Sample records for tap water lake

  1. Occurrence and Distribution of Organophosphate Flame Retardants/Plasticizers in Surface Waters, Tap Water, and Rainwater: Implications for Human Exposure.

    PubMed

    Kim, Un-Jung; Kannan, Kurunthachalam

    2018-04-27

    The occurrence and profiles of 14 triester organophosphate flame retardants (OPFRs) and plasticizers were investigated in surface water, tap water, rainwater, and seawater collected from New York State. In total, 150 samples collected from rivers ( n = 35), lakes ( n = 39), tap water ( n = 58), precipitation/rainwater ( n = 15), and seawater ( n = 3) were analyzed for 14 organophosphate esters (OPEs). An additional nine Hudson River water samples were collected periodically to delineate seasonal trends in OPE levels. The total concentrations of OPEs were found at part-per-trillion ranges, with average concentrations that ranged from 0.01 ng/L for tripropyl phosphate (TPP) in river water to 689 ng/L for tris(2-butoxyethyl)phosphate (TBOEP) in lake water. Tris(1-chloro-2-propyl)phosphate (TCIPP) was the most abundant compound among the investigated OPEs in all types of water. The concentrations of OPEs in river-, lake-, and rainwater were similar but >3 times higher than those found in tap water. Chlorinated alkyl OPFRs accounted for a major proportion of total concentrations. TCIPP, TBOEP, and triethyl phosphate (TEP) were found in >90% of the samples analyzed. Wet deposition fluxes for 14 OPFRs were estimated, on the basis of the concentrations measured in rainwater in Albany, New York, and the values were between 440 and 5250 ng/m 2 . Among several surface water bodies analyzed, samples from the Hudson River and Onondaga Lake contained elevated concentrations of OPEs. Estimated daily intake of OPEs via the ingestion of drinking water was up to 9.65 ng/kg body weight/day.

  2. Spatio-temporal variation in the tap water isotope ratios of Salt Lake City: a novel indicator of urban water system structure and dynamics.

    NASA Astrophysics Data System (ADS)

    Jameel, M. Y.; Bowen, G. J.

    2015-12-01

    Public water supply systems are the life-blood of urban areas. How we use urban water systems affects more than human health and well-being. Our water use can alter a city's energy balance, including how much solar energy is absorbed as heat or reflected back into space. The severity of these effects, and the need to better understand connections between climate, water extraction, water use, and water use impacts, is strongest in areas of climatic aridity and substantial land-use change, such as the rapidly urbanizing areas of Utah. We have gathered and analyzed stable water isotope data from a series of semi-annual hydrological surveys (spring and fall, 2013 and 2014) in urban tap water sampled across the Salt Lake Valley. Our study has led to four major findings thus far: 1) Clear and substantial variation in tap water isotopic composition in space and time that can be linked to different water sources and management practices within the urban area, 2) There is a strong correlation between the range of observed isotope values and the population of water districts, reflecting use of water from multiple local and non-local sources in districts with high water demand, 3) Water isotopes reflect significant and variable loss of water due to evaporation of surface water resources and 4) Overall, tap water contains lower concentrations of the heavy H and O isotopes than does precipitation within the basin, reflecting the connection between city water supplies and mountain water sources. Our results highlight the utility of isotopic data as an indicator of heterogeneities within urban water systems, management practices and their variation across a major metropolitan area, and effects of climate variability on urban water supplies

  3. Anthropogenic contamination of tap water, beer, and sea salt

    PubMed Central

    2018-01-01

    Plastic pollution has been well documented in natural environments, including the open waters and sediments within lakes and rivers, the open ocean and even the air, but less attention has been paid to synthetic polymers in human consumables. Since multiple toxicity studies indicate risks to human health when plastic particles are ingested, more needs to be known about the presence and abundance of anthropogenic particles in human foods and beverages. This study investigates the presence of anthropogenic particles in 159 samples of globally sourced tap water, 12 brands of Laurentian Great Lakes beer, and 12 brands of commercial sea salt. Of the tap water samples analyzed, 81% were found to contain anthropogenic particles. The majority of these particles were fibers (98.3%) between 0.1–5 mm in length. The range was 0 to 61 particles/L, with an overall mean of 5.45 particles/L. Anthropogenic debris was found in each brand of beer and salt. Of the extracted particles, over 99% were fibers. After adjusting for particles found in lab blanks for both salt and beer, the average number of particles found in beer was 4.05 particles/L with a range of 0 to 14.3 particles/L and the average number of particles found in each brand of salt was 212 particles/kg with a range of 46.7 to 806 particles/kg. Based on consumer guidelines, our results indicate the average person ingests over 5,800 particles of synthetic debris from these three sources annually, with the largest contribution coming from tap water (88%). PMID:29641556

  4. What's Wrong with the Tap? Examining Perceptions of Tap Water and Bottled Water at Purdue University

    NASA Astrophysics Data System (ADS)

    Saylor, Amber; Prokopy, Linda Stalker; Amberg, Shannon

    2011-09-01

    The environmental impacts of bottled water prompted us to explore drinking water choices at Purdue University, located in West Lafayette, IN. A random sample of 2,045 Purdue University students, staff, and faculty was invited to participate in an online survey. The survey assessed current behaviors as well as perceived barriers and benefits to drinking tap water versus bottled water. 677 surveys were completed for a response rate of 33.1%. We then conducted qualitative interviews with a purposive sample of university undergraduates ( n = 21) to obtain contextual insights into the survey results and the beliefs of individuals with a variety of drinking water preferences. This study revealed that women drink disproportionately more bottled water then men while undergraduate students drink more than graduate students, staff and faculty. The study also uncovered a widespread belief that recycling eliminates the environmental impacts of bottled water. Important barriers to drinking tap water at Purdue include: perceived risks from tap water and the perceived safety of bottled water, preferring the taste of bottled water, and the convenience of drinking bottled water. The qualitative interviews revealed that drinking water choices can be influenced by several factors—especially whether individuals trust tap water to be clean—but involve varying levels of complexity. The implications of these results for social marketing strategies to promote tap water are discussed.

  5. What's wrong with the tap? Examining perceptions of tap water and bottled water at Purdue University.

    PubMed

    Saylor, Amber; Prokopy, Linda Stalker; Amberg, Shannon

    2011-09-01

    The environmental impacts of bottled water prompted us to explore drinking water choices at Purdue University, located in West Lafayette, IN. A random sample of 2,045 Purdue University students, staff, and faculty was invited to participate in an online survey. The survey assessed current behaviors as well as perceived barriers and benefits to drinking tap water versus bottled water. 677 surveys were completed for a response rate of 33.1%. We then conducted qualitative interviews with a purposive sample of university undergraduates (n = 21) to obtain contextual insights into the survey results and the beliefs of individuals with a variety of drinking water preferences. This study revealed that women drink disproportionately more bottled water then men while undergraduate students drink more than graduate students, staff and faculty. The study also uncovered a widespread belief that recycling eliminates the environmental impacts of bottled water. Important barriers to drinking tap water at Purdue include: perceived risks from tap water and the perceived safety of bottled water, preferring the taste of bottled water, and the convenience of drinking bottled water. The qualitative interviews revealed that drinking water choices can be influenced by several factors-especially whether individuals trust tap water to be clean-but involve varying levels of complexity. The implications of these results for social marketing strategies to promote tap water are discussed.

  6. Drinking of tap water is smart, but how do it better? - A tap water quality research

    NASA Astrophysics Data System (ADS)

    Mika, Anna; Sekuła, Klaudia; Dendys, Marta; Ptaszek, Weronika; Postawa, Adam

    2018-02-01

    Drinking tap water has recently become popular. It is a way to fight with the tons of garbage (disposable, plastic bottles). However, many people are afraid of water quality. The research was performed in December 2015 in Krakow, during one week. 56 samples were collected. The samples were taken in different times of the day and in the two types of building (old one with installation from the 80s and new one with installation built in past few years). Samples were taken by two qualified operators. The first sample was collected at the morning at 6 a.m., before anyone uses the tap. The second one after the tap was flushed and then the third one after 30 minutes stagnation. At the evening was taken one sample (after using the tap all day).The aim of the research was to check the quality of drinking water in the end-user. The results show that quality of tap water in Krakow is good, also in the end-user, but the concentration of chemical elements are changing during the flushing and using of the tap.

  7. Tap water isotope ratios reflect urban water system structure and dynamics across a semiarid metropolitan area

    NASA Astrophysics Data System (ADS)

    Jameel, Yusuf; Brewer, Simon; Good, Stephen P.; Tipple, Brett J.; Ehleringer, James R.; Bowen, Gabriel J.

    2016-08-01

    Water extraction for anthropogenic use has become a major flux in the hydrological cycle. With increasing demand for water and challenges supplying it in the face of climate change, there is a pressing need to better understand connections between human populations, climate, water extraction, water use, and its impacts. To understand these connections, we collected and analyzed stable isotopic ratios of more than 800 urban tap water samples in a series of semiannual water surveys (spring and fall, 2013-2015) across the Salt Lake Valley (SLV) of northern Utah. Consistent with previous work, we found that mean tap water had a lower 2H and 18O concentration than local precipitation, highlighting the importance of nearby montane winter precipitation as source water for the region. However, we observed strong and structured spatiotemporal variation in tap water isotopic compositions across the region which we attribute to complex distribution systems, varying water management practices and multiple sources used across the valley. Water from different sources was not used uniformly throughout the area and we identified significant correlation between water source and demographic parameters including population and income. Isotopic mass balance indicated significant interannual and intra-annual variability in water losses within the distribution network due to evaporation from surface water resources supplying the SLV. Our results demonstrate the effectiveness of isotopes as an indicator of water management strategies and climate impacts within regional urban water systems, with potential utility for monitoring, regulation, forensic, and a range of water resource research.

  8. Comparison of the Mineral Content of Tap Water and Bottled Waters

    PubMed Central

    Azoulay, Arik; Garzon, Philippe; Eisenberg, Mark J

    2001-01-01

    OBJECTIVES Because of growing concern that constituents of drinking water may have adverse health effects, consumption of tap water in North America has decreased and consumption of bottled water has increased. Our objectives were to 1) determine whether North American tap water contains clinically important levels of calcium (Ca2+), magnesium (Mg2+), and sodium (Na+) and 2) determine whether differences in mineral content of tap water and commercially available bottled waters are clinically important. DESIGN We obtained mineral analysis reports from municipal water authorities of 21 major North American cities. Mineral content of tap water was compared with published data regarding commercially available bottled waters and with dietary reference intakes (DRIs). MEASUREMENTS AND MAIN RESULTS Mineral levels varied among tap water sources in North America and among bottled waters. European bottled waters generally contained higher mineral levels than North American tap water sources and North American bottled waters. For half of the tap water sources we examined, adults may fulfill between 8% and 16% of their Ca2+ DRI and between 6% and 31% of their Mg2+ DRI by drinking 2 liters per day. One liter of most moderate mineralization European bottled waters contained between 20% and 58% of the Ca2+ DRI and between 16% and 41% of the Mg2+ DRI in adults. High mineralization bottled waters often contained up to half of the maximum recommended daily intake of Na+. CONCLUSION Drinking water sources available to North Americans may contain high levels of Ca2+, Mg2+, and Na+ and may provide clinically important portions of the recommended dietary intake of these minerals. Physicians should encourage patients to check the mineral content of their drinking water, whether tap or bottled, and choose water most appropriate for their needs. PMID:11318912

  9. Tapping rocks for Terror Lake hydro project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sieber, O.V.

    The Terror Lake hydro project in Alaska is described. Terror Lake is a small alpine lake surrounded by barren glacier-scoured, rocky mountain tops and plateaus that do not retain moisture. The method for obtaining more water for the hydro project in Kodiak is unique. The basic program was to dam up the outlet of Terror Lake and raise the water level 170 ft. from approximately 1250 ft. above sea level to 1420 ft. Although the megawatt output of the project is small, the concept of the Terror Lake Project has an epic scale to it.

  10. Water use and time analysis in ablution from taps

    NASA Astrophysics Data System (ADS)

    Zaied, Roubi A.

    2017-09-01

    There is a lack of water resources and an extreme use of potable water in our Arab region. Ablution from taps was studied since it is a repeated daily activity that consumes more water. Five different tap types are investigated for water consumption fashions including traditional mixing tap and automatic tap. Analyzing 100 experimental observations revealed that 22.7-28.8 % of ablution water is used for washing of feet and the largest water waste occurs during washing of face portions. Moreover, 30-47 % amount of water consumed in ablution from taps is wasted which can be saved if tap releases water only at moments of need. The push-type tap is being spread recently especially in airports. If it is intended for use in ablution facilities, batch duration and volume must be tuned. When each batch is 0.25 L of water and lasts for 3 s, 3 L are sufficient for one complete ablution in average which means considerable saving. A cost-benefit model is proposed for using different tap types and an economic feasibility study is performed on a case study. This analysis can help us to design better ablution systems.

  11. Microbiological tap water profile of a medium-sized building and effect of water stagnation.

    PubMed

    Lipphaus, Patrick; Hammes, Frederik; Kötzsch, Stefan; Green, James; Gillespie, Simon; Nocker, Andreas

    2014-01-01

    Whereas microbiological quality of drinking water in water distribution systems is routinely monitored for reasons of legal compliance, microbial numbers in tap water are grossly understudied. Motivated by gross differences in water from private households, we applied in this study flow cytometry as a rapid analytical method to quantify microbial concentrations in water sampled at diverse taps in a medium size research building receiving chlorinated water. Taps differed considerably in frequency of usage and were located in laboratories, bathrooms, and a coffee kitchen. Substantial differences were observed between taps with concentrations (per mL) in the range from 6.29 x 10(3) to 7.74 x 10(5) for total cells and from 1.66 x 10(3) to 4.31 x 10(5) for intact cells. The percentage of intact cells varied between 7% and 96%. Water from taps with very infrequent use showed the highest bacterial numbers and the highest proportions of intact cells. Stagnation tended to increase microbial numbers in water from those taps which were otherwise frequently used. Microbial numbers in other taps that were rarely opened were not affected by stagnation as their water is probably mostly stagnant. For cold water taps, microbial numbers and the percentage of intact cells tended to decline with flushing with the greatest decline for taps used least frequently whereas microbial concentrations in water from hot water taps tended to be somewhat more stable. We conclude that microbiological water quality is mainly determined by building-specific parameters. Tap water profiling can provide valuable insight into plumbing system hygiene and maintenance.

  12. Evaluation on the Quality of Bangkok Tap Water with Other Drinking Purpose Water

    NASA Astrophysics Data System (ADS)

    Kordach, A.; Chardwattananon, C.; Wongin, K.; Chayaput, B.; Wongpat, N.

    2018-02-01

    The concern of drinking purposed water quality in Bangkok, Nonthaburi, and Samutprakarn provinces has been a problem for over fifteen years. Metropolitan Water Works Authority (MWA) of Thailand is fully responsible for providing water supply to the mentioned areas. The objective of Drinkable Tap Water Project is to make people realize in quality of tap water. Communities, school, government agencies, hotels, hospitals, department stores, and other organizations are participating in this project. MWA have collected at least 3 samples of water from the corresponding places and the samples have to meet the World Health Organization (WHO) guidelines level. This study is to evaluate water quality of tap water, storage water, filtered water, and filtered water dispenser. The water samples from 2,354 attending places are collected and analyzed. From October 2011 to September 2016, MWA analyzed 32,711 samples. The analyzed water parameters are free residual chlorine, appearance color, turbidity, pH, conductivity, total dissolved solids (TDS), and pathogenic bacteria; E.coli. The results indicated that a number of tap water samples had the highest number compliance with WHO guidelines levels at 98.40%. The filtered water, filtered water dispenser, and storage water were received 96.71%, 95.63%, and 90.88%, respectively. However, the several samples fail to pass WHO guideline level because they were contaminated by E.coli. The result is that tap water has the highest score among other sources probably because tap water has chlorine for disinfection and always is monitored by professional team round-the-clock services compared to the other water sources with less maintenance or cleaning. Also, water quality reports are continuously sent to customers by mail addresses. Tap water quality data are shown on MWA websites and Facebook. All these steps of work should enhance the confidence of tap water quality.

  13. Bottled Water Mania: Americas Misguided Infatuation with Bottled Water over Tap Water

    DTIC Science & Technology

    2010-05-01

    AU/ACSC/BROWN, S/AY10 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY Bottled Water Mania: America’s Misguided...Infatuation with Bottled Water over Tap Water by Seiho P. Brown, LCDR, U.S. Navy A Research Report Submitted to the Faculty In...iii Abstract The purpose of this paper is to analyze the tendency for American people to drink bottled water over tap water even though it costs

  14. Bacteriological quality of bottled drinking water versus municipal tap water in Dharan municipality, Nepal.

    PubMed

    Pant, Narayan Dutt; Poudyal, Nimesh; Bhattacharya, Shyamal Kumar

    2016-06-07

    Water-related diseases are of great concern in developing countries like Nepal. Every year, there are countless morbidity and mortality due to the consumption of unsafe drinking water. Recently, there have been increased uses of bottled drinking water in an assumption that the bottled water is safer than the tap water and its use will help to protect from water-related diseases. So, the main objective of this study was to analyze the bacteriological quality of bottled drinking water and that of municipal tap water. A total of 100 samples (76 tap water and 24 bottled water) were analyzed for bacteriological quality and pH. The methods used were spread plate method for total plate count (TPC) and membrane filter method for total coliform count (TCC), fecal coliform count (FCC), and fecal streptococcal count (FSC). pH meter was used for measuring pH. One hundred percent of the tap water samples and 87.5 % of the bottled water samples were found to be contaminated with heterotrophic bacteria. Of the tap water samples, 55.3 % were positive for total coliforms, compared with 25 % of the bottled water. No bottled water samples were positive for fecal coliforms and fecal streptococci, in contrast to 21.1 % and 14.5 % of the tap water samples being contaminated with fecal coliforms and fecal streptococci, respectively. One hundred percent of the tap water samples and 54.2 % of the bottled water samples had pH in the acceptable range. All of the municipal tap water samples and most of the bottled drinking water samples distributed in Dharan municipality were found to be contaminated with one or more than one type of indicator organisms. On the basis of our findings, we may conclude that comparatively, the bottled drinking water may have been safer (than tap water) to drink.

  15. Fluoride and bacterial content of bottled drinking water versus municipal tap water.

    PubMed

    Mythri, H; Chandu, G N; Prashant, G M; Subba Reddy, V V

    2010-01-01

    Water is a divine gift. People quench their thirst without questioning the source of water. But, apprehension about contaminants in municipal water supplies along with increased fear of fluorosis made bottled drinking water as one of the important tradable commodities. The objectives of the study were to determine and compare the fluoride and bacterial contents of commercially available bottled drinking water and municipal tap water in Davangere city, Karnataka. Fifty samples of 10 categories of bottled drinking water with different batch numbers were purchased and municipal water from different sources were collected. Fluoride levels were determined by an ion-selective electrode. Water was cultured quantitatively and levels of bacteria were calculated as colony-forming units (CFUs) per milliliter. Descriptive analysis of water samples for fluoride concentration was in the range of 0.07-0.33 for bottled drinking water, Bisleri showing the highest of 0.33. A comparison of the mean values of microbial count for bottled drinking water with that of municipal tap water showed no statistically significant difference, but was more than the standard levels along with the presence of fungus and maggots. The fluoride concentration was below the optimal level for both municipal tap water and bottled drinking water. CFUs were more than the recommended level in both municipal tap water and bottled drinking water.

  16. Divergence of stable isotopes in tap water across China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Sihan; Hu, Hongchang; Tian, Fuqiang

    Stable isotopes in water (e.g., δ2H and δ18O) are important indicators of hydrological and ecological patterns and processes. Tap water can reflect integrated features of regional hydrological processes and human activities. China is a large country with significant meteorological and geographical variations. This report presents the first national-scale survey of Stable Isotopes in Tap Water (SITW) across China. 780 tap water samples have been collected from 95 cities across China from December 2014 to December 2015. (1) Results yielded the Tap Water Line in China is δ2H = 7.72 δ18O + 6.57 (r2 = 0.95). (2) SITW spatial distribution presentsmore » typical "continental effect". (3) SITW seasonal variations indicate clearly regional patterns but no trends at the national level. (4) SITW can be correlated in some parts with geographic or meteorological factors. This work presents the first SITW map in China, which sets up a benchmark for further stable isotopes research across China. This is a critical step toward monitoring and investigating water resources in climate-sensitive regions, so the human-hydrological system. These findings could be used in the future to establish water management strategies at a national or regional scale. Title: Divergence of stable isotopes in tap water across China Authors: Zhao, SH; Hu, HC; Tian, FQ; Tie, Q; Wang, LX; Liu, YL; Shi, CX Source: SCIENTIFIC REPORTS, 7 10.1038/srep43653 MAR 2 2017« less

  17. Quality comparison of tap water vs. bottled water in the industrial city of Yanbu (Saudi Arabia).

    PubMed

    Ahmad, Maqbool; Bajahlan, Ahmad S

    2009-12-01

    This study was conducted to compare the quality of bottled water with potabilized desalinated tap water. Fourteen brands of local and imported bottled water samples were collected from the local market and analyzed for physicochemical parameters in the Royal Commission Environmental Laboratory. Results were compared with 5-year continuous monitoring data of tap water from different locations in Madinat Yanbu Al-Sinaiyah (MYAS) including storage tanks of desalination plant. Results show that there was no significant difference in the quality of tap water and bottled water. Bacteriological test was never found positive in the 5-year data in tap water. Similarly, physicochemical analysis shows the persistent quality of tap water. Based on hardness analysis, bottled and tap water are categorized as soft water. Trihalomethanes (THMs) study also indicates that traces of disinfection by products (DBPs) are present in both tap and bottled water and are much less than the World Health Organization and Environmental Protection Agency maximum permissible limits. It is also important to note that the tap water distribution network in MAYS is a high-pressure recirculation network and there is no chance to grow bacteria in stagnant water in pipe lines or houses. Recently, the Royal Commission has replaced the whole drinking water network, which was made of asbestos-cemented pipes with glass-reinforced plastic (GRP) pipes, to avoid any asbestos contaminations. Based on these results, it is concluded that drinking water distributed in the city is of very good and persistent quality, comparable with bottled water. Continuous monitoring also guarantees the safe drinking water to the community. Hence, it is the responsibility of the Royal Commission to encourage the peoples in the city to drink tap water as it is as good as bottled water even better than some of the brands and is monitored regularly. It is also much cheaper compared to bottled water and is available round the clock

  18. Acanthamoeba keratitis: the role of domestic tap water contamination in the United Kingdom.

    PubMed

    Kilvington, Simon; Gray, Trevor; Dart, John; Morlet, Nigel; Beeching, John R; Frazer, David G; Matheson, Melville

    2004-01-01

    The incidence of acanthamoeba keratitis (AK) in the UK is some 15 times that in the United States and seven times that in Holland. To investigate reasons for this higher frequency, a study of the role of domestic tap water as a potential source of AK was undertaken. Tap outlets from the homes of 27 patients with culture-proven AK were sampled and cultured for free-living amoebae (FLA). For all Acanthamoeba isolates, mitochondrial DNA (mtDNA) restriction fragment length polymorphisms (RFLPs) and cytochrome oxidase (cox 1/2) sequence typing was performed to determine the similarity between corneal and tap water isolates. FLA, including Acanthamoeba, were isolated from 24 (89%) of 27 homes, and the presence within the homes varied significantly with tap water temperature and location: 19 (76%) of 25 bathroom sink cold taps sampled compared with 6 (24%) of 25 hot and 9 (47%) of 19 kitchen cold taps compared with 3 (16%) of 19 of hot kitchen taps. Acanthamoeba were isolated from 8 (30%) of 27 homes (five bathroom sink cold taps, one cloakroom cold tap, one bath, and one bedroom sink mixer [hot/cold] taps). In six cases, identical Acanthamoeba mtDNA profiles were found for the clinical and home tap water isolates. In keeping with UK plumbing practice, 24 of 27 homes had internal roof water storage tanks to supply domestic taps, but the mains fed the kitchen cold tap. Water storage tanks promote colonization of domestic water with FLA, including Acanthamoeba, and hence increase the risk of AK. This accounts for the significantly greater incidence of AK in the UK and supports advice to avoid using tap water in contact lens care routines.

  19. Bottled, filtered, and tap water use in Latino and non-Latino children.

    PubMed

    Hobson, Wendy L; Knochel, Miguel L; Byington, Carrie L; Young, Paul C; Hoff, Charles J; Buchi, Karen F

    2007-05-01

    To describe bottled, filtered, and tap water consumption and fluoride use among pediatric patients; to analyze differences between ethnic and socioeconomic groups; and to describe the frequency of physician-parent discussions regarding water consumption. Convenience sample survey. An urban public health clinic. Parents attending a public health clinic. The primary outcome measure was the prevalence of tap, filtered, and bottled water use. The secondary outcome measures were supplemental fluoride use and the percentage of patients reporting discussions of water consumption with their physician. A total of 216 parents (80.5% Latino and 19.5% non-Latino) completed the survey. Of the parents, 30.1% never drank tap water and 41.2% never gave it to their children. Latino parents were less likely than non-Latino parents to drink tap water (odds ratio, 0.26; 95% confidence interval, 0.10-0.67) and less likely to give tap water to their children (odds ratio, 0.32; 95% confidence interval, 0.15-0.70). More Latinos believed that tap water would make them sick (odds ratio, 5.63; 95% confidence interval, 2.17-14.54). Approximately 40% of children who never drank tap water were not receiving fluoride supplements. Of the lowest-income families (water to their children. Of the parents surveyed, 82.5% reported that their child's physician had never discussed the type of water they should use. Many Latino families avoid drinking tap water because they fear it causes illness. Unnecessary use of bottled and filtered water is costly and may result in adverse dental health outcomes. Physicians should provide guidance to families regarding the safety, low cost, and dental health benefits of drinking tap water.

  20. Neural Tube Defects In Mice Exposed To Tap Water

    PubMed Central

    Mallela, Murali K; Werre, Stephen R; Hrubec, Terry C

    2010-01-01

    In May of 2006 we suddenly began to observe neural tube defects (NTDs) in embryos of untreated control mice. We hypothesized the mice were being exposed unknowingly to a teratogenic agent and investigated the cause. Our results suggested that NTDs were not resulting from bedding material, feed, strain or source of the mice. Additionally, mice were negative for routine and comprehensive screens of pathogens. To further test whether the NTDs resulted from infectious or genetic cause localized to our facility, we obtained three strains of timed pregnant mice from commercial suppliers located in 4 different states. All strains and sources of mice arrived in our laboratory with NTDs, implying that commercially available mice were possibly exposed to a teratogen prior to purchase. Our investigation eventually concluded that exposure to tap water was causing the NTDs. The incidence of NTDs was greatest in purchased mice provided tap water and lowest in purchased mice provided distilled deionized water (DDI). Providing mice DDI water for two generations (F2-DDI) eliminated the NTDs. When F2-DDI mice were provided tap water from three different urban areas prior to breeding, their offspring again developed NTDs. Increased length of exposure to tap water significantly increased the incidence of NTDs. These results indicate that a contaminant in municipal tap water is likely causing NTDs in mice. The unknown teratogen appears to have a wide geographic distribution but has not yet been identified. Water analysis is currently underway to identify candidate contaminants that might be responsible for the malformations. PMID:20549630

  1. Risk perceptions of arsenic in tap water and consumption of bottled water

    NASA Astrophysics Data System (ADS)

    Jakus, Paul M.; Shaw, W. Douglass; Nguyen, To N.; Walker, Mark

    2009-05-01

    The demand for bottled water has increased rapidly over the past decade, but bottled water is extremely costly compared to tap water. The convenience of bottled water surely matters to consumers, but are others factors at work? This manuscript examines whether purchases of bottled water are associated with the perceived risk of tap water. All of the past studies on bottled water consumption have used simple scale measures of perceived risk that do not correspond to risk measures used by risk analysts. We elicit a probability-based measure of risk and find that as perceived risks rise, expenditures for bottled water rise.

  2. Stable isotope ratios of tap water in the contiguous United States

    NASA Astrophysics Data System (ADS)

    Bowen, Gabriel J.; Ehleringer, James R.; Chesson, Lesley A.; Stange, Erik; Cerling, Thure E.

    2007-03-01

    Understanding links between water consumers and climatological (precipitation) sources is essential for developing strategies to ensure the long-term sustainability of water supplies. In pursing this understanding a need exists for tools to study and monitor complex human-hydrological systems that involve high levels of spatial connectivity and supply problems that are regional, rather than local, in nature. Here we report the first national-level survey of stable isotope ratios in tap water, including spatially and temporally explicit samples from a large number of cities and towns across the contiguous United States. We show that intra-annual ranges of tap water isotope ratios are relatively small (e.g., <10‰ for δ2H) at most sites. In contrast, spatial variation in tap water isotope ratios is very large, spanning ranges of 163‰ for δ2H and 23.6‰ for δ18O. The spatial distribution of tap water isotope ratios at the national level is similar to that of stable isotope ratios of precipitation. At the regional level, however, pervasive differences between tap water and precipitation isotope ratios can be attributed to hydrological factors in the water source to consumer chain. These patterns highlight the potential for monitoring of tap water isotope ratios to contribute to the study of regional water supply stability and provide warning signals for impending water resource changes. We present the first published maps of predicted tap water isotope ratios for the contiguous United States, which will be useful in guiding future research on human-hydrological systems and as a tool for applied forensics and traceability studies.

  3. Disparity in disinfection byproducts concentration between hot and cold tap water.

    PubMed

    Liu, Boning; Reckhow, David A

    2015-03-01

    The quality of water entering a distribution system may differ substantially from the quality at the point of exposure to the consumer. This study investigated temporal variations in the levels of regulated and non-regulated disinfection byproducts (DBPs) in cold and hot tap water in a home on a medium-sized municipal water system. In addition, samples were collected directly from the water plant with some being held in accordance with a simulated distribution system (SDS) test protocol. The location for this work was a system in western Massachusetts, USA that uses free chlorine as a final disinfectant. Very little short term variability of DBPs at the point of entry (POE) was observed. The concentration of DBPs in the time-variable SDS test was similar to concentrations in the cold water tap. For most DBPs, the concentrations continued to increase as the cold water tap sample was held for the time-variable SDS incubation period. However, the impact of heating on DBP levels was compound specific. For example, the concentrations of trihalomethanes (THMs), dichloroacetic acid (DCAA) and chloropicrin (CP) were substantially higher in the hot water tap than in the cold water time-variable SDS samples. In contrast, the concentration of trichloroacetic acid (TCAA) was lower in the heated hot tap water, but about equal to that observed in the cold tap water. The situation was more pronounced for dichloroacetonitrile (DCAN), bromodichloroacetic acid (BDCAA), bromochloroacetic acid (BCAA) and 1,1,1-trichloropropanone (TCP), which all showed lower concentrations in the hot water then in either of the cold water samples (instantaneous or time-variable SDS). The latter was viewed as a clear indication of thermally-induced decomposition. The ratio of unknown total organic halide (UTOX) to TOX was substantially lower in the hot tap water as the THM to TOX ratio became correspondingly larger. The results of this study show that DBP exposure in the home is not well represented by

  4. Perceptions of tap water and school water fountains and association with intake of plain water and sugar-sweetened beverages.

    PubMed

    Onufrak, Stephen J; Park, Sohyun; Sharkey, Joseph R; Merlo, Caitlin; Dean, Wesley R; Sherry, Bettylou

    2014-03-01

    Little is known regarding youth perceptions of tap water and school water fountains and how these relate to water and sugar-sweetened beverage (SSB) intake. We used national 2010 YouthStyles data to assess perceptions of tap water and school water fountains and associations with water and SSB intake. Nearly 1 in 5 participants disagreed their tap water was safe and nearly 2 in 5 disagreed school water fountains were clean and safe. Perceived tap water risk was more prevalent among non-Hispanic (NH) Blacks (26.4%) and Hispanics (28.3%) compared with NH Whites (14.7%, p < .001) and more prevalent among lower-income youth. Negative water fountain perceptions were more common among high school-aged youth. Perceived tap water risk was not associated with SSB intake (odds ratio [OR] = 1.0, 95% confidence interval [CI]: 0.6, 1.5) or water intake (OR = 1.4, 95% CI: 0.9, 2.1). Negative water fountain perceptions were associated with SSB intake only among Hispanics (race/ethnicity interaction p < .001; OR = 2.9, 95% CI: 1.3, 6.6) but were not associated with water intake. Negative perceptions of tap water and water fountains among youth are common and should be considered in efforts to provide water in schools. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  5. Sociodemographic Characteristics and Beverage Intake of Children Who Drink Tap Water

    PubMed Central

    Patel, Anisha I.; Shapiro, Daniel J.; Wang, Y. Claire; Cabana, Michael D.

    2015-01-01

    Background Tap water provides a calorie-free, no-cost, environmentally friendly beverage option, yet only some youth drink it. Purpose To examine sociodemographic characteristics, weight status, and beverage intake of those aged 1–19 years who drink tap water. Methods National Health and Nutrition Examination Survey data (2005–2010) were used to examine factors associated with tap water consumption. A comparison was made of beverage intake among tap water consumers and nonconsumers, by age, race/ethnicity, and income. Results Tap water consumption was more prevalent among school-aged children (OR=1.85, 95% CI=1.47, 2.33, for those aged 6–11 years; OR=1.85, 95% CI=1.32, 2.59, for those aged 12–19 years) as compared to those aged 1–2 years. Tap water intake was less prevalent among girls/women (OR=0.76, 95% CI=0.64, 0.89); Mexican Americans (OR=0.32, 95% CI=0.23, 0.45); non-Hispanic blacks (OR=0.48, 95% CI=0.34, 0.67); and others (OR=0.50, 95% CI=0.36, 0.68) as compared to whites; Spanish speakers (OR=0.72, 95% CI=0.55, 0.95); and among referents with a lower than Grade-9 education (OR=0.52, 95% CI=0.31, 0.88); Grade 9–11 education (OR=0.50, 95% CI=0.32, 0.77); and high school/General Educational Development test completion (OR=0.50, 95% CI=0.33, 0.76), as compared to college graduates. Tap water consumers drank more fluid (52.5 vs 48.0 ounces, p<0.01); more plain water (20.1 vs 15.2 ounces, p<0.01); and less juice (3.6 vs 5.2 ounces, p<0.01) than nonconsumers. Conclusions One in six children/adolescents does not drink tap water, and this finding is more pronounced among minorities. Sociodemographic disparities in tap water consumption may contribute to disparities in health outcomes. Improvements in drinking water infrastructure and culturally relevant promotion may help to address these issues. PMID:23790991

  6. Analysis of iodide and iodate in Lake Mead, Nevada using a headspace derivatization gas chromatography-mass spectrometry.

    PubMed

    Dorman, James W; Steinberg, Spencer M

    2010-02-01

    We report here a derivatization headspace method for the analysis of inorganic iodine in water. Samples from Lake Mead, the Las Vegas Wash, and from Las Vegas tap water were examined. Lake Mead and the Las Vegas Wash contained a mixture of both iodide and iodate. The average concentration of total inorganic iodine (TII) for Lake Mead was approximately 90 nM with an iodide-to-iodate ratio of approximately 1. The TII concentration (approximately 160 nM) and the ratio of iodide to iodate were higher for the Las Vegas Wash (approximately 2). The TII concentration for tap water was close to that of Lake Mead (approximately 90 nM); however, tap water contained no detectable iodide as a result of ozonation and chlorine treatment which converts all of the iodide to iodate.

  7. The First Association of a Primary Amebic Meningoencephalitis Death with Culturable Naegleria fowleri in Tap Water from a U.S. Treated Public Drinking Water System

    PubMed Central

    Cope, Jennifer R.; Ratard, Raoult C.; Hill, Vincent R.; Sokol, Theresa; Causey, Jonathan Jake; Yoder, Jonathan S.; Mirani, Gayatri; Mull, Bonnie; Mukerjee, Kimberly A.; Narayanan, Jothikumar; Doucet, Meggie; Qvarnstrom, Yvonne; Poole, Charla N.; Akingbola, Olugbenga A.; Ritter, Jana; Xiong, Zhenggang; da Silva, Alexandre; Roellig, Dawn; Van Dyke, Russell; Stern, Harlan; Xiao, Lihua; Beach, Michael J.

    2015-01-01

    Background Naegleria fowleri is a climate-sensitive, thermophilic ameba found in warm, freshwater lakes and rivers. Primary amebic meningoencephalitis (PAM), which is almost universally fatal, occurs when N. fowleri–containing water enters the nose, typically during swimming, and N. fowleri migrates to the brain via the olfactory nerve. In August 2013, a 4-year-old child died of meningoencephalitis of unknown etiology in a Louisiana hospital. Methods Clinical and environmental testing and a case investigation were initiated to determine the cause of death and to identify potential exposures. Results Based on testing of CSF and brain specimens, the child was diagnosed with PAM. His only reported water exposure was tap water; in particular, tap water that was used to supply water to a lawn water slide on which the child had played extensively prior to becoming ill. Water samples were collected from both the home and the water distribution system that supplied the home and tested; N. fowleri were identified in water samples from both the home and the water distribution system. Conclusions This case is the first reported PAM death associated with culturable N. fowleri in tap water from a U.S. treated drinking water system. This case occurred in the context of an expanding geographic range for PAM beyond southern tier states with recent case reports from Minnesota, Kansas, and Indiana. This case also highlights the role of adequate disinfection throughout drinking water distribution systems and the importance of maintaining vigilance when operating drinking water systems using source waters with elevated temperatures. PMID:25595746

  8. Analysis of UV filters in tap water and other clean waters in Spain.

    PubMed

    Díaz-Cruz, M Silvia; Gago-Ferrero, Pablo; Llorca, Marta; Barceló, Damià

    2012-03-01

    The present paper describes the development of a method for the simultaneous determination of five hormonally active UV filters namely benzophenone-3 (BP3), 3-(4-methylbenzylidene) camphor (4MBC), 2-ethylhexyl 4-(dimethylamino) benzoate (OD-PABA), 2-ethylhexyl 4-methoxycinnamate (EHMC) and octocrylene (OC) by means of solid-phase extraction and gas chromatography-electron impact ionization-mass spectrometry. Under optimized conditions, this methodology achieved low method limits of detection (needed for clean waters, especially drinking water analysis), between 0.02 and 8.42 ng/L, and quantitative recovery rates higher than 73% in all cases. Inter- and intraday precision for all compounds were lower than 7% and 11%, respectively. The optimized methodology was applied to perform the first survey of UV absorbing compounds in tap water from the metropolitan area and the city of Barcelona (Catalonia, Spain). In addition, other types of clean water matrices (mineral bottled water, well water and tap water treated with an ion-exchange resin) were investigated as well. Results evidenced that all the UV filters investigated were detected in the water samples analyzed. The compounds most frequently found were EHMC and OC. Maximum concentrations reached in tap water were 290 (BP3), 35 (4MBC), 110 (OD-PABA), 260 (EHMC), and 170 ng/L (OC). This study constitutes the first evidence of the presence of UV filter residues in tap water in Europe.

  9. The mineral content of tap water in United States households

    USDA-ARS?s Scientific Manuscript database

    The composition of tap water contributes to dietary intake of minerals. The USDA’s Nutrient Data Laboratory (NDL) conducted a study of the mineral content of residential tap water, to generate current data for the USDA National Nutrient Database. Sodium, potassium, calcium, magnesium, iron, copper...

  10. Oropharyngeal Tularemia Outbreak Associated with Drinking Contaminated Tap Water, Turkey, July-September 2013.

    PubMed

    Aktas, Dilber; Celebi, Bekir; Isik, Mehmet Emirhan; Tutus, Celal; Ozturk, Huseyin; Temel, Fehminaz; Kizilaslan, Mecit; Zhu, Bao-Ping

    2015-12-01

    In 2013, an oropharyngeal tularemia outbreak in Turkey affected 55 persons. Drinking tap water during the likely exposure period was significantly associated with illness (attack rate 27% vs. 11% among non-tap water drinkers). Findings showed the tap water source had been contaminated by surface water, and the chlorination device malfunctioned.

  11. Perceptions of Tap Water and School Water Fountains among Youth and Association with Intake of Plain Water and Sugar-Sweetened Beverages

    PubMed Central

    Onufrak, Stephen J; Park, Sohyun; Sharkey, Joseph R; Merlo, Caitlin; Dean, Wesley R.; Sherry, Bettylou

    2015-01-01

    BACKGROUND Little is known regarding youth perceptions of tap water and school water fountains and how these relate to water and sugar-sweetened beverage (SSB) intake. METHODS We used national 2010 YouthStyles data to assess perceptions of tap water and school water fountains and associations with water and SSB intake. RESULTS Nearly 1 in 5 participants disagreed their tap water was safe and nearly 2 in 5 disagreed school water fountains were clean and safe. Perceived tap water risk was more prevalent among non-Hispanic (NH) blacks (26.4%) and Hispanics (28.3%) compared to NH whites (14.7%, p < .001) and more prevalent among lower income youth. Negative water fountain perceptions were more common among high school age youth. Perceived tap water risk was not associated with SSB intake (odds ratio (OR) = 1.0, 95% CI: 0.6, 1.5) or water intake (OR = 1.4, 95% CI: 0.9, 2.1). Negative water fountain perceptions were associated with SSB intake only among Hispanics (race/ethnicity interaction p < .001; OR = 2.9, 95% CI: 1.3, 6.6) but were not associated with water intake. CONCLUSION Negative perceptions of tap water and water fountains among youth are common and should be considered in efforts to provide water in schools. PMID:24443781

  12. Water-Quality and Lake-Stage Data for Wisconsin Lakes, Water Year 2006

    USGS Publications Warehouse

    Rose, W.J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, Dale M.

    2007-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2006 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2005 through September 30, 2006 is called 'water year 2006.' The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: 'Water Resources Data-Wisconsin, 2006.' Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available through the World Wide Web on the Internet. The Wisconsin Water Science Center's home page is at http://wi.water.usgs.gov/. Information on the

  13. Laboratory measurements of physical, chemical, and optical characteristics of Lake Chicot sediment waters

    NASA Technical Reports Server (NTRS)

    Witte, W. G.; Whitlock, C. H.; Usry, J. W.; Morris, W. D.; Gurganus, E. A.

    1981-01-01

    Reflectance, chromaticity, diffuse attenuation, beam attenuation, and several other physical and chemical properties were measured for various water mixtures of lake bottom sediment. Mixture concentrations range from 5 ppm to 700 ppm by weight of total suspended solids in filtered deionized tap water. Upwelled reflectance is a nonlinear function of remote sensing wave lengths. Near-infrared wavelengths are useful for monitoring highly turbid waters with sediment concentrations above 100 ppm. It is found that both visible and near infrared wavelengths, beam attenuation correlates well with total suspended solids ranging over two orders of magnitude.

  14. The first association of a primary amebic meningoencephalitis death with culturable Naegleria fowleri in tap water from a US treated public drinking water system.

    PubMed

    Cope, Jennifer R; Ratard, Raoult C; Hill, Vincent R; Sokol, Theresa; Causey, Jonathan Jake; Yoder, Jonathan S; Mirani, Gayatri; Mull, Bonnie; Mukerjee, Kimberly A; Narayanan, Jothikumar; Doucet, Meggie; Qvarnstrom, Yvonne; Poole, Charla N; Akingbola, Olugbenga A; Ritter, Jana M; Xiong, Zhenggang; da Silva, Alexandre J; Roellig, Dawn; Van Dyke, Russell B; Stern, Harlan; Xiao, Lihua; Beach, Michael J

    2015-04-15

    Naegleria fowleri is a climate-sensitive, thermophilic ameba found in warm, freshwater lakes and rivers. Primary amebic meningoencephalitis (PAM), which is almost universally fatal, occurs when N. fowleri-containing water enters the nose, typically during swimming, and migrates to the brain via the olfactory nerve. In August 2013, a 4-year-old boy died of meningoencephalitis of unknown etiology in a Louisiana hospital. Clinical and environmental testing and a case investigation were initiated to determine the cause of death and to identify potential exposures. Based on testing of cerebrospinal fluid and brain specimens, the child was diagnosed with PAM. His only reported water exposure was tap water; in particular, tap water that was used to supply water to a lawn water slide on which the child had played extensively prior to becoming ill. Water samples were collected from both the home and the water distribution system that supplied the home and tested; N. fowleri was identified in water samples from both the home and the water distribution system. This case is the first reported PAM death associated with culturable N. fowleri in tap water from a US treated drinking water system. This case occurred in the context of an expanding geographic range for PAM beyond southern states, with recent case reports from Minnesota, Kansas, and Indiana. This case also highlights the role of adequate disinfection throughout drinking water distribution systems and the importance of maintaining vigilance when operating drinking water systems using source waters with elevated temperatures. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. The Relationship of Perceptions of Tap Water Safety with Intake of Sugar Sweetened Beverages and Plain Water among U.S. Adults

    PubMed Central

    Onufrak, Stephen J; Park, Sohyun; Sharkey, Joseph R; Sherry, Bettylou

    2015-01-01

    Objective Research is limited on whether mistrust of tap water discourages plain water intake and leads to greater intake of sugar-sweetened beverages (SSB). The objective of this study is to examine demographic differences in perceptions of tap water safety and determine if these perceptions are associated with intake of SSB and plain water Design The study examined perceptions of tap water safety and their cross-sectional association with intake of SSB and plain water. Racial/ethnic differences in the associations of tap water perceptions with SSB and plain water intake were also examined. Setting Nationally weighted data from 2010 HealthStyles Survey (n=4184) Subjects United States adults ≥18 years Results Overall, 13.0% of participants disagreed that their local tap water was safe to drink and 26.4% of participants agreed that bottled water was safer than tap water. Both mistrust of tap water safety and favoring bottled water differed by region, age, race/ethnicity, income, and education. The associations of tap water mistrust on intake of SSB and plain water were modified by race/ethnicity (p<0.05). Non-white racial/ethnic groups who disagreed that their local tap water was safe to drink were more likely to report low intake of plain water. The odds of consuming ≥1 SSB/day among Hispanics who mistrusted their local tap water was twice that of Hispanics who did not (OR = 2.0; 95% CI: 1.2, 3.3). Conclusions Public health efforts to promote healthy beverages should recognize the potential impact of tap water perceptions on water and SSB intake among minority populations. PMID:23098620

  16. Perceptions of Tap Water and School Water Fountains and Association with Intake of Plain Water and Sugar-Sweetened Beverages

    ERIC Educational Resources Information Center

    Onufrak, Stephen J.; Park, Sohyun; Sharkey, Joseph R.; Merlo, Caitlin; Dean, Wesley R.; Sherry, Bettylou

    2014-01-01

    Background: Little is known regarding youth perceptions of tap water and school water fountains and how these relate to water and sugar-sweetened beverage (SSB) intake. Methods: We used national 2010 YouthStyles data to assess perceptions of tap water and school water fountains and associations with water and SSB intake. Results: Nearly 1 in 5…

  17. Water-Quality and Lake-Stage Data for Wisconsin Lakes, Water Year 2007

    USGS Publications Warehouse

    Wisconsin Water Science Center Lake-Studies Team: Rose, W. J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, Dale M.

    2008-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2007 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2005 through September 30, 2007 is called 'water year 2007.' The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake?s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: 'Water Resources Data-Wisconsin, 2007.'

  18. Demographic factors associated with perceptions about water safety and tap water consumption among adults in Santa Clara County, California, 2011.

    PubMed

    van Erp, Brianna; Webber, Whitney L; Stoddard, Pamela; Shah, Roshni; Martin, Lori; Broderick, Bonnie; Induni, Marta

    2014-06-12

    The objective of this study was to examine differences in tap water consumption and perceptions of bottle versus tap water safety for Hispanics and non-Hispanic whites, as well as associations with other demographic characteristics. Data are from the Santa Clara County, California, Dietary Practices Survey (2011; N = 306). We used logistic regression to examine associations between demographic characteristics and 1) perceptions that bottled water is safer than tap and 2) primarily consuming tap water. Hispanics were less likely than non-Hispanic whites to primarily drink tap water (OR = 0.33; 95% CI, 0.11-0.99), although there was no significant difference in perceptions that bottled water is safer between these groups (OR = 0.50; 95% CI, 0.11-2.27). Hispanics may be an important population for interventions promoting tap water consumption.

  19. Major inorganic elements in tap water samples in Peninsular Malaysia.

    PubMed

    Azrina, A; Khoo, H E; Idris, M A; Amin, I; Razman, M R

    2011-08-01

    Quality drinking water should be free from harmful levels of impurities such as heavy metals and other inorganic elements. Samples of tap water collected from 24 locations in Peninsular Malaysia were determined for inorganic element content. Minerals and heavy metals were analysed by spectroscopy methods, while non-metal elements were analysed using test kits. Minerals and heavy metals determined were sodium, magnesium, potassium, calcium, chromium, manganese, iron, nickel, copper, zinc, arsenic, cadmium and lead while the non-metal elements were fluoride, chloride, nitrate and sulphate. Most of the inorganic elements found in the samples were below the maximum permitted levels recommended by inter-national drinking water standard limits, except for iron and manganese. Iron concentration of tap water from one of the locations was higher than the standard limit. In general, tap water from different parts of Peninsular Malaysia had low concentrations of heavy metals and inorganic elements.

  20. Water-quality and lake-stage data for Wisconsin lakes, water year 2014

    USGS Publications Warehouse

    Manteufel, S. Bridgett; Robertson, Dale M.

    2017-05-25

    IntroductionThe U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a database for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2014 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the periodOctober 1, 2013, through September 30, 2014, is called “water year 2014.”The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus, and chlorophyll a concentrations collected during nonfrozen periods are included for many lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes the location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published online at http://nwis.waterdata.usgs.gov/wi/nwis.Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available online. The Wisconsin Water Science Center’s home page is at https://www.usgs.gov/centers/wisconsin-water-science-center. Information

  1. The occurrence of antibiotic resistance genes in tap water - a review

    NASA Astrophysics Data System (ADS)

    Siedlecka, Agata

    2018-02-01

    The study presents a review of the occurrence of genetic determinants of antibiotic resistance in tap water. The aim of this study was also to compare the applied methods for antibiotic resistance genes (ARGs) investigations in tap water. As the concentration of ARGs in treated, drinking water is expected to be very low and may cause problems in a standard isolation procedure, the special emphasis is placed on the applied procedures of DNA extraction and their efficiency. The study presents the first attempts to obtain DNA directly from tap water. Further efforts must be put to determine the final amount of obtained DNA and the presence of chosen ARGs among the molecules.

  2. Observation of Isotope Ratios (δ2H, δ18O, 87Sr/86Sr) of Tap Water in Urban Environments

    NASA Astrophysics Data System (ADS)

    Mancuso, C. J.; Tipple, B. J.; Ehleringer, J. R.

    2014-12-01

    Urban environments are centers for rapidly growing populations. In order to meet the culinary water needs of these areas, municipal water departments use water from multiple locations and/or sources, often piped differentially to different locations within a municipality. This practice creates isotopically distinct locations within an urban area and therefore provides insight to urban water management practices. In our study we selected urban locations in the Salt Lake Valley, UT (SLV) and San Francisco Bay Area, CA (SFB) where we hypothesized geographically distinct water isotopic ratio differences existed. Within the SLV, municipal waters come from the same mountainous region, but are derived from different geologically distinct watersheds. In contrast, SFB waters are derived from regionally distinct water sources. We hypothesized that the isotope ratios of tap waters would differ based upon known municipal sources. To test this, tap water samples were collected throughout the urban regions in SLV and SFB and analyzed for δ2H, δ18O and 87Sr/86Sr isotope ratios. Seasonal collections were also made to assess if isotope ratios differed throughout the year. Within SLV and SFB, different regions were characterized by distinct paired δ18O and 87Sr/86Sr values. These different realms also agreed with known differences in municipal water supplies within the general geographic region. Waters from different cities within Marin County showed isotopic differences, consistent with water derived from different local reservoirs. Seasonal variation was observed in paired δ18O and 87Sr/86Sr values of tap water for some locations within SLV and SFB, indicating management decisions to shift from one water source to another depending on demand and available resources. Our study revealed that the δ18O and 87Sr/86Sr values of tap waters in an urban region can exhibit significant differences despite close spatial proximity if districts differ in their use of local versus

  3. [Study on chlorinated disinfection byproducts and the relevant health risk in tap water of J City].

    PubMed

    Li, Xiao-ling; Liu, Rui; Lan, Ya-qiong; Yu, Su-lin; Wen, Xiao-gang; Chen, Liu-jun; Zhang, Yong-ming

    2013-09-01

    J City lies in the downstream of Taihu Lake and its water source was micro-polluted by the well-developed industry and agriculture inside the city and in the upper stream. Tap water of J City is characterized as high concentrations of organics and ammonia nitrogen, and chlorinated disinfection byproducts (CDBPs), which has drawn many public concerns for the health risk. Tap water was sampled in May, August, October of 2012 and January of 2013. Four trihalomethanes (THMs) and five haloacetic acids (HAAs) were determined with the gas chromatography. Results revealed that THMs accounted for 88.1% of the sum of THMs and HAAs, with higher concentrations in May, August and January (39.34, 50.37 and 28.02 microg x L(-1), respectively) while obviously lower in October (19.19 microg x L(-1)), which were significantly higher than that of HAAs (2.58-4.02 microg x L(-1)). After boiled for three minutes, THMs were removed over 92.3% but HAAs were largely increased. The health risk of CDBPs was then calculated based on the health risk assessment model recommended by the USEPA. The health risk caused by carcinogenic CDBPs was within a range of 3.1 x 10(-6) - 7. 3 x 10(-6) in the tap water, all over the recommended level of 1 x 10(-6), but after boiled, the value significantly decreased to 7.9 x 10(-7), which is below the recommended level. The health risk caused by non-carcinogenic CDBPs absolutely increased from 2.1 x 10(-11) to 3.4 x 10(-9) after boiled, which is below the reference value of 10(-5).

  4. Mineral water or tap water? An endless debate.

    PubMed

    De Giglio, O; Quaranta, A; Lovero, G; Caggiano, G; Montagna, M T

    2015-01-01

    The consumption of mineral water has been increasing because of the frequent and unjustified reports of the water supply contamination. However some authors have shown that bottled waters are not always better than tap water. Mineral waters are more palatable for organoleptic characteristic because, being pure at source, they do not undergo disinfection treatments and are sometimes enriched with CO2. In fact, they are characterized by their microbial facies subject to changes during the production cycle which can contribute to their contamination. It is necessary to provide people with the tools necessary to operate a critical choice of the type of water to be consumed not exclusively for their organoleptic characteristics or marketing strategies.

  5. Risk characterization of methyl tertiary butyl ether (MTBE) in tap water.

    PubMed

    Stern, B R; Tardiff, R G

    1997-12-01

    Methyl tertiary butyl ether (MTBE) can enter surface water and groundwater through wet atmospheric deposition or as a result of fuel leaks and spills. About 30% of the U.S. population lives in areas where MTBE is in regular use. Ninety-five percent of this population is unlikely to be exposed to MTBE in tap water at concentrations exceeding 2 ppb, and most will be exposed to concentrations that are much lower and may be zero. About 5% of this population may be exposed to higher levels of MTBE in tap water, resulting from fuel tank leaks and spills into surface or groundwater used for potable water supplies. This paper describes the concentration ranges found and anticipated in surface and groundwater, and estimates the distribution of doses experienced by humans using water containing MTBE to drink, prepare food, and shower/bathe. The toxic properties (including potency) of MTBE when ingested, inhaled, and in contact with the skin are summarized. Using a range of human toxic potency values derived from animal studies, margins of exposure (MOE) associated with alternative chronic exposure scenarios are estimated to range from 1700 to 140,000. Maximum concentrations of MTBE in tap water anticipated not to cause adverse health effects are determined to range from 700 to 14,000 ppb. The results of this analysis demonstrate that no health risks are likely to be associated with chronic and subchronic human exposures to MTBE in tap water. Although some individuals may be exposed to very high concentrations of MTBE in tap water immediately following a localized spill, these exposures are likely to be brief in duration due to large-scale dilution and rapid volatilization of MTBE, the institution of emergency response and remediation measures to minimize human exposures, and the low taste and odor thresholds of MTBE which ensure that its presence in tap water is readily detected at concentrations well below the threshold for human injury.

  6. Predicting consumer preferences for mineral composition of bottled and tap water.

    PubMed

    Platikanov, Stefan; Hernández, Alejandra; González, Susana; Luis Cortina, Jose; Tauler, Roma; Devesa, Ricard

    2017-01-01

    The overall liking for taste of water was correlated with the mineral composition of selected bottled and tap waters. Sixty-nine untrained volunteers assessed and rated twenty-five different commercial bottled and tap waters from. Water samples were physicochemical characterised by analysing conductivity, pH, total dissolved solids (TDS) and major anions and cations: HCO 3 - , SO 4 2- , Cl - , NO 3 - , Ca 2+ , Mg 2+ , Na + , and K + . Residual chlorine levels were also analysed in the tap water samples. Globally, volunteers preferred waters rich in calcium bicarbonate and sulfate, rather than in sodium chloride. This study also demonstrated that it was possible to accurately predict the overall liking by a Partial Least Squares regression using either all measured physicochemical parameters or a reduced number of them. These results were in agreement with previously published results using trained panellists. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Water and bed-sediment quality in the vicinity of Berlin Lake, Ohio, 2001

    USGS Publications Warehouse

    Darner, Robert A.

    2002-01-01

    Berlin Lake, in northeast Ohio, was created by the U.S. Army Corps of Engineers in 1943 and is used primarily for flood control for the upper reaches of the Mahoning River. The area surrounding and under the lake has been tapped for oil and natural gas production. One of the by-products of oil and gas production is concentrated salt water or brine, which might have an effect on the chemical quality of area potable-water sources. This report presents the results of a U.S. Geological Survey baseline study to collect current (2001) water and sediment-quality data and to characterize water quality in the Berlin Lake watershed. Chloride-to-bromide ratios were used to detect the presence of brine in water samples and to indicate possible adverse effects on water quality. Analyses of ground-water samples from domestic wells in the area indicate a source of chloride and bromide, but defining the source would require more data collection. Analyses of specific conductance and dissolved solids indicate that 78 percent (14 of 18) of the ground-water samples exceeded the Secondary Maximum Contaminant Level for dissolved solids in public water supplies of 500 milligrams per liter (mg/L), compared to 6 percent of samples exceeding 500 mg/L in two nearby studies. Surface water was analyzed twice, once each during low-flow and surface runoff conditions. A comparison of the 2001 data to historical chloride concentrations, accounting for seasonal changes, does not indicate an increase in chloride loads for surface water in the area of Berlin Lake. Polycyclic aromatic hydrocarbons were found in bed-sediment samples collected from the mouths of major tributaries to Berlin Lake. Polycyclic aromatic hydrocarbons are produced during the incomplete combustion of organic carbon materials such as wood and fossil fuels, and they are components of petroleum products.

  8. Genotoxicity and cytotoxicity assessment in lake drinking water produced in a treatment plant.

    PubMed

    Buschini, Annamaria; Carboni, Pamela; Frigerio, Silvia; Furlini, Mariangela; Marabini, Laura; Monarca, Silvano; Poli, Paola; Radice, Sonia; Rossi, Carlo

    2004-09-01

    Chemical analyses and short-term mutagenicity bioassays have revealed the presence of genotoxic disinfection by-products in drinking water. In this study, the influence of the different steps of surface water treatment on drinking water mutagen content was evaluated. Four different samples were collected at a full-scale treatment plant: raw lake water (A), water after pre-disinfection with chlorine dioxide and coagulation (B), water after pre-disinfection, coagulation and granular activated carbon filtration (C) and tap water after post-disinfection with chlorine dioxide just before its distribution (D). Water samples, concentrated by solid phase adsorption on silica C18 columns, were tested in human leukocytes and HepG2 hepatoma cells using the comet assay and in HepG2 cells in the micronuclei test. A significant increase in DNA migration was observed in both cell types after 1 h treatment with filtered and tap water, and, to a lesser extent, chlorine dioxide pre-disinfected water. Similar findings were observed for the induction of "ghost" cells. Overloading of the carbon filter, with a consequent peak release, might explain the high genotoxicity found in water samples C and D. Cell toxicity and DNA damage increases were also detected in metabolically competent HepG2 cells treated with a lower concentration of tap water extract for a longer exposure time (24 h). None of the water extracts significantly increased micronuclei frequencies. Our monitoring approach appears to be able to detect contamination related to the different treatment stages before drinking water consumption and the results suggest the importance of improving the technologies for drinking water treatment to prevent human exposure to potential genotoxic compounds.

  9. Water-quality and lake-stage data for Wisconsin lakes, water year 1996

    USGS Publications Warehouse

    ,

    1997-01-01

    The purpose of this report is to provide information about the physical and chemical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected includes measurements of lake stage and in-lake water quality. Graphs of Secchi depths, surface totalphosphorus and chlorophyll-a concentrations versus time are included for lakes with two or more years of data. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, drainage area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: "Water Resources Data-Wisconsin, 1996."

  10. Water quality of Lake Austin and Town Lake, Austin, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, F.L.; Wells, F.C.; Shelby, W.J.

    1988-01-01

    Lake Austin and Town Lake are impoundments on the Colorado River in Travis County, central Texas, and are a source of water for municipal industrial water supplies, electrical-power generation, and recreation for more than 500,000 people in the Austin metropolitan area. Small vertical temperature variations in both lakes were attributed to shallow depths in the lakes and short retention times of water in the lakes during the summer months. The largest areal variations in dissolved oxygen generally occur in Lake Austin during the summer as a result of releases of water from below the thermocline in Lake Travis. Except formore » iron, manganese, and mercury, dissolved concentrations of trace elements in water collected from Lake Austin and Town Lake did not exceed the primary or secondary drinking water standards set by the US Environmental Protection Agency. Little or no effect of stormwater runoff on temperature, dissolved oxygen, or minor elements could be detected in either Lake Austin or Town Lake. Little seasonal or areal variation was noted in nitrogen concentrations in Lake Austin or Town lake. Total phosphorus concentrations generally were small in both lakes. Increased concentrations of nitrogen and phosphorus were detected after storm runoff inflow in Town Lake, but not in Lake Austin; densities of fecal-coliform bacteria increased in Lake Austin and Town Lake, but were substantially greater in Town Lake than in Lake Austin. 18 refs., 38 figs., 59 tabs.« less

  11. Factors associated with drinking and being satisfied with tap water in Indigenous communities in Saskatchewan, Canada

    PubMed Central

    Bharadwaj, Lalita; Waldner, Cheryl L.

    2018-01-01

    ABSTRACT Previous studies have described concerns regarding tap water in Indigenous communities, yet there is little information on participants who report drinking their tap water and being satisfied with its quality. This study undertaken with members of 8 Indigenous communities in Saskatchewan, Canada, and identified factors associated with both the decision to drink tap water at home and being satisfied with its quality. We examined the importance of factors such as individual attributes, experiences, attitudes, household and community-based variables. Less than one-quarter of participants (23.4%) drank tap water and were satisfied with its quality. Individuals who did not boil tap water (odds ratio [OR] = 5.76, 95% confidence interval [CI] = 1.68–19.8), those who did not experience tap water odour (OR = 2.38, 95% CI = 1.26–4.50) and participants living in communities away from urban centres (OR = 2.74, 95% CI = 1.63–4.51) were more likely to drink and be satisfied with their tap water. Concerns about the environment had the most impact on community members aged 55+ years. Those not reporting concerns about environmental problems affecting water (OR = 11.4, 95% CI = 3.10–42.2) were much more likely to drink and be satisfied with their tap water. Programmes to improve water quality, reduce the need for boil water advisories and increase community confidence in the environment could improve tap water satisfaction and consumption. PMID:29697009

  12. Influence of Household Water Filters on Bacteria Growth and Trace Metals in Tap Water of Doha, Qatar.

    PubMed

    Nriagu, Jerome; Xi, Chuanwu; Siddique, Azhar; Vincent, Annette; Shomar, Basem

    2018-05-29

    Deteriorating water quality from aging infrastructure, growing threat of pollution from industrialization and urbanization, and increasing awareness about waterborne diseases are among the factors driving the surge in worldwide use of point-of-entry (POE) and point-of-use (POU) filters. Any adverse influence of such consumer point-of-use systems on quality of water at the tap remains poorly understood, however. We determined the chemical and microbiological changes in municipal water from the point of entry into the household plumbing system until it leaves from the tap in houses equipped with filters. We show that POE/POU devices can induce significant deterioration of the quality of tap water by functioning as traps and reservoirs for sludge, scale, rust, algae or slime deposits which promote microbial growth and biofilm formation in the household water distribution system. With changes in water pressure and physical or chemical disturbance of the plumbing system, the microorganisms and contaminants may be flushed into the tap water. Such changes in quality of household water carry a potential health risk which calls for some introspection in widespread deployment of POE/POU filters in water distribution systems.

  13. Water-quality and lake-stage data for Wisconsin lakes, water years 2012–2013

    USGS Publications Warehouse

    Manteufel, S. Bridgett; Robertson, Dale M.

    2017-05-25

    IntroductionThe U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2012 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2011 through September 30, 2012, is called “water year 2012.”The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published online at http://nwis.waterdata.usgs.gov/wi/nwis.Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available online. The Wisconsin Water Science Center’s home page is at https://www.usgs.gov/centers/wisconsin-water-science-center. Information on

  14. Longitudinal and Source-to-Tap New Orleans, LA, U.S.A. Drinking Water Microbiology.

    PubMed

    Hull, Natalie M; Holinger, Eric P; Ross, Kimberly A; Robertson, Charles E; Harris, J Kirk; Stevens, Mark J; Pace, Norman R

    2017-04-18

    The two municipal drinking water systems of New Orleans, LA, U.S.A. were sampled to compare the microbiology of independent systems that treat the same surface water from the Mississippi River. To better understand temporal trends and sources of microbiology delivered to taps, these treatment plants and distribution systems were subjected to source-to-tap sampling over four years. Both plants employ traditional treatment by chloramination, applied during or after settling, followed by filtration before distribution in a warm, low water age system. Longitudinal samples indicated microbiology to have stability both spatially and temporally, and between treatment plants and distribution systems. Disinfection had the greatest impact on microbial composition, which was further refined by filtration and influenced by distribution and premise plumbing. Actinobacteria spp. exhibited trends with treatment. In particular, Mycobacterium spp., very low in finished waters, occurred idiosyncratically at high levels in some tap waters, indicating distribution and/or premise plumbing as main contributors of mycobacteria. Legionella spp., another genus containing potential opportunistic pathogens, also occurred ubiquitously. Source water microbiology was most divergent from tap water, and each step of treatment brought samples more closely similar to tap waters.

  15. Investigation of formaldehyde pollution of tap water and rain water using a novel visual colorimetry.

    PubMed

    Murai, K; Okano, M; Kuramitz, H; Hata, N; Kawakami, T; Taguchi, S

    2008-01-01

    The pollution of tap water and rain water with formaldehyde in Toyama Pref., Japan was investigated by means of a simple, rapid and cost-effective visual colorimetry developed by us. The levels of formaldehyde in three tap waters from different sources of dams on mountainside and a well-water pumped in urban area in Toyama Pref. were lower than 0.01 mg L(-1) that was the detection limit of the colorimetry. On the other hand, rain waters were seriously polluted with formaldehyde. Rain waters were sampled from three different sites (urban area, top of hill and industrial area) in Toyama Pref. from autumn to winter in 2006. The levels of formaldehyde in the rain waters ranged from 0.07 to 0.30 mg L(-1). The analytical results by the visual colorimetry were in good agreement with those obtained by GC-MS method. It was confirmed that the colorimetry is excellent for practical use for the determination of formaldehyde. It must be concerned about the pollution of rainwater with formaldehyde, when rain water is applied for tap water and miscellaneous purpose. Copyright IWA Publishing 2008.

  16. Lake-level variability and water availability in the Great Lakes

    USGS Publications Warehouse

    Wilcox, Douglas A.; Thompson, Todd A.; Booth, Robert K.; Nicholas, J.R.

    2007-01-01

    In this report, we present recorded and reconstructed (pre-historical) changes in water levels in the Great Lakes, relate them to climate changes of the past, and highlight major water-availability implications for storage, coastal ecosystems, and human activities. 'Water availability,' as conceptualized herein, includes a recognition that water must be available for human and natural uses, but the balancing of how much should be set aside for which use is not discussed. The Great Lakes Basin covers a large area of North America. The lakes capture and store great volumes of water that are critical in maintaining human activities and natural ecosystems. Water enters the lakes mostly in the form of precipitation and streamflow. Although flow through the connecting channels is a primary output from the lakes, evaporation is also a major output. Water levels in the lakes vary naturally on timescales that range from hours to millennia; storage of water in the lakes changes at the seasonal to millennial scales in response to lake-level changes. Short-term changes result from storm surges and seiches and do not affect storage. Seasonal changes are driven by differences in net basin supply during the year related to snowmelt, precipitation, and evaporation. Annual to millennial changes are driven by subtle to major climatic changes affecting both precipitation (and resulting streamflow) and evaporation. Rebounding of the Earth's surface in response to loss of the weight of melted glaciers has differentially affected water levels. Rebound rates have not been uniform across the basin, causing the hydrologic outlet of each lake to rise in elevation more rapidly than some parts of the coastlines. The result is a long-term change in lake level with respect to shoreline features that differs from site to site. The reconstructed water-level history of Lake Michigan-Huron over the past 4,700 years shows three major high phases from 2,300 to 3,300, 1,100 to 2,000, and 0 to 800

  17. A level change in mutagenicity of Japanese tap water over the past 12 yr.

    PubMed

    Takanashi, Hirokazu; Kishida, Misako; Nakajima, Tsunenori; Ohki, Akira; Akiba, Michihiro

    2011-05-01

    A relative comparison study of mutagenicity in Japanese tap water was conducted for 1993 and 2005 surveys. It intended to assess the effects of advanced water treatment installations to water works, improvement of raw water quality and improvement of residual HOCl concentration controlling. Sampling points (taps) were the same in both surveys. The results of 245 samples obtained by the Ames Salmonella mutagenicity test (Ames test) were analyzed. The Ames tests were conducted by using Salmonella typhimurium TA98 and TA100 strains with and without exogenous activation (S9). With the exception of TA100-S9, the other conditions needed no discussion as a factor in the mutagenicity level change. The average mutagenicity in 1993 and 2005 under the conditions of TA100-S9 were 2600 and 1100 net revertantL(-1), respectively. This indicated that the mutagenicity level of Japanese tap water decreased during the 12-yr period. Particularly a remarkable decrease in mutagenicity was observed in the water works where the advanced water treatments were installed during the 12-yr period. The advanced water treatments were effective in decreasing the mutagenicity of tap water. Mutagenicity also decreased in the water works with conventional water treatments; the improvement of residual HOCl concentration controlling was also considered to be effective in decreasing the mutagenicity of tap water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Water-quality and lake-stage data for Wisconsin lakes, water years 2008−2011

    USGS Publications Warehouse

    Manteufel, S. Bridgett; Olson, Daniel L.; Robertson, Dale M.; Goddard, Gerald L.

    2016-09-30

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series.The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes during water years 2008–2011. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2007 through September 30, 2008 is called "water year 2008." Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are presented in this report for water years from 2008–2011. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are available via the "USGS Annual Water Data Report" Web site: http://wdr.water.usgs.gov/.

  19. Estimation of lake water - groundwater interactions in meromictic mining lakes by modelling isotope signatures of lake water.

    PubMed

    Seebach, Anne; Dietz, Severine; Lessmann, Dieter; Knoeller, Kay

    2008-03-01

    A method is presented to assess lake water-groundwater interactions by modelling isotope signatures of lake water using meteorological parameters and field data. The modelling of delta(18)O and deltaD variations offers information about the groundwater influx into a meromictic Lusatian mining lake. Therefore, a water balance model is combined with an isotope water balance model to estimate analogies between simulated and measured isotope signatures within the lake water body. The model is operated with different evaporation rates to predict delta(18)O and deltaD values in a lake that is only controlled by weather conditions with neither groundwater inflow nor outflow. Comparisons between modelled and measured isotope values show whether the lake is fed by the groundwater or not. Furthermore, our investigations show that an adaptation of the Craig and Gordon model [H. Craig, L.I. Gordon. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, E. Tongiorgi (Ed.), pp. 9-130, Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa (1965).] to specific conditions in temperate regions seems necessary.

  20. Water-quality and lake-stage data for Wisconsin lakes, water year 2005

    USGS Publications Warehouse

    Rose, W.J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, Dale M.

    2006-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. The purpose of this report is to provide information about the chemical and physical charac-teristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measure-ments of in-lake water quality and lake stage. Time series graphs of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive infor-mation for each lake includes: location of the lake, area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks.

  1. Microprocessor controlled anodic stripping voltameter for trace metals analysis in tap water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clem, R.G.; Park, F.W.; Kirsten, F.A.

    1981-04-01

    The construction and use of a portable, microprocessor controlled anodic stripping voltameter for on-site simultaneous metal analysis of copper, lead and cadmium in tap water is discussed. The instrumental system is comprised of a programmable controller which permits keying in analytical parameters such as sparge time and plating time; a rotating cell for efficient oxygen removal and amalgam formation; and, a magnetic tape which can be used for data storage. Analysis time can be as short as 10 to 15 minutes. The stripping analysis is based on a pre-measurement step during which the metals from a water sample are concentratedmore » into a thin mercury film by deposition from an acetate solution of pH 4.5. The concentrated metals are then electrochemically dissolved from the film by application of a linearly increasing anodic potential. Typical peak-shaped curves are obtained. The heights of these curves are related to the concentration of metals in the water by calibration data. Results of tap water analysis showed 3 +- 1 ..mu..g/L lead, 22 +- 0.3 ..mu..g/L copper, and less than 0.2 ..mu..g/L cadmium for a Berkeley, California tap water, and 1 to 1000 ..mu..g/L Cu, 1 to 2 ..mu..g/L Pb for ten samples of Seattle, Washington tap water. Recommendations are given for a next generation instrument system.« less

  2. Water-quality and lake stage data for Wisconsin lakes, water year 2000

    USGS Publications Warehouse

    ,

    2001-01-01

    Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available throught the World Wide Web on the Internet. The Wisconsin District's home page is at http://wi.water.usgs.gov/. Information on the Wisconsin District's Lakes Program is found atwi.water.usgs.gov/lake/index.html.

  3. Water-quality and lake-stage data for Wisconsin Lakes, water year 2003

    USGS Publications Warehouse

    Rose, W.J.; Garn, H.S.; Goddard, G.L.; Olson, D.L.; Robertson, Dale M.

    2004-01-01

    Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available throught the World Wide Web on the Internet. The Wisconsin District's home page is at http://wi.water.usgs.gov/. Information on the Wisconsin District's Lakes Program is found at wi.water.usgs.gov/lake/index.html and wi.water.usgs.gov/projects/ index.html.

  4. Relationship between the incidence infection stones and the magnesium-calcium ratio of tap water.

    PubMed

    Kohri, K; Ishikawa, Y; Iguchi, M; Kurita, T; Okada, Y; Yoshida, O

    1993-01-01

    In a previous study we showed that the magnesium-calcium ratio of tap water is negatively correlated with the incidence of calcium-containing urinary stones. In this study we examined the relationship between the incidence of struvite stones, water hardness and the regional geological features on the basis of our previous study and an epidemiological study of urolithiasis performed in Japan. The magnesium-calcium ratio of tap water was found to correlate positively with the incidence of struvite stones. The tap water magnesium-calcium ratio was high in regions of basalt and sedimentary rock and was low in granite and limestone areas. The incidence of struvite stones in the regions of basalt and sedimentary rock was higher than that in the granite and limestone areas. Thus, this study suggested that the incidence of struvite stones is related to the magnesium-calcium ratio of tap water and to the regional geology, as is the case for calcium-containing stones.

  5. Water-quality and lake-stage data for Wisconsin lakes, water year 1999

    USGS Publications Warehouse

    Olson, D.L.; Elder, J.F.; Garn, H.S.; Goddard, G.L.; Mergener, E.A.; Robertson, Dale M.; Rose, W.J.

    2000-01-01

    Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available throught the World Wide Web on the Internet. The Wisconsin District's home page is at http://wi.water.usgs.gov/. Information on the Wisconsin District's Lakes Program is found at wi.water.usgs.gov/lake/index.html.

  6. Water-quality and lake-stage data for Wisconsin lakes, water year 2001

    USGS Publications Warehouse

    lead by Rose, W. J.; Elder, J.F.; Garn, H.S.; Goddard, G.L.; Mergener, E.A.; Olson, D.L.; Robertson, Dale M.

    2001-01-01

    Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available throught the World Wide Web on the Internet. The Wisconsin District's home page is at http://wi.water.usgs.gov/. Information on the Wisconsin District's Lakes Program is found at wi.water.usgs.gov/lake/index.html.

  7. Immunoaffinity column as clean-up tool for determination of trace amounts of microcystins in tap water.

    PubMed

    Tsutsumi, T; Nagata, S; Hasegawa, A; Ueno, Y

    2000-07-01

    Trace amounts of microcystins (MCs) in drinking water should be monitored because of their potential hazard for human health as an environmental tumor promoter. We describe here a new clean-up tool with immunoaffinity column (IAC) for determination of trace amounts of MCs (from pg to microg/litre) in tap water. The water samples were concentrated with IAC clean-up and MCs levels were determined by HPLC with UV detection or enzyme-linked immunosorbent assay (ELISA). In the combination with HPLC analysis, mean recovery of microcystin-LR (MCLR),-RR and-YR spiked to tap water were 91.8%, 77.3% and 86.4%, respectively, in the range 2.5-100 microg/litre. The chromatogram of MCs-spiked tap water sample cleaned up with IAC showed effective elimination of the impurities compared to that with octadecyl silanized cartridge, which had been cleaned up with a conventional method. Also, in the combination with highly sensitive ELISA, mean recovery of MCLR spiked to tap water was 80% in the range 0.1-1000 ng/litre. The combined methods developed here can detect pg to microg/litre of MCs in tap water. The overall results indicated that IAC will be suitable as a clean-up tool for trace amounts of MCs in tap water.

  8. Characterization of lake water and ground water movement in the littoral zone of Williams Lake, a closed-basin lake in North central Minnesota

    USGS Publications Warehouse

    Schuster, P.F.; Reddy, M.M.; LaBaugh, J.W.; Parkhurst, R.S.; Rosenberry, D.O.; Winter, T.C.; Antweiler, Ronald C.; Dean, W.E.

    2003-01-01

    Williams Lake, Minnesota is a closed-basin lake that is a flow-through system with respect to ground water. Ground-water input represents half of the annual water input and most of the chemical input to the lake. Chemical budgets indicate that the lake is a sink for calcium, yet surficial sediments contain little calcium carbonate. Sediment pore-water samplers (peepers) were used to characterize solute fluxes at the lake-water-ground-water interface in the littoral zone and resolve the apparent disparity between the chemical budget and sediment data. Pore-water depth profiles of the stable isotopes ??18O and ??2H were non-linear where ground water seeped into the lake, with a sharp transition from lake-water values to ground-water values in the top 10 cm of sediment. These data indicate that advective inflow to the lake is the primary mechanism for solute flux from ground water. Linear interstitial velocities determined from ??2H profiles (316 to 528 cm/yr) were consistent with velocities determined independently from water budget data and sediment porosity (366 cm/yr). Stable isotope profiles were generally linear where water flowed out of the lake into ground water. However, calcium profiles were not linear in the same area and varied in response to input of calcium carbonate from the littoral zone and subsequent dissolution. The comparison of pore-water calcium profiles to pore-water stable isotope profiles indicate calcium is not conservative. Based on the previous understanding that 40-50 % of the calcium in Williams Lake is retained, the pore-water profiles indicate aquatic plants in the littoral zone are recycling the retained portion of calcium. The difference between the pore-water depth profiles of calcium and ??18O and ??2H demonstrate the importance of using stable isotopes to evaluate flow direction and source through the lake-water-ground-water interface and evaluate mechanisms controlling the chemical balance of lakes. Published in 2003 by John Wiley

  9. Concentration of poliovirus from tap water using positively charged microporous filters.

    PubMed Central

    Sobsey, M D; Jones, B L

    1979-01-01

    Microporous filters that are more electropositive than the negatively charged filters currently used for virus concentrations from water by filter adsorption-elution methods were evaluated for poliovirus recovery from tap water. Zeta Plus filters composed of diatomaceous earth-cellulose-"charge-modified" resin mixtures and having a net positive charge of up to pH 5 to 6 efficiently adsorbed poliovirus from tap water at ambient pH levels 7.0 to 7.5 without added multivalent cation salts. The adsorbed virus were eluted with glycine-NaOH, pH 9.5 to 11.5. Electropositive asbestos-cellulose filters efficiently adsorbed poliovirus from tap water without added multivalent cation salts between pH 3.5 and 9.0, and the absorbed viruses could be eluted with 3% beef extract, pH 9, but not with pH 9.5 to 11.5 glycine-NaOH. Under water quality conditions in which poliovirus recoveries from large volumes of water were less than 5% with conventional negatively charged filters and standard methods, recoveries with Zeta Plus filters averaged 64 and 22.5% for one- and two-stage concentration procedures, respectively. Electropositive filters appear to offer distinct advantages over conventional negatively charged filters for concentrating enteric viruses from water, and their behavior tends to confirm the importance of electrostatic forces in virus recovery from water by microporous filter adsorption-elution methods. PMID:36844

  10. Levels of major and trace elements, including rare earth elements, and ²³⁸U in Croatian tap waters.

    PubMed

    Fiket, Željka; Rožmarić, Martina; Krmpotić, Matea; Benedik, Ljudmila

    2015-05-01

    Concentrations of 46 elements, including major, trace, and rare earth elements, and (238)U in Croatian tap waters were investigated. Selected sampling locations include tap waters from various hydrogeological regions, i.e., different types of aquifers, providing insight into the range of concentrations of studied elements and (238)U activity concentrations in Croatian tap waters. Obtained concentrations were compared with the Croatian maximum contaminant levels for trace elements in water intended for human consumption, as well as WHO and EPA drinking water standards. Concentrations in all analyzed tap waters were found in accordance with Croatian regulations, except tap water from Šibenik in which manganese in concentration above maximum permissible concentration (MPC) was measured. Furthermore, in tap water from Osijek, levels of arsenic exceeded the WHO guidelines and EPA regulations. In general, investigated tap waters were found to vary considerably in concentrations of studied elements, including (238)U activity concentrations. Causes of variability were further explored using statistical methods. Composition of studied tap waters was found to be predominately influenced by hydrogeological characteristics of the aquifer, at regional and local level, the existing redox conditions, and the household plumbing system. Rare earth element data, including abundances and fractionation patterns, complemented the characterization and facilitated the interpretation of factors affecting the composition of the analyzed tap waters.

  11. Bacterial community of iron tubercles from a drinking water distribution system and its occurrence in stagnant tap water.

    PubMed

    Chen, Lu; Jia, Rui-Bao; Li, Li

    2013-07-01

    Bacteria in drinking water distribution systems can cause deterioration of the water quality, and the microbial quality of tap water is closely related to consumer health. In the present study, the potential effects of bacteria attached to cast iron pipes on tap water in a distribution system were investigated. Comparison of the bacterial community composition of pipe tubercles with that of stagnant tap water samples based on a denaturing gradient gel electrophoresis analysis of the 16S rRNA gene revealed that the communities were related. Specifically, the main bacterial members were identical to each other. The bacterial community was found to be dominated by Firmicutes, Actinobacteria, and Proteobacteria, which included Rhizobium, Pseudomonas, Lactococcus, Brevundimonas, Rheinheimera, Arthrobacter, Bacillus, and Herbaspirillum. Heterotrophic bacteria proliferation was observed during the period of stagnation, followed by a decrease of assimilable organic carbon and a slight increase of microbially available phosphorus. These findings indicated that the regrowth of bacteria might be boosted by the release of nutrients such as phosphorus from the pipe walls, as well as the decline of residual chlorine during stagnation. Inorganic contaminants at low levels, including Al, Mn, Zn, Pb, Cr, Cu, and Ni, were detected in tubercles and were concentrated in particulates from tap water following the release of iron during stagnation.

  12. Assessing the origin of bacteria in tap water and distribution system in an unchlorinated drinking water system by SourceTracker using microbial community fingerprints.

    PubMed

    Liu, Gang; Zhang, Ya; van der Mark, Ed; Magic-Knezev, Aleksandra; Pinto, Ameet; van den Bogert, Bartholomeus; Liu, Wentso; van der Meer, Walter; Medema, Gertjan

    2018-07-01

    The general consensus is that the abundance of tap water bacteria is greatly influenced by water purification and distribution. Those bacteria that are released from biofilm in the distribution system are especially considered as the major potential risk for drinking water bio-safety. For the first time, this full-scale study has captured and identified the proportional contribution of the source water, treated water, and distribution system in shaping the tap water bacterial community based on their microbial community fingerprints using the Bayesian "SourceTracker" method. The bacterial community profiles and diversity analyses illustrated that the water purification process shaped the community of planktonic and suspended particle-associated bacteria in treated water. The bacterial communities associated with suspended particles, loose deposits, and biofilm were similar to each other, while the community of tap water planktonic bacteria varied across different locations in distribution system. The microbial source tracking results showed that there was not a detectable contribution of source water to bacterial community in the tap water and distribution system. The planktonic bacteria in the treated water was the major contributor to planktonic bacteria in the tap water (17.7-54.1%). The particle-associated bacterial community in the treated water seeded the bacterial community associated with loose deposits (24.9-32.7%) and biofilm (37.8-43.8%) in the distribution system. In return, the loose deposits and biofilm showed a significant influence on tap water planktonic and particle-associated bacteria, which were location dependent and influenced by hydraulic changes. This was revealed by the increased contribution of loose deposits to tap water planktonic bacteria (from 2.5% to 38.0%) and an increased contribution of biofilm to tap water particle-associated bacteria (from 5.9% to 19.7%) caused by possible hydraulic disturbance from proximal to distal regions

  13. Residential tap water contamination following the Freedom Industries chemical spill: perceptions, water quality, and health impacts.

    PubMed

    Whelton, Andrew J; McMillan, LaKia; Connell, Matt; Kelley, Keven M; Gill, Jeff P; White, Kevin D; Gupta, Rahul; Dey, Rajarshi; Novy, Caroline

    2015-01-20

    During January 2014, an industrial solvent contaminated West Virginia’s Elk River and 15% of the state population’s tap water. A rapid in-home survey and water testing was conducted 2 weeks following the spill to understand resident perceptions, tap water chemical levels, and premise plumbing flushing effectiveness. Water odors were detected in all 10 homes sampled before and after premise plumbing flushing. Survey and medical data indicated flushing caused adverse health impacts. Bench-scale experiments and physiochemical property predictions showed flushing promoted chemical volatilization, and contaminants did not appreciably sorb into cross-linked polyethylene (PEX) pipe. Flushing reduced tap water 4-methylcyclohexanemethanol (4-MCHM) concentrations within some but not all homes. 4-MCHM was detected at unflushed (<10 to 420 μg/L) and flushed plumbing systems (<10 to 96 μg/L) and sometimes concentrations differed among faucets within each home. All waters contained less 4-MCHM than the 1000 μg/L Centers for Disease Control drinking water limit, but one home exceeded the 120 μg/L drinking water limit established by independent toxicologists. Nearly all households refused to resume water use activities after flushing because of water safety concerns. Science based flushing protocols should be developed to expedite recovery, minimize health impacts, and reduce concentrations in homes when future events occur.

  14. Stereotypes for lever-tap operation.

    PubMed

    Chan, Alan H S; Tsang, Steve N H; Hoffmann, Errol R

    2016-04-15

    Lever-operated taps have become more popular and are commonly used in operating theatres, food preparation areas and where users have poor strength; however, there is very little data available for user expectations on tap operation. Thus, an experiment on dual lever-operated water tap (faucets) was conducted with the aim of for providing information for improved design. This study aims to compare different lever-tap designs and their stereotypes adopted by the end-user to operate them also to verify the stereotypes for increasing or decreasing the water flow. 240 participants were requested to rotate the lever tap to indicate direction for increasing and decreasing water flow with simulated hardware, using actual taps placed at the top of a simulated washbasin. Nine initial positions of the lever were used for increasing and decreasing flows, ranging from the ends of both levers facing outward from the bowl center to the ends of both levers facing inward. All levers operated in the horizontal plane. Strong stereotypes (greater than 80%) for several initial lever orientations were found for increasing water flow, especially when the initial lever end positions were facing outwards. However, for different initial positions at which participants were told that the water was flowing and the flow was to be decreased, no strong stereotypes existed. The stereotypes for increasing water flow of dual-lever taps were strong, whereas those for decreasing water flow were weak and hence the stereotype reversibility was also weak. In terms of user expectations, lever taps do not show any great advantage over cross-taps in terms of operator expectations for increasing and decreasing water flow.

  15. Evaluation of disinfective potential of reactivated free chlorine in pooled tap water by electrolysis.

    PubMed

    Nakajima, Norihito; Nakano, Takashi; Harada, Fumiue; Taniguchi, Hiromasa; Yokoyama, Isao; Hirose, Jun; Daikoku, Eriko; Sano, Kouichi

    2004-05-01

    Tap water is one of the causative factors of hospital infections. We examined the disinfective potential of electrolysis and mechanism of disinfection, and clarified the disinfective effect of electrolysis on tap water contaminated with bacteria, and discussed its clinical applications. Tap waters artificially contaminated with Pseudomonas aeruginosa, Escherichia coli, Legionella pneumophila, and Staphylococcus aureus could be sterilized by electrolysis at 20-30 mA for 5 min. A high-density suspension (10(6) CFU/ml) of a spore forming bacterium, Bacillus subtilis was not completely sterilized by electrolysis at 50 mA up to 30 min, but a low-density suspension (10(5) CFU/ml) was totally sterilized by electrolysis at 50 mA for 5 min. Electrolyzed P. aeruginosa changed morphologically, that is, there was bleb formation on the cell wall and irregular aggregation of cytoplasmic small granules. Moreover, cytoplasmic enzyme, nitrate reductase, was inactivated by the electrolysis. On the other hand, genomic DNA of the electrolyzed bacteria was not degenerated, therefore, their DNA polymerase activity was not completely inactivated. Consequently, the major agent in electrolysis for bactericidal action was considered to be free chlorine, and the possible bactericidal mechanism was by destruction of bacterial membranes, followed by the aggregation of peripheral cytoplasmic proteins. Electrolysis of tap water for both disinfecting contaminating bacteria and increasing the disinfectant capacity was considered effective with some limitations, particularly against high-density contamination by spore-forming bacteria. In clinical settings, electrolysis of tap water is considered effective to disinfect water for hand washing in operation theatres, and bathing water for immunocompromised hosts.

  16. Detection of Escherichia coli, Salmonella species, and Vibrio cholerae in tap water and bottled drinking water in Isfahan, Iran.

    PubMed

    Momtaz, Hassan; Dehkordi, Farhad Safarpoor; Rahimi, Ebrahim; Asgarifar, Amin

    2013-06-07

    The quality of drinking water has an important role in human infection and disease. This study was aimed at comparing polymerase chain reaction and culture in detecting Escherichia coli, Salmonella species and Vibrio cholera in tape water and bottled drinking water in various seasons in Isfahan province, Iran. A total of 448 water samples from tap water and bottled mineral water were taken over 6 months, from July 2010 to December 2010, and after filtration, samples were examined by culture and polymerase chain reaction methods for detection of Escherichia coli, Salmonella species, and Vibrio cholerae. The culture method showed that 34 (7.58%), 4 (0.89%) and 3 (0.66%) of all 448 water samples were positive for Escherichia coli, Salmonella species, and Vibrio cholera, respectively. The uidA gene from Escherichia coli, IpaB gene from Salmonella species, and epsM gene from Vibrio cholera were detected in 38 (26.38%), 5 (3.47%), and 3 (2.08%) of 144 tap-water samples, respectively. Escherichia coli was detected in 8 (2.63%) of 304 samples of bottled drinking water from 5 companies. The water of southern part of Isfahan and company 5 had the highest prevalence of bacteria. The Escherichia coli water contamination was significantly higher (P < 0.05) in the hot seasons (July-August) than cold (November-December) seasons and in company 5 than other companies. There were significant differences (P < 0.05) for the prevalence of bacteria between the tap waters of southern part and tap waters of central part of Isfahan. This study showed that the polymerase chain reaction assays can be an extremely accurate, fast, safe, sensitive and specific approach to monitor drinking water quality from purification facilities and bottled water companies. Also, our study confirmed the presence of Escherichia coli, Salmonella species, and Vibrio cholerae as water-borne pathogens in tap water and bottled drinking water of Isfahan, Iran. The present study showed the important public health

  17. Detection of Escherichia coli, Salmonella species, and Vibrio cholerae in tap water and bottled drinking water in Isfahan, Iran

    PubMed Central

    2013-01-01

    Background The quality of drinking water has an important role in human infection and disease. This study was aimed at comparing polymerase chain reaction and culture in detecting Escherichia coli, Salmonella species and Vibrio cholera in tape water and bottled drinking water in various seasons in Isfahan province, Iran. Methods A total of 448 water samples from tap water and bottled mineral water were taken over 6 months, from July 2010 to December 2010, and after filtration, samples were examined by culture and polymerase chain reaction methods for detection of Escherichia coli, Salmonella species, and Vibrio cholerae. Results The culture method showed that 34 (7.58%), 4 (0.89%) and 3 (0.66%) of all 448 water samples were positive for Escherichia coli, Salmonella species, and Vibrio cholera, respectively. The uidA gene from Escherichia coli, IpaB gene from Salmonella species, and epsM gene from Vibrio cholera were detected in 38 (26.38%), 5 (3.47%), and 3 (2.08%) of 144 tap-water samples, respectively. Escherichia coli was detected in 8 (2.63%) of 304 samples of bottled drinking water from 5 companies. The water of southern part of Isfahan and company 5 had the highest prevalence of bacteria. The Escherichia coli water contamination was significantly higher (P < 0.05) in the hot seasons (July-August) than cold (November-December) seasons and in company 5 than other companies. There were significant differences (P < 0.05) for the prevalence of bacteria between the tap waters of southern part and tap waters of central part of Isfahan. Conclusions This study showed that the polymerase chain reaction assays can be an extremely accurate, fast, safe, sensitive and specific approach to monitor drinking water quality from purification facilities and bottled water companies. Also, our study confirmed the presence of Escherichia coli, Salmonella species, and Vibrio cholerae as water-borne pathogens in tap water and bottled drinking water of Isfahan, Iran. The

  18. [Volatile organic compounds of the tap water in the Watarase, Tone and Edo River system].

    PubMed

    Ohmichi, Kimihide; Ohmichi, Masayoshi; Machida, Kazuhiko

    2004-01-01

    The chlorination of river water in purification plants is known to produce carcinogens such as trihalomethanes (THMs). We studied the river system of the Watarase, Tone, and Edo Rivers in regard to the formation of THMs. This river system starts from the base of the Ashio copper mine and ends at Tokyo Bay. Along the rivers, there are 14 local municipalities in Gunma, Saitama, Ibaragi and Chiba Prefectures, as well as Tokyo. This area is the center of the Kanto plain and includes the main sources of water pollution from human activities. We also analyzed various chemicals in river water and tap water to clarify the status of the water environment, and we outline the problems of the water environment in the research area (Fig. 1). Water samples were taken from 18 river sites and 42 water faucets at public facilities in 14 local municipalities. We analyzed samples for volatile organic compounds such as THMs, by gas chromatography mass spectrometry (GC-MS), and evaluations of chemical oxygen demand (COD) were made with reference to Japanese drinking water quality standards. Concentrations of THMs in the downstream tap water samples were higher than those in the samples from the upperstream. This tendency was similar to the COD of the river water samples, but no correlation between the concentration of THMs in tap water and the COD in tap water sources was found. In tap water of local government C, trichloroethylene was detected. The current findings suggest that the present water filtration plant procedures are not sufficient to remove some hazardous chemicals from the source water. Moreover, it was confirmed that the water filtration produced THMs. Also, trichloroethylene was detected from the water environment in the research area, suggesting that pollution of the water environment continues.

  19. The Danger of Using Tap Water with Contact Lenses

    EPA Pesticide Factsheets

    Acanthamoeba is a microbe that is very common in tap water. It has two forms: the trophozoite and the cyst. These trophozoites and cysts can stick to the surface of your contact lenses and then infect your eye.

  20. Occurrence and sources of bromate in chlorinated tap drinking water in Metropolitan Manila, Philippines.

    PubMed

    Genuino, Homer C; Espino, Maria Pythias B

    2012-04-01

    Significant levels of potentially carcinogenic bromate were measured in chlorinated tap drinking water in Metropolitan Manila, Philippines, using an optimized ion-chromatographic method. This method can quantify bromate in water down to 4.5 μg l⁻¹ by employing a postcolumn reaction with acidic fuchsin and subsequent spectrophotometric detection. The concentration of bromate in tap drinking water samples collected from 21 locations in cities and municipalities within the 9-month study period ranged from 7 to 138 μg l⁻¹. The average bromate concentration of all tap drinking water samples was 66 μg l⁻¹ (n = 567), almost seven times greater than the current regulatory limit in the country. The levels of bromate in other water types were also determined to identify the sources of bromate found in the distribution lines and to further uncover contaminated sites. The concentration of bromate in water sourced from two rivers and two water treatment plants ranged from 15 to 80 and 12 to 101 μg l⁻¹, respectively. Rainwater did not contribute bromate in rivers but decreased bromate level by dilution. Groundwater and wastewater samples showed bromate concentrations as high as 246 and 342 μg l⁻¹, respectively. Bromate presence in tap drinking water can be linked to pollution in natural water bodies and the practice of using hypochlorite chemicals in addition to gaseous chlorine for water disinfection. This study established the levels, occurrence, and possible sources of bromate in local drinking water supplies.

  1. Simultaneous determination and assessment of 4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles.

    PubMed

    Li, Xu; Ying, Guang-Guo; Su, Hao-Chang; Yang, Xiao-Bing; Wang, Li

    2010-08-01

    This study investigated the levels of 4-nonylphenol (4-NP), bisphenol A (BPA) and triclosan (TCS) in bottled water and tap water in Guangzhou and release of these chemicals from baby bottles using gas chromatography-mass spectrometry with negative chemical ionization. Results show that 4-NP was present in all the bottled water while 17 out of 21 contained BPA and 18 out of 21 contained TCS. Their concentrations in bottled water ranged from 108 to 298 ng/L, 17.6 to 324 ng/L and 0.6 to 9.7 ng/L, respectively. Five of the tap water samples from six drinking water plants were found to contain 4-NP and BPA both in June and December, while TCS was detected in the same five plants only in June. The highest concentrations in tap water for 4-NP, BPA and TCS were 1987, 317 and 14.5ng/L, respectively. Daily intakes of 4-NP, BPA and TCS of adults by drinking 2L of tap water were estimated to be 1410, 148 and 10 ng/day, respectively. BPA was found to be released within 24h from four brands of baby bottles at room temperature (24 degrees C), 40 degrees C and 100 degrees C. Increased temperature led to higher release of BPA from the baby bottles. Estimated daily intakes of 4-NP, BPA and TCS for infants were 705, 1340 and 5 ng/day, respectively, by drinking 1L of tap water from a baby bottle at 40 degrees C. This study showed that the exposure to the three compounds from drinking water is unlikely to pose a health risk. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water.

    PubMed

    Su, Hao-Chang; Liu, You-Sheng; Pan, Chang-Gui; Chen, Jun; He, Liang-Ying; Ying, Guang-Guo

    2018-03-01

    As emerging contaminants, antibiotic resistance genes (ARGs) have become a public concern. This study aimed to investigate the occurrence and diversity of ARGs, and variation in the composition of bacterial communities in source water, drinking water treatment plants, and tap water in the Pearl River Delta region, South China. Various ARGs were present in the different types of water. Among the 27 target ARGs, floR and sul1 dominated in source water from three large rivers in the region. Pearson correlation analysis suggested that sul1, sul2, floR, and cmlA could be potential indicators for ARGs in water samples. The total abundance of the detected ARGs in tap water was much lower than that in source water. Sand filtration and sedimentation in drinking water treatment plants could effectively remove ARGs; in contrast, granular activated carbon filtration increased the abundance of ARGs. It was found that Pseudomonas may be involved in the proliferation and dissemination of ARGs in the studied drinking water treatment system. Bacteria and ARGs were still present in tap water after treatment, though they were significantly reduced. More research is needed to optimize the water treatment process for ARG removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Ground-water quality of the surficial aquifer system and the upper Floridan Aquifer, Ocala National Forest and Lake County, Florida, 1990-99

    USGS Publications Warehouse

    Adamski, J.C.; Knowles, Leel

    2001-01-01

    Data from 217 ground-water samples were statistically analyzed to assess the water quality of the surficial aquifer system and Upper Floridan aquifer in the Ocala National Forest and Lake County, Florida. Samples were collected from 49 wells tapping the surficial aquifer system, 141 wells tapping the Upper Floridan aquifer, and from 27 springs that discharge water from the Upper Floridan aquifer. A total of 136 samples was collected by the U.S. Geological Survey from 1995 through 1999. These data were supplemented with 81 samples collected by the St. Johns River Water Management District and Lake County Water Resources Management from 1990 through 1998. In general, the surficial aquifer system has low concentrations of total dissolved solids (median was 41 milligrams per liter) and major ions. Water quality of the surficial aquifer system, however, is not homogeneous throughout the study area. Concentrations of total dissolved solids, many major ions, and nutrients are greater in samples from Lake County outside the Ocala National Forest than in samples from within the Forest. These results indicate that the surficial aquifer system in Lake County outside the Ocala National Forest probably is being affected by agricultural and (or) urban land-use practices. High concentrations of dissolved oxygen (less than 0.1 to 8.2 milligrams per liter) in the surficial aquifer system underlying the Ocala National Forest indicate that the aquifer is readily recharged by precipitation and is susceptible to surface contamination. Concentrations of total dissolved solids were significantly greater in the Upper Floridan aquifer (median was 182 milligrams per liter) than in the surficial aquifer system. In general, water quality of the Upper Floridan aquifer was homogeneous, primarily being a calcium or calciummagnesium- bicarbonate water type. Near the St. Johns River, the water type of the Upper Floridan aquifer is sodium-chloride, corresponding to an increase in total dissolved

  4. Contribution of tap water to chlorate and perchlorate intake: a market basket study.

    PubMed

    Asami, Mari; Yoshida, Nobue; Kosaka, Koji; Ohno, Koichi; Matsui, Yoshihiko

    2013-10-01

    The contributions of water to total levels of chlorate and perchlorate intake were determined using food and water samples from a market basket study from 10 locations in Japan between 2008 and 2009. Foods were categorized into 13 groups and analyzed along with tap water. The average total chlorate intake was 333 (min. 193-max. 486) μg/day for samples cooked with tap water. The contribution of tap water to total chlorate intake was as high as 47%-58%, although total chlorate intake was less than 32% of the tolerable daily intake, 1500 μg/day for body weight of 50 kg. For perchlorate, daily intake from water was 0.7 (0.1-4.4) μg/day, which is not high compared to the average total intake of 14 (2.5-84) μg/day, while the reference dose (RfD) is 35 μg/day and the provisional maximum tolerable daily intake (PMTDI) is 500 μg/day for body weight of 50 kg. The highest intake of perchlorate was 84 μg/day, where concentrations in foods were high, but not in water. The contribution of water to total perchlorate intake ranged from 0.5% to 22%, while the ratio of highest daily intake to RfD was 240% and that to PMTDI was 17%. Eight baby formulas were also tested--total chlorate and perchlorate intakes were 147 (42-332) μg/day and 1.11 (0.05-4.5) μg/day, respectively, for an ingestion volume of 1 L/day if prepared with tap water. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Hydrogeologic setting, water budget, and preliminary analysis of ground-water exchange at Lake Starr, a seepage lake in Polk County, Florida

    USGS Publications Warehouse

    Swancar, Amy; Lee, T.M.; O'Hare, T. M.

    2000-01-01

    Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects

  6. Comparison of the hydrogeology and water quality of a ground-water augmented lake with two non-augmented lakes in northwest Hillsborough County, Florida

    USGS Publications Warehouse

    Metz, Patricia A.; Sacks, Laura A.

    2002-01-01

    The hydrologic effects associated with augmenting a lake with ground water from the Upper Floridan aquifer were examined in northwest Hillsborough County, Florida, from June 1996 through May 1999. The hydrogeology, ground-water flow patterns, water budgets, and water-quality characteristics were compared between a lake that has been augmented for more than 30 years (Round Lake) and two nearby nonaugmented lakes (Dosson Lake and Halfmoon Lake). Compared to the other study lakes, Round Lake is in a more leakage-dominated hydrogeologic setting. The intermediate confining unit is thin or highly breached, which increases the potential for vertical ground-water flow. Round Lake has the least amount of soft, organic lake-bottom sediments and the lake bottom has been dredged deeper and more extensively than the other study lakes, which could allow more leakage from the lake bottom. The area around Round Lake has experienced more sinkhole activity than the other study lakes. During this study, three sinkholes developed around the perimeter of the lake, which may have further disrupted the intermediate confining unit.Ground-water flow patterns around Round Lake were considerably different than the nonaugmented lakes. For most of the study, groundwater augmentation artificially raised the level of Round Lake to about 2 to 3 feet higher than the adjacent water table. As a result, lake water recharged the surficial aquifer around the entire lake perimeter, except during very wet periods when ground-water inflow occurred around part of the lake perimeter. The non-augmented lakes typically had areas of ground-water inflow and areas of lake leakage around their perimeter, and during wet periods, ground-water inflow occurred around the entire lake perimeter. Therefore, the area potentially contributing ground water to the non-augmented lakes is much larger than for augmented Round Lake. Vertical head loss within the surficial aquifer was greater at Round Lake than the other study

  7. Lakes and lake-like waters of the Hawaiian Archipelago

    USGS Publications Warehouse

    Maciolek, J.A.

    1982-01-01

    This summary of Hawaiian lacustrine limnology is based on 12 years of field and literature surveys of archipelagic inland waters. Lakes here are distinguished from other standing waters by limits on surface oceanic area (> 0.1 ha) and depth (> 2 m), and by the absence of flatural surface oceanic connection. A variety of extinct and existing water bodies, sometimes referred to as lakes, are noted. Six lakes are described. Five of them are in crater basins, 3 are freshwater, and 2 are elevated (highest = 3969 m). The scarcity of elevated lakes results from general permeability of the substrata. Among the 6 lakes, surface areas range from 0.22 to 88 ha and maximum depths from 3 to 248 m. Naturally occurring aquatic biota generally is low in species diversity except for phytoplankton; fishes and submersed vascular plants are absent. Two lowland lakes, freshwater Green (Wai a Pele) and saline Kauhak6, are described for the first time. Profundal Kauhak6, 248 m deep, has a surface area of only 0.35 ha, which results in an extraordinary relative depth of 370%. It is permanently stratified, a condition apparently due primarily to the unique morphometry of its basin. 

  8. &LDQUO;FROM THE SOURCE &NDASH; TAP WATER AS A SUSTAINABLE ALTERNATIVE&RDQUO;

    EPA Science Inventory

    The major technical challenge to sustainability is reduction of use of plastic bottled water and bottled water in general. This will be done by a student administered water assessment survey on campus, coupled with a public education campaign on the benefits of using tap water...

  9. TRIHALOMETHANE LEVELS IN HOME TAP WATER AND SEMEN QUALITY

    EPA Science Inventory

    Trihalomethane Levels in Home Tap Water and Semen Quality
    Laura Fenster, 1 Kirsten Waller, 2 Gayle Windham, 1 Tanya Henneman, 2 Meredith Anderson, 2 Pauline Mendola, 3 James W. Overstreet, 4 Shanna H. Swan5

    1California Department of Health Services, Division of Environm...

  10. Water-Balance Model to Simulate Historical Lake Levels for Lake Merced, California

    NASA Astrophysics Data System (ADS)

    Maley, M. P.; Onsoy, S.; Debroux, J.; Eagon, B.

    2009-12-01

    Lake Merced is a freshwater lake located in southwestern San Francisco, California. In the late 1980s and early 1990s, an extended, severe drought impacted the area that resulted in significant declines in Lake Merced lake levels that raised concerns about the long-term health of the lake. In response to these concerns, the Lake Merced Water Level Restoration Project was developed to evaluate an engineered solution to increase and maintain Lake Merced lake levels. The Lake Merced Lake-Level Model was developed to support the conceptual engineering design to restore lake levels. It is a spreadsheet-based water-balance model that performs monthly water-balance calculations based on the hydrological conceptual model. The model independently calculates each water-balance component based on available climate and hydrological data. The model objective was to develop a practical, rule-based approach for the water balance and to calibrate the model results to measured lake levels. The advantage of a rule-based approach is that once the rules are defined, they enhance the ability to then adapt the model for use in future-case simulations. The model was calibrated to historical lake levels over a 70-year period from 1939 to 2009. Calibrating the model over this long historical range tested the model over a variety of hydrological conditions including wet, normal and dry precipitation years, flood events, and periods of high and low lake levels. The historical lake level range was over 16 feet. The model calibration of historical to simulated lake levels had a residual mean of 0.02 feet and an absolute residual mean of 0.42 feet. More importantly, the model demonstrated the ability to simulate both long-term and short-term trends with a strong correlation of the magnitude for both annual and seasonal fluctuations in lake levels. The calibration results demonstrate an improved conceptual understanding of the key hydrological factors that control lake levels, reduce uncertainty

  11. Water-quality and Llake-stage data for Wisconsin Lakes, Water Year 2004

    USGS Publications Warehouse

    Rose, W.J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, Dale M.

    2005-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2004 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2003 through September 30, 2004 is called 'water year 2004.' The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: 'Water Resources Data-Wisconsin, 2004.' Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available throught the World Wide Web on the Internet. The Wisconsin Water Science Center's home page is at http://wi.water.usgs.gov/. Information on the

  12. Water balance of a lake with floodplain buffering: Lake Tana, Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Dessie, Mekete; Verhoest, Niko E. C.; Pauwels, Valentijn R. N.; Adgo, Enyew; Deckers, Jozef; Poesen, Jean; Nyssen, Jan

    2015-03-01

    Lakes are very important components of the earth's hydrological cycle, providing a variety of services for humans and ecosystem functioning. For a sustainable use of lakes, a substantial body of knowledge on their water balance is vital. We present here a detailed daily water balance analysis for Lake Tana, the largest lake in Ethiopia and the source of the Blue Nile. Rainfall on the lake is determined by Thiessen polygon procedure, open water evaporation is estimated by the Penman-combination equation and observed inflows for the gauged catchments as well as outflow data at the two lake outlets are directly used. Runoff from ungauged catchments is estimated using a simple rainfall-runoff model and runoff coefficients. Hillslope catchments and floodplains are treated separately, which makes this study unique compared to previous water balance studies. Impact of the floodplain on the lake water balance is analyzed by conducting scenario-based studies. We found an average yearly abstraction of 420 × 106 m3 or 6% of river inflows to the lake by the floodplain in 2012 and 2013. Nearly 60% of the inflow to the lake is from the Gilgel Abay River. Simulated lake levels compare well with the observed lake levels (R2 = 0.95) and the water balance can be closed with a closure error of 82 mm/year (3.5% of the total lake inflow). This study demonstrates the importance of floodplains and their influence on the water balance of the lake and the need of incorporating the effects of floodplains and water abstraction for irrigation to improve predictions.

  13. Survival of lake trout eggs and fry reared in water from the upper Great Lakes

    USGS Publications Warehouse

    Mac, Michael J.; Edsall, Carol Cotant; Seelye, James G.

    1985-01-01

    As part of continuing studies of the reproductive failure of lake trout (Salvelinus namaycush) in Lake Michigan, we measured the survival of lake trout eggs and fry of different origins and reared in different environments. Eggs and milt were stripped from spawning lake trout collected in the fall of 1980 from southeastern Lake Michigan, northwestern Lake Huron, south central Lake Superior, and from hatchery brood stock. Eggs from all sources were incubated, and the newly hatched fry were reared for 139 days in lake water from each of the three upper Great Lakes and in well water. Survival of eggs to hatching at all sites was lowest for those from Lake Michigan (70% of fertilized eggs) and highest for eggs from Lake Superior (96%). Comparisons of incubation water from the different lakes indicated that hatching success of eggs from all sources was highest in Lake Huron water, and lowest in Lake Michigan water. The most notable finding was the nearly total mortality of fry from eggs of southeastern Lake Michigan lake trout. At all sites, the mean survival of Lake Michigan fry through 139 days after hatching was only 4% compared to near 50% for fry from the other three sources. In a comparison of the rearing sites, little influence of water quality on fry survival was found. Thus, the poor survival was associated with the source of eggs and sperm, not the water in which the fry were reared.

  14. Influence of tap water quality and household water use activities on indoor air and internal dose levels of trihalomethanes.

    PubMed

    Nuckols, John R; Ashley, David L; Lyu, Christopher; Gordon, Sydney M; Hinckley, Alison F; Singer, Philip

    2005-07-01

    Individual exposure to trihalomethanes (THMs) in tap water can occur through ingestion, inhalation, or dermal exposure. Studies indicate that activities associated with inhaled or dermal exposure routes result in a greater increase in blood THM concentration than does ingestion. We measured blood and exhaled air concentrations of THM as biomarkers of exposure to participants conducting 14 common household water use activities, including ingestion of hot and cold tap water beverages, showering, clothes washing, hand washing, bathing, dish washing, and indirect shower exposure. We conducted our study at a single residence in each of two water utility service areas, one with relatively high and the other low total THM in the residence tap water. To maintain a consistent exposure environment for seven participants, we controlled water use activities, exposure time, air exchange, water flow and temperature, and nonstudy THM sources to the indoor air. We collected reference samples for water supply and air (pre-water use activity), as well as tap water and ambient air samples. We collected blood samples before and after each activity and exhaled breath samples at baseline and post-activity. All hot water use activities yielded a 2-fold increase in blood or breath THM concentrations for at least one individual. The greatest observed increase in blood and exhaled breath THM concentration in any participant was due to showering (direct and indirect), bathing, and hand dishwashing. Average increase in blood THM concentration ranged from 57 to 358 pg/mL due to these activities. More research is needed to determine whether acute and frequent exposures to THM at these concentrations have public health implications. Further research is also needed in designing epidemiologic studies that minimize data collection burden yet maximize accuracy in classification of dermal and inhalation THM exposure during hot water use activities.

  15. Influence of Tap Water Quality and Household Water Use Activities on Indoor Air and Internal Dose Levels of Trihalomethanes

    PubMed Central

    Nuckols, John R.; Ashley, David L.; Lyu, Christopher; Gordon, Sydney M.; Hinckley, Alison F.; Singer, Philip

    2005-01-01

    Individual exposure to trihalomethanes (THMs) in tap water can occur through ingestion, inhalation, or dermal exposure. Studies indicate that activities associated with inhaled or dermal exposure routes result in a greater increase in blood THM concentration than does ingestion. We measured blood and exhaled air concentrations of THM as biomarkers of exposure to participants conducting 14 common household water use activities, including ingestion of hot and cold tap water beverages, showering, clothes washing, hand washing, bathing, dish washing, and indirect shower exposure. We conducted our study at a single residence in each of two water utility service areas, one with relatively high and the other low total THM in the residence tap water. To maintain a consistent exposure environment for seven participants, we controlled water use activities, exposure time, air exchange, water flow and temperature, and nonstudy THM sources to the indoor air. We collected reference samples for water supply and air (pre–water use activity), as well as tap water and ambient air samples. We collected blood samples before and after each activity and exhaled breath samples at baseline and postactivity. All hot water use activities yielded a 2-fold increase in blood or breath THM concentrations for at least one individual. The greatest observed increase in blood and exhaled breath THM concentration in any participant was due to showering (direct and indirect), bathing, and hand dishwashing. Average increase in blood THM concentration ranged from 57 to 358 pg/mL due to these activities. More research is needed to determine whether acute and frequent exposures to THM at these concentrations have public health implications. Further research is also needed in designing epidemiologic studies that minimize data collection burden yet maximize accuracy in classification of dermal and inhalation THM exposure during hot water use activities. PMID:16002374

  16. Water quality of Lake Austin and Town Lake, Austin, Texas

    USGS Publications Warehouse

    Andrews, Freeman L.; Wells, Frank C.; Shelby, Wanda J.; McPherson, Emma

    1988-01-01

    Water-quality data collected from Lake Austin and Town Lake, following runoff, generally were not adequate to fully determine the effects of runoff on the lakes. Data collection should not to be limited to fixed-station sampling following runoff, and both lakes need to be sampled simultaneously as soon as possible following significant precipitation.

  17. Determination of uranium in tap water by ICP-MS.

    PubMed

    El Himri, M; Pastor, A; de la Guardia, M

    2000-05-01

    A fast and accurate procedure has been developed for the determination of uranium at microg L(-1) level in tap and mineral water. The method is based on the direct introduction of samples, without any chemical pre-treatment, into an inductively coupled plasma mass spectrometer (ICP-MS). Uranium was determined at the mass number 238 using Rh as internal standard. The method provides a limit of detection of 2 ng L(-1) and a good repeatability with relative standard deviation values (RSD) about 3% for five independent analyses of samples containing 73 microg L(-1) of uranium. Recovery percentage values found for the determination of uranium in spiked natural samples varied between 91% and 106%. Results obtained are comparable with those found by radiochemical methods for natural samples and of the same order for the certified content of a reference material, thus indicating the accuracy of the ICP-MS procedure without the need of using isotope dilution. A series of mineral and tap waters from different parts of Spain and Morocco were analysed.

  18. 9. Tower building. Hot water tap floor shown. Mixing vat ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Tower building. Hot water tap floor shown. Mixing vat at center level. Juices mix and flow and left lower level. Copper kettles are down below view level. Looking toward front of building. - Tivoli-Union Brewery, 1320-1348 Tenth Street, Denver, Denver County, CO

  19. Tap water isotopes reveal the San Francisco Bay Area's plumbing and responses to a major drought

    NASA Astrophysics Data System (ADS)

    Tipple, B. J.; Jameel, M. Y.; Chau, T. H.; Mancuso, C. J.; Bowen, G. J.; Dufour, A.; Chesson, L. A.; Ehleringer, J. R.

    2016-12-01

    Water availability and sustainability in the Western United States is a major flashpoint among expanding communities, growing industries, and productive agricultural lands. This issue came to a head in 2015 in the State of California, when the State mandated a 25% reduction in urban water use following a multi-year drought that significantly depleted water resources. The demands for and challenges in supplying water are only expected to intensify as climate perturbations, such as the 2012-2015 California Drought, become more common. As a consequence, there is an increased need to understand linkages between population centers, water transport and usage, and the impacts of climate change on water resources and infrastructure. To better understand these relationships within a megalopolis in the Western United States, we collected and analyzed 723 tap waters from the San Francisco Bay Area during seven collection campaigns across 21 months during 2013-2015. San Francisco Bay Area was selected as it has well-known water management strategies and its water resources were dramatically affected by the 2012-2105 drought. Consistent with known water management strategies and previous reports of tap water isotope values, we found large spatiotemporal variations in the δ2H and δ18O values of tap waters, indicative of complex water transport systems and municipality-scale management decisions. We observed δ2H and δ18O values of tap water consistent with waters originating from snowmelt from the Sierra Nevada Mountains, local precipitation, ground water, and partially evaporated reservoir sources. A cluster analysis of measured tap water data grouped waters from 43 static sampling sites that were associated with specific water utility providers within the San Francisco Bay Area and known management practices. Water management responses to the drought, such as source switching, bringing in new sources, and conservation, could be observed within the isotope data from each of

  20. Biofilm formation in an experimental water distribution system: the contamination of non-touch sensor taps and the implication for healthcare.

    PubMed

    Moore, Ginny; Stevenson, David; Thompson, Katy-Anne; Parks, Simon; Ngabo, Didier; Bennett, Allan M; Walker, Jimmy T

    2015-01-01

    Hospital tap water is a recognised source of Pseudomonas aeruginosa. U.K. guidance documents recommend measures to control/minimise the risk of P. aeruginosa in augmented care units but these are based on limited scientific evidence. An experimental water distribution system was designed to investigate colonisation of hospital tap components. P. aeruginosa was injected into 27 individual tap 'assemblies'. Taps were subsequently flushed twice daily and contamination levels monitored over two years. Tap assemblies were systematically dismantled and assessed microbiologically and the effect of removing potentially contaminated components was determined. P. aeruginosa was repeatedly recovered from the tap water at levels above the augmented care alert level. The organism was recovered from all dismantled solenoid valves with colonisation of the ethylene propylene diene monomer (EPDM) diaphragm confirmed by microscopy. Removing the solenoid valves reduced P. aeruginosa counts in the water to below detectable levels. This effect was immediate and sustained, implicating the solenoid diaphragm as the primary contamination source.

  1. Comparing grey water versus tap water and coal ash versus perlite on growth of two plant species on green roofs.

    PubMed

    Agra, Har'el; Solodar, Ariel; Bawab, Omar; Levy, Shay; Kadas, Gyongyver J; Blaustein, Leon; Greenbaum, Noam

    2018-08-15

    Green roofs provide important ecosystem services in urban areas. In Mediterranean and other semi-arid climate regions, most perennial plants on green roofs need to be irrigated during the dry season. However, the use of freshwater in such regions is scarce. Therefore, the possibility of using grey water should be examined. Coal ash, produced primarily from the burning of coal in power plants, constitutes an environmental contaminant that should be disposed. One option is to use ash as a growing substrate for plants. Here, we compare the effects of irrigating with grey- versus tap-water and using ash versus perlite as growing substrates in green roofs. The study was conducted in northern Israel in a Mediterranean climate. The design was full factorial with three factors: water-type (grey or tap-water)×substrate-type (coal ash vs perlite)×plant species (Phyla nodiflora, Convolvulus mauritanicus or no-plant). The development of plants and the quality of drainage water along the season, as well as quality of the used substrates were monitored. Both plant species developed well under all the experimental conditions with no effect of water type or substrate type. Under all treatments, both plant species enhanced electrical conductivity (EC) and chemical oxygen demand (COD) of the drainage water. In the summer, EC and COD reached levels that are unacceptable in water and are intended to be reused for irrigation. We conclude that irrigating with grey water and using coal ash as a growth substrate can both be implemented in green roofs. The drainage from tap water as well as from grey water can be further used for irrigating the roof, but for that, COD and EC levels must be lowered by adding a sufficient amount of tap water before reusing. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Hydrological processes and the water budget of lakes

    USGS Publications Warehouse

    Winter, Thomas C.; Lerman, Abraham; Imboden, Dieter M.; Gat, Joel R.

    1995-01-01

    Lakes interact with all components of the hydrological system: atmospheric water, surface water, and groundwater. The fluxes of water to and from lakes with regard to each of these components represent the water budget of a lake. Mathematically, the concept of a water budget is deceptively simple: income equals outgo, plus or minus change in storage. In practice, however, measuring the water fluxes to and from lakes accurately is not simple, because understanding of the various hydrological processes and the ability to measure the various hydrological components are limited.

  3. Perfluoroalkyl acids (PFAAs) in the Pra and Kakum River basins and associated tap water in Ghana.

    PubMed

    Essumang, David K; Eshun, Albert; Hogarh, Jonathan N; Bentum, John K; Adjei, Joseph K; Negishi, Junya; Nakamichi, Shihori; Habibullah-Al-Mamun, Md; Masunaga, Shigeki

    2017-02-01

    Perfluoroalkyl acids (PFAAs) are persistent environmental pollutants that have been detected in various media including human serum. Due to concerns regarding their bioaccumulation and possible negative health effects, an understanding of routes of human exposure is necessary. PFAAs are recalcitrant in many water treatment processes, making drinking water a potential source of human exposure. This study presents the first report on contamination from PFAAs in river and drinking water in Ghana. The targeted PFAAs were perfluoroalkyl carboxylic acids (PFCAs) with C 4-14 carbon chain and perfluoroalkane sulphonic acids (PFSAs) with C 6, 8, 10 . Five PFAA congeners - PFOA, PFOS, PFHxA, PFDA and PFPeA - were commonly detected in river and tap water. The mean concentrations of ∑PFAAs in the Kakum and Pra Rivers were 281 and 398ng/L, while tap water (supplied from the treatment of water from those rivers) contained concentrations of 197 and 200ng/L, respectively. PFOA and PFOS constituted about 99% of the ∑PFAAs. The risk quotient (RQ) attributed to drinking of tap water was estimated at 1.01 and 1.74 for PFOA and PFOS, respectively. For a country that has not produced these compounds, the RQs were unexpectedly high, raising concerns particularly about contamination from such emerging pollutants in local water sources. The study revealed limitations of local tap water treatment in getting rid of these emerging pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Tap versus bottled water consumption: The influence of social norms, affect and image on consumer choice.

    PubMed

    Etale, Anita; Jobin, Marilou; Siegrist, Michael

    2018-02-01

    What drives consumers to choose bottled water instead of tap water where the latter is safe, accessible, costs far less, and in spite of its environmental impacts? This research investigates the influence of hitherto unexplored psychological drivers in an attempt to generate a more holistic understanding of the phenomenon, and strategies for designing more effective consumption reduction campaigns. Using data from an internet survey of Swiss and German respondents (N = 849) we investigated the role of, social norms, affect and image on water consumption. Results suggest that these psychological factors play a role in water consumption choice. Convenience was the only contextual predictor - the inconvenience of transporting bottled water has a negative effect on its consumption, and a positive effect on tap water consumption. Although concern about the effect of bottled water on the environment was not a significant predictor of tap water consumption, we found that for some people, a link exists between environmental concern and consumption choice. Ways through which consumers may be more effectively influenced towards environmentally-friendly consumption are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Polar herbicides, pharmaceutical products, perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and nonylphenol and its carboxylates and ethoxylates in surface and tap waters around Lake Maggiore in Northern Italy.

    PubMed

    Loos, Robert; Wollgast, Jan; Huber, Tania; Hanke, Georg

    2007-02-01

    A survey of contamination of surface and drinking waters around Lake Maggiore in Northern Italy with polar anthropogenic environmental pollutants has been conducted. The target analytes were polar herbicides, pharmaceuticals (including antibiotics), steroid estrogens, perfluorooctanesulfonate (PFOS), perfluoroalkyl carboxylates (including perfluorooctanoate PFOA), nonylphenol and its carboxylates and ethoxylates (NPEO surfactants), and triclosan, a bactericide used in personal-care products. Analysis of water samples was performed by solid-phase extraction (SPE) then liquid chromatography-triple-quadrupole (tandem) mass spectrometry (LC-MS-MS). By extraction of 1-L water samples and concentration of the extract to 100 microL, method detection limits (MDLs) as low as 0.05-0.1 ng L(-1) were achieved for most compounds. Lake-water samples from seven different locations in the Southern part of Lake Maggiore and eleven samples from different tributary rivers and creeks were investigated. Rain water was also analyzed to investigate atmospheric input of the contaminants. Compounds regularly detected at very low concentrations in the lake water included: caffeine (max. concentration 124 ng L(-1)), the herbicides terbutylazine (7 ng L(-1)), atrazine (5 ng L(-1)), simazine (16 ng L(-1)), diuron (11 ng L(-1)), and atrazine-desethyl (11 ng L(-1)), the pharmaceuticals carbamazepine (9 ng L(-1)), sulfamethoxazole (10 ng L(-1)), gemfibrozil (1.7 ng L(-1)), and benzafibrate (1.2 ng L(-1)), the surfactant metabolite nonylphenol (15 ng L(-1)), its carboxylates (NPE(1)C 120 ng L(-1), NPE(2)C 7 ng L(-1), NPE(3)C 15 ng L(-1)) and ethoxylates (NPE( n )Os, n = 3-17; 300 ng L(-1)), perfluorinated surfactants (PFOS 9 ng L(-1), PFOA 3 ng L(-1)), and estrone (0.4 ng L(-1)). Levels of these compounds in drinking water produced from Lake Maggiore were almost identical with those found in the lake itself, revealing the poor performance of sand filtration and chlorination applied by the local

  6. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...: There is an authorized anchorage in Canadian waters just above Fighting Island and an authorized...

  7. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...: There is an authorized anchorage in Canadian waters just above Fighting Island and an authorized...

  8. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...: There is an authorized anchorage in Canadian waters just above Fighting Island and an authorized...

  9. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...: There is an authorized anchorage in Canadian waters just above Fighting Island and an authorized...

  10. Widespread molecular detection of Legionella pneumophila Serogroup 1 in cold water taps across the United States.

    PubMed

    Donohue, Maura J; O'Connell, Katharine; Vesper, Stephen J; Mistry, Jatin H; King, Dawn; Kostich, Mitch; Pfaller, Stacy

    2014-03-18

    In the United States, 6,868 cases of legionellosis were reported to the Center for Disease Control and Prevention in 2009-2010. Of these reports, it is estimated that 84% are caused by the microorganism Legionella pneumophila Serogroup (Sg) 1. Legionella spp. have been isolated and recovered from a variety of natural freshwater environments. Human exposure to L. pneumophila Sg1 may occur from aerosolization and subsequent inhalation of household and facility water. In this study, two primer/probe sets (one able to detect L. pneumophila and the other L. pneumophila Sg1) were determined to be highly sensitive and selective for their respective targets. Over 272 water samples, collected in 2009 and 2010 from 68 public and private water taps across the United States, were analyzed using the two qPCR assays to evaluate the incidence of L. pneumophila Sg1. Nearly half of the taps showed the presence of L. pneumophila Sg1 in one sampling event, and 16% of taps were positive in more than one sampling event. This study is the first United States survey to document the occurrence and colonization of L. pneumophila Sg1 in cold water delivered from point of use taps.

  11. The influence of irrigation water on the hydrology and lake water budgets of two small arid-climate lakes in Khorezm, Uzbekistan

    USGS Publications Warehouse

    Scott, J.; Rosen, Michael R.; Saito, L.; Decker, D.L.

    2011-01-01

    Little is known regarding the origins and hydrology of hundreds of small lakes located in the western Uzbekistan province of Khorezm, Central Asia. Situated in the Aral Sea Basin, Khorezm is a productive agricultural region, growing mainly cotton, wheat, and rice. Irrigation is provided by an extensive canal network that conveys water from the Amu Darya River (AD) throughout the province. The region receives on average 10 cm/year of precipitation, yet potential evapotranspiration exceeds this amount by about 15 times. It was hypothesized that the perennial existence of the lakes of interest depends on periodic input of excess irrigation water. This hypothesis was investigated by studying two small lakes in the region, Tuyrek and Khodjababa. In June and July 2008, surface water and shallow groundwater samples were collected at these lake systems and surrounding communities and analyzed for δ2H, δ18O, and major ion hydrochemistry to determine water sources. Water table and lake surface elevations were monitored, and the local aquifer characteristics were determined through aquifer tests. These data and climate data from a Class A evaporation pan and meteorological stations were used to estimate water budgets for both lakes. Lake evaporation was found to be about 0.7 cm/day during the study period. Results confirm that the waters sampled at both lake systems and throughout central Khorezm were evaporated from AD water to varying degrees. Together, the water budgets and stable isotope and major ion hydrochemistry data suggest that without surface water input from some source (i.e. excess irrigation water), these and other Khorezm lakes with similar hydrology may decrease in volume dramatically, potentially to the point of complete desiccation.

  12. Quality of ground water around Vadnais Lake and in Lambert Creek watershed, and interaction of ground water with Vadnais Lake, Ramsey County, Minnesota

    USGS Publications Warehouse

    Ruhl, J.F.

    1994-01-01

    The results of the seepage analysis and ground-water quality evaluation indicate that the effect of the quality of the surrounding ground water on the quality of Vadnais Lake probably was small. Ground water that discharged to the lake generally had lower concentrations of calcium, magnesium, bicarbonate, and total dissolved solids than the lake. The mixing of ground water with the lake slightly diluted the lake with respect to these constituents.

  13. Great Lakes Water Quality Agreement (GLWQA)

    EPA Pesticide Factsheets

    The Great Lakes Water Quality Agreement between the U.S. and Canada addresses critical environmental health issues in the Great Lakes region. It's a model of binational cooperation to protect water quality. It was first signed in 1972 and amended in 2012.

  14. Spatial, seasonal, and source variability in the stable oxygen and hydrogen isotopic composition of tap waters throughout the USA

    USGS Publications Warehouse

    Landwehr, Jurate M.; Coplen, Tyler B.; Stewart, David W.

    2013-01-01

    To assess spatial, seasonal, and source variability in stable isotopic composition of human drinking waters throughout the entire USA, we have constructed a database of δ18O and δ2H of US tap waters. An additional purpose was to create a publicly available dataset useful for evaluating the forensic applicability of these isotopes for human tissue source geolocation. Samples were obtained at 349 sites, from diverse population centres, grouped by surface hydrologic units for regional comparisons. Samples were taken concurrently during two contrasting seasons, summer and winter. Source supply (surface, groundwater, mixed, and cistern) and system (public and private) types were noted. The isotopic composition of tap waters exhibits large spatial and regional variation within each season as well as significant at-site differences between seasons at many locations, consistent with patterns found in environmental (river and precipitation) waters deriving from hydrologic processes influenced by geographic factors. However, anthropogenic factors, such as the population of a tap’s surrounding community and local availability from diverse sources, also influence the isotopic composition of tap waters. Even within a locale as small as a single metropolitan area, tap waters with greatly differing isotopic compositions can be found, so that tap water within a region may not exhibit the spatial or temporal coherence predicted for environmental water. Such heterogeneities can be confounding factors when attempting forensic inference of source water location, and they underscore the necessity of measurements, not just predictions, with which to characterize the isotopic composition of regional tap waters. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  15. A City-wide Investigation of the Isotopic Distribution and Source of Tap Waters for Forensic Human Geolocation Ground-truthing.

    PubMed

    Ueda, Momoko; Bell, Lynne S

    2017-05-01

    Human geolocation is prefaced on the accuracy of the geographic precision of mapped isotopic values for drinking water. As most people live in cities, it becomes important to understand city water supplies and how the isotopic values uniquely reflect that city. This study investigated the isotopic distribution of δ 2 H and δ 18 O from sourced tap waters that were collected from across the Metro Vancouver (MV) area (n = 135). The results revealed that the isotopic values reflect their water sources with a range of 5.3‰ for δ 18 O tap and 29.3‰ for δ 2 H tap for MV. The results indicate that individual cities need higher resolution studies to determine their tap water isotopic ranges, and a good understanding of the water supply network itself for human geolocation work. With an extended high-resolution understanding of each city, human tissue may be compared with more certainty for geolocation. © 2016 American Academy of Forensic Sciences.

  16. From Source Water to Tap Water to Spa and Swimming Pool Water: Effects of Disinfectanta and Precursors and Implications for Exposure and Toxicity

    EPA Science Inventory

    Introduction The current study investigated the effect of different disinfection treatments on the disinfection by-products (DBPs) formed in finished drinking water vs. tap water vs. swimming pool water vs. spa waters. To this end, samples across the complete water pathway (untr...

  17. On-tap passive enrichment, a new way to investigate off-flavor episodes in drinking water.

    PubMed

    Tondelier, Christophe; Thouvenot, Thomas; Genin, Arnaud; Benanou, David

    2009-04-03

    Because taste and odor events in drinking water are often fleeting and unpredictable phenomena, an innovative enrichment sampler has been developed to trap off-flavor compounds directly at the consumer's tap. The ARISTOT (Advanced Relevant Investigation Sampler for Taste & Odor at Tap) consists of a tap adapter in which seven polydimethylsiloxane (PDMS) coated stir bars are placed, allowing the stir bar sorptive extraction (SBSE) of organic compounds during each tap opening. In order to study the efficiency of ARISTOT, a private network pilot unit has been constructed in our laboratory, equipped with four faucets in parallel, solenoid valves for an automation of the system and a mixing chamber to spike drinking water with odorous compounds in order to have homogenously smelling water at each tap. After enrichment, the stir bars are taken out, in-line thermo-desorbed and analyzed by gas chromatography coupled with a mass spectrometer. The results showed the high sensitivity of ARISTOT, which was able to quickly monitor odorous compounds at the sub ng/L level. A "multishot" method was developed to analyze chemicals concentrated on the seven stir bars in only one chromatographic run, thereby increasing the sensitivity of the system. Higher enrichment factors were obtained under low water flow rates or by using longer stir bars and/or stir bars with a higher PDMS film thickness. No significant loss of extracted compounds was reported for flow rates between 2 and 4L/min. This allowed us to spike the stir bars with an internal standard prior to sampling in order to monitor the analytical variations. It was also observed that hot water increases the loss of enriched solutes but the quantification can be corrected by internal standard addition.

  18. Poor tap water quality experiences and poor sleep quality during the Flint, Michigan Municipal Water Crisis.

    PubMed

    Kruger, Daniel J; Kodjebacheva, Gergana D; Cupal, Suzanne

    2017-08-01

    After inadequate official response to community concerns over water quality following changes in Flint's municipal water supply, this study sought evidence for a relationship between water quality and community mental health. The Speak to Your Health Community Survey is a community-based participatory component of the health surveillance system in Genesee County, Michigan. This cross-sectional survey recruits participants from every residential Census Tract of the county and strives for demographic representativeness. Respondents (n=834) rated their tap water quality (taste, smell, appearance) as poor (36%), fair (18%), good (20%), very good (17%), and excellent (10%). They rated their sleep quality as poor (12%), fair (28%), good (39%), very good (18%), and excellent (4%), and had an average (SD) sleep length of 408(90) minutes. Controlling for age, sex, years of education, and whether respondents were African American and Hispanic/Latino/a, lower perceived tap water quality was associated with lower sleep quality and shorter sleep length. Results indicate that adverse health conditions related to the water crisis extend beyond lead poisoning in children and include deterioration of sleep conditions among adult residents. Copyright © 2017 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.

  19. [One-time effects of drinking mineral water and tap water enriched with silver nanoparticles on the biochemical markers of liver condition and metabolic parameters in healthy rats].

    PubMed

    Efimenko, N V; Frolkov, V K; Kozlova, V V; Kaisinova, A S; Chalaya, E N

    2017-12-05

     The objective of the present research was to study the influence of tap water enriched with silver nanoparticles (NP) as well as that of «Krasnoarmeysky» and «Essentuki №17» mineral waters after their single administration through the oral gavage to the rats on the metabolism of carbohydrates and lipids, the biochemical markers of the liver condition, and the endocrine profile in the healthy animals.  The laboratory animals (130 male Wistar rats) were allocated to thirteen groups comprised of 10 rats each as follows: 1st group (n=10) intact animals, 2nd group (5 minutes after the administration of silver NP (n=10), 3rd group (15 minutes after the of silver NP), 4th group (60 minutes after the administration of silver NP), 5th group (n=10) (5 minutes after the introduction of the «Krasnoarmeysky» mineral water), 6th group (n=10) (15 min after the introduction of the «Krasnoarmeysky» mineral water), 7th group (n=10), (60 minutes after the introduction of the «Krasnoarmeysky» mineral water) 8th group (n=10) (5 minutes after the introduction of the «Essentuki № 17» mineral water), 9th group (n=10) (15 min after the introduction of the «Essentuki № 7» mineral water) , 10th group (n=10) (60 minutes after the introduction of the «Essentuki №17» mineral water), 11th group (n=10) (5 minutes after administration of tap water (control),12th group (n=10) (15 minutes after administration of tap water (control), and 13th (n=10) group 60 minutes after administration of tap water (control).  The study has demonstrated that the tap water enriched with silver nanoparticles similar to the mineral waters caused stress reactions that are inferior to those induced by «Essentuki №17» mineral water in terms of the magnitude; however, the effect provoked by the tap water was of longer duration. Moreover, the tap water enriched with silver nanoparticles stimulates prooxidant reactions, and inhibit the activity of antioxidant protection. Silver nanoparticles

  20. Establishment patterns of water-elm at Catahoula Lake, Louisiana

    Treesearch

    Karen S. Doerr; Sanjeev Joshi; Richard F. Keim

    2015-01-01

    At Catahoula Lake in central Louisiana, an internationally important lake for water fowl, hydrologic alterations to the surrounding rivers and the lake itself have led to an expansion of water-elm (Planera aquatic J.F. Gmel.) into the lake bed. In this study, we used dendrochronology and aerial photography to quantify the expansion of water-elm in the lake and identify...

  1. The effects of using ground water to maintain water levels of Cedar Lake, Wisconsin

    USGS Publications Warehouse

    McLeod, R.S.

    1980-01-01

    There were no identifiable changes in measured physical and chemical characteristics of lake water during sustained pumping of ground water into the lake, nor were there identifiable changes in the number or makeup of the phytoplankton community. Differences in physical and chemical characteristics of lake water and ground water added to the lake probably were not great enough to cause changes within the lake.

  2. The importance of ground water in the Great Lakes Region

    USGS Publications Warehouse

    Grannemann, N.G.; Hunt, R.J.; Nicholas, J.R.; Reilly, T.E.; Winter, T.C.

    2000-01-01

    Ground water is a major natural resource in the Great Lakes Region that helps link the Great Lakes and their watershed. This linkage needs to be more fully understood and quantified before society can address some of the important water-resources issues in the Great Lakes. The Great Lakes constitute the largest concentration of unfrozen fresh surface water in the western hemisphere—about 5,440 mi3. Because the quantity of water in the lakes is so large, ground water in the Great Lakes Basin is often overlooked when evaluating the hydrology of the region. Ground water, however, is more important to the hydrology of the Great Lakes and to the health of ecosystems in the watershed than is generally recognized.Although more than 1,000 mi3 of ground water are stored in the basin—a volume of water that is approximately equal to that of Lake Michigan—development of the groundwater resource must be carefully planned. Development of the ground-water resource removes water from storage and alters the paths of ground-water flow. Ground water that normally discharges to streams, lakes, and wetlands can be captured by pumping (the most common form of development), which may deplete or reduce inflows to the Great Lakes.Ground water is important to ecosystems in the Great Lakes Region because it is, in effect, a large, subsurface reservoir from which water is released slowly to provide a reliable minimum level of water flow to streams, lakes, and wetlands. Ground-water discharge to streams generally provides good quality water that, in turn, promotes habitat for aquatic animals and sustains aquatic plants during periods of low precipitation. Because of the slow movement of ground water, the effects of surface activities on ground-water flow and quality can take years to manifest themselves. As a result, issues relative to ground water are often seemingly less dire than issues related to surface water alone.Ground water is a major natural resource in the Great Lakes Region

  3. Acidification of lake water due to drought

    NASA Astrophysics Data System (ADS)

    Mosley, L. M.; Zammit, B.; Jolley, A. M.; Barnett, L.

    2014-04-01

    Droughts are predicted to increase in many river systems due to increased demand on water resources and climate variability. A severe drought in the Murray-Darling Basin of Australia from 2007 to 2009 resulted in unprecedented declines in water levels in the Lower Lakes (Ramsar-listed ecosystem of international importance) at the end of the river system. The receding water exposed large areas (>200 km2) of sediments on the lake margins. The pyrite (FeS2) in these sediments oxidised and generated high concentrations of acidity. Upon rewetting of the exposed sediments, by rainfall or lake refill, surface water acidification (pH 2-3) occurred in several locations (total area of 21.7 km2). High concentrations of dissolved metals (Al, As, Co, Cr, Cu, Fe, Mn, Ni, Zn), which greatly exceeded aquatic ecosystem protection guidelines, were mobilised in the acidic conditions. In many areas neutralisation of the surface water acidity occurred naturally during lake refill, but aerial limestone dosing was required in two areas to assist in restoring alkalinity. However acidity persists in the submerged lake sediment and groundwater several years after surface water neutralisation. The surface water acidification proved costly to manage and improved water management in the Murray-Darling Basin is required to prevent similar events occurring in the future.

  4. Investigation of radon level in air and tap water of workplaces at Thailand Institute of Nuclear Technology, Thailand

    NASA Astrophysics Data System (ADS)

    Sola, P.; Youngchuay, U.; Kongsri, S.; Kongtana, A.

    2017-06-01

    Thailand Institute of Nuclear Technology (TINT) has continuously monitored radiation exposure and radionuclide in workplaces specifically radon gas to estimate effective dose for workers. Radon exposure is the second leading cause of lung cancer in the world. In this study, radon in air and tap water at building no. 3, 7, 8, 9 and 18 on Ongkharak site of TINT have been measured for 5 years from 2012 to 2016. Radon level in air and tap water were investigated on 83 stations (workplaces) and 54 samples, respectively. Radon concentrations in air and tap water were measured by using the pulsed ionization chamber (ATMOS 12 DPX). Indoor radon concentrations in air were in the range of 12-138 Bq.m-3 with an average value of 30.13±17.05 Bq.m-3. Radon concentrations in tap water were in the range of 0.10 to 2.89 Bq.l-1 with an average value of 0.51±0.55 Bq.l-1. The results of radon concentrations at TINT were below the US Environmental Protection Agency (US EPA) safety limit of 148 Bq.m-3 and 150 Bq.l-1, for, air and tap water, respectively. The average effective dose for TINT’s workers due to indoor radon exposure was approximately 0.20±0.11 mSv.y-1. The value is 100 times less than the annual dose limit for limit occupational radiation worker defined by the International Commission on Radiological Protection (ICRP). As a result, the TINT’s workplaces are radiologically safe from radon content in air and tap water.

  5. The Recreational Water Cycle: From Source Water to Tap Water to Spa and Swimming Pool Water: Effects of Disinfectants and Precursors and Implications for Exposure and Toxicity

    EPA Science Inventory

    The current study investigates the effect of different disinfection treatments on the disinfection by-products (DBPs) formed in finished drinking water vs. tap water vs. swimming pool water vs. spa waters. To this end, complete water pathway samples (untreated source waters ->fi...

  6. Efficient electrochemical remediation of microcystin-LR in tap water using designer TiO2@carbon electrodes

    NASA Astrophysics Data System (ADS)

    Sanz Lobón, Germán; Yepez, Alfonso; Garcia, Luane Ferreira; Morais, Ruiter Lima; Vaz, Boniek Gontijo; Carvalho, Veronica Vale; de Oliveira, Gisele Augusto Rodrigues; Luque, Rafael; Gil, Eric De Souza

    2017-02-01

    Microcystin-leucine arginine (MC-LR) is the most abundant and toxic secondary metabolite produced by freshwater cyanobacteria. This toxin has a high potential hazard health due to potential interactions with liver, kidney and the nervous system. The aim of this work was the design of a simple and environmentally friendly electrochemical system based on highly efficient nanostructured electrodes for the removal of MC-LR in tap water. Titania nanoparticles were deposited on carbon (graphite) under a simple and efficient microwave assisted approach for the design of the electrode, further utilized in the electrochemical remediation assays. Parameters including the applied voltage, time of removal and pH (natural tap water or alkaline condition) were investigated in the process, with results pointing to a high removal efficiency for MC-LR (60% in tap water and 90% in alkaline media experiments, under optimized conditions).

  7. Efficient electrochemical remediation of microcystin-LR in tap water using designer TiO2@carbon electrodes

    PubMed Central

    Sanz Lobón, Germán; Yepez, Alfonso; Garcia, Luane Ferreira; Morais, Ruiter Lima; Vaz, Boniek Gontijo; Carvalho, Veronica Vale; de Oliveira, Gisele Augusto Rodrigues; Luque, Rafael; Gil, Eric de Souza

    2017-01-01

    Microcystin-leucine arginine (MC-LR) is the most abundant and toxic secondary metabolite produced by freshwater cyanobacteria. This toxin has a high potential hazard health due to potential interactions with liver, kidney and the nervous system. The aim of this work was the design of a simple and environmentally friendly electrochemical system based on highly efficient nanostructured electrodes for the removal of MC-LR in tap water. Titania nanoparticles were deposited on carbon (graphite) under a simple and efficient microwave assisted approach for the design of the electrode, further utilized in the electrochemical remediation assays. Parameters including the applied voltage, time of removal and pH (natural tap water or alkaline condition) were investigated in the process, with results pointing to a high removal efficiency for MC-LR (60% in tap water and 90% in alkaline media experiments, under optimized conditions). PMID:28145477

  8. Lake water quality mapping from Landsat

    NASA Technical Reports Server (NTRS)

    Scherz, J. P.

    1977-01-01

    In the project described remote sensing was used to check the quality of lake waters. The lakes of three Landsat scenes were mapped with the Bendix MDAS multispectral analysis system. From the MDAS color coded maps, the lake with the worst algae problem was easily located. The lake was closely checked, and the presence of 100 cows in the springs which fed the lake could be identified as the pollution source. The laboratory and field work involved in the lake classification project is described.

  9. Quantitative risk assessment of Cryptosporidium in tap water in Ireland.

    PubMed

    Cummins, E; Kennedy, R; Cormican, M

    2010-01-15

    Cryptosporidium species are protozoan parasites associated with gastro-intestinal illness. Following a number of high profile outbreaks worldwide, it has emerged as a parasite of major public health concern. A quantitative Monte Carlo simulation model was developed to evaluate the annual risk of infection from Cryptosporidium in tap water in Ireland. The assessment considers the potential initial contamination levels in raw water, oocyst removal and decontamination events following various process stages, including coagulation/flocculation, sedimentation, filtration and disinfection. A number of scenarios were analysed to represent potential risks from public water supplies, group water schemes and private wells. Where surface water is used additional physical and chemical water treatment is important in terms of reducing the risk to consumers. The simulated annual risk of illness for immunocompetent individuals was below 1 x 10(-4) per year (as set by the US EPA) except under extreme contamination events. The risk for immunocompromised individuals was 2-3 orders of magnitude greater for the scenarios analysed. The model indicates a reduced risk of infection from tap water that has undergone microfiltration, as this treatment is more robust in the event of high contamination loads. The sensitivity analysis highlighted the importance of watershed protection and the importance of adequate coagulation/flocculation in conventional treatment. The frequency of failure of the treatment process is the most important parameter influencing human risk in conventional treatment. The model developed in this study may be useful for local authorities, government agencies and other stakeholders to evaluate the likely risk of infection given some basic input data on source water and treatment processes used. Copyright 2009 Elsevier B.V. All rights reserved.

  10. [The value of glucose-positive coliform bacteria and potentially pathogenic bacteria as indicators of epidemiological safety of tap water].

    PubMed

    Zhuravlev, P V; Aleshnia, V V; Panasovets, O P; Morozova, A A; Artemova, T Z; Talaeva, Iu G; Zagaĭnova, A V; Gipp, E K

    2012-01-01

    Due to intensive anthropogenic pollution of water environment generally accepted indicators of epidemic security of water bodies - common bacteria and thermotolerant coliform bacteria do not always permit to obtain an objective characterization of bacterial contamination of tap water. From the point of view of authors the integral index - glucose positive coliform bacteria most adequately reflect the sanitary-hygienic and epidemiological situation of water bodies. In monitoring for bacterial quality of tap water it is advisable to determine glucose positive coliform bacteria, that will provide the relevance of estimation of the epidemiological safety of water use. According to the method developed by the authors the calculation of the index of population risk of acute intestinal infections occurrence in dependence on the quality of tap water in Azov and Tsimlyansk towns.

  11. Evaluation of ground-water flow and hydrologic budget for Lake Five-O, a seepage lake in northwestern Florida

    USGS Publications Warehouse

    Grubbs, J.W.

    1995-01-01

    Temporal and spatial distributions of ground-water inflow to, and leakage from Lake Five-O, a softwater, seepage lake in northwestern Florida, were evaluated using hydrologic data and simulation models of the shallow ground-water system adjacent to the lake. The simulation models indicate that ground-water inflow to the lake and leakage from the lake to the ground-water system are the dominant components in the total inflow (precipitation plus ground-water inflow) and total outflow (evaporation plus leakage) budgets of Lake Five-O. Simlulated ground-water inflow and leakage were approximately 4 and 5 times larger than precipitation inputs and evaporative losses, respectively, during calendar years 1989-90. Exchanges of water between Lake Five-O and the ground-water system were consistently larger than atmospheric-lake exchanges. A consistent pattern of shallow ground-water inflow and deep leakage was also evident throughout the study period. The mean time of travel from ground-water that discharges at Lake Five-O (time from recharge at the water table to discharge at the lake) was estimated to be within a range of 3 to 6 years. Flow-path evaluations indicated that the intermediate confining unit probably has a negligible influence on the geochemistry of ground-water inflow to Lake Five-O. The hydrologic budgets and flow-path evaluations provide critical information for developing geochemical budgets for Lake Five-O and for improving the understanding of the relative importance of various processes that regulate the acid-neutralizing capacity of softwater seepage lakes in Florida.

  12. Water quality of Lake Tuscaloosa and streamflow and water quality of selected tributaries to Lake Tuscaloosa, Alabama, 1982-86

    USGS Publications Warehouse

    Slack, L.J.

    1987-01-01

    Lake Tuscaloosa, created in 1969 by the impoundment of North River, provides the primary water supply for Tuscaloosa, Alabama , and surrounding areas. This report describes the percent contribution of major tributaries to the mean inflow to the lake; water quality; and changes in water quality in the lake and selected tributaries. During base flow, about 60% of the total flow into Lake Tuscaloosa is contributed by Binion and Carroll Creeks, which drain only 22% of the Lake Tuscaloosa basin. Binion and Carroll Creek basins are underlain primarily by sand and gravel deposits of the Coker Formation. Mean inflow to the lake was 1,150 cu ft/sec during 1983, a wet year, and 450 cu ft/sec during 1985, a relatively dry year. More than 80% of the total inflow during both years was contributed by North River and Binion, Cripple, and Carroll Creeks. About 59% was contributed by North River during those years. Except for pH, sulfate, and dissolved and total recoverable iron and manganese, the water quality of the tributaries is generally within drinking water limits and acceptable for most uses. The water quality of Lake Tuscaloosa is generally within drinking water limits and acceptable for most uses. The maximum and median concentrations of sulfate increased every year at the dam from 1979 to 1985 (7.2 to 18 mg/L and 6.2 to 14 mg/L, respectively). The dissolved solids concentrations for water at the dam have varied (1979-86) from 27 to 43 mg/L; the sulfate, 5.2 to 18 mg/L; and the dissolved iron, 10 to 250 micrograms/L--all within the recommended drinking water limits. However, concentrations of dissolved manganese and total recoverable iron and manganese at the dam commonly exceeded the recommended drinking water limits. In November 1985, after the summer warmup and increase in biological activity, the water quality at five depth profiles sites on Lake Tuscaloosa was acceptable for most uses, generally. However, a dissolved oxygen concentration of 1 mg/L or less was

  13. Long-Term Variability of Satellite Lake Surface Water Temperatures in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Gierach, M. M.; Matsumoto, K.; Holt, B.; McKinney, P. J.; Tokos, K.

    2014-12-01

    The Great Lakes are the largest group of freshwater lakes on Earth that approximately 37 million people depend upon for fresh drinking water, food, flood and drought mitigation, and natural resources that support industry, jobs, shipping and tourism. Recent reports have stated (e.g., the National Climate Assessment) that climate change can impact and exacerbate a range of risks to the Great Lakes, including changes in the range and distribution of certain fish species, increased invasive species and harmful algal blooms, declining beach health, and lengthened commercial navigation season. In this study, we will examine the impact of climate change on the Laurentian Great Lakes through investigation of long-term lake surface water temperatures (LSWT). We will use the ATSR Reprocessing for Climate: Lake Surface Water Temperature & Ice Cover (ARC-Lake) product over the period 1995-2012 to investigate individual and interlake variability. Specifically, we will quantify the seasonal amplitude of LSWTs, the first and last appearances of the 4°C isotherm (i.e., an important identifier of the seasonal evolution of the lakes denoting winter and summer stratification), and interpret these quantities in the context of global interannual climate variability such as ENSO.

  14. Water pollution control technology and strategy for river-lake systems: a case study in Gehu Lake and Taige Canal.

    PubMed

    Zhang, Yimin; Zhang, Yongchun; Gao, Yuexiang; Zhang, Houhu; Cao, Jianying; Cai, Jinbang; Kong, Xiangji

    2011-07-01

    The Taoge water system is located in the upstream of Taihu Lake basin and is characterized by its multi-connected rivers and lakes. In this paper, current analyses of hydrology, hydrodynamics and water pollution of Gehu Lake and Taige Canal are presented. Several technologies are proposed for pollution prevention and control, and water environmental protection in the Taihu Lake basin. These included water pollution control integration technology for the water systems of Gehu Lake, Taige Canal and Caoqiao River. Additionally, river-lake water quality and quantity regulation technology, ecological restoration technology for polluted and degraded water bodies, and water environmental integration management and optimization strategies were also examined. The main objectives of these strategies are to: (a) improve environmental quality of relative water bodies, prevent pollutants from entering Gehu Lake and Taige Canal, and ensure that the clean water after the pre-treatment through Gehu Lake is not polluted before entering the Taihu Lake through Taige Canal; (b) stably and efficiently intercept and decrease the pollution load entering the lake through enhancing the river outlet ecological system structure function and water self-purifying capacity, and (c) designate Gehu Lake as a regulation system for water quality and water quantity in the Taoge water system and thus guarantee the improvement of the water quality of the inflow into Taihu Lake.

  15. A Global Observatory of Lake Water Quality

    NASA Astrophysics Data System (ADS)

    Tyler, Andrew N.; Hunter, Peter D.; Spyrakos, Evangelos; Neil, Claire; Simis, Stephen; Groom, Steve; Merchant, Chris J.; Miller, Claire A.; O'Donnell, Ruth; Scott, E. Marian

    2017-04-01

    Our planet's surface waters are a fundamental resource encompassing a broad range of ecosystems that are core to global biogeochemical cycling, biodiversity and food and energy security. Despite this, these same waters are impacted by multiple natural and anthropogenic pressures and drivers of environmental change. The complex interaction between physical, chemical and biological processes in surface waters poses significant challenges for in situ monitoring and assessment and this often limits our ability to adequately capture the dynamics of aquatic systems and our understanding of their status, functioning and response to pressures. Recent developments in the availability of satellite platforms for Earth observation (including ESA's Copernicus Programme) offers an unprecedented opportunity to deliver measures of water quality at a global scale. The UK NERC-funded GloboLakes project is a five-year research programme investigating the state of lakes and their response to climatic and other environmental drivers of change through the realization of a near-real time satellite based observatory (Sentinel-3) and archive data processing (MERIS, SeaWiFS) to produce a 20-year time-series of observed ecological parameters and lake temperature for more than 1000 lakes globally. However, the diverse and complex optical properties of lakes mean that algorithm performance often varies markedly between different water types. The GloboLakes project is overcoming this challenge by developing a processing chain whereby algorithms are dynamically selected according to the optical properties of the lake under observation. The development and validation of the GloboLakes processing chain has been supported by access to extensive in situ data from more than thirty partners around the world that are now held in the LIMNADES community-owned data repository developed under the auspices of GloboLakes. This approach has resulted in a step-change in our ability to produce regional and

  16. Role of water source in the growth of kale

    NASA Astrophysics Data System (ADS)

    Coates, M.

    2017-12-01

    Over the course of 2 months we watered Kale with tap water, water from turtle bayou, rain water, water from university lake, and deionized water. We found little difference between height and number of seedlings with different water treatments even though nutrient levels were different between these water sources.

  17. Michigan lakes: An assessment of water quality

    USGS Publications Warehouse

    Minnerick, R.J.

    2004-01-01

    Michigan has more than 11,000 inland lakes, that provide countless recreational opportunities and are an important resource that makes tourism and recreation a $15-billion-dollar per-year industry in the State (Stynes, 2002). Knowledge of the water-quality characteristics of inland lakes is essential for the current and future management of these resources.Historically the U. S. Geological Survey (USGS) and the Michigan Department of Environmental Quality (MDEQ) jointly have monitored water quality in Michigan's lakes and rivers. During the 1990's, however, funding for surface-water-quality monitoring was reduced greatly. In 1998, the citizens of Michigan passed the Clean Michigan Initiative to clean up, protect, and enhance Michigan's environmental infrastructure. Because of expanding water-quality-data needs, the MDEQ and the USGS jointly redesigned and implemented the Lake Water-Quality Assessment (LWQA) Monitoring Program (Michigan Department of Environmental Quality, 1997).

  18. Ingestion, inhalation, and dermal exposures to chloroform and trichloroethene from tap water.

    PubMed Central

    Weisel, C P; Jo, W K

    1996-01-01

    Individuals are exposed to volatile compounds present in tap water by ingestion, inhalation, and dermal absorption. Traditional risk assessments for water often only consider ingestion exposure to toxic chemicals, even though showering has been shown to increase the body burden of certain chemicals due to inhalation exposure and dermal absorption. We collected and analyzed time-series samples of expired alveolar breath to evaluate changes in concentrations of volatile organic compounds being expired, which reflects the rate of change in the bloodstream due to expiration, metabolism, and absorption into tissues. Analysis of chloroform and trichloethene in expired breath, compounds regulated in water, was also used to determine uptake from tap water by each route (inhalation, ingestion, or absorption). Each route of exposure contributed to the total exposure of these compounds from daily water use. Further, the ingestion dose was completely metabolized before entering the bloodstream, whereas the dose from the other routes was dispersed throughout the body. Thus, differences in potential biologically effective doses depend on route, target organ, and whether the contaminant or metabolite is the biologically active agent. Images Figure 1. A Figure 1. B Figure 1. C Figure 2. A Figure 2. B PMID:8834861

  19. Lithium levels in tap water and psychotic experiences in a general population of adolescents.

    PubMed

    Shimodera, Shinji; Koike, Shinsuke; Ando, Shuntaro; Yamasaki, Syudo; Fujito, Ryosuke; Endo, Kaori; Iijima, Yudai; Yamamoto, Yu; Morita, Masaya; Sawada, Ken; Ohara, Nobuki; Okazaki, Yuji; Nishida, Atsushi

    2018-06-09

    Recently, several epidemiologic studies have reported that lithium in drinking water may be associated with lower rates of suicide mortality, lower incidence of dementia, and lower levels of adolescents' depression and aggression at the population level. However, to our knowledge, no study has investigated lithium level in tap water in relation to psychotic experiences in a general population of adolescents. This is the first study to investigate this using a large dataset. Information on psychotic experiences, distress associated with these experiences, and depressive symptoms were collected in 24 public junior high schools in Kochi Prefecture in Japan. Samples were collected from sources that supplied drinking water to schools, and lithium levels were measured using atomic absorption spectrophotometry. The association of lithium levels with psychotic experiences, considering distress as a degree of severity, was examined using an ordinal logistic regression model with schools and depressive symptoms as random effects. In total, 3040 students responded to the self-reporting questionnaire (response rate: 91.8%). Lithium levels in tap water were inversely associated with psychotic experiences (p = 0.021). We concluded that lithium level in tap water was inversely associated with psychotic experiences among a general population of adolescents and may have a preventive effect for such experiences and distress. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The springs of Lake Pátzcuaro: chemistry, salt-balance, and implications for the water balance of the lake

    USGS Publications Warehouse

    Bischoff, James L.; Israde-Alcántara, Isabel; Garduno-Monroy, Victor H.; Shanks, Wayne C.

    2004-01-01

    Lake Pa??tzcuaro, the center of the ancient Tarascan civilization located in the Mexican altiplano west of the city of Morelia, has neither river input nor outflow. The relatively constant lake-salinity over the past centuries indicates the lake is in chemical steady state. Springs of the south shore constitute the primary visible input to the lake, so influx and discharge must be via sub-lacustrine ground water. The authors report on the chemistry and stable isotope composition of the springs, deeming them representative of ground-water input. The springs are dominated by Ca, Mg and Na, whereas the lake is dominated by Na. Combining these results with previously published precipitation/rainfall measurements on the lake, the authors calculate the chemical evolution from spring water to lake water, and also calculate a salt balance of the ground-water-lake system. Comparing Cl and ??18O compositions in the springs and lake water indicates that 75-80% of the spring water is lost evaporatively during evolution toward lake composition. During evaporation Ca and Mg are lost from the water by carbonate precipitation. Each liter of spring water discharging into the lake precipitates about 18.7 mg of CaCO3. Salt balance calculations indicate that ground water input to the lake is 85.9??106 m3/a and ground water discharge from the lake is 23.0??106 m3/a. Thus, the discharge is about 27% of the input, with the rest balanced by evaporation. A calculation of time to reach steady-state ab initio indicates that the Cl concentration of the present day lake would be reached in about 150 a. ?? 2004 Elsevier Ltd. All rights reserved.

  1. Perchlorate in Lake Water from an Operating Diamond Mine.

    PubMed

    Smith, Lianna J D; Ptacek, Carol J; Blowes, David W; Groza, Laura G; Moncur, Michael C

    2015-07-07

    Mining-related perchlorate [ClO4(-)] in the receiving environment was investigated at the operating open-pit and underground Diavik diamond mine, Northwest Territories, Canada. Samples were collected over four years and ClO4(-) was measured in various mine waters, the 560 km(2) ultraoligotrophic receiving lake, background lake water and snow distal from the mine. Groundwaters from the underground mine had variable ClO4(-) concentrations, up to 157 μg L(-1), and were typically an order of magnitude higher than concentrations in combined mine waters prior to treatment and discharge to the lake. Snow core samples had a mean ClO4(-) concentration of 0.021 μg L(-1) (n=16). Snow and lake water Cl(-)/ClO4(-) ratios suggest evapoconcentration was not an important process affecting lake ClO4(-) concentrations. The multiyear mean ClO4(-) concentrations in the lake were 0.30 μg L(-1) (n = 114) in open water and 0.24 μg L(-1) (n = 107) under ice, much below the Canadian drinking water guideline of 6 μg L(-1). Receiving lake concentrations of ClO4(-) generally decreased year over year and ClO4(-) was not likely [biogeo]chemically attenuated within the receiving lake. The discharge of treated mine water was shown to contribute mining-related ClO4(-) to the lake and the low concentrations after 12 years of mining were attributed to the large volume of the receiving lake.

  2. Rapid Detection of Melamine in Tap Water and Milk Using Conjugated "One-Step" Molecularly Imprinted Polymers-Surface Enhanced Raman Spectroscopic Sensor.

    PubMed

    Hu, Yaxi; Lu, Xiaonan

    2016-05-01

    An innovative "one-step" sensor conjugating molecularly imprinted polymers and surface enhanced Raman spectroscopic-active substrate (MIPs-SERS) was investigated for simultaneous extraction and determination of melamine in tap water and milk. This sensor was fabricated by integrating silver nanoparticles (AgNPs) with MIPs synthesized by bulk polymerization of melamine (template), methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross-linking agent), and 2,2'-azobisisobutyronitrile (initiator). Static and kinetic adsorption tests validated the specific affinity of MIPs-AgNPs to melamine and the rapid adsorption equilibration rate. Principal component analysis segregated SERS spectral features of tap water and milk samples with different melamine concentrations. Partial least squares regression models correlated melamine concentrations in tap water and skim milk with SERS spectral features. The limit of detection (LOD) and limit of quantification (LOQ) of melamine in tap water were determined as 0.0019 and 0.0064 mmol/L, while the LOD and LOQ were 0.0165 and 0.055 mmol/L for the determination of melamine in skim milk. However, this sensor is not ideal to quantify melamine in tap water and skim milk. By conjugating MIPs with SERS-active substrate (that is, AgNPs), reproducibility of SERS spectral features was increased, resulting in more accurate detection. The time required to determine melamine in tap water and milk were 6 and 25 min, respectively. The low LOD, LOQ, and rapid detection confirm the potential of applying this sensor for accurate and high-throughput detection of melamine in tap water and milk. © 2016 Institute of Food Technologists®

  3. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water

    PubMed Central

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation. PMID:25186059

  4. Monitoring the water balance of Lake Victoria, East Africa, from space

    NASA Astrophysics Data System (ADS)

    Swenson, Sean; Wahr, John

    2009-05-01

    SummaryUsing satellite gravimetric and altimetric data, we examine trends in water storage and lake levels of multiple lakes in the Great Rift Valley region of East Africa for the years 2003-2008. GRACE total water storage estimates reveal that water storage declined in much of East Africa, by as much as 60 {mm}/{year}, while altimetric data show that lake levels in some large lakes dropped by as much as 1-2 m. The largest declines occurred in Lake Victoria, the Earth's second largest freshwater body. Because the discharge from the outlet of Lake Victoria is used to generate hydroelectric power, the role of human management in the lake's decline has been questioned. By comparing catchment water storage trends to lake level trends, we confirm that climatic forcing explains only about 50decline. This analysis provides an independent means of assessing the relative impacts of climate and human management on the water balance of Lake Victoria that does not depend on observations of dam discharge, which may not be publically available. In the second part of the study, the individual components of the lake water balance are estimated. Satellite estimates of changes in lake level, precipitation, and evaporation are used with observed lake discharge to develop a parameterization for estimating subsurface inflows due to changes in groundwater storage estimated from satellite gravimetry. At seasonal timescales, this approach provides closure to Lake Victoria's water balance to within 17 {mm}/{month}. The third part of this study uses the water balance of a downstream water body, Lake Kyoga, to estimate the outflow from Lake Victoria remotely. Because Lake Kyoga is roughly 20 times smaller in area than Lake Victoria, its water balance is strongly influenced by inflow from Lake Victoria. Lake Kyoga has been shown to act as a linear reservoir, where its outflow is proportional to the height of the lake. This model can be used with satellite altimetric lake levels to estimate a

  5. Wind effects on water and salt loss in playa lakes

    NASA Astrophysics Data System (ADS)

    Torgersen, T.

    1984-10-01

    The theory behind wind stress induced setup of water surface slope on a playa lake is reviewed. Due to the low gradient of the bottom in most playa lakes (1-20 cm km -1), the advance and retreat of lake waters due to wind stress can expose or cover many square kilometers. It is even possible for the surface slope to exceed the bottom slope and thereby create a "roving" lake. Such water movements can transport lake water over undersaturated "shore" sediments and water can therefore infiltrate and be lost without an increase in lake salinity. This case is demonstrated with data from Lake George, New South Wales, Australia. Such wind effects need to be examined for their relation to the diagenesis of sediments, the composition of the bitterns, and the salt budget of playa lakes.

  6. Influence of storage conditions on aluminum concentrations in serum, dialysis fluid, urine, and tap water.

    PubMed

    Wilhelm, M; Ohnesorge, F K

    1990-01-01

    The influence of storage temperature, vessel type, and treatment on alterations of aluminum (Al) concentrations in serum, urine, and dialysis fluid samples was studied at three different concentrations for each sample over an 18-month period. Furthermore, the influence of acidification on Al levels in tap water, urine, and dialysis fluid samples was studied over a four-month period. Al was measured by atomic absorption spectrometry. Sample storage in glass vessels was unsuitable, whereas only minor alterations of Al levels were observed with storage in polypropylene tubes, polystyrene tubes, and Monovettes. By using appropriate plastic containers, acid washing of the vessels showed no improvement. Frozen storage was superior compared with 4 degrees C, whereas storage at -80 degrees C offered no advantage compared with storage at -20 degrees C. Acidification of tap water samples was necessary to stabilize Al levels during storage. No striking effect of acidification on Al levels in urine and dialysis fluid samples was found. It is concluded that longterm storage of serum, urine, tap water, and dialysis fluid samples is possible if appropriate conditions are used.

  7. Compounding Impacts of Climate Change and Increased Human Water Withdrawal on Urmia Lake Water Availability

    NASA Astrophysics Data System (ADS)

    Alborzi, A.; Moftakhari, H.; Azaranfar, A.; Mallakpour, I.; Ashraf, B.; AghaKouchak, A.

    2017-12-01

    In recent decades, climate change and increase in human water withdrawal, combined, have caused ecological degradation in several terminal lakes worldwide. Among them, the shallow and hyper-saline Urmia Lake in Iran has experienced about 6 meters drawdown in lake level and 80% reduction in surface area. Here, we assess the imposed stress on Urmia Basin's water availability and Lake's ecological condition in response to coupled climate change and human-induced water withdrawal. A generalized river basin decision support system model consisting network flow is developed to simulate the basin-lake interactions under a wide range of scenarios. This model explicitly includes water management infrastructure, reservoirs, and irrigation and municipal water use. Studied scenarios represent a wide range of historic climate and water use scenarios including a historical baseline, future increase in water demand, and also improved water efficiency. In this presentation, we show the lake's water level, as a measure of lake's ecological health, under the compounding effects of the climate condition (top-down) and water use (bottom-up) scenarios. This method illustrates what combinations lead to failure in meeting the lake's ecological level.

  8. Lake levels, streamflow, and surface-water quality in the Devils Lake area, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.

    1996-01-01

    The Devils Lake Basin is a 3,810-square-mile (mi2) closed basin (fig. 1) in the Red River of the North Basin. About 3,320 mi2 of the total 3,810 mi2 is tributary to Devils Lake; the remainder is tributary to Stump Lake.Since glaciation, the lake level of Devils Lake has fluctuated from about 1,457 feet (ft) above sea level (asl), the natural spill elevation of the lake to the Sheyenne River, to 1,400 ft asl (Aronow, 1957). Although no documented records of lake levels are available before 1867, Upham (1895, p. 595), on the basis of tree-ring chronology, indicated that the lake level was 1,441 ft asl in 1830. Lake levels were recorded sporadically from 1867 to 1901 when the U.S. Geological Survey established a gaging station on Devils Lake. From 1867 to the present (1996), the lake level has fluctuated between a maximum of 1,438.4 ft asl in 1867 and a minimum of 1,400.9 ft asl in 1940 (fig. 2). On July 31, 1996, the lake level was 1,437.8 ft asl, about 15.2 ft higher than the level recorded in February 1993 and the highest level in about 120 years.Since 1993, the lake level of Devils Lake (fig. 2) has risen rapidly in response to above-normal precipitation from the summer of 1993 to the present, and 30,000 acres of land around the lake have been flooded. The above-normal precipitation also has caused flooding elsewhere in the Devils Lake Basin. State highways near Devils Lake are being raised, and some local roads have been closed because of flooding.In response to the flooding, the Devils Lake Basin Interagency Task Force, comprised of many State and Federal agencies, was formed in 1995 to find and propose intermediate (5 years or less) solutions to reduce the effects of high lake levels. In addition to various planning studies being conducted by Federal agencies, the North Dakota State Water Commission has implemented a project to store water on small tracts of land and in the chain of lakes (Sweetwater Lake, Morrison Lake, Dry Lake, Mikes Lake, Chain Lake

  9. Can we remove iodine-131 from tap water in Japan by boiling? - Experimental testing in response to the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Tagami, K; Uchida, S

    2011-08-01

    Iodine-131 concentrations in tap water higher than 100 BqL(-1) were reported by several local governments in Japan following the Fukushima Daiichi Nuclear Power Plant accident. Some individuals in the emergency-response community recommended the boiling of tap water to remove iodine-131. However, the tap water boiling tests in this study showed no iodine-131 loss from the tap water with either short-term boiling (1-10 min) or prolonged boiling (up to 30 min) resulting in up to 3-fold volume reductions. In this situation, boiling was shown to be not effective in removing iodine-131 from tap water; indeed even higher concentrations may result from the liquid-volume reduction accompanying this process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Extreme drought causes distinct water acidification and eutrophication in the Lower Lakes (Lakes Alexandrina and Albert), Australia

    NASA Astrophysics Data System (ADS)

    Li, Siyue; Bush, Richard T.; Mao, Rong; Xiong, Lihua; Ye, Chen

    2017-01-01

    Droughts are set to increase in frequency and magnitude with climate change and water extraction, and understanding their influence on ecosystems is urgent in the Holocene. Low rainfall across the Murray-Darling Basin (MDB) of Australia resulted in an unprecedented water level decline in the Lower Lakes (Lakes Alexandrina and Albert) at the downstream end of the river system. A comprehensive data covering pre-drought (2004-2006), drought (2007-2010) and post-drought (2010-2013) was firstly used to unravel drought effects on water quality in the contrasting main parts and margins of the two Lakes, particularly following water acidification resulting from acid sulfate soil oxidation. Salinity, nutrients and Chl-a significantly increased during the drought in the Lake main waterbody, while pH remained stable or showed minor shifts. In contrast to the Lake Alexandrina, total dissolved solid (TDS) and electrical conductivity (EC) during the post-drought more than doubled the pre-drought period in the Lake Albert as being a terminal lake system with narrow and shallow entrance. Rewetting of the exposed pyrite-containing sediment resulted in very low pH (below 3) in Lake margins, which positively contributed to salinity increases via SO42- release and limestone dissolution. Very acidic water (pH 2-3) was neutralised naturally by lake refill, but aerial limestone dosing was required for neutralisation of water acidity during the drought period. The Lower Lakes are characterized as hypereutrophic with much higher salinity, nutrient and algae concentrations than guideline levels for aquatic ecosystem. These results suggest that, in the Lower Lakes, drought could cause water quality deterioration through water acidification and increased nutrient and Chl-a concentrations, more effective water management in the lake catchment is thus crucial to prevent the similar water quality deterioration since the projected intensification of droughts. A comparative assessment on lake

  11. Evaporation and transport of water isotopologues from Greenland lakes: The lake size effect

    NASA Astrophysics Data System (ADS)

    Feng, Xiahong; Lauder, Alex M.; Posmentier, Eric S.; Kopec, Ben G.; Virginia, Ross A.

    2016-01-01

    Isotopic compositions of evaporative flux from a lake are used in many hydrological and paleoclimate studies that help constrain the water budget of a lake and/or to infer changes in climate conditions. The isotopic fluxes of evaporation from a water surface are typically computed using a zero dimensional (0-D) model originally conceptualized by Craig and Gordon (1965). Such models generally have laminar and turbulent layers, assume a steady state condition, and neglect horizontal variations. In particular, the effect of advection on isotopic variations is not considered. While this classical treatment can be used for some sections of large open surface water bodies, such as an ocean or a large lake, it may not apply to relatively small water bodies where limited fetch does not allow full equilibration between air from land and the water surface. Both horizontal and vertical gradients in water vapor concentration and isotopic ratios may develop over a lake. These gradients, in turn, affect the evaporative fluxes of water vapor and its isotopic ratios, which is not adequately predicted by a 0-D model. We observed, for the first time, the vertical as well as horizontal components of vapor and isotopic gradients as relatively dry and isotopically depleted air advected over the surfaces of several lakes up to a 5 km fetch under winds of 1-5 m/s in Kangerlussuaq, Greenland. We modeled the vapor and isotopic distribution in air above the lake using a steady state 2-D model, in which vertical diffusive transport balances horizontal advection. The model was verified by our observations, and then used to calculate evaporative fluxes of vapor and its isotopic ratios. In the special case of zero wind speed, the model reduces to 1-D. Results from this 1-D model are compared with those from the 2-D model to assess the discrepancy in isotopic fluxes between advection and no advection conditions. Since wind advection above a lake alters the concentrations, gradients, and

  12. Hydrology and water quality of Shell Lake, Washburn County, Wisconsin, with special emphasis on the effects of diversion and changes in water level on the water quality of a shallow terminal lake

    USGS Publications Warehouse

    Juckem, Paul F.; Robertson, Dale M.

    2013-01-01

    Shell Lake is a relatively shallow terminal lake (tributaries but no outlets) in northwestern Wisconsin that has experienced approximately 10 feet (ft) of water-level fluctuation over more than 70 years of record and extensive flooding of nearshore areas starting in the early 2000s. The City of Shell Lake (City) received a permit from the Wisconsin Department of Natural Resources in 2002 to divert water from the lake to a nearby river in order to lower water levels and reduce flooding. Previous studies suggested that water-level fluctuations were driven by long-term cycles in precipitation, evaporation, and runoff, although questions about the lake’s connection with the groundwater system remained. The permit required that the City evaluate assumptions about lake/groundwater interactions made in previous studies and evaluate the effects of the water diversion on water levels in Shell Lake and other nearby lakes. Therefore, a cooperative study between the City and U.S. Geological Survey (USGS) was initiated to improve the understanding of the hydrogeology of the area and evaluate potential effects of the diversion on water levels in Shell Lake, the surrounding groundwater system, and nearby lakes. Concerns over deteriorating water quality in the lake, possibly associated with changes in water level, prompted an additional cooperative project between the City and the USGS to evaluate efeffects of changes in nutrient loading associated with changes in water levels on the water quality of Shell Lake. Numerical models were used to evaluate how the hydrology and water quality responded to diversion of water from the lake and historical changes in the watershed. The groundwater-flow model MODFLOW was used to simulate groundwater movement in the area around Shell Lake, including groundwater/surface-water interactions. Simulated results from the MODFLOW model indicate that groundwater flows generally northward in the area around Shell Lake, with flow locally converging

  13. [The significance of glucose positive coliform bacteria and potentially pathogenic bacteria as an indicator of epidemiological safety of tap water].

    PubMed

    Zhuravlev, P V; Aleshnya, V V; Panasovets, O P; Morozova, A A; Artemova, T Z; Talaeva, Yu G; Zagaynova, A V

    2013-01-01

    Due to intensive anthropogenic pollution of water environment generally accepted indicators of epidemic security of water bodies--common bacteria (CB) and thermotolerant coliform bacteria (TCB) do not always permit to obtain an objective characterization of bacterial contamination of tap water. From the point of view of authors the integral index--glucose positive coliform bacteria most adequately reflect the sanitary-hygienic and epidemiological situation of water bodies. In monitoring for bacterial quality of tap water it is advisable to determine glucose positive coliform bacteria, that will provide the relevance of estimation of the epidemiological safety of water use. According to the method developed by the authors the calculation of the index of population risk of acute intestinal infections (AHI) occurrence in dependence on the quality of tap water in Azov and Tsimlyansk towns.

  14. Estimating ground-water exchange with lakes using water-budget and chemical mass-balance approaches for ten lakes in ridge areas of Polk and Highlands counties, Florida

    USGS Publications Warehouse

    Sacks, L.A.; Swancar, Amy; Lee, T.M.

    1998-01-01

    Water budget and chemical mass-balance approaches were used to estimate ground-water exchange with 10 lakes in ridge areas of Polk and Highlands Counties, Florida. At each lake, heads were monitored in the surficial aquifer system and deeper Upper Floridan aquifer, lake stage and rainfall were measured continuously, and lakes and wells were sampled three times between October 1995 and December 1996. The water-budget approach computes net ground-water flow (ground-water inflow minus outflow) as the residual of the monthly waterbudget equation. Net ground-water flow varied seasonally at each of the 10 lakes, and was notably different between lakes, illustrating short-term differences in ground-water fluxes. Monthly patterns in net ground-water flow were related to monthly patterns of other hydrologic variables such as rainfall, ground-water flow patterns, and head differences between the lake and the Upper Floridan aquifer. The chemical mass-balance approach combines the water budget and solute or isotope mass-balance equations, and assumes steady-state conditions. Naturally occurring tracers that were analyzed for include calcium, magnesium, sodium, potassium, chloride, and bromide, the isotopes deuterium and oxygen-18. Chloride and sodium were the most successful solute tracers; however, their concentrations in ground water typically varied spatially, and in places were similar to that in lake water, limiting their sensitivity as tracers. In contrast, the isotopes were more robust tracers because the isotopic composition of ground water was relatively uniform and was distinctly different from the lake water. Groundwater inflow computed using the chemical massbalance method varied significantly between lakes, and ranged from less than 10 to more than 150 inches per year. Both water-budget and chemical mass-balance approaches had limitations, but the multiple lines of evidence gained using both approaches improved the understanding of the role of ground water in the

  15. Water quality of least-impaired lakes in eastern and southern Arkansas

    USGS Publications Warehouse

    Justus, B.

    2010-01-01

    A three-phased study identified one least-impaired (reference) lake for each of four Arkansas lake classifications: three classifications in the Mississippi Alluvial Plain (MAP) ecoregion and a fourth classification in the South Central Plains (SCP) ecoregion. Water quality at three of the least-impaired lakes generally was comparable and also was comparable to water quality from Kansas and Missouri reference lakes and Texas least-impaired lakes. Water quality of one least-impaired lake in the MAP ecoregion was not as good as water quality in other least-impaired lakes in Arkansas or in the three other states: a probable consequence of all lakes in that classification having a designated use as a source of irrigation water. Chemical and physical conditions for all four lake classifications were at times naturally harsh as limnological characteristics changed temporally. As a consequence of allochthonous organic material, oxbow lakes isolated within watersheds comprised of swamps were susceptible to low dissolved oxygen concentrations to the extent that conditions would be limiting to some aquatic biota. Also, pH in lakes in the SCP ecoregion was <6.0, a level exceeding current Arkansas water-quality standards but typical of black water systems. Water quality of the deepest lakes exceeded that of shallow lakes. N/P ratios and trophic state indices may be less effective for assessing water quality for shallow lakes (<2 m) than for deep lakes because there is an increased exposure of sediment (and associated phosphorus) to disturbance and light in the former. ?? 2009 Springer Science+Business Media B.V.

  16. Water quality of least-impaired lakes in eastern and southern Arkansas.

    PubMed

    Justus, Billy

    2010-09-01

    A three-phased study identified one least-impaired (reference) lake for each of four Arkansas lake classifications: three classifications in the Mississippi Alluvial Plain (MAP) ecoregion and a fourth classification in the South Central Plains (SCP) ecoregion. Water quality at three of the least-impaired lakes generally was comparable and also was comparable to water quality from Kansas and Missouri reference lakes and Texas least-impaired lakes. Water quality of one least-impaired lake in the MAP ecoregion was not as good as water quality in other least-impaired lakes in Arkansas or in the three other states: a probable consequence of all lakes in that classification having a designated use as a source of irrigation water. Chemical and physical conditions for all four lake classifications were at times naturally harsh as limnological characteristics changed temporally. As a consequence of allochthonous organic material, oxbow lakes isolated within watersheds comprised of swamps were susceptible to low dissolved oxygen concentrations to the extent that conditions would be limiting to some aquatic biota. Also, pH in lakes in the SCP ecoregion was <6.0, a level exceeding current Arkansas water-quality standards but typical of black water systems. Water quality of the deepest lakes exceeded that of shallow lakes. N/P ratios and trophic state indices may be less effective for assessing water quality for shallow lakes (<2 m) than for deep lakes because there is an increased exposure of sediment (and associated phosphorus) to disturbance and light in the former.

  17. 40 CFR 141.86 - Monitoring requirements for lead and copper in tap water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Monitoring requirements for lead and... § 141.86 Monitoring requirements for lead and copper in tap water. (a) Sample site location. (1) By the applicable date for commencement of monitoring under paragraph (d)(1) of this section, each water system...

  18. 40 CFR 141.86 - Monitoring requirements for lead and copper in tap water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Monitoring requirements for lead and... § 141.86 Monitoring requirements for lead and copper in tap water. (a) Sample site location. (1) By the applicable date for commencement of monitoring under paragraph (d)(1) of this section, each water system...

  19. 40 CFR 141.86 - Monitoring requirements for lead and copper in tap water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Monitoring requirements for lead and... § 141.86 Monitoring requirements for lead and copper in tap water. (a) Sample site location. (1) By the applicable date for commencement of monitoring under paragraph (d)(1) of this section, each water system...

  20. Hydrology and water quality of Park Lake, south-central Wisconsin

    USGS Publications Warehouse

    Kammerer, P.A.

    1996-01-01

    Park Lake extends to the northeast from the village of Pardeeville in Columbia County (fig. 1). Local residents perceive water-quality problems in the lake that include excessive algae and aquatic plant growth. Algae and plant growth in a lake are controlled, in part, by the availability of phosphorus in the water. However, no measurements of phosphorus enter- ing the lake or of other factors that affect lake-water quality had been made, and available data on water quality were limited to 2 years of measurements at one site in the lake in 1986- 87. To obtain the data and in- formation needed to address the water-quality problems at Park Lake and to develop a management plan that would limit the input of phosphorus to the lake, the U.S. Geologi- cal Survey, in cooperation with the Park Lake Management District, studied the hydrology of the lake and collected data needed to determine sources and amount of phosphorus en- tering the lake. This Fact Sheet summarizes the results of that study. Data collected during the study were published in a separate report (Holmstrom and others, 1994, p. 70-85).

  1. TIME TO PREGNANCY IN RELATION TO TOTAL TRIHALOMETHANE LEVELS IN TAP WATER

    EPA Science Inventory

    Time to pregnancy in relation to total trihalomethane levels in tap water
    Shanna H. Swan, Cuirong Ren, Gayle C. Windham, Laura Fenster, Kirsten Waller. (University of Missouri and California Department of Health Services).

    We have previously reported increased risks o...

  2. Water quality monitoring records for estimating tap water arsenic and nitrate: a validation study.

    PubMed

    Searles Nielsen, Susan; Kuehn, Carrie M; Mueller, Beth A

    2010-01-28

    Tap water may be an important source of exposure to arsenic and nitrate. Obtaining and analyzing samples in the context of large studies of health effects can be expensive. As an alternative, studies might estimate contaminant levels in individual homes by using publicly available water quality monitoring records, either alone or in combination with geographic information systems (GIS). We examined the validity of records-based methods in Washington State, where arsenic and nitrate contamination is prevalent but generally observed at modest levels. Laboratory analysis of samples from 107 homes (median 0.6 microg/L arsenic, median 0.4 mg/L nitrate as nitrogen) served as our "gold standard." Using Spearman's rho we compared these measures to estimates obtained using only the homes' street addresses and recent and/or historical measures from publicly monitored water sources within specified distances (radii) ranging from one half mile to 10 miles. Agreement improved as distance decreased, but the proportion of homes for which we could estimate summary measures also decreased. When including all homes, agreement was 0.05-0.24 for arsenic (8 miles), and 0.31-0.33 for nitrate (6 miles). Focusing on the closest source yielded little improvement. Agreement was greatest among homes with private wells. For homes on a water system, agreement improved considerably if we included only sources serving the relevant system (rho = 0.29 for arsenic, rho = 0.60 for nitrate). Historical water quality databases show some promise for categorizing epidemiologic study participants in terms of relative tap water nitrate levels. Nonetheless, such records-based methods must be used with caution, and their use for arsenic may be limited.

  3. Multi-Elements in Waters and Sediments of Shallow Lakes: Relationships with Water, Sediment, and Watershed Characteristics.

    PubMed

    Kissoon, La Toya T; Jacob, Donna L; Hanson, Mark A; Herwig, Brian R; Bowe, Shane E; Otte, Marinus L

    2015-06-01

    We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds.

  4. Multi-Elements in Waters and Sediments of Shallow Lakes: Relationships with Water, Sediment, and Watershed Characteristics

    PubMed Central

    Jacob, Donna L.; Hanson, Mark A.; Herwig, Brian R.; Bowe, Shane E.; Otte, Marinus L.

    2015-01-01

    We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds. PMID:26074657

  5. Water Quality and Hydrology of Silver Lake, Barron County, Wisconsin, With Special Emphasis on Responses of a Terminal Lake to Changes in Phosphorus Loading and Water Level

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.; Fitzpatrick, Faith A.

    2009-01-01

    Silver Lake is typically an oligotrophic-to-mesotrophic, soft-water, terminal lake in northwestern Wisconsin. A terminal lake is a closed-basin lake with surface-water inflows but no surface-water outflows to other water bodies. After several years with above-normal precipitation, very high water levels caused flooding of several buildings near the lake and erosion of soil around much of the shoreline, which has been associated with a degradation in water quality (increased phosphorus and chlorophyll a concentrations and decreased water clarity). To gain a better understanding of what caused the very high water levels and degradation in water quality and collect information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. This report describes results of the study; specifically, lake-water quality, historical changes in water level, water and phosphorus budgets for the two years monitored in the study, results of model simulations that demonstrate how changes in phosphorus inputs affect lake-water quality, and the relative importance of changes in hydrology and changes in the watershed to the water quality of the lake. From 1987 to about 1996, water quality in Silver Lake was relatively stable. Since 1996, however, summer average total phosphorus concentrations increased from about 0.008 milligrams per liter (mg/L) to 0.018 mg/L in 2003, before decreasing to 0.011 mg/L in 2008. From 1996 to 2003, Secchi depths decreased from about 14 to 7.4 feet, before increasing to about 19 feet in 2008. Therefore, Silver Lake is typically classified as oligotrophic to mesotrophic; however, during 2002-4, the lake was classified as mesotrophic to eutrophic. Because productivity in Silver Lake is limited by phosphorus, phosphorus budgets for the lake were constructed for monitoring years 2005 and 2006. The average annual input of phosphorus was 216 pounds: 78 percent from tributary and

  6. Relationship between tap water hardness, magnesium, and calcium concentration and mortality due to ischemic heart disease or stroke in The Netherlands.

    PubMed

    Leurs, Lina J; Schouten, Leo J; Mons, Margreet N; Goldbohm, R Alexandra; van den Brandt, Piet A

    2010-03-01

    Conflicting results on the relationship between the hardness of drinking water and mortality related to ischemic heart disease (IHD) or stroke have been reported. We investigated the possible association between tap water calcium or magnesium concentration and total hardness and IHD mortality or stroke mortality. In 1986, a cohort of 120,852 men and women aged 5569 years provided detailed information on dietary and other lifestyle habits. Follow-up for mortality until 1996 was established by linking data from the Central Bureau of Genealogy and Statistics Netherlands. We calculated tap water hardness for each postal code using information obtained from all pumping stations in the Netherlands. Tap water hardness was categorized as soft [< 1.5 mmol/L calcium carbonate (CaCO3)], medium hard (1.62.0 mmol/L CaCO3), and hard (> 2.0 mmol/L CaCO3). The multivariate case-cohort analysis was based on 1,944 IHD mortality and 779 stroke mortality cases and 4,114 subcohort members. For both men and women, we observed no relationship between tap water hardness and IHD mortality [hard vs. soft water: hazard ratio (HR) = 1.03; 95% confidence interval (CI), 0.851.28 for men and HR = 0.93; 95% CI, 0.711.21 for women) and stroke mortality (hard vs. soft water HR = 0.90; 95% CI, 0.661.21 and HR = 0.86; 95% CI, 0.621.20, respectively). For men with the 20% lowest dietary magnesium intake, an inverse association was observed between tap water magnesium intake and stroke mortality (HR per 1 mg/L intake = 0.75; 95% CI, 0.610.91), whereas for women with the 20% lowest dietary magnesium intake, the opposite was observed. We found no evidence for an overall significant association between tap water hardness, magnesium or calcium concentrations, and IHD mortality or stroke mortality. More research is needed to investigate the effect of tap water magnesium on IHD mortality or stroke mortality in subjects with low dietary magnesium intake.

  7. Water quality and bathymetry of Sand Lake, Anchorage, Alaska

    USGS Publications Warehouse

    Donaldson, Donald E.

    1976-01-01

    Sand Lake, a dimictic lowland lake in Anchorage, Alaska, has recently become as urban lake. Analyses indicate that the lake is oligotrophic, having low dissolved solids and nutrient concentrations. Snowmelt runoff from an adjacent residential area, however, has a dissolved-solids concentration 10 times that of the main body of Sand Lake. Lead concentrations in the runoff exceed known values from other water in the ANchorage area, including water samples taken beneath landfills. The volume of the snowmelt runoff has not been measured. The data presented can be used as a baseline for water-resource management. (Woodard-USGS)

  8. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water.

    PubMed

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Groundwater and surface-water interactions near White Bear Lake, Minnesota, through 2011

    USGS Publications Warehouse

    Jones, Perry M.; Trost, Jared J.; Rosenberry, Donald O.; Jackson, P. Ryan; Bode, Jenifer A.; O'Grady, Ryan M.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the White Bear Lake Conservation District, the Minnesota Pollution Control Agency, the Minnesota Department of Natural Resources, and other State, county, municipal, and regional planning agencies, watershed organizations, and private organizations, conducted a study to characterize groundwater and surface-water interactions near White Bear Lake through 2011. During 2010 and 2011, White Bear Lake and other lakes in the northeastern part of the Twin Cities Metropolitan Area were at historically low levels. Previous periods of lower water levels in White Bear Lake correlate with periods of lower precipitation; however, recent urban expansion and increased pumping from the Prairie du Chien-Jordan aquifer have raised the question of whether a decline in precipitation is the primary cause for the recent water-level decline in White Bear Lake. Understanding and quantifying the amount of groundwater inflow to a lake and water discharge from a lake to aquifers is commonly difficult but is important in the management of lake levels. Three methods were used in the study to assess groundwater and surface-water interactions on White Bear Lake: (1) a historical assessment (1978-2011) of levels in White Bear Lake, local groundwater levels, and their relation to historical precipitation and groundwater withdrawals in the White Bear Lake area; (2) recent (2010-11) hydrologic and water-quality data collected from White Bear Lake, other lakes, and wells; and (3) water-balance assessments for White Bear Lake in March and August 2011. An analysis of covariance between average annual lake-level change and annual precipitation indicated the relation between the two variables was significantly different from 2003 through 2011 compared with 1978 through 2002, requiring an average of 4 more inches of precipitation per year to maintain the lake level. This shift in the linear relation between annual lake-level change and annual precipitation

  10. The relation of communication to risk judgment and preventive behavior related to lead in tap water.

    PubMed

    Griffin, R J; Dunwoody, S

    2000-01-01

    More and more communities are becoming concerned about health risks posed by lead and other health hazards in their drinking water. Our study, applying the model of innovation diffusion to the adoption of preventive health behaviors, found that reliance on health professionals for information about lead in tap water was associated with residents perceiving risk from this hazard, their sense of efficacy in dealing with it, and their adoption of preventive behaviors. Mass media and pamphlets mailed directly to residents were relatively ineffective. Results suggest that interpersonal channels may be the best way to reach individuals who live in areas of highest risk from tap water lead.

  11. Coastal groundwater/surface-water interactions: a Great Lakes case study

    USGS Publications Warehouse

    Neff, Brian P.; Haack, Sheridan K.; Rosenberry, Donald O.; Savino, Jacqueline F.; Lundstrom, Scott C.

    2006-01-01

    Key similarities exist between marine and Great Lakes coastal environments. Water and nutrient fluxes across lakebeds in the Great Lakes are influenced by seiche and wind set-up and set-down, analogous to tidal influence in marine settings. Groundwater/surface-water interactions also commonly involve a saline-fresh water interface, although in the Great-Lakes cases, it is groundwater that is commonly saline and surface water that is fresh. Evapotranspiration also affects nearshore hydrology in both settings. Interactions between groundwater and surface water have recently been identified as an important component of ecological processes in the Great Lakes. Water withdrawals and the reversal of the groundwater/surface water seepage gradient are also common to many coastal areas around the Great Lakes. As compared to surface water, regional groundwater that discharges to western Lake Erie from Michigan is highly mineralized. Studies conducted by the U.S. Geological Survey at Erie State Game Area in southeastern Michigan, describe groundwater flow dynamics and chemistry, shallow lake-water chemistry, and fish and invertebrate communities. Results presented here provide an overview of recent progress of ongoing interdisciplinary studies of Great Lakes nearshore systems and describe a conceptual model that identifies relations among geologic, hydrologic, chemical, and biological processes in the coastal habitats of Lake Erie. This conceptual model is based on analysis of hydraulic head in piezometers at the study site and chemical analysis of deep and shallow coastal groundwater.

  12. Survey and significance of filamentous fungi from tap water.

    PubMed

    Gonçalves, Ana B; Paterson, R Russell M; Lima, Nelson

    2006-05-01

    Fungi in drinking water are involved in the production of tastes and odours in water. Health problems are possible, originating from mycotoxins, animal pathogens and allergies. This report concerns the surveillance of mesophilic fungi in tap water and assessment of their potential for causing problems. The methods for the determination of the filamentous fungi (ff) were filtering, swabbing and baiting. Tap water, half-strength corn meal, neopeptone-glucose rose Bengal aureomycin (NGRBA) and oomycete selective agars for the enumeration of colony forming units (cfu) were used. Samples were taken consecutively over 16 months. Filtration and NGRBA gave the highest ff counts. A total of 340 taxa were isolated. There appeared to be a negative correlation between bacterial and yeast (b/y) and ff counts. Highest counts were found in winter months for ff and in the warmer months for b/y. Penicillium (40.6%) and Acremonium (38.8%) were the most frequently isolated ff. There was a difference in the pattern of isolation of the key taxa with season: penicillia predominated in early summer and Acremonium in winter. P. expansum was isolated in high numbers in May 2004. This species is associated with the production of the mycotoxin patulin and the odour secondary metabolite geosmin. P. brevicompactum was detected throughout the sampling period and is known to produce the immunosuppressive drug mycophenolic acid. Acremonium is associated with ocentol production which is responsible for bad tastes and flavours. The remaining taxa were Phialophora sp. (4.1%), Cladosporium sp. (3.5%), Rhizopus stolonifer (2.9%), Chaetomium sp. (0.6%), Alternaria sp. (0.3%), Aspergillus sp. (0.3%), mycelia sterilia (2.6%) and unidentified (6.2%). It is emphasised that few Aspergillus and no Fusarium strains were isolated. Rhizopus stolonifer was obtained. However, none of the fungi isolated at mesophilic temperature used could be described as being involved with pathogenicity per se.

  13. Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition.

    PubMed

    Lautenschlager, Karin; Boon, Nico; Wang, Yingying; Egli, Thomas; Hammes, Frederik

    2010-09-01

    Drinking water quality is routinely monitored in the distribution network but not inside households at the point of consumption. Fluctuating temperatures, residence times (stagnation), pipe materials and decreasing pipe diameters can promote bacterial growth in buildings. To test the influence of stagnation in households on the bacterial cell concentrations and composition, water was sampled from 10 separate households after overnight stagnation and after flushing the taps. Cell concentrations, measured by flow cytometry, increased (2-3-fold) in all water samples after stagnation. This increase was also observed in adenosine tri-phosphate (ATP) concentrations (2-18-fold) and heterotrophic plate counts (4-580-fold). An observed increase in cell biovolume and ATP-per-cell concentrations furthermore suggests that the increase in cell concentrations was due to microbial growth. After 5 min flushing of the taps, cell concentrations and water temperature decreased to the level generally found in the drinking water network. Denaturing gradient gel electrophoresis also showed a change in the microbial composition after stagnation. This study showed that water stagnation in household pipes results in considerable microbial changes. While hygienic risk was not directly assessed, it emphasizes the need for the development of good material validation methods, recommendations and spot tests for in-house water installations. However, a simple mitigation strategy would be a short flushing of taps prior to use. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Discharge, water temperature, and selected meteorological data for Vancouver Lake, Vancouver, Washington, water years 2011-13

    USGS Publications Warehouse

    Foreman, James R.; Marshall, Cameron A.; Sheibley, Rich W.

    2014-01-01

    The U.S. Geological Survey partnered with the Vancouver Lake Watershed Partnership in a 2-year intensive study to quantify the movement of water and nutrients through Vancouver Lake in Vancouver, Washington. This report is intended to assist the Vancouver Lake Watershed Partnership in evaluating potential courses of action to mitigate seasonally driven blooms of harmful cyanobacteria and to improve overall water quality of the lake. This report contains stream discharge, lake water temperature, and selected meteorological data for water years 2011, 2012, and 2013 that were used to develop the water and nutrient budgets for the lake.

  15. Towards metering tap water by Lorentz force velocimetry

    NASA Astrophysics Data System (ADS)

    Vasilyan, Suren; Ebert, Reschad; Weidner, Markus; Rivero, Michel; Halbedel, Bernd; Resagk, Christian; Fröhlich, Thomas

    2015-11-01

    In this paper, we present enhanced flow rate measurement by applying the contactless Lorentz Force Velocimetry (LFV) technique. Particularly, we show that the LFV is a feasible technique for metering the flow rate of salt water in a rectangular channel. The measurements of the Lorentz forces as a function of the flow rate are presented for different electrical conductivities of the salt water. The smallest value of conductivity is achieved at 0.06 S·m-1, which corresponds to the typical value of tap water. In comparison with previous results, the performance of LFV is improved by approximately 2 orders of magnitude by means of a high-precision differential force measurement setup. Furthermore, the sensitivity curve and the calibration factor of the flowmeter are provided based on extensive measurements for the flow velocities ranging from 0.2 to 2.5 m·s-1 and conductivities ranging from 0.06 to 10 S·m-1.

  16. Spatial and temporal variations in the relationship between lake water surface temperatures and water quality - A case study of Dianchi Lake.

    PubMed

    Yang, Kun; Yu, Zhenyu; Luo, Yi; Yang, Yang; Zhao, Lei; Zhou, Xiaolu

    2018-05-15

    Global warming and rapid urbanization in China have caused a series of ecological problems. One consequence has involved the degradation of lake water environments. Lake surface water temperatures (LSWTs) significantly shape water ecological environments and are highly correlated with the watershed ecosystem features and biodiversity levels. Analysing and predicting spatiotemporal changes in LSWT and exploring the corresponding impacts on water quality is essential for controlling and improving the ecological water environment of watersheds. In this study, Dianchi Lake was examined through an analysis of 54 water quality indicators from 10 water quality monitoring sites from 2005 to 2016. Support vector regression (SVR), Principal Component Analysis (PCA) and Back Propagation Artificial Neural Network (BPANN) methods were applied to form a hybrid forecasting model. A geospatial analysis was conducted to observe historical LSWTs and water quality changes for Dianchi Lake from 2005 to 2016. Based on the constructed model, LSWTs and changes in water quality were simulated for 2017 to 2020. The relationship between LSWTs and water quality thresholds was studied. The results show limited errors and highly generalized levels of predictive performance. In addition, a spatial visualization analysis shows that from 2005 to 2020, the chlorophyll-a (Chla), chemical oxygen demand (COD) and total nitrogen (TN) diffused from north to south and that ammonia nitrogen (NH 3 -N) and total phosphorus (TP) levels are increases in the northern part of Dianchi Lake, where the LSWT levels exceed 17°C. The LSWT threshold is 17.6-18.53°C, which falls within the threshold for nutritional water quality, but COD and TN levels fall below V class water quality standards. Transparency (Trans), COD, biochemical oxygen demand (BOD) and Chla levels present a close relationship with LSWT, and LSWTs are found to fundamentally affect lake cyanobacterial blooms. Copyright © 2017 Elsevier B.V. All

  17. Calcium contained tap water phenomena: students misconception patterns of acids-bases concept

    NASA Astrophysics Data System (ADS)

    Liliasari, S.; Albaiti, A.; Wahyudi, A.

    2018-05-01

    Acids and bases concept is very important and fundamental concept in learning chemistry. It is one of the chemistry subjects considered as an abstract and difficult concept to understand. The aim of this research was to explore student’s misconception pattern about acids and bases phenomena in daily life, such as calcium contained tap water. This was a qualitative research with descriptive methods. Participants were 546 undergraduate students of chemistry education and chemistry program, and graduate students of chemistry education in West Java, Indonesia. The test to explore students’ misconception about this phenomena was essay test. The results showed that there were five patterns of students’ misconception in explaining the phenomena of calcium carbonate precipitation on heating tap water. Students used irrelevant concepts in explaining this phenomena, i.e. temporary hardness, coagulation, density, and phase concepts. No students had right answer in explaining this phenomena. This research contributes to design meaningful learning and to achieve better understanding.

  18. Water resources of the New Orleans area, Louisiana

    USGS Publications Warehouse

    Eddards, Miles LeRoy; Kister, L.R.; Scarcia, Glenn

    1956-01-01

    Industry, commerce, and public utilities in 1954 withdrew about 1,500 mgd from surface- and groundwater sources in the New Orleans area. Most of the withdrawal was made from the Mississippi River. However, some withdrawal of surface water was made from Lake Pontchartrain. A large part of the withdrawal from both ground- and surface-water sources is available for reuse. Ground-water withdrawal amounts to about 100 mgd and is primarily for industrial and commercial uses. The average flow of the Mississippi River for the 23-year period, 1931--54, amounted to 309,000 mgd, and the approximate average flow of all the tributaries to Lake Pontchartrain is about 4,000 mgd. The flow of the Pearl River, which adjoins the tributary drainage area of Lake Pontchartrain, averages about 8,000 mgd. Total withdrawal of ground and surface waters amounts to less than 3 percent of the recorded minimum flow of the Mississippi River or less than 1 percent of the average flow. Although large quantities of water are always available in the Mississippi River the quality of the Water is not suitable for all uses. Streams from the north that drain into Lakes Maurepas and Pontchartrain, and the aquifers in that area, offer one of the best sources of fresh water in the State. Industry, if located on the northern shores of Lake Maurepas or Lake Pontchartrain near the mouths of these tributaries, would be assured of an ample supply of either ground or surface water of excellent quality. All the tributaries north of Lake Pontchartrain have dry-weather flows which are dependable. The Pearl River above Bogalusa also is a good source of fresh water of excellent quality. At present it serves to dilute the tidal flow of salt water into Lake Pontchartrain through the Rigolets, the principal outlet of the lake. In the area north of Lake Pontchartrain, wells 60 to 2,000 feet deep yield fresh water. There are no known wells tapping sands below 2,000 feet. However, electrical logs of. oil-test wells show

  19. Irrigation of continent catheterizable ileal pouches: tap water can replace sterile solutions because it is safe, easy, and economical.

    PubMed

    Birkhäuser, Frédéric D; Zehnder, Pascal; Roth, Beat; Schürch, Leander; Ochsner, Katharina; Willener, Rita; Thalmann, George N; Burkhard, Fiona C; Studer, Urs E

    2011-04-01

    Continent catheterizable ileal pouches require regular irrigations to reduce the risk of bacteriuria and urinary tract infections (UTIs). Our aim was to compare the UTI rate, patient friendliness, and costs of standard sterile irrigation versus irrigation with tap water. Twenty-three patients participated in a prospective randomized two-arm crossover single-center trial. Aseptic intermittent self-catheterization (ISC) combined with sterile sodium chloride (NaCl) 0.9% irrigation was compared with clean ISC and irrigation with tap water (H(2)O) during two study periods of 90 d each. Patients underwent daily pouch irrigations with NaCl 0.9% solution or tap water. Urine nitrite dipstick tests were evaluated daily; urine culture (UC) and patient friendliness were evaluated monthly. Costs were documented. A total of 3916 study days with nitrite testing and irrigation were analyzed, 1876 (48%) in the NaCl arm and 2040 (52%) in the H(2)O arm. In the NaCl arm, 418 study days (22%) with nitrite-positive dipsticks were recorded, 219 d (11%) in the H(2)O arm, significantly fewer (p=0.01). Of the 149 UCs, 96 (64%) were positive, 48 in each arm, revealing a total of 16 different germs. All patients preferred the H(2)O method. Monthly costs were up to 20 times lower in the H(2)O arm. Pouch irrigation with sterile NaCl 0.9% solution and tap water had comparable rates of positive UC. Irrigation with tap water significantly lowered the incidence of nitrite-positive study days and was substantially less costly and more patient friendly than NaCl irrigation. We therefore recommend the use of tap water (or bottled water) instead of sterile NaCl 0.9% solution for daily irrigation of continent catheterizable ileal pouches. Australian New Zealand Clinical Trials Registry, ACTRN12610000618055, http://www.ANZCTR.org.au/ACTRN12610000618055.aspx. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  20. Quantifying tap-to-household water quality deterioration in urban communities in Vellore, India: The impact of spatial assumptions.

    PubMed

    Alarcon Falconi, Tania M; Kulinkina, Alexandra V; Mohan, Venkata Raghava; Francis, Mark R; Kattula, Deepthi; Sarkar, Rajiv; Ward, Honorine; Kang, Gagandeep; Balraj, Vinohar; Naumova, Elena N

    2017-01-01

    Municipal water sources in India have been found to be highly contaminated, with further water quality deterioration occurring during household storage. Quantifying water quality deterioration requires knowledge about the exact source tap and length of water storage at the household, which is not usually known. This study presents a methodology to link source and household stored water, and explores the effects of spatial assumptions on the association between tap-to-household water quality deterioration and enteric infections in two semi-urban slums of Vellore, India. To determine a possible water source for each household sample, we paired household and tap samples collected on the same day using three spatial approaches implemented in GIS: minimum Euclidean distance; minimum network distance; and inverse network-distance weighted average. Logistic and Poisson regression models were used to determine associations between water quality deterioration and household-level characteristics, and between diarrheal cases and water quality deterioration. On average, 60% of households had higher fecal coliform concentrations in household samples than at source taps. Only the weighted average approach detected a higher risk of water quality deterioration for households that do not purify water and that have animals in the home (RR=1.50 [1.03, 2.18], p=0.033); and showed that households with water quality deterioration were more likely to report diarrheal cases (OR=3.08 [1.21, 8.18], p=0.02). Studies to assess contamination between source and household are rare due to methodological challenges and high costs associated with collecting paired samples. Our study demonstrated it is possible to derive useful spatial links between samples post hoc; and that the pairing approach affects the conclusions related to associations between enteric infections and water quality deterioration. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Relation of dietary inorganic arsenic to serum matrix metalloproteinase-9 (MMP-9) at different threshold concentrations of tap water arsenic

    PubMed Central

    Kurzius-Spencer, Margaret; Harris, Robin B.; Hartz, Vern; Roberge, Jason; Hsu, Chiu-Hsieh; O’Rourke, Mary Kay; Burgess, Jefferey L.

    2015-01-01

    Arsenic (As) exposure is associated with cancer, lung and cardiovascular disease, yet the mechanisms involved are not clearly understood. Elevated matrix metalloproteinase-9 (MMP-9) levels are also associated with these diseases, as well as with exposure to water As. Our objective was to evaluate the effects of dietary components of inorganic As (iAs) intake on serum MMP-9 concentration at differing levels of tap water As. In a cross-sectional study of 214 adults, dietary iAs intake was estimated from 24-h dietary recall interviews using published iAs residue data; drinking and cooking water As intake from water samples and consumption data. Aggregate iAs intake (food plus water) was associated with elevated serum MMP-9 in mixed model regression, with and without adjustment for covariates. In models stratified by tap water As, aggregate intake was a significant positive predictor of serum MMP-9 in subjects exposed to water As ≤10 μg/l. Inorganic As from food alone was associated with serum MMP-9 in subjects exposed to tap water As ≤3 μg/l. Exposure to iAs from food and water combined, in areas where tap water As concentration is ≤10 μg/l, may contribute to As-induced changes in a biomarker associated with toxicity. PMID:25605447

  2. Hydrology and water quality of East Lake Tohopekaliga, Osceola County, Florida

    USGS Publications Warehouse

    Schiffer, Donna M.

    1987-01-01

    East Lake Tohopekaliga, one of the major lakes in central Florida, is located in the upper Kissimmee River basin in north-east Osceola County. It is one of numerous lakes in the upper basin used for flood control, in addition to recreation and some irrigation of surrounding pasture. This report is the fourth in a series of lake reconnaissance studies in the Kissimmee River basin prepared in cooperation with the South Florida Water Management District. The purpose of the report is to provide government agencies and the public with a brief summary of the lake 's hydrology and water quality. Site information is given and includes map number, site name, location, and type of data available (specific conductivity, pH, alkalinity, turbidity, color, dissolved oxygen, hardness, dissolved chlorides, dissolved sodium, dissolved calcium, dissolved magnesium, dissolved potassium, nitrogen, ammonia, nitrates, carbon and phosphorus). The U.S. Geological Survey (USGS) maintained a lake stage gaging station on East Lake Tohopekaliga from 1942 to 1968. The South Florida Water Management District has recorded lake stage since 1963. Periodic water quality samples have been collected from the lake by the South Florida Water Management District and USGS. Water quality and discharge data have been collected for one major tributary to the lake, Boggy Creek. Although few groundwater data are available for the study area, results of previous studies of the groundwater resources of Osceola County are included in this report. To supplement the water quality data for East Lake Tohopekaliga, water samples were collected at selected sites in November 1982 (dry season) and in August 1983 (rainy season). Samples were taken at inflow points, and in the lake, and vertical profiles of dissolved oxygen and temperature were measured in the lake. A water budget from an EPA report on the lake is also included. (Lantz-PTT)

  3. Water footprint concept for a sustainable water resources management in Urmia Lake basin, Iran

    NASA Astrophysics Data System (ADS)

    Jabbari, Anahita; Jarihani, Ben; Rezaie, Hossein; Aligholiniya, Tohid; Rasouli, Negar

    2015-04-01

    The fast shrinkage of Urmia Lake in West Azerbaijan, Iran is one of the most important environmental change hotspots. The dramatic water level reduction (up to 6 meters) has influential environmental, socio-economic and health impacts on Urmia plain and its habitants. The decline is generally blamed on a combination of drought, increased water diversion for irrigated agriculture within the lake's watershed and land use mismanagement. The Urmia Lake sub basins are the agricultural cores of the region and the agricultural activities are the major water consuming sections of the basin. Land use changes and mismanagement in the land use decisions and policies is one of the most important factors in lake shrinkage in recent decades. Fresh water is the main source of water for agricultural usages in the basin. So defining a more low water consuming land use pattern will put less pressure on limited water resources. The above mentioned fact in this study has been assessed through water footprint concept. The water footprint concept (as a quantitative measure showing the appropriation of natural resources) is a comprehensive indicator that can have a crucial role in efficient land use management. In order to evaluate the water use patterns, the water footprint of wheat (as a traditional crop) and apple (recently most popular) have been compared and the results have been discussed in the aspect of the impacts on Lake Urmia demands and its dramatic drying process. Results showed that, higher blue water consumption in such a regions that have severe blue water scarcity, is a major issue and the water consuming pattern must be modified to meet the lake demands. Lower blue water consumption through regionalizing crops for each area is an efficient solution to meet lake demands and consume lower amounts of blue water. So the proper land use practices can be an appropriate method to rescue the lake in a long time period.

  4. Lateral and subsurface flows impact arctic coastal plain lake water budgets

    USGS Publications Warehouse

    Koch, Joshua C.

    2016-01-01

    Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post-snowmelt water budgets. A water budget focused only on post-snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid-summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra-permafrost subsurface inflows from basin-edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic.

  5. SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA

    NASA Astrophysics Data System (ADS)

    Mohanty, A. K.

    2009-12-01

    SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA A.K. Mohanty, K. Mahesh Kumar, B. A. Prakash and V.V.S. Gurunadha Rao Ecology and Environment Group National Geophysical Research Institute, (CSIR) Hyderabad - 500 606, India E-mail:atulyakumarmohanty@yahoo.com Abstract: Hyderabad Metropolitan Development Authority has taken up restoration of urban lakes around Hyderabad city under Green Hyderabad Environment Program. Restoration of Mir Alam Tank, Durgamcheruvu, Patel cheruvu, Pedda Cheruvu and Nallacheruvu lakes have been taken up under the second phase. There are of six lakes viz., RKPuramcheruvu, Nadimicheruvu (Safilguda), Bandacheruvu Patelcheruvu, Peddacheruvu, Nallacheruvu, in North East Musi Basin covering 38 sq km. Bimonthly monitoring of lake water quality for BOD, COD, Total Nitrogen, Total phosphorous has been carried out for two hydrological cycles during October 2002- October 2004 in all the five lakes at inlet channels and outlets. The sediments in the lake have been also assessed for nutrient status. The nutrient parameters have been used to assess eutrophic condition through computation of Trophic Status Index, which has indicated that all the above lakes under study are under hyper-eutrophic condition. The hydrogeological, geophysical, water quality and groundwater data base collected in two watersheds covering 4 lakes has been used to construct groundwater flow and mass transport models. The interaction of lake-water with groundwater has been computed for assessing the lake water budget combining with inflow and outflow measurements on streams entering and leaving the lakes. Individual lake water budget has been used for design of appropriate capacity of Sewage Treatment Plants (STPs) on the inlet channels of the lakes for maintaining Full Tank Level (FTL) in each lake. STPs are designed for tertiary treatment i.e. removal of nutrient load viz., Phosphates and Nitrates. Phosphates are

  6. The effectiveness of tap water iontophoresis for palmoplantar hyperhidrosis using a Monday, Wednesday, and Friday treatment regime.

    PubMed

    Siah, Tee Wei; Hampton, Philip J

    2013-03-15

    Primary focal hyperhidrosis is a benign condition of unknown etiology. Tap water iontophoresis has long been known to inhibit sweat production. The mechanism of reduced hyperhidrosis by iontophoresis is not completely clear. For operational convenience, our patients received their treatments at different intervals to those recommended by the manufacturer of the iontophoresis unit. We performed a retrospective audit to evaluate the effectiveness of tap water iontophoresis using this regimen. This new treatment regimen was effective at controlling palmoplantar hyperhidrosis. Minimal undesirable effects such as mild skin irritation and erythema were noted but none were severe enough to necessitate discontinuation of treatment. In conclusion, tap water iontophoresis is a safe and effective treatment of palmar and plantar hyperhidrosis when used on Monday, Wednesday, and Friday for 4 weeks. Continued treatment is needed to maintain the effect and many patients go on to purchase their own machines. This technique should be considered prior to systemic or aggressive surgical intervention.

  7. Chemical data for bottom sediment, lake water, bottom-sediment pore water, and fish in Mountain Creek Lake, Dallas, Texas, 1994-96

    USGS Publications Warehouse

    Jones, S.A.; Van Metre, P.C.; Moring, J.B.; Braun, C.L.; Wilson, J.T.; Mahler, B.J.

    1997-01-01

    Mountain Creek Lake is a reservoir adjacent to two U.S. Department of the Navy facilities, the Naval Weapons Industrial Reserve Plant and the Naval Air Station in Dallas, Texas. A Resource Conservation and Recovery Act Facility Investigation found ground-water plumes containing chlorinated solvents on both facilities. These findings led to a U.S. Geological Survey study of Mountain Creek Lake adjacent to both facilities between June 1994 and August 1996. Bottom sediments, lake water, bottom-sediment pore water, and fish were collected for chemical analysis.

  8. Perceptions of tap water temperatures, scald risk and prevention among parents and older people in social housing: a qualitative study.

    PubMed

    Durand, Mary Alison; Green, Judith; Edwards, Phil; Milton, Sarah; Lutchmun, Suzanne

    2012-06-01

    Young children and older people are particularly vulnerable to tap water scalding. For children, there are also socio-economic inequalities in risk. Evidence suggests that reducing tap water temperatures in social (public) housing through 'passive' means is effective in reducing risk. However, little is known about parents' or older people's perceptions of scald risk and prevention. This study aimed to document the views of parents and older residents in social housing in an inner-London borough about their tap water temperature, perceived scalding risk and scald prevention strategies. Analysis of twenty in-depth interviews with 11 parents and 10 people aged 65 years or older. Tap water was described as very hot, but participants did not consider themselves at risk, viewing scald prevention as a personal responsibility achieved with a range of everyday, routine strategies. Very hot water was preferred for health- and convenience-related reasons. However, it was felt that others, particularly children, could be scalded, and some concern was expressed about the environmental and financial impacts of excessively hot water. Those seeking to introduce engineering-based scald prevention interventions in social housing should emphasise the potential environmental and financial impacts of water temperature reduction, in addition to promoting safety benefits for vulnerable others. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  9. Groundwater and surface water interaction in flow-through gravel pit lakes.

    NASA Astrophysics Data System (ADS)

    Nella Mollema, Pauline; Antonellini, Marco

    2015-04-01

    Gravel pits are excavated in aquifers to fulfill the need for construction materials. Flow-through lakes form when the gravel pits are below the water table and fill with groundwater. In certain areas there are more than 60 of these lakes close together and their presence changes the drainage patterns and water- and hydrochemical budgets of a watershed. In flow-through gravel pit lakes, groundwater mixes with surface water and interacts with the atmosphere; outflow occurs only via groundwater. The lifespan of gravel pit lakes may be up to thousands of years as their depth to surface ratio is typically large and sedimentation rates are low. We have studied two gravel pit lake systems, a fluvial freshwater system in the Netherlands and a coastal brackish lake system in Italy. One Dutch gravel pit lake studied in detail is in part artificially replenished with Meuse River water for drinking water production that occurs downstream of the lake by water pumps. The Italian gravel pit lakes are fed by brackish groundwater that is a mix of freshwater from precipitation, Apennine Rivers and brackish (Holocene) Adriatic Sea water. Here, the drainage system of the low lying land enhances groundwater flow into the lake. Surface water evaporation is larger in temperate and Mediterranean climates than the actual evapotranspiration of pre-existing grassland and forests. The lakes, therefore, cause a loss of freshwater. The creation of water surfaces allows algae and other flora and fauna to develop. In general, water becomes gradually enriched in certain chemical constituents on its way through the hydrological cycle, especially as groundwater due to water-rock interactions. When groundwater ex-filtrates into gravel pit lakes, the natural flow of solutes towards the sea is interrupted. Hydrochemical analysis of ground- and surface waters, as well as chemical analysis of lake bottom sediments and stable H and O isotope data, show that gravel pit lake water is characterized (among

  10. Stable water isotopic composition of the Antarctic subglacial Lake Vostok: implications for understanding the lake's hydrology.

    PubMed

    Ekaykin, Alexey A; Lipenkov, Vladimir Y; Kozachek, Anna V; Vladimirova, Diana O

    2016-01-01

    We estimated the stable isotopic composition of water from the subglacial Lake Vostok using two different sets of samples: (1) water frozen on the drill bit immediately after the first lake unsealing and (2) water frozen in the borehole after the unsealing and re-drilled one year later. The most reliable values of the water isotopic composition are: -59.0 ± 0.3 ‰ for oxygen-18, -455 ± 1 ‰ for deuterium and 17 ± 1 ‰ for d-excess. This result is also confirmed by the modelling of isotopic transformations in the water which froze in the borehole, and by a laboratory experiment simulating this process. A comparison of the newly obtained water isotopic composition with that of the lake ice (-56.2 ‰ for oxygen-18, -442.4 ‰ for deuterium and 7.2 ‰ for d-excess) leads to the conclusion that the lake ice is very likely formed in isotopic equilibrium with water. In turn, this means that ice is formed by a slow freezing without formation of frazil ice crystals and/or water pockets. This conclusion agrees well with the observed physical and chemical properties of the lake's accreted ice. However, our estimate of the water's isotopic composition is only valid for the upper water layer and may not be representative for the deeper layers of the lake, so further investigations are required.

  11. Indoor Heating Drives Water Bacterial Growth and Community Metabolic Profile Changes in Building Tap Pipes during the Winter Season

    PubMed Central

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Shang, Pan-Lu; Yang, Xiao; Ma, Wei-Xing

    2015-01-01

    The growth of the bacterial community harbored in indoor drinking water taps is regulated by external environmental factors, such as indoor temperature. However, the effect of indoor heating on bacterial regrowth associated with indoor drinking water taps is poorly understood. In the present work, flow cytometry and community-level sole-carbon-source utilization techniques were combined to explore the effects of indoor heating on water bacterial cell concentrations and community carbon metabolic profiles in building tap pipes during the winter season. The results showed that the temperature of water stagnated overnight (“before”) in the indoor water pipes was 15–17 °C, and the water temperature decreased to 4–6 °C after flushing for 10 min (“flushed”). The highest bacterial cell number was observed in water stagnated overnight, and was 5–11 times higher than that of flushed water. Meanwhile, a significantly higher bacterial community metabolic activity (AWCD590nm) was also found in overnight stagnation water samples. The significant “flushed” and “taps” values indicated that the AWCD590nm, and bacterial cell number varied among the taps within the flushed group (p < 0.01). Heatmap fingerprints and principle component analyses (PCA) revealed a significant discrimination bacterial community functional metabolic profiles in the water stagnated overnight and flushed water. Serine, threonine, glucose-phosphate, ketobutyric acid, phenylethylamine, glycerol, putrescine were significantly used by “before” water samples. The results suggested that water stagnated at higher temperature should be treated before drinking because of bacterial regrowth. The data from this work provides useful information on reasonable utilization of drinking water after stagnation in indoor pipes during indoor heating periods. PMID:26516885

  12. Hydrochemical determination of source water contributions to Lake Lungo and Lake Ripasottile (central Italy)

    USGS Publications Warehouse

    Archer, Claire; Noble, Paula; Kreamer, David; Piscopo, Vincenzo; Petitta, Marco; Rosen, Michael R.; Poulson, Simon R.; Piovesan, Gianluca; Mensing, Scott

    2017-01-01

    Lake Lungo and Lake Ripasottile are two shallow (4-5 m) lakes located in the Rieti Basin, central Italy, that have been described previously as surface outcroppings of the groundwater table. In this work, the two lakes as well as springs and rivers that represent their potential source waters are characterized physio-chemically and isotopically, using a combination of environmental tracers. Temperature and pH were measured and water samples were analyzed for alkalinity, major ion concentration, and stable isotope (δ2H, δ18O, δ13C of dissolved inorganic carbon, and δ34S and δ18O of sulfate) composition. Chemical data were also investigated in terms of local meteorological data (air temperature, precipitation) to determine the sensitivity of lake parameters to changes in the surrounding environment. Groundwater represented by samples taken from Santa Susanna Spring was shown to be distinct with SO42- and Mg2+ content of 270 and 29 mg/L, respectively, and heavy sulfate isotopic composition(δ34S=15.2 ‰ and δ18O=10‰). Outflow from the Santa Susanna Spring enters Lake Ripasottile via a canal and both spring and lake water exhibits the same chemical distinctions and comparatively low seasonal variability. Major ion concentrations in Lake Lungo are similar to the Vicenna Riara Spring and are interpreted to represent the groundwater locally recharged within the plain. The δ13CDIC exhibit the same groupings as the other chemical parameters, providing supporting evidence of the source relationships. Lake Lungo exhibited exceptional ranges of δ13CDIC (±5 ‰) and δ2H, δ18O (±5 ‰ and ±7 ‰, respectively), attributed to sensitivity to seasonal changes. The hydrochemistry results, particularly major ion data, highlight how the two lakes, though geographically and morphologically similar, represent distinct hydrochemical facies. These data also show a different response in each lake to temperature and precipitation patterns in the basin that may be attributed

  13. Assessment of water availability and demand in Lake Guiers , Senegal.

    NASA Astrophysics Data System (ADS)

    Sambou, D.; Weihrauch, D.; Hellwing, V.; Diekkrüger, B.; Höllermann, B.; Gaye, A. T.

    2015-12-01

    Assessment of water availability and demand in Lake Guiers, SenegalWater resources are critical to economic growth and social development. In most African countries, supply of drinking water to satisfy population needs is a key issue because of population growth and climate and land use change. During the last three decades, increasing population, changing patterns of water demand, and concentration of population and economic activities in urban areas has pressurize Senegal's freshwater resources. To overcome this deficit, Senegal turned, to the exploitation of the Lake Guiers. It is the sole water reservoir which can be used extensively as a stable freshwater. Its water is use for irrigating crops and sugar refinery and as a drinking water resource for urban centres, including Dakar, the capital city of Senegal, as well as for the local population and animal herds. To ensure sustainability, a greater understanding of Lake Guiers's water resources and effective management of its use will be required. In this study we developed and quantified future water situation (water availability and demand) in Lake Guiers under scenarios of climate change and population growth until 2050, using the water management model WEAP (Water Evaluation And Planning system). The results show that the pressure on Lake Guiers's water resources will increase, leading to greater competition between agriculture and municipal demand site. Decreasing inflows due to climate change will aggravate this situation. WEAP results offer basis to assister lake Guiers water resources manager for an efficient long-term planning and management. Keywords: climate change, population growth , IWRM, Lake Guiers, Senegal

  14. Patterns of organochlorine contamination in lake trout from Wisconsin waters of the Great Lakes

    USGS Publications Warehouse

    Miller, Michael A.; Madenjian, Charles P.; Masnado, Robert G.

    1992-01-01

    To investigate spatial and temporal patterns of organochlorine contamination in lake trout from Wisconsin waters of the Great Lakes, we examined laboratory contaminant analysis data of muscle tissue samples from Lake Michigan (n=317) and Lake Superior (n=53) fish. Concentrations of polychlorinated biphenyls (PCBs), chlordane, and dieldrin, reported as mg/kg wet weight in 620 mm to 640 mm mean length Lake Michigan lake trout, decreased over time. Mean total PCB concentration declined exponentially from 9.7 in 1975 to 1.9 in 1990. Total chlordane concentration declined 63 percent from 0.48 in 1983 to 0.18 in 1990, and dieldrin declined 52 percent during this same period, from 0.21 to 0.10. The bioaccumulation rate of PCBs is significantly lower for lake trout inhabiting Lake Michigan's midlake reef complex, compared to lake trout from the nearshore waters of western Lake Michigan. Organochlorine compound concentrations were greater in Lake Michigan lake trout than Lake Superior fish. Lake Superior lean lake trout and siscowet exhibited similar rates of PCB bioaccumulation despite major differneces in muscle tissue lipid content between the two subspecies. The lack of a significant difference in the PCB bioaccumulation rates of lean trout and siscowet suggests that lipid content may not be an important factor influencing PCB bioaccumulation in lake trout, within the range of lipid concentrations observed. Relative concentrations of the various organochlorine contaminants found in lake trout were highly correlated, suggesting similar mass balance processes for these compounds. Evidence presented revealing spatial and temporal patterns of organochlorine contamination may be of value in reestablishing self-sustaining populations of lake trout in Lake Michigan.

  15. Endemic cryptosporidiosis and exposure to municipal tap water in persons with acquired immunodeficiency syndrome (AIDS): A case-control study

    PubMed Central

    Aragón, Tomás J; Novotny, Suzanne; Enanoria, Wayne; Vugia, Duc J; Khalakdina, Asheena; Katz, Mitchell H

    2003-01-01

    Background In persons with acquired immunodeficiency syndrome (AIDS), Cryptosporidium parvum causes a prolonged, severe diarrheal illness to which there is no effective treatment, and the risk of developing cryptosporidiosis from drinking tap water in non-outbreak settings remains uncertain. To test the hypothesis that drinking tap water was associated with developing cryptosporidiosis, we conducted a matched case-control study among persons with AIDS in San Francisco. Methods Among patients reported to the San Francisco AIDS Registry from May 1996 through September 1998, we compared patients who developed cryptosporidiosis to those who did not. Cases were individually matched to controls based on age, sex, race/ethnicity, CD4+ T lymphocyte count, date of CD4+ count, and date of case diagnosis. Population attributable fractions (PAFs) were calculated. Results The study consisted of 49 cases and 99 matched controls. In the multivariable analysis with adjustments for confounders, tap water consumption inside and outside the home at the highest exposure categories was associated with the occurrence of cryptosporidiosis (inside the home: odds ratio (OR), 6.76; 95% CI 1.37–33.5, and outside the home: OR 3.16; 95% CI 1.23–8.13). The PAF was 85%; that is, the proportion of cases of cryptosporidiosis in San Francisco AIDS patients attributable to tap water consumption could have been as high as 85%. Conclusions Although the results from this observational study cannot be considered definitive, until there is more data, we recommend persons with AIDS, especially those with compromised immune systems, consider avoiding tap water. PMID:12515584

  16. Endemic cryptosporidiosis and exposure to municipal tap water in persons with acquired immunodeficiency syndrome (AIDS): a case-control study.

    PubMed

    Aragón, Tomás J; Novotny, Suzanne; Enanoria, Wayne; Vugia, Duc J; Khalakdina, Asheena; Katz, Mitchell H

    2003-01-06

    In persons with acquired immunodeficiency syndrome (AIDS), Cryptosporidium parvum causes a prolonged, severe diarrheal illness to which there is no effective treatment, and the risk of developing cryptosporidiosis from drinking tap water in non-outbreak settings remains uncertain. To test the hypothesis that drinking tap water was associated with developing cryptosporidiosis, we conducted a matched case-control study among persons with AIDS in San Francisco. Among patients reported to the San Francisco AIDS Registry from May 1996 through September 1998, we compared patients who developed cryptosporidiosis to those who did not. Cases were individually matched to controls based on age, sex, race/ethnicity, CD4+ T lymphocyte count, date of CD4+ count, and date of case diagnosis. Population attributable fractions (PAFs) were calculated. The study consisted of 49 cases and 99 matched controls. In the multivariable analysis with adjustments for confounders, tap water consumption inside and outside the home at the highest exposure categories was associated with the occurrence of cryptosporidiosis (inside the home: odds ratio (OR), 6.76; 95% CI 1.37-33.5, and outside the home: OR 3.16; 95% CI 1.23-8.13). The PAF was 85%; that is, the proportion of cases of cryptosporidiosis in San Francisco AIDS patients attributable to tap water consumption could have been as high as 85%. Although the results from this observational study cannot be considered definitive, until there is more data, we recommend persons with AIDS, especially those with compromised immune systems, consider avoiding tap water.

  17. Improvements in lake water budget computations using Landsat data

    NASA Technical Reports Server (NTRS)

    Gervin, J. C.; Shih, S. F.

    1979-01-01

    A supervised multispectral classification was performed on Landsat data for Lake Okeechobee's extensive littoral zone to provide two types of information. First, the acreage of a given plant species as measured by satellite was combined with a more accurate transpiration rate to give a better estimate of evapotranspiration from the littoral zone. Second, the surface area coupled by plant communities was used to develop a better estimate of the water surface as a function of lake stage. Based on this information, more detailed representations of evapotranspiration and total water surface (and hence total lake volume) were provided to the water balance budget model for lake volume predictions. The model results based on information derived from satellite demonstrated a 94 percent reduction in cumulative lake stage error and a 70 percent reduction in the maximum deviation of the lake stage.

  18. Water Quality Investigations at Lake Merritt in Oakland, California

    NASA Astrophysics Data System (ADS)

    Carter, G.; Casino, C.; Johnson, K.; Huang, J.; Le, A.; Truisi, V. M.; Turner, D.; Yanez, F.; Yu, J. F.; Unigarro, M.; Vue, G.; Garduno, L.; Cuff, K.

    2005-12-01

    Lake Merritt is a saltwater tidal lagoon that forms a portion of a wildlife refuge in downtown Oakland, California. The general area was designated as the nation's first wildlife refuge in 1869, and is currently the home to over 90 species of migrating waterfowl, as well as a variety of aquatic wildlife. Situated within an area composed of compacted marine sediment located near the center of Oakland, Lake Merritt also serves as a major local catchment basin, receiving significant urban runoff from a 4,650 acre local watershed through 60 storm drains and four culverted creeks. Due to factors related to its geographical location, Lake Merritt has suffered from poor water quality at various times throughout its history. In fact, in May of 1999 the US Environmental Protection Agency designated Lake Merritt as a body of water whose beneficial uses are impaired, mainly due to high levels of trash and low levels of dissolved oxygen. As a contribution to continuing efforts to monitor and assess water quality of the Lake, we began a water quality investigation during the Summer of 2005, which included the measurement of dissolved oxygen concentrations of samples collected near its surface at over 85 different locations. These measurements were made using a sensor attached to a PASCO data- logger. The sensor measures the electric current produced by a chemical reaction in its probe, which is composed of a platinum cathode and a silver anode surrounded by an electrolyte solution. Results of these measurements were statistically analyzed, mapped, and then used in assessing the quality of Lake Merritt's water, particularly in relation to supporting aquatic biota. Preliminary analysis of results obtained so far indicates that the highest quality waters in Lake Merritt occur in areas that are closest to a source of San Francisco Bay water, as well as those areas nearby where water circulation is robust. Significantly high levels of dissolved oxygen were measured in an area that

  19. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Zhang, Z.; Sun, A.; Save, H.; Mueller Schmied, H.; Wada, Y.; Doll, P. M.; Eisner, S.

    2016-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is

  20. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    NASA Astrophysics Data System (ADS)

    Shabani, A.; Zhang, X.

    2017-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is

  1. Sediment deposition and selected water-quality characteristics in Cedar Lake and Lake Olathe, Northeast Kansas, 2000

    USGS Publications Warehouse

    Mau, D.P.

    2002-01-01

    The Lake Olathe watershed, located in northeast Kansas, was investigated using bathymetric survey data and reservoir bottom-sediment cores to determine sediment deposition, water-quality trends, and transport of nutrients (phosphorus and nitrogen species), selected trace elements, selected pesticides, and diatoms as indicators of eutrophic (organic-enriched and depleted oxygen supply) conditions. To determine sediment deposition and loads, bathymetric data from Cedar Lake and Lake Olathe, both located in the Lake Olathe watershed, were collected in 2000 and compared to historical topographic data collected when the lakes were built. Approximately 338 acre-feet of sediment deposition has occurred in Cedar Lake since dam closure in 1938, and 317 acre-feet has occurred at Lake Olathe since 1956. Mean annual sediment deposition was 5.45 acre-feet per year (0.89 acre-feet per year per square mile) for Cedar Lake and 7.0 acre-feet per year (0.42 acre-feet per year per square mile) for Lake Olathe. Mean annual sediment loads for the two reservoirs were 9.6 million pounds per year for Cedar Lake and 12.6 million pounds per year for Lake Olathe. Mean concentrations of total phosphorus in bottom-sediment samples from Cedar Lake ranged from 1,370 to 1,810 milligrams per kilogram, and concentrations in bottom-sediment samples from Lake Olathe ranged from 588 to 1,030 milligrams per kilogram. The implication of large total phosphorus concentrations in the bottom sediment of Cedar Lake is that inflow into Cedar Lake is rich in phosphorus and that adverse water-quality conditions could affect water quality in downstream Lake Olathe through discharge of water from Cedar Lake to Lake Olathe via Cedar Creek. Mean annual phosphorus loads transported from the Lake Olathe watershed were estimated to be 14,700 pounds per year for Cedar Lake and 9,720 pounds per year for Lake Olathe. The mean annual phosphorus yields were estimated to be 3.74 pounds per acre per year for Cedar Lake and 0

  2. Chemical quality of surface waters in Devils Lake basin, North Dakota

    USGS Publications Warehouse

    Swenson, Herbert; Colby, Bruce R.

    1955-01-01

    Devils Lake basin, a closed basin in northeastern North Dakota, covers about 3,900 square miles of land, the topography of which is morainal and of glacial origin. In this basin lies a chain of waterways, which begins with the Sweetwater group and extends successively through Mauvais Coulee, Devils Lake, East Bay Devils Lake, and East Devils Lake, to Stump Lake. In former years when lake levels were high, Mauvais Coulee drained the Sweetwater group and discharged considerable water into Devils Lake. Converging coulees also transported excess water to Stump Lake. For at least 70 years prior to 1941, Mauvais Coulee flowed only intermittently, and the levels of major lakes in this region gradually declined. Devils Lake, for example, covered an area of about 90,000 acres in 1867 but had shrunk to approximately 6,500 acres by 1941. Plans to restore the recreational appeal of Devils Lake propose the dilution and eventual displacement of the brackish lake water by fresh water that would be diverted from the Missouri River. Freshening of the lake water would permit restocking Devils Lake with fish. Devils and Stump Lake have irregular outlines and numerous windings and have been described as lying in the valley of a preglacial river, the main stem and tributaries of which are partly filled with drift. Prominent morainal hills along the south shore of Devils Lake contrast sharply with level farmland to the north. The mean annual temperature of Devils Lake basin ranges between 36 ? and 42 ? F. Summer temperatures above 100 ? F and winter temperatures below -30 ? Fare not uncommon. The annual precipitation for 77 years at the city of Devils Lake averaged 17.5 inches. Usually, from 75 to 80 percent of the precipitation in the basin falls during the growing season, April to September. From 1867 to 1941 the net fall of the water surface of Devils Lake was about 38 feet. By 1951 the surface had risen fully 14 feet from its lowest altitude, 1,400.9 feet. Since 1951, the level has

  3. Preference for tap, bottled, and recycled water: Relations to PTC taste sensitivity and personality.

    PubMed

    Harmon, Daniel; Gauvain, Mary; Z Reisz; Arthur, Isaac; Story, S Drew

    2018-02-01

    This study investigated people's preferences for different water sources and factors that predict such preferences using a blind taste test. Water preferences of 143 participants for one name-brand bottled water, one groundwater-sourced tap water, and one indirect potable reuse (IDR) water were assessed. For predictors of water preference, we measured each participant's PTC taste sensitivity and assessed two personality traits (Neuroticism, Openness to Experience). We also explored participants' descriptions of each water source. Results indicate a preference for water treated with Reverse Osmosis (RO) (bottled and IDR water) over groundwater-sourced water, which had higher pH levels and lower concentrations of Ca and HCO 3 - . PTC taste sensitivity did not predict preferences, while Openness to Experience and Neuroticism predicted preference for IDR water. Positive relations between Openness to Experience and preferences for bottled and IDR water were moderated by gender and were stronger among females. Participants described water primarily by its taste and texture. Findings suggest that (1) tap water treated by RO is equally preferable to some bottled water, (2) personality traits may affect water preferences, and (3) prior findings of gender differences in preferences for bottled water may reflect personality characteristics. Efforts to increase acceptance for sustainable water alternatives, such as IDR, may be more successful by assuring consumers about taste and addressing personality traits that encourage or inhibit use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Spatial changes of the evaporation/inflow ratio of lake water deduced from surface water isotopes in Bangongcuo, western Tibet

    NASA Astrophysics Data System (ADS)

    Wen, R.; Tian, L.; Weng, Y.; Qu, D.

    2013-12-01

    Oxygen isotope analysis provides a practical approach to understand the regional hydrologic cycle and to reconstruct the paleoclimate and paleoenvironment from lacustrine sediment. The large number of inland lakes on the northern part of the Tibetan Plateau provides the opportunity for this work, and an understanding of the isotope variation of the lake water in the water cycle is vital for this purpose. A water isotope sampling network was set up in the Banggongcuo Lake basin in western Tibet in 2009 that measured precipitation, lake water, and river water. Two years of collecting isotope data, together with AWS observations at the Ngari station in the basin, allowed for a study of lake water isotope variations in the water cycle in narrow Banggongcuo Lake. Observations showed much higher water δ18O in the closed lake due to the strong evaporation fractionation process when compared with local precipitation. An obvious spatial change of lake water δ18O was also found, varying from about -4.9‰ in the east to about +0.9‰ in the west. This spatial change is largely due to the fact that the main river water input to the lake is on the eastern part of the lake, while the lake water evaporates out gradually westward. This phenomenon also matches the spatial change of lake water chemical components. We simulate the gradual evaporation of the lake water using an isotope evaporation fractionation model, in an effort to quantitatively estimate the E/I ratio (evaporation to total lake water inflow) in different parts of the lake. From the observation lake water δ18O, we estimate that the E/I ratio is about 42~60% in the eastern part of the lake and increases to 76~87% in the western part.

  5. A pilot study on the assessment of trace organic contaminants including pharmaceuticals and personal care products from on-site wastewater treatment systems along Skaneateles Lake in New York State, USA.

    PubMed

    Subedi, Bikram; Codru, Neculai; Dziewulski, David M; Wilson, Lloyd R; Xue, Jingchuan; Yun, Sehun; Braun-Howland, Ellen; Minihane, Christine; Kannan, Kurunthachalam

    2015-04-01

    On-site wastewater treatment systems (OWTSs or septic systems) are designed to treat and dispose effluents on the same property that produces the wastewater. Approximately 25% of the U.S. population is served by such facilities. Nevertheless, studies on the treatment efficiency and discharge of organic contaminants through septic effluents are lacking. This pilot study showed the occurrence of organic contaminants including pharmaceuticals and personal care products (PPCPs), perfluoroalkyl surfactants (PFASs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in septic effluents, adjacent lake water samples, household drinking water in homes that use lake water or a well adjacent to the lake as a source of drinking water, and offshore lake water samples. Septic effluent as well as lake and tap water samples were collected from several households with OWTSs around Skaneateles Lake located in central New York. The advanced on-site systems were installed in some households for the purpose of limiting nutrient levels in the effluent to protect the local surface water. Additionally, because many of these systems serve homes with limited land, advanced treatment systems were needed. The median concentrations of ten PPCPs (ranged from 0.45 to 388 ng/L) and eleven PFASs (ranged from 0.20 to 14.6 ng/L) in septic water were significantly higher (p ≤ 0.01) than in lake water samples. The median concentrations of PPCPs and PFASs in lake and tap water samples were not significantly different (p ≥ 0.65). The median concentrations of ∑PBDEs in septic, lake, and tap water samples were 7.47, 3.49, and 2.22 ng/L, respectively, and those for ∑PCBs were 33.1, 29.2, and 28.6 ng/L, respectively. The mass flux of PPCPs (i.e. the mass flow of PPCPs per unit area per unit time) through the disposal of treated septic effluent from textile biofilter and aerobic treatments to the dispersal unit ranged from 12 (carbamazepine) to 66900 μg/m(2)/day

  6. Pharmaceuticals in Tap Water: Human Health Risk Assessment and Proposed Monitoring Framework in China

    PubMed Central

    Leung, Ho Wing; Jin, Ling; Wei, Si; Tsui, Mirabelle Mei Po; Zhou, Bingsheng; Jiao, Liping; Cheung, Pak Chuen; Chun, Yiu Kan

    2013-01-01

    Background: Pharmaceuticals are known to contaminate tap water worldwide, but the relevant human health risks have not been assessed in China. Objectives: We monitored 32 pharmaceuticals in Chinese tap water and evaluated the life-long human health risks of exposure in order to provide information for future prioritization and risk management. Methods: We analyzed samples (n = 113) from 13 cities and compared detected concentrations with existing or newly-derived safety levels for assessing risk quotients (RQs) at different life stages, excluding the prenatal stage. Results: We detected 17 pharmaceuticals in 89% of samples, with most detectable concentrations (92%) at < 50 ng/L. Caffeine (median–maximum, nanograms per liter: 24.4–564), metronidazole (1.8–19.3), salicylic acid (16.6–41.2), clofibric acid (1.2–3.3), carbamazepine (1.3–6.7), and dimetridazole (6.9–14.7) were found in ≥ 20% of samples. Cities within the Yangtze River region and Guangzhou were regarded as contamination hot spots because of elevated levels and frequent positive detections. Of the 17 pharmaceuticals detected, 13 showed very low risk levels, but 4 (i.e., dimetridazole, thiamphenicol, sulfamethazine, and clarithromycin) were found to have at least one life-stage RQ ≥ 0.01, especially for the infant and child life stages, and should be considered of high priority for management. We propose an indicator-based monitoring framework for providing information for source identification, water treatment effectiveness, and water safety management in China. Conclusion: Chinese tap water is an additional route of human exposure to pharmaceuticals, particularly for dimetridazole, although the risk to human health is low based on current toxicity data. Pharmaceutical detection and application of the proposed monitoring framework can be used for water source protection and risk management in China and elsewhere. PMID:23665928

  7. Pharmaceuticals in tap water: human health risk assessment and proposed monitoring framework in China.

    PubMed

    Leung, Ho Wing; Jin, Ling; Wei, Si; Tsui, Mirabelle Mei Po; Zhou, Bingsheng; Jiao, Liping; Cheung, Pak Chuen; Chun, Yiu Kan; Murphy, Margaret Burkhardt; Lam, Paul Kwan Sing

    2013-07-01

    Pharmaceuticals are known to contaminate tap water worldwide, but the relevant human health risks have not been assessed in China. We monitored 32 pharmaceuticals in Chinese tap water and evaluated the life-long human health risks of exposure in order to provide information for future prioritization and risk management. We analyzed samples (n = 113) from 13 cities and compared detected concentrations with existing or newly-derived safety levels for assessing risk quotients (RQs) at different life stages, excluding the prenatal stage. We detected 17 pharmaceuticals in 89% of samples, with most detectable concentrations (92%) at < 50 ng/L. Caffeine (median-maximum, nanograms per liter: 24.4-564), metronidazole (1.8-19.3), salicylic acid (16.6-41.2), clofibric acid (1.2-3.3), carbamazepine (1.3-6.7), and dimetridazole (6.9-14.7) were found in ≥ 20% of samples. Cities within the Yangtze River region and Guangzhou were regarded as contamination hot spots because of elevated levels and frequent positive detections. Of the 17 pharmaceuticals detected, 13 showed very low risk levels, but 4 (i.e., dimetridazole, thiamphenicol, sulfamethazine, and clarithromycin) were found to have at least one life-stage RQ ≥ 0.01, especially for the infant and child life stages, and should be considered of high priority for management. We propose an indicator-based monitoring framework for providing information for source identification, water treatment effectiveness, and water safety management in China. Chinese tap water is an additional route of human exposure to pharmaceuticals, particularly for dimetridazole, although the risk to human health is low based on current toxicity data. Pharmaceutical detection and application of the proposed monitoring framework can be used for water source protection and risk management in China and elsewhere.

  8. Summary of surface-water quality, ground-water quality, and water withdrawals for the Spirit Lake Reservation, North Dakota

    USGS Publications Warehouse

    Vining, Kevin C.; Cates, Steven W.

    2006-01-01

    Available surface-water quality, ground-water quality, and water-withdrawal data for the Spirit Lake Reservation were summarized. The data were collected intermittently from 1948 through 2004 and were compiled from U.S. Geological Survey databases, North Dakota State Water Commission databases, and Spirit Lake Nation tribal agencies. Although the quality of surface water on the reservation generally is satisfactory, no surface-water sources are used for consumable water supplies. Ground water on the reservation is of sufficient quality for most uses. The Tokio and Warwick aquifers have better overall water quality than the Spiritwood aquifer. Water from the Spiritwood aquifer is used mostly for irrigation. The Warwick aquifer provides most of the consumable water for the reservation and for the city of Devils Lake. Annual water withdrawals from the Warwick aquifer by the Spirit Lake Nation ranged from 71 million gallons to 122 million gallons during 2000-04.

  9. Water management sustainability in reclaimed coastal areas. The case of the Massaciuccoli lake basin (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Rossetto, Rudy; Baneschi, Ilaria; Basile, Paolo; Guidi, Massimo; Pistocchi, Chiara; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2010-05-01

    land sub-systems, the first one showing an average 4.2 mm net daily water loss during the summer season (about 0.975 m3/s) for the years 2000-2009. Lake inflow is constituted of two main terms: an anthropogenic one related to the drainage of the reclaimed land of about 1.1 m3/s (ranging 75-81% of the total inflow); a natural one defined by recharge through rainfall, the western coastal aquifer and the eastern reliefs, accounting for 0.25 m3/s (varying 19-25% of the total inflow). On the other hand, lake water loss is mainly due to evaporation from water surface and evapotranspiration from the palustrine vegetation for around 56-61% (1.31 m3/s on average), while 13 to 15% (0.325 m3/s) is due to inefficient irrigation schemes using lake water and, being the lake perched, recharge to the reclaimed land aquifer (26 to 29%) by means of water infiltrating along the embankments (0.64 m3/s on average). Since several springs on the eastern margin, which would flow to the lacustrine system for about 0.160 m3/s (Autorità di Bacino del Fiume Serchio, 2007), are tapped (for residential, tourism and industrial users), the anthropogenic impact on the water deficit constitutes about 50% of the total, being 34% due to irrigation and 16% to other users. This demonstrates the naturally induced water deficit, already known by historical sources, is heavily altered by anthropogenic pressure defining a not sustainable balance between the socio-economic system and the natural one. It is then clear, that in order to reduce the water stress, a new water management strategy in the whole basin must be devised by revising and enhancing the irrigation schemes and the residential, industrial and tourism water distribution. Reference Autorità di Bacino del Fiume Serchio, 2007. Piano di Bacino 'Bilancio idrico del bacino del lago di Massaciuccoli' Relazione di piano. Lucca, Italy.

  10. Hydrogeology, hydrologic budget, and water chemistry of the Medina Lake area, Texas

    USGS Publications Warehouse

    Lambert, Rebecca B.; Grimm, Kenneth C.; Lee, Roger W.

    2000-01-01

    A three-phase study of the Medina Lake area in Texas was done to assess the hydrogeology and hydrology of Medina and Diversion Lakes combined (the lake system) and to determine what fraction of seepage losses from the lake system might enter the regional ground-water-flow system of the Edwards and (or) Trinity aquifers. Phase 1 consisted of revising the geologic framework for the Medina Lake area. Results of field mapping show that the upper member of the Glen Rose Limestone underlies Medina Lake and the intervening stream channel from the outflow of Medina Lake to the midpoint of Diversion Lake, where the Diversion Lake fault intersects Diversion Lake. A thin sequence of strata consisting primarily of the basal nodular and dolomitic members of the Kainer Formation of the Edwards Group, is present in the southern part of the study area. On the southern side of Medina Lake, the contact between the upper member of the Glen Rose Limestone and the basal nodular member is approximately 1,000 feet above mean sea level, and the contact between the basal nodular member and the dolomitic member is approximately 1,050 feet above mean sea level. The most porous and permeable part of the basal nodular member is about 1,045 feet above mean sea level. At these altitudes, Medina Lake is in hydrologic connection with rocks in the Edwards aquifer recharge zone, and Medina Lake appears to lose more water to the ground-water system along this bedding plane contact. Hydrologic budgets calculated during phase 2 for Medina Lake, Diversion Lake, and Medina/Diversion Lakes combined indicate that: (1) losses from Medina and Diversion Lakes can be quantified; (2) a portion of those losses are entering the Edwards aquifer; and (3) losses to the Trinity aquifer in the Medina Lake area are minimal and within the error of the hydrologic budgets. Hydrologic budgets based on streamflow, precipitation, evaporation, and change in lake storage were used to quantify losses (recharge) to the ground-water

  11. Impacts of population growth and economic development on water quality of a lake: case study of Lake Victoria Kenya water.

    PubMed

    Juma, Dauglas Wafula; Wang, Hongtao; Li, Fengting

    2014-04-01

    Anthropogenic-induced water quality pollution is a major environmental problem in freshwater ecosystems today. As a result of this, eutrophication of lakes occurs. Population and economic development are key drivers of water resource pollution. To evaluate how growth in the riparian population and in the gross domestic product (GDP) with unplanned development affects the water quality of the lake, this paper evaluates Lake Victoria Kenyan waters basin. Waters quality data between 1990 and 2012 were analyzed along with reviews of published literature, papers, and reports. The nitrate-nitrogen (NO3-N), soluble phosphorus (PO4-P), chlorophyll a, and Secchi transparencies were evaluated as they are key water quality indicators. The NO3-N increased from 10 μg l(-1) in 1990 to 98 μg 1(-1) in 2008, while PO4-P increased from 4 μg l(-1) in 1990 to 57 μg l(-1) in 2008. The population and economic growth of Kenya are increasing with both having minimums in 1990 of 24.143 million people and 12.18 billion US dollars, to maximums in 2010 of 39.742 million people and 32.163 billion US dollars, respectively. A Secchi transparency is reducing with time, indicating an increasing pollution. This was confirmed by an increase in aquatic vegetation using an analysis of moderate resolution imaging spectroradiometer (MODIS) images of 2000 and 2012 of Kenyan waters. This study found that increasing population and GDP increases pollution discharge thus polluting lakes. One of major factors causing lake water pollution is the unplanned or poor waste management policy and service.

  12. Perineal tap water burns in the elderly: at what cost?

    PubMed

    Potter, Michael D E; Maitz, Peter K M; Kennedy, Peter J; Goltsman, David

    2017-11-01

    Burn injuries are expensive to treat. Burn injuries have been found to be difficult to treat in elderly patients than their younger counterparts. This is likely to result in higher financial burden on the healthcare system; however, no population-specific study has been conducted to ascertain the inpatient treatment costs of elderly patients with hot tap water burns. Six elderly patients (75-92 years) were admitted for tap water burns at Concord Hospital during 2010. All costs incurred during their hospitalization were followed prospectively, and were apportioned into 'direct' and 'indirect' costs. Direct costs encompassed directly measurable costs, such as consumables used on the ward or in theatres, and indirect costs included hospital overheads, such as bed and theatre costs. Three males and three females admitted with burns to the buttocks, legs or feet. Total burn surface area (TBSA) ranged from 9-21% (mean 12.8%). Length of stay ranged from 26-98 days (mean 46 days). One patient died, and four required surgical management or grafting. Total inpatient costs ranged from $69 782.33 to $254 652.70 per patient (mean $122 800.20, standard deviation $67 484.46). TBSA was directly correlated with length of stay (P < 0.01) and total cost (P < 0.01). Hot water burns among the elderly are associated with high treatment costs, which are proportional to the size of the burn. The cost of treating this cohort is higher than previously reported in a general Australian burn cohort. © 2016 Royal Australasian College of Surgeons.

  13. Polarization Resistance Measurement in Tap Water: The Influence of Rust Electrochemical Activity

    NASA Astrophysics Data System (ADS)

    Vasyliev, Georgii

    2017-08-01

    Corrosion rate of mild steel in tap water during 4300 h was estimated by LPR and weight-loss methods coupled with OCP measurements. The LPR results were found to be overestimated compared to the weight-loss data within initial 2000 h of exposure. The electrochemical activity of the rust separated from the metal surface was studied by cycling voltammetry using a home-built powder graphite electrode. High redox currents corresponding to the initial 2000 h of exposure were detected. Rust composition was characterized with IR and XRD, and the highest amounts of electrochemically active β- and γ-FeOOH were again detected for the initial 2000 h. Current consumption in rust transformation processes during LPR measurement in the galvanostatic mode accounts for overestimation of the corrosion rate. The time dependence of rust electrochemical activity correlates with OCP variation with time. During initial 2000 h, OCP values are shifted by 50 mV to cathodic side. For the period of a higher rust electrochemical activity, the use of a reduced B is suggested to increase accuracy of LPR technique in tap water.

  14. Isolation and identification of methylobacterium species from the tap water in hospitals in Japan and their antibiotic susceptibility.

    PubMed

    Furuhata, Katsunori; Kato, Yuko; Goto, Keiichi; Hara, Motonobu; Yoshida, Shin-ichi; Fukuyama, Masafumi

    2006-01-01

    Contamination of tap water by Methylobacterium species has become a serious concern in hospitals. This study was planned to examine the distribution of Methylobacterium species inhabiting tap water used in Japanese hospitals and antibiotic sensitivity of the isolates in 2004. Species identification of 58 isolates was performed based on the homology of a partial sequence of 16S rDNA. The dominant Methylobacterium species in hospital water were M. aquaticum and M. fujisawaense. To examine the biochemical properties of these isolates, a carbon source utilization was tested using an API50CH kit. The phenotypic character varied widely, and was not necessarily consistent with the results of phylogenic analysis based on the partial 16S rDNA sequence, suggesting that the biochemical properties are not suitable for identification of Methylobacterium species. The isolates were also subjected to antibiotic sensitivity tests. They were resistant to 8 antibiotics, but highly sensitive to imipenem (MIC90 = 1 microg/ml) and tetracycline (MIC90 = 8 microg/ml). These findings concerning the isolates revealed the presence of Methylobacterium species with resistance to multiple antibiotics in hospital tap water.

  15. Continuous water-quality monitoring to improve lake management at Lake Mattamuskeet National Wildlife Refuge

    Treesearch

    Michelle Moorman; Tom Augspurger

    2016-01-01

    The U.S. Fish and Wildlife Service has partnered with U.S. Geological Survey to establish 2 continuous water-quality monitoring stations at Lake Mattamuskeet. Stations on the east and west side of the lake measure water level, clarity, dissolved oxygen, pH, temperature, salinity, and conductivity.

  16. Hydrology and simulation of ground-water flow, Lake Point, Tooele County, Utah

    USGS Publications Warehouse

    Brooks, Lynette E.

    2006-01-01

    Water for new residential development in Lake Point, Utah may be supplied by public-supply wells completed in consolidated rock on the east side of Lake Point. Ground-water flow models were developed to help understand the effect the proposed withdrawal will have on water levels, flowing-well discharge, spring discharge, and ground-water quality in the study area. This report documents the conceptual and numerical ground-water flow models for the Lake Point area.The ground-water system in the Lake Point area receives recharge from local precipitation and irrigation, and from ground-water inflow from southwest of the area. Ground water discharges mostly to springs. Discharge also occurs to evapotranspiration, wells, and Great Salt Lake. Even though ground water discharges to Great Salt Lake, dense salt water from the lake intrudes under the less-dense ground water and forms a salt-water wedge under the valley. This salt water is responsible for some of the high dissolved-solids concentrations measured in ground water in Lake Point.A steady-state MODFLOW-2000 ground-water model of Tooele Valley adequately simulates water levels, ground-water discharge, and ground-water flow direction observed in Lake Point in 1969 and 2002. Simulating an additional 1,650 acre-feet per year withdrawal from wells causes a maximum projected drawdown of about 550 feet in consolidated rock near the simulated wells and drawdown exceeding 80 feet in an area encompassing most of the Oquirrh Mountains east of Lake Point. Drawdown in most of Lake Point ranges from 2 to 10 ft, but increases to more than 40 feet in the areas proposed for residential development. Discharge to Factory Springs, flowing wells, evapotranspiration, and Great Salt Lake is decreased by about 1,100 acre-feet per year (23 percent).The U.S. Geological Survey SUTRA variable-density ground-water-flow model generates a reasonable approximation of 2002 dissolved-solids concentration when simulating 2002 withdrawals. At most

  17. Assessing Lake Level Variability and Water Availability in Lake Tana, Ethiopia using a Groundwater Flow Model and GRACE Satellite Data

    NASA Astrophysics Data System (ADS)

    Hasan, E.; Dokou, Z.; Kirstetter, P. E.; Tarhule, A.; Anagnostou, E. N.; Bagtzoglou, A. C.; Hong, Y.

    2017-12-01

    Lake Tana is the source of the Blue Nile and Ethiopia's largest natural buffer against seasonal variations of rainfall. Assessing the interactions between the lake level fluctuation, hydroclimatic variabilities and anthropogenic factors is essential to detect drought conditions and identify the role of human management in controlling the Lake water balance. Via an extended record of Total Water Storage (TWS) anomalies for the period 1960-2016, a water budget model for the lake water inflow/outflow was developed. Estimates of Lake Level Altimetry (LLA) based on in-situ and satellite altimetry were composited from 1960-2016 and compared to the extended TWS anomalies, the self-calibrated Palmer Drought Severity Index (scPDSI), the El Niño Southern Oscillation (ENSO) and the historical lake water levels and releases. In addition, the simulated lake levels and water budget from a coupled groundwater and lake model of the Lake Tana basin were compared to the above results. Combining the different approaches, the water budget of the lake can be monitored, the drought conditions can be identified and the role of human management in the lake can be determined. For instance, three major drought periods are identified, 1970 to 1977, 1979 to 1987 and 1990 to 1998, each succeeded with an interposed flooding related recovery year, i.e. 1978, 1988 and 1999. The drought/flooding events were attributed mainly to the ENSO interactions that resulted in lake level fluctuations. The period from 2002-2006 was associated with a remarkable decline of the lake level that was attributed partly in drought conditions and the full flow regulation of the Chara Chara weir at the lake outlet, initiated in 2001.

  18. WINCHESTER LAKE, LEWIS COUNTY, IDAHO - WATER QUALITY STATUS REPORT, 1985

    EPA Science Inventory

    Winchester Lake, Idaho (17060306) is an 85 acre recreation site located approximately 30 miles southeast of Lewiston. Citizen complaints of poor water clarity, odors, and decline in angler success led to a 6 month study of the lakes water quality in 1985. Winchester Lake exhibi...

  19. Limnological and water-quality data from Wonder Lake, Chilchukabena Lake, and Lake Minchumina, Denali National Park and Preserve and surrounding area, Alaska, June 2006-August 2008

    USGS Publications Warehouse

    Long, D.A.; Arp, C.D.

    2011-01-01

    Growing visitor traffic and resource use, as well as natural and anthropogenic land and climatic changes, can place increasing stress on lake ecosystems in Denali National Park and Preserve. Baseline data required to substantiate impact assessment in this sub-arctic region is sparse to non-existent. The U.S. Geological Survey, in cooperation with the National Park Service, conducted a water-quality assessment of several large lakes in and around the Park from June 2006 to August 2008. Discrete water-quality samples, lake profiles of pH, specific conductivity, dissolved-oxygen concentration, water temperature, turbidity, and continuous-record temperature profile data were collected from Wonder Lake, Chilchukabena Lake, and Lake Minchumina. In addition, zooplankton, snow chemistry data, fecal coliform, and inflow/outflow water-quality samples also were collected from Wonder Lake.

  20. Magnesium-to-calcium ratio in tap water, and its relationship to geological features and the incidence of calcium-containing urinary stones.

    PubMed

    Kohri, K; Kodama, M; Ishikawa, Y; Katayama, Y; Takada, M; Katoh, Y; Kataoka, K; Iguchi, M; Kurita, T

    1989-11-01

    We examined the relationship among magnesium and calcium content in tap water, the geological features and urinary stone incidence in Japan. The magnesium-to-calcium ratio in tap water correlated negatively with the incidence of urolithiasis. There was no correlation between calcium and magnesium concentration in tap water and urinary stone incidence. Geological features in Japan were classified into 5 groups. The magnesium-to-calcium ratio in the basalt areas was higher than in the other areas, while ratio in the granite areas was low. In the sedimentary rock areas calcium and magnesium concentrations were high; the magnesium-to-calcium ratio in these areas was between those of the basalt and granite areas. The limestone areas had a much higher calcium concentration. The incidence of urinary stones in the sedimentary rock and basalt areas was lower than that of the granite areas, while that in the limestone areas was the highest. Thus, the incidence of urinary stone is related to the magnesium-to-calcium ratio in tap water and the geological area.

  1. Reduction in pesticide residue levels in olives by ozonated and tap water treatments and their transfer into olive oil.

    PubMed

    Kırış, Sevilay; Velioglu, Yakup Sedat

    2016-01-01

    The effects of different wash times (2 and 5 min) with tap and ozonated water on the removal of nine pesticides from olives and the transfer ratios of these pesticides during olive oil production were determined. The reliability of the analytical methods was also tested. The applied methods of analysis were found to be suitable based on linearity, trueness, repeatability, selectivity and limit of quantification all the pesticides tested. All tap and ozonated water wash cycles removed a significant quantity of the pesticides from the olives, with a few exceptions. Generally, extending the wash time increased the pesticide reduction with ozonated water, but did not make significant differences with tap water. During olive oil processing, depending on the processing technique and physicochemical properties of the pesticides, eight of nine pesticides were concentrated into olive oil (processing factor > 1) with almost no significant difference between treatments. Imidacloprid did not pass into olive oil. Ozonated water wash for 5 min reduced chlorpyrifos, β-cyfluthrin, α-cypermethrin and imidacloprid contents by 38%, 50%, 55% and 61% respectively in olives.

  2. Recent and Late Holocene Alaskan Lake Changes Identified from Water Isotopes

    NASA Astrophysics Data System (ADS)

    Anderson, L.; Birks, S. J.; Rover, J.; Guldager, N.

    2014-12-01

    To identify the existence and cause of recent lake area changes in the Yukon Flats, a region of discontinuous permafrost in north central Alaska, we evaluate lake water isotope compositions with remotely sensed imagery and hydroclimatic parameters. Estimates of the ratio of water lost by evaporation to that gained by inflow (E/I) were derived from an isotope-based water balance model. The isotope labels are also used to identify the dominant sources for lakes such as rainfall and snowfall, groundwater, rivers, or thawed permafrost. These parameters are then used in conjunction with climatic data and remotely sensed imagery to identify the patterns and causes of recent lake area changes and for evaluation with lake sediment oxygen isotope records of late Holocene lake water isotope variations. Lake water isotope samples from 83 lakes were acquired in July, August or September between 2007 and 2010 by fixed wing aircraft. An additional set of smaller lakes (n = 33) was sampled by helicopter in September 2009. In July 2011 59 lakes were sampled on foot within five distinct 11.2-km2 areas. River water data used here are previously collected during the months of June through October between 2006 and 2008. Isotope compositions indicate that mixtures of precipitation, river water, and groundwater source ~95% of the studied lakes. The remaining minority are more dominantly sourced by snowmelt and/or permafrost thaw. Isotope-based water balance estimates indicate 58% of lakes lose more than half of inflow by evaporation. For 26% of the lakes studied, evaporative losses exceeded supply. Surface area trend analysis indicates that most lakes were near their maximum extent in the early 1980s during a relatively cool and wet period. Subsequent reductions can be explained by moisture deficits and greater evaporation. Comparison with late Holocene isotope values and trends indicates recent changes are within the range of late Holocene variability. The records indicate a drier and

  3. Exposure of children to metals via tap water ingestion at home: Contamination and exposure data from a nationwide survey in France.

    PubMed

    Le Bot, Barbara; Lucas, Jean-Paul; Lacroix, Françoise; Glorennec, Philippe

    2016-09-01

    29 inorganic compounds (Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Gd, K, Mg, Mn, Mo, Na, Nd, Ni, Pb, Sb, Se, Sr, Tl, U, V and Zn) were measured in the tap water of 484 representative homes of children aged 6months to 6years in metropolitan France in 2008-2009. Parents were asked whether their children consumed tap water. Sampling design and sampling weights were taken into account to estimate element concentrations in tap water supplied to the 3,581,991 homes of 4,923,058 children aged 6months to 6years. Median and 95th percentiles of concentrations in tap water were in μg/L: Al: <10, 48.3, As: 0.2, 2.1; B: <100, 100; Ba: 30.7, 149.4; Ca: 85,000, 121,700; Cd: <0.5, <0.5; Ce: <0.5, <0.5; Co: <0.5, 0.8; Cr: <5, <5; Cu: 70, 720; K: 2210, 6740; Fe: <20, 46; Mn: <5, <5; Mo: <0.5, 1.5; Na: 14,500, 66,800; Ni: <2, 10.2; Mg: 6500, 21,200; Pb: <1, 5.4; Sb: <0.5, <0.5; Se: <1, 6.7; Sr: 256.9, 1004; Tl: <0.5, <0.5; U: <0.5, 2.4; V: <1, 1; Zn: 53, 208. Of the 2,977,123 young children drinking tap water in France, some were drinking water having concentrations above the 2011 World Health Organization drinking-water quality guidelines: respectively 498 (CI 95%: 0-1484) over 700μg/L of Ba; 121,581 (CI 95%: 7091-236,070) over 50mg/L of Na; 2044 (CI 95%: 0-6132) over 70μg/L of Ni, and 78,466 (17,171-139,761) over 10μg/L of Pb. Since it is representative, this tap water contamination data can be used for integrated exposure assessment, in conjunction with diet and environmental (dust and soil) exposure data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Water quality in Lake Lanier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callaham, M.A.

    1991-04-01

    Thirteen water quality tests measuring five categories of pollution were conducted twice monthly from May, 1987 to April, 1990 at eight locations on Lake Sidney Lanier to establish baseline data and detect trends. Additionally, sediment and water samples were analyzed for ten toxic metals. Sampling stations were located at or near the point of entry of streams into the Lake. Oxygen demanding pollutants were highest in urban streams and phosphorus and nitrogen concentrations were highest in streams having poultry processing operations within their watersheds. Indicators of siltation increased coincidentally with highway construction in one watershed. Fecal coliform bacteria counts decreasedmore » at Flat Creek and increased in the Chattahoochee River. Zinc and copper occurred in water samples at levels of detectability. Sediment samples from several locations contained metal concentrations which warrant further study.« less

  5. Optimization of adenovirus 40 and 41 recovery from tap water using small disk filters.

    PubMed

    McMinn, Brian R

    2013-11-01

    Currently, the U.S. Environmental Protection Agency's Information Collection Rule (ICR) for the primary concentration of viruses from drinking and surface waters uses the 1MDS filter, but a more cost effective option, the NanoCeram® filter, has been shown to recover comparable levels of enterovirus and norovirus from both matrices. In order to achieve the highest viral recoveries, filtration methods require the identification of optimal concentration conditions that are unique for each virus type. This study evaluated the effectiveness of 1MDS and NanoCeram filters in recovering adenovirus (AdV) 40 and 41 from tap water, and optimized two secondary concentration procedures the celite and organic flocculation method. Adjustments in pH were made to both virus elution solutions and sample matrices to determine which resulted in higher virus recovery. Samples were analyzed by quantitative PCR (qPCR) and Most Probable Number (MPN) techniques and AdV recoveries were determined by comparing levels of virus in sample concentrates to that in the initial input. The recovery of adenovirus was highest for samples in unconditioned tap water (pH 8) using the 1MDS filter and celite for secondary concentration. Elution buffer containing 0.1% sodium polyphosphate at pH 10.0 was determined to be most effective overall for both AdV types. Under these conditions, the average recovery for AdV40 and 41 was 49% and 60%, respectively. By optimizing secondary elution steps, AdV recovery from tap water could be improved at least two-fold compared to the currently used methodology. Identification of the optimal concentration conditions for human AdV (HAdV) is important for timely and sensitive detection of these viruses from both surface and drinking waters. Published by Elsevier B.V.

  6. Ground-water and surface-water flow and estimated water budget for Lake Seminole, southwestern Georgia and northwestern Florida

    USGS Publications Warehouse

    Dalton, Melinda S.; Aulenbach, Brent T.; Torak, Lynn J.

    2004-01-01

    Lake Seminole is a 37,600-acre impoundment formed at the confluence of the Flint and Chattahoochee Rivers along the Georgia?Florida State line. Outflow from Lake Seminole through Jim Woodruff Lock and Dam provides headwater to the Apalachicola River, which is a major supply of freshwater, nutrients, and detritus to ecosystems downstream. These rivers,together with their tributaries, are hydraulically connected to karst limestone units that constitute most of the Upper Floridan aquifer and to a chemically weathered residuum of undifferentiated overburden. The ground-water flow system near Lake Seminole consists of the Upper Floridan aquifer and undifferentiated overburden. The aquifer is confined below by low-permeability sediments of the Lisbon Formation and, generally, is semiconfined above by undifferentiated overburden. Ground-water flow within the Upper Floridan aquifer is unconfined or semiconfined and discharges at discrete points by springflow or diffuse leakage into streams and other surface-water bodies. The high degree of connectivity between the Upper Floridan aquifer and surface-water bodies is limited to the upper Eocene Ocala Limestone and younger units that are in contact with streams in the Lake Seminole area. The impoundment of Lake Seminole inundated natural stream channels and other low-lying areas near streams and raised the water-level altitude of the Upper Floridan aquifer near the lake to nearly that of the lake, about 77 feet. Surface-water inflow from the Chattahoochee and Flint Rivers and Spring Creek and outflow to the Apalachicola River through Jim Woodruff Lock and Dam dominate the water budget for Lake Seminole. About 81 percent of the total water-budget inflow consists of surface water; about 18 percent is ground water, and the remaining 1 percent is lake precipitation. Similarly, lake outflow consists of about 89 percent surface water, as flow to the Apalachicola River through Jim Woodruff Lock and Dam, about 4 percent ground water

  7. Ground-water/surface-water interaction in nearshore areas of Three Lakes on the Grand Portage Reservation, northeastern Minnesota, 2003-04

    USGS Publications Warehouse

    Jones, Perry M.

    2006-01-01

    Knowledge of general water-flow directions in lake watersheds and how they may change seasonally can help water-quality specialists and lake managers address a variety of water-quality and aquatic habitat protection issues for lakes. Results from this study indicate that ground-water and surface-water interactions at the study lakes are complex, and the ability of the applied techniques to identify ground-water inflow and surface-water outseepage locations varied among the lakes. Measurement of lake-sediment temperatures proved to be a reliable and relatively inexpensive reconnaissance technique that lake managers may apply in complex settings to identify general areas of ground-water inflow and surface-water outseepage.

  8. Evaluation of on-line concentration coupled to liquid chromatography tandem mass spectrometry for the quantification of neonicotinoids and fipronil in surface water and tap water.

    PubMed

    Montiel-León, Juan Manuel; Duy, Sung Vo; Munoz, Gabriel; Amyot, Marc; Sauvé, Sébastien

    2018-04-01

    A study was initiated to investigate a fast and reliable method for the determination of selected systemic insecticides in water matrixes and to evaluate potential sources of bias in their analysis. Acetamiprid, clothianidin, desnitro-imidacloprid, dinotefuran, fipronil, imidacloprid, nitenpyram, thiacloprid, and thiamethoxam were amenable to analysis via on-line sample enrichment hyphenated to ultra-high-performance liquid chromatography tandem mass spectrometry. The selection of on-line solid-phase extraction parameters was dictated by a multicriterion desirability approach. A 2-mL on-line injection volume with a 1500 μL min -1 loading flow rate met the objectives sought in terms of chromatographic requirements, extraction efficiency, sensitivity, and precision. A total analysis time of 8 min per sample was obtained with method limits of detection in the range of 0.1-5 ng L -1 for the scope of targeted analytes. Automation at the sample concentration step yielded intraday and interday precisions in the range of 1-23 and 2-26%, respectively. Factors that could affect the whole method accuracy were further evaluated in matrix-specific experiments. The impact of the initial filtration step on analyte recovery was evaluated in ultra-pure water, tap water, and surface water. Out of the nine membranes tested, glass fiber filters and polyester filters appeared as the most appropriate materials. Sample storage stability was also investigated across the three matrix types; the targeted analytes displayed suitable stability during 28 days at either 4 °C or - 20 °C, with little deviations (± 10%) with respect to the initial T 0 concentration. Method applicability was demonstrated in a range of tap water and surface water samples from the province of Québec, Canada. Results from the present survey indicated a predominance of thiamethoxam (< 0.5-10 and 3-61 ng L -1 in tap water and river water, respectively), clothianidin (< 0.5-6 and 2-88 ng L -1 in

  9. In vitro bioanalysis of drinking water from source to tap.

    PubMed

    Rosenmai, Anna Kjerstine; Lundqvist, Johan; le Godec, Théo; Ohlsson, Åsa; Tröger, Rikard; Hellman, Björn; Oskarsson, Agneta

    2018-08-01

    The presence of chemical pollutants in sources of drinking water is a key environmental problem threatening public health. Efficient removal of pollutants in drinking water treatment plants (DWTPs) is needed as well as methods for assessment of the total impact of all present chemicals on water quality. In the present study we have analyzed the bioactivity of water samples from source to tap, including effects of various water treatments in a DWTP, using a battery of cell-based bioassays, covering health-relevant endpoints. Reporter gene assays were used to analyze receptor activity of the aryl hydrocarbon receptor (AhR), estrogen receptor (ER), androgen receptor (AR), peroxisome proliferator-activated receptor alpha (PPARα) and induction of oxidative stress by the nuclear factor erythroid 2-related factor 2 (Nrf2). DNA damage was determined by Comet assay. Grab water samples were concentrated by HLB or ENV solid phase extraction and the water samples assayed at a relative enrichment factor of 50. The enrichment procedure did not induce any bioactivity. No bioactivity was detected in Milli-Q water or drinking water control samples. Induction of AhR, ER and Nrf2 activities was revealed in source to tap water samples. No cytotoxicity, PPARα or AR antagonist activity, or DNA damage were observed in any of the water samples. A low AR agonist activity was detected in a few samples of surface water, but not in the samples from the DWTP. The treatment steps at the DWTP, coagulation, granulated activated carbon filtration, UV disinfection and NH 2 Cl dosing had little or no effect on the AhR, Nrf2 and ER bioactivity. However, nanofiltration and passage through the distribution network drastically decreased AhR activity, while the effect on Nrf2 activity was more modest and no apparent effect was observed on ER activity. The present results suggest that bioassays are useful tools for evaluation of the efficiency of different treatment steps in DWTPs in reducing toxic

  10. Citizen and Satellite Measurements Used to Estimate Lake Water Storage Variations

    NASA Astrophysics Data System (ADS)

    Parkins, G.; Pavelsky, T.; Yelton, S.; Ghafoor, S. K.; Hossain, F.

    2017-12-01

    Of the roughly 20-40 million lakes in the world larger than 0.01 km2, perhaps a few thousand receive regular water level monitoring, and only approximately a thousand are included in the largest lake level databases. The prospect for on-the-ground, automated monitoring of a significant fraction of the world's lakes is not high given the considerable expense involved. In comparison to many other measurements, however, measuring lake water level is relatively simple under most conditions. A staff gauge installed in a lake, essentially a leveled ruler, can be read relatively simply by both experts and ordinary citizens. Reliable staff gauges cost far less than automated systems, making them an attractive alternative. However, staff gauges are only effective when they are regularly observed and when those observations are communicated to a central database. We have developed and tested a system for citizen scientists to monitor water levels in 15 lakes in Eastern North Carolina, USA and to easily report those measurements to our project team. We combine these citizen measurements with Landsat measurements of inundated area to track variations in lake water storage. Here, we present the resulting lake water level, inundation extent, and lake storage change time series and assess measurement accuracy. Our primary validation method for citizen-measured lake water levels is comparison with heights from pressure transducers also installed in all fifteen lakes. We use the validated results to understand spatial patterns in the lake hydrology of Eastern North Carolina. Finally, we consider the motivations of citizens who participate in the project and discuss the feedback they have provided regarding our measurement and communication systems.

  11. Ikaite precipitation by mixing of shoreline springs and lake water, Mono Lake, California, USA

    NASA Astrophysics Data System (ADS)

    Bischoff, James L.; Stine, Scott; Rosenbauer, Robert J.; Fitzpatrick, John A.; Stafford, Thomas W., Jr.

    1993-08-01

    Metastable ikaite (CaCO 3·6H 2O) forms abundantly during winter months along the south shoreline of Mono Lake where shoreline springs mix with lake water. Ikaite precipitates because of its decreased solubility at low temperature and because of orthophosphate-ion inhibition of calcite and aragonite. During the spring some of the ikaite is transformed to anhydrous CaCO 3 and is incorporated into tufa, but most is dispersed by wave action into the lake where it reacts to form gaylussite (Na 2Ca(CO 3) 2· 5H 2O). Spring waters have low pH values, are dominantly Ca-Na-HCO 3, have low radiocarbon activities, and are mixtures of deep-seated geothermal and cold groundwaters. Chemical modeling reveals that precipitation of CaCO 3 can occur over a broad range of mixtures of spring and lake water with a maximum production occurring at 96% spring water and 4% lake water. Under these conditions all the Ca and a significant fraction of the CO 3 of the precipitate is spring supplied. A radiocarbon age of 19,580 years obtained on a natural ikaite sample supports this conclusion. With the springs supplying a large and probably variable portion of the carbonate, and with apparent 14C age of the carbonate varying from spring to spring, tufa of similar actual antiquity may yield significantly different 14C dates, making tufa at this location unsuitable for absolute age dating by the radiocarbon method.

  12. Ikaite precipitation by mixing of shoreline springs and lake water, Mono Lake, California, USA

    USGS Publications Warehouse

    Bischoff, J.L.; Stine, S.; Rosenbauer, R.J.; Fitzpatrick, J.A.; Stafford, Thomas W.

    1993-01-01

    Metastable ikaite (CaCO3??6H2O) forms abundantly during winter months along the south shoreline of Mono Lake where shoreline springs mix with lake water. Ikaite precipitates because of its decreased solubility at low temperature and because of orthophosphate-ion inhibition of calcite and aragonite. During the spring some of the ikaite is transformed to anhydrous CaCO3 and is incorporated into tufa, but most is dispersed by wave action into the lake where it reacts to form gaylussite (Na2Ca(CO3)2?? 5H2O). Spring waters have low pH values, are dominantly Ca-Na-HCO3, have low radiocarbon activities, and are mixtures of deep-seated geothermal and cold groundwaters. Chemical modeling reveals that precipitation of CaCO3 can occur over a broad range of mixtures of spring and lake water with a maximum production occurring at 96% spring water and 4% lake water. Under these conditions all the Ca and a significant fraction of the CO3 of the precipitate is spring supplied. A radiocarbon age of 19,580 years obtained on a natural ikaite sample supports this conclusion. With the springs supplying a large and probably variable portion of the carbonate, and with apparent 14C age of the carbonate varying from spring to spring, tufa of similar actual antiquity may yield significantly different 14C dates, making tufa at this location unsuitable for absolute age dating by the radiocarbon method. ?? 1993.

  13. Water budget and water quality of Ward Lake, flow and water-quality characteristics of the Braden River estuary, and the effects of Ward Lake on the hydrologic system, west-central Florida

    USGS Publications Warehouse

    Trommer, J.T.; DelCharco, M.J.; Lewelling, B.R.

    1999-01-01

    The Braden River is the largest tributary to the Manatee River. The river was dammed in 1936 to provide the city of Bradenton a source of freshwater supply. The resulting impoundment was called Ward Lake and had a storage capacity of about 585 million gallons. Reconstruction in 1985 increased the size of the reservoir to about 1,400 million gallons. The lake has been renamed the Bill Evers Reservoir and drains about 59 square miles. The Braden River watershed can be subdivided into three hydrologic reaches. The upper reach consists of a naturally incised free-flowing channel. The middle reach consists of a meandering channel affected by backwater as a result of the dam. The lower reach is a tidal estuary. Water budgets were calculated for the 1993 through 1997 water years. Mean surface-water inflow to Ward Lake for the 5-year period was 1,645 inches per year (equivalent depth over the surface of the lake), or about 81.8 percent of total inflow. Mean ground-water inflow was 311 inches per year, or about 15.5 percent. A mean of 55 inches of rain fell directly on the lake and accounted for only 2.7 percent. Mean surface-water outflow was 1,736 inches, or about 86.4 percent of total water leaving the lake. There was no net ground-water outflow from the lake. Mean surface-water withdrawal for public supply was 229 inches per year, or about 11.4 percent. Mean evaporation was 45 inches and accounted for only 2.2 percent of the mean outflow. Change in lake storage on the budget was negligible. Most chemical constituents contained in water flowing to Ward Lake meet the standards specified by the Florida Department of Environmental Protection and the U.S. Environmental Protection Agency. Phosphorus is the exception, exceeding the U.S. Environmental Protection Agency limits of 0.10 milligram per liter in most samples. However, the source of the phosphorus is naturally occurring phosphate deposits underlying the watershed. Organic nitrogen and orthophosphate are the dominant

  14. Quality of drinking water from ponds in villages of Kolleru Lake region.

    PubMed

    Rao, A S; Rao, P R; Rao, N S

    2001-01-01

    Kolleru Lake is the largest natural freshwater lake in the districts of East and West Godavari of Andhra Pradesh. The major population centres in the Kolleru Lake region are the 148 villages of which 50 bed villages and 98 belt villages. All bed and belt villages in lake region have at least one drinking water pond. Drinking water ponds are filled with lake water during monsoon season and directly supplied to the public throughout the year. The water samples were collected from village drinking water ponds in a year by covering three seasons and analysed for different physico-chemical parameters to assess the quality of drinking water.

  15. Measuring historic water levels of Lake Balaton and tributary wetlands using georeferenced maps

    NASA Astrophysics Data System (ADS)

    Zlinszky, A.

    2009-04-01

    Lake Balaton is a large and relatively shallow lake located in western Hungary. The lake is joined by small wetlands on the north shore and larger water-filled valleys on the south separated by and elevated sand bar. These wetlands are assumed to have been connected with Lake Balaton before the water level was artificially lowered in 1893. No regular measurements of the water level of the lake or these wetlands were carried out before the draining of the lake. Most of the wetlands were completely isolated from the water system of the lake after the water level change as roads, railway and holiday homes were built. The low valleys of the southern shore still hold many fishponds, swamps and wet meadows, which are important sanctuaries for rare wetland species, and are often less disturbed than the lake, which is a popular holiday resort. Hydrologic restoration of these wetlands is only possible if accurate information exists on the original, natural state. The 1776 Krieger-map and the first military survey (1782-1785) are the most accurate known maps of the original state of the Lake Balaton area. These maps were surveyed using triangulation and leveling, and are accurate enough to be compared with the present-day situation. Some of the depicted buildings and landmarks still survive and can be used as control points for georeferencing and correcting these maps. Since the bathymetry of the lake and the topography of the surrounding countryside have hardly changed, existing digital elevation models of the present-day relief could be compared to these georeferenced maps. The elevation profile of the lake shore and wetland borders can be calculated by tracing these lines on a Digital Elevation Model. The shore area of Lake Balaton has been filled in and changed, so present-day land topography can not be used to estimate the water level from the elevation profile of the shore line. However, the Krieger-map also shows bathymetric contours, and previous studies have shown

  16. The Model of Lake Operation in Water Transfer Projects Based on the Theory of Water- right

    NASA Astrophysics Data System (ADS)

    Bi-peng, Yan; Chao, Liu; Fang-ping, Tang

    the lake operation is a very important content in Water Transfer Projects. The previous studies have not any related to water-right and water- price previous. In this paper, water right is divided into three parts, one is initialization waterright, another is by investment, and the third is government's water- right re-distribution. The water-right distribution model is also build. After analyzing the cost in water transfer project, a model and computation method for the capacity price as well as quantity price is proposed. The model of lake operation in water transfer projects base on the theory of water- right is also build. The simulation regulation for the lake was carried out by using historical data and Genetic Algorithms. Water supply and impoundment control line of the lake was proposed. The result can be used by south to north water transfer projects.

  17. LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes.

    PubMed

    Soranno, Patricia A; Bacon, Linda C; Beauchene, Michael; Bednar, Karen E; Bissell, Edward G; Boudreau, Claire K; Boyer, Marvin G; Bremigan, Mary T; Carpenter, Stephen R; Carr, Jamie W; Cheruvelil, Kendra S; Christel, Samuel T; Claucherty, Matt; Collins, Sarah M; Conroy, Joseph D; Downing, John A; Dukett, Jed; Fergus, C Emi; Filstrup, Christopher T; Funk, Clara; Gonzalez, Maria J; Green, Linda T; Gries, Corinna; Halfman, John D; Hamilton, Stephen K; Hanson, Paul C; Henry, Emily N; Herron, Elizabeth M; Hockings, Celeste; Jackson, James R; Jacobson-Hedin, Kari; Janus, Lorraine L; Jones, William W; Jones, John R; Keson, Caroline M; King, Katelyn B S; Kishbaugh, Scott A; Lapierre, Jean-Francois; Lathrop, Barbara; Latimore, Jo A; Lee, Yuehlin; Lottig, Noah R; Lynch, Jason A; Matthews, Leslie J; McDowell, William H; Moore, Karen E B; Neff, Brian P; Nelson, Sarah J; Oliver, Samantha K; Pace, Michael L; Pierson, Donald C; Poisson, Autumn C; Pollard, Amina I; Post, David M; Reyes, Paul O; Rosenberry, Donald O; Roy, Karen M; Rudstam, Lars G; Sarnelle, Orlando; Schuldt, Nancy J; Scott, Caren E; Skaff, Nicholas K; Smith, Nicole J; Spinelli, Nick R; Stachelek, Joseph J; Stanley, Emily H; Stoddard, John L; Stopyak, Scott B; Stow, Craig A; Tallant, Jason M; Tan, Pang-Ning; Thorpe, Anthony P; Vanni, Michael J; Wagner, Tyler; Watkins, Gretchen; Weathers, Kathleen C; Webster, Katherine E; White, Jeffrey D; Wilmes, Marcy K; Yuan, Shuai

    2017-12-01

    Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states.LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600-12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales. © The Author 2017. Published by Oxford University Press.

  18. LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes

    PubMed Central

    Bacon, Linda C; Beauchene, Michael; Bednar, Karen E; Bissell, Edward G; Boudreau, Claire K; Boyer, Marvin G; Bremigan, Mary T; Carpenter, Stephen R; Carr, Jamie W; Christel, Samuel T; Claucherty, Matt; Conroy, Joseph D; Downing, John A; Dukett, Jed; Filstrup, Christopher T; Funk, Clara; Gonzalez, Maria J; Green, Linda T; Gries, Corinna; Halfman, John D; Hamilton, Stephen K; Hanson, Paul C; Henry, Emily N; Herron, Elizabeth M; Hockings, Celeste; Jackson, James R; Jacobson-Hedin, Kari; Janus, Lorraine L; Jones, William W; Jones, John R; Keson, Caroline M; King, Katelyn B S; Kishbaugh, Scott A; Lathrop, Barbara; Latimore, Jo A; Lee, Yuehlin; Lottig, Noah R; Lynch, Jason A; Matthews, Leslie J; McDowell, William H; Moore, Karen E B; Neff, Brian P; Nelson, Sarah J; Oliver, Samantha K; Pace, Michael L; Pierson, Donald C; Poisson, Autumn C; Pollard, Amina I; Post, David M; Reyes, Paul O; Rosenberry, Donald O; Roy, Karen M; Rudstam, Lars G; Sarnelle, Orlando; Schuldt, Nancy J; Scott, Caren E; Smith, Nicole J; Spinelli, Nick R; Stachelek, Joseph J; Stanley, Emily H; Stoddard, John L; Stopyak, Scott B; Stow, Craig A; Tallant, Jason M; Thorpe, Anthony P; Vanni, Michael J; Wagner, Tyler; Watkins, Gretchen; Weathers, Kathleen C; Webster, Katherine E; White, Jeffrey D; Wilmes, Marcy K; Yuan, Shuai

    2017-01-01

    Abstract Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states. LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600–12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales. PMID:29053868

  19. LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes

    USGS Publications Warehouse

    Soranno, Patricia A.; Bacon, Linda C.; Beauchene, Michael; Bednar, Karen E.; Bissell, Edward G.; Boudreau, Claire K.; Boyer, Marvin G.; Bremigan, Mary T.; Carpenter, Stephen R.; Carr, Jamie W.; Cheruvelil, Kendra S.; Christel, Samuel T.; Claucherty, Matt; Collins, Sarah M.; Conroy, Joseph D.; Downing, John A.; Dukett, Jed; Fergus, C. Emi; Filstrup, Christopher T.; Funk, Clara; Gonzalez, Maria J.; Green, Linda T.; Gries, Corinna; Halfman, John D.; Hamilton, Stephen K.; Hanson, Paul C.; Henry, Emily N.; Herron, Elizabeth M.; Hockings, Celeste; Jackson, James R.; Jacobson-Hedin, Kari; Janus, Lorraine L.; Jones, William W.; Jones, John R.; Keson, Caroline M.; King, Katelyn B.S.; Kishbaugh, Scott A.; Lapierre, Jean-Francois; Lathrop, Barbara; Latimore, Jo A.; Lee, Yuehlin; Lottig, Noah R.; Lynch, Jason A.; Matthews, Leslie J.; McDowell, William H.; Moore, Karen E.B.; Neff, Brian; Nelson, Sarah J.; Oliver, Samantha K.; Pace, Michael L.; Pierson, Donald C.; Poisson, Autumn C.; Pollard, Amina I.; Post, David M.; Reyes, Paul O.; Rosenberry, Donald; Roy, Karen M.; Rudstam, Lars G.; Sarnelle, Orlando; Schuldt, Nancy J.; Scott, Caren E.; Skaff, Nicholas K.; Smith, Nicole J.; Spinelli, Nick R.; Stachelek, Joseph J.; Stanley, Emily H.; Stoddard, John L.; Stopyak, Scott B.; Stow, Craig A.; Tallant, Jason M.; Tan, Pang-Ning; Thorpe, Anthony P.; Vanni, Michael J.; Wagner, Tyler; Watkins, Gretchen; Weathers, Kathleen C.; Webster, Katherine E.; White, Jeffrey D.; Wilmes, Marcy K.; Yuan, Shuai

    2017-01-01

    Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states.LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600–12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales.

  20. Potential impacts of water diversion on fishery resources in the Great Lakes

    USGS Publications Warehouse

    Manny, Bruce A.

    1984-01-01

    Uses of Great Lakes water within the Great Lakes basin are steadily increasing, and critical water shortages elsewhere may add to the demands for diversions of water out of the basin in the near future. The impacts of such diversions on fish in the Great Lakes must be considered in the context of in-basin uses of the water, because in-basin uses already adversely affect the fishery resources. Temporary in-basin water withdrawals from Lake Michigan by industry in 1980 equaled 260% of the total volume of water between the shoreline and the 10-meter depth - the littoral waters most heavily used by fish as spawning and nursery grounds. Nearly 100% of the fish removed by these water withdrawals were killed. Enough young alewives (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) in Lake Michigan and young yellow perch (Perca flavescens) in western Lake Erie have been removed at water intakes in recent years to reduce the productivity and biomass of adult fish stocks. Out-of-basin diversions of water at Chicago and at the Welland Canal, channel modifications in the St. Clair River, and in-basin consumptive water withdrawals have lowered the annual mean water level of Lakes Michigan and Huron by about 27 cm and that of Lake Erie by about 10 cm, dewatering wetlands that historically served as spawning and nursery habitat for many valuable fish species. The dollar value of fish lost to water diversions and withdrawals has not yet been estimated, but water withdrawals alone have already reduced the annual economic impact of the Great Lakes fisheries, which has been estimated to be 1.16 billion dollars.

  1. A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management.

    PubMed

    Qin, Boqiang; Zhu, Guangwei; Gao, Guang; Zhang, Yunlin; Li, Wei; Paerl, Hans W; Carmichael, Wayne W

    2010-01-01

    In late May, 2007, a drinking water crisis took place in Wuxi, Jiangsu Province, China, following a massive bloom of the toxin producing cyanobacteria Microcystis spp. in Lake Taihu, China's third largest freshwater lake. Taihu was the city's sole water supply, leaving approximately two million people without drinking water for at least a week. This cyanobacterial bloom event began two months earlier than previously documented for Microcystis blooms in Taihu. This was attributed to an unusually warm spring. The prevailing wind direction during this period caused the bloom to accumulate at the shoreline near the intake of the water plant. Water was diverted from the nearby Yangtze River in an effort to flush the lake of the bloom. However, this management action was counterproductive, because it produced a current which transported the bloom into the intake, exacerbating the drinking water contamination problem. The severity of this microcystin toxin containing bloom and the ensuing drinking water crisis were attributable to excessive nutrient enrichment; however, a multi-annual warming trend extended the bloom period and amplified its severity, and this was made worse by unanticipated negative impacts of water management. Long-term management must therefore consider both the human and climatic factors controlling these blooms and their impacts on water supply in this and other large lakes threatened by accelerating eutrophication.

  2. Water Quality and Hydrology of Whitefish (Bardon) Lake, Douglas County, Wisconsin, With Special Emphasis on Responses of an Oligotrophic Seepage Lake to Changes in Phosphorus Loading and Water Level

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.; Juckem, Paul F.

    2009-01-01

    Whitefish Lake, which is officially named Bardon Lake, is an oligotrophic, soft-water seepage lake in northwestern Wisconsin, and classified by the Wisconsin Department of Natural Resources as an Outstanding Resource Water. Ongoing monitoring of the lake demonstrated that its water quality began to degrade (increased phosphorus and chlorophyll a concentrations) around 2002 following a period of high water level. To provide a better understanding of what caused the degradation in water quality, and provide information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. The goals of the study were to describe the past and present water quality of the lake, quantify water and phosphorus budgets for the lake, simulate the potential effects of changes in phosphorus inputs on the lake's water quality, analyze changes in the water level in the lake since 1900, and relate the importance of changes in climate and changes in anthropogenic (human-induced) factors in the watershed to the water quality of the lake. Since 1998, total phosphorus concentrations increased from near the 0.005-milligrams per liter (mg/L) detection limit to about 0.010 mg/L in 2006, and then decreased slightly in 2007-08. During this time, chlorophyll a concentrations and Secchi depths remained relatively stable at about 1.5 micrograms per liter (ug/L) and 26 feet, respectively. Whitefish Lake is typically classified as oligotrophic. Because the productivity in Whitefish Lake is limited by phosphorus, phosphorus budgets were constructed for the lake. Because it was believed that much of its phosphorus comes from the atmosphere, phosphorus deposition was measured in this study. Phosphorus input from the atmosphere was greater than computed based on previously reported wetfall phosphorus concentrations. The concentrations and deposition rates can be used to estimate atmospheric loading in future lake studies. The

  3. What is water?

    USGS Publications Warehouse

    ,

    1965-01-01

    If a schoolboy asked this question, you would answer it easily enough. "Why, water is a liquid found in and around the earth. Water is the sea, lakes, streams, springs and what comes gushing out of the tap when we turn it on." If he still looks a little unsatisfied, you would explain that our bodies are three-fourths water, and that water covers threefourths of the earth's surface. But you would have to admit to yourself that these facts, interesting as they are, do not quite answer the boy's question: "What is water?"

  4. Hydrology, water quality, and phosphorus loading of Kirby Lake, Barron County, Wisconsin

    USGS Publications Warehouse

    Rose, William J.; Robertson, Dale M.

    1998-01-01

    In 1992, residents near Kirby Lake, located about five miles northwest of Cumberland, in Barron County, Wisconsin, formed the Kirby Lake Management District. The Lake District immediately began to gather information needed for the preparation of a comprehensive lake-management plan that would be used to protect the natural and recreational assets of the lake. The Lake District completed a land-use inventory of the watershed and an evaluation of available lake water-quality data. The land-use data were used to assess the potential contribution of nutrients to the lake from the watershed. The evaluation of lake water-quality data, which were collected as part of the Wisconsin Department of Natural Resources (WDNR) Self-Help Monitoring Program, indicated the lake has relatively good water quality. Before a comprehensive lake-management plan could be prepared, however, a better understanding of several aspects of the lake and its surroundings was needed. To address those aspects including the definition of the lake's hydrology and the principal sources of nutrients, and the relation of the lake's water quality to nutrient loading the U.S. Geological Survey, in cooperation with the Lake District and the WDNR (through a Lake Management Planning Grant), conducted a study of Kirby Lake and its watershed. This Fact Sheet presents the results of that study.

  5. Legionella species diversity and dynamics from surface reservoir to tap water: from cold adaptation to thermophily

    PubMed Central

    Lesnik, René; Brettar, Ingrid; Höfle, Manfred G

    2016-01-01

    Water samples of the Drinking Water Supply System (DWSS) of the city of Braunschweig were analysed for its Legionella species composition using genus-specific PCR amplicons and single-strand conformation polymorphism (SSCP) fingerprint analyses based on 16S rRNA genes. These analyses comprised the whole supply chain including raw water, treatment process and large-scale storage, and a seasonal study of finished drinking water sampled monthly from cold and hot tap water. Treatment of raw water had a major impact on Legionella species by reducing their diversity and abundances. The Legionella species composition of the tap water was highly distinct from that of both source waters. In cold water, 8–14 different phylotypes of Legionella (PTLs) were observed per sample with relative abundances ranging from >1% to 53%. In hot water, L. pneumophila was present during all seasons at high relative abundances (8–40%) accompanied by 5–14 other PTLs of which 6 PTLs were in common with cold water. This thermophilic Legionella community, including L. pneumophila, was able to grow in the hot water above 50 °C. Such thermophilic Legionella populations are of general relevance for drinking water management and public health, but also for the ecology and evolution of the genus Legionella. PMID:26528838

  6. Legionella species diversity and dynamics from surface reservoir to tap water: from cold adaptation to thermophily.

    PubMed

    Lesnik, René; Brettar, Ingrid; Höfle, Manfred G

    2016-05-01

    Water samples of the Drinking Water Supply System (DWSS) of the city of Braunschweig were analysed for its Legionella species composition using genus-specific PCR amplicons and single-strand conformation polymorphism (SSCP) fingerprint analyses based on 16S rRNA genes. These analyses comprised the whole supply chain including raw water, treatment process and large-scale storage, and a seasonal study of finished drinking water sampled monthly from cold and hot tap water. Treatment of raw water had a major impact on Legionella species by reducing their diversity and abundances. The Legionella species composition of the tap water was highly distinct from that of both source waters. In cold water, 8-14 different phylotypes of Legionella (PTLs) were observed per sample with relative abundances ranging from >1% to 53%. In hot water, L. pneumophila was present during all seasons at high relative abundances (8-40%) accompanied by 5-14 other PTLs of which 6 PTLs were in common with cold water. This thermophilic Legionella community, including L. pneumophila, was able to grow in the hot water above 50 °C. Such thermophilic Legionella populations are of general relevance for drinking water management and public health, but also for the ecology and evolution of the genus Legionella.

  7. Using Snow Fences to Augument Fresh Water Supplies in Shallow Arctic Lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuefer, Svetlana

    2013-03-31

    This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory (NETL) to address environmental research questions specifically related to Alaska's oil and gas natural resources development. The focus of this project was on the environmental issues associated with allocation of water resources for construction of ice roads and ice pads. Earlier NETL projects showed that oil and gas exploration activities in the U.S. Arctic require large amounts of water for ice road and ice pad construction. Traditionally, lakes have been the source of freshwater for this purpose. The distinctive hydrological regime of northern lakes, caused bymore » the presence of ice cover and permafrost, exerts influence on lake water availability in winter. Lakes are covered with ice from October to June, and there is often no water recharge of lakes until snowmelt in early June. After snowmelt, water volumes in the lakes decrease throughout the summer, when water loss due to evaporation is considerably greater than water gained from rainfall. This balance switches in August, when air temperature drops, evaporation decreases, and rain (or snow) is more likely to occur. Some of the summer surface storage deficit in the active layer and surface water bodies (lakes, ponds, wetlands) is recharged during this time. However, if the surface storage deficit is not replenished (for example, precipitation in the fall is low and near‐surface soils are dry), lake recharge is directly affected, and water availability for the following winter is reduced. In this study, we used snow fences to augment fresh water supplies in shallow arctic lakes despite unfavorable natural conditions. We implemented snow‐control practices to enhance snowdrift accumulation (greater snow water equivalent), which led to increased meltwater production and an extended melting season that resulted in lake recharge despite low precipitation during the years of the experiment. For three years

  8. Water budget and estimated suspended-sediment inflow for Reelfoot Lake, Obion and Lake Counties, Northwestern Tennessee, May 1984-April 1985

    USGS Publications Warehouse

    Robbins, Clarence H.

    1985-01-01

    Reelfoot Lake in northwestern Tennessee, with a surface area of 15,500 acres at normal pool elevation, is the largest natural lake in Tennessee. Over the years, the lake has become an important economic, environmental, and recreational resource to the people in the area, and to the State of Tennessee. The natural eutrophic succession rate of the lake has apparently been accelerated by land use practices within the Reelfoot Lake drainage basin during the past several decades. The potential loss of Reelfoot Lake has prompted the State to make management and restoration of the lake and its resources a priority objective. The U.S. Geological Survey entered into a cooperative study in May 1984 with the Tennessee Wildlife Resources Agency and the Tennessee Department of Health and Environment, Division of Water Management, to collect and analyze hydrologic data and prepare an annual water budget for Reelfoot Lake. The purpose of the water budget is to provide an analysis of the surface-groundwater-lake-atmospheric water relation at Reelfoot Lake. Results of the analysis can be used by lake managers to evaluate the potential effects of proposed lake management strategies upon the lake and surrounding hydrologic system. The water budget for the 12-month study period (May 1, 1984 through April 30, 1985) is presented in this report. In addition, estimates of suspended-sediment discharge from tributary streams in the Reelfoot Lake basin and an analysis of concentrations of constituents in stream-bottom material at three inflow sites are also presented. (Lantz-PTT)

  9. Evidence of widespread natural reproduction by lake trout Salvelinus namaycush in the Michigan waters of Lake Huron

    USGS Publications Warehouse

    Riley, S.C.; He, J.X.; Johnson, J.E.; O'Brien, T. P.; Schaeffer, J.S.

    2007-01-01

    Localized natural reproduction of lake trout Salvelinus namaycush in Lake Huron has occurred since the 1980s near Thunder Bay, Michigan. During 2004–2006, USGS spring and fall bottom trawl surveys captured 63 wild juvenile lake trout at depths ranging from 37–73 m at four of five ports in the Michigan waters of the main basin of Lake Huron, more than five times the total number captured in the previous 30-year history of the surveys. Relatively high catches of wild juvenile lake trout in bottom trawls during 2004–2006 suggest that natural reproduction by lake trout has increased and occurred throughout the Michigan waters of the main basin. Increased catches of wild juvenile lake trout in the USGS fall bottom trawl survey were coincident with a drastic decline in alewife abundance, but data were insufficient to determine what mechanism may be responsible for increased natural reproduction by lake trout. We recommend further monitoring of juvenile lake trout abundance and research into early life history of lake trout in Lake Huron.

  10. Pesticides and their breakdown products in Lake Waxahachie, Texas, and in finished drinking water from the lake

    USGS Publications Warehouse

    Ging, Patricia B.

    2002-01-01

    Since 1991, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program has collected pesticide data from streams and aquifers throughout the Nation (Gilliom and others, 1995). However, little published information on pesticides in public drinking water is available. The NAWQA Program usually collects data on the sources of drinking water but not on the finished drinking water. Therefore, the U.S. Environmental Protection Agency (USEPA), in conjunction with the NAWQA Program, has initiated a nationwide pilot project to collect information on concentrations of pesticides and their breakdown products in finished drinking water, in source waters such as reservoirs, and in the basins that contribute water to the reservoirs. The pilot project was designed to collect water samples from finished drinking-water supplies and the associated source water from selected reservoirs that receive runoff from a variety of land uses. Lake Waxahachie, in Ellis County in north-central Texas, was chosen to represent a reservoir receiving water that includes runoff from cotton cropland. This fact sheet presents the results of pesticide sampling of source water from Lake Waxahachie and in finished drinking water from the lake. Analyses are compared to indicate differences in pesticide detections and concentrations between lake water and finished drinking water.

  11. Water chemistry of Lake Quilotoa (Ecuador) and assessment of natural hazards

    NASA Astrophysics Data System (ADS)

    Aguilera, E.; Chiodini, G.; Cioni, R.; Guidi, M.; Marini, L.; Raco, B.

    2000-04-01

    A geochemical survey carried out in November 1993 revealed that Lake Quilotoa was composed by a thin (˜14 m) oxic epilimnion overlying a ˜200 m-thick anoxic hypolimnion. Dissolved CO2 concentrations reached 1000 mg/kg in the lower stratum. Loss of CO2 from epilimnetic waters, followed by calcite precipitation and a consequent lowering in density, was the apparent cause of the stratification. The Cl, SO4 and HCO3 contents of Lake Quilotoa are intermediate between those of acid-SO4-Cl Crater lakes and those of neutral-HCO3 Crater lakes, indicating that Lake Quilotoa has a 'memory' of the inflow and absorption of HC1- and S-bearing volcanic (magmatic) gases. The Mg/Ca ratios of the lake waters are governed by dissolution of local volcanic rocks or magmas, but K/Na ratios were likely modified by precipitation of alunite, a typical mineral in acid-SO4-Cl Crater lakes. The constant concentrations of several conservative chemical species from lake surface to lake bottom suggest that physical, chemical and biological processes did not have enough time, after the last overturn, to cause significant changes in the contents of these chemical species. This lapse of time might be relatively large, but it cannot be established on the basis of available data. Besides, the lake may not be close to steady state. Mixing of Lake Quilotoa waters could presently be triggered by either cooling epilimnetic waters by ˜4°C or providing heat to hypolimnetic waters or by seismic activity. Although Quilotoa lake contains a huge amount of dissolved CO2(˜3×1011 g), at present the risk of a dangerous limnic eruption seems to be nil even though some gas exsolution might occur if deep lake waters were brought to the surface. Carbon dioxide could build up to higher levels in deep waters than at present without any volcanic re-awakening, due to either a large inflow of relatively cool CO2-rich gases, or possibly a long interval between overturns. Periodical geochemical surveys of Lake Quilotoa

  12. Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms.

    PubMed

    Judée, F; Simon, S; Bailly, C; Dufour, T

    2018-04-15

    Cold atmospheric plasmas are weakly ionized gases that can be generated in ambient air. They produce energetic species (e.g. electrons, metastables) as well as reactive oxygen species, reactive nitrogen species, UV radiations and local electric field. Their interaction with a liquid such as tap water can hence change its chemical composition. The resulting "plasma-activated liquid" can meet many applications, including medicine and agriculture. Consequently, a complete experimental set of analytical techniques dedicated to the characterization of long lifetime chemical species has been implemented to characterize tap water treated using cold atmospheric plasma process and intended to agronomy applications. For that purpose, colorimetry and acid titrations are performed, considering acid-base equilibria, pH and temperature variations induced during plasma activation. 16 species are quantified and monitored: hydroxide and hydronium ions, ammonia and ammonium ions, orthophosphates, carbonate ions, nitrite and nitrate ions and hydrogen peroxide. The related consumption/production mechanisms are discussed. In parallel, a chemical model of electrical conductivity based on Kohlrausch's law has been developed to simulate the electrical conductivity of the plasma-activated tap water (PATW). Comparing its predictions with experimental measurements leads to a narrow fitting, hence supporting the self-sufficiency of the experimental set, I.e. the fact that all long lifetime radicals of interest present in PATW are characterized. Finally, to evaluate the potential of cold atmospheric plasmas for agriculture applications, tap water has been daily plasma-treated to irrigate lentils seeds. Then, seedlings lengths have been measured and compared with untreated tap water, showing an increase as high as 34.0% and 128.4% after 3 days and 6 days of activation respectively. The interaction mechanisms between plasma and tap water are discussed as well as their positive synergy on

  13. Spatial variation in nutrient and water color effects on lake chlorophyll at macroscales

    USGS Publications Warehouse

    Fergus, C. Emi; Finley, Andrew O.; Soranno, Patricia A.; Wagner, Tyler

    2016-01-01

    The nutrient-water color paradigm is a framework to characterize lake trophic status by relating lake primary productivity to both nutrients and water color, the colored component of dissolved organic carbon. Total phosphorus (TP), a limiting nutrient, and water color, a strong light attenuator, influence lake chlorophyll a concentrations (CHL). But, these relationships have been shown in previous studies to be highly variable, which may be related to differences in lake and catchment geomorphology, the forms of nutrients and carbon entering the system, and lake community composition. Because many of these factors vary across space it is likely that lake nutrient and water color relationships with CHL exhibit spatial autocorrelation, such that lakes near one another have similar relationships compared to lakes further away. Including this spatial dependency in models may improve CHL predictions and clarify how well the nutrient-water color paradigm applies to lakes distributed across diverse landscape settings. However, few studies have explicitly examined spatial heterogeneity in the effects of TP and water color together on lake CHL. In this study, we examined spatial variation in TP and water color relationships with CHL in over 800 north temperate lakes using spatially-varying coefficient models (SVC), a robust statistical method that applies a Bayesian framework to explore space-varying and scale-dependent relationships. We found that TP and water color relationships were spatially autocorrelated and that allowing for these relationships to vary by individual lakes over space improved the model fit and predictive performance as compared to models that did not vary over space. The magnitudes of TP effects on CHL differed across lakes such that a 1 μg/L increase in TP resulted in increased CHL ranging from 2–24 μg/L across lake locations. Water color was not related to CHL for the majority of lakes, but there were some locations where water color had a

  14. Spatial Variation in Nutrient and Water Color Effects on Lake Chlorophyll at Macroscales

    PubMed Central

    Finley, Andrew O.; Soranno, Patricia A.; Wagner, Tyler

    2016-01-01

    The nutrient-water color paradigm is a framework to characterize lake trophic status by relating lake primary productivity to both nutrients and water color, the colored component of dissolved organic carbon. Total phosphorus (TP), a limiting nutrient, and water color, a strong light attenuator, influence lake chlorophyll a concentrations (CHL). But, these relationships have been shown in previous studies to be highly variable, which may be related to differences in lake and catchment geomorphology, the forms of nutrients and carbon entering the system, and lake community composition. Because many of these factors vary across space it is likely that lake nutrient and water color relationships with CHL exhibit spatial autocorrelation, such that lakes near one another have similar relationships compared to lakes further away. Including this spatial dependency in models may improve CHL predictions and clarify how well the nutrient-water color paradigm applies to lakes distributed across diverse landscape settings. However, few studies have explicitly examined spatial heterogeneity in the effects of TP and water color together on lake CHL. In this study, we examined spatial variation in TP and water color relationships with CHL in over 800 north temperate lakes using spatially-varying coefficient models (SVC), a robust statistical method that applies a Bayesian framework to explore space-varying and scale-dependent relationships. We found that TP and water color relationships were spatially autocorrelated and that allowing for these relationships to vary by individual lakes over space improved the model fit and predictive performance as compared to models that did not vary over space. The magnitudes of TP effects on CHL differed across lakes such that a 1 μg/L increase in TP resulted in increased CHL ranging from 2–24 μg/L across lake locations. Water color was not related to CHL for the majority of lakes, but there were some locations where water color had a

  15. Lake Erie Water Level Study. Main Report.

    DTIC Science & Technology

    1981-07-01

    of recreational beach activities. Examples include: Rondeau, Long Point and Sandbanks in Canada and Hamlin (New York), Presque Isle ( Pennsylvania ...be most affected by lake level changes. Long Point, Rondeau, Sandusky, and Presque Isle Bays are, due to their shallow nature and sand spit formation...AD-AI14 582 INTERNATIONAL LAKE ERIE REGULATION STUDY BOARD F/9 13/2 LAKE ERIE WATER LEVEL STUDY. MAIN REPORT.(U) UNCLASSIFIED N1.3 iE~hE

  16. What caused the decline of China's largest freshwater lake? Attribution analysis on Poyang Lake water level variations in recent years

    NASA Astrophysics Data System (ADS)

    Ye, Xuchun; Xu, Chong-Yu; Zhang, Qi

    2017-04-01

    In recent years, dramatic decline of water level of the Poyang Lake, China's largest freshwater lake, has raised wide concerns about the water security and wetland ecosystem. This remarkable hydrological change coincided with several factors like the initial operation of the Three Gorges Dam (TGD) in 2003, the big change of lake bottom topography due to extensive sand mining in the lake since 2000, and also climate change and other human activities in the Yangtze River basin may add to this complexity. Questions raised to what extent that the lake hydrological changes is caused by climate change and/or human activities. In this study, quantitative assessment was conducted to clarify the magnitude and mechanism of specific influencing factors on recent lake decline (2003-2014), with reference to the period of 1980-1999. The attempts were achieved through the reconstruction of lake water level scenarios by the framework of neural network. Major result indicates that the effect of lake bottom topography change due to sand mining activities has became the dominant factor for the recent lake decline, especially in winter season with low water level. However, the effect of TGD regulation shows strong seasonal features, its effect can accounts for 33%-42% of the average water level decline across the lake during the impoundment period of September-October. In addition, the effect of climate change and other human activities over the Yangtze River basin needs to be highly addressed, which is particularly prominent on reducing lake water level during the summer flood season and autumn recession period. The result also revealed that due to different mechanism, the responses of the lake water level to the three influencing factors are not consistent and show great spatial and temporal differences.

  17. Simulating ground water-lake interactions: Approaches and insights

    USGS Publications Warehouse

    Hunt, R.J.; Haitjema, H.M.; Krohelski, J.T.; Feinstein, D.T.

    2003-01-01

    Approaches for modeling lake-ground water interactions have evolved significantly from early simulations that used fixed lake stages specified as constant head to sophisticated LAK packages for MODFLOW. Although model input can be complex, the LAK package capabilities and output are superior to methods that rely on a fixed lake stage and compare well to other simple methods where lake stage can be calculated. Regardless of the approach, guidelines presented here for model grid size, location of three-dimensional flow, and extent of vertical capture can facilitate the construction of appropriately detailed models that simulate important lake-ground water interactions without adding unnecessary complexity. In addition to MODFLOW approaches, lake simulation has been formulated in terms of analytic elements. The analytic element lake package had acceptable agreement with a published LAK1 problem, even though there were differences in the total lake conductance and number of layers used in the two models. The grid size used in the original LAK1 problem, however, violated a grid size guideline presented in this paper. Grid sensitivity analyses demonstrated that an appreciable discrepancy in the distribution of stream and lake flux was related to the large grid size used in the original LAK1 problem. This artifact is expected regardless of MODFLOW LAK package used. When the grid size was reduced, a finite-difference formulation approached the analytic element results. These insights and guidelines can help ensure that the proper lake simulation tool is being selected and applied.

  18. Pollution by Nonylphenol in river, tap water, and aquatic in an acid rain-plagued city in southwest China.

    PubMed

    Jie, Yu; Jie, Zhou; Ya, Luo; Xuesong, Yang; Jing, Yang; Yu, Yang; Jiaqi, Yang; Jie, Xu

    2017-06-01

    Nonylphenol (NP) has provoked much environmental concern because of their weak estrogenic activities; however, few data are available on the environmental levels of the chemical in China. Environmental or river samples were assayed for NP by high-performance liquid chromatography (HPLC) technique. The concentration for NP measured in Xiangjiang River, ranging from 0.174 to 3.411 μg/L with a mean value of 1.73 μg/L, was lower than the Water Quality Criteria for NP of the US (6.6 μg/L); however, the NP concentration was maintained at a higher level compare to the developed countries and other civil cities. NP concentration in downstream water was markedly higher than that both in midstream and upstream water. Tissue accumulation of NP was observed in aquatics. A ratio of mean concentration of NP in aquatic (chlamys farreri and hemiculter leucisculus) to that in river water was 241 and 1087, respectively. The presence of NP in tap water in two urban districts of Zunyi was common with a detectable rate reached 100.0%. Mean NP concentration in terminal tap water in Huichuan district was six times as high as Honghuagang district, which was above Standards for the Drinking Water Quality for Phenols of China (2 μg/L). The pollution of NP in Xiangjiang River, tap water, and aquatic in Zunyi belongs to moderate or severe level in the world.

  19. Molecular characterization of natural biofilms from household taps with different materials: PVC, stainless steel, and cast iron in drinking water distribution system.

    PubMed

    Lin, Wenfang; Yu, Zhisheng; Chen, Xi; Liu, Ruyin; Zhang, Hongxun

    2013-09-01

    Microorganism in drinking water distribution system may colonize in biofilms. Bacterial 16S rRNA gene diversities were analyzed in both water and biofilms grown on taps with three different materials (polyvinyl chloride (PVC), stainless steel, and cast iron) from a local drinking water distribution system. In total, five clone libraries (440 sequences) were obtained. The taxonomic composition of the microbial communities was found to be dominated by members of Proteobacteria (65.9-98.9 %), broadly distributed among the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Other bacterial groups included Firmicutes, Acidobacteria, Bacteroidetes, Cyanobacteria, and Deinococcus-Thermus. Moreover, a small proportion of unclassified bacteria (3.5-10.6 %) were also found. This investigation revealed that the bacterial communities in biofilms appeared much more diversified than expected and more care should be taken to the taps with high bacterial diversity. Also, regular monitor of outflow water would be useful as potentially pathogenic bacteria were detected. In addition, microbial richness and diversity in taps ranked in the order as: PVC < stainless steel < cast iron. All the results interpreted that PVC would be a potentially suitable material for use as tap component in drinking water distribution system.

  20. Extracting environmental information from lake water isotopes - a novel approac

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Feng, X.; Lauder, A. M.; Virginia, R. A.; Posmentier, E. S.

    2014-12-01

    It is well known that hydrogen (δD) and oxygen (δ18O) isotopic composition in precipitation defines a meteoric water line with a slope close to 8 and an intercept of 10, and that evaporation causes water to deviate from the line, acquiring a d-excess value different from 10. It has also been observed that a group of lakes subject to significant evaporation often define a line, which we refer to as the lake line, with a slope lower than 8. While there has been much discussion about the slope of lake lines and its dependence on relative humidity, little attention has been given to the scatter around these lines. We show that this seemingly random scatter contains systematic environmental information. Water in over 20 lakes around Kangerlussuaq, Greenland, was collected in the summers of 2009 to 2013, and the δD and δ18O values were determined. Each year's isotopic data were used to find: 1) the slope of the lake line; 2) the displacement of each lake parallel to the lake line, which we refer to as the "enrichment"; and 3) the distance between a given lake and the lake line, which we call the "deviance". The enrichment and deviance are the values of the principal components, PC1 and PC2, respectively, of the set of δD and δ18O coordinates. When comparing the climate and environmental variables, we observed the following. A) The lake line slope varies from 4.12 to 4.63 among the 5 years. B) The enrichment is, in some years, significantly correlated with lake size and longitude (which increases along the moisture and temperature gradient). C) The deviance is significantly correlated with both lake size and longitude every year. A simple water and isotopic mass balance model suggests that the enrichment is largely controlled by the lake to basin area ratio, while the deviance is controlled predominantly by the humidity and isotopic ratios of air above the lake. The latter variables systematically change from east to west (glacial margin to coast), so longitude is a

  1. Water Quality, Hydrology, and Response to Changes in Phosphorus Loading of Nagawicka Lake, a Calcareous Lake in Waukesha County, Wisconsin

    USGS Publications Warehouse

    Garn, Herbert S.; Robertson, Dale M.; Rose, William J.; Goddard, Gerald L.; Horwatich, Judy A.

    2006-01-01

    Nagawicka Lake is a 986-acre, usually mesotrophic, calcareous lake in southeastern Wisconsin. Because of concern over potential water-quality degradation of the lake associated with further development in its watershed, a study was conducted by the U.S. Geological Survey from 2002 to 2006 to describe the water quality and hydrology of the lake; quantify sources of phosphorus, including those associated with urban development; and determine the effects of past and future changes in phosphorus loading on the water quality of the lake. All major water and phosphorus sources were measured directly, and minor sources were estimated to construct detailed water and phosphorus budgets for the lake. The Bark River, near-lake surface inflow, precipitation, and ground water contributed 74, 8, 12, and 6 percent of the inflow, respectively. Water leaves the lake primarily through the Bark River outlet (88 percent) or by evaporation (11 percent). The water quality of Nagawicka Lake has improved dramatically since 1980 as a result of decreasing the historical loading of phosphorus to the lake. Total input of phosphorus to the lake was about 3,000 pounds in monitoring year (MY) 2003 and 6,700 pounds in MY 2004. The largest source of phosphorus entering the lake was the Bark River, which delivered about 56 percent of the total phosphorus input, compared with about 74 percent of the total water input. The next largest contributions were from the urbanized near-lake drainage area, which disproportionately accounted for 37 percent of the total phosphorus input but only about 5 percent of the total water input. Simulations with water-quality models within the Wisconsin Lakes Modeling Suite (WiLMS) indicated the response of Nagawicka Lake to 10 phosphorus-loading scenarios. These scenarios included historical (1970s) and current (base) years (MY 2003-04) for which lake water quality and loading were known, six scenarios with percentage increases or decreases in phosphorus loading from

  2. Reduction of enteric infectious disease in rural China by providing deep-well tap water.

    PubMed Central

    Wang, Z. S.; Shepard, D. S.; Zhu, Y. C.; Cash, R. A.; Zhao, R. J.; Zhu, Z. X.; Shen, F. M.

    1989-01-01

    Enteric infectious disease (EID), defined here as bacillary dysentery, viral hepatitis A, El Tor cholera, or acute watery diarrhoea, is an important public health problem in most developing countries. This study assessed the impact on EID of providing deep-well tap water (DWTW) through household taps in rural China. For this purpose, we compared the incidence of EID in six study villages (population, 10,290) in Qidong County that had DWTW with that in six control villages (population 9397) that had only surface water. Both the bacterial counts and chemical properties of the DWTW met established hygiene standards for drinking water. The incidence of EID in the study region was 38.6% lower than in the control region; however, the introduction of DWTW supplies did not significantly affect the incidence of bacillary dysentery. These results indicate that the construction and use of DWTW systems with household taps is associated with decreased incidences of El Tor cholera, viral hepatitis A, and acute watery diarrhoea. Since high construction costs have led many authorities to question the value of DWTW, we carried out a cost-benefit analysis of the programme. The cost of constructing a DWTW system averaged US $36,000 at 1983 prices, or US $10.50 per capita. The combined capital and operating costs of a DWTW system were US $1.46 per capita per annum over its 20-year estimated life. The benefits derived from reductions in cost of illness and savings in time to fetch water were 2.2 times the costs at present values Capital outlays were recouped in a 3.6-year payback period and the provision of DWTW proved highly beneficial in both economic and social terms. PMID:2501042

  3. Water-quality characteristics of Michigan's inland lakes, 2001-10

    USGS Publications Warehouse

    Fuller, L.M.; Taricska, C.K.

    2012-01-01

    The U.S. Geological Survey and the Michigan Department of Environmental Quality (MDEQ) jointly monitored for selected water-quality constituents and properties of inland lakes during 2001–10 as part of Michigan's Lake Water-Quality Assessment program. During 2001–10, 866 lake basins from 729 inland lakes greater than 25 acres were monitored for baseline water-quality conditions and trophic status. This report summarizes the water-quality characteristics and trophic conditions of the monitored lakes throughout the State; the data include vertical-profile measurements, nutrient measurements at three discrete depths, Secchi-disk transparency (SDT) measurements, and chlorophyll a measurements for the spring and summer, with major ions and other chemical indicators measured during the spring at mid-depth and color during the summer from near-surface samples. In about 75 percent of inland lake deep basins (index stations), trophic characteristics were associated with oligotrophic or mesotrophic conditions; 5 percent or less were categorized as hypereutrophic, and 80 percent of hypereutrophic lakes had a maximum depth of 30 feet or less. Comparison of spring and summer measurements shows that water clarity based on SDT measurements were clearer in the spring than in the summer for 63 percent of lakes. For near-surface measurements made in spring, 97 percent of lakes can be considered phosphorus limited and less than half a percent nitrogen limited; for summer measurements, 96 percent of lakes can be considered phosphorus limited and less than half a percent nitrogen limited. Spatial patterns of major ions, alkalinity, and hardness measured in the spring at mid-depth all showed lower values in the Upper Peninsula of Michigan and a southward increase toward the southern areas of the Lower Peninsula, though the location of increase varied by constituent. A spatial analysis of the data based on U.S. Environmental Protection Agency Level III Ecoregions separated potassium

  4. Water Level Monitoring on Tibetan Lakes Based on Icesat and Envisat Data Series

    NASA Astrophysics Data System (ADS)

    Li, H. W.; Qiao, G.; Wu, Y. J.; Cao, Y. J.; Mi, H.

    2017-09-01

    Satellite altimetry technique is an effective method to monitor the water level of lakes in a wide range, especially in sparsely populated areas, such as the Tibet Plateau (TP). To provide high quality data for time-series change detection of lake water level, an automatic and efficient algorithm for lake water footprint (LWF) detection in a wide range is used. Based on ICESat GLA14 Release634 data and ENVISat GDR 1Hz data, water level of 167 lakes were obtained from ICESat data series, and water level of 120 lakes were obtained from ENVISat data series. Among them, 67 lakes contained two data series. Mean standard deviation of all lakes is 0.088 meters (ICESat), 0.339 meters (ENVISat). Combination of multi-source altimetry data is helpful for us to get longer and more dense periods cover water level, study the lake level changes, manage water resources and understand the impacts of climate change better. In addition, the standard deviation of LWF elevation used to calculate the water level were analyzed by month. Based on lake data set for the TP from the 1960s, 2005, and 2014 in Scientific Data, it is found that the water level changes in the TP have a strong spatial correlation with the area changes.

  5. Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    USGS Publications Warehouse

    Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.

    2016-10-19

    OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling.  Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake.  Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.

  6. Contamination of hospital tap water: the survival and persistence of Pseudomonas aeruginosa on conventional and 'antimicrobial' outlet fittings.

    PubMed

    Hutchins, C F; Moore, G; Thompson, K-A; Webb, J; Walker, J T

    2017-10-01

    Pseudomonas aeruginosa infections have been linked to contaminated hospital taps, highlighting the potential for tap outlet fittings (OF) to harbour biofilm. P. aeruginosa may be transferred to OFs via contaminated cleaning cloths. Suggested interventions include flushing regimens and alternative OF designs. To investigate the transfer of P. aeruginosa from a contaminated cleaning cloth to conventional and 'antimicrobial/antibiofilm' OFs and to determine whether this contamination persists and/or leads to contamination of tap water. Microfibre cloths contaminated with P. aeruginosa (10 8  cfu/mL) were used to wipe four different types of OF [one of conventional design (OF-A) and three marketed as 'antimicrobial' and/or 'antibiofilm' (OF- B, -C and -D)]. OFs were inserted into an experimental water distribution system for up to 24 h. Survival was assessed by culture. Single and multiple water samples were collected and cultured for P. aeruginosa. The median number of P. aeruginosa transferred from cloth to OF was 5.7 × 10 5  cfu (OF-A), 1.9 × 10 6  cfu (OF-B), 1.4 × 10 5  cfu (OF-C) and 2.9 × 10 6  cfu (OF-D). Numbers declined on all OFs during the 24 h period with log reductions ranging from 3.5 (OF-C) to 5.2 (OF-B; P > 0.05). All water samples delivered immediately after OF contamination contained P. aeruginosa at ≥10 cfu per 100 mL. Contamination of water delivered from OF-A persisted despite continued flushing. Water delivered from OF-B did not contain P. aeruginosa beyond the first flush. Contaminated cleaning cloths may transfer P. aeruginosa to OFs, leading to contamination of tap water. Although not removing the potential for contamination, 'antimicrobial/antibiofilm' OFs may prevent P. aeruginosa from continually contaminating water delivered from the outlet. Copyright © 2017 The Healthcare Infection Society. All rights reserved.

  7. Haitian Tap-Taps

    ERIC Educational Resources Information Center

    Sterling, Joan

    2011-01-01

    In the small island country of Haiti, colorful taxis transport the natives to the market. Although the taxis may be crowded with people, goods, and even livestock, it is considered a luxury to ride rather than go on foot. The children's picture book, "Tap-Tap," is a wonderful introduction to the culture of this land. The name…

  8. Will hypolimnetic waters become anoxic in all deep tropical lakes?

    PubMed Central

    Fukushima, Takehiko; Matsushita, Bunkei; Subehi, Luki; Setiawan, Fajar; Wibowo, Hendro

    2017-01-01

    To elucidate trends of hypolimnetic oxygen concentrations, vertical distributions of dissolved oxygen were measured in eight deep tropical bodies of water (one natural lake with two basins, five natural lakes, and one reservoir) in Indonesia. A comparison of those concentrations with previously reported data revealed that shoaling of hypolimnetic oxygen-deficient (around a few decimeters to a few meter per year) water had occurred in all of the lakes. Calculated areal hypolimnetic oxygen depletion rates were 0.046–5.9 g m−2 y−1. The oligomictic or meromictic characteristics of the bodies of water suppressed circulation and mixing in the hypolimnions and thus resulted in continuous shoaling of the uppermost oxygen-deficient layers. In some lakes, millions of fish sometimes died suddenly, probably owing to upward movement of oxygen-deficient water to near the surface during periods of strong winds. In the future, the rate of shoaling will be accelerated by human impacts in the basins and by climate warming, the influence of which has already been manifested by rising water temperatures in these lakes. Appropriate monitoring and discussions of future restoration challenges are urgently needed to prevent the hypolimnions of the lakes from becoming completely anoxic.

  9. Water and nutrient budgets for Vancouver Lake, Vancouver, Washington, October 2010-October 2012

    USGS Publications Warehouse

    Sheibley, Rich W.; Foreman, James R.; Marshall, Cameron A.; Welch, Wendy B.

    2014-01-01

    Vancouver Lake, a large shallow lake in Clark County, near Vancouver, Washington, has been undergoing water-quality problems for decades. Recently, the biggest concern for the lake are the almost annual harmful cyanobacteria blooms that cause the lake to close for recreation for several weeks each summer. Despite decades of interest in improving the water quality of the lake, fundamental information on the timing and amount of water and nutrients entering and exiting the lake is lacking. In 2010, the U.S. Geological Survey conducted a 2-year field study to quantify water flows and nutrient loads in order to develop water and nutrient budgets for the lake. This report presents monthly and annual water and nutrient budgets from October 2010–October 2012 to identify major sources and sinks of nutrients. Lake River, a tidally influenced tributary to the lake, flows into and out of the lake almost daily and composed the greatest proportion of both the water and nutrient budgets for the lake, often at orders of magnitude greater than any other source. From the water budget, we identified precipitation, evaporation and groundwater inflow as minor components of the lake hydrologic cycle, each contributing 1 percent or less to the total water budget. Nutrient budgets were compiled monthly and annually for total nitrogen, total phosphorus, and orthophosphate; and, nitrogen loads were generally an order of magnitude greater than phosphorus loads across all sources. For total nitrogen, flow from Lake River at Felida, Washington, made up 88 percent of all inputs into the lake. For total phosphorus and orthophosphate, Lake River at Felida flowing into the lake was 91 and 76 percent of total inputs, respectively. Nutrient loads from precipitation and groundwater inflow were 1 percent or less of the total budgets. Nutrient inputs from Burnt Bridge Creek and Flushing Channel composed 12 percent of the total nitrogen budget, 8 percent of the total phosphorus budget, and 21 percent

  10. Paleoecology of a Northern Michigan Lake and the relationship among climate, vegetation, and Great Lakes water levels

    USGS Publications Warehouse

    Booth, R.K.; Jackson, S.T.; Thompson, T.A.

    2002-01-01

    We reconstructed Holocene water-level and vegetation dynamics based on pollen and plant macrofossils from a coastal lake in Upper Michigan. Our primary objective was to test the hypothesis that major fluctuations in Great Lakes water levels resulted in part from climatic changes. We also used our data to provide temporal constraints to the mid-Holocene dry period in Upper Michigan. From 9600 to 8600 cal yr B.P. a shallow, lacustrine environment characterized the Mud Lake basin. A Sphagnum-dominated wetland occupied the basin during the mid-Holocene dry period (???8600 to 6600 cal yr B.P.). The basin flooded at 6600 cal yr B.P. as a result of rising water levels associated with the onset of the Nipissing I phase of ancestral Lake Superior. This flooding event occured contemporaneously with a well-documented regional expansion of Tsuga. Betula pollen increased during the Nipissing II phase (4500 cal yr B.P.). Macrofossil evidence from Mud Lake suggests that Betula alleghaniensis expansion was primarily responsible for the rising Betula pollen percentages. Major regional and local vegetational changes were associated with all the major Holocene highstands of the western Great Lakes (Nipissing I, Nipissing II, and Algoma). Traditional interpretations of Great Lakes water-level history should be revised to include a major role of climate. ?? 2002 University of Washington.

  11. [Hydrogen and oxygen isotopes of lake water and geothermal spring water in arid area of south Tibet].

    PubMed

    Xiao, Ke; Shen, Li-Cheng; Wang, Peng

    2014-08-01

    The condition of water cycles in Tibet Plateau is a complex process, and the hydrogen and oxygen isotopes contain important information of this process. Based on the analysis of isotopic composition of freshwater lake, saltwater lake and geothermal water in the southern Tibetan Plateau, this study investigated water cycling, composition and variation of hydrogen and oxygen isotopes and the influencing factors in the study area. The study found that the mean values of delta18O and deltaD in Daggyaima lake water (-17.0 per thousand for delta18O and -138. 6 per thousand for deltaD), Langcuo lake water (-6.4 per thousand for delta18O and -87.4 per thousand for deltaD) and Dagejia geothermal water (-19.2 per thousand for delta18 and -158.2 per thousand for deltaD) all showed negative delta18O and deltaD values in Tibetan Plateau by the influence of altitude effects. Lake water and geothermal water were influenced by evaporation effects in inland arid area, and the slope of evaporation line was less than 8. Deuterium excess parameters of lake water and geothermal water were all negative. The temperature of geothermal reservoirs in Dagejia geothermal field was high,and oxygen shift existed in the relationship of hydrogen and oxygen isotopes.

  12. Links between type E botulism outbreaks, lake levels, and surface water temperatures in Lake Michigan, 1963-2008

    USGS Publications Warehouse

    Lafrancois, Brenda Moraska; Riley, Stephen C.; Blehert, David S.; Ballmann, Anne E.

    2011-01-01

    Relationships between large-scale environmental factors and the incidence of type E avian botulism outbreaks in Lake Michigan were examined from 1963 to 2008. Avian botulism outbreaks most frequently occurred in years with low mean annual water levels, and lake levels were significantly lower in outbreak years than in non-outbreak years. Mean surface water temperatures in northern Lake Michigan during the period when type E outbreaks tend to occur (July through September) were significantly higher in outbreak years than in non-outbreak years. Trends in fish populations did not strongly correlate with botulism outbreaks, although botulism outbreaks in the 1960s coincided with high alewife abundance, and recent botulism outbreaks coincided with rapidly increasing round goby abundance. Botulism outbreaks occurred cyclically, and the frequency of outbreaks did not increase over the period of record. Climate change scenarios for the Great Lakes predict lower water levels and warmer water temperatures. As a consequence, the frequency and magnitude of type E botulism outbreaks in the Great Lakes may increase.

  13. Projecting Future Water Levels of the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    Bennington, V.; Notaro, M.; Holman, K.

    2013-12-01

    The Laurentian Great Lakes are the largest freshwater system on Earth, containing 84% of North America's freshwater. The lakes are a valuable economic and recreational resource, valued at over 62 billion in annual wages and supporting a 7 billion fishery. Shipping, recreation, and coastal property values are significantly impacted by water level variability, with large economic consequences. Great Lakes water levels fluctuate both seasonally and long-term, responding to natural and anthropogenic climate changes. Due to the integrated nature of water levels, a prolonged small change in any one of the net basin supply components: over-lake precipitation, watershed runoff, or evaporation from the lake surface, may result in important trends in water levels. We utilize the Abdus Salam International Centre for Theoretical Physics's Regional Climate Model Version 4.5.6 to dynamically downscale three global global climate models that represent a spread of potential future climate change for the region to determine whether the climate models suggest a robust response of the Laurentian Great Lakes to anthropogenic climate change. The Model for Interdisciplinary Research on Climate Version 5 (MIROC5), the National Centre for Meteorological Research Earth system model (CNRM-CM5), and the Community Climate System Model Version 4 (CCSM4) project different regional temperature increases and precipitation change over the next century and are used as lateral boundary conditions. We simulate the historical (1980-2000) and late-century periods (2080-2100). Upon model evaluation we will present dynamically downscaled projections of net basin supply changes for each of the Laurentian Great Lakes.

  14. Does Water Hyacinth on East African Lakes Promote Cholera Outbreaks?

    PubMed Central

    Feikin, Daniel R.; Tabu, Collins W.; Gichuki, John

    2010-01-01

    Cholera outbreaks continue to occur regularly in Africa. Cholera has been associated with proximity to lakes in East Africa, and Vibrio cholerae has been found experimentally to concentrate on the floating aquatic plant, water hyacinth, which is periodically widespread in East African lakes since the late 1980s. From 1994 to 2008, Nyanza Province, which is the Kenyan province bordering Lake Victoria, accounted for a larger proportion of cholera cases than expected by its population size (38.7% of cholera cases versus 15.3% of national population). Yearly water-hyacinth coverage on the Kenyan section of Lake Victoria was positively associated with the number of cholera cases reported in Nyanza Province (r = 0.83; P = 0.0010). Water hyacinth on freshwater lakes might play a role in initiating cholera outbreaks and causing sporadic disease in East Africa. PMID:20682884

  15. Chemical quality of surface waters in Devils Lake basin North Dakota, 1952-60

    USGS Publications Warehouse

    Mitten, Hugh T.; Scott, C.H.; Rosene, Philip G.

    1968-01-01

    Above-normal precipitation in 1954, 1956, and 1957 caused the water surface of Devils Lake to rise to an altitude of 1,419.3 feet, its highest in 40 years. Nearly all the water entering the lake flowed through Big Coulee, and about three-fourths of that inflow was at rates greater than 100 cubic feet per second. At these rates, the inflow contained less than 600 ppm (parts per million) dissolved solids and was of the calcium bicarbonate type.Because the inflow was more dilute than the lake water, the dissolved solids in the lake decreased from 8,680 ppm in 1952 to about 6,000 ppm in 1956 and 1957. Subsequently, however, they increased to slightly more than 8,000 ppm and averaged 6,800 ppm for the 1954-60 period. Sodium and sulfate were the principal dissolved constituents in the lake water. Although the concentration of dissolved solids varied significantly from time to time, the relative proportions of the chief constituents remained nearly the same.Water flowed from Devils Lake to Mission Bay in 1956,1957, and 1958, and some flowed from Mission Bay into East Bay. However, no water moved between East Devils Lake, western Stump Lake, and eastern Stump Lake during 1952-60; these lakes received only local runoff, and the variations in their water volume caused only minor variations in dissolved solids. For the periods sampled, concentrations averaged 60,700 ppm for East Devils Lake, 23,100 ppm for western Stump Lake, and 127,000 ppm for eastern Stump Lake.Sodium and sulfate were the chief dissolved constituents in all the lakes of the Devils Lake chain. Water in eastern Stump Lake was saturated with sodium sulfate and precipitated large quantities of granular, hydrated sodium sulfate crystals on the lakebed and shore in fall and winter. A discontinuous layer of consolidated sodium sulfate crystals formed a significant part of the bed throughout the year.Measured concentrations! of zinc, iron, manganese, fluoride, arsenic, boron, copper, and lead were not high enough

  16. Ballast Water Discharges into the Great Lakes from Overseas Vessels

    EPA Pesticide Factsheets

    Analysis of Ballast Water Discharges into the Great Lakes from Overseas Vessels from 2010 to 2013 - An assessment of the volume, location, and global port origins of ballast water discharges in the Great Lakes (May 2015).

  17. Lake water levels across the U.S.: What are the spatial patterns and drivers of water level change?

    EPA Science Inventory

    Background Lake water-level changes affect the physical, chemical, and biological condition of lakes; and we expect that disturbances such as land use conversion, water withdrawal, and climate change may alter water-level regimes and impact lake integrity. However, we have a poor...

  18. Treatment of primary hyperhidrosis with tap water iontophoresis in paediatric patients: a retrospective analysis.

    PubMed

    Dogruk Kacar, Seval; Ozuguz, Pinar; Eroglu, Selma; Polat, Serap; Karaca, Semsettin

    2014-12-01

    Primary hyperhidrosis is an under-recognized condition in children and adolescents. Iontophoresis is the second line of treatment for palmoplantar hyperhidrosis following topical treatment. The studies evaluating the efficacy of iontophoresis in children are limited. We aimed to investigate the efficacy and reliability of tap water iontophoresis in children with primary hyperhidrosis. Twenty-one patients aged under 18 years, who received iontophoresis for primary palmoplantar hyperhidrosis, were included in the study. In our clinic, tap water iontophoresis was administered at regular intervals, starting with five times per week and decreased to once a week on fifth week. Then maintenance sessions once a week for 6 weeks are recommended. The presence of excessive sweating was scored by visual analogue scale (VAS): "0" as continuation of excessive sweating and "10" as the absence of excessive sweating. The demographic and clinical data were collected from files. Also, patients fulfilled a questionnaire for efficacy on follow-up visit. Nineteen patients completed the whole 21 sessions. The mean VAS score was 5.89 ± 1.49 at the end of the 15th session and 6.36 ± 2.06 at the end of the treatment. Side effects were well tolerated. Only seven patients were still free of excessive sweating on third months after treatment. The mean satisfaction score was 4.95 ± 2.38, as measured by VAS where 0 indicated dissatisfaction and 10 indicated high satisfaction. Tap water iontophoresis is an effective method of treatment for primary palmoplantar and axillary hyperhidrosis in paediatric patients. But there are still unanswered questions about the mechanism of action, ideal session intervals and protocols for maximum efficacy.

  19. Seasonal Variations in Water Chemistry and Sediment Composition in Three Minnesota Lakes

    NASA Astrophysics Data System (ADS)

    Lascu, I.; Ito, E.; Banerjee, S.

    2006-12-01

    Variations in water chemistry, isotopic composition of dissolved inorganic carbon, sediment geochemistry and mineral magnetism were monitored for several months in three Minnesota lakes. Lake McCarrons, Deming Lake and Steel Lake are all small (<1 km2), deep (>16 m), stratified lakes that contain varved sediments for some time intervals or throughout. Deming Lake and Steel Lake are situated in north-central Minnesota, about 40 km apart, while Lake McCarrons is located in the heart of the Twin Cities and is heavily used for recreational purposes. The lakes have different mixing regimes (Steel is dimictic, Deming is meromictic and McCarrons is oligomictic) but all have well defined epilimnia and hypolimnia during the ice-free season. Water samples were collected bi-weekly from the epilimnia, upper and lower hypolimnia, while sediments were collected monthly from sediment traps placed in shallow and deep parts of the lakes. All lakes are moderately alkaline (80-280 ppm HCO3-) carbonate-producing systems, although calcite is being dissolved in the slightly acidic hypolimnetic waters of Deming Lake. The magnetic parameters reveal different distributions of the magnetic components in the three lakes, but all exhibit a general increase in the concentration of bacterial magnetosomes towards the end of summer. Differences in elemental concentrations, cation and anion profiles, and chemical behavior as the season progressed are also obvious among the three lakes. For the two lakes situated in the same climatic regime, this implies additional controls (besides climate) on water and sediment composition, such as local hydrology, substrate composition and biogeochemical in-lake processes.

  20. 40 CFR Appendix B to Part 132 - Great Lakes Water Quality Initiative

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Pt. 132, App. B Appendix B to Part 132—Great Lakes Water Quality Initiative Methodology for Deriving Bioaccumulation Factors Great Lakes States and Tribes... system. For log KOW, the log of the octanol-water partition coefficient is a base 10 logarithm. Uptake...

  1. 40 CFR Appendix B to Part 132 - Great Lakes Water Quality Initiative

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Pt. 132, App. B Appendix B to Part 132—Great Lakes Water Quality Initiative Methodology for Deriving Bioaccumulation Factors Great Lakes States and Tribes... system. For log KOW, the log of the octanol-water partition coefficient is a base 10 logarithm. Uptake...

  2. Water budgets, water quality, and analysis of nutrient loading of the Winter Park chain of lakes, central Florida, 1989-92

    USGS Publications Warehouse

    Phelps, G.G.; German, E.R.

    1995-01-01

    The Winter Park chain of lakes (Lakes Maitland, Virginia, Osceola, and Mizell) has a combined area of about 900 acres, an immediate drainage area of about 3,100 acres, and mean depths ranging from 11 to 15 feet. The lakes are an important recreational resource for the surrounding communities, but there is concern about the possible effects of stormwater runoff and seepage of nutrient-enriched ground water on the quality of water in the lakes. The lakes receive water from several sources: rainfall on lake surfaces, inflow from other surface-water bodies, stormflow that enters the lakes through storm drains or by direct runoff from land adjacent to the lakes and ground-water seepage. Water leaves the lakes by evaporation, surface outflow, and ground-water outflow. Of the three, only surface outflow can be measured directly. Rainfall, surface inflow and outflow, and lake-stage data were collected from October 1, 1989, to September 30, 1992. Stormflow, evaporation and ground-water inflow and outflow were estimated for the 3 years of the study. Ground-water outflow was calculated by evaluating the rate of lake-stage decline during dry periods. Estimated ground-water outflow was compared to downward leakage rates estimated by ground-water flow models. Lateral ground-water inflow from surficial sediments was calculated as the residual of the flow budget. Flow budgets were calculated for the 3 years of the study. In water year 1992 (a year with about average rainfall), inflow consisted of rainfall, 48 inches; stormflow, 15 inches; surface inflow, 67 inches; and ground water, 40 inches. The calculated outflows were evaporation, 47 inches; surface outflow, 90 inches; and ground water, 33 inches. Water-quality data also were used to calculate nutrient budgets for the lakes. Bimonthly water samples were collected from the lakes and at surface inflow and outflow sites, and were analyzed for physical characteristics, dissolved oxygen, pH, specific conductance, major ions, the

  3. Tap water iontophoresis in the treatment of pediatric hyperhidrosis.

    PubMed

    Dagash, Haitham; McCaffrey, Sinead; Mellor, Katie; Roycroft, Agnes; Helbling, Ingrid

    2017-02-01

    The treatment options for localized hyperhidrosis include antiperspirants, anticholinergics, iontophoresis, botulinum toxin and surgery. Tap water iontophoresis (TWI) involves immersing the affected area in tap water and passing a small electrical current through the area. Our aim was to assess the success of this therapy in a pediatric cohort. Retrospective case note review of all patients younger than 18years who underwent TWI between 2002 and 2015. Demographic data, number of treatment sessions, side effects and overall success were analyzed. Individuals undergo 7 treatments over 4weeks. A positive outcome was determined as an improvement in symptoms. Pre- and posttreatment hyperhidrosis disease severity scale (HDSS) was measured. Data are presented as mean (range). Statistical analysis was by paired t-test. A P value of <0.05 was regarded as significant. There were 43 patients (30 females) with a mean age of 15 (8-17) years. Palmar and/or plantar hyperhidrosis (PPH) was present in 39/43 (91%) patients. Axillary hyperhidrosis (AH) was present in 19/43 (44%) patients. All patients (with the exception of one) underwent 7 sessions (5-7). Side effects included paresthesia (88%), pruritus (26%), pain (26%), erythema (14%), dryness (12%) as well as vesicle formation and abrasions in one patient (2%). A positive outcome was found in 84% (36/43) of patients. There was a significant reduction in mean HDSS (pre 3.5 vs. post 2; P=0.0001). TWI is a safe and effective modality of treatment for both PPH and AH in the pediatric population, with minimal side effects. Pediatric surgeons should offer this treatment option before considering more invasive surgical procedures. IV: Retrospective study. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  4. Abdominal tap

    MedlinePlus

    Peritoneal tap; Paracentesis; Ascites - abdominal tap; Cirrhosis - abdominal tap; Malignant ascites - abdominal tap ... abdominal cavity ( most often cancer of the ovaries ) Cirrhosis of the liver Damaged bowel Heart disease Infection ...

  5. Evaluating lake stratification and temporal trends by using near-continuous water-quality data from automated profiling systems for water years 2005-09, Lake Mead, Arizona and Nevada

    USGS Publications Warehouse

    Veley, Ronald J.; Moran, Michael J.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Southern Nevada Water Authority, collected near-continuous depth-dependent water-quality data at Lake Mead, Arizona and Nevada, as part of a multi-agency monitoring network maintained to provide resource managers with basic data and to gain a better understanding of the hydrodynamics of the lake. Water-quality data-collection stations on Lake Mead were located in shallow water (less than 20 meters) at Las Vegas Bay (Site 3) and Overton Arm, and in deep water (greater than 20 meters) near Sentinel Island and at Virgin and Temple Basins. At each station, near-continual depth-dependent water-quality data were collected from October 2004 through September 2009. The data were collected by using automatic profiling systems equipped with multiparameter water-quality sondes. The sondes had sensors for temperature, specific conductance, dissolved oxygen, pH, turbidity, and depth. Data were collected every 6 hours at 2-meter depth intervals (for shallow-water stations) or 5-meter depth intervals (for deep-water stations) beginning at 1 meter below water surface. Data were analyzed to determine water-quality conditions related to stratification of the lake and temporal trends in water-quality parameters. Three water-quality parameters were the main focus of these analyses: temperature, specific conductance, and dissolved oxygen. Statistical temporal-trend analyses were performed for a single depth at shallow-water stations [Las Vegas Bay (Site 3) and Overton Arm] and for thermally-stratified lake layers at deep-water stations (Sentinel Island and Virgin Basin). The limited period of data collection at the Temple Basin station prevented the application of statistical trend analysis. During the summer months, thermal stratification was not observed at shallow-water stations, nor were major maxima or minima observed for specific-conductance or dissolved-oxygen profiles. A clearly-defined thermocline

  6. An evaluation of microbial and chemical contamination sources related to the deterioration of tap water quality in the household water supply system.

    PubMed

    Lee, Yoonjin

    2013-09-06

    The predominant microorganisms in samples taken from shower heads in residences in the Korean city "N" were Stenotrophomonas maltophilia, Sphingomonas paucimobilis, Acidovorax temperans, and Microbacterium lacticum. Legionella was not detected in this case. The volatile organic compounds (VOCs) vinylacetate, NN-DMA, cis-1,2-dichloroethylene, epichlorohydrin, and styrene were measured in five types of plastic pipes: PVC, PB, PP, PE, and cPVC. The rate of multiplication of the heterotrophic plate count (HPC) attached on the copper pipe in contact with hot tap water was higher than the rate for the copper pipe in contact with cold tap water. Biofilm accumulation on stainless steel pipes with added acetate (3 mg/L) was 2.56 times higher than the non-supplemented condition. Therefore, the growth of HPC in the pipe system was affected by the type and availability of nutrients and depended on variables such as heating during the hot water supply.

  7. Development of Turbulent Diffusion Transfer Algorithms to Estimate Lake Tahoe Water Budget

    NASA Astrophysics Data System (ADS)

    Sahoo, G. B.; Schladow, S. G.; Reuter, J. E.

    2012-12-01

    The evaporative loss is a dominant component in the Lake Tahoe hydrologic budget because watershed area (813km2) is very small compared to the lake surface area (501 km2). The 5.5 m high dam built at the lake's only outlet, the Truckee River at Tahoe City can increase the lake's capacity by approximately 0.9185 km3. The lake serves as a flood protection for downstream areas and source of water supply for downstream cities, irrigation, hydropower, and instream environmental requirements. When the lake water level falls below the natural rim, cessation of flows from the lake cause problems for water supply, irrigation, and fishing. Therefore, it is important to develop algorithms to correctly estimate the lake hydrologic budget. We developed a turbulent diffusion transfer model and coupled to the dynamic lake model (DLM-WQ). We generated the stream flows and pollutants loadings of the streams using the US Environmental Protection Agency (USEPA) supported watershed model, Loading Simulation Program in C++ (LSPC). The bulk transfer coefficients were calibrated using correlation coefficient (R2) as the objective function. Sensitivity analysis was conducted for the meteorological inputs and model parameters. The DLM-WQ estimated lake water level and water temperatures were in agreement to those of measured records with R2 equal to 0.96 and 0.99, respectively for the period 1994 to 2008. The estimated average evaporation from the lake, stream inflow, precipitation over the lake, groundwater fluxes, and outflow from the lake during 1994 to 2008 were found to be 32.0%, 25.0%, 19.0%, 0.3%, and 11.7%, respectively.

  8. [Spatial Variability Characteristics of Water Quality and Its Driving Forces in Honghu Lake During High Water-level Period].

    PubMed

    Li, Kun; Wang, Ling; Li, Zhao-hua; Wang, Xiang-rong; Chen, Hong-bing; Wu, Zhong; Zhu, Peng

    2015-04-01

    Based on the high-density analysis of 139 monitoring points and samples in water of honghu lake with different degrees of eutrophication during the high water-level period, we could get the figures of spatial variability characteristics of pollution factors, the biomass of aquatic plants and water quality in Honghu Lake using the GIS interpolation methods. The result showed that the concentrations of TN, TP, NH4(+) -N, permanganate index gradually increased from south to north during this period, the trend of water pollution degree in Honghu Lake was the region of inflowing rivers > enclosure culture area > open water area > the lake protection area > region of the Yangtze river into the lake; and the contribution rate of water quality parameters was in the order of TN > TP > permanganate index > NH4(+), -N > DO; under the influence of industrial sewage, agricultural sewage, domestic sewage, bait, aquatic plants and water exchange, 59% of TN, 35.2% of TP, 13.7% of permanganate index, 4.3% of NH4(+)-N exceeded the water quality targets, respectively, accordingly, 66.2% of the water quality also exceeded the water quality target. Nonetheless, DO reached the water quality target due to the influences of monsoon climate and other environment factors. The spatial variation analysis could directly reflect the mutual interaction among human activity, land-use types and environment factors which had an enormous impact on Honghu Lake water environment. In order to ensure that the lake water environment is beneficial for human productions and livings, it is necessary for us to control the discharge of industrial sewage, agricultural sewage and domestic sewage, as well as the expanding area of aquaculture, all the above measures would be significant for gradually resuming the self-purification capacity of water body and finally achieving the ecological sustainable development of Honghu Lake water environment.

  9. Effects of recharge, Upper Floridan aquifer heads, and time scale on simulated ground-water exchange with Lake Starr, a seepage lake in central Florida

    USGS Publications Warehouse

    Swancar, Amy; Lee, Terrie Mackin

    2003-01-01

    Lake Starr and other lakes in the mantled karst terrain of Florida's Central Lake District are surrounded by a conductive surficial aquifer system that receives highly variable recharge from rainfall. In addition, downward leakage from these lakes varies as heads in the underlying Upper Floridan aquifer change seasonally and with pumpage. A saturated three-dimensional finite-difference ground-water flow model was used to simulate the effects of recharge, Upper Floridan aquifer heads, and model time scale on ground-water exchange with Lake Starr. The lake was simulated as an active part of the model using high hydraulic conductivity cells. Simulated ground-water flow was compared to net ground-water flow estimated from a rigorously derived water budget for the 2-year period August 1996-July 1998. Calibrating saturated ground-water flow models with monthly stress periods to a monthly lake water budget will result in underpredicting gross inflow to, and leakage from, ridge lakes in Florida. Underprediction of ground-water inflow occurs because recharge stresses and ground-water flow responses during rainy periods are averaged over too long a time period using monthly stress periods. When inflow is underestimated during calibration, leakage also is underestimated because inflow and leakage are correlated if lake stage is maintained over the long term. Underpredicted leakage reduces the implied effect of ground-water withdrawals from the Upper Floridan aquifer on the lake. Calibrating the weekly simulation required accounting for transient responses in the water table near the lake that generated the greater range of net ground-water flow values seen in the weekly water budget. Calibrating to the weekly lake water budget also required increasing the value of annual recharge in the nearshore region well above the initial estimate of 35 percent of the rainfall, and increasing the hydraulic conductivity of the deposits around and beneath the lake. To simulate the total

  10. Estimated water and nutrient inflows and outflows, Lake Cochituate, eastern Massachusetts, 1977-79

    USGS Publications Warehouse

    Gay, F.B.

    1984-01-01

    Streamflow was the major source of water and nutrients (nitrogen and phosphorus) to Lake Cochituate, followed by ground water, and then precipitation during April 1978 through March 1979. Compared to all sources during that period, streams contributed 7,217 million gallons (a little over 82 percent) of water, 63 ,000 pounds (between 50 and 60 percent) of nitrogen, and 3,000 pounds (94 percent) of phosphorus. A little over 60 percent of all the water that entered Lake Cochituate flowed from Fisk Pond. This single source transported about 38,000 pounds of nitrogen and 2,000 pounds of phosphorus. Ground-water inflow to Lake Cochituate occurs along its shoreline except at the north end of Lake Cochituate 's North Pond where natural seepage from the lake is occurring and at locations on the lake 's Middle and South Ponds where municipal wells induce infiltration of lake water amounting to 1,228 million gallons for that period. Discharge of ground water to the lake was estimated to range from 462 to 816 million gallons and transported from 31,000 to 55,000 pounds of nitrogen and from 46 to 82 pounds of phosphorus. Bulk precipitation was estimated to contribute about the same volume of water to the lake as ground water but double its phosphorus load. However, the load of nitrogen, 8000 pounds, from bulk precipitation was the smallest of any source. (USGS)

  11. Influence of Lake Stratification Onset on Summer Surface Water Temperature

    NASA Astrophysics Data System (ADS)

    Woolway, R. I.; Merchant, C. J.

    2016-12-01

    Summer lake surface water temperatures (LSSWT) are sensitive to climatic warming and have previously been shown to increase at a faster rate than surface air temperatures in some lakes, as a response to thermal stratification occurring earlier in spring. We explore this relationship using a combination of in situ, satellite derived, and simulated temperatures from 144 lakes. Our results demonstrate that LSSWTs of high-latitude and large deep lakes are particularly sensitive to changes in stratification onset and can be expected to display an amplified response to climatic changes in summer air temperature. Climatic modification of LSSWT has numerous consequences for water quality and lake ecosystems, so quantifying this amplified response is important.

  12. Quantitative assessment of Urmia Lake water using spaceborne multisensor data and 3D modeling.

    PubMed

    Jeihouni, Mehrdad; Toomanian, Ara; Alavipanah, Seyed Kazem; Hamzeh, Saeid

    2017-10-18

    Preserving aquatic ecosystems and water resources management is crucial in arid and semi-arid regions for anthropogenic reasons and climate change. In recent decades, the water level of the largest lake in Iran, Urmia Lake, has decreased sharply, which has become a major environmental concern in Iran and the region. The efforts to revive the lake concerns the amount of water required for restoration. This study monitored and assessed Urmia Lake status over a period of 30 years (1984 to 2014) using remotely sensed data. A novel method is proposed that generates a lakebed digital elevation model (LBDEM) for Urmia Lake based on time series images from Landsat satellites, water level field measurements, remote sensing techniques, GIS, and 3D modeling. The volume of water required to restore the Lake water level to that of previous years and the ecological water level was calculated based on LBDEM. The results indicate a marked change in the area and volume of the lake from its maximum water level in 1998 to its minimum level in 2014. During this period, 86% of the lake became a salt desert and the volume of the lake water in 2013 was just 0.83% of the 1998 volume. The volume of water required to restore Urmia Lake from benchmark status (in 2014) to ecological water level (1274.10 m) is 12.546 Bm 3 , excluding evaporation. The results and the proposed method can be used by national and international environmental organizations to monitor and assess the status of Urmia Lake and support them in decision-making.

  13. Estimating ground-water inflow to lakes in central Florida using the isotope mass-balance approach

    USGS Publications Warehouse

    Sacks, Laura A.

    2002-01-01

    The isotope mass-balance approach was used to estimate ground-water inflow to 81 lakes in the central highlands and coastal lowlands of central Florida. The study area is characterized by a subtropical climate and numerous lakes in a mantled karst terrain. Ground-water inflow was computed using both steady-state and transient formulations of the isotope mass-balance equation. More detailed data were collected from two study lakes, including climatic, hydrologic, and isotopic (hydrogen and oxygen isotope ratio) data. For one of these lakes (Lake Starr), ground-water inflow was independently computed from a water-budget study. Climatic and isotopic data collected from the two lakes were similar even though they were in different physiographic settings about 60 miles apart. Isotopic data from all of the study lakes plotted on an evaporation trend line, which had a very similar slope to the theoretical slope computed for Lake Starr. These similarities suggest that data collected from the detailed study lakes can be extrapolated to the rest of the study area. Ground-water inflow computed using the isotope mass-balance approach ranged from 0 to more than 260 inches per year (or 0 to more than 80 percent of total inflows). Steady-state and transient estimates of ground-water inflow were very similar. Computed ground-water inflow was most sensitive to uncertainty in variables used to calculate the isotopic composition of lake evaporate (isotopic compositions of lake water and atmospheric moisture and climatic variables). Transient results were particularly sensitive to changes in the isotopic composition of lake water. Uncertainty in ground-water inflow results is considerably less for lakes with higher ground-water inflow than for lakes with lower ground-water inflow. Because of these uncertainties, the isotope mass-balance approach is better used to distinguish whether ground-water inflow quantities fall within certain ranges of values, rather than for precise

  14. δ18O and δD of lake waters across the Coast Range and Cascades, central Oregon: Modern insights from hydrologically open lakes into the control of landscape on lake water composition in deep time

    NASA Astrophysics Data System (ADS)

    Finkelstein, D. B.; Curtin, T.

    2016-12-01

    Reconstructing the stable isotopic composition of paleolake water normally requires an assumption of paleotemperature. However, hydrologically open paleolakes with short water residence times may have recorded paleoprecipitation along topographic gradients that are independent of lake water temperature. To identify the environmental and geographic controls on the isotopic composition of lake water, we sampled 22 natural lakes and reservoirs along a longitudinal and elevation gradient from the Pacific Ocean up and over the Coast and Cascade Ranges of central Oregon to the High Lava Plains in 2013 and 2015. The transect spans lakes of different origins, 6 geomorphic regions and an elevation range of 2-1942 m absl. The Coast Range lakes are sand hosted whereas the remaining are bedrock (volcanic and sedimentary) hosted. The lakes are hydrologically open and dominated by meteoric recharge. The water residence time ranges from months to decades. Samples were analyzed for temperature, pH, and total dissolved solids (TDS) in the field, and alkalinity and major cations and anions and stable isotopes of D and O in the lab. The pH ranges from 7 to 9.8 and shows no systematic variation based on substrate type or elevation. The lakes are dilute (avg. TDS = 35.8 ppm) and have low alkalinties (18.9 mg/L CaCO3) except for those in the High Lava Plains (avg. TDS = 337 ppm, alk: 291.2 mg/L CaCO3). In the Coast Range, Na is the major cation on an equivalent basis, reflecting proximity to the ocean. The easternmost lakes within the Coast Range are dominated by Ca, reflecting different drainage basins and substrate type. Lakes in the Western and High Cascades are dominated by Ca. The dominant cation and stable isotopic analyses clearly differentiate waters from different geomorphic regions. The δ18O ranges from -5.7 to -9.3 ‰ (VSMOW), and δD ranges from -37.8 to -63.6 ‰ (VSMOW) in the Coast Range whereas the δ18O ranges from -9.7 to -12.1 ‰ (VSMOW) and δD ranges from -71

  15. Water ecological carrying capacity of urban lakes in the context of rapid urbanization: A case study of East Lake in Wuhan

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Chen, Kun-lun; Cheng, Sheng-gao; Wang, Xu

    With the excessive development of social economy, water scarcity and water environment deterioration become a common phenomenon in metropolis. As a crucial component of urban water environment system, urban lake is mainly influenced by social economic system and tourism system. In this paper, a framework for quantitatively evaluating development sustainability of urban lake was established by a multi-objective model that represented water ecological carrying capacity (WECC). And nine key indicators including population, irrigation area, tourist quantity, the average number of hotel daily reception, TP, TN, CODMn, BOD5 were chosen from urban social-economy system and natural resilience aspects, with their index weight was determined by using the Structure Entropy Weight method. Then, we took Wuhan East Lake, the largest urban lake in China as a case study, and selected five time sections including 2002, 2004, 2007, 2009 and 2012 to synthetically evaluate and comparatively analyze the dynamic change of WECC. The results showed that: firstly, the water ecological carrying capacity values of the East Lake in five time sections were 1.17, 1.07, 1.64, 1.53 and 2.01 respectively, which all exceeded 1 and increased fluctuation. The rapid growth of population and GDP lead to sharply increasing demand for water quantity. However, a large amount of the domestic sewage and industrial waste led by economic development increases pressure on ecological environment of urban lakes. Secondly, the carrying capacity of the East Lake for tourist activities was still low. The value in 2012 was only 0.22, keeping at a slowly increasing phase, which indicates that the East Lake has large opportunity and space for developing the water resource carrying capacity and could make further efforts to attract tourists. Moreover, the WECC of the East Lake was mainly affected by rapid social and economic development and water environment damage caused by organic pollutants. From the view of urban

  16. Hot tap thermowell installation

    NASA Technical Reports Server (NTRS)

    Romero, C. A.

    1971-01-01

    System permits valve housings or other fillings to be installed in live steam lines or water pipes without interrupting their operation, thus eliminating current tapping restrictions. Two basic assemblies for installation under pressure are described.

  17. Fishery survey of U. S. waters of Lake Ontario

    USGS Publications Warehouse

    Wells, LaRue

    1969-01-01

    Gill nets and trawls were fished by the Bureau of Commercial Fisheries R/V Cisco during September 19-23, 1964, at several locations and depths in the offshore United States waters of Lake Ontario. Water temperatures were low (3.7-8.3 A?C) at all fishing stations except one (16.4 A?C). Supplementary data were provided by the Bureau's R/V Kaho in 1966. Alewives and smelt were common. Ciscoes were extremely scarce, but large; most of those caught were bloaters. Slimy sculpins were abundant, but no deepwater sculpins were caught. Yellow perch were scarce. Although the warm water species were inadequately sampled, trout-perch seemed to be abundant. Other species, all caught in small numbers, were lake trout, spottail shiners, burbot, threespine sticklebacks, and johnny darters from cold water and northern pike, lake chubs, white suckers, white bass, white perch, and rock bass from warm water.

  18. Outbreak of drug-resistant Acinetobacter baumannii ST219 caused by oral care using tap water from contaminated hand hygiene sinks as a reservoir.

    PubMed

    Umezawa, Kazuo; Asai, Satomi; Ohshima, Toshio; Iwashita, Hideo; Ohashi, Maya; Sasaki, Mika; Kaneko, Akihiro; Inokuchi, Sadaki; Miyachi, Hayato

    2015-11-01

    An outbreak of amikacin- and ciprofloxacin-resistant Acinetobacter baumannii ST219 in Tokai University hospital's emergency intensive care unit was caused by its colonization in water systems and subsequent spread through oral care using tap water. The outbreak was successfully controlled after replacement of the water system and implementation as of daily cleaning of water taps and oral care with a dry method. It is important to strictly manage the water system in critical care areas. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  19. Watershed influences and in-lake processes - A regional-scale approach to monitoring a water-supply reservoir, Lake Houston near Houston, Texas

    USGS Publications Warehouse

    Oden, Timothy D.; Graham, Jennifer L.

    2008-01-01

    Created in 1954 by an impoundment on the San Jacinto River, Lake Houston currently (2008) supplies about 20 percent of the total source water for the city of Houston. Houston historically has relied on ground water as the major source of supply. As a result of regulations to limit ground-water withdrawals because of associated land subsidence (effective in 2010), the lake will become the primary source of water supply for the city in the future. Since 1983 the U.S. Geological Survey (USGS), in cooperation with the City of Houston, has collected water-quality and lake-level data at Lake Houston, as well as discharge and intermittent water-quality data at its major inflowing tributaries. Previous studies indicate that Lake Houston is shallow, eutrophic, light limited and has a variable hydrologic regime with water residence times ranging from 12 hours to 400 days. Spring Creek, a tributary that drains the western, more urban, part of the Lake Houston watershed, contributes more sediment and nutrients than East Fork San Jacinto River, a tributary that drains the more rural, eastern part of the watershed. This fact sheet explains the importance of monitoring for management of the resource and describes ongoing research in the Lake Houston watershed by the USGS and the City.

  20. LakeSST: Lake Skin Surface Temperature in French inland water bodies for 1999-2016 from Landsat archives

    NASA Astrophysics Data System (ADS)

    Prats, Jordi; Reynaud, Nathalie; Rebière, Delphine; Peroux, Tiphaine; Tormos, Thierry; Danis, Pierre-Alain

    2018-04-01

    The spatial and temporal coverage of the Landsat satellite imagery make it an ideal resource for the monitoring of water temperature over large territories at a moderate spatial and temporal scale at a low cost. We used Landsat 5 and Landsat 7 archive images to create the Lake Skin Surface Temperature (LakeSST) data set, which contains skin water surface temperature data for 442 French water bodies (natural lakes, reservoirs, ponds, gravel pit lakes and quarry lakes) for the period 1999-2016. We assessed the quality of the satellite temperature measurements by comparing them to in situ measurements and taking into account the cool skin and warm layer effects. To estimate these effects and to investigate the theoretical differences between the freshwater and seawater cases, we adapted the COARE 3.0 algorithm to the freshwater environment. We also estimated the warm layer effect using in situ data. At the reservoir of Bimont, the estimated cool skin effect was about -0.3 and -0.6 °C most of time, while the warm layer effect at 0.55 m was negligible on average, but could occasionally attain several degrees, and a cool layer was often observed in the night. The overall RMSE of the satellite-derived temperature measurements was about 1.2 °C, similar to other applications of satellite images to estimate freshwater surface temperatures. The LakeSST data can be used for studies on the temporal evolution of lake water temperature and for geographical studies of temperature patterns. The LakeSST data are available at https://doi.org/10.5281/zenodo.1193745.

  1. The importance of lake-specific characteristics for water quality across the continental United States.

    PubMed

    Read, Emily K; Patil, Vijay P; Oliver, Samantha K; Hetherington, Amy L; Brentrup, Jennifer A; Zwart, Jacob A; Winters, Kirsten M; Corman, Jessica R; Nodine, Emily R; Woolway, R Iestyn; Dugan, Hilary A; Jaimes, Aline; Santoso, Arianto B; Hong, Grace S; Winslow, Luke A; Hanson, Paul C; Weathers, Kathleen C

    2015-06-01

    Lake water quality is affected by local and regional drivers, including lake physical characteristics, hydrology, landscape position, land cover, land use, geology, and climate. Here, we demonstrate the utility of hypothesis testing within the landscape limnology framework using a random forest algorithm on a national-scale, spatially explicit data set, the United States Environmental Protection Agency's 2007 National Lakes Assessment. For 1026 lakes, we tested the relative importance of water quality drivers across spatial scales, the importance of hydrologic connectivity in mediating water quality drivers, and how the importance of both spatial scale and connectivity differ across response variables for five important in-lake water quality metrics (total phosphorus, total nitrogen, dissolved organic carbon, turbidity, and conductivity). By modeling the effect of water quality predictors at different spatial scales, we found that lake-specific characteristics (e.g., depth, sediment area-to-volume ratio) were important for explaining water quality (54-60% variance explained), and that regionalization schemes were much less effective than lake specific metrics (28-39% variance explained). Basin-scale land use and land cover explained between 45-62% of variance, and forest cover and agricultural land uses were among the most important basin-scale predictors. Water quality drivers did not operate independently; in some cases, hydrologic connectivity (the presence of upstream surface water features) mediated the effect of regional-scale drivers. For example, for water quality in lakes with upstream lakes, regional classification schemes were much less effective predictors than lake-specific variables, in contrast to lakes with no upstream lakes or with no surface inflows. At the scale of the continental United States, conductivity was explained by drivers operating at larger spatial scales than for other water quality responses. The current regulatory practice of using

  2. Effects of climate change on deep-water oxygen and winter mixing in a deep lake (Lake Geneva)

    NASA Astrophysics Data System (ADS)

    Schwefel, Robert; Alfred, Wüest; Damien, Bouffard

    2016-04-01

    Oxygen is the most important dissolved gas for lake ecosystems. Because low oxygen concentrations are an ongoing problem in many parts of the oceans and numerous lakes, oxygen depletion processes have been intensively studied over the last decades and were mainly attributed to high nutrient loads. Recently, climate-induced changes in stratification and mixing behavior were recognized as additional thread to hypolimnetic oxygen budgets in lakes and reservoirs [Matzinger et al., 2007; Zhang et al., 2015]. Observational data of Lake Geneva, a deep perialpine lake situated between France and Switzerland showed no decreasing trend in hypoxia over the last 43 years, despite an impressive reduction in nutrient input during this period. Instead, hypoxic conditions were predominantly controlled by deep mixing end of winter and in turn by winter temperatures. To test the sensitivity of Lake Geneva on future climate change and changes in water transparency, we simulated the hydrodynamics and temperature of Lake Geneva under varying conditions for atmospheric temperature and water clarity performed with the one-dimensional model SIMSTRAT [Goudsmit, 2002]. The results show, that the stratification in lakes is only weakly affected by changes in light absorption due to varying water quality. For conditions expected for the end of the century, a decrease in the annual mean deep convective mixing of up to 45 m is predicted. Also complete mixing events over the whole lake are less likely to occur. A change in the hypolimnetic oxygen concentration of up to 20% can thus be expected in the future. These results show, that changes in deep mixing have an equally strong impact as eutrophication on the deep-water oxygen development of oligomictic lakes and have to be considered in the prediction of the future development of lakes. References: Goudsmit, G. H., H. Burchard, F. Peeters, and A. Wüest (2002), Application of k-ɛ turbulence models to enclosed basins: The role of internal

  3. Spatial and Temporal Water Quality Patterns in Open-Water Lake Michigan from the 2015 CSMI

    EPA Science Inventory

    Water quality patterns in the Laurentian Great Lakes broadly reflect climate, surficial geography, and landuse but are also shaped by limnological and biological processes. Open-water sampling conducted as part of the 2015 Lake Michigan interagency coordinated science and monito...

  4. The Socio-hydrology of Bangalore's Lake System and implications for Urban Water Security

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Roy, S.

    2017-12-01

    Bengaluru city has experienced unprecedented growth in recent decades. If the city is to sustain growth and claim its position as a "global" high-tech city, it must be able to secure sufficient water supply and also create a healthy livable environment. With the city's many lakes vanishing due to rapid urbanisation, depletion of groundwater as a result of overuse in the peri-urban areas, and lack of proper underground drainage system and sewage treatment plants, Bangalore is now grappling with issues of imminent water crisis, inequitable access to water supply, and public health hazards. In this context, the restoration of Bangalore's lakes has been promoted as a panacea for its flooding, water stress, and wastewater problems. It has been argued that lakes can store storm water and recycled wastewater and avoid the need for potentially destructive, expensive schemes that may destroy biodiversity rich aquatic ecosystems and forests. Bangalore's lakes are linked by the drainage channels to form a cascade; overflow from each lake flows to the next lake downstream. Yet, most efforts have tended to view the lakes in isolation. This study of the hydrology of Bangalore's lake system in its entirety simulates the lake system as a whole. The study explores approaches to management and theor impact on urban water security.

  5. Drainage water phosphorus losses in the great lakes basin

    USDA-ARS?s Scientific Manuscript database

    The great lakes are one of the most important fresh water resources on the planet. While forestry is a primary land use throughout much of the great lakes basin, there are portions of the basin, such as much of the land that drains directly to Lake Erie, that are primarily agricultural. The primary ...

  6. Fecal indicators and zoonotic pathogens in household drinking water taps fed from rainwater tanks in Southeast Queensland, Australia.

    PubMed

    Ahmed, W; Hodgers, L; Sidhu, J P S; Toze, S

    2012-01-01

    In this study, the microbiological quality of household tap water samples fed from rainwater tanks was assessed by monitoring the numbers of Escherichia coli bacteria and enterococci from 24 households in Southeast Queensland (SEQ), Australia. Quantitative PCR (qPCR) was also used for the quantitative detection of zoonotic pathogens in water samples from rainwater tanks and connected household taps. The numbers of zoonotic pathogens were also estimated in fecal samples from possums and various species of birds by using qPCR, as possums and birds are considered to be the potential sources of fecal contamination in roof-harvested rainwater (RHRW). Among the 24 households, 63% of rainwater tank and 58% of connected household tap water (CHTW) samples contained E. coli and exceeded Australian drinking water guidelines of <1 CFU E. coli per 100 ml water. Similarly, 92% of rainwater tanks and 83% of CHTW samples also contained enterococci. In all, 21%, 4%, and 13% of rainwater tank samples contained Campylobacter spp., Salmonella spp., and Giardia lamblia, respectively. Similarly, 21% of rainwater tank and 13% of CHTW samples contained Campylobacter spp. and G. lamblia, respectively. The number of E. coli (P = 0.78), Enterococcus (P = 0.64), Campylobacter (P = 0.44), and G. lamblia (P = 0.50) cells in rainwater tanks did not differ significantly from the numbers observed in the CHTW samples. Among the 40 possum fecal samples tested, Campylobacter spp., Cryptosporidium parvum, and G. lamblia were detected in 60%, 13%, and 30% of samples, respectively. Among the 38 bird fecal samples tested, Campylobacter spp., Salmonella spp., C. parvum, and G. lamblia were detected in 24%, 11%, 5%, and 13% of the samples, respectively. Household tap water samples fed from rainwater tanks tested in the study appeared to be highly variable. Regular cleaning of roofs and gutters, along with pruning of overhanging tree branches, might also prove effective in reducing animal fecal

  7. Fecal Indicators and Zoonotic Pathogens in Household Drinking Water Taps Fed from Rainwater Tanks in Southeast Queensland, Australia

    PubMed Central

    Hodgers, L.; Sidhu, J. P. S.; Toze, S.

    2012-01-01

    In this study, the microbiological quality of household tap water samples fed from rainwater tanks was assessed by monitoring the numbers of Escherichia coli bacteria and enterococci from 24 households in Southeast Queensland (SEQ), Australia. Quantitative PCR (qPCR) was also used for the quantitative detection of zoonotic pathogens in water samples from rainwater tanks and connected household taps. The numbers of zoonotic pathogens were also estimated in fecal samples from possums and various species of birds by using qPCR, as possums and birds are considered to be the potential sources of fecal contamination in roof-harvested rainwater (RHRW). Among the 24 households, 63% of rainwater tank and 58% of connected household tap water (CHTW) samples contained E. coli and exceeded Australian drinking water guidelines of <1 CFU E. coli per 100 ml water. Similarly, 92% of rainwater tanks and 83% of CHTW samples also contained enterococci. In all, 21%, 4%, and 13% of rainwater tank samples contained Campylobacter spp., Salmonella spp., and Giardia lamblia, respectively. Similarly, 21% of rainwater tank and 13% of CHTW samples contained Campylobacter spp. and G. lamblia, respectively. The number of E. coli (P = 0.78), Enterococcus (P = 0.64), Campylobacter (P = 0.44), and G. lamblia (P = 0.50) cells in rainwater tanks did not differ significantly from the numbers observed in the CHTW samples. Among the 40 possum fecal samples tested, Campylobacter spp., Cryptosporidium parvum, and G. lamblia were detected in 60%, 13%, and 30% of samples, respectively. Among the 38 bird fecal samples tested, Campylobacter spp., Salmonella spp., C. parvum, and G. lamblia were detected in 24%, 11%, 5%, and 13% of the samples, respectively. Household tap water samples fed from rainwater tanks tested in the study appeared to be highly variable. Regular cleaning of roofs and gutters, along with pruning of overhanging tree branches, might also prove effective in reducing animal fecal

  8. Quality control of bottled and vended water in California: A review and comparison to tap water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darby, J.L.; Allen, L.

    1994-04-01

    Current regulations and compliance for quality control of bottled and vended water in California are compared with that of the tap water industry in this research. Over 35% of the bottled water sold in the US is consumed in California where a third of the residents use such water as a primary source of drinking water. California is one of several states that regulates bottled water more rigorously than the federal government. In California, water quality standards for the two industries are comparable except that many of the organic standards for bottled water are applicable only to the source water,more » a concern due to potential organic contamination during processing. Reporting requirements, significantly less stringent for bottled water, allow considerable latitude in assessing risks and make assessment of compliance difficult. Based on available statistics, compliance for the two industries is comparable; the majority of violations posed no health risks. For both industries, small systems comprised the majority of violations whereas large systems had excellent compliance rates.« less

  9. Modeling hydrodynamics, temperature and water quality in Henry Hagg Lake, Oregon, 2000-2003

    USGS Publications Warehouse

    Sullivan, Annette B.; Rounds, Stewart A.

    2004-01-01

    The two-dimensional model CE-QUAL-W2 was used to simulate hydrodynamics, temperature, and water quality in Henry Hagg Lake, Oregon, for the years 2000 through 2003. Input data included lake bathymetry, meteorologic conditions, tributary inflows, tributary temperature and water quality, and lake outflows. Calibrated constituents included lake hydrodynamics, water temperature, orthophosphate, total phosphorus, ammonia, algae, chlorophyll a, zooplankton, and dissolved oxygen. Other simulated constituents included nitrate, dissolved and particulate organic matter, dissolved solids, and suspended sediment. Two algal groups (blue-green algae, and all other algae) were included in the model to simulate the lakes algal communities. Measured lake stage data were used to calibrate the lakes water balance; calibration of water temperature and water quality relied upon vertical profile data taken in the deepest part of the lake near the dam. The model initially was calibrated with data from 200001 and tested with data from 200203. Sensitivity tests were performed to examine the response of the model to specific parameters and coefficients, including the light-extinction coefficient, wind speed, tributary inflows of phosphorus, nitrogen and organic matter, sediment oxygen demand, algal growth rates, and zooplankton feeding preference factors.

  10. Recreational demand for clean water: Evidence from geotagged photographs by visitors to lakes

    NASA Astrophysics Data System (ADS)

    Keeler, B.; Wood, S.; Polasky, S.; Kling, C.; Filstrup, C.; Downing, J. A.

    2014-12-01

    More than 41,000 waters are listed as impaired by the U.S. Environmental Protection Agency under the Clean Water Act. Regulations designed to address these impairments can be costly, raising questions about the value of the public benefits that would result from additional investments in improving surface water quality. Benefit studies often rely on costly surveys or other detailed data collection, limiting the ability to apply nonmarket valuation methods to address policy needs. We assessed the recreational value of changes in water quality using freely-available geotagged photographs as a proxy for recreational visits to lakes. We find that improved water clarity is associated with greater lake photo-visitation and that lake users are willing to travel further to visit clearer lakes. We estimate a one-meter increase in lake clarity in Minnesota and Iowa lakes is associated with $22 in increased willingness-to-pay per trip and generates 1,400 additional annual visits per lake, holding all other lake attributes constant. Our approach demonstrates the potential of data from social media to inform human responses to environmental change.

  11. NASA Images Show Decreased Clarity in Lake Tahoe Water

    NASA Image and Video Library

    2002-08-06

    Images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer aboard NASA's Terra satellite, launched in 1999, illustrate the state of gradually decreasing water clarity at Lake Tahoe, one of the clearest lakes in the world. The images are available at: http://asterweb.jpl.nasa.gov/default.htm. In the image on the left, acquired in November 2000, vegetation can be seen in red. The image on the right, acquired at the same time by a different spectral band of the instrument, is color-coded to show the bottom of the lake around the shoreline. Where the data are black, the bottom cannot be seen. Scientists monitoring the lake's water clarity from boat measurements obtained since 1965 have discovered that the lake along the California-Nevada border has lost more than one foot of visibility each year, according to the Lake Tahoe Watershed Assessment, a review of scientific information about the lake undertaken at the request of President Clinton and published in February 2000. The most likely causes are increases in algal growth, sediment washed in from surrounding areas and urban growth and development. http://photojournal.jpl.nasa.gov/catalog/PIA03854

  12. The evolution of hydrological and water quality conditions on Techirghiol Lake

    NASA Astrophysics Data System (ADS)

    Maftei, Carmen; Buta, Constantin; Tofan, Lucica

    2015-04-01

    Changes in climate and environment conditions alter the hydraulic and chemical properties of lakes. With a surface from 1300ha, the Techirghiol Lake, situated on the littoral of the Black Sea at 15km from Constanta town, is considered the greatest hypersaline lake of Romania very well known (from 1891) especially for the curative qualities of its water and mud. Physical and geographical conditions associated with an arid climate regime - where the annual precipitation is less than 400mm and the average temperatures exceed (lead evaporative potential to 700-1000mm), cause a strong concentration of mineral salts that give the lake an excessive salinity. In conditions of excessive salinity forms a therapeutic mud as a result of bacterial decomposition of aquatic organisms that have done there, especially crustaceans Arthemia and algae that live in water. This mud, highly hydrated, rich in minerals, has therapeutic properties, for this reason in Techirghiol has developed a strong health resort. Fresh water is a threat to the therapeutic lake properties. In hydrological year 1961-1962, the overland flow value to the lake was approximately 0.4 million m3, and from 1972-1973 the value reached 6 million cubic meters per year a great contribution was from the irrigation water. One of the consequences is the increasing of the lake level and the second is the decreasing of salinity. For this reason a hydraulic work system has been built to separate the saline water of the lake and the freshwater. The aim of this paper is to investigate the hydrologic and chemical responses of the Techirghiol Lake to the changes in climate and environment conditions.

  13. Chemical Evolution of Groundwater Near a Sinkhole Lake, Northern Florida: 1. Flow Patterns, Age of Groundwater, and Influence of Lake Water Leakage

    NASA Astrophysics Data System (ADS)

    Katz, Brian G.; Lee, Terrie M.; Plummer, L. Niel; Busenberg, Eurybiades

    1995-06-01

    Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11-67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.

  14. An Evaluation of Microbial and Chemical Contamination Sources Related to the Deterioration of Tap Water Quality in the Household Water Supply System

    PubMed Central

    Lee, Yoonjin

    2013-01-01

    The predominant microorganisms in samples taken from shower heads in residences in the Korean city “N” were Stenotrophomonas maltophilia, Sphingomonas paucimobilis, Acidovorax temperans, and Microbacterium lacticum. Legionella was not detected in this case. The volatile organic compounds (VOCs) vinylacetate, NN-DMA, cis-1,2-dichloroethylene, epichlorohydrin, and styrene were measured in five types of plastic pipes: PVC, PB, PP, PE, and cPVC. The rate of multiplication of the heterotrophic plate count (HPC) attached on the copper pipe in contact with hot tap water was higher than the rate for the copper pipe in contact with cold tap water. Biofilm accumulation on stainless steel pipes with added acetate (3 mg/L) was 2.56 times higher than the non-supplemented condition. Therefore, the growth of HPC in the pipe system was affected by the type and availability of nutrients and depended on variables such as heating during the hot water supply. PMID:24018837

  15. Pseudo-outbreak of Cupriavidus pauculus infection at an outpatient clinic related to rinsing culturette swabs in tap water.

    PubMed

    Balada-Llasat, Joan-Miquel; Elkins, Camille; Swyers, Lettie; Bannerman, Tammy; Pancholi, Preeti

    2010-07-01

    Cupriavidus pauculus is a water microorganism rarely isolated from clinical specimens. We describe a pseudo-outbreak in which multiple strains that were associated with moistening of culturette swabs with tap water were isolated from a single clinic before collecting the patient specimen.

  16. Water transparency distribution under varied currents in the largest river-connected lake of China.

    PubMed

    Wang, Hua; Zhao, Yijun; Zhang, Zhizhang; Pang, Yong; Liang, Dongfang

    2017-01-01

    Water transparency is an important ecological indicator for shallow lakes. The largest shallow lake, Poyang Lake, as well as the most typical river-connected lake in China was selected as the research area. In view of the complicated water-sediment conditions induced by its frequent water exchange with external rivers, the dominant factors driving water transparency were determined against the field investigated data from 2003 to 2013 and a specific driving function was established. A numerical model coupling suspended sediment, Chl-a and chemical oxygen demand was developed and validated, and the spatial water transparency distributions under three typical current structures in Poyang Lake, Gravity-style, Jacking-style and Backflow-style, were quantitatively estimated. The following results stood out: water transparency in the lake varied distinctly with the current status; Backflow-style current was basically characterized by the lowest water transparency, while that under Jacking-style was the highest due to the lower sediment carrying capacity. In some outlying regions in the lake, where the water current is hardly influenced by the mainstream, the water transparency was always kept at a stable level.

  17. Racial/Ethnic and Socioeconomic Disparities in Hydration Status Among US Adults and the Role of Tap Water and Other Beverage Intake

    PubMed Central

    Gortmaker, Steven L.; Long, Michael W.; Cradock, Angie L.; Kenney, Erica L.

    2017-01-01

    Objectives. To evaluate whether differences in tap water and other beverage intake explain differences in inadequate hydration among US adults by race/ethnicity and income. Methods. We estimated the prevalence of inadequate hydration (urine osmolality ≥ 800 mOsm/kg) by race/ethnicity and income of 8258 participants aged 20 to 74 years in the 2009 to 2012 National Health and Nutrition Examination Survey. Using multivariable regression models, we estimated associations between demographic variables, tap water intake, and inadequate hydration. Results. The prevalence of inadequate hydration among US adults was 29.5%. Non-Hispanic Blacks (adjusted odds ratio [AOR] = 1.44; 95% confidence interval [CI] = 1.17, 1.76) and Hispanics (AOR = 1.42; 95% CI = 1.21, 1.67) had a higher risk of inadequate hydration than did non-Hispanic Whites. Lower-income adults had a higher risk of inadequate hydration than did higher-income adults (AOR = 1.23; 95% CI = 1.04, 1.45). Differences in tap water intake partially attenuated racial/ethnic differences in hydration status. Differences in total beverage and other fluid intake further attenuated sociodemographic disparities. Conclusions. Racial/ethnic and socioeconomic disparities in inadequate hydration among US adults are related to differences in tap water and other beverage intake. Policy action is needed to ensure equitable access to healthy beverages. PMID:28727528

  18. Racial/Ethnic and Socioeconomic Disparities in Hydration Status Among US Adults and the Role of Tap Water and Other Beverage Intake.

    PubMed

    Brooks, Carolyn J; Gortmaker, Steven L; Long, Michael W; Cradock, Angie L; Kenney, Erica L

    2017-09-01

    To evaluate whether differences in tap water and other beverage intake explain differences in inadequate hydration among US adults by race/ethnicity and income. We estimated the prevalence of inadequate hydration (urine osmolality ≥ 800 mOsm/kg) by race/ethnicity and income of 8258 participants aged 20 to 74 years in the 2009 to 2012 National Health and Nutrition Examination Survey. Using multivariable regression models, we estimated associations between demographic variables, tap water intake, and inadequate hydration. The prevalence of inadequate hydration among US adults was 29.5%. Non-Hispanic Blacks (adjusted odds ratio [AOR] = 1.44; 95% confidence interval [CI] = 1.17, 1.76) and Hispanics (AOR = 1.42; 95% CI = 1.21, 1.67) had a higher risk of inadequate hydration than did non-Hispanic Whites. Lower-income adults had a higher risk of inadequate hydration than did higher-income adults (AOR = 1.23; 95% CI = 1.04, 1.45). Differences in tap water intake partially attenuated racial/ethnic differences in hydration status. Differences in total beverage and other fluid intake further attenuated sociodemographic disparities. Racial/ethnic and socioeconomic disparities in inadequate hydration among US adults are related to differences in tap water and other beverage intake. Policy action is needed to ensure equitable access to healthy beverages.

  19. Progress report: chemical character of surface waters in the Devils Lake Basin, North Dakota

    USGS Publications Warehouse

    Swenson, Herbert A.

    1950-01-01

    Devils Lake in northeastern North Dakota was at one time the most popular summer resort in the state. With decline in lake level the lake has become a shallow body pf vary saline water, which scenic value and recreational appeal completely destroyed. Under the Missouri River development program, it is proposed to restore the lake level to an altitude of 1,425 feet by diversion of Missouri River water. The chemical character of the water in Devils Lake and in other surface bodies in Devils Lake Basin is determined from the analyses of 95 samples. The physical and chemical properties of lake bed deposits are also shown. Lake water in the basin vary considerable in both concentration and composition, ranging from fresh bicarbonate waters of 300 parts per million dissolved solids to sulfate waters of over 100,000 parts per million of soluble salts. Twenty-four samples indicates the chemical character of water in the Red River of the North and its tributaries. The probable concentration of dissolved solids in water of Devils Lake at altitude 1,425 feet has been estimated as ranging from 3,000 to 7,600 parts per million. Final concentration will largely depend upon the percentage of deposited salts reentering solution and the quality of the inflow water. The possible effects of lake effluents on downstream developments, with particular reference to sanitation and pollution problems, are also discussed in this report.

  20. Determination of selected pharmaceuticals in tap water and drinking water treatment plant by high-performance liquid chromatography-triple quadrupole mass spectrometer in Beijing, China.

    PubMed

    Cai, Mei-Quan; Wang, Rong; Feng, Li; Zhang, Li-Qiu

    2015-02-01

    A simultaneous determination method of 14 multi-class pharmaceuticals using solid-phase extraction (SPE) followed by high-performance liquid chromatography-tandem mass spectrometer (HPLC-MS/MS) was established to measure the occurrence and distribution of these pharmaceuticals in tap water and a drinking water treatment plant (DWTP) in Beijing, China. Target compounds included seven anti-inflammatory drugs, two antibacterial drugs, two lipid regulation drugs, one antiepileptic drug, and one hormone. Limits of detection (LODs) and limits of quantitation (LOQs) ranged from 0.01 to 1.80 ng/L and 0.05 to 3.00 ng/L, respectively. Intraday and inter-day precisions, recoveries of different matrices, and matrix effects were also investigated. Of the 14 pharmaceutical compounds selected, nine were identified in tap water of Beijing downtown with the concentration up to 38.24 ng/L (carbamazepine), and the concentration levels of detected pharmaceuticals in tap water (<5 ng/L for most pharmaceuticals) were lower than previous studies in other countries. In addition, ten and six pharmaceuticals were measured in raw water and finished water at the concentration ranged from 0.10 to 16.23 and 0.13 to 17.17 ng/L, respectively. Five compounds were detected most frequently in DWTP, namely antipyrine, carbamazepine, isopropylantipyrine, aminopyrine, and bezafibrate. Ibuprofen was found to be the highest concentration pharmaceutical during DWTP, up to 53.30 ng/L. DWTP shows a positive effect on the removal of most pharmaceuticals with 81.2-99.5 % removal efficiencies, followed by carbamazepine with 55.4 % removal efficiency, but it has no effect for removing ibuprofen and bezafibrate.

  1. Human land uses enhance sediment denitrification and N2O production in Yangtze lakes primarily by influencing lake water quality

    NASA Astrophysics Data System (ADS)

    Liu, W.; Yao, L.; Wang, Z.; Xiong, Z.; Liu, G.

    2015-10-01

    Sediment denitrification in lakes alleviates the effects of eutrophication through the removal of nitrogen to the atmosphere as N2O and N2. However, N2O contributes notably to the greenhouse effect and global warming. Human land uses (e.g. agricultural and urban areas) strongly affect lake water quality and sediment characteristics, which, in turn, may regulate lake sediment denitrification and N2O production. In this study, we investigated sediment denitrification and N2O production and their relationships to within-lake variables and watershed land uses in 20 lakes from the Yangtze River basin in China. The results indicated that both lake water quality and sediment characteristics were significantly influenced by watershed land uses. N2O production rates increased with increasing background denitrification rates. Background denitrification and N2O production rates were positively related to water nitrogen concentrations but were not significantly correlated with sediment characteristics and plant community structure. A significant positive relationship was observed between background denitrification rate and percentage of human-dominated land uses (HDL) in watersheds. Structural equation modelling revealed that the indirect effects of HDL on sediment denitrification and N2O production in Yangtze lakes were mediated primarily through lake water quality. Our findings also suggest that although sediments in Yangtze lakes can remove large quantities of nitrogen through denitrification, they may also be an important source of N2O, especially in lakes with high nitrogen content.

  2. BACTERIAL INHIBITORS IN LAKE WATER

    EPA Science Inventory

    The populations of six bacterial genera fell rapidly after their addition to sterile lake water but not after their addition to buffer. The decline in numbers of two species that were studied further, Klebsiella pneumoniae and Micrococcus flavus, occurred even when the buffer was...

  3. Use of isotopic data to estimate water residence times of the Finger Lakes, New York

    USGS Publications Warehouse

    Michel, Robert L.; Kraemer, Thomas F.

    1995-01-01

    Water retention times in the Finger Lakes, a group of 11 lakes in central New York with similar hydrologic and climatic characteristics, were estimated by use of a tritium-balance model. During July 1991, samples were collected from the 11 lakes and selected tributary streams and were analyzed for tritium, deuterium, and oxygen-18. Additional samples from some of the sites were collected in 1990, 1992 and 1993. Tritium concentration in lake water ranged from 24.6 Tritium Units (TU) (Otisco Lake) to 43.2 TU (Seneca Lake).The parameters in the model used to obtain water retention time (WRT) included relative humidity, evaporation rate, tritium concentrations of inflowing water and lake water, and WRT of the lake. A historical record of tritium concentrations in precipitation and runoff was obtained from rainfall data at Ottawa, Canada, analyses of local wines produced during 1977–1991, and streamflow samples collected in 1990–1991. The model was simulated in yearly steps for 1953–1991, and the WRT was varied to reproduce tritium concentrations measured in each lake in 1991. Water retention times obtained from model simulations ranged from 1 year for Otisco Lake to 12 years for Seneca Lake, and with the exception of Seneca Lake and Skaneateles Lake, were in agreement with earlier estimates obtained from runoff estimates and chloride balances. The sensitivity of the model to parameter changes was tested to determine possible reasons for the differences calculated for WRT's for Seneca Lake and Skaneateles Lake. The shorter WRT obtained from tritium data for Lake Seneca (12 years as compared to 18 years) can be explained by a yearly addition of less than 3% by lake volume of ground water to the lake, the exact percentage depending on tritium concentration in the ground water.

  4. Occurrence of cardiovascular drugs in the sewage-impacted Vistula River and in tap water in the Warsaw region (Poland).

    PubMed

    Giebułtowicz, Joanna; Stankiewicz, Albert; Wroczyński, Piotr; Nałęcz-Jawecki, Grzegorz

    2016-12-01

    In recent years, cardiovascular diseases were the second most common cause of death worldwide. Therefore, the consumption of drugs used to treat cardiovascular diseases is high. So far, there were no such comprehensive reports regarding the presence of cardiovascular drugs in surface and tap waters, particularly in Central and Eastern Europe. The aim of our study was to determine the presence of 30 pharmaceutically active compounds and some of their metabolites, at specific points of the Vistula River and in tap water samples in the Warsaw region. The analysis was performed using the liquid chromatography-electrospray ionization-tandem mass spectrometry method, coupled to solid-phase extraction. To the best of the authors' knowledge, this is the first time where the presence of ciprofibrate in the environment was investigated. Cardiovascular drugs found at the highest concentrations (reaching 1 μg/L or higher) in surface water were beta-blockers, sartans and diuretics. In tap water samples, trace amounts of pharmaceuticals were detected, for almost all target compounds. This highlights their inadequate elimination by the treatment facility used in the Warsaw region. The presence of cardiovascular compounds in the aquatic environment could have a long-term effect even at a low exposure level, since synergy effects amongst pharmaceuticals may occur.

  5. Causes of declining survival of lake trout stocked in U.S. waters of Lake Superior in 1963-1986

    USGS Publications Warehouse

    Hansen, Michael J.; Ebener, Mark P.; Schorfhaar, Richard G.; Schram, Stephen T.; Schreiner, Donald R.; Selgeby, James H.; Taylor, William W.

    1996-01-01

    Survival of the 1963-1982 year-classes of stocked yearling lake trout Salvelinus namaycush declined significantly over time in Lake Superior. To investigate possible causes of this decline, a Ricker model of stock-recruitment was used to describe the catch per effort (CPE) of age-7 stocked lake trout in the Michigan, Minnesota, and Wisconsin waters of Lake Superior as functions of the numbers of yearlings stocked 6 years earlier (an index of density dependence), the density (CPE) of wild adult lake trout (an index of predation), and large-mesh (a?Y 114-mm stretch-measure) gill-net fishing effort (an index of fishing mortality). Declining CPE of stocked lake trout in Michigan and Wisconsin was significantly associated with increasing large-mesh gillnet fishing effort. Declining CPE of stocked lake trout in Minnesota was significantly associated with increasing density of wild lake trout. Declining survival of stocked lake trout may therefore have been caused by increased mortality in large-mesh gill-net fisheries in Michigan and Wisconsin, and by predation by wild lake trout that recently recolonized the Minnesota area. We recommend that experimental management be pursued to determine the relative importance of large-mesh gillnet fishing effort and of predation by wild lake trout on the survival of stocked lake trout in U.S. waters of Lake Superior.

  6. Fluctuation of the Water Environmental Carrying Capacity in a Huge River-Connected Lake

    PubMed Central

    Wang, Hua; Zhou, Yiyi; Tang, Yang; Wu, Mengan; Deng, Yanqing

    2015-01-01

    A new method, with the non-fully mixed coefficient (NFMC) considered, was put forward to calculate the water environmental carrying capacity (WECC) for huge river-connected lakes, of which the hydrological conditions always vary widely during a year. Poyang Lake, the most typical river-connected lake and the largest freshwater lake in China, was selected as the research area. Based on field investigations and numerical simulation, the monthly pollutant degradation coefficients and non-fully mixed coefficients of different lake regions were determined to explore the WECCs of COD, TN and TP of Poyang Lake in a common water year. It was found that under the hydrological conditions of a common water year the total WECCs of COD, TN and TP in the lake were respectively 181.9 × 104 t, 33.3 × 104 t and 1.86 × 104 t. Due to the varied lake water volume and self-purification ability, an evident temporal fluctuation of WECCs in Poyang Lake was observed. The dry seasons were characterized by a higher NFMCs but lower WECCs owing to the lower water level and degradation ability. Variation coefficients of COD and TN WECC were close to each other, of which the average level was about 58.5%, a little higher than that of TP. PMID:25830284

  7. Lake Recovery Through Reduced Sulfate Deposition: A New Paradigm for Drinking Water Treatment.

    PubMed

    Anderson, Lindsay E; Krkošek, Wendy H; Stoddart, Amina K; Trueman, Benjamin F; Gagnon, Graham A

    2017-02-07

    This study examined sulfate deposition in Nova Scotia from 1999 to 2015, and its association with increased pH and organic matter in two protected surface water supplies (Pockwock Lake and Lake Major) located in Halifax, Nova Scotia. The study also examined the effect of lake water chemistry on drinking water treatment processes. Sulfate deposition in the region decreased by 68%, whereas pH increased by 0.1-0.4 units over the 16-year period. Average monthly color concentrations in Pockwock Lake and Lake Major increased by 1.7 and 3.8×, respectively. Accordingly, the coagulant demand increased by 1.5 and 3.8× for the water treatment plants supplied by Pockwock Lake and Lake Major. Not only was this coagulant increase costly for the utility, it also resulted in compromised filter performance, particularly for the direct-biofiltration plant supplied by Pockwock Lake that was found to already be operating at the upper limit of the recommended direct filtration thresholds for color, total organic carbon and coagulant dose. Additionally, in 2012-2013 geosmin occurred in Pockwock Lake, which could have been attributed to reduced sulfate deposition as increases in pH favor more diverse cyanobacteria populations. Overall, this study demonstrated the impact that ambient air quality can have on drinking water supplies.

  8. Water-quality and bottom-material characteristics of Cross Lake, Caddo Parish, Louisiana, 1997-99

    USGS Publications Warehouse

    McGee, Benton D.

    2004-01-01

    Cross Lake is a shallow, monomictic lake that was formed in 1926 by the impoundment of Cross Bayou. The lake is the primary drinking-water supply for the City of Shreveport, Louisiana. In recent years, the lakeshore has become increasinginly urbanized. In addition, the land use of the watershed contributing runoff to Cross Lake has changed. Changes in land use and urbanization could affect the water chemistry and biology of the Lake. Water-quality data were collected at 10 sites on Cross Lake from February 1997 to February 1999. Water-column and bottom-material samples were collected. The water-column samples were collected at least four times per year. These samples included physical and chemical-related properties such as water temperature, dissolved oxygen, pH, and specific conductance; selected major inorganic ions; nutrients; minor elements; organic chemical constituents; and bacteria. Suspended-sediment samples were collected seven times during the sampling period. The bottom-material samples, which were collected once during the sampling period, were analyzed for selected minor elements and inorganic carbon. Aside from the nutrient-enriched condition of Cross Lake, the overall water-quality of Cross Lake is good. No primary Federal or State water-quality criteria were exceeded by any of the water-quality constituents analyzed for this report. Concentrations of major inorganic constituents, except iron and manganese, were low. Water from the lake is a sodium-bicarbonate type and is soft. Minor elements and organic compounds were present in low concentrations, many below detection limits. Nitrogen and phosphorus were the nutrients occurring in the highest concentrations. Nutrients were evenly distributed across the lake with no particular water-quality site indicating consistently higher or lower nutrient concentrations. No water samples analyzed for nitrate exceeded the U.S. Environmental Protection Agency's Maximum Contaminant Level of 10 milligrams per

  9. AN INTEGRATED RESEARCH AGENDA TO EVALUATE TAP WATER DISINFECTION BYPRODUCTS AND HUMAN HEALTH: PART 1

    EPA Science Inventory

    An Integrated Research Agenda to Evaluate Tap Water Disinfection Byproducts and Human Health: Part I

    Michele Lynberg1, David Ashley 2, Pauline Mendola3, J. R. Nuckols4, Kenneth Cantor5, Benjamin Blount 2, Philip Singer6, Charles Wilkes7, Lorraine Backer1, and Peter Langlo...

  10. Simulation of hydrodynamics, water quality, and lake sturgeon habitat volumes in Lake St. Croix, Wisconsin and Minnesota, 2013

    USGS Publications Warehouse

    Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.; Elliott, Sarah M.; Magdalene, Suzanne

    2018-01-05

    Lake St. Croix is a naturally impounded, riverine lake that makes up the last 40 kilometers of the St. Croix River. Substantial land-use changes during the past 150 years, including increased agriculture and urban development, have reduced Lake St. Croix water-quality and increased nutrient loads delivered to Lake St. Croix. A recent (2012–13) total maximum daily load phosphorus-reduction plan set the goal to reduce total phosphorus loads to Lake St. Croix by 20 percent by 2020 and reduce Lake St. Croix algal bloom frequencies. The U.S. Geological Survey, in cooperation with the National Park Service, developed a two-dimensional, carbon-based, laterally averaged, hydrodynamic and water-quality model, CE–QUAL–W2, that addresses the interaction between nutrient cycling, primary production, and trophic dynamics to predict responses in the distribution of water temperature, oxygen, and chlorophyll a. Distribution is evaluated in the context of habitat for lake sturgeon, including a combination of temperature and dissolved oxygen conditions termed oxy-thermal habitat.The Lake St. Croix CE–QUAL–W2 model successfully reproduced temperature and dissolved oxygen in the lake longitudinally (from upstream to downstream), vertically, and temporally over the seasons. The simulated water temperature profiles closely matched the measured water temperature profiles throughout the year, including the prediction of thermocline transition depths (often within 1 meter), the absolute temperature of the thermocline transitions (often within 1.0 degree Celsius), and profiles without a strong thermocline transition. Simulated dissolved oxygen profiles matched the trajectories of the measured dissolved oxygen concentrations at multiple depths over time, and the simulated concentrations matched the depth and slope of the measured concentrations.Additionally, trends in the measured water-quality data were captured by the model simulation, gaining some potential insights into the

  11. Chemical quality of tap water in Madrid: multicase control cancer study in Spain (MCC-Spain).

    PubMed

    Fernández-Navarro, Pablo; Villanueva, Cristina M; García-Pérez, Javier; Boldo, Elena; Goñi-Irigoyen, Fernando; Ulibarrena, Enrique; Rantakokko, Panu; García-Esquinas, Esther; Pérez-Gómez, Beatriz; Pollán, Marina; Aragonés, Nuria

    2017-02-01

    Chronic consumption of water, which contains contaminants, may give rise to adverse health effects. The Madrid region, covered by the population-based multicase-control (MCC-Spain) study, includes two drinking water supply areas. The different sources of the water, coupled together with the possible differences in water management, mean that there may be differences in drinking water quality. In the context of the MCC study, our aims were to describe contaminant concentrations in tap water drawn from various sampling points distributed around the region, assess these concentrations by reference to guideline values and study possible differences between the two supply areas. Tap water samples were collected from 34 sampling points in 7 towns in the Madrid region (19-29 April 2010), and 23 contaminants (metals, nitrates, disinfection by-product and Mutagen X levels) were quantified. We undertook a descriptive analysis of the contaminant concentrations in the water and compared them between the two water supply areas (Wilcoxon test). We created maps representing the distribution of the concentrations observed at water sampling points and assessed the correlations (Spearman's coefficient) between the different parameters measured. The concentrations of the contaminants were below guideline values. There were differences between the two supply areas in concentration of nitrates (p value = 0.0051) and certain disinfection by-products. While there were positive correlations (rho >0.70) among some disinfection by-products, no correlations were found in metals or nitrates. The differences in nitrate levels could be linked to differences in farming/industrial activities in the catchment areas and in disinfection by-products might be related to the existence of different treatment systems or bromine content in source waters.

  12. Diversionary reframing of the Great Lakes Water Quality Agreement.

    PubMed

    Gilbertson, Michael; Watterson, Andrew E

    2007-07-01

    The United States and Canadian governments are undertaking a periodic review of the operation and effectiveness of the 1978 Great Lakes Water Quality Agreement through extended public meetings and conference calls. The stated purpose of the Agreement is to restore and maintain the chemical, physical and biological integrity of the waters of the Great Lakes Basin Ecosystem. For a variety of motives, several interest groups have represented the water quality agreement as being instead about maintaining and restoring ecosystem integrity for the entire Great Lakes basin. Through analysis of social, economic, political and diplomatic discourses, we have discovered and described these motives. The scientific evidence of continuing injury to health and property from trans-boundary pollution convinces us that this reframing is an unwarranted diversion from the original intent.

  13. Challenge to the model of lake charr evolution: Shallow- and deep-water morphs exist within a small postglacial lake

    USGS Publications Warehouse

    Chavarie, Louise; Muir, Andrew M.; Zimmerman, Mara S.; Baillie, Shauna M.; Hansen, Michael J.; Nate, Nancy A.; Yule, Daniel L.; Middel, Trevor; Bentzen, Paul; Krueger, Charles C.

    2016-01-01

    All examples of lake charr (Salvelinus namaycush) diversity occur within the largest, deepest lakes of North America (i.e. > 2000 km2). We report here Rush Lake (1.3 km2) as the first example of a small lake with two lake charr morphs (lean and huronicus). Morphology, diet, life history, and genetics were examined to demonstrate the existence of morphs and determine the potential influence of evolutionary processes that led to their formation or maintenance. Results showed that the huronicus morph, caught in deep-water, had a deeper body, smaller head and jaws, higher eye position, greater buoyancy, and deeper peduncle than the shallow-water lean morph. Huronicus grew slower to a smaller adult size, and had an older mean age than the lean morph. Genetic comparisons showed low genetic divergence between morphs, indicating incomplete reproductive isolation. Phenotypic plasticity and differences in habitat use between deep and shallow waters associated with variation in foraging opportunities seems to have been sufficient to maintain the two morphs, demonstrating their important roles in resource polymorphism. Rush Lake expands previous explanations for lake charr intraspecific diversity, from large to small lakes and from reproductive isolation to the presence of gene flow associated with strong ecological drivers.

  14. Isotopic Estimation of Water Balance and Groundwater-Surface Water Interactions of Tropical Wetland Lakes in the Pantanal, Brazil

    NASA Astrophysics Data System (ADS)

    Schwerdtfeger, J.; Johnson, M. S.; Weiler, M.; Couto, E. G.

    2009-12-01

    The Pantanal is the largest and most pristine wetland of the world, yet hydrological research there is still in its infancy. In particular the water balance of the millions of lakes and ponds and their interaction with the groundwater and the rivers are not known. The aim of this study was to assess the hydrological behaviour between different water bodies in the dry season of the northern Pantanal wetland, Brazil, to provide a more general understanding of the hydrological functioning of tropical floodplain lakes and surface water-groundwater interactions of wetlands. In the field 6-9 water sample of seven different lakes were taken during 3 months and were analyzed for stable water isotopes and chloride. In addition meteorological data from a nearby station was used to estimate daily evaporation from the water surface. This information was then used to predict the hydrological dynamics to determine whether the lakes are evaporation-controlled or throughflow-dominated systems. A chloride mass balance served to evaluate whether Cl- enrichment took place due to evaporation only, or whether the system has significant inflow and/or outflow rates. The results of those methods showed that for all lakes the water budget in the dry season, output was controlled by strong evaporation while significant inflow rates were also apparent. Inflow rates and their specific concentrations in stable isotopes and chloride were successfully estimated using the simple mass balance model MINA TrêS. This approach enabled us to calculate the water balance for the lakes as well as providing an information on source water flowing into the lakes.

  15. Modeling Hydrodynamics, Water Temperature, and Suspended Sediment in Detroit Lake, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Sobieszczyk, Steven; Bragg, Heather M.

    2007-01-01

    Detroit Lake is a large reservoir on the North Santiam River in west-central Oregon. Water temperature and suspended sediment are issues of concern in the river downstream of the reservoir. A CE-QUAL-W2 model was constructed to simulate hydrodynamics, water temperature, total dissolved solids, and suspended sediment in Detroit Lake. The model was calibrated for calendar years 2002 and 2003, and for a period of storm runoff from December 1, 2005, to February 1, 2006. Input data included lake bathymetry, meteorology, reservoir outflows, and tributary inflows, water temperatures, total dissolved solids, and suspended sediment concentrations. Two suspended sediment size groups were modeled: one for suspended sand and silt with particle diameters larger than 2 micrometers, and another for suspended clay with particle diameters less than or equal to 2 micrometers. The model was calibrated using lake stage data, lake profile data, and data from a continuous water-quality monitor on the North Santiam River near Niagara, about 6 kilometers downstream of Detroit Dam. The calibrated model was used to estimate sediment deposition in the reservoir, examine the sources of suspended sediment exiting the reservoir, and examine the effect of the reservoir on downstream water temperatures.

  16. Table Rock Lake Water-Clarity Assessment Using Landsat Thematic Mapper Satellite Data

    USGS Publications Warehouse

    Krizanich, Gary; Finn, Michael P.

    2009-01-01

    Water quality of Table Rock Lake in southwestern Missouri is assessed using Landsat Thematic Mapper satellite data. A pilot study uses multidate satellite image scenes in conjunction with physical measurements of secchi disk transparency collected by the Lakes of Missouri Volunteer Program to construct a regression model used to estimate water clarity. The natural log of secchi disk transparency is the dependent variable in the regression and the independent variables are Thematic Mapper band 1 (blue) reflectance and a ratio of the band 1 and band 3 (red) reflectance. The regression model can be used to reliably predict water clarity anywhere within the lake. A pixel-level lake map of predicted water clarity or computed trophic state can be produced from the model output. Information derived from this model can be used by water-resource managers to assess water quality and evaluate effects of changes in the watershed on water quality.

  17. The effects of water levels on Two Lake Ontario Wetlands

    USGS Publications Warehouse

    Busch, Wolf-Dieter N.; Osborn, Ronald G.; Auble, Gregor T.

    1990-01-01

    Lake Ontario's water levels have been regulated since 1959, after the completion of the St. Lawrence River navigation and hydropower development project. The plan used to guide the regulation (1958-D) has been in effect since 1963 (Bryce, 1982). The purpose of the regulation was to prevent extreme high-water levels which increased erosion on the south shore of Lake Ontario, while protecting the interests of commercial navigation and hydropower production in the St. Lawrence River (T. Brown, personal communication, member of the Board of Control). Major user groups have sought further reductions in the range of lake level fluctuations. However, the biological resources, especially the lake influenced wetlands, benefit from the waterlevel fluctuations. Great Lakes wetlands are the most important habitat for wildlife of the region (Tilton and Schwegler, 1978). We provide information here on the responses of wetland plant communities in two wetlands to changes in lake levels over time.

  18. Research on the Relationship between Water Diversion and Water Quality of Xuanwu Lake, China.

    PubMed

    Song, Weiwei; Xu, Qing; Fu, Xingqian; Zhang, Peng; Pang, Yong; Song, Dahao

    2018-06-14

    Water diversion is often used to improve water quality to reach the standard of China in the short term. However, this large amount of water diversion can not only improve the water quality, but also lead to a decline in the water quality (total phosphorus, total nitrogen) of Xuanwu Lake. Through theoretical analysis, the relationship between water quality and water diversion is established. We also found that the multiplication of the pollutant degradation coefficient ( K ) and the water residence time ( T ) is a constant ( N ), K⋅T=N. The water quality changed better at first, with the increase of inflow discharge, and then became worse, and the optimal water quality inflow discharge is 180,000 m³/day. By constructing two-dimensional hydrodynamic and water quality models, the optimal diversion water plan is calculated. Through model calculations, it can be seen that reducing the inflow discharge makes the water residence time longer (15.3 days changed to 23.8 days). Thereby, increasing the degradation of pollutants, and thus improving water quality. Compared with other wind directions, the southwest wind makes the water quality of Xuanwu Lake the most uniform. The concentration of water quality first became smaller and then became larger, as the wind speed increased, and eventually became constant. Implementing these results for water quality improvement in small and medium lakes will significantly reduce the cost of water diversion.

  19. Simulation and assessment of groundwater flow and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2003 through 2013: Chapter B of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    USGS Publications Warehouse

    Jones, Perry M.; Roth, Jason L.; Trost, Jared J.; Christenson, Catherine A.; Diekoff, Aliesha L.; Erickson, Melinda L.

    2017-09-05

    Water levels during 2003 through 2013 were less than mean water levels for the period 1925–2013 for several lakes in the northeast Twin Cities Metropolitan Area in Minnesota. Previous periods of low lake-water levels generally were correlated with periods with less than mean precipitation. Increases in groundwater withdrawals and land-use changes have brought into question whether or not recent (2003–13) lake-water-level declines are solely caused by decreases in precipitation. A thorough understanding of groundwater and surface-water exchanges was needed to assess the effect of water-management decisions on lake-water levels. To address this need, the U.S. Geological Survey, in cooperation with the Metropolitan Council and the Minnesota Department of Health, developed and calibrated a three-dimensional, steady-state groundwater-flow model representing 2003–13 mean hydrologic conditions to assess groundwater and lake-water exchanges, and the effects of groundwater withdrawals and precipitation on water levels of 96 lakes in the northeast Twin Cities Metropolitan Area.Lake-water budgets for the calibrated groundwater-flow model indicated that groundwater is flowing into lakes in the northeast Twin Cities Metropolitan Area and lakes are providing water to underlying aquifers. Lake-water outflow to the simulated groundwater system was a major outflow component for Big Marine Lake, Lake Elmo, Snail Lake, and White Bear Lake, accounting for 45 to 64 percent of the total outflows from the lakes. Evaporation and transpiration from the lake surface ranged from 19 to 52 percent of the total outflow from the four lakes. Groundwater withdrawals and precipitation were varied from the 2003‒13 mean values used in the calibrated model (30-percent changes in groundwater withdrawals and 5-percent changes in precipitation) for hypothetical scenarios to assess the effects of groundwater withdrawals and precipitation on water budgets and levels in Big Marine Lake, Snail Lake

  20. Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2005

    USGS Publications Warehouse

    Hoilman, Gene R.; Lindenberg, Mary K.; Wood, Tamara M.

    2008-01-01

    During June-October 2005, water quality data were collected from Upper Klamath and Agency Lakes in Oregon, and meteorological data were collected around and within Upper Klamath Lake. Data recorded at two continuous water quality monitors in Agency Lake showed similar temperature patterns throughout the field season, but data recorded at the northern site showed more day-to-day variability for dissolved oxygen concentration and saturation after late June and more day-to-day variability for pH and specific conductance values after mid-July. Data recorded from the northern and southern parts of Agency Lake showed more comparable day-to-day variability in dissolved oxygen concentrations and pH from September through the end of the monitoring period. For Upper Klamath Lake, seasonal (late July through early August) lows of dissolved oxygen concentrations and saturation were coincident with a seasonal low of pH values and seasonal highs of ammonia and orthophosphate concentrations, specific conductance values, and water temperatures. Patterns in these parameters, excluding water temperature, were associated with bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae in Upper Klamath Lake. In Upper Klamath Lake, water temperature in excess of 28 degrees Celsius (a high stress threshold for Upper Klamath Lake suckers) was recorded only once at one site during the field season. Large areas of Upper Klamath Lake had periods of dissolved oxygen concentration of less than 4 milligrams per liter and pH value greater than 9.7, but these conditions were not persistent throughout days at most sites. Dissolved oxygen concentrations in Upper Klamath Lake on time scales of days and months appeared to be influenced, in part, by bathymetry and prevailing current flow patterns. Diel patterns of water column stratification were evident, even at the deepest sites. This diel pattern of stratification was attributable to diel wind speed patterns and the shallow

  1. Water color affects the stratification, surface temperature, heat content, and mean epilimnetic irradiance of small lakes

    USGS Publications Warehouse

    Houser, J.N.

    2006-01-01

    The effects of water color on lake stratification, mean epilimnetic irradiance, and lake temperature dynamics were examined in small, north-temperate lakes that differed widely in water color (1.5-19.8 m -1). Among these lakes, colored lakes differed from clear lakes in the following ways: (i) the epilimnia were shallower and colder, and mean epilimnetic irradiance was reduced; (ii) the diel temperature cycles were more pronounced; (iii) whole-lake heat accumulation during stratification was reduced. The depth of the epilimnion ranged from 2.5 m in the clearest lake to 0.75 m in the most colored lake, and 91% of the variation in epilimnetic depth was explained by water color. Summer mean morning epilimnetic temperature was ???2??C cooler in the most colored lake compared with the clearest lake. In clear lakes, the diel temperature range (1.4 ?? 0.7??C) was significantly (p = 0.01) less than that in the most colored lake (2.1 ?? 1.0??C). Change in whole-lake heat content was negatively correlated with water color. Increasing water color decreased light penetration more than thermocline depth, leading to reduced mean epilimnetic irradiance in the colored lakes. Thus, in these small lakes, water color significantly affected temperature, thermocline depth, and light climate. ?? 2006 NRC.

  2. Trends and variability of water quality in Lake Tana, Ethiopia using MODIS-Aqua

    NASA Astrophysics Data System (ADS)

    DeLuca, N. M.; Zaitchik, B. F.; Monger, B. C.

    2017-12-01

    Determining long-term water quality trends and variability in remote inland lakes has been challenging due to a lack of continuous in situ measurements. Utilizing ocean color remote sensing techniques for these lakes is difficult due to their sizes, shapes, and optically complex waters. Lake Tana is the largest body of water in Ethiopia, and is located in the country's northwestern highlands. The lake is quite shallow, averaging at about 8 meters depth, and is characteristically turbid due to nearby land degradation and high soil erosion rates. Lake Tana is an important source of accessible water for the rapidly growing population of Ethiopia and serves as the headwaters for the Blue Nile. Therefore, understanding water quality trends and seasonal variation over the past decade is essential to better preparing for future water needs. Here we use MODIS-Aqua data spanning years 2002-2016 to investigate these trends and variability in Lake Tana, where in situ measurements are limited. Daily water quality products were first processed using SeaDAS and then aggregated by month and year for analyses. Frequent cloud cover in the June, July, and August (JJA) rainy season due to monsoon and zonal dynamics presents an obstacle for obtaining mean lake values during these months. We also performed analyses on targeted regions of Lake Tana to determine whether some of the major tributaries and their corresponding watersheds have more influence on observed trends than others.

  3. Characterization of bottom-sediment, water, and elutriate chemistry at selected stations at Reelfoot Lake, Tennessee

    USGS Publications Warehouse

    Broshears, R.E.

    1991-01-01

    To better-understand and predict the potential effect of dredging on water quality at Reelfoot Lake, chemical analyses were conducted on samples of lake water, bottom sediment, and elutriate water. Chemical analyses were conducted on samples of lake water, bottom sediment, and elutriate water collected at five stations in the lake during November 1988. Lake water was of the calcium magnesium bicarbonate type with an average dissolved-solids concentration of 120 milligrams per liter. Trace constituents were present in bottom sediments at concentrations representative of their average relative abundance in the earth?s crust. Elutriate waters prepared by mixing bottom sediment and lake water had suspended-solids concentrations as high as 2,000 milligrams per liter which exerted significant oxygen demand Trace constituents in the unfiltered elutriate waters were elevated with respect to lake water; elevated concentrations were attributable to the increased suspended-solids concentrations. Concentrations of total-recoverable copper, lead., and zinc in many elutriate waters exceeded U.S. Environmental Protection Agency?s water-quality criteria for the protection of freshwater aquatic life. The toxicity of elutriate waters, as measured by a 48-hour bioassay with Ceriodaphnia dubia, was low.

  4. Water quality of streams tributary to Lakes Superior and Michigan

    USGS Publications Warehouse

    Zimmerman, Jerome W.

    1968-01-01

    Water quality of streams tributary to Lakes Superior and Michigan was analyzed for 142 stations on 99 streams tributary to Lake Superior and 83 stations on 56 streams tributary to Lake Michigan during 1962-65. Concentrations of aluminum, copper, and iron were not affected greatly by flow or season. Magnesium, calcium, chlorides, total alkalinity, total hardness, and conductivity varied with the flow, temperature, and season; the lowest values were during the spring runoff and heavy rains, and the highest were during low water in late summer and the colder periods of winter. Concentrations of nitrate, silica, and sulfates were lowest in the spring and summer. Concentrations of tanninlike and ligninlike compounds were highest during the spring runoff and other high-water periods, and were lowest during freezeup when surface runoff was minimal. The pH values were highest from June to September and lowest during the spring runoff. Phenolphthalein alkalinity was detected primarily in the summer and coincided occasionally with low flows just before the spring thaw. Total hardness usually was lower in streams tributary to Lake Superior than in streams tributary to Lake Michigan. The total hardness was higher in the streams in Wisconsin than in the streams in Michigan along the west shore of Lake Michigan. It was lowest in the northernmost streams. The water quality of the streams in an area was related to the geological characteristics of the land.

  5. Estimated effects on water quality of Lake Houston from interbasin transfer of water from the Trinity River, Texas

    USGS Publications Warehouse

    Liscum, Fred; East, Jeffery W.

    2000-01-01

    The City of Houston is considering the transfer of water from the Trinity River to Lake Houston (on the San Jacinto River) to alleviate concerns about adequate water supplies for future water demands. The U.S. Geological Survey, in cooperation with the City of Houston, conducted a study to estimate the effects on the water quality of Lake Houston from the transfer of Trinity River water. A water-quality model, CE–QUAL–W2, was used to simulate six water-quality properties and constituents for scenarios of interbasin transfer of Trinity River water. Three scenarios involved the transferred Trinity River water augmenting streamflow in the East Fork of Lake Houston, and three scenarios involved the transferred water replacing streamflow from the West Fork of the San Jacinto River.The estimated effects on Lake Houston were determined by comparing volume-weighted daily mean water temperature, phosphorus, ammonia nitrogen, nitrite plus nitrate nitrogen, algal biomass, and dissolved oxygen simulated for each of the transfer scenarios to simulations for a base dataset. The effects of the interbasin transfer on Lake Houston do not appear to be detrimental to water temperature, ammonia nitrogen, or dissolved oxygen. Phosphorus and nitrite plus nitrate nitrogen showed fairly large changes when Trinity River water was transferred to replace West Fork San Jacinto River streamflow. Algal biomass showed large decreases when Trinity River water was transferred to augment East Fork Lake Houston streamflow and large increases when Trinity River water was transferred to replace West Fork San Jacinto River streamflow. Regardless of the scenario simulated, the model indicated that light was the limiting factor for algal biomass growth.

  6. Water quality of potential reference lakes in the Arkansas Valley and Ouachita Mountain ecoregions, Arkansas

    USGS Publications Warehouse

    Justus, B.G.; Meredith, Bradley J.

    2014-01-01

    This report describes a study to identify reference lakes in two lake classifications common to parts of two level III ecoregions in western Arkansas—the Arkansas Valley and Ouachita Mountains. Fifty-two lakes were considered. A screening process that relied on land-use data was followed by reconnaissance water-quality sampling, and two lakes from each ecoregion were selected for intensive water-quality sampling. Our data suggest that Spring Lake is a suitable reference lake for the Arkansas Valley and that Hot Springs Lake is a suitable reference lake for the Ouachita Mountains. Concentrations for five nutrient constituents—orthophosphorus, total phosphorus, total kjeldahl nitrogen, total nitrogen, and total organic carbon—were lower at Spring Lake on all nine sampling occasions and transparency measurements at Spring Lake were significantly deeper than measurements at Cove Lake. For the Ouachita Mountains ecoregion, water quality at Hot Springs Lake slightly exceeded that of Lake Winona. The most apparent water-quality differences for the two lakes were related to transparency and total organic carbon concentrations, which were deeper and lower at Hot Springs Lake, respectively. Our results indicate that when nutrient concentrations are low, transparency may be more valuable for differentiating between lake water quality than chemical constituents that have been useful for distinguishing between water-quality conditions in mesotrophic and eutrophic settings. For example, in this oligotrophic setting, concentrations for chlorophyll a can be less than 5 μg/L and diurnal variability that is typically associated with dissolved oxygen in more productive settings was not evident.

  7. Biotic and abiotic factors related to lake herring recruitment in the Wisconsin waters of Lake Superior, 1984-1998

    USGS Publications Warehouse

    Hoff, Michael H.

    2004-01-01

    Lake Superior lake herring (Coregonus artedi) recruitment to 13-14 months of age in the Wisconsin waters of Lake Superior varied by a factor of 5,233 during 1984-1998. Management agencies have sought models that accurately predict recruitment, but no satisfactory model had previously been developed. Lake herring recruitment was modeled to determine which factors most explained recruitment variability. The Ricker stock-recruitment model derived from only the paired stock and recruit data explained 35% of the variability in the recruitment data. The functional relationship that explained the greatest amount of recruitment variation (93%) included lake herring stock size, lake trout (Salvelinus namaycush) population size, slimy sculpin (Cottus cognatus) biomass, the interaction of mean daily wind speed in April (month of hatch) and lake herring stock size, and mean air temperature in April (when lake herring are 12-months old). Model results were interpreted to mean that lake herring recruitment was affected negatively by: slimy sculpin predation on lake herring ova; predation on age-0 lake herring by lake trout; and adult cannibalism on lake herring larvae, which was reduced by increased wind speed. April temperature was the variable that explained the least amount of variability in recruitment, but lake herring recruitment was positively affected by a warm April, which shortened winter and apparently reduced first-winter mortality. Stock size caused compensatory, density-dependent mortality on lake herring recruits. Management efforts appear best targeted at stock size protection, and empirical data implies that stock size in the Wisconsin waters of the lake should be maintained at 2.1-15.0 adults/ha in spring, bottom-trawl surveys.

  8. Fleet dynamics of the commercial lake trout fishery in Michigan waters of Lake Superior during 1929-1961

    USGS Publications Warehouse

    Wilberg, Michael J.; Bronte, Charles R.; Hansen, Michael J.

    2004-01-01

    Understanding fishing fleet dynamics is important when using fishery dependent data to infer the status of fish stocks. We analyzed data from mandatory catch reports from the commercial lake trout (Salvelinus namaycush) fishery in Michigan waters of Lake Superior during 1929-1961, a period when lake trout populations collapsed through the combined effects of overfishing and sea lamprey (Petromyzon marinus) predation. The number of full-time fishermen increased during 1933-1943 and then decreased during 1943-1957. Addition of new fishermen was related to past yield, market prices, World War II draft exemptions, and lost fishing opportunities in Lake Huron and Lake Michigan. Loss of existing fishermen was related to declining lake trout density. Large mesh (a?Y 114-mm stretch-measure) gill net effort increased during 1929-1951 because fishermen fished more net inshore as lake trout density declined, even though catch per effort (CPE) was often higher in deeper waters. The most common gill net mesh size increased from 114-mm to 120-mm stretch-measure during 1929-1957, as lake trout growth increased. More effort was fished inshore than offshore and the amount of inshore effort was less variable over time than offshore effort. Relatively stable yield was maintained by increasing gill net effort and by moving some effort to better grounds. Because fishing-up caused yield and CPE to remain high despite declining lake trout abundance, caution must be used when basing goals for lake trout restoration on historical fishery indices.

  9. The 2007 water crisis in Wuxi, China: analysis of the origin.

    PubMed

    Zhang, Xiao-jian; Chen, Chao; Ding, Jian-qing; Hou, Aixin; Li, Yong; Niu, Zhang-bin; Su, Xiao-yan; Xu, Yan-juan; Laws, Edward A

    2010-10-15

    An odorous tap water crisis that affected two million residents for several days occurred in Wuxi, China in the summer of 2007. Volatile sulfide chemicals including methyl thiols, dimethyl sulfide, dimethyl disulfide, and dimethyl trisulfide were the dominant odorous contaminants in Lake Taihu and in tap water during the crisis. These contaminants originated from the decomposition of a massive cyanobacterial bloom that was triggered by illegal industrial discharges and inadequately regulated domestic pollution. A specific emergency drinking water treatment process was quickly developed using a combination of potassium permanganate oxidation and powdered activated carbon adsorption. The emergency treatment process removed the odor from the tap water and solved the crisis successfully in several days. This experience underscores the suggestion that a combination of stresses associated with eutrophication and industrial and domestic wastewater discharges can push an aquatic system to the tipping point with consequences far more severe than would occur if the system were subjected to each stress separately. 2010 Elsevier B.V. All rights reserved.

  10. Methane oxidation in anoxic lake waters

    NASA Astrophysics Data System (ADS)

    Su, Guangyi; Zopfi, Jakob; Niemann, Helge; Lehmann, Moritz

    2017-04-01

    Freshwater habitats such as lakes are important sources of methante (CH4), however, most studies in lacustrine environments so far provided evidence for aerobic methane oxidation only, and little is known about the importance of anaerobic oxidation of CH4 (AOM) in anoxic lake waters. In marine environments, sulfate reduction coupled to AOM by archaea has been recognized as important sinks of CH4. More recently, the discorvery of anaerobic methane oxidizing denitrifying bacteria represents a novel and possible alternative AOM pathway, involving reactive nitrogen species (e.g., nitrate and nitrite) as electron acceptors in the absence of oxygen. We investigate anaerobic methane oxidation in the water column of two hydrochemically contrasting sites in Lake Lugano, Switzerland. The South Basin displays seasonal stratification, the development of a benthic nepheloid layer and anoxia during summer and fall. The North Basin is permanently stratified with anoxic conditions below 115m water depth. Both Basins accumulate seasonally (South Basin) or permanently (North Basin) large amounts of CH4 in the water column below the chemocline, providing ideal conditions for methanotrophic microorganisms. Previous work revealed a high potential for aerobic methane oxidation within the anoxic water column, but no evidence for true AOM. Here, we show depth distribution data of dissolved CH4, methane oxidation rates and nutrients at both sites. In addition, we performed high resolution phylogenetic analyses of microbial community structures and conducted radio-label incubation experiments with concentrated biomass from anoxic waters and potential alternative electron acceptor additions (nitrate, nitrite and sulfate). First results from the unamended experiments revealed maximum activity of methane oxidation below the redoxcline in both basins. While the incubation experiments neither provided clear evidence for NOx- nor sulfate-dependent AOM, the phylogenetic analysis revealed the

  11. Microplastics in surface waters of Dongting Lake and Hong Lake, China.

    PubMed

    Wang, Wenfeng; Yuan, Wenke; Chen, Yuling; Wang, Jun

    2018-08-15

    Microplastics pollution is an environmental issue of increasing concern. Much work has been done on the microplastics pollution in the marine environments. Although freshwaters are potential sources and transport pathways of plastic debris to the oceans, there is a lack of knowledge regarding the presence of microplastics in freshwater systems, especially in China, the world's largest producer of plastics. This study investigated the occurrence and properties of microplastics in surface waters of two important lakes in the middle reaches of the Yangtze River. The concentration ranges of microplastics in Dongting Lake and Hong Lake were 900-2800 and 1250-4650n/m 3 , respectively. Fiber was the dominant shape. Colored items occupied the majority. Particles with a size of <330μm comprised >20% of total microplastics collected in both lakes. Most of the selected particles were identified as plastics, with polyethylene (PE) and polypropylene (PP) being the major components. This study can provide valuable reference for better understanding the microplastics pollution in inland freshwater ecosystems. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2006

    USGS Publications Warehouse

    Lindenberg, Mary K.; Hoilman, Gene; Wood, Tamara M.

    2008-01-01

    The U.S. Geological Survey Upper Klamath Lake water quality monitoring program gathered information from multiparameter continuous water quality monitors, physical water samples, dissolved oxygen production and consumption experiments, and meteorological stations during the June-October 2006 field season. The 2006 study area included Agency Lake and all of Upper Klamath Lake. Seasonal patterns in water quality were similar to those observed in 2005, the first year of the monitoring program, and were closely related to bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae (AFA) in the two lakes. High dissolved oxygen and pH conditions in both lakes before the bloom declined in July, which coincided with seasonal high temperatures and resulted in seasonal lows in dissolved oxygen and decreased pH. Dissolved oxygen and pH in Upper Klamath and Agency Lakes increased again after the bloom recovered. Seasonal low dissolved oxygen and decreased pH coincided with seasonal highs in ammonia and orthophosphate concentrations. Seasonal maximum daily average temperatures were higher and minimum dissolved oxygen concentrations were lower in 2006 than in 2005. Conditions potentially harmful to fish were influenced by seasonal patterns in bloom dynamics and bathymetry. Potentially harmful low dissolved oxygen and high un-ionized ammonia concentrations occurred mostly at the deepest sites in the Upper Klamath Lake during late July, coincident with a bloom decline. Potentially harmful pH conditions occurred mostly at sites outside the deepest parts of the lake in July and September, coincident with a heavy bloom. Instances of possible gas bubble formation, inferred from dissolved oxygen data, were estimated to occur frequently in shallow areas of Upper Klamath and Agency Lakes simultaneously with potentially harmful pH conditions. Comparison of the data from monitors in nearshore areas and monitors near the surface of the water column in the open waters of

  13. Postimpoundment survey of water-quality characteristics of Raystown Lake, Huntingdon and Bedford Counties, Pennsylvania

    USGS Publications Warehouse

    Williams, Donald R.

    1978-01-01

    Water-quality data, collected from May 1974 to September 1976 at thirteen sites within Raystown Lake and in the inflow and outflow channels, define the water-quality characteristics of the lake water and the effects of impoundment on the quality of the lake outflow. Depth-profile measurements show Raystown Lake to be dimictic. Thermal stratification is well developed during the summer. Generally high concentrations of dissolved oxygen throughout the hypolimnion during thermal stratification, low phytoplankton concentrations, and small diel fluctuations of dissolved oxygen, pH, and specific conductance indicate that the lake is low in nutrients, or oligotrophic. Algal assays of surface samples indicate that orthophosphate was a growth-limiting nutrient. The diatoms (Chrysophyta) were the dominant phytoplankton group found through-out the study period. The lake waters contained very low populations of zooplankton. Fecal coliform and fecal streptococcus densities measured throughout the lake indicated no potentially dangerous areas of water-contact recreation. The most apparent effect that the impoundment had on water quality was the removal of nutrients, particularly orthophosphate, through phytoplankton uptake and sediment deposition.

  14. Physics on Tap

    ERIC Educational Resources Information Center

    Wheeler, Andrew P. S.

    2012-01-01

    This article aims to describe how to visualize surface tension effects in liquid jets. A simple experiment is proposed using the liquid jet flow from a mains water tap/faucet. Using a modern digital camera with a high shutter speed, it is possible to visualize the instabilities (capillary waves) that form within the jet due to the action of…

  15. Statistical analysis of lake levels and field study of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015: Chapter A of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    USGS Publications Warehouse

    Jones, Perry M.; Trost, Jared J.; Diekoff, Aliesha L.; Rosenberry, Donald O.; White, Eric A.; Erickson, Melinda L.; Morel, Daniel L.; Heck, Jessica M.

    2016-10-19

    Water levels declined from 2003 to 2011 in many lakes in Ramsey and Washington Counties in the northeast Twin Cities Metropolitan Area, Minnesota; however, water levels in other northeast Twin Cities Metropolitan Area lakes increased during the same period. Groundwater and surface-water exchanges can be important in determining lake levels where these exchanges are an important component of the water budget of a lake. An understanding of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area has been limited by the lack of hydrologic data. The U.S. Geological Survey, in cooperation with the Metropolitan Council and Minnesota Department of Health, completed a field and statistical study assessing lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes. This report documents the analysis of collected hydrologic, water-quality, and geophysical data; and existing hydrologic and geologic data to (1) assess the effect of physical setting and climate on lake-level fluctuations of selected lakes, (2) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (3) estimate general ages for waters extracted from the wells, and (4) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake. Statistical analyses of lake levels during short-term (2002–10) and long-term (1925–2014) periods were completed to help understand lake-level changes across the northeast Twin Cities Metropolitan Area. Comparison of 2002–10 lake levels to several landscape and geologic characteristics explained variability in lake-level changes for 96 northeast Twin Cities Metropolitan Area lakes. Application of several statistical methods determined that (1) closed-basin lakes (without an active outlet) had larger lake-level declines than flow-through lakes with an outlet; (2

  16. Long-term citizen-collected data reveal geographical patterns and temporal trends in lake water clarity

    USGS Publications Warehouse

    Lottig, Noah R.; Wagner, Tyler; Henry, Emily N.; Cheruvelil, Kendra Spence; Webster, Katherine E.; Downing, John A.; Stow, Craig A.

    2014-01-01

    We compiled a lake-water clarity database using publically available, citizen volunteer observations made between 1938 and 2012 across eight states in the Upper Midwest, USA. Our objectives were to determine (1) whether temporal trends in lake-water clarity existed across this large geographic area and (2) whether trends were related to the lake-specific characteristics of latitude, lake size, or time period the lake was monitored. Our database consisted of >140,000 individual Secchi observations from 3,251 lakes that we summarized per lake-year, resulting in 21,020 summer averages. Using Bayesian hierarchical modeling, we found approximately a 1% per year increase in water clarity (quantified as Secchi depth) for the entire population of lakes. On an individual lake basis, 7% of lakes showed increased water clarity and 4% showed decreased clarity. Trend direction and strength were related to latitude and median sample date. Lakes in the southern part of our study-region had lower average annual summer water clarity, more negative long-term trends, and greater inter-annual variability in water clarity compared to northern lakes. Increasing trends were strongest for lakes with median sample dates earlier in the period of record (1938–2012). Our ability to identify specific mechanisms for these trends is currently hampered by the lack of a large, multi-thematic database of variables that drive water clarity (e.g., climate, land use/cover). Our results demonstrate, however, that citizen science can provide the critical monitoring data needed to address environmental questions at large spatial and long temporal scales. Collaborations among citizens, research scientists, and government agencies may be important for developing the data sources and analytical tools necessary to move toward an understanding of the factors influencing macro-scale patterns such as those shown here for lake water clarity.

  17. Long-Term Citizen-Collected Data Reveal Geographical Patterns and Temporal Trends in Lake Water Clarity

    PubMed Central

    Lottig, Noah R.; Wagner, Tyler; Norton Henry, Emily; Spence Cheruvelil, Kendra; Webster, Katherine E.; Downing, John A.; Stow, Craig A.

    2014-01-01

    We compiled a lake-water clarity database using publically available, citizen volunteer observations made between 1938 and 2012 across eight states in the Upper Midwest, USA. Our objectives were to determine (1) whether temporal trends in lake-water clarity existed across this large geographic area and (2) whether trends were related to the lake-specific characteristics of latitude, lake size, or time period the lake was monitored. Our database consisted of >140,000 individual Secchi observations from 3,251 lakes that we summarized per lake-year, resulting in 21,020 summer averages. Using Bayesian hierarchical modeling, we found approximately a 1% per year increase in water clarity (quantified as Secchi depth) for the entire population of lakes. On an individual lake basis, 7% of lakes showed increased water clarity and 4% showed decreased clarity. Trend direction and strength were related to latitude and median sample date. Lakes in the southern part of our study-region had lower average annual summer water clarity, more negative long-term trends, and greater inter-annual variability in water clarity compared to northern lakes. Increasing trends were strongest for lakes with median sample dates earlier in the period of record (1938–2012). Our ability to identify specific mechanisms for these trends is currently hampered by the lack of a large, multi-thematic database of variables that drive water clarity (e.g., climate, land use/cover). Our results demonstrate, however, that citizen science can provide the critical monitoring data needed to address environmental questions at large spatial and long temporal scales. Collaborations among citizens, research scientists, and government agencies may be important for developing the data sources and analytical tools necessary to move toward an understanding of the factors influencing macro-scale patterns such as those shown here for lake water clarity. PMID:24788722

  18. Microbial methane production in oxygenated water column of an oligotrophic lake

    PubMed Central

    Grossart, Hans-Peter; Frindte, Katharina; Dziallas, Claudia; Eckert, Werner; Tang, Kam W.

    2011-01-01

    The prevailing paradigm in aquatic science is that microbial methanogenesis happens primarily in anoxic environments. Here, we used multiple complementary approaches to show that microbial methane production could and did occur in the well-oxygenated water column of an oligotrophic lake (Lake Stechlin, Germany). Oversaturation of methane was repeatedly recorded in the well-oxygenated upper 10 m of the water column, and the methane maxima coincided with oxygen oversaturation at 6 m. Laboratory incubations of unamended epilimnetic lake water and inoculations of photoautotrophs with a lake-enrichment culture both led to methane production even in the presence of oxygen, and the production was not affected by the addition of inorganic phosphate or methylated compounds. Methane production was also detected by in-lake incubations of lake water, and the highest production rate was 1.8–2.4 nM⋅h−1 at 6 m, which could explain 33–44% of the observed ambient methane accumulation in the same month. Temporal and spatial uncoupling between methanogenesis and methanotrophy was supported by field and laboratory measurements, which also helped explain the oversaturation of methane in the upper water column. Potentially methanogenic Archaea were detected in situ in the oxygenated, methane-rich epilimnion, and their attachment to photoautotrophs might allow for anaerobic growth and direct transfer of substrates for methane production. Specific PCR on mRNA of the methyl coenzyme M reductase A gene revealed active methanogenesis. Microbial methane production in oxygenated water represents a hitherto overlooked source of methane and can be important for carbon cycling in the aquatic environments and water to air methane flux. PMID:22089233

  19. Climate-driven changes in grassland vegetation, snow cover, and lake water of the Qinghai Lake basin

    NASA Astrophysics Data System (ADS)

    Wang, Xuelu; Liang, Tiangang; Xie, Hongjie; Huang, Xiaodong; Lin, Huilong

    2016-07-01

    Qinghai Lake basin and the lake have undergone significant changes in recent decades. We examine MODIS-derived grassland vegetation and snow cover of the Qinghai Lake basin and their relations with climate parameters during 2001 to 2010. Results show: (1) temperature and precipitation of the Qinghai Lake basin increased while evaporation decreased; (2) most of the grassland areas improved due to increased temperature and growing season precipitation; (3) weak relations between snow cover and precipitation/vegetation; (4) a significantly negative correlation between lake area and temperature (r=-0.9, p<0.05) and (5) a positive relation between lake level (lake-level difference) and temperature (precipitation). Compared with Namco Lake (located in the inner Tibetan Plateau) where the primary water source of lake level increases was the accelerated melt of glacier/perennial snow cover in the lake basin, for the Qinghai Lake, however, it was the increased precipitation. Increased precipitation explained the improvement of vegetation cover in the Qinghai Lake basin, while accelerated melt of glacier/perennial snow cover was responsible for the degradation of vegetation cover in Namco Lake basin. These results suggest different responses to the similar warming climate: improved (degraded) ecological condition and productive capacity of the Qinghai Lake basin (Namco Lake basin).

  20. Is the water level during dry season in Poyang Lake really lower than before?

    NASA Astrophysics Data System (ADS)

    Liu, Xiaolong; Yu, Meixiu; Shi, Yong; Luan, Zhenyu; Fu, Dafang

    2017-04-01

    The Poyang Lake, the largest freshwater lake in China, has attracted world widely attentions in recent years due to it being dammed or not at the Lake's outlet. It was reported that the Poyang Lake water levels have been declining significantly in dry seasons, which resulted in severe water supply, irrigation and ecological flow requirement problems. The purpose of the study was to answer the question that the water level of the Poyang Lake during dry season is really lower than before or not. Based on topographical data, and long-term hydrological and meteorological data from 1950 to 2016, the relationship between the Poyang Lake and the Yangtze River before and after the completion of the Three Gorges Dam, the relationship between the Poyang Lake and its Five major tributaries (Ganjiang River, Fuhe River, Xinjiang River, Raohe River and Xiushui River), and as well as sand mining contributions to the water level in dry seasons of the Poyang Lake were investigated respectively.

  1. A fiber-coupled 9xx module with tap water cooling

    NASA Astrophysics Data System (ADS)

    Schleuning, D.; Anthon, D.; Chryssis, A.; Ryu, G.; Liu, G.; Winhold, H.; Fan, L.; Xu, Z.; Tanbun-Ek, T.; Lehkonen, S.; Acklin, B.

    2016-03-01

    A novel, 9XX nm fiber-coupled module using arrays of highly reliable laser diode bars has been developed. The module is capable of multi-kW output power in a beam parameter product of 80 mm-mrad. The module incorporates a hard-soldered, isolated stack package compatible with tap-water cooling. Using extensive, accelerated multi-cell life-testing, with more than ten million device hours of test, we have demonstrated a MTTF for emitters of >500,000 hrs. In addition we have qualified the module in hard-pulse on-off cycling and stringent environmental tests. Finally we have demonstrated promising results for a next generation 9xx nm chip design currently in applications and qualification testing

  2. Assessing heat fluxes and water quality trends in subalpine lakes from EO

    NASA Astrophysics Data System (ADS)

    Cazzaniga, Ilaria; Giardino, Claudia; Bresciani, Mariano; Elli, Chiara; Valerio, Giulia; Pilotti, Marco

    2017-04-01

    Lakes play a fundamental role in providing ecosystem services such as water supplying, hydrological regulation, climate change mitigation, touristic recreation (Schallenberg et al., 2013). Preserving and improving of quality of lakes waters, which is a function of either both natural and human influences, is therefore an important action to be considered. Remote Sensing techniques are spreading as useful instrument for lakes, by integrating classical in situ limnological measurements to frequent and synoptic monitoring capabilities. Within this study, Earth Observation data are exploited for understanding the temporal changes of water quality parameters over a decade, as well as for measuring the surface energy fluxes in recent years in deep clear lakes in the European subalpine ecoregion. According to Pareth et al. (2016), subalpine lakes are showing a clear response to climate change with an increase of 0.017 °C /year of lake surface temperature, whilst the human activities contribute to produce a large impact (agriculture, recreation, industry, fishing and drinking) on these lakes. The investigation is focused on Lake Iseo, which has shown a significant deterioration of water quality conditions since the seventies, and on Lake Garda, the largest Italian lake where EO data have been widely used for many purposes and applications (Giardino et al., 2014). Available ENVISAT-MERIS (2002-2012) and Landsat-8-OLI (2013-on going) imagery has been exploited to produce chlorophyll-a (chl-a) concentration maps, while Landsat-8-TIRS imagery has been used for estimating lake surface temperatures. MERIS images were processed through a neural network (namely the C2R processor, Doerffer et al., 2007), to correct the atmospheric effects and to retrieve water constituents concentration in optically complex deep waters. With regard to L8's images, some atmospheric correctors (e.g. ACOLITE and 6SV) were tested and validated to indentify, for each of the two lakes, the more accurate

  3. WATER QUALITY AND BIOLOGICAL CONDITIONS OF GREAT LAKES COASTAL WETLANDS, WITH AN EMPHASIS ON LAKE SUPERIOR

    EPA Science Inventory

    This presentation will focus on MED's past and ongoing research in Lake Superior wetlands, and will include data on habitat, water quality, and biological condition of these systems. Comparisons of the condition of Lake Superior wetlands relative to those found around the Great ...

  4. Physical-property, water-quality, plankton, and bottom-material data for Devils Lake and East Devils Lake, North Dakota, September 1988 through October 1990

    USGS Publications Warehouse

    Sando, Steven K.; Sether, Bradley A.

    1993-01-01

    Physical-properties were measured and water-quality, plankton, and bottom-material samples were collected at 10 sites in Devils Lake and East Devils Lake during September 1988 through October 1990 to study water-quality variability and water-quality and plankton relations in Devils Lake and East Devils Lake. Physical properties measured include specific conductance, pH, water temperature, dissolved-oxygen concentration, water transparency, and light transmission. Water-quality samples were analyzed for concentrations of major ions, selected nutrients, and selected trace elements. Plankton samples were examined for identification and enumeration of phytoplankton and zooplankton species, and bottom-material samples were analyzed for concentrations of selected nutrients. Data-collection procedures are discussed and the data are presented in tabular form.

  5. A water-budget analysis of Medina and Diversion Lakes and the Medina/Diversion Lake system, with estimated recharge to Edwards aquifer, San Antonio area, Texas

    USGS Publications Warehouse

    Slattery, Richard N.; Miller, Lisa D.

    2004-12-22

    In January 2001, the U.S. Geological Survey—in cooperation with the Edwards Aquifer Authority—began a study to refine and, if possible, extend previously derived (1995–96) relations between the stage in Medina Lake and recharge to the Edwards aquifer to include the effects of reservoir stages below 1,018 feet and greater than 1,046 feet above National Geodetic Vertical Datum of 1929. The principal objective of this present (2001–02) study was to estimate ground-water outflow (seepage) from Medina Lake, Diversion Lake, and from the Medina/Diversion Lake system through the calculation of water budgets representing steady-state conditions over as wide a range as possible in the stages of Medina and Diversion Lakes. The water budgets were compiled for selected periods during which time the water-budget components were inferred to be relatively stable and the influence of precipitation, stormwater runoff, and changes in storage were presumably minimal.Water budgets for the Medina/Diversion Lake system were compiled for 127 water-budget periods ranging from 8 to 78 days from daily hydrologic data collected during March 1955–September 1964, October 1995–September 1996, and February 2001–June 2002. Budgets for Medina and Diversion Lakes were compiled for 14 periods ranging from 8 to 23 days from daily hydrologic data collected only during October 1995–September 1996 and April 2001–June 2002.Linear equations were developed to relate the stage in Medina Lake to ground-water outflow from Medina Lake, Diversion Lake, and the Medina/Diversion Lake system. The computed mean rates of outflow from Medina Lake ranged from about 18 to 182 acre-feet per day between stages of 1,019 and 1,064 feet above National Geodetic Vertical Datum of 1929. The computed rates of outflow from Diversion Lake ranged from about -85 to 52 acre-feet per day. The rates of outflow from the entire lake system ranged from about 5 to 178 acre-feet per day between Medina Lake stages of 963

  6. The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water

    PubMed Central

    Carrasco-Turigas, Glòria; Villanueva, Cristina M.; Goñi, Fernando; Rantakokko, Panu; Nieuwenhuijsen, Mark J.

    2013-01-01

    Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97%) and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies. PMID:23476675

  7. Evaluation of Water Quality Change of Brackish Lake in Snowy Cold Regions Accompanying Climate Change

    NASA Astrophysics Data System (ADS)

    Kudo, K.; Hasegawa, H.; Nakatsugawa, M.

    2017-12-01

    This study addresses evaluation of water quality change of brackish lake based on the estimation of hydrological quantities resulting from long-term hydrologic process accompanying climate change. For brackish lakes, such as Lake Abashiri in Eastern Hokkaido, there are concerns about water quality deterioration due to increases in water temperature and salinity. For estimating some hydrological quantities in the Abashiri River basin, including Lake Abashiri, we propose the following methods: 1) MRI-NHRCM20, a regional climate model based on the Representative Concentration Pathways adopted by IPCC AR5, 2) generalized extreme value distribution for correcting bias, 3) kriging adopted variogram for downscaling and 4) Long term Hydrologic Assessment model considering Snow process (LoHAS). In addition, we calculate the discharge from Abashiri River into Lake Abashiri by using estimated hydrological quantities and a tank model, and simulate impacts on water quality of Lake Abashiri due to climate change by setting necessary conditions, including the initial conditions of water temperature and water quality, the pollution load from the inflow rivers, the duration of ice cover and salt pale boundary. The result of the simulation of water quality indicates that climate change is expected to raise the water temperature of the lake surface by approximately 4°C and increase salinity of surface of the lake by approximately 4psu, also if salt pale boundary in the lake raises by approximately 2-m, the concentration of COD, T-N and T-P in the bottom of the lake might increase. The processes leading to these results are likely to be as follows: increased river water flows in along salt pale boundary in lake, causing dynamic flow of surface water; saline bottom water is entrained upward, where it mixes with surface water; and the shear force acting at salt pale boundary helps to increase the supply of salts from bottom saline water to the surface water. In the future, we will

  8. Evaluating the Impact of Gilgel Gibe Dam on the Lake Turkana Water Levels: An Illustration from an Endorheic Lake in Africa

    NASA Astrophysics Data System (ADS)

    Velpuri, N.; Senay, G. B.

    2010-12-01

    Lake Turkana is one of the lakes in the Great Rift Valley, Africa. This lake has no outlet hence it is considered as closed or endorheic lake. To meet the demand of electricity in the east African region, Ethiopia is currently building Gilgel Gibe-III dam on the Omo River, which supplies up to 80% of the inflows to the Lake Turkana. On completion, this dam would be the tallest dam in Africa with a height of 241 m. As Lake Turkana is highly dependent on the inflows from the Omo River, the construction of this dam could potentially pose a threat to the downstream river valley and to Lake Turkana. This hydroelectric project is arguably one of the most controversial projects in the region. The impact of the dam on the lake is evaluated using Remote Sensing datasets and hydrologic modeling. First, lake water levels (1998-2007) were estimated using the Simplified Lake Water Balance (SLAB) approach which takes in satellite based rainfall estimates, modeled runoff and evapotranspiration data over the Turkana basin. Modeled lake levels were validated against TOPEX/POSIEDON/Jason-1 satellite altimeter data. Validation results showed that the model could capture observed trends and seasonal variations in lake levels. The fact that the lake is endorheic makes it easy to model the lake levels. Using satellite based estimates for the years 1998-2009, future scenarios for rainfall and evapotranspiration were generated using the Monte Carlo simulation approach and the impact of Gilgel Gibe-III dam on the Lake Turkana water levels is evaluated using SLAB approach. Preliminary results indicate that the impact of the dam on the lake would vary with the initial water level in the lake at the time of dam commissioning. It was found that during the initial period of dam/reservoir filling the lake level would drop up to 2-3 m (95% confidence interval). However, on average the lake would stabilize within 10 years from the date of commissioning. The variability within the lake levels due

  9. Assessment of the Extraction Methods for Monitoring Phthalate Emerging Contaminants in Groundwater and Tap Water

    NASA Astrophysics Data System (ADS)

    Cotto, I.; Padilla, I. Y.; De Jