectively recycling the organics of WTCs is significant for recovering the valuable parts. This study proposed an argon (Ar) pyrolysis process to recycle the organics from WTCs. The organic decomposition kinetic was first analyzed by thermogravimetry. The results showed that the organics were decomposed in two major steps and the average activation energy was calculated to 234kJ/mol. Then, the suitable pyrolysis parameters were determined as 550°C, 30min and 100ml/min. The organics were effectively decomposed and converted to oils (mainly contained phenol homologs and benzene homologs) and gases (some hydrocarbon). These pyrolysis products could be reutilized as energy sources. Moreover, based on the products and bond energy theory, the pyrolysis mechanisms of the organics were also discussed. Finally, a reasonable technological process for products utilization was presented. This study contributes to the efficient recycling the organics before valuable material recovery from WTCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation.

    PubMed

    Goularte, Marcelo Augusto Pinto Cardoso; Barbosa, Gustavo Frainer; da Cruz, Nilson Cristino; Hirakata, Luciana Mayumi

    2016-12-01

    Search for materials that may either replace titanium dental implants or constitute an alternative as a new dental implant material has been widely studied. As well, the search for optimum biocompatible metal surfaces remains crucial. So, the aim of this work is to develop an oxidized surface layer on tantalum using plasma electrolytic oxidation (PEO) similar to those existing on oral implants been marketed today. Cleaned tantalum samples were divided into group 1 (control) and groups 2, 3, and 4 (treated by PEO for 1, 3, and 5 min, respectively). An electrolytic solution diluted in 1-L deionized water was used for the anodizing process. Then, samples were washed with anhydrous ethyl alcohol and dried in the open air. For complete anodic treatment disposal, the samples were immersed in acetone altogether, taken to the ultrasonic tank for 10 min, washed again in distilled water, and finally air-dried. For the scanning electron microscopy (SEM) analysis, all samples were previously coated with gold; the salt deposition analysis was conducted with an energy-dispersive X-ray spectroscopy (EDS) system integrated with the SEM unit. SEM images confirmed the changes on tantalum strips surface according to different exposure times while EDS analysis confirmed increased salt deposition as exposure time to the anodizing process also increased. PEO was able to produce both surface alteration and salt deposition on tantalum strips similar to those existing on oral implants been marketed today.

  20. X-ray analyses of thermally grown and reactively sputtered tantalum oxide films on NiTi alloy

    NASA Astrophysics Data System (ADS)

    McNamara, Karrina; Tofail, Syed A. M.; Conroy, Derek; Butler, James; Gandhi, Abbasi A.; Redington, Wynette

    2012-08-01

    Sputter deposition of tantalum (Ta) on the surface of NiTi alloy is expected to improve the alloy's corrosion resistance and biocompatibility. Tantalum is a well-known biomaterial which is not affected by body fluids and is not irritating to human tissue. Here we compare the oxidation chemistry crystal structure evolution of tantalum oxide films grown on NiTi by reactive O2 sputtering and by thermal oxidation of sputter deposited Ta films. The effect of sputtering parameters and post-sputtering treatments on the morphology, oxidation state and crystal structure of the tantalum oxide layer have been investigated by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The study has found that it may be better to avoid oxidation at and above 600 °C. The study establishes that reactive sputtering in presence of low oxygen mixture yields thicker film with better control of the film quality except that the surface oxidation state of Ta is slightly lower.

  1. Synthesis and characterization of polystyrene embolization particles doped with tantalum oxide nanoparticles for X-ray contrast.

    PubMed

    Morrison, Rachel; Thompson, James; Bird, Luke; Hill, Mark A; Townley, Helen

    2015-08-01

    Radiopaque and fluorescent embolic particles have been synthesized and characterised to match the size of vasculature found in tumours to ensure effective occlusion of the vessels. A literature search showed that the majority of vessels surrounding a tumour were less than 50 µm and therefore polydispersed polystyrene particles with a peak size of 50 µm have been synthesised. The embolic particles contain 5-8 nm amorphous tantalum oxide nanoparticles which provide X-ray contrast. Embolic particles containing up to 9.4 wt% tantalum oxide were prepared and showed significant contrast compared to the undoped polystyrene particles. The X-ray contrast of the embolic particles was shown to be linear (R(2) = 0.9) with respect to the concentration of incorporated tantalum nanoparticles. A model was developed which showed that seventy-five 50 µm embolic particles containing 10% tantalum oxide could provide the same contrast as 5 cm of bone. Therefore, the synthesized particles would provide sufficient X-ray contrast to enable visualisation within a tumour.

  2. Evaluation of Niobium as Candidate Electrode Material for DC High Voltage Photoelectron Guns

    NASA Technical Reports Server (NTRS)

    BastaniNejad, M.; Mohamed, Abdullah; Elmustafa, A. A.; Adderley, P.; Clark, J.; Covert, S.; Hansknecht, J.; Hernandez-Garcia, C.; Poelker, M.; Mammei, R.; hide

    2012-01-01

    The field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. A total of eight electrodes were evaluated: two 304 stainless steel electrodes polished to mirror-like finish with diamond grit and six niobium electrodes (two single-crystal, two large-grain, and two fine-grain) that were chemically polished using a buffered-chemical acid solution. Upon the first application of high voltage, the best large-grain and single-crystal niobium electrodes performed better than the best stainless steel electrodes, exhibiting less field emission at comparable voltage and field strength. In all cases, field emission from electrodes (stainless steel and/or niobium) could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode was biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (< 10 pA) at 225 kV with 20 mm cathode/anode gap, corresponding to a field strength of 18:7 MV/m.

  3. Effect of the oxygen content in a salt solution on the characteristics of sodium-reduced tantalum powders

    NASA Astrophysics Data System (ADS)

    Kolosov, V. N.; Orlov, V. M.; Miroshnichenko, M. N.; Prokhorova, T. Yu.; Masloboeva, S. M.; Belyaevskii, A. T.

    2009-02-01

    The characteristics of the tantalum powders produced by sodium thermal reduction from salt melts based on K2TaF7 and NaCl with various amounts of added oxycompounds K3TaOF6 and K2Ta2O3F6 are studied. At a molar ratio of oxygen to tantalum of 1.25 in the initial melt, capacitor tantalum powders with a specific surface area more than 3 m2/g are produced. The specific capacitance of the anodes made from these powders reaches 58 mC/g.

  4. Crystalline phase-stability of tantalum pentoxide

    NASA Astrophysics Data System (ADS)

    Walton, Santiago; Padilha, Antonio; Dalpian, Gustavo; Guillén, Jorge; Dalpian's Research Group Collaboration; Grupo de Estado Solido Collaboration; Gritad Collaboration

    2013-03-01

    Memristive devices are attractive candidates to provide a paradigm change in memory devices fabrication. These new devices would be faster, denser and less power consuming than those available today. However, the mechanism of memristance is not yet well understood. It is believed that a voltage/current-driven phase transition occurs in the material, which leads to significant changes in the device's conductivity. In the particular case of tantalum-oxide-based devices the relevant crystalline phases are still a matter of debate. Some of these phases are not even completely known and there is no agreement about which model best explains the crystallographic results. In this work we have performed ab-initio DFT based calculations to study the structural properties of different phases (and models) of Ta2O5 - the structure which is believed to exist inside Tantalum Oxide based devices. The equations of state for this material were constructed through first principles total energy calculations and we have also calculated the phonon frequencies at Γ. These results show that the most stable phase of this oxide (B-Ta2O5) is in fact composed of octahedral, instead of pentagonal (as L-Ta2O5) or hexagonal (as δ-Ta2O5) bipyramids. Fapesp, CNPq, Capes,CODI-UdeA

  5. Thin film ion conducting coating

    DOEpatents

    Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  6. Superconducting 500 MHz accelerating copper cavities sputter-coated with niobium films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benvenuti, C.; Circelli, N.; Hauer, M.

    Thermal breakdown induced either by electron loading or by local defects of enhanced RF losses limits the accelerating field of superconducting niobium cavities. Replacing niobium with a material of higher thermal conductivity would be highly desirable to increase the maximum field. Therefore, cavities made of OFHC copper were coated by D.C. bias sputtering with a thin niobium film (1.5 to 5 ..mu..). Accelerating fields up to 8.6 MVm/sup -1/ were obtained without observing any field breakdown, the limitation being due to the available rf power. The Q values achieved at 4.2 K and low field were similar to those ofmore » niobium sheet cavities (i.e. about 2 x 10/sup 9/), but a fast initial decrease of Q to about 10/sup 9/ was reproducibly experienced. Subsequent inspection of regions of enhanced rf losses revealed defects the origin of which is under study. The apparatus used for coating the cavities and the results obtained are presented and discussed.« less

  7. Evaluation of the 3D Finite Element Method Using a Tantalum Rod for Osteonecrosis of the Femoral Head

    PubMed Central

    Shi, Jingsheng; Chen, Jie; Wu, Jianguo; Chen, Feiyan; Huang, Gangyong; Wang, Zhan; Zhao, Guanglei; Wei, Yibing; Wang, Siqun

    2014-01-01

    Background The aim of this study was to contrast the collapse values of the postoperative weight-bearing areas of different tantalum rod implant positions, fibula implantation, and core decompression model and to investigate the advantages and disadvantages of tantalum rod implantation in different ranges of osteonecrosis in comparison with other methods. Material/Methods The 3D finite element method was used to establish the 3D finite element model of normal upper femur, 3D finite element model after tantalum rod implantation into different positions of the upper femur in different osteonecrosis ranges, and other 3D finite element models for simulating fibula implant and core decompression. Results The collapse values in the weight-bearing area of the femoral head of the tantalum rod implant model inside the osteonecrosis area, implant model in the middle of the osteonecrosis area, fibula implant model, and shortening implant model exhibited no statistically significant differences (p>0.05) when the osteonecrosis range was small (60°). The stress values on the artificial bone surface for the tantalum rod implant model inside the osteonecrosis area and the shortening implant model exhibited statistical significance (p<0.01). Conclusions Tantalum rod implantation into the osteonecrosis area can reduce the collapse values in the weight-bearing area when osteonecrosis of the femoral head (ONFH) was in a certain range, thereby obtaining better clinical effects. When ONFH was in a large range (120°), the tantalum rod implantation inside the osteonecrosis area, shortening implant or fibula implant can reduce the collapse values of the femoral head, as assessed by other methods. PMID:25479830

  8. Scanning tunneling microscopy measurements of the spin Hall effect in tungsten films by using iron-coated tungsten tips

    NASA Astrophysics Data System (ADS)

    Xie, Ting; Dreyer, Michael; Bowen, David; Hinkel, Dan; Butera, R. E.; Krafft, Charles; Mayergoyz, Isaak

    2018-05-01

    Scanning tunneling microscopy experiments using iron-coated tungsten tips and current-carrying tungsten films have been conducted. An asymmetry of the tunneling current with respect to the change of the direction of the bias current through a tungsten film has been observed. It is argued that this asymmetry is a manifestation of the spin Hall effect in the current-carrying tungsten film. Nanoscale variations of this asymmetry across the tungsten film have been studied by using the scanning tunneling microscopy technique.

  9. A novel tantalum-based sol-gel packed microextraction syringe for highly specific enrichment of phosphopeptides in MALDI-MS applications.

    PubMed

    Çelikbıçak, Ömür; Atakay, Mehmet; Güler, Ülkü; Salih, Bekir

    2013-08-07

    A new tantalum-based sol-gel material was synthesized using a unique sol-gel synthesis pathway by PEG incorporation into the sol-gel structure without performing a calcination step. This improved its chemical and physical properties for the high capacity and selective enrichment of phosphopeptides from protein digests in complex biological media. The specificity of the tantalum-based sol-gel material for phosphopeptides was evaluated and compared with tantalum(V) oxide (Ta2O5) in different phosphopeptide enrichment applications. The tantalum-based sol-gel and tantalum(V) oxide were characterized in detail using FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and also using a surface area and pore size analyzer. In the characterization studies, the surface morphology, pore volume, crystallinity of the materials and PEG incorporation into the sol-gel structure to produce a more hydrophilic material were successfully demonstrated. The X-ray diffractograms of the two different materials were compared and it was noted that the broad signals of the tantalum-based sol-gel clearly represented the amorphous structure of the sol-gel material, which was more likely to create enough surface area and to provide more accessible tantalum atoms for phosphopeptides to be easily adsorbed when compared with the neat and more crystalline structure of Ta2O5. Therefore, the phosphopeptide enrichment performance of the tantalum-based sol-gels was found to be remarkably higher than the more crystalline Ta2O5 in our studies. Phosphopeptides at femtomole levels could be selectively enriched using the tantalum-based sol-gel and detected with a higher signal-to-noise ratio by matrix-assisted laser desorption/ionization-mass spectrometer (MALDI-MS). Moreover, phosphopeptides in a tryptic digest of non-fat bovine milk as a complex real-world biological sample were retained with higher yield using a tantalum-based sol-gel. Additionally, the sol-gel material

  10. Production of nanocrystalline metal powders via combustion reaction synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  11. The effect of high-power plasma flows on tungsten plates with multilayer films of tungsten nanoparticles

    NASA Astrophysics Data System (ADS)

    Gorokhov, M. V.; Kozhevin, V. M.; Yavsin, D. A.; Voronin, A. V.; Gurevich, S. A.

    2017-04-01

    We have experimentally studied the action of high-power plasma flows on pure tungsten plates covered with multilayer films of tungsten nanoparticles formed by the method of laser electrodeposition. The samples were irradiated using a plasma gun producing hydrogen (helium) plasma flows with power density up to 35 GW/cm2. The resulting surface morphology was studied by scanning electron microscopy (SEM). SEM data showed that tungsten plates coated by nanoparticles are more resistant to the formation of microcracks than are pure tungsten plates.

  12. Effect of Temperature Cycling and Exposure to Extreme Temperatures on Reliability of Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2007-01-01

    In this work, results of multiple temperature cycling (TC) (up to 1,000 cycles) of different types of solid tantalum capacitors are analyzed and reported. Deformation of chip tantalum during temperature variations simulating reflow soldering conditions was measured to evaluate the possibility of the pop-corning effect in the parts. To simulate the effect of short-time exposures to solder reflow temperatures on the reliability of tantalum capacitors, several part types were subjected to multiple cycles (up to 100) between room temperature and 240 C with periodical measurements of electrical characteristics of the parts. Mechanisms of degradation caused by temperature cycling and exposure to high temperatures, and the requirements of MIL-PRF-55365 for assessment of the resistance of the parts to soldering heat are discussed.

  13. Early/Late Heterobimetallic Tantalum/Rhodium Species Assembled Through a Novel Bifunctional NHC-OH Ligand.

    PubMed

    Srivastava, Ravi; Moneuse, Raphaël; Petit, Julien; Pavard, Paul-Alexis; Dardun, Vincent; Rivat, Madleen; Schiltz, Pauline; Solari, Marius; Jeanneau, Erwann; Veyre, Laurent; Thieuleux, Chloé; Quadrelli, Elsje Alessandra; Camp, Clément

    2018-03-20

    The straightforward synthesis of a new unsymmetrical hydroxy-tethered N-heterocyclic carbene (NHC) ligand, HL, is presented. The free ligand exhibits an unusual OH-carbene hydrogen-bonding interaction. This OH-carbene motif was used to yield 1) the first tantalum complex displaying both a Fischer- and Schrock-type carbene ligand and 2) a unique NHC-based early/late heterobimetallic complex. More specifically, the protonolysis chemistry between the ligand's hydroxy group and imido-alkyl or alkylidene-alkyl tantalum precursor complexes yielded the rare monometallic tantalum-NHC complexes [Ta(XtBu)(L)(CH 2 tBu) 2 ] (X=N, CH), in which the alkoxy-carbene ligand acts as a chelate. In contrast, HL only binds to rhodium through the NHC unit in [Rh(HL)(cod)Cl] (cod=cycloocta-1,5-diene), the hydroxy pendant arm remaining unbound. This bifunctional ligand scaffold successfully promoted the assembly of rhodium/tantalum heterobimetallic complexes upon either 1) the insertion of [Rh(cod)Cl] 2 into the Ta-NHC bond in [Ta(NtBu)(L)(CH 2 tBu) 2 ] or 2) protonolysis between the free hydroxy group in [Rh(HL)(cod)Cl] and one alkyl group in [Ta(NtBu)(CH 2 tBu) 3 ]. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hot pressing of nanocrystalline tantalum using high frequency induction heating and pulse plasma sintering

    NASA Astrophysics Data System (ADS)

    Jakubowicz, J.; Adamek, G.; Sopata, M.; Koper, J. K.; Siwak, P.

    2017-12-01

    The paper presents the results of nanocrystalline powder tantalum consolidation using hot pressing. The authors used two different heating techniques during hot pressing: high-frequency induction heating (HFIH) and pulse plasma sintering (PPS). A comparison of the structure, microstructure, mechanical properties and corrosion resistance of the bulk nanocrystalline tantalum obtained in both techniques was performed. The nanocrystalline powder was made to start from the microcrystalline one using the high-energy ball milling process. The nanocrystalline powder was hot-pressed at 1000 °C, whereas, for comparison, the microcrystalline powder was hot pressed up to 1500 °C for proper consolidation. The authors found that during hot pressing, the powder partially reacts with the graphite die covered by boron nitride, which facilitated punches and powder displacement in the die during densification. Tantalum carbide and boride in the nanocrystalline material was found, which can improve the mechanical properties. The hardness of the HFIH and PPS nanocrystalline tantalum was as high as 625 and 615 HV, respectively. The microstructure was more uniform in the PPS nanomaterial. The corrosion resistance in both cases deteriorated, in comparison to the microcrystalline material, while the PPS material corrosion resistance was slightly better than that of the HFIH one.

  15. GEMAS - Tin and Tungsten: possible sources of enriched concentrations in soils in European countries

    NASA Astrophysics Data System (ADS)

    João Batista, Maria; Filipe, Augusto; Reimann, Clemens

    2014-05-01

    southern soils and SiO2 is higher in loess sediments region, in the North German-Poland basin and in the Paris basin. Organic matter may immobilise these metals and silica content influences metallic elements concentrations in soils. Natural processes of soil development, land management of agricultural soils and population density all together may be responsible for higher concentrations of W in the soils of Netherlands Germany, Belgium, Switzerland and northeast France which seems not related with Sn-W mineral provinces. Tin and tungsten are enriched in the Precambrian shields compared to the Caledonian shields soils in the northern countries, although in northern countries climatic conditions may play the most important role in these elements concentrations. Tin and tungsten and tin or tungsten alone or in association of precious metals, copper, uranium, niobium, beryllium, titanium altogether were extracted in 650 small or median size mines in Portugal. Except tin in Neves Corvo mine of the Iberian Pyrite Belt the rest of these mines occurred in the Variscides granitic intrusions region. Tin and tungsten concentrations are therefore well reflected in the northern Portugal soils. At the GEMAS density of sampling pollution and local natural phenomena are not reflected in mapping but this important province is well delimited.

  16. The effect of tantalum on the structure/properties of two polycrystalline nickel-base superalloys: B-1900 + Hf MAR-M247. M.S. Thesis, Final Report

    NASA Technical Reports Server (NTRS)

    Janowski, G. M.

    1985-01-01

    The microstructure, phase compositions, and phase fractions were studied in conventionally cast B-1900 + Hf and both conventionally cast and directionally solidified MAR-M247 as a function of tantalum concentration. The hot tensile and creep rupture properties of the solutionized and aged MAR-M247-type alloys were also determined as a function of tantalum level. The effects of tantalum on the microstructure and phase compositions of B-1900 + Hf and MAR-M247 (conventionally cast and directionally solidified) were found to be very similar. The addition of tantalum to the as cast and heat treated alloys was shown to cause the partial replacement of the Hf in the MC carbides by Ta, although the degree of replacement was decreased by the solutionizing and aging heat treatment. The gamma prime and minor phase fractions (primarily MC type carbides) both increased approximately linearly with tantalum concentration. The gamma prime phase compositions were relatively insensitive to tantalum variations with the exception of the tantalum and/or hafnium levels. Bulk tantalum additions increased the tantalum, chromium, and cobalt levels of the gamma phase in both alloy series. The increase in the concentrations of the latter two elements in the gamma phase was a result of the decrease in the gamma phase fraction with increasing bulk tantalum concentration and constant gamma/gamma prime partitioning ratio. Tantalum additions increased the yield stress and ultimate tensile strength of the directionally solidified MAR-M247 type alloys and had no significant effect on ductility.

  17. Primary human osteoblasts grow into porous tantalum and maintain an osteoblastic phenotype.

    PubMed

    Welldon, Katie J; Atkins, Gerald J; Howie, Donald W; Findlay, David M

    2008-03-01

    Porous tantalum (Ta) has found application in orthopedics, although the interaction of human osteoblasts (HOB) with this material has not been reported. The aim of this study was to investigate the interaction of primary HOB with porous tantalum, using 5-mm thick discs of porous tantalum. Comparison was made with discs of solid tantalum and tissue culture plastic. Confocal microscopy was used to investigate the attachment and growth of cells on porous Ta, and showed that HOB attached successfully to the metal "trabeculae," underwent extensive cell division, and penetrated into the Ta pores. The maturation of HOB on porous Ta was determined in terms of cell expression of the osteoblast phenotypic markers, STRO-1, and alkaline phosphatase. Despite some donor-dependent variation in STRO-1/AlkPhos expression, growth of cells grown on porous Ta either promoted, or did not impede, the maturation of HOB. In addition, the expression of key osteoblastic genes was investigated after 14 days of culture. The relative levels of mRNA encoding osteocalcin, osteopontin and receptor activator of NFkappaB ligand (RANKL) was not different between porous or solid Ta or plastic, although these genes were expressed differently by cells of different donors. However, bone sialoprotein and type I collagen mRNA species showed a decreased expression on porous Ta compared with expression on plastic. No substrate-dependent differences were seen in the extent of in vitro mineralization by HOB. These results indicate that porous Ta is a good substrate for the attachment, growth, and differentiated function of HOB. (c) 2007 Wiley Periodicals, Inc.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, T.; Setyawan, W.; Kurtz, R. J.

    Evolutionary grand-canonical search predicts novel grain boundary structures and multiple grain boundary phases in elemental body-centered cubic (bcc) metals represented by tungsten, tantalum and molybdenum.

  19. Grain boundary phases in bcc metals

    DOE PAGES

    Frolov, T.; Setyawan, W.; Kurtz, R. J.; ...

    2018-01-01

    Evolutionary grand-canonical search predicts novel grain boundary structures and multiple grain boundary phases in elemental body-centered cubic (bcc) metals represented by tungsten, tantalum and molybdenum.

  20. Tungsten Speciation and Solubility in Munitions-Impacted Soils.

    PubMed

    Bostick, Benjamín C; Sun, Jing; Landis, Joshua D; Clausen, Jay L

    2018-02-06

    Considerable questions persist regarding tungsten geochemistry in natural systems, including which forms of tungsten are found in soils and how adsorption regulates dissolved tungsten concentrations. In this study, we examine tungsten speciation and solubility in a series of soils at firing ranges in which tungsten rounds were used. The metallic, mineral, and adsorbed forms of tungsten were characterized using X-ray absorption spectroscopy and X-ray microprobe, and desorption isotherms for tungsten in these soils were used to characterize its solid-solution partitioning behavior. Data revealed the complete and rapid oxidation of tungsten metal to hexavalent tungsten(VI) and the prevalence of adsorbed polymeric tungstates in the soils rather than discrete mineral phases. These polymeric complexes were only weakly retained in the soils, and porewaters in equilibrium with contaminated soils had 850 mg L -1 tungsten, considerably in excess of predicted solubility. We attribute the high solubility and limited adsorption of tungsten to the formation of polyoxometalates such as W 12 SiO 40 4- , an α-Keggin cluster, in soil solutions. Although more research is needed to confirm which of such polyoxometalates are present in soils, their formation may not only increase the solubility of tungsten but also facilitate its transport and influence its toxicity.

  1. Tungsten carbide: Crystals by the ton

    NASA Astrophysics Data System (ADS)

    Smith, E. N.

    1988-06-01

    A comparison is made of the conventional process of making tungsten carbide by carburizing tungsten powder and the Macro Process wherein the tungsten carbide is formed directly from the ore concentrate by an exothermic reaction of ingredients causing a simultaneous reduction and carburization. Tons of tungsten monocarbide crystals are formed in a very rapid reaction. The process is unique in that it is self regulating and produces a tungsten carbide compound with the correct stoichiometry. The high purity with respect to oxygen and nitrogen is achieved because the reactions occur beneath the molten metal. The morphology and hardness of these crystals has been studied by various investigators and reported in the listed references.

  2. Leakage Currents and Gas Generation in Advanced Wet Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2015-01-01

    Currently, military grade, established reliability wet tantalum capacitors are among the most reliable parts used for space applications. This has been achieved over the years by extensive testing and improvements in design and materials. However, a rapid insertion of new types of advanced, high volumetric efficiency capacitors in space systems without proper testing and analysis of degradation mechanisms might increase risks of failures. The specifics of leakage currents in wet electrolytic capacitors is that the conduction process is associated with electrolysis of electrolyte and gas generation resulting in building up of internal gas pressure in the parts. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. In this work, in Part I, leakages currents in various types of tantalum capacitors have been analyzed in a wide range of voltages, temperatures, and time under bias. Gas generation and the level of internal pressure have been calculated in Part II for different case sizes and different hermeticity leak rates to assess maximal allowable leakage currents. Effects related to electrolyte penetration to the glass seal area have been studied and the possibility of failures analyzed in Part III. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  3. Evaluation of niobium as candidate electrode material for DC high voltage photoelectron guns

    DOE PAGES

    BastaniNejad, M.; Mohamed, Md. Abdullah; Elmustafa, A. A.; ...

    2012-08-17

    In this study, the field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. A total of eight electrodes were evaluated: two 304 stainless steel electrodes polished to mirror-like finish with diamond grit and six niobium electrodes (two single-crystal, two large-grain and two fine-grain) that were chemically polished using a buffered-chemical acid solution. Upon the first application of high voltage, the best large-grain and single-crystal niobium electrodes performed better than the best stainless steel electrodes, exhibiting less field emission at comparable voltage and gradient. In all cases,more » field emission from electrodes (stainless steel and/or niobium) could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode was biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (< 10 pA) at 225 kV with 20 mm cathode/anode gap, corresponding to a gradient of 18.7 MV/m.« less

  4. High strength and density tungsten-uranium alloys

    DOEpatents

    Sheinberg, Haskell

    1993-01-01

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  5. Characterization of high-purity niobium structures fabricated using the electron beam melting process

    NASA Astrophysics Data System (ADS)

    Terrazas Najera, Cesar Adrian

    Additive Manufacturing (AM) refers to the varied set of technologies utilized for the fabrication of complex 3D components from digital data in a layer-by-layer fashion. The use of these technologies promises to revolutionize the manufacturing industry. The electron beam melting (EBM) process has been utilized for the fabrication of fully dense near-net-shape components from various metallic materials. This process, catalogued as a powder bed fusion technology, consists of the deposition of thin layers (50 - 120microm) of metallic powder particles which are fused by the use of a high energy electron beam and has been commercialized by Swedish company Arcam AB. Superconducting radio frequency (SRF) cavities are key components that are used in linear accelerators and other light sources for studies of elemental physics. Currently, cavity fabrication is done by employing different forming processes including deep-drawing and spinning. In both of the latter techniques, a feedstock high-purity niobium sheet with a thickness ranging from 3-4 mm is mechanically deformed and shaped into the desired geometry. In this manner, half cavities are formed that are later joined by electron beam welding (EBW). The welding step causes variability in the shape of the cavity and can also introduce impurities at the surface of the weld interface. The processing route and the purity of niobium are also of utmost importance since the presence of impurities such as inclusions or defects can be detrimental for the SRF properties of cavities. The focus of this research was the use of the EBM process in the manufacture of high purity niobium parts with potential SRF applications. Reactor grade niobium was plasma atomized and used as the precursor material for fabrication using EBM. An Arcam A2 system was utilized for the fabrication. The system had all internal components of the fabrication chamber replaced and was cleaned to prevent contamination of niobium powder. A mini-vat, developed at

  6. The Quantitative Microstructural Characterization of Multipass TIG Ultra Low Carbon Bainitic Steel Weldments and Correlation with Mechanical Properties

    DTIC Science & Technology

    1993-09-01

    in TIG weldments. The alloying elements used in ULCB steels are; Carbon (C), Manganese (Mn), Molybdenum (Mo), Nickel (Ni), Niobium (Nb), Chromium (Cr...process. 7 C. WELDING PROCESSES 1. Tungsten Inert Gas (TIG) Welding Tungsten Inert Gas (TIG) Welding (or Gas Tungsten Arc Welding ( GTAW )), produces... chromium (Cr), molybdenum (Mo), and sometimes vanadium (V). Reheat cracking occurs in the HAZ during postweld stress relieving, especially in thick

  7. Effect of Mechanical Stresses on Characteristics of Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2007-01-01

    The effect of compressive mechanical stresses on chip solid tantalum capacitors is investigated by monitoring characteristics of different part types under axial and hydrostatic stresses. Depending on part types, an exponential increase of leakage currents was observed when stresses exceeded 10 MPa to 40 MPa. For the first time, reversible variations of leakage currents (up to two orders of magnitude) with stress have been demonstrated. Mechanical stresses did not cause significant changes of AC characteristics of the capacitors, whereas breakdown voltages measured during the surge current testing decreased substantially indicating an increased probability of failures of stressed capacitors in low impedance applications. Variations of leakage currents are explained by a combination of two mechanisms: stress-induced scintillations and stress-induced generation of electron traps in the tantalum pentoxide dielectric.

  8. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  9. Structure and mechanical properties of a multilayer carbide-hardened niobium composite material fabricated by diffusion welding

    NASA Astrophysics Data System (ADS)

    Korzhov, V. P.; Ershov, A. E.; Stroganova, T. S.; Prokhorov, D. V.

    2016-04-01

    The structure, the bending strength, and the fracture mechanism of an artificial niobium-based composite material, which is fabricated by high-pressure diffusion welding of multilayer stacks assembled from niobium foils with a two-sided carbon coating, are studied. The microstructure of the composite material is found to consist of alternating relatively plastic layers of the solid solution of carbon in niobium and hardening niobium carbide layers. The room-temperature proportional limit of the developed composite material is threefold that of the composite material fabricated from coating-free niobium foils using the proposed technology. The proportional limit of the developed composite material and the stress corresponding to the maximum load at 1100°C are 500 and 560 MPa, respectively. The developed material is considered as an alternative to Ni-Al superalloys.

  10. Use of a Tantalum Liner to Reduce Bore Erosion and Increase Muzzle Velocity in Two-Stage Light Gas Guns

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.

    2015-01-01

    Muzzle velocities and gun erosion predicted by earlier numerical simulations of two stage light gas guns with steel gun tubes were in good agreement with experimental values. In a subsequent study, simulations of high performance shots were repeated with rhenium (Re) gun tubes. Large increases in muzzle velocity (2 - 4 km/sec) were predicted for Re tubes. In addition, the hydrogen-produced gun tube erosion was, in general, predicted to be zero with Re tubes. Tantalum (Ta) has some mechanical properties superior to those of Re. Tantalum has a lower modulus of elasticity than Re for better force transmission from the refractory metal liner to an underlying thick wall steel tube. Tantalum also has greater ductility than Re for better survivability during severe stress/strain cycles. Also, tantalum has been used as a coating or liner in military powder guns with encouraging results. Tantalum has, however, somewhat inferior thermal properties to those of rhenium, with a lower melting point and lower density and thermal conductivity. The present study was undertaken to see to what degree the muzzle velocity gains of rhenium gun tubes (over steel tubes) could be achieved with tantalum gun tubes. Nine high performance shots were modeled with a new version of our CFD gun code for steel, rhenium and tantalum gun tubes. For all except the highest velocity shot, the results with Ta tubes were nearly identical with those for Re tubes. Even for the highest velocity shot, the muzzle velocity gain over a steel tube using Ta was 82% of the gain obtained using Re. Thus, the somewhat inferior thermal properties of Ta (when compared to those of Re) translate into only very slightly poorer overall muzzle velocity performance. When this fact is combined with the superior mechanical properties of Ta and the encouraging performance of Ta liners/coatings in military powder guns, tantalum is to be preferred over Re as a liner/coating material for two stage light gas guns to increase muzzle

  11. Quench-age method for the fabrication of niobium-aluminum superconductors

    DOEpatents

    Pickus, Milton R.; Ciardella, Robert L.

    1978-01-01

    A flexible Nb.sub.3 Al superconducting wire is fabricated from a niobium-aluminum composite wire by heating to form a solid solution which is retained at room temperature as a metastable solid solution by quenching. The metastable solid solution is then transformed to the stable superconducting A-15 phase by low temperature aging. The transformation induced by aging can be controlled to yield either a multifilamentary or a solid A-15 core surrounded by ductile niobium.

  12. Evaluation of Ferrite Chip Beads as Surge Current Limiters in Circuits with Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2014-01-01

    Limiting resistors are currently required to be connected in series with tantalum capacitors to reduce the risk of surge current failures. However, application of limiting resistors decreases substantially the efficiency of the power supply systems. An ideal surge current limiting device should have a negligible resistance for DC currents and high resistance at frequencies corresponding to transients in tantalum capacitors. This work evaluates the possibility of using chip ferrite beads (FB) as such devices. Twelve types of small size FBs from three manufacturers were used to evaluate their robustness under soldering stresses and at high surge current spikes associated with transients in tantalum capacitors. Results show that FBs are capable to withstand current pulses that are substantially greater than the specified current limits. However, due to a sharp decrease of impedance with current, FBs do not reduce surge currents to the required level that can be achieved with regular resistors.

  13. Tantalum-containing catalyst useful for producing alcohols from synthesis gas

    DOEpatents

    Kinkade, Nancy E.

    1991-01-01

    A catalyst useful for selectively converting a mixture of carbon monoxide and hydrogen to a mixture of lower alkanols consisting essentially of a mixture of molybdenum sulfide, an alkali metal compound and a tantalum compound.

  14. Tantalum-containing catalyst useful for producing alcohols from synthesis gas

    DOEpatents

    Kinkade, Nancy E.

    1992-01-01

    A catalyst useful for selectively converting a mixture of carbon monoxide and hydrogen to a mixture of lower alkanols consisting essentially of a mixture of molybdenum sulfide, an alkali metal compound and a tantalum compound.

  15. Field dependent surface resistance of niobium on copper cavities

    NASA Astrophysics Data System (ADS)

    Junginger, T.

    2015-07-01

    The surface resistance RS of superconducting cavities prepared by sputter coating a niobium film on a copper substrate increases significantly stronger with the applied rf field compared to cavities of bulk material. A possible cause is that the thermal boundary resistance between the copper substrate and the niobium film induces heating of the inner cavity wall, resulting in a higher RS. Introducing helium gas in the cavity, and measuring its pressure as a function of applied field allowed to conclude that the inner surface of the cavity is heated up by less than 120 mK when RS increases with Eacc by 100 n Ω . This is more than one order of magnitude less than what one would expect from global heating. Additionally, the effects of cooldown speed and low temperature baking have been investigated in the framework of these experiments. It is shown that for the current state of the art niobium on copper cavities there is only a detrimental effect of low temperature baking. A fast cooldown results in a lowered RS.

  16. Surface polishing of niobium for superconducting radio frequency (SRF) cavity applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Liang

    2014-08-01

    Niobium cavities are important components in modern particle accelerators based on superconducting radio frequency (SRF) technology. The interior of SRF cavities are cleaned and polished in order to produce high accelerating field and low power dissipation on the cavity wall. Current polishing methods, buffered chemical polishing (BCP) and electro-polishing (EP), have their advantages and limitations. We seek to improve current methods and explore laser polishing (LP) as a greener alternative of chemical methods. The topography and removal rate of BCP at different conditions (duration, temperature, sample orientation, flow rate) was studied with optical microscopy, scanning electron microscopy (SEM), and electronmore » backscatter diffraction (EBSD). Differential etching on different crystal orientations is the main contributor to fine grain niobium BCP topography, with gas evolution playing a secondary role. The surface of single crystal and bi-crystal niobium is smooth even after heavy BCP. The topography of fine grain niobium depends on total removal. The removal rate increases with temperature and surface acid flow rate within the rage of 0~20 °C, with chemical reaction being the possible dominate rate control mechanism. Surface flow helps to regulate temperature and avoid gas accumulation on the surface. The effect of surface flow rate on niobium EP was studied with optical microscopy, atomic force microscopy (AFM), and power spectral density (PSD) analysis. Within the range of 0~3.7 cm/s, no significant difference was found on the removal rate and the macro roughness. Possible improvement on the micro roughness with increased surface flow rate was observed. The effect of fluence and pulse accumulation on niobium topography during LP was studied with optical microscopy, SEM, AFM, and PSD analysis. Polishing on micro scale was achieved within fluence range of 0.57~0.90 J/cm2, with pulse accumulation adjusted accordingly. Larger area treatment was proved

  17. Tungsten wire and tubing joined by nickel brazing

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Thin tungsten wire and tungsten tubing are brazed together using a contacting coil of nickel wire heated to its melting point in an inert-gas atmosphere. This method is also effective for brazing tungsten to tungsten-rhenium parts.

  18. Copper-acrylic enamel serves as lubricant for cold drawing of refractory metals

    NASA Technical Reports Server (NTRS)

    Beane, C.; Karasek, F.

    1966-01-01

    Acrylic enamel spray containing metallic copper pigment lubricates refractory metal tubing during cold drawing operations so that the tubing surface remains free from scratches and nicks and does not seize in the die. Zirconium alloys, zirconium, tantalum alloys, niobium alloys, vanandium alloys and titanium alloys have been drawn using this lubricant.

  19. Synthesis and photocatalytic activity of electrospun niobium oxide nanofibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Shishun; Zuo, Ruzhong, E-mail: piezolab@hfut.edu.cn; Liu, Yi

    2013-03-15

    Graphical abstract: Different morphologies are obtained for the electrospun niobium oxide nanofibers with different phase structures. The nanofibers of the two phase structures present different band gap value and the light absorption. Hexagonal phase nanofibers show better photocatalytic activity compared with the orthorhombic nanofibers. Highlights: ► Niobium oxide nanofibers of two phase structures were fabricated by electrospinning. ► Photocatalytic properties of the niobium oxide nanofibers were first explored. ► Nanofibers of different phase structures showed different photocatalytic activities. ► Reasons for the differences in the photocatalysis were carefully discussed. - Abstract: Niobium oxide (Nb{sub 2}O{sub 5}) nanofibers have been synthesizedmore » by sol–gel based electrospinning technique. Pure hexagonal phase (H-Nb{sub 2}O{sub 5}) and orthorhombic phase (O-Nb{sub 2}O{sub 5}) nanofibers were obtained by thermally annealing the electrospun Nb{sub 2}O{sub 5}/polyvinylpyrrolidone composite fibers in air at 500 °C and 700 °C, respectively. The fibers were characterized using the X-ray diffraction, scanning electron microscopy, specific surface area analyzer and UV–vis diffuse reflectance spectroscopy. Photocatalytic activities of the obtained nanofibers were evaluated depending on the degradation of methyl orange. The results indicate that the heat-treatment temperature, the crystalline structure and the morphology affected the physical and chemical properties of the as-prepared Nb{sub 2}O{sub 5} nanofibers. The H-Nb{sub 2}O{sub 5} nanofibers obtained at lower temperature showed better potential for the application as a promising photocatalyst.« less

  20. Low noise niobium dc SQUID with a planar input coil

    NASA Astrophysics Data System (ADS)

    de Waal, V. J.; van den Hamer, P.; Klapwijk, T. M.

    1983-02-01

    A practical all-niobium dc superconducting quantum interference device (SQUID) with a niobium spiral input coil has been developed. The SQUID utilizes submicron Josephson junctions. The best intrinsic energy resolution obtained with a 1-nH SQUID is 4×10-32 J/Hz. A 20-turn 1.2-μH input coil is coupled to a 2.3-nH SQUID with an efficiency of 0.5. The energy resolution with respect to the coil is 1×10-30 J/Hz.

  1. Inferring Strength of Tantalum from Hydrodynamic Instability Recovery Experiments

    NASA Astrophysics Data System (ADS)

    Sternberger, Z.; Maddox, B.; Opachich, Y.; Wehrenberg, C.; Kraus, R.; Remington, B.; Randall, G.; Farrell, M.; Ravichandran, G.

    2018-05-01

    Hydrodynamic instability experiments allow access to material properties at extreme conditions, where strain rates exceed 105 s-1 and pressures reach 100 GPa. Current hydrodynamic instability experimental methods require in-flight radiography to image the instability growth at high pressure and high strain rate, limiting the facilities where these experiments can be performed. An alternate approach, recovering the sample after loading, allows measurement of the instability growth with profilometry. Tantalum samples were manufactured with different 2D and 3D initial perturbation patterns and dynamically compressed by a blast wave generated by laser ablation. The samples were recovered from peak pressures between 30 and 120 GPa and strain rates on the order of 107 s-1, providing a record of the growth of the perturbations due to hydrodynamic instability. These records are useful validation points for hydrocode simulations using models of material strength at high strain rate. Recovered tantalum samples were analyzed, providing an estimate of the strength of the material at high pressure and strain rate.

  2. Reclamation of niobium compounds from ionic liquid electrochemical polishing of superconducting radio frequency cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.

    2013-06-01

    Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopymore » (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.« less

  3. Evaluation of Polymer Hermetically Sealed Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2014-01-01

    Polymer cathode tantalum capacitors have lower ESR (equivalent series resistance) compared to other types of tantalum capacitors and for this reason have gained popularity in the electronics design community. Their use allows improved performance of power supply systems along with substantial reduction of size and weight of the components used. However, these parts have poor thermal stability and can degrade in humid environments. Polymer hermetically sealed (PHS) capacitors avoid problems related to environmental degradation of molded case parts and can potentially replace current wet and solid hermetically sealed capacitors. In this work, PHS capacitors manufactured per DLA LAM DWG#13030 are evaluated for space applications. Several lots of capacitors manufactured over period from 2010 to 2014 were tested for the consistency of performance, electrical and thermal characteristics, highly accelerated life testing, and robustness under reverse bias and random vibration conditions. Special attention was given to analysis of leakage currents and the effect of long-term high temperature storage on capacitors in as is condition and after hermeticity loss. The results show that PHS capacitors might be especially effective for low-temperature applications or for system requiring a cold start-up. Additional screening and qualification testing have been recommended to assure the necessary quality of capacitors for space projects.

  4. Niobium Solar Mobile Project — High Strength Niobium Microalloyed Steel as a Solution to Improve Electric Super Scooter and Motorcycle Performance

    NASA Astrophysics Data System (ADS)

    Richards, Terry; Kauppi, Erik; Flanagan, Lauren; Ribeio, Eduardo A. A. G.; Nogueira, Marcos A. Stuart; McCourtney, Ian

    This paper presents the advantages of replacing mild steel with high strength niobium microalloyed steel in the structure of Electric Super Scooters, Electric Cargo Motorcycles and Solar Charging Stations. The Mini-Fleet-in-a-Box concept was developed by Current Motor to guarantee mobility, efficiency and solar generated electricity. With the adoption of niobium microalloyed high strength steel for more than 90% of the Super Scooter and Motorcycle structures, it was possible to redesign the frame, resulting in a 31% weight reduction and a very modern and functional body. Together with a new powertrain, these changes were responsible for increasing Motorcycle autonomy by more than 15%, depending on average speed. The new frame design reduced the number of high strain points in the frame, increasing the safety of the project. The Solar Charging Station was built using the container concept and designed with high strength niobium microalloyed steel, which resulted in a weight reduction of 25%. CBMM's facility in Araxá, Brazil was selected in the second half of 2013 as the demonstration site to test the efficiency of the Super Scooter and Solar Charging Station. Each Super Scooter has run more than 2,000 km maintenance-free with an autonomy of more than 100 km per charge.

  5. Tantalum-containing catalyst useful for producing alcohols from synthesis gas

    DOEpatents

    Kinkade, N.E.

    1992-04-07

    A catalyst is described which is useful for selectively converting a mixture of carbon monoxide and hydrogen to a mixture of lower alkanols. The catalyst consists essentially of a mixture of molybdenum sulfide, an alkali metal compound and a tantalum compound.

  6. Effects of niobium additions on the structure, depth, and austenite grain size of the case of carburized 0.07% C steels

    NASA Astrophysics Data System (ADS)

    Islam, M. A.; Bepari, M. M. A.

    1996-10-01

    Carbon (0.07%) steel samples containing about 0.04% Nb singly and in combination with nitrogen were carburized in a natural Titas gas atmosphere at a temperature of 1223 K (950 °C) and a pressure of about 0.10 MPa for 1/2 to 4 h, followed by slow cooling in the furnace. Their microstructures were studied by optical microscopy. The austenite grain size of the case and the case depths were determined on baseline samples of low-carbon steels and also on niobium and (Nb + N) microalloyed steel samples. It was found that, when compared to the baseline steel, niobium alone or in combination with nitrogen decreased the thickness of cementite network near the surface of the carburized case of the steels. However, niobium in combination with nitrogen was more effective than niobium in reducing the thickness of cementite network. Niobium with or without nitrogen inhibited the formation of Widmanstätten cementite plates at grain boundaries and within the grains near the surface in the hypereutectoid zone of the case. It was also revealed that, when compared to the baseline steel, niobium decreased the case depth of the carburized steels, but that niobium with nitrogen is more effective than niobium alone in reducing the case depth. Niobium as niobium carbide (NbC) and niobium in the presence of nitrogen as niobium carbonitride, [Nb(C,N)] particles refined the austenite grain size of the carburized case, but Nb(C,N) was more effective than NbC in inhibiting austenite grain growth.

  7. RECOVERY OF URANIUM FROM TUNGSTEN

    DOEpatents

    Newnam, K.

    1959-02-01

    A method is presented for the rccovery of uranium which has adhered to tungsten parts in electromagnetic isotope separation apparatus. Such a tungsten article is dissolved electrolytically in 20% NaOH by using the tungsten article as the anode. The resulting solution, containing soluble sodium lungstate and an insoluble slime, is then filtered. The slime residue is ignited successively with sodium nitrate and sodium pyrosulfate and leashed, and the resulting filtrates are combined with the original filtrate. Uranium is then recovered from the combined flltrates by diuranate precipitation.

  8. Qualification of niobium materials for superconducting radio frequency cavity applications: View of a condensed matter physicist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, S. B., E-mail: sbroy@rrcat.gov.in; Myneni, G. R., E-mail: rao@jlab.org

    2015-12-04

    We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other relatedmore » material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values.« less

  9. Hydrogen permeation properties of plasma-sprayed tungsten*1

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Pawelko, R. J.; Hankins, M. R.; Longhurst, G. R.; Neiser, R. A.

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D 3+ ion beam with fluxes of ˜6.5 × 10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity.

  10. Electroplating and stripping copper on molybdenum and niobium

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1978-01-01

    Molybdenum and niobium are often electroplated and subsequently stripped of copper. Since general standard plating techniques produce poor quality coatings, general procedures have been optimized and specified to give good results.

  11. Frequency spectrum of tantalum at temperatures of 293-2300 K

    NASA Astrophysics Data System (ADS)

    Semenov, V. A.; Kozlov, Zh. A.; Krachun, L.; Mateescu, G.; Morozov, V. M.; Oprea, A. I.; Oprea, K.; Puchkov, A. V.

    2010-05-01

    The temperature dependence of the frequency spectrum of tantalum in the temperature range from room temperature to 2300 K has been studied for the first time using inelastic slow-neutron scattering. The inelastic slow-neutron scattering spectra have been measured at different temperatures on a DIN-2PI time-of-flight spectrometer installed at the IBR-2 nuclear reactor (Joint Institute for Nuclear Research, Dubna, Russia) with the use of a TS3000K high-temperature thermostat. From the measured spectra, the frequency spectra of the tantalum crystal lattice have been determined at temperatures of 293, 1584, and 2300 K by the iteration method. As the temperature increases, the frequency spectrum, on the whole, is softened and the specific features manifested themselves at room temperature are smoothed. The variations observed have been explained by the increase in the role of the effects of vibration anharmonism at high temperatures.

  12. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Airapetov, A. A.; Begrambekov, L. B., E-mail: lbb@plasma.mephi.ru; Buzhinskiy, O. I.

    2015-12-15

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  13. Thermophysical Properties of Matter - The TPRC Data Series. Volume 4. Specific Heat - Metallic Elements and Alloys

    DTIC Science & Technology

    1971-01-01

    alloys— sodium — sodium alloya— solder—carbon ateels—chromium steels—silicon steels—tantalum—tantalum alloys—terbium—thallium—thallium alloys—thorium...Praseodymium 45 Rhenium 46 Rhodium 47 Rubidium 48 Ruthenium 4» Samarium 50 Scandium 51 Selenium 52 Silicon 5:i Silver 54 Sodium 55 Strontium 56...Potassium ♦ Sodium 111 Sodium * Potassium 112 TantalumTungsten 113 Thallium + Lead, PbTl| 114 Tin ♦ Bismuth 115 Tin ♦ Indium 116 Tin+ Lead 117

  14. Atomization from a tantalum surface in graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Gregoire, D. C.; Chakrabarti, C. L.

    The mechanism of atom formation of U, V, Mo, Ni, Mn, Cu and Mg atomized from pyrolytic graphite and tantalum metal surfaces has been studied. The mechanism of atom formation for U from a graphite tube atomizer is reported for the first time. The peak absorbance for U and Cu is increased by factors of 59.7 and 2.0, respectively, whereas that of V, Mo and Ni is reduced by several orders of magnitude when they are atomized from a tantalum metal surface. The peak absorbance of Mn and Mg is not appreciably affected by the material of the atomization surface. Interaction of Mn and Mg with the graphite surface and formation of their refractory carbides was found to be negligible. Uranium forms a refractory carbide when heated from a graphite surface.

  15. Precipitation of a monoclonal antibody by soluble tungsten.

    PubMed

    Bee, Jared S; Nelson, Stephanie A; Freund, Erwin; Carpenter, John F; Randolph, Theodore W

    2009-09-01

    Tungsten microparticles may be introduced into some pre-filled syringes during the creation of the needle hole. In turn, these microcontaminants may interact with protein therapeutics to produce visible particles. We found that soluble tungsten polyanions formed in acidic buffer below pH 6.0 can precipitate a monoclonal antibody within seconds. Soluble tungsten in pH 5.0 buffer at about 3 ppm was enough to cause precipitation of a mAb formulated at 0.02 mg/mL. The secondary structure of the protein was near-native in the collected precipitate. Our observations are consistent with the coagulation of a monoclonal antibody by tungsten polyanions. Tungsten-induced precipitation should only be a concern for proteins formulated below about pH 6.0 since tungsten polyanions are not formed at higher pHs. We speculate that the heterogenous nature of particle contamination within the poorly mixed syringe tip volume could mean that a specification for tungsten contamination based on the entire syringe volume is not appropriate. The potential potency of tungsten metal contamination is highlighted by the small number of particles that would be required to generate soluble tungsten levels needed to coagulate this antibody at pH 5.0.

  16. Precipitation of a Monoclonal Antibody by Soluble Tungsten

    PubMed Central

    Bee, Jared S.; Nelson, Stephanie A.; Freund, Erwin; Carpenter, John F.; Randolph, Theodore W.

    2009-01-01

    Tungsten microparticles may be introduced into some pre-filled syringes during the creation of the needle hole. In turn, these microcontaminants may interact with protein therapeutics to produce visible particles. We found that soluble tungsten polyanions formed in acidic buffer below pH 6.0 can precipitate a monoclonal antibody within seconds. Soluble tungsten in pH 5.0 buffer at about 3 ppm was enough to cause precipitation of a mAb formulated at 0.02 mg/mL. The secondary structure of the protein was near-native in the collected precipitate. Our observations are consistent with the coagulation of a monoclonal antibody by tungsten polyanions. Tungsten-induced precipitation should only be a concern for proteins formulated below about pH 6.0 since tungsten polyanions are not formed at higher pHs. We speculate that the heterogenous nature of particle contamination within the poorly mixed syringe tip volume could mean that a specification for tungsten contamination based on the entire syringe volume is not appropriate. The potential potency of tungsten metal contamination is highlighted by the small number of particles that would be required to generate soluble tungsten levels needed to coagulate this antibody at pH 5.0. PMID:19230018

  17. Effect of interstitial impurities on the field dependent microwave surface resistance of niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinello, M., E-mail: mmartine@fnal.gov; Checchin, M.; Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616

    Previous work has demonstrated that the radio frequency surface resistance of niobium resonators is dramatically reduced when nitrogen impurities are dissolved as interstitial in the material. This effect is attributed to the lowering of the Mattis-Bardeen surface resistance with increasing accelerating field; however, the microscopic origin of this phenomenon is poorly understood. Meanwhile, an enhancement of the sensitivity to trapped magnetic field is typically observed for such cavities. In this paper, we conduct a systematic study on these different components contributing to the total surface resistance as a function of different levels of dissolved nitrogen, in comparison with standard surfacemore » treatments for niobium resonators. Adding these results together, we are able to show which is the optimum surface treatment that maximizes the Q-factor of superconducting niobium resonators as a function of expected trapped magnetic field in the cavity walls. These results also provide insights on the physics behind the change in the field dependence of the Mattis-Bardeen surface resistance, and of the trapped magnetic vortex induced losses in superconducting niobium resonators.« less

  18. Formation of novel transition metal hydride complexes with ninefold hydrogen coordination

    PubMed Central

    Takagi, Shigeyuki; Iijima, Yuki; Sato, Toyoto; Saitoh, Hiroyuki; Ikeda, Kazutaka; Otomo, Toshiya; Miwa, Kazutoshi; Ikeshoji, Tamio; Orimo, Shin-ichi

    2017-01-01

    Ninefold coordination of hydrogen is very rare, and has been observed in two different hydride complexes comprising rhenium and technetium. Herein, based on a theoretical/experimental approach, we present evidence for the formation of ninefold H- coordination hydride complexes of molybdenum ([MoH9]3−), tungsten ([WH9]3−), niobium ([NbH9]4−) and tantalum ([TaH9]4−) in novel complex transition-metal hydrides, Li5MoH11, Li5WH11, Li6NbH11 and Li6TaH11, respectively. All of the synthesized materials are insulated with band gaps of approximately 4 eV, but contain a sufficient amount of hydrogen to cause the H 1s-derived states to reach the Fermi level. Such hydrogen-rich materials might be of interest for high-critical-temperature superconductivity if the gaps close under compression. Furthermore, the hydride complexes exhibit significant rotational motions associated with anharmonic librations at room temperature, which are often discussed in relation to the translational diffusion of cations in alkali-metal dodecahydro-closo-dodecaborates and strongly point to the emergence of a fast lithium conduction even at room temperature. PMID:28287143

  19. Initial Assessment of Environmental Barrier Coatings for the Prometheus Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Frederick

    2005-12-15

    Depending upon final design and materials selections, a variety of engineering solutions may need to be considered to avoid chemical degradation of components in a notional space nuclear power plant (SNPP). Coatings are one engineered approach that was considered. A comprehensive review of protective coating technology for various space-reactor structural materials is presented, including refractory metal alloys [molybdenum (Mo), tungsten (W), rhenium (Re), tantalum (Ta), and niobium (Nb)], nickel (Ni)-base superalloys, and silicon carbide (Sic). A summary description of some common deposition techniques is included. A literature survey identified coatings based on silicides or iridium/rhenium as the primary methods formore » environmental protection of refractory metal alloys. Modified aluminide coatings have been identified for superalloys and multilayer ceramic coatings for protection of Sic. All reviewed research focused on protecting structural materials from extreme temperatures in highly oxidizing conditions. Thermodynamic analyses indicate that some of these coatings may not be protective in the high-temperature, impure-He environment expected in a Prometheus reactor system. Further research is proposed to determine extensibility of these coating materials to less-oxidizing or neutral environments.« less

  20. Mirrorlike pulsed laser deposited tungsten thin film.

    PubMed

    Mostako, A T T; Rao, C V S; Khare, Alika

    2011-01-01

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10(-5) Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness ∼782 nm.

  1. Chromium Elimination and Cannon Life Extension for Gun Tubes

    DTIC Science & Technology

    2012-08-30

    the use of hexavalent chromium (VI) in the production of cannon barrels by developing a cost effective environmentally friendly Explosive Bonding...erosion- resistant chrome cobalt alloy matrix with 15% tungsten. Stellite is used as M60 machine gun barrel liner. Tantalum Cobalt Tungsten...Grounds (YPG) Preliminary proof of principle endurance testing at YPG shows promising results when conducted side by side to a chrome plated

  2. Tungsten devices in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Hou, Xiandeng; Jones, Bradley T.

    2002-04-01

    Tungsten devices have been employed in analytical atomic spectrometry for approximately 30 years. Most of these atomizers can be electrically heated up to 3000 °C at very high heating rates, with a simple power supply. Usually, a tungsten device is employed in one of two modes: as an electrothermal atomizer with which the sample vapor is probed directly, or as an electrothermal vaporizer, which produces a sample aerosol that is then carried to a separate atomizer for analysis. Tungsten devices may take various physical shapes: tubes, cups, boats, ribbons, wires, filaments, coils and loops. Most of these orientations have been applied to many analytical techniques, such as atomic absorption spectrometry, atomic emission spectrometry, atomic fluorescence spectrometry, laser excited atomic fluorescence spectrometry, metastable transfer emission spectroscopy, inductively coupled plasma optical emission spectrometry, inductively coupled plasma mass spectrometry and microwave plasma atomic spectrometry. The analytical figures of merit and the practical applications reported for these techniques are reviewed. Atomization mechanisms reported for tungsten atomizers are also briefly summarized. In addition, less common applications of tungsten devices are discussed, including analyte preconcentration by adsorption or electrodeposition and electrothermal separation of analytes prior to analysis. Tungsten atomization devices continue to provide simple, versatile alternatives for analytical atomic spectrometry.

  3. 2014 NEPP Tasks Update for Ceramic and Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2014-01-01

    Presentation describes recent development in research on MnO2, wet, and polymer tantalum capacitors. Low-voltage failures in multilayer ceramic capacitors and techniques to reveal precious metal electrode (PME) and base metal electrode (BME) capacitors with cracks are discussed. A voltage breakdown technique is suggested to select high quality low-voltage BME ceramic capacitors.

  4. Development and characterization of powder metallurgically produced discontinuous tungsten fiber reinforced tungsten composites

    NASA Astrophysics Data System (ADS)

    Mao, Y.; Coenen, J. W.; Riesch, J.; Sistla, S.; Almanstötter, J.; Jasper, B.; Terra, A.; Höschen, T.; Gietl, H.; Bram, M.; Gonzalez-Julian, J.; Linsmeier, Ch; Broeckmann, C.

    2017-12-01

    In future fusion reactors, tungsten is the prime candidate material for the plasma facing components. Nevertheless, tungsten is prone to develop cracks due to its intrinsic brittleness—a major concern under the extreme conditions of fusion environment. To overcome this drawback, tungsten fiber reinforced tungsten (Wf/W) composites are being developed. These composite materials rely on an extrinsic toughing principle, similar to those in ceramic matrix composite, using internal energy dissipation mechanisms, such as crack bridging and fiber pull-out, during crack propagation. This can help Wf/W to facilitate a pseudo-ductile behavior and allows an elevated damage resilience compared to pure W. For pseudo-ductility mechanisms to occur, the interface between the fiber and matrix is crucial. Recent developments in the area of powder-metallurgical Wf/W are presented. Two consolidation methods are compared. Field assisted sintering technology and hot isostatic pressing are chosen to manufacture the Wf/W composites. Initial mechanical tests and microstructural analyses are performed on the Wf/W composites with a 30% fiber volume fraction. The samples produced by both processes can give pseudo-ductile behavior at room temperature.

  5. Electrochemical Deposition of Niobium onto the Surface of Copper Using a Novel Choline Chloride-Based Ionic Liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wixtroma, Alex I.; Buhlera, Jessica E.; Reece, Charles E.

    2013-06-01

    Recent research has shown that choline chloride-based solutions can be used to replace acid-based electrochemical polishing solutions. In this study niobium metal was successfully deposited on the surface of copper substrate via electrochemical deposition using a novel choline chloride-based ionic liquid. The niobium metal used for deposition on the Cu had been dissolved in the solution from electrochemical polishing of a solid niobium piece prior to the deposition. The visible coating on the surface of the Cu was analyzed using scanning electron microscopy (SEM) and electron dispersive x-ray spectroscopy (EDX). This deposition method effectively recycles previously dissolved niobium from electrochemicalmore » polishing.« less

  6. Materials Survey: Tungsten

    DTIC Science & Technology

    1956-12-01

    Decomposition of Tungsten Ores ......................................... 111-13 Purification of Tungsten Oxide...which followed in 1945 . THE POSTWAR PERIOD Readjustment ’൚-4-1" type of high-speed steel bymanu- facturers who had been using the Ś-6" The period 1946... 1945 ... 5,26’ 8,639 4,7,74 14, 16 2 4,341 23.17 first. 1Ś ... 4.42 b,s81 6,869 6,458 37 ),980 20.17 I94’... 2,945 9,W02 6,018 7,812 148 3.󈧐 23.43袄

  7. Alkyl group effects on CO insertion into coordinatively unsaturated early-transition-metal alkyls. Preparations and the first structural characterizations of tantalum enolate-O and tantalum. eta. sup 2 -acyl complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, T.Y.; Garner, L.R.; Baenziger, N.C.

    1990-10-03

    Low-pressure carbonylation of the mono(peralkylcyclopentadienyl)tantalum(V) alkyls ({eta}-C{sub 5}Me{sub 4}R)TaR{prime}Cl{sub 3} (R = Me, Et; R{prime} = CH{sub 2}C{sub 6}H{sub 4}-p-Me, CH{sub 2}CMe{sub 3}) yields either the O-bound enolate or the {eta}{sup 2}-acyl as shown by ir/NMR spectroscopy and x-ray diffractometry. The p-tolyl enolate ({eta}-C{sub 5}Me{sub 5})Ta(OCH{double bond}CHC{sub 6}H{sub 4}-p-Me)Cl{sub 3}, derived directly from carbonylation of the tantalum 4-methylbenzyl precursor, is shown to possess a cis configuration in solution and in the solid state. Key structural features from a single-crystal x-ray diffraction study of the tetrahydrofuran-ligated enolate complex are reported. The mechanism of formation of the enolate from carbonylation of themore » 4-methylbenzyl complex is discussed. The previously reported acyl ({eta}-C{sub 5}Me{sub 4}R)Ta(C(O)CH{sub 2}CMe{sub 3})Cl{sub 3} has been reexamined and found to possess a symmetric, strongly distorted {eta}{sup 2}-acyl coordination by solution {sup 1}H NMR spectroscopy and solid-state x-ray diffractometry. The molecular structures of ({eta}-C{sub 5}Me{sub 5})Ta(OCH{double bond}CHC{sub 6}H{sub 4}-p-Me)Cl{sub 3} and ({eta}-C{sub 5}Me{sub 5})Ta(C(O)CH{sub 2}CMe{sub 3})Cl{sub 3}, which are reported here, are the first structural determinations of a tantalum enolate and of a tantalum {eta}{sup 2}-acyl. 41 refs., 2 figs., 8 tabs.« less

  8. The tungsten powder study of the dispenser cathode

    NASA Astrophysics Data System (ADS)

    Bao, Ji-xiu; Wan, Bao-fei

    2006-06-01

    The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 °C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment.

  9. Ultrathin niobium nanofilms on fiber optical tapers - a new route towards low-loss hybrid plasmonic modes

    NASA Astrophysics Data System (ADS)

    Wieduwilt, Torsten; Tuniz, Alessandro; Linzen, Sven; Goerke, Sebastian; Dellith, Jan; Hübner, Uwe; Schmidt, Markus A.

    2015-11-01

    Due to the ongoing improvement in nanostructuring technology, ultrathin metallic nanofilms have recently gained substantial attention in plasmonics, e.g. as building blocks of metasurfaces. Typically, noble metals such as silver or gold are the materials of choice, due to their excellent optical properties, however they also possess some intrinsic disadvantages. Here, we introduce niobium nanofilms (~10 nm thickness) as an alternate plasmonic platform. We demonstrate functionality by depositing a niobium nanofilm on a plasmonic fiber taper, and observe a dielectric-loaded niobium surface-plasmon excitation for the first time, with a modal attenuation of only 3-4 dB/mm in aqueous environment and a refractive index sensitivity up to 15 μm/RIU if the analyte index exceeds 1.42. We show that the niobium nanofilm possesses bulk optical properties, is continuous, homogenous, and inert against any environmental influence, thus possessing several superior properties compared to noble metal nanofilms. These results demonstrate that ultrathin niobium nanofilms can serve as a new platform for biomedical diagnostics, superconducting photonics, ultrathin metasurfaces or new types of optoelectronic devices.

  10. Irradiation effects in tungsten-copper laminate composite

    DOE PAGES

    Garrison, L. M.; Katoh, Yutai; Snead, Lance L.; ...

    2016-09-19

    Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 10 25 n/m 2, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039more » dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. In conclusion, tor elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile.« less

  11. Buffered Electrochemical Polishing of Niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianluigi Ciovati; Tian, Hui; Corcoran, Sean

    The standard preparation of superconducting radio-frequency (SRF) cavities made of pure niobium include the removal of a 'damaged' surface layer, by buffered chemical polishing (BCP) or electropolishing (EP), after the cavities are formed. The performance of the cavities is characterized by a sharp degradation of the quality factor when the surface magnetic field exceeds about 90 mT, a phenomenon referred to as 'Q-drop.' In cavities made of polycrystalline fine grain (ASTM 5) niobium, the Q-drop can be significantly reduced by a low-temperature (? 120 °C) 'in-situ' baking of the cavity if the chemical treatment was EP rather than BCP. Asmore » part of the effort to understand this phenomenon, we investigated the effect of introducing a polarization potential during buffered chemical polishing, creating a process which is between the standard BCP and EP. While preliminary results on the application of this process to Nb cavities have been previously reported, in this contribution we focus on the characterization of this novel electrochemical process by measuring polarization curves, etching rates, surface finish, electrochemical impedance and the effects of temperature and electrolyte composition. In particular, it is shown that the anodic potential of Nb during BCP reduces the etching rate and improves the surface finish.« less

  12. Study of surge current effects on solid tantalum capacitors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Results are presented of a 2,000 hour cycled life test program conducted to determine the effect of short term surge current screening on approximately 47 micron f/volt solid tantalum capacitors. The format provides average values and standard deviations of the parameters, capacitance, dissipation factor, and equivalent series resistance at 120 Hz, 1KHz, abd 40 KHz.

  13. Cytotoxicity of titanium and titanium alloying elements.

    PubMed

    Li, Y; Wong, C; Xiong, J; Hodgson, P; Wen, C

    2010-05-01

    It is commonly accepted that titanium and the titanium alloying elements of tantalum, niobium, zirconium, molybdenum, tin, and silicon are biocompatible. However, our research in the development of new titanium alloys for biomedical applications indicated that some titanium alloys containing molybdenum, niobium, and silicon produced by powder metallurgy show a certain degree of cytotoxicity. We hypothesized that the cytotoxicity is linked to the ion release from the metals. To prove this hypothesis, we assessed the cytotoxicity of titanium and titanium alloying elements in both forms of powder and bulk, using osteoblast-like SaOS(2) cells. Results indicated that the metal powders of titanium, niobium, molybdenum, and silicon are cytotoxic, and the bulk metals of silicon and molybdenum also showed cytotoxicity. Meanwhile, we established that the safe ion concentrations (below which the ion concentration is non-toxic) are 8.5, 15.5, 172.0, and 37,000.0 microg/L for molybdenum, titanium, niobium, and silicon, respectively.

  14. Tungsten or Wolfram: Friend or Foe?

    PubMed

    Zoroddu, Maria A; Medici, Serenella; Peana, Massimiliano; Nurchi, Valeria M; Lachowicz, Joanna I; Laulicht-Glickc, Freda; Costa, Max

    2018-01-01

    Tungsten or wolfram was regarded for many years as an enemy within the tin smelting and mining industry, because it conferred impurity or dirtiness in tin mining. However, later it was considered an amazing metal for its strength and flexibility, together with its diamond like hardness and its melting point which is the highest of any metal. It was first believed to be relatively inert and an only slightly toxic metal. Since early 2000, the risk exerted by tungsten alloys, its dusts and particulates to induce cancer and several other adverse effects in animals as well as humans has been highlighted from in vitro and in vivo experiments. Thus, it becomes necessary to take a careful look at all the most recent data reported in the scientific literature, covering the years 2001-2016. In fact, the findings indicate that much more attention should be devoted to thoroughly investigate the toxic effects of tungsten and the involved mechanisms of tungsten metal or tungsten metal ions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Vapor pressure and evaporation rate of certain heat-resistant compounds in a vacuum at high temperatures

    NASA Technical Reports Server (NTRS)

    Bolgar, A. S.; Verkhoglyadova, T. S.; Samsonov, G. V.

    1985-01-01

    The vapor pressure and evaporation rate of borides of titanium, zirconium, and chrome; and of strontium and carbides of titanium, zirconium, and chrome, molybdenum silicide; and nitrides of titanium, niobium, and tantalum in a vacuum were studied. It is concluded that all subject compounds evaporate by molecular structures except AlB sub 12' which dissociates, losing the aluminum.

  16. Understanding Quality Factor Degradation in Superconducting Niobium Cavities at Low Microwave Field Amplitudes

    DOE PAGES

    Romanenko, A.; Schuster, D. I.

    2017-12-28

    In niobium superconducting radio frequency (SRF) cavities for particle acceleration, a decrease of the quality factor at lower fields—a so-called low field Q slope or LFQS—has been a long-standing unexplained effect. By extending the high Q measurement techniques to ultralow fields, we discover two previously unknown features of the effect: (i) saturation at rf fields lower than E acc~0.1 MV/m; (ii) strong degradation enhancement by growing thicker niobium pentoxide. Our findings suggest that the LFQS may be caused by the two level systems in the natural niobium oxide on the inner cavity surface, thereby identifying a new source of residual resistance andmore » providing guidance for potential nonaccelerator low-field applications of SRF cavities.« less

  17. Understanding Quality Factor Degradation in Superconducting Niobium Cavities at Low Microwave Field Amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanenko, A.; Schuster, D. I.

    In niobium superconducting radio frequency (SRF) cavities for particle acceleration, a decrease of the quality factor at lower fields—a so-called low field Q slope or LFQS—has been a long-standing unexplained effect. By extending the high Q measurement techniques to ultralow fields, we discover two previously unknown features of the effect: (i) saturation at rf fields lower than E acc~0.1 MV/m; (ii) strong degradation enhancement by growing thicker niobium pentoxide. Our findings suggest that the LFQS may be caused by the two level systems in the natural niobium oxide on the inner cavity surface, thereby identifying a new source of residual resistance andmore » providing guidance for potential nonaccelerator low-field applications of SRF cavities.« less

  18. Electron-ion temperature equilibration in warm dense tantalum

    DOE PAGES

    Doppner, T; LePape, S.; Ma, T.; ...

    2014-11-05

    We present measurements of electron-ion temperature equilibration in proton-heated tantalum, under warm dense matter conditions. Our results agree with theoretical predictions for metals calculated using input data from ab initio simulations. Furthermore, the fast relaxation observed in the experiment contrasts with much longer equilibration times found in proton heated carbon, indicating that the energy flow pathways in warm dense matter are far from being fully understood.

  19. Response and representation of ductile damage under varying shock loading conditions in tantalum

    DOE PAGES

    Bronkhorst, C. A.; Gray, III, G. T.; Addessio, F. L.; ...

    2016-02-25

    The response of polycrystalline metals, which possess adequate mechanisms for plastic deformation under extreme loading conditions, is often accompanied by the formation of pores within the structure of the material. This large deformation process is broadly identified as progressive with nucleation, growth, coalescence, and failure the physical path taken over very short periods of time. These are well known to be complex processes strongly influenced by microstructure, loading path, and the loading profile, which remains a significant challenge to represent and predict numerically. In the current study, the influence of loading path on the damage evolution in high-purity tantalum ismore » presented. Tantalum samples were shock loaded to three different peak shock stresses using both symmetric impact, and two different composite flyer plate configurations such that upon unloading the three samples displayed nearly identical “pull-back” signals as measured via rear-surface velocimetry. While the “pull-back” signals observed were found to be similar in magnitude, the sample loaded to the highest peak stress nucleated a connected field of ductile fracture which resulted in complete separation, while the two lower peak stresses resulted in incipient damage. The damage evolution in the “soft” recovered tantalum samples was quantified using optical metallography, electron-back-scatter diffraction, and tomography. These experiments are examined numerically through the use of a model for shock-induced porosity evolution during damage. The model is shown to describe the response of the tantalum reasonably well under strongly loaded conditions but less well in the nucleation dominated regime. As a result, numerical results are also presented as a function of computational mesh density and discussed in the context of improved representation of the influence of material structure upon macro-scale models of ductile damage.« less

  20. Tungsten Targets the Tumor Microenvironment to Enhance Breast Cancer Metastasis

    PubMed Central

    Bolt, Alicia M.; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M.; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K.

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients’ years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207

  1. Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders

    NASA Astrophysics Data System (ADS)

    Chenfan, YU; Xin, ZHOU; Dianzheng, WANG; Neuyen VAN, LINH; Wei, LIU

    2018-01-01

    Spherical powders with good flowability and high stacking density are mandatory for powder bed additive manufacturing. Nevertheless, the preparation of spherical refractory tungsten and tungsten alloy powders is a formidable task. In this paper, spherical refractory metal powders processed by high-energy stir ball milling and RF inductively coupled plasma were investigated. By utilizing the technical route, pure spherical tungsten powders were prepared successfully, the flowability increased from 10.7 s/50 g to 5.5 s/50 g and apparent density increased from 6.916 g cm-3 to 11.041 g cm-3. Alloying element tantalum can reduce the tendency to micro-crack during tungsten laser melting and rapid solidification process. Spherical W-6Ta (%wt) powders were prepared in this way, homogeneous dispersion of tantalum in a tungsten matrix occurred but a small amount of flake-like shape particles appeared after high-energy stir ball milling. The flake-like shape particles can hardly be spheroidized in subsequent RF inductively coupled plasma process, might result from the unique suspended state of flaky particles under complex electric and magnetic fields as well as plasma-particle heat exchange was different under various turbulence models. As a result, the flake-like shape particles cannot pass through the high-temperature area of thermal plasma torch and cannot be spheroidized properly.

  2. Delta Niobium or Delta VICE?

    NASA Astrophysics Data System (ADS)

    Hofmann, A. W.

    2006-12-01

    Delta Niobium or Delta VICE? Niobium is one of a few chemical elements that can be used to discriminate between melts derived from upwelling mantle, represented by MORBs and OIBs, and those derived from subduction and continental crust environments. The Nb/U ratio was introduced because these two elements appear to partition nearly identically in upwelling environments, but very differently (from one another) in subduction and continental environments (Hofmann et al., 1986). Fitton et al. (1997, 2003) have taken a radically different approach, using log(Nb/Y)-log(Zr/Y) correlations that appear to discriminate between MORB and OIB (or plume) environments. MORB correlations are parallel to, and at lower Nb/Y ratios than, Iceland basalt correlations. This is expressed by a discrimination parameter defined as Delta Nb = 1.74 + log(Nb/Y) - 1.92 log(Zr/Y). N-MORB have negative Delta-Nb values, whereas Iceland and other OIBs have positive values. Fitton et al. interpret this in terms of a niobium deficiency in MORB that is balanced by a Nb excess in OIBs. This interpretation conflicts with evidence based on Nb/U ratios (Hofmann et al., 1986), that MORB and OIB are parts of a common reservoir, which is different from, and complementary to, the continental crust. Both parts of this MORB-OIB reservoir are characterized by higher-than-primitive Nb/U and Nb/Th ratios, whereas continental crust has dramatically lower Nb/U and Nb/Th ratios. The use of VICE/MICE (very-incompatible- element to moderately-incompatible-element) ratios, such as Nb/Y, obscures this. The significance of the VICE/MICE plot becomes clear if one replaces Nb by other VICEs in the log(Nb/Y)-log(Zr/Y) plot. This shows that any of these VICEs yield similar topologies as Nb/Y. Thus for a given Zr/Y ratio, depleted MORB have consistently lower Ba/Y, Th/Y, and La/Y ratios than do Iceland basalts, even the most incompatible-element- depleted Iceland picrites. This is caused by a less extreme depletion of

  3. Selective Dry Etch for Defining Ohmic Contacts for High Performance ZnO TFTs

    DTIC Science & Technology

    2014-03-27

    scale, high-frequency ZnO thin - film transistors (TFTs) could be fabricated. Molybdenum, tantalum, titanium tungsten 10-90, and tungsten metallic contact... thin - film transistor layout utilized in the thesis research . . . . . 42 3.4 Process Flow Diagram for Optical and e-Beam Devices...TFT thin - film transistor TLM transmission line model UV ultra-violet xvii SELECTIVE DRY ETCH FOR DEFINING OHMIC CONTACTS FOR HIGH PERFORMANCE ZnO TFTs

  4. The structure, bond strength and apatite-inducing ability of micro-arc oxidized tantalum and their response to annealing

    NASA Astrophysics Data System (ADS)

    Wang, Cuicui; Wang, Feng; Han, Yong

    2016-01-01

    In this study, the tantalum oxide coatings were formed on pure tantalum (Ta) by micro-arc oxidation (MAO) in electrolytic solutions of calcium acetate and β-glycerophosphate disodium, and the effect of the applied voltage on the microstructure and bond strength of the MAO coatings was systematically investigated. The effect of annealing treatment on the microstructure, bond strength and apatite-inducing ability of the MAO coatings formed at 350 and 450 V was also studied. The study revealed that during the preparation of tantalum oxide coatings on Ta substrate by MAO, the applied voltage considerably affected the phase components, morphologies and bond strength of the coatings, but had little effect on surface chemical species. After annealing treatment, newly formed CaTa4O11 phase mainly contributed to the much more stronger apatite-inducing ability of the annealed tantalum oxide coatings than those that were not annealed. The better apatite-inducing ability of the MAO coatings formed at 450 V compared to those formed at 350 V was attributed to the less amorphous phase and more crystalline phase as well as more Ca and P contained in the MAO coatings with increasing the applied voltage.

  5. Apatite grown in niobium by two-step plasma electrolytic oxidation.

    PubMed

    Pereira, Bruno Leandro; Lepienski, Carlos Maurício; Mazzaro, Irineu; Kuromoto, Neide Kazue

    2017-08-01

    Plasma electrolytic oxidation (PEO) of niobium plates were done electrochemically in two steps with electrolytes containing phosphorous and calcium being observed the formation of crystalline apatite. All samples were submitted to a first step of PEO using an electrolyte containing phosphate ions. The second oxidization step was made using three different electrolytes. Some samples were oxidized by PEO in electrolyte containing calcium, while in other samples it was used two mixtures of phosphoric acid and calcium acetate monohydrate solutions. Three different surface layers were obtained. The morphology and chemical composition of the films were analyzed by scanning electronic microscopy (SEM), and energy dispersive spectroscopy (EDS) respectively. It was observed that all samples submitted to two-step oxidation shown porous surface and a calcium and phosphorus rich layer. Average surface roughness (Ra) was measured by a profilometer remaining in the sub-micrometric range. The contact angle by sessile drop technique, using 1μL of distilled water was performed with an optical goniometer. It was verified a higher hydrophilicity in all surfaces compared to the polished niobium. Orthorhombic Nb 2 O 5 was identified by XRD in the oxide layer. Crystalline apatite was identified by XRD in surfaces after the second oxidation made with the Ca-rich electrolyte and a mixture of an electrolyte richer in Ca compared to P. These results indicate that a two-step oxidized niobium surface present great features for applications in the osseointegration processes: favorable chemical composition that increase the biocompatibility, the formation of crystalline niobium pentoxide (orthorhombic), high hydrophilicity and formation of crystalline calcium phosphate (apatite) under adequate electrolyte composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Design, Development, manufacture and qualification of wet-slug all-tantalum capacitors

    NASA Technical Reports Server (NTRS)

    Maher, R. H.

    1977-01-01

    Specifications and qualification tests data are presented for over eleven hundred T3 case all-tantalum capacitors encompassing four ratings. The finalized product has all the advantages of the silver cased wet and is capable of withstanding some reverse potential ac ripple current.

  7. Physics of Shock Compression and Release: NEMD Simulations of Tantalum and Silicon

    NASA Astrophysics Data System (ADS)

    Hahn, Eric; Meyers, Marc; Zhao, Shiteng; Remington, Bruce; Bringa, Eduardo; Germann, Tim; Ravelo, Ramon; Hammerberg, James

    2015-06-01

    Shock compression and release allow us to evaluate physical deformation and damage mechanisms occurring in extreme environments. SPaSM and LAMMPS molecular dynamics codes were employed to simulate single and polycrystalline tantalum and silicon at strain rates above 108 s-1. Visualization and analysis was accomplished using OVITO, Crystal Analysis Tool, and a redesigned orientation imaging function implemented into SPaSM. A comparison between interatomic potentials for both Si and Ta (as pertaining to shock conditions) is conducted and the influence on phase transformation and plastic relaxation is discussed. Partial dislocations, shear induced disordering, and metastable phase changes are observed in compressed silicon. For tantalum, the role of grain boundary and twin intersections are evaluated for their role in ductile spallation. Finally, the temperature dependent response of both Ta and Si is investigated.

  8. R&D of A MW-class solid-target for a spallation neutron source

    NASA Astrophysics Data System (ADS)

    Kawai, Masayoshi; Furusaka, Michihiro; Kikuchi, Kenji; Kurishita, Hiroaki; Watanabe, Ryuzo; Li, Jing-Feng; Sugimoto, Katsuhisa; Yamamura, Tsutomu; Hiraoka, Yutaka; Abe, Katsunori; Hasegawa, Akira; Yoshiie, Masatoshi; Takenaka, Hiroyuki; Mishima, Katsuichiro; Kiyanagi, Yoshiaki; Tanabe, Tetsuo; Yoshida, Naoaki; Igarashi, Tadashi

    2003-05-01

    R&D for a MW-class solid target composed of tungsten was undertaken to produce a pulsed intense neutron source for a future neutron scattering-facility. In order to solve the corrosion of tungsten, tungsten target blocks were clad with tantalum by means of HIP'ing, brazing and electrolytic coating in a molten salt bath. The applicability of the HIP'ing method was tested through fabricating target blocks for KENS (spallation neutron source at KEK). A further investigation to certify the optimum HIP conditions was made with the small punch test method. The results showed that the optimum temperature was 1500 °C at which the W/Ta interface gave the strongest fracture strength. In the case of the block with a hole for thermocouple, it was found that the fabrication preciseness of a straight hole and a tantalum sheath influenced the results. The development of a tungsten stainless-steel alloy was tried to produce a bare tungsten target, using techniques in powder metallurgy. Corrosion tests for various tungsten alloys were made while varying the water temperature and velocity. The mass loss of tungsten in very slow water at 180 °C was as low as 0.022 mg/y, but increased remarkably with water velocity. Simulation experiments for radiation damage to supplement the STIP-III experiments were made to investigate material hardening by hydrogen and helium, and microstructures irradiated by electrons. Both experiments showed consistent results on the order of the dislocation numbers and irradiation hardness among the different tungsten materials. Thermal-hydraulic designs were made for two types of solid target system of tungsten: slab and rod geometry as a function of the proton beam power. The neutronic performance of a solid target system was compared with that of mercury target based on Monte Carlo calculations by using the MCNP code.

  9. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    DOEpatents

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  10. Intraoperative Localization of Tantalum Markers for Proton Beam Radiation of Choroidal Melanoma by an Opto-Electronic Navigation System: A Novel Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amstutz, Christoph A., E-mail: christoph.amstutz@usz.ch; Bechrakis, Nikolaos E.; Foerster, Michael H.

    2012-03-15

    Purpose: External beam proton radiation therapy has been used since 1975 to treat choroidal melanoma. For tumor location determination during proton radiation treatment, surgical tantalum clips are registered with image data. This report introduces the intraoperative application of an opto-electronic navigation system to determine with high precision the position of the tantalum markers and their spatial relationship to the tumor and anatomical landmarks. The application of the technique in the first 4 patients is described. Methods and Materials: A navigated reference base was attached noninvasively to the eye, and a navigated pointer device was used to record the spatial positionmore » of the tantalum markers, the tumor, and anatomical landmarks. Measurement accuracy was assessed on ex vivo porcine eye specimen by repetitive recording of the tantalum marker positions. The method was applied intraoperatively on 4 patients undergoing routine tantalum clip surgery. The spatial position information delivered by the navigation system was compared to the geometric data generated by the EYEPLAN software. Results: In the ex vivo experiments, the maximum repetition error was 0.34 mm. For the intraoperative application, the root mean square error of paired-points matching of the marker positions from the navigation system and from the EYEPLAN software was 0.701-1.25 mm. Conclusions: Navigation systems are a feasible tool for accurate localization of tantalum markers and anatomic landmarks. They can provide additional geometric information, and therefore have the potential to increase the reliability and accuracy of external beam proton radiation therapy for choroidal melanoma.« less

  11. Novel hierarchical tantalum oxide-PDMS hybrid coating for medical implants: One pot synthesis, characterization and modulation of fibroblast proliferation.

    PubMed

    Tran, Phong A; Fox, Kate; Tran, Nhiem

    2017-01-01

    Surface properties such as morphology, roughness and charge density have a strong influence on the interaction of biomaterials and cells. Hierarchical materials with a combination of micron/submicron and nanoscale features for coating of medical implants could therefore have significant potential to modulate cellular responses and eventually improve the performance of the implants. In this study, we report a simple, one pot wet chemistry preparation of a hybrid coating system with hierarchical surface structures consisting of polydimethylsiloxane (PDMS) and tantalum oxide. Medical grade, amine functional PDMS was mixed with tantalum ethoxide which subsequently formed Ta 2 O 5 in situ through hydrolysis and condensation during coating process. The coatings were characterized by SEM, EDS, XPS, confocal scanning microscopy, contact angle measurement and in vitro cell culture. Varying PDMS and tantalum ethoxide ratios resulted in coatings of different surface textures ranging from smooth to submicro- and nano-structured. Strikingly, hierarchical surfaces containing both microscale (1-1.5μm) and nanoscale (86-163nm) particles were found on coatings synthesized with 20% and 40% (v/v) tantalum ethoxide. The coatings were similar in term of hydrophobicity but showed different surface roughness and chemical composition. Importantly, higher cell proliferation was observed on hybrid surface with hierarchical structures compared to pure PDMS or pure tantalum oxide. The coating process is simple, versatile, carried out under ambient condition and requires no special equipment. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Chemical Vapor Synthesis of Niobium Aluminides

    DTIC Science & Technology

    1992-01-01

    69 4.2.2 Deposition on Singly Supported Niobium Substrates ............ . . . ..... 72 4.3 DEPOSITION OF NbxSiy FROM H2, NbC15 , AND SICl4 ...direct CVD of NbxSiy from the hydrogen reduction of SiCl4 and NbCl5 is described by the overall reaction: xNbCl5 + ySiCl4 + (5x + 4y)/2 H2 - NbxSiy

  13. New Targets for New Accelerators

    NASA Astrophysics Data System (ADS)

    Frentz, Bryce; Manukyan, Khachatur; Aprahamian, Ani

    2013-10-01

    New accelerators, such as the 5 MV Sta Ana accelerator at the University of Notre Dame, will produce more powerful beams up to 100's of μAmps. These accelerators require a complete rethinking of target preparation since the high intensity of such beams would melt conventional targets. Traditionally, accelerator targets are made with a tantalum backing because of its high atomic mass. However, tantalum is brittle, a poor conductor, and, if produced commercially, often contains impurities (e.g. fluorine) that produce undesirable background and reaction products. Tungsten, despite its brittle structure and poor conductivity, has a high atomic mass and lacks impurities, making it a more desirable backing. In conjunction with tungsten's properties, copper is robust and a far superior thermal conductor. We describe a new method of reactive joining that we developed for creating targets that use the advantageous properties of both tungsten and copper. This process involved placing a reactive mixture between tungsten and copper and applying a load force. The mixture is then ignited, and while under pressure, the system produces conditions to join the materials. We present our investigation to optimize the process of reactive joining, as well as some of the final target's properties. This work was supported by the National Science Foundation under Grant PHY-1068192.

  14. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    DOE PAGES

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-14

    Recently, several researchers (e.g., Q. Yang, Y.-W. You, L. Liu, H. Fan, W. Ni, D. Liu, C. S. Liu, G. Benstetter, and Y. Wang, Scientific Reports 5, 10959 (2015)) have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40-63% lowermore » than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.:7px« less

  15. Effect of oxygen deficiency on electronic properties and local structure of amorphous tantalum oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denny, Yus Rama; Firmansyah, Teguh; Oh, Suhk Kun

    2016-10-15

    Highlights: • The effect of oxygen flow rate on electronic properties and local structure of tantalum oxide thin films was studied. • The oxygen deficiency induced the nonstoichiometric state a-TaOx. • A small peak at 1.97 eV above the valence band side appeared on nonstoichiometric Ta{sub 2}O{sub 5} thin films. • The oxygen flow rate can change the local electronic structure of tantalum oxide thin films. - Abstract: The dependence of electronic properties and local structure of tantalum oxide thin film on oxygen deficiency have been investigated by means of X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS),more » and X-ray absorption spectroscopy (XAS). The XPS results showed that the oxygen flow rate change results in the appearance of features in the Ta 4f at the binding energies of 23.2 eV, 24.4 eV, 25.8, and 27.3 eV whose peaks are attributed to Ta{sup 1+}, Ta{sup 2+}, Ta{sup 3+}/Ta{sup 4+}, and Ta{sup 5+}, respectively. The presence of nonstoichiometric state from tantalum oxide (TaOx) thin films could be generated by the oxygen vacancies. In addition, XAS spectra manifested both the increase of coordination number of the first Ta-O shell and a considerable reduction of the Ta-O bond distance with the decrease of oxygen deficiency.« less

  16. Effect of low temperature baking on niobium cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Kneisel; Ganapati Myneni; William Lanford

    A low temperature (100 C-150 C) ''in situ'' baking under ultra-high vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor and a recovery from the so-called ''Q-drop'' without field emission at high field. A series of experiments with a CEBAF single cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity qualitymore » factor in the temperature range 1.37K-280K and resonant frequency shift between 6K-9.3K provide information about the surface resistance, energy gap, penetration depth and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity using a modified version of the computer code originally written by J. Halbritter [1] . Small niobium samples inserted in the cavity during its surface preparation were analyzed with respect to their hydrogen content with a Nuclear Reaction Analysis (NRA). The single cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal conductivity and Kapitza resistance and the data are compared with different models. This paper describes the results from these experiments and comments on the existing models to explain the effect of baking on the performance of niobium RF cavities.« less

  17. Tungsten recycling in the United States in 2000

    USGS Publications Warehouse

    Shedd, Kim B.

    2011-01-01

    This report, which is one of a series of reports on metals recycling, defines and quantifies the flow of tungsten-bearing materials in the United States from imports and stock releases through consumption and disposition in 2000, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap). Because of tungsten's many diverse uses, numerous types of scrap were available for recycling by a wide variety of processes. In 2000, an estimated 46 percent of U.S. tungsten supply was derived from scrap. The ratio of tungsten consumed from new scrap to that consumed from old scrap was estimated to be 20:80. Of all the tungsten in old scrap available for recycling, an estimated 66 percent was either consumed in the United States or exported to be recycled.

  18. Effect of Surge Current Testing on Reliability of Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2008-01-01

    Tantalum capacitors manufactured per military specifications are established reliability components and have less than 0.001% of failures per 1000 hours for grades D or S, thus positioning these parts among electronic components with the highest reliability characteristics. Still, failures of tantalum capacitors do happen and when it occurs it might have catastrophic consequences for the system. To reduce this risk, further development of a screening and qualification system with special attention to the possible deficiencies in the existing procedures is necessary. The purpose of this work is evaluation of the effect of surge current stress testing on reliability of the parts at both steady-state and multiple surge current stress conditions. In order to reveal possible degradation and precipitate more failures, various part types were tested and stressed in the range of voltage and temperature conditions exceeding the specified limits. A model to estimate the probability of post-surge current testing-screening failures and measures to improve the effectiveness of the screening process has been suggested.

  19. Raman scattering from rapid thermally annealed tungsten silicide

    NASA Technical Reports Server (NTRS)

    Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.

    1987-01-01

    Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.

  20. Distribution of Stress in Deformation Zone of Niobium Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Jandrlić, Ivan; Rešković, Stoja; Brlić, Tin

    2018-03-01

    Microalloyed steels today represent a significant part of total world production and processing of steel. Although widely used, there are scarce data on the stress distribution in the deformation zone of these steels. Research was carried out on two steel grades, both low-carbon structural steels with the same basic chemical composition, with one of them additionally microalloyed with niobium. Differences in the stress distribution in the deformation zone between two tested steels were continuously observed and measured using the methods of digital image correlation and thermography. It has been found out that niobium microalloyed steel has significantly more complex material flow and stress distribution in the deformation zone when compared to the plain low carbon steel.

  1. Distribution of Stress in Deformation Zone of Niobium Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Jandrlić, Ivan; Rešković, Stoja; Brlić, Tin

    2018-07-01

    Microalloyed steels today represent a significant part of total world production and processing of steel. Although widely used, there are scarce data on the stress distribution in the deformation zone of these steels. Research was carried out on two steel grades, both low-carbon structural steels with the same basic chemical composition, with one of them additionally microalloyed with niobium. Differences in the stress distribution in the deformation zone between two tested steels were continuously observed and measured using the methods of digital image correlation and thermography. It has been found out that niobium microalloyed steel has significantly more complex material flow and stress distribution in the deformation zone when compared to the plain low carbon steel.

  2. Dual-step synthesis of 3-dimensional niobium oxide - Zinc oxide

    NASA Astrophysics Data System (ADS)

    Rani, Rozina Abdul; Zoolfakar, Ahmad Sabirin; Rusop, M.

    2018-05-01

    A facile fabrication process for constructing 3-dimensional (3D) structure of Niobium oxide - Zinc oxide (Nb2O5-ZnO) consisting of branched ZnO microrods on top of nanoporous Nb2O5 films was developed based on dual-step synthesis approach. The preliminary procedure was anodization of sputtered niobium metal on Fluorine doped Tin Oxide (FTO) to produce nanoporous Nb2O5, and continued with the growth of branched microrods of ZnO by hydrothermal process. This approach offers insight knowledge on the development of novel 3D metal oxide films via dual-step synthesis process, which might potentially use for multi-functional applications ranging from sensing to photoconversion.

  3. Measurement of uptake and release of tritium by tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, M.; Torikai, Y.; Saito, M.

    2015-03-15

    Tungsten is currently contemplated as plasma facing material for the divertor of future fusion machines. In this paper the uptake of tritium by tungsten and its release behavior have been investigated. Tungsten samples have been annealed at various temperatures and loaded at also different temperatures with deuterium containing 7.2 % tritium at a pressure of 1.2 kPa. A specific system was designed to assess the release of tritiated water and molecular tritium by the samples. Due to the rather low solubility of hydrogen isotopes in tungsten it is particularly important to be aware of the presence of hydrogen traps ormore » thin oxide films. As shown in this work, traps or oxide films may affect the retention capability of tungsten and lead to significantly modified release properties. It became clear that there were capture sites that had different thermal stability and different capture intensity in tungsten after polishing, or oxide films that were grown on the surface of tungsten and had barrier effects.« less

  4. Effect of niobium content on the microstructure and thermal properties of fluorapatite glass-ceramics.

    PubMed

    Denry, I L; Holloway, J A; Nakkula, R J; Walters, J D

    2005-10-01

    Niobium oxide has been shown to improve biocompatibility and promote bioactivity. The purpose of this study was to evaluate the effect of niobium oxide additions on the microstructure and thermal properties of fluorapatite glass-ceramics for biomedical applications. Four glass-ceramic compositions with increasing amounts of niobium oxide from 0 to 5 wt % were prepared. The glass compositions were melted at 1,525 degrees C for 3 h, quenched, ground, melted again at 1,525 degrees C for 3 h and furnace cooled. The coefficient of thermal expansion was measured by dilatometry. The crystallization behavior was evaluated by differential thermal analysis. The nature of the crystalline phases was investigated by X-ray diffraction. The microstructure was studied by SEM. In addition, the cytotoxicity of the ceramics was evaluated according to the ASTM standard F895--84. The results from X-ray diffraction analyses showed that fluorapatite was the major crystalline phase in all glass-ceramics. Differential thermal analyses revealed that fluorapatite crystallization occurred between 800 and 934 degrees C depending on the composition. The coefficient of thermal expansion varied from 7.6 to 9.4 x 10(-6)/ degrees C. The microstructure after heat treatment at 975 degrees C for 30 min consisted of submicroscopic fluorapatite crystals (200--300 nm) for all niobium-containing glass-ceramics, whereas the niobium-free glass-ceramic contained needle-shaped fluorapatite crystals, 2 microm in length. None of the glass-ceramics tested exhibited any cytotoxic activity as tested by ASTM standard F895--84. (c) 2005 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2005.

  5. Examination of total cross section resonance structure of niobium and silicon in neutron transmission experiments

    NASA Astrophysics Data System (ADS)

    Andrianova, Olga; Lomakov, Gleb; Manturov, Gennady

    2017-09-01

    The neutron transmission experiments are one of the main sources of information about the neutron cross section resonance structure and effect in the self-shielding. Such kind of data for niobium and silicon nuclides in energy range 7 keV to 3 MeV can be obtained from low-resolution transmission measurements performed earlier in Russia (with samples of 0.027 to 0.871 atom/barn for niobium and 0.076 to 1.803 atom/barn for silicon). A significant calculation-to-experiment discrepancy in energy range 100 to 600 keV and 300 to 800 keV for niobium and silicon, respectively, obtained using the evaluated nuclear data library ROSFOND, were found. The EVPAR code was used for estimation the average resonance parameters in energy range 7 to 600 keV for niobium. For silicon a stochastic optimization method was used to modify the resolved resonance parameters in energy range 300 to 800 keV. The improved ROSFOND evaluated nuclear data files were tested in calculation of ICSBEP integral benchmark experiments.

  6. Apparatus facilitates high-temperature tensile testing in vacuum

    NASA Technical Reports Server (NTRS)

    Sikora, P. F.

    1964-01-01

    An apparutus for heating refractory materials to high temperatures during tensile testing includes a water-cooled stainless steel vacuum chamber. This contains a resistance heater consisting of a slit tube of tantalum or tungsten to enclose the tensile test rod.

  7. Ion beam and dual ion beam sputter deposition of tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Cevro, Mirza; Carter, George

    1994-11-01

    Ion beam sputter deposition (IBS) and dual ion beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. Optical properties ie refractive index and extinction coefficient of IBS films were determined in the 250 - 1100 nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n equals 2.06 at (lambda) equals 550 nm. Films deposited using DIBS ie deposition assisted by low energy Ar and O2 ions (Ea equals 0 - 300 eV) and low current density (Ji equals 0 - 40 (mu) A/cm2) showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy while composition of the film and contaminants were determined by Rutherford scattering spectroscopy. Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target while assisted deposition slightly increased the Ar content. Stress in the IBS deposited films was measured by the bending technique. IBS deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All

  8. Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Cevro, Mirza; Carter, George

    1995-02-01

    Ion-beam sputter deposition (IBS) and dual-ion-beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. The optical properties, i.e., refractive index and extinction coefficient, of IBS films were determined in the 250- to 1100-nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n 2.06 at (lambda) equals 550 nm. Films deposited using DIBS, i.e., deposition assisted by low energy Ar and O2 ions (Ea equals 0 to 300 eV) and low current density (Ji equals 0 to 40 (mu) A/cm2), showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy, whereas composition of the film and contaminants were determined by Rutherford backscattering spectroscopy (RBS). Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target whereas assisted deposition slightly increased the Ar content. Stress in the IBS-deposited films was measured by the bending technique. IBS-deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals

  9. Evaluation of wet tantalum capacitors after exposure to extended periods of ripple current, volume 1

    NASA Technical Reports Server (NTRS)

    Watson, G. W.; Lasharr, J. C.; Shumaker, M. J.

    1974-01-01

    The application of tantalum capacitors in the Viking Lander includes both dc voltage and ripple current electrical stress, high temperature during nonoperating times (sterilization), and high vibration and shock loads. The capacitors must survive these severe environments without any degradation if reliable performance is to be achieved. A test program was established to evaluate both wet-slug tantalum and wet-foil capacitors under conditions accurately duplicating actual Viking applications. Test results of the electrical performance characteristics during extended periods of ripple current, the characteristics of the internal silver migration as a function for extended periods of ripple current, and the existence of any memory characteristics are presented.

  10. Evaluation of wet tantalum capacitors after exposure to extended periods of ripple current, volume 2

    NASA Technical Reports Server (NTRS)

    Ward, C. M.

    1975-01-01

    The application of tantalum capacitors in the Viking Lander includes dc voltage and ripple current electrical stress, high temperature during nonoperating times (sterilization), and high vibration and shock loads. The capacitors must survive these severe environments without any degradation if reliable performance is to be achieved. A test program was established to evaluate both wet-slug tantalum and wet-foil capacitors under conditions accurately duplicating actual Viking applications. Test results of the electrical performance characteristics during extended periods of ripple current, the characteristics of the internal silver migration as a function of extended periods of ripple current, and the existence of any memory characteristics are presented.

  11. High Temperature Fatigue Crack Growth Behavior of Alloy 10

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2001-01-01

    Methods to improve the high temperature, dwell crack growth resistance of Alloy 10, a high strength, nickel-base disk alloy, were studied. Two approaches, heat treat variations and composition modifications, were investigated. Under the heat treat approach, solution temperature, cooling rates, and stabilization, were studied. It was found that higher solution temperatures, which promote coarser grain sizes, coupled with a 1550 F stabilization treatment were found to significantly reduce dwell crack growth rates at 1300 F Changes in the niobium and tantalum content were found to have a much smaller impact on crack growth behavior. Lowering the niobium:tantalum ratio did improve crack growth resistance and this effect was most pronounced for coarse grain microstructures. Based on these findings, a coarse grain microstructure for Alloy 10 appears to be the best option for improving dwell crack growth resistance, especially in the rim of a disk where temperatures can reach or exceed 1300 T. Further, the use of advanced processing technologies, which can produce a coarse grain rim and fine grain bore, would be the preferred option for Alloy 10 to obtain the optimal balance between tensile, creep, and crack growth requirements for small gas turbine engines.

  12. Solution and diffusion of hydrogen isotopes in tungsten-rhenium alloy

    NASA Astrophysics Data System (ADS)

    Ren, Fei; Yin, Wen; Yu, Quanzhi; Jia, Xuejun; Zhao, Zongfang; Wang, Baotian

    2017-08-01

    Rhenium is one of the main transmutation elements forming in tungsten under neutron irradiation. Therefore, it is essential to understand the influence of rhenium impurity on hydrogen isotopes retention in tungsten. First-principle calculations were used to study the properties of hydrogen solution and diffusion in perfect tungsten-rhenium lattice. The interstitial hydrogen still prefers the tetrahedral site in presence of rhenium, and rhenium atom cannot act directly as a trapping site of hydrogen. The presence of rhenium in tungsten raises the solution energy and the real normal modes of vibration on the ground state and the transition state, compared to hydrogen in pure tungsten. Without zero point energy corrections, the presence of rhenium decreases slightly the migration barrier. It is found that although the solution energy would tend to increase slightly with the rising of the concentration of rhenium, but which does not influence noticeably the solution energy of hydrogen in tungsten-rhenium alloy. The solubility and diffusion coefficient of hydrogen in perfect tungsten and tungsten-rhenium alloy have been estimated, according to Sievert's law and harmonic transition state theory. The results show the solubility of hydrogen in tungsten agrees well the experimental data, and the presence of Re would decrease the solubility and increase the diffusivity for the perfect crystals.

  13. Deposition of tungsten metal by an immersion process

    DOE PAGES

    Small, Leo J.; Brumbach, Michael T.; Clem, Paul G.; ...

    2017-03-23

    A new multi-step, solution-phase method for the spontaneous deposition of tungsten from a room temperature ethereal solution is reported. This immersion process relies on the deposition of a sacrificial zinc coating which is galvanically displaced by the ether-mediated reduction of oxophilic WCl 6. Subsequent thermal treatment renders a crystalline, metallic tungsten film. The chemical evolution of the surface and formation of a complex intermediate tungsten species is characterized by X-ray diffraction, infrared spectroscopy, and X-ray photoelectron spectroscopy. Efficient metallic tungsten deposition is first characterized on a graphite substrate and then demonstrated on a functional carbon foam electrode. The resulting electrochemicalmore » performance of the modified electrode is interrogated with the canonical aqueous ferricyanide system. A tungsten-coated carbon foam electrode showed that both electrode resistance and overall electrochemical cell resistance were reduced by 50%, resulting in a concomitant decrease in redox peak separation from 1.902 V to 0.783 V. Furthermore, this process promises voltage efficiency gains in electrodes for energy storage technologies and demonstrates the viability of a new route to tungsten coating for technologies and industries where high conductivity and chemical stability are paramount.« less

  14. Magnetic Property in Large Array Niobium Antidot Thin Films

    NASA Astrophysics Data System (ADS)

    Tinghui, Chen; Hsiang-Hsi, Kung; Wei-Li, Lee; Institute of Physics, Academia Sinica, Taipei, Taiwan Team

    2014-03-01

    In a superconducting ring, the total flux inside the ring is required to be an integer number of the flux quanta. Therefore, a supercurrent current can appear within the ring in order to satisfy this quantization rule, which gives rise to certain magnetic response. By using a special monolayer polymer/nanosphere hybrid we developed previously, we fabricated a series of superconducting niobium antidot thin films with different antidot diameters. The antidots form well-ordered triangular lattice with a lattice spacing about 200 nm and extend over an area larger than 1 cm2, which enables magnetic detections simply by a SQUID magnetometer. We observed magnetization oscillation with external magnetic field due to the supercurrent screening effect, where different features for large and small antidot thin films were found. Detailed size and temperature dependencies of the magnetization in niobium antidot nanostructures will be presented.

  15. Divertor tungsten tile melting and its effect on core plasma performance

    NASA Astrophysics Data System (ADS)

    Lipschultz, B.; Coenen, J. W.; Barnard, H. S.; Howard, N. T.; Reinke, M. L.; Whyte, D. G.; Wright, G. M.

    2012-12-01

    For the 2007 and 2008 run campaigns, Alcator C-Mod operated with a full toroidal row of tungsten tiles in the high heat flux region of the outer divertor; tungsten levels in the core plasma were below measurement limits. An accidental creation of a tungsten leading edge in the 2009 campaign led to this study of a melting tungsten source: H-mode operation with strike point in the region of the melting tile was immediately impossible due to some fraction of tungsten droplets reaching the main plasma. Approximately 15 g of tungsten was lost from the tile over ˜100 discharges. Less than 1% of the evaporated tungsten was found re-deposited on surfaces, the rest is assumed to have become dust. The strong discharge variability of the tungsten reaching the core implies that the melt layer topology is always varying. There is no evidence of healing of the surface with repeated melting. Forces on the melted tungsten tend to lead to prominences that extend further into the plasma. A discussion of the implications of melting a divertor tungsten monoblock on the ITER plasma is presented.

  16. Parallel Critical Field in Thin Niobium Films: Comparison to Theory

    NASA Astrophysics Data System (ADS)

    Broussard, P. R.

    2017-10-01

    For the first time, a comparison to the predicted behavior for parallel critical field is carried out for the model of Kogan and the model of Hara and Nagai. In this study, thin niobium films in the moderately dirty regime were considered. Experimental values of the -C2 term are seen to be lower than those from the model of Hara and Nagai. A possible reason for this could be not including the non-spherical Fermi surface of niobium into the model. There is clearly disagreement with the model of Kogan as the films get cleaner and thinner, and two films which should be below his critical thickness still show positive values of -C2, in disagreement with his theory.

  17. Synthesis and thermal evolution of structure in alkoxide-derived niobium pentoxide gels

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1993-01-01

    Niobium pentoxide gels in the form of transparent monoliths and powder have been synthesized from the controlled hydrolysis and polycondensation of niobium pentaethoxide under different experimental conditions using various mole ratios of Nb(OC2H5)5:H2O:C2H5OH:HCl. Alcohol acted as the mutual solvent and HCl as the deflocculating agent. In the absence of HCl, precipitation of colloidal particles was encountered on the addition of any water to the alkoxide. The gels were subjected to various thermal treatments and characterized by differential thermal analysis, thermogravimetric analysis, x-ray diffraction, and infrared spectroscopy. After drying at 400 C, the gels were amorphous to x-rays. The amorphous powder crystallized into the low-temperature orthorhombic form of Nb2O5 at approximately 500 C, which transformed irreversibly into the high-temperature monoclinic alpha-Nb2O5 between 900 to 1000 C. The kinetics of crystallization of the amorphous niobium pentoxide have been investigated by non-isothermal differential scanning calorimetry. The crystallization activation energy was determined to be 399 kJ/mol.

  18. Tritium Decay Helium-3 Effects in Tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, M.; Merrill, B. J.

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructuralmore » evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible

  19. Use of steel and tantalum apparatus for molten Cd-Mg-Zn alloys

    NASA Technical Reports Server (NTRS)

    Bennett, G. A.; Burris, L., Jr.; Kyle, M. L.; Nelson, P. A.

    1966-01-01

    Steel and tantalum apparatus contains various ternary alloys of cadmium, zinc, and magnesium used in pyrochemical processes for the recovery of uranium-base reactor fuels. These materials exhibit good corrosion resistance at the high temperatures necessary for fuel separation in liquid metal-molten salt solvents.

  20. Tensile behavior of tungsten and tungsten-alloy wires from 1300 to 1600 K

    NASA Technical Reports Server (NTRS)

    Hee, Man Yun

    1988-01-01

    The tensile behavior of a 200-micrometer-diameter tungsten lamp (218CS-W), tungsten + 1.0 atomic percent (a/o) thoria (ST300-W), and tungsten + 0.4 a/o hafnium carbide (WHfC) wires was determined over the temperature range 1300 t0 1600 K at strain rates of 3.3 X 10 to the -2 to 3.3 X 10 to the -5/sec. Although most tests were conducted on as-drawn materials, one series of tests was undertaken on ST300-W wires in four different conditions: as-drawn and vacuum-annealed at 1535 K for 1 hr, with and without electroplating. Whereas heat treatment had no effect on tensile properties, electropolishing significantly increased both the proportional limit and ductility, but not the ultimate tensile strength. Comparison of the behavior of the three alloys indicates that the HfC-dispersed material possesses superior tensile properties. Theoretical calculations indicate that the strength/ductility advantage of WHfC is due to the resistance to recrystallization imparted by the dispersoid.

  1. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    NASA Astrophysics Data System (ADS)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Tanemura, Masaki

    2016-02-01

    The synthesis of large-area monolayer tungsten disulphide (WS2) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS2 crystals using tungsten hexachloride (WCl6) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl6 in ethanol was drop-casted on SiO2/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS2 crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS2 single crystalline monolayer can be grown using the WCl6 precursor. Our finding shows an easier and effective approach to grow WS2 monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.

  2. Production of small diameter high-temperature-strength refractory metal wires

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.; King, G. W.

    1973-01-01

    Special thermomechanical techniques (schedules) have been developed to produce small diameter wire from three refractory metal alloys: colombian base alloy, tantalum base alloy, and tungsten base alloy. High strengths of these wires indicate their potential for contributing increased strength to metallic composites.

  3. Direct electroplating of copper on tantalum from ionic liquids in high vacuum: origin of the tantalum oxide layer.

    PubMed

    Schaltin, Stijn; D'Urzo, Lucia; Zhao, Qiang; Vantomme, André; Plank, Harald; Kothleitner, Gerald; Gspan, Christian; Binnemans, Koen; Fransaer, Jan

    2012-10-21

    In this paper, it is shown that high vacuum conditions are not sufficient to completely remove water and oxygen from the ionic liquid 1-ethyl-3-methylimidazolium chloride. Complete removal of water demands heating above 150 °C under reduced pressure, as proven by Nuclear Reaction Analysis (NRA). Dissolved oxygen gas can only be removed by the use of an oxygen scavenger such as hydroquinone, despite the fact that calculations show that oxygen should be removed completely by the applied vacuum conditions. After applying a strict drying procedure and scavenging of molecular oxygen, it was possible to deposit copper directly on tantalum without the presence of an intervening oxide layer.

  4. Standard Method for Analyzing Gases in Titanium and Titanium Alloys. Standard Method for the Chemical Analysis of Titanium Alloys.

    DTIC Science & Technology

    1982-10-28

    form a non- soluble complex. After filtering and burning the non-pure molybdenum trioxide is weighed. Ammonia water is used to dissolve the molybdenum...niobium and tantalum should use the methyl alcohol distillation - curcumin absorption luminosity 66 method for determination. II. The Methyl Alcohol...Distillation - Curcumin Absorption Luminosity Method 1. Summary of Method In a phosphorus sulfate medium, boron and methyl alcohol produce methyl borate

  5. Degradation of Leakage Currents and Reliability Prediction for Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2016-01-01

    Two types of failures in solid tantalum capacitors, catastrophic and parametric, and their mechanisms are described. Analysis of voltage and temperature reliability acceleration factors reported in literature shows a wide spread of results and requires more investigation. In this work, leakage currents in two types of chip tantalum capacitors were monitored during highly accelerated life testing (HALT) at different temperatures and voltages. Distributions of degradation rates were approximated using a general log-linear Weibull model and yielded voltage acceleration constants B = 9.8 +/- 0.5 and 5.5. The activation energies were Ea = 1.65 eV and 1.42 eV. The model allows for conservative estimations of times to failure and was validated by long-term life test data. Parametric degradation and failures are reversible and can be annealed at high temperatures. The process is attributed to migration of charged oxygen vacancies that reduce the barrier height at the MnO2/Ta2O5 interface and increase injection of electrons from the MnO2 cathode. Analysis showed that the activation energy of the vacancies' migration is 1.1 eV.

  6. Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures

    DOEpatents

    Liu, Chain T.; Takeyama, Masao

    1994-01-01

    The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250.degree. C. and improved room temperature ductility. The alloys contain a Cr.sub.2 Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements.

  7. Rare-Earth Ions in Niobium-Based Devices as a Quantum Memory: Magneto-Optical Effects on Room Temperature Electrical Transport

    DTIC Science & Technology

    2016-09-01

    rare-earth neodymium by ion implantation in thin films of niobium and niobium-based heterostructure devices. We model the ion implantation process...the films and devices so they can properly designed and optimized for utility as quantum memory. We find that the magnetic field has a strong effect...thin films of niobium. Simulations are made at low 1013 cm-2 and high 1014 cm-2 dose at 60 keV. At high dose, disorder induced is significantly

  8. New porous titanium–niobium oxide for photocatalytic degradation of bromocresol green dye in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaleshtori, Maryam Zarei, E-mail: mzarei@utep.edu; Hosseini, Mahsa; Edalatpour, Roya

    2013-10-15

    Graphical abstract: The photocatalytic activity of different porous titanium–niobium oxides was evaluated toward degradation of bromocresol green (BG) under UV light. A better catalytic activity was observed for all samples at lower pH. Catalysts have a stronger ability for degradation of BG in acid media than in alkaline media. - Highlights: • Different highly structured titanium–niobium oxides have been prepared using improved methods of synthesis. • Photo-degradation of bromocresol green dye (BG) with nanostructure titanium–niobium oxide catalysts was carried out under UV light. • The photo-catalytic activity of all catalysts was higher in lower pH. • Titanium–niobium oxide catalysts aremore » considerably stable and reusable. - Abstract: In this study, high surface area semiconductors, non porous and porous titanium–niobium oxides derived from KTiNbO{sub 5} were synthesized, characterized and developed for their utility as photocatalysts for decontamination with sunlight. These materials were then used in the photocatalytic degradation of bromocresol green dye (BG) in aqueous solution using UV light and their catalytic activities were evaluated at various pHs. For all catalysts, the photocatalytic degradation of BG was most efficient in acidic solutions. Results show that the new porous oxides have large porous and high surface areas and high catalytic activity. A topotactic dehydration treatment greatly improves catalyst performance at various pHs. Stability and long term activity of porous materials (topo and non-topo) in photocatalysis reactions was also tested. These results suggest that the new materials can be used to efficiently purify contaminated water.« less

  9. Effect of Preconditioning and Soldering on Failures of Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2014-01-01

    Soldering of molded case tantalum capacitors can result in damage to Ta205 dielectric and first turn-on failures due to thermo-mechanical stresses caused by CTE mismatch between materials used in the capacitors. It is also known that presence of moisture might cause damage to plastic cases due to the pop-corning effect. However, there are only scarce literature data on the effect of moisture content on the probability of post-soldering electrical failures. In this work, that is based on a case history, different groups of similar types of CWR tantalum capacitors from two lots were prepared for soldering by bake, moisture saturation, and longterm storage at room conditions. Results of the testing showed that both factors: initial quality of the lot, and preconditioning affect the probability of failures. Baking before soldering was shown to be effective to prevent failures even in lots susceptible to pop-corning damage. Mechanism of failures is discussed and recommendations for pre-soldering bake are suggested based on analysis of moisture characteristics of materials used in the capacitors' design.

  10. High-strength tungsten alloy with improved ductility

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.; Raffo, P. L.; Rubenstein, L. S.; Witzke, W. R.

    1967-01-01

    Alloy combines superior strength at elevated temperatures with improved ductility at lower temperatures relative to unalloyed tungsten. Composed of tungsten, rhenium, hafnium, and carbon, the alloy is prepared by consumable electrode vacuum arc-melting and can be fabricated into rod, plate, and sheet.

  11. NEPP Evaluation of Automotive Grade Tantalum Chip Capacitors

    NASA Technical Reports Server (NTRS)

    Sampson, Mike; Brusse, Jay

    2018-01-01

    Automotive grade tantalum (Ta) chip capacitors are available at lower cost with smaller physical size and higher volumetric efficiency compared to military/space grade capacitors. Designers of high reliability aerospace and military systems would like to take advantage of these attributes while maintaining the high standards for long-term reliable operation they are accustomed to when selecting military-qualified established reliability tantalum chip capacitors (e.g., MIL-PRF-55365). The objective for this evaluation was to assess the long-term performance of off-the-shelf automotive grade Ta chip capacitors (i.e., manufacturer self-qualified per AEC Q-200). Two (2) lots of case size D manganese dioxide (MnO2) cathode Ta chip capacitors from 1 manufacturer were evaluated. The evaluation consisted of construction analysis, basic electrical parameter characterization, extended long-term (2000 hours) life testing and some accelerated stress testing. Tests and acceptance criteria were based upon manufacturer datasheets and the Automotive Electronics Council's AEC Q-200 qualification specification for passive electronic components. As-received a few capacitors were marginally above the specified tolerance for capacitance and ESR. X-ray inspection found that the anodes for some devices may not be properly aligned within the molded encapsulation leaving less than 1 mil thickness of the encapsulation. This evaluation found that the long-term life performance of automotive grade Ta chip capacitors is generally within specification limits suggesting these capacitors may be suitable for some space applications.

  12. Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Heng-Li; Chang, Yin-Yu, E-mail: yinyu@mail2000.com.tw; Chen, Hung-Jui

    Tantalum (Ta) oxides and their coatings have been proved to increase their applications in the biomedical fields by improving osseointegration and wear resistance. In this study, Ta oxide coatings containing different proportions of Ag are deposited on SS304 materials. A twin-gun magnetron sputtering system is used to deposit the tantalum oxide-Ag coating. In this study, Staphylococcus aureus, which exhibits physiological commensalism on the human skin, nares, and mucosal and oral areas, is chosen as the model for in vitro antibacterial analyses via a fluorescence staining method using Syto9. The cytocompatibility and adhesive morphology of human skin fibroblast cells (CCD-966SK) onmore » the coatings are also determined by using the microculture tetrazolium assay. This study shows that Ta{sub 2}O{sub 5} and Ta{sub 2}O{sub 5}-Ag coatings with 12.5 at. % of Ag exhibit improved antibacterial effects against S. aureus and have good skin fibroblast cell cellular biocompatibility.« less

  13. Study of properties of tungsten irradiated in hydrogen atmosphere

    NASA Astrophysics Data System (ADS)

    Tazhibayeva, I.; Skakov, M.; Baklanov, V.; Koyanbayev, E.; Miniyazov, A.; Kulsartov, T.; Ponkratov, Yu.; Gordienko, Yu.; Zaurbekova, Zh.; Kukushkin, I.; Nesterov, E.

    2017-12-01

    The paper presents the results of the experiments with DF (double forged) tungsten samples irradiated at the WWR-K research reactor in hydrogen and helium atmospheres. The irradiation time was 3255 h (135.6 d). After reactor irradiation, W samples have been subjected to investigations of their activity level, hardness, and microstructure, as well as x-ray and texture observations. The hydrogen yield released from irradiated tungsten samples have been measured using TDS-method. The hydrogen concentration in the tungsten samples irradiated in hydrogen was higher than that in the samples irradiated in helium atmosphere. It is shown that the surface microstructure of tungsten samples irradiated in hydrogen is characterized by micro-pits, inclusions and blisters in the form of bubbles, which were not observed earlier for tungsten irradiated in hydrogen.

  14. First principles study of structural, vibrational and electronic properties of graphene-like MX 2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Wang, Yanli; Ni, Jun; Shi, Lin; Shi, Siqi; Tang, Weihua

    2011-05-01

    Using first principles calculations, we investigate the structural, vibrational and electronic structures of the monolayer graphene-like transition-metal dichalcogenide (MX 2) sheets. We find the lattice parameters and stabilities of the MX 2 sheets are mainly determined by the chalcogen atoms, while the electronic properties depend on the metal atoms. The NbS 2 and TaS 2 sheets have comparable energetic stabilities to the synthesized MoS 2 and WS 2 ones. The molybdenum and tungsten dichalcogenide (MoX 2 and WX 2) sheets have similar lattice parameters, vibrational modes, and electronic structures. These analogies also exist between the niobium and tantalum dichalcogenide (NbX 2 and TaX 2) sheets. However, the NbX 2 and TaX 2 sheets are metals, while the MoX 2 and WX 2 ones are semiconductors with direct-band gaps. When the Nb and Ta atoms are doped into the MoS 2 and WS 2 sheets, a semiconductor-to-metal transition occurs. Comparing to the bulk compounds, these monolayer sheets have similar structural parameters and properties, but their vibrational and electronic properties are varied and have special characteristics. Our results suggest that the graphene-like MX 2 sheets have potential applications in nano-electronics and nano-devices.

  15. High-Performance Supercapacitors from Niobium Nanowire Yarns.

    PubMed

    Mirvakili, Seyed M; Mirvakili, Mehr Negar; Englezos, Peter; Madden, John D W; Hunter, Ian W

    2015-07-01

    The large-ion-accessible surface area of carbon nanotubes (CNTs) and graphene sheets formed as yarns, forests, and films enables miniature high-performance supercapacitors with power densities exceeding those of electrolytics while achieving energy densities equaling those of batteries. Capacitance and energy density can be enhanced by depositing highly pseudocapacitive materials such as conductive polymers on them. Yarns formed from carbon nanotubes are proposed for use in wearable supercapacitors. In this work, we show that high power, energy density, and capacitance in yarn form are not unique to carbon materials, and we introduce niobium nanowires as an alternative. These yarns show higher capacitance and energy per volume and are stronger and 100 times more conductive than similarly spun carbon multiwalled nanotube (MWNT) and graphene yarns. The long niobium nanowires, formed by repeated extrusion and drawing, achieve device volumetric peak power and energy densities of 55 MW·m(-3) (55 W·cm(-3)) and 25 MJ·m(-3) (7 mWh·cm(-3)), 2 and 5 times higher than that for state-of-the-art CNT yarns, respectively. The capacitance per volume of Nb nanowire yarn is lower than the 158 MF·m(-3) (158 F·cm(-3)) reported for carbon-based materials such as reduced graphene oxide (RGO) and CNT wet-spun yarns, but the peak power and energy densities are 200 and 2 times higher, respectively. Achieving high power in long yarns is made possible by the high conductivity of the metal, and achievement of high energy density is possible thanks to the high internal surface area. No additional metal backing is needed, unlike for CNT yarns and supercapacitors in general, saving substantial space. As the yarn is infiltrated with pseudocapacitive materials such as poly(3,4-ethylenedioxythiophene) (PEDOT), the energy density is further increased to 10 MJ·m(-3) (2.8 mWh·cm(-3)). Similar to CNT yarns, niobium nanowire yarns are highly flexible and show potential for weaving into textiles

  16. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum

    DOE PAGES

    Davis, Jean -Paul; Brown, Justin L.; Knudson, Marcus D.; ...

    2014-11-26

    In this research, magnetically-driven, planar shockless-compression experiments to multi-megabar pressures were performed on tantalum samples using a stripline target geometry. Free-surface velocity waveforms were measured in 15 cases; nine of these in a dual-sample configuration with two samples of different thicknesses on opposing electrodes, and six in a single-sample configuration with a bare electrode opposite the sample. Details are given on the application of inverse Lagrangian analysis (ILA) to these data, including potential sources of error. The most significant source of systematic error, particularly for single-sample experiments, was found to arise from the pulse-shape dependent free-surface reflected wave interactions withmore » the deviatoric-stress response of tantalum. This could cause local, possibly temporary, unloading of material from a ramp compressed state, and thus multi-value response in wave speed that invalidates the free-surface to in-material velocity mapping step of ILA. By averaging all 15 data sets, a final result for the principal quasi-isentrope of tantalum in stress-strain was obtained to a peak longitudinal stress of 330 GPa with conservative uncertainty bounds of ±4.5% in stress. The result agrees well with a tabular equation of state developed at Los Alamos National Laboratory.« less

  17. Processing, physical metallurgy and creep of NiAl + Ta and NiAl + Nb alloys. Ph.D. Thesis. Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Pathare, Viren M.

    1988-01-01

    Powder processed NiAl + Ta alloys containing 1, 2, and 4.5 at percent tantalum and NiAl + Nb alloys containing 1 and 2 at percent niobium were developed for improved creep properties. In addition, a cast alloy with 5 at percent tantalum was also studied. Hot extrusion parameters for processing alloys with 1 and 2 at percent of tantalum or niobium were designed. The NiAl + 4.5 at percent Ta alloy could be vacuum hot pressed successfully, even though it could not be extruded. All the phases in the multiphase alloys were identified and the phase transformations studied. The Ni2AlTa in NiAl + 4.5 at percent Ta alloy transforms into a liquid phase above 1700 K. Solutionizing and annealing below this temperature gives rise to a uniform distribution of fine second phase precipitates. Compressive creep properties were evaluated at 1300 K using constant load and constant velocity tests. In the higher strain rate region single phase NiAl + 1 at percent Ta and NiAl + 1 at percent Nb alloys exhibit a stress exponent of 5 characteristic of climb controlled dislocation creep. In slower strain rate regime diffusional creep becomes important. The two phase alloys containing 2 to 5 at percent Ta and 2 at percent Nb show considerable improvement over binary NiAl and single phase alloys. Loose dislocation networks and tangles stabilized by the precipitates were found in the as crept microstructure. The cast alloy which has larger grains and a distribution of fine precipitates shows the maximum improvement over binary NiAl.

  18. Tungsten dust impact on ITER-like plasma edge

    DOE PAGES

    Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; ...

    2015-01-12

    The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impactmore » of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. Lastly, it is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.« less

  19. Internal fuse modules for solid tantalum capacitors

    NASA Technical Reports Server (NTRS)

    Dematos, H. V.

    1981-01-01

    Miniature fuse modules were designed for and incorporated into two styles of solid tantalum capacitors. One is an epoxy molded, radial leaded, high frequency decoupling capacitor; the other is an hermetically sealed device with axial lead wires. The fusible element for both devices consists of a fine bimetallic wire which reacts exothermically upon reaching a critical temperature and then disintegrates. The desirability of having fused devices is discussed and design constraints, in particular those which minimize inductance and series resistance while optimizing fuse actuation characteristics, are reviewed. Factors affecting the amount of energy required to actuate the fuse and reliability of acuation are identified.

  20. Environmental Effects of Tungsten and Tantalum Alloys

    DTIC Science & Technology

    1998-10-01

    a groundwater well pumping at 400 gpm could potentially irrigate an area approximately 190 acres in size. Alloy metals from test area soils that...the Site. The home range of the beach mouse is similar to that of the deer mouse (Peromyscus leucopus), which has a home range of about 0.15 acres ...USEPA, 1993). The area of the C-64A test area is about 5.74 acres . The mice use and forage in grassland areas and would use much of this area. It is

  1. Thin film integrated capacitors with sputtered-anodized niobium pentoxide dielectric for decoupling applications

    NASA Astrophysics Data System (ADS)

    Jacob, Susan

    Electronics system miniaturization is a major driver for high-k materials. High-k materials in capacitors allow for high capacitance, enabling system miniaturization. Ta2O5 (k˜24) has been the dominant high-k material in the electronic industry for decoupling capacitors, filter capacitors, etc. In order to facilitate further system miniaturization, this project has investigated thin film integrated capacitors with Nb2O5 dielectric. Nb2O 5 has k˜41 and is a potential candidate for replacing Ta2O5. But, the presence of suboxides (NbO2 and NbO) in the dielectric deteriorates the electrical properties (leakage current, thermal instability of capacitance, etc.). Also, the high oxygen solubility of niobium results in oxygen diffusion from the dielectric to niobium metal, if any is present. The major purpose of this project was to check the ability of NbN as a diffusion barrier and fabricate thermally stable niobium capacitors. As a first step to produce niobium capacitors, the material characterizations of reactively sputtered Nb2O5 and NbN were done. Thickness and film composition, and crystal structures of the sputtered films were obtained and the deposition parameters for the desired stoichiometry were found. Also, anodized Nb2O5 was characterized for its stoichiometry and thickness. To study the effect of nitrides on capacitance and thermal stability, Ta2O5 capacitors were initially fabricated with and without TaN. The results showed that the nitride does not affect the capacitance, and that capacitors with TaN are stable up to 150°C. In the next step, niobium capacitors were first fabricated with anodized dielectric and the oxygen diffusion issues associated with capacitor processing were studied. Reactively sputtered Nb2O5 was anodized to form complete Nb2O5 (with few oxygen vacancies) and NbN was used to sandwich the dielectric. The capacitor fabrication was not successful due to the difficulties in anodizing the sputtered dielectric. Another method, anodizing

  2. Multifilamentary niobium tin magnet conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larbalestier, D.C.; Madsen, P.E.; Lee, J.A.

    1975-03-01

    Practical magnet conductors of multifilamentary Nb$sub 3$Sn have been produced. Evaluation of these bronze route conductors is described. Conductors studied range from a 1369 filament all-bronze matrix conductor to 5143 and approximately 42,000 filament conductors, containing internal high purity copper protected by diffusion barriers. Filament sizes vary from approximately 3 to 8 $mu$m diameter. The effect of heat treatment conditions on critical current and transition temperature is presented and it is shown that overall critical current densities greater than those available in niobium titanium can now be produced in multifilamentary Nb$sub 3$Sn magnet conductor.

  3. Test Result of 650 MHz, Beta 0.61 Single Cell Niobium Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seth, Sudeshna; Bhattacharyya, Pranab; Dutta Gupta, Anjan

    VECC has been involved in the design, analysis and development of 650 MHz, beta 0.61 (LB650), elliptical Superconducting RF linac cavity, as part of research and development activities on SRF cavities and associated technologies under Indian Institutions Fermilab Collaboration (IIFC). A single-cell niobium cavity has been indigenously designed and developed at VECC, with the help of Electron Beam Welding (EBW) facility at IUAC, New Delhi. Various measurements, processing and testing at 2K in Vertical Test Stand (VTS) of the single-cell cavity was carried out at ANL and Fermilab, USA, with active participation of VECC engineers. It achieved a maximum acceleratingmore » gradient(Eacc) of 34.5 MV/m with Quality Factor of 2·10⁹ and 30 MV/m with Quality Factor of 1.5·10¹⁰. This is probably the highest accelerating gradient achieved so far in the world for LB650 cavities. This paper describes the design, fabrication and measurement of the single cell niobium cavity. Cavity processing and test results of Vertical Test of the single-cell niobium cavity are also presented.« less

  4. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp

    2016-02-01

    The synthesis of large-area monolayer tungsten disulphide (WS{sub 2}) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS{sub 2} crystals using tungsten hexachloride (WCl{sub 6}) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl{sub 6} in ethanol was drop-casted on SiO{sub 2}/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS{sub 2} crystals on the substrate. The crystalmore » geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS{sub 2} single crystalline monolayer can be grown using the WCl{sub 6} precursor. Our finding shows an easier and effective approach to grow WS{sub 2} monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.« less

  5. Loading rate and test temperature effects on fracture of In Situ niobium silicide-niobium composites

    NASA Astrophysics Data System (ADS)

    Rigney, Joseph D.; Lewandowski, John J.

    1996-10-01

    Arc cast, extruded, and heat-treated in situ composites of niobium suicide (Nb5Si3) intermetallic with niobium phases (primary—Nbp and secondary—Nbs) exhibited high fracture resistance in comparison to monolithic Nb5Si3. In toughness tests conducted at 298 K and slow applied loading rates, the fracture process proceeded by the microcracking of the Nb5Si3 and plastic deformation of the Nbp and Nbs phases, producing resistance-curve behavior and toughnesses of 28 MPa√m with damage zone lengths less than 500 μm. The effects of changes in the Nbp yield strength and fracture behavior on the measured toughnesses were investigated by varying the loading rates during fracture tests at both 77 and 298 K. Quantitative fractography was utilized to completely characterize each fracture surface created at 298 K in order to determine the type of fracture mode ( i.e., dimpled, cleavage) exhibited by the Nbp. Specimens tested at either higher loading rates or lower test temperatures consistently exhibited a greater amount of cleavage fracture in the Nbp, while the Nbs, always remained ductile. However, the fracture toughness values determined from experiments spanning six orders of magnitude in loading rate at 298 and 77 K exhibited little variation, even under conditions when the majority of Nbp phases failed by cleavage at 77 K. The changes in fracture mode with increasing loading rate and/or decreasing test temperature and their effects on fracture toughness are rationalized by comparison to existing theoretical models.

  6. Niobium: a rare metal with prospects (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beier, E.

    1972-01-01

    BS>Important chemical, physical, and mechanical properties of niobium and its alloys arc described. These underline the fact that this highly heat- resistant metal has gained more and more importance in the airplane and spaceship industry as well as in chemical processes and nuclear technology during the last decade. The processing characterization (machining, pressing, and welding) are discussed. (GT)

  7. Extreme diffusion limited electropolishing of niobium radiofrequency cavities

    DOE PAGES

    Crawford, Anthony C.

    2017-01-04

    In this study, a deeply modulated, regular, continuous, oscillating current waveform is reliably and repeatably achieved during electropolishing of niobium single-cell elliptical radiofrequency cavities. Details of the technique and cavity test results are reported here. The method is applicable for cavity frequencies in the range 500 MHz to 3.9 GHz and can be extended to multicell structures.

  8. Method of synthesizing tungsten nanoparticles

    DOEpatents

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  9. Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures

    DOEpatents

    Liu, C.T.; Takeyama, Masao.

    1994-02-01

    The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250 C and improved room temperature ductility. The alloys contain a Cr[sub 2]Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements. 14 figures.

  10. Determination of Activities of Niobium in Cu-Nb Melts Containing Dilute Nb

    NASA Astrophysics Data System (ADS)

    Wang, Daya; Yan, Baijun; Sichen, Du

    2015-04-01

    The activity coefficients of niobium in Cu-Nb melts were measured by equilibrating solid NbO2 with liquid copper under controlled oxygen potentials in the temperature range of 1773 K to 1898 K (1500 °C to 1625 °C). Either CO-CO2 gas mixture or H2-CO2 gas mixture was employed to obtain the desired oxygen partial pressures. Cu-Nb system was found to follow Henry's law in the composition range studied. The temperature dependence of Henry's constant in the Cu-Nb melts could be expressed as follows: The partial molar excess Gibbs energy change of niobium in Cu-Nb melts can be expressed as follows:

  11. Persistence of tungsten oxide particle/fiber mixtures in artificial human lung fluids

    PubMed Central

    2010-01-01

    Background During the manufacture of tungsten metal for non-sag wire, tungsten oxide powders are produced as intermediates and can be in the form of tungsten trioxide (WO3) or tungsten blue oxides (TBOs). TBOs contain fiber-shaped tungsten sub-oxide particles of respirable or thoracic size. The aim of this research was to investigate whether fiber-containing TBOs had prolonged biodurability in artificial lung fluids compared to tungsten metal or WO3 and therefore potentially could pose a greater inhalation hazard. Methods Dissolution of tungsten metal, WO3, one fiber-free TBO (WO2.98), and three fiber-containing TBO (WO2.81, WO2.66, and WO2.51) powders were measured for the material as-received, dispersed, and mixed with metallic cobalt. Solubility was evaluated using artificial airway epithelial lining fluid (SUF) and macrophage phagolysosomal simulant fluid (PSF). Results Dissolution rates of tungsten compounds were one to four orders of magnitude slower in PSF compared to SUF. The state of the fiber-containing TBOs did not influence their dissolution in either SUF or PSF. In SUF, fiber-containing WO2.66 and WO2.51 dissolved more slowly than tungsten metal or WO3. In PSF, all three fiber-containing TBOs dissolved more slowly than tungsten metal. Conclusions Fiber-containing TBO powders dissolved more slowly than tungsten metal and WO3 powders in SUF and more slowly than tungsten metal in PSF. Existing pulmonary toxicological information on tungsten compounds indicates potential for pulmonary irritation and possibly fibrosis. Additional research is needed to fully understand the hazard potential of TBOs. PMID:21126345

  12. Some observations on uranium carbide alloy/tungsten compatibility.

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1972-01-01

    Results of chemical compatibility tests between both pure tungsten and thoriated tungsten run at 1800 C for up to 3300 hours with uranium carbide alloys. Alloying with zirconium carbide appeared to widen the homogeneity range of uranium carbide, making additional carbon available for reaction with the tungsten. Reaction layers were formed both by vapor phase reaction and by physical contact, producing either or both UWC2 and W2C, depending upon the phases present in the starting fuel alloy. Formation of UWC2 results in slow growth of the reaction layer with time, while W2C reaction layers grow rapidly, allowing equilibrium to be reached in less than 2500 hours at 1800 C. Neither the presence of a thermal gradient nor the presence of thoria in the tungsten clad affect the reactions observed.

  13. Effect of interstitial impurities on the field dependent microwave surface resistance of niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinello, M.; Grassellino, A.; Checchin, M.

    Previous work has demonstrated that the radio frequency surface resistance of niobium resonators is dramatically reduced when nitrogen impurities are dissolved as interstitial in the material. The origin of this effect is attributed to the lowering of the Mattis and Bardeen surface resistance contribution with increasing accelerating field. Meanwhile, an enhancement of the sensitivity to trapped magnetic field is typically observed for such cavities. In this paper we conduct the first systematic study on these different components contributing to the total surface resistance as a function of different levels of dissolved nitrogen, in comparison with standard surface treatments for niobiummore » resonators. Adding these results together we are able to show for the first time which is the optimum surface treatment that maximizes the Q-factor of superconducting niobium resonators as a function of expected trapped magnetic field in the cavity walls. Lastly, these results also provide new insights on the physics behind the change in the field dependence of the Mattis and Bardeen surface resistance, and of the trapped magnetic vortex induced losses in superconducting niobium resonators.« less

  14. Effect of interstitial impurities on the field dependent microwave surface resistance of niobium

    DOE PAGES

    Martinello, M.; Grassellino, A.; Checchin, M.; ...

    2016-08-09

    Previous work has demonstrated that the radio frequency surface resistance of niobium resonators is dramatically reduced when nitrogen impurities are dissolved as interstitial in the material. The origin of this effect is attributed to the lowering of the Mattis and Bardeen surface resistance contribution with increasing accelerating field. Meanwhile, an enhancement of the sensitivity to trapped magnetic field is typically observed for such cavities. In this paper we conduct the first systematic study on these different components contributing to the total surface resistance as a function of different levels of dissolved nitrogen, in comparison with standard surface treatments for niobiummore » resonators. Adding these results together we are able to show for the first time which is the optimum surface treatment that maximizes the Q-factor of superconducting niobium resonators as a function of expected trapped magnetic field in the cavity walls. Lastly, these results also provide new insights on the physics behind the change in the field dependence of the Mattis and Bardeen surface resistance, and of the trapped magnetic vortex induced losses in superconducting niobium resonators.« less

  15. Conical Tungsten Tips as Substrates for the Preparation of Ultramicroelectrodes

    PubMed Central

    Hermans, Andre; Wightman, R. Mark

    2008-01-01

    Here we describe a simple method to prepare voltammetric microelectrodes using tungsten wires as a substrate. Tungsten wires have high tensile modulus and enable the fabrication of electrodes that have small dimensions overall while retaining rigidity. In this work, 125 μm tungsten wires with a conical tip were employed. For the preparation of gold or platinum ultramicroelectrodes, commercial tungsten microelectrodes, completely insulated except at the tip, were used as substrates. Following removal of oxides from the exposed tungsten, platinum or gold was electroplated yielding surfaces with an electroactive area of between 1×10−6 cm2 to 2×10−6 cm2. Carbon surfaces on the etched tip of tungsten microwires were prepared by coating with photoresist followed by pyrolysis. The entire electrode was then insulated with Epoxylite except the tip yielding an exposed carbon surface with an area of around 4×10−6 cm2 to 6×10−6 cm2. All three types of ultramicroelectrodes fabricated on the tungsten wire had similar electrochemical behavior to electrodes fabricated from wires or fibers insulated with glass tubes. PMID:17129002

  16. An improved oxygen diffusion model to explain the effect of low-temperature baking on high field losses in niobium superconducting cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciovati, Gianluigi

    Radio-frequency (RF) superconducting cavities made of high purity niobium are widely used to accelerate charged particle beams in particle accelerators. The major limitation to achieve RF field values approaching the theoretical limit for niobium is represented by ''anomalous'' losses which degrade the quality factor of the cavities starting at peak surface magnetic fields of about 100 mT, in absence of field emission. These high field losses are often referred to as ''Q-drop''. It has been observed that the Q-drop is drastically reduced by baking the cavities at 120 C for about 48 h under ultrahigh vacuum. An improved oxygen diffusionmore » model for the niobium-oxide system is proposed to explain the benefit of the low-temperature baking on the Q-drop in niobium superconducting rf cavities. The model shows that baking at 120 C for 48 h allows oxygen to diffuse away from the surface, and therefore increasing the lower critical field towards the value for pure niobium.« less

  17. Preparation and electrocatalytic activity of tungsten carbide and titania nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Sujuan; Shi, Binbin; Yao, Guoxing

    2011-10-15

    Graphical abstract: The electrocatalytic activity of tungsten carbide and titania nanocomposite is related to the structure, crystal phase and chemical components of the nanocomposite, and is also affected by the property of electrolyte. A synergistic effect exists between tungsten carbide and titania of the composite. Highlights: {yields} Electrocatalytic activity of tungsten carbide and titania nanocomposite with core-shell structure. {yields} Activity is related to the structure, crystal phase and chemical component of the nanocomposite. {yields} The property of electrolyte affects the electrocatalytic activity. {yields} A synergistic effect exists between tungsten carbide and titania of the composite. -- Abstract: Tungsten carbide andmore » titania nanocomposite was prepared by combining a reduced-carbonized approach with a mechanochemical approach. The samples were characterized by X-ray diffraction, transmission electron microscope under scanning mode and X-ray energy dispersion spectrum. The results show that the crystal phases of the samples are composed of anatase, rutile, nonstoichiometry titanium oxide, monotungsten carbide, bitungsten carbide and nonstoichiometry tungsten carbide, and they can be controlled by adjusting the parameters of the reduced-carbonized approach; tungsten carbide particles decorate on the surface of titania support, the diameter of tungsten carbide particle is smaller than 20 nm and that of titania is around 100 nm; the chemical components of the samples are Ti, O, W and C. The electrocatalytic activity of the samples was measured by a cyclic voltammetry with three electrodes. The results indicate that the electrocatalytic activities of the samples are related to their crystal phases and the property of electrolyte in aqueous solution. A synergistic effect between titania and tungsten carbide is reported for the first time.« less

  18. Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems

    NASA Astrophysics Data System (ADS)

    Ingham, B.; Hendy, S. C.; Chong, S. V.; Tallon, J. L.

    2005-08-01

    Tungsten trioxide adopts a variety of structures which can be intercalated with charged species to alter the electronic properties, thus forming “tungsten bronzes.” Similar effects are observed upon removing oxygen from WO3 . We present a computational study of cubic and hexagonal alkali bronzes and examine the effects on cell size and band structure as the size of the intercalated ion is increased. With the exception of hydrogen (which is predicted to be unstable as an intercalate), the behavior of the bronzes are relatively consistent. NaWO3 is the most stable of the cubic systems, although in the hexagonal system the larger ions are more stable. The band structures are identical, with the intercalated atom donating its single electron to the tungsten 5d valence band. A study of fractional doping in the NaxWO3 system (0⩽x⩽1) showed a linear variation in cell parameter and a systematic shift in the Fermi level into the conduction band. In the oxygen-deficient WO3-x system the Fermi level undergoes a sudden jump into the conduction band at around x=0.2 . Lastly, three compounds of a layered WO4•α,ω -diaminoalkane hybrid series were studied and found to be insulating, with features in the band structure similar to those of the parent WO3 compound that relate well to experimental UV-visible spectroscopy results.

  19. OEDGE modeling for the planned tungsten ring experiment on DIII-D

    DOE PAGES

    Elder, J. David; Stangeby, Peter C.; Abrams, Tyler W.; ...

    2017-04-19

    The OEDGE code is used to model tungsten erosion and transport for DIII-D experiments with toroidal rings of high-Z metal tiles. Such modeling is needed for both experimental and diagnostic design to have estimates of the expected core and edge tungsten density and to understand the various factors contributing to the uncertainties in these calculations. OEDGE simulations are performed using the planned experimental magnetic geometries and plasma conditions typical of both L-mode and inter-ELM H-mode discharges in DIII-D. OEDGE plasma reconstruction based on specific representative discharges for similar geometries is used to determine the plasma conditions applied to tungsten plasmamore » impurity simulations. We developed a new model for tungsten erosion in OEDGE which imports charge-state resolved carbon impurity fluxes and impact energies from a separate OEDGE run which models the carbon production, transport and deposition for the same plasma conditions as the tungsten simulations. Furthermore, these values are then used to calculate the gross tungsten physical sputtering due to carbon plasma impurities which is then added to any sputtering by deuterium ions; tungsten self-sputtering is also included. The code results are found to be dependent on the following factors: divertor geometry and closure, the choice of cross-field anomalous transport coefficients, divertor plasma conditions (affecting both tungsten source strength and transport), the choice of tungsten atomic physics data used in the model (in particular sviz(Te) for W-atoms), and the model of the carbon flux and energy used for 2 calculating the tungsten source due to sputtering. The core tungsten density is found to be of order 10 15 m -3 (excluding effects of any core transport barrier and with significant variability depending on the other factors mentioned) with density decaying into the scrape off layer.« less

  20. Behaviour of niobium during early Earth’s differentiation: insights from its local structure and oxidation state in silicate melts at high pressure

    NASA Astrophysics Data System (ADS)

    Sanloup, C.; Cochain, B.; de Grouchy, C.; Glazyrin, K.; Konôpkova, Z.; Liermann, H.-P.; Kantor, I.; Torchio, R.; Mathon, O.; Irifune, T.

    2018-02-01

    Niobium (Nb) is one of the key trace elements used to understand Earth’s formation and differentiation, and is remarkable for its deficiency relative to tantalum in terrestrial rocks compared to the building chondritic blocks. In this context, the local environment of Nb in silica-rich melts and glasses is studied by in situ x-ray absorption spectroscopy (XAS) at high pressure (P) up to 9.3 GPa and 1350 K using resistive-heating diamond-anvil cells. Nb is slightly less oxidized in the melt (intermediate valence between  +4 and  +5) than in the glass (+5), an effect evidenced from the shift of the Nb-edge towards lower energies. Changes in the pre-edge features are also observed between melt and glass states, consistently with the observed changes in oxidation state although likely enhanced by temperature (T) effects. The oxidation state of Nb is not affected by pressure neither in the molten nor glassy states, and remains constant in the investigated P-range. The Nb-O coordination number is constant and equal to 6.3+/-0.4 below 5 GPa, and only progressively increases up to 7.1+/-0.4 at 9.3 GPa, the maximum P investigated. If these findings were to similarly apply to basaltic melts, that would rule out the hypothesis of Nb/Ta fractionation during early silicate Earth’s differentiation, thus reinforcing the alternative hypothesis of fractionation during core formation on reduced pre-planetary bodies.

  1. An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature

    DOE PAGES

    Timofeev, Alexander; Migdisov, Art. A.; Williams-Jones, A. E.

    2016-10-27

    Here, the solubility of Ta 2O 5 (solid) and the speciation of tantalum in HF-bearing aqueous solutions have been determined at temperatures of 100-250 °C and vapour-saturated water pressure. Tantalum is transported as the species Ta(OH) 5 0 at low HF concentration and pH ~1-3. At higher HF concentration, tantalum mobility is controlled by the species TaF 3(OH) 3- and TaF 5; the presence of TaF 5 0 is only evident at ≤150 °C. Equilibrium constants range from -17.4 ± 0.45 to -16.4 ± 0.12 for the formation of Ta(OH) 5 from crystalline Ta 2O 5 and from -8.24 ±more » 0.64 to -8.55 ± 0.68 for the formation of TaF 3(OH) 3- at 100 and 250 °C, respectively. For TaF 5 0, they were determined to be 0.13 at 100 °C and -0.35 at 150 °C.« less

  2. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.

    NASA Astrophysics Data System (ADS)

    Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.

    2016-10-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.

  3. Recovery of Tungsten and Molybdenum from Low-Grade Scheelite

    NASA Astrophysics Data System (ADS)

    Li, Yongli; Yang, Jinhong; Zhao, Zhongwei

    2017-10-01

    With most high-quality tungsten ores being exhausted, the enhancement of low-grade scheelite concentrates processing has attracted a great deal of attention. The objective of this study is to develop a method to maximize the recovery tungsten and molybdenum from a low-grade scheelite via a new acid leaching process followed by solvent extraction. Under optimal conditions (350 g/L H2SO4, 95°C, and 2 h), approximately 99.8% of tungsten and 98% of molybdenum were leached out. In the subsequent solvent extraction process, more than 99% of the tungsten and molybdenum were extracted with a co-extraction system (50% TBP, 30% HDEHP, and 10% 2-octanol in kerosene) using a three-stage cross-flow extraction. The raffinate can be recycled for the next leaching process after replenishing the H2SO4 to the initial value (approximately 350 g/L). Based on these results, a conceptual flowsheet is presented to recover tungsten and molybdenum from the low-grade scheelite.

  4. Electrospark doping of steel with tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisova, Yulia, E-mail: yukolubaeva@mail.ru; Shugurov, Vladimir, E-mail: shugurov@opee.hcei.tsc.ru; Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com

    2016-01-15

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensionalmore » approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties.« less

  5. Structures and transitions in tungsten grain boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, T.; Zhu, Q.; Marian, J.

    2017-02-07

    The objective of this study is to develop a computational methodology to predict structure, energies of tungsten grain boundaries as a function of misorientation and inclination. The energies and the mobilities are the necessary input for thermomechanical model of recrystallization of tungsten for magnetic fusion applications being developed by the Marian Group at UCLA.

  6. FAST TRACK COMMUNICATION High rate straining of tantalum and copper

    NASA Astrophysics Data System (ADS)

    Armstrong, R. W.; Zerilli, F. J.

    2010-12-01

    High strain rate measurements reported recently for several tantalum and copper crystal/polycrystal materials are shown to follow dislocation mechanics-based constitutive relations, first at lower strain rates, for dislocation velocity control of the imposed plastic deformations and, then at higher rates, transitioning to nano-scale dislocation generation control by twinning or slip. For copper, there is the possibility of added-on slip dislocation displacements to be accounted for from the newly generated dislocations.

  7. Bragg projection ptychography on niobium phase domain

    DOE PAGES

    Burdet, Nicolas; Shi, Xiaowen; Huang, Xiaojing; ...

    2016-08-10

    Here, we demonstrate that the highly sensitive phase-contrast properties of Bragg coherent diffraction measurements combined with the translational diversity of ptychography can provide a Bragg “dark field” imaging method capable of revealing the finger print of domain structure in metallic thin films. Experimental diffraction data was taken from a epitaxially grown niobium metallic thin film on sapphire; and analyzed with the help of a careful combination of implemented refinement mechanisms.

  8. Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route

    EPA Science Inventory

    Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...

  9. Mineral Resources of the Wabayuma Peak Wilderness Study Area, Mohave County, Arizona

    USGS Publications Warehouse

    Conway, Clay M.; Hassemer, Jerry R.; Knepper, Daniel H.; Pitkin, James A.; Jachens, Robert C.; Chatman, Mark L.

    1990-01-01

    The Wabayuma Peak Wilderness Study Area (AZ-020-037/043), for which a mineral survey was requested by the U.S. Bureau of land Management, encompasses 40,118 acres in northwestern Arizona. Fieldwork was carried out in 1986-88 by the U.S. Bureau of Mines and the U.S. Geological Survey to appraise the identified (known) resources and assess the mineral resource potential (undiscovered) of the wilderness study area. Within the Wabayuma Peak Wilderness Study Area are 14 private parcels of land totaling 1,315 acres. The Wabayuma Peak Wilderness Study Area, including the 14 private parcels of land, is herein referred to as the 'wilderness study area' or the 'study area'. The Boriana, Antler, and Copper World mines lie near the east boundary of the study area. The Boriana mine was a major tungsten-producing mine of the United States during World War II. The Antler and Copper World mines produced relatively small amounts of copper and zinc prior to 1970. Copper and zinc were mined within 100 ft of the study area at the Antler mine. The Antler mine contains subeconomic resources of 350,000 to 400,000 short tons of copper-zinc ore; a minimum of 2,000 short tons, at grades of 1 to 4 percent copper and 1 to 2 percent zinc, lie within the study area. No other mineral resources were identified within the study area. Four small tracts in the eastern part and one in the central part of the study area have high resource potential for copper, zinc, and minor lead, silver, and gold in massive sulfide deposits. A large central tract and two eastern tracts have moderate resource potential for the same metals. An eastern and a western tract within the wilderness study area have high resource potential for tungsten, copper, and combinations of beryllium, gold, silver, arsenic, bismuth, molybdenum, tin, indium, thorium, niobium, yttrium, lanthanum, scandium, tantalum, rhenium, lead, zinc, and iron in granite-related tungsten-polymetallic vein deposits. Most of the rest of the study area

  10. Degradation of Leakage Currents in Solid Tantalum Capacitors Under Steady-State Bias Conditions

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2010-01-01

    Degradation of leakage currents in various types of solid tantalum capacitors under steady-state bias conditions was investigated at temperatures from 105 oC to 170 oC and voltages up to two times the rated voltage. Variations of leakage currents with time under highly accelerated life testing (HALT) and annealing, thermally stimulated depolarization currents, and I-V characteristics were measured to understand the conduction mechanism and the reason for current degradation. During HALT the currents increase gradually up to three orders of magnitude in some cases, and then stabilize with time. This degradation is reversible and annealing can restore the initial levels of leakage currents. The results are attributed to migration of positively charged oxygen vacancies in tantalum pentoxide films that diminish the Schottky barrier at the MnO2/Ta2O5 interface and increase electron injection. A simple model allows for estimation of concentration and mobility of oxygen vacancies based on the level of current degradation.

  11. TUNGSTEN INTERFERENCE IN VOLUMETRIC ANALYSIS OF URANIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, R.F.; Articolo, O.

    1958-08-01

    Tungsten was found to have a negligible effect on the determination of uranium in uranium-zirconium alloys by the Jones reductor-dichromate method used at KAPL. The tungstate ion interferred seriously and gave high results. However, the soluble tungsten was precipitated by intensive fuming with sulfuric acid and rendered ineffective in tbe subsequent oxidationreduction reactions of the uranium. (auth)

  12. High-temperature properties of joint interface of VPS-tungsten coated CFC

    NASA Astrophysics Data System (ADS)

    Tamura, S.; Liu, X.; Tokunaga, K.; Tsunekawa, Y.; Okumiya, M.; Noda, N.; Yoshida, N.

    2004-08-01

    Tungsten coated carbon fiber composite (CFC) is a candidate material for the high heat flux components in fusion reactors. In order to investigate the high-temperature properties at the joint interface of coating, heat load experiments by using electron beam were performed on VPS-tungsten coated CX-2002U samples. After the heat load test for 3.6 ks at 1400 °C, tungsten-rhenium multilayer (diffusion barrier for carbon) at the joint interface of coating was observed clearly. But, at the temperatures above 1600 °C, the multilayer was disappeared and a tungsten carbide layer was formed in the VPS-tungsten coating. At the temperatures below 1800 °C, the thickness of this layer logarithmically increased with increasing its loading time. At 2000 °C, the growth of the tungsten carbide layer was proportional to the square root of loading time. These results indicate that the diffusion barrier for carbon is not expected to suppress the carbide formation at the joint interface of the VPS-tungsten coating above 1600 °C.

  13. 40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The...

  14. 40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The...

  15. 40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The...

  16. Radionuclide deposition control

    DOEpatents

    Brehm, William F.; McGuire, Joseph C.

    1980-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  17. High reliability sheathed, beryllia insulated, tungsten-rhenium alloy thermocouple assemblies; their fabrication and EMF stability

    NASA Technical Reports Server (NTRS)

    Burns, G. W.; Hurst, W. S.; Scroger, M. G.

    1974-01-01

    Tantalum sheathed, BeO insulated, W-3% Re/W-25% Re thermocouple assemblies were fabricated and their emf drift determined during 2059 hours of exposure at 2073 K in a gaseous helium environment. The sheathed thermocouple assemblies were constructed from aged thermoelements, specially heat-treated BeO insulators, and specially cleaned and etched tantalum sheaths. Their thermal emf drifts ranged from the equivalent of only -0.3 to -0.8 K drift per 1000 hours of exposure at 2073 K. No evidence of any gross chemical attack or degradation of the component materials was found. The emf drift and material behavior of some unsheathed, BeO insulated, W-3% Re/W-25% Re thermocouples at 2250 and 2400 K were also determined. Unsheathed thermocouples tested in an argon environment at 2250 K for 1100 hours and at 2400 K for 307 hours exhibited changes in thermal emf that typically ranged from the equivalent of a few degrees K to as much as +11 K. Post-test examinations of these thermocouples revealed some undesirable material degradation and interaction which included erosion of the BeO insulators and contamination of the thermoelements by tantalum from the tantalum blackbody enclosure in which the thermocouples were contained.

  18. Impact of temperature during He+ implantation on deuterium retention in tungsten, tungsten with carbon deposit and tungsten carbide

    NASA Astrophysics Data System (ADS)

    Oya, Yasuhisa; Sato, Misaki; Li, Xiaochun; Yuyama, Kenta; Fujita, Hiroe; Sakurada, Shodai; Uemura, Yuki; Hatano, Yuji; Yoshida, Naoaki; Ashikawa, Naoko; Sagara, Akio; Chikada, Takumi

    2016-02-01

    Temperature dependence on deuterium (D) retention for He+ implanted tungsten (W) was studied by thermal desorption spectroscopy (TDS) to evaluate the tritium retention behavior in W. The activation energies were evaluated using Hydrogen Isotope Diffusion and Trapping (HIDT) simulation code and found to be 0.55 eV, 0.65 eV, 0.80 eV and 1.00 eV. The heating scenarios clearly control the D retention behavior and, dense and large He bubbles could work as a D diffusion barrier toward the bulk, leading to D retention enhancement at lower temperature of less than 430 K, even if the damage was introduced by He+ implantation. By comparing the D retention for W, W with carbon deposit and tungsten carbide (WC), the dense carbon layer on the surface enhances the dynamic re-emission of D as hydrocarbons, and induces the reduction of D retention. However, by He+ implantation, the D retention was increased for all the samples.

  19. Template-Free Mesoporous Electrochromic Films on Flexible Substrates from Tungsten Oxide Nanorods

    DOE PAGES

    Heo, Sungyeon; Kim, Jongwook; Ong, Gary K.; ...

    2017-08-08

    Low-temperature processed mesoporous nanocrystal thin films are platforms for fabricating functional composite thin films on flexible substrates. Using a random arrangement of anisotropic nanocrystals can be a facile solution to generate pores without templates. However, the tendency for anisotropic particles to spontaneously assemble into a compact structure must be overcome. Here in this paper, we present a method to achieve random networking of nanorods during solution phase deposition by switching their ligand-stabilized colloidal nature into a charge-stabilized nature by a ligand-stripping chemistry. Ligand-stripped tungsten suboxide (WO 2.72) nanorods result in uniform mesoporous thin films owing to repulsive electrostatic forces preventingmore » nanorods from densely packing. Porosity and pore size distribution of thin films are controlled by changing the aspect ratio of the nanorods. This template-free mesoporous structure, achieved without annealing, provides a framework for introducing guest components, therefore enabling our fabrication of inorganic nanocomposite electrochromic films on flexible substrates. Following infilling of niobium polyoxometalate clusters into pores and successive chemical condensation, a WO x–NbO x composite film is produced that selectively controls visible and near-infrared light transmittance without any annealing required. The composite shows rapid switching kinetics and can be stably cycled between optical states over 2000 times. This simple strategy of using anisotropic nanocrystals gives insight into mesoporous thin film fabrication with broader applications for flexible devices.« less

  20. Template-Free Mesoporous Electrochromic Films on Flexible Substrates from Tungsten Oxide Nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Sungyeon; Kim, Jongwook; Ong, Gary K.

    Low-temperature processed mesoporous nanocrystal thin films are platforms for fabricating functional composite thin films on flexible substrates. Using a random arrangement of anisotropic nanocrystals can be a facile solution to generate pores without templates. However, the tendency for anisotropic particles to spontaneously assemble into a compact structure must be overcome. Here in this paper, we present a method to achieve random networking of nanorods during solution phase deposition by switching their ligand-stabilized colloidal nature into a charge-stabilized nature by a ligand-stripping chemistry. Ligand-stripped tungsten suboxide (WO 2.72) nanorods result in uniform mesoporous thin films owing to repulsive electrostatic forces preventingmore » nanorods from densely packing. Porosity and pore size distribution of thin films are controlled by changing the aspect ratio of the nanorods. This template-free mesoporous structure, achieved without annealing, provides a framework for introducing guest components, therefore enabling our fabrication of inorganic nanocomposite electrochromic films on flexible substrates. Following infilling of niobium polyoxometalate clusters into pores and successive chemical condensation, a WO x–NbO x composite film is produced that selectively controls visible and near-infrared light transmittance without any annealing required. The composite shows rapid switching kinetics and can be stably cycled between optical states over 2000 times. This simple strategy of using anisotropic nanocrystals gives insight into mesoporous thin film fabrication with broader applications for flexible devices.« less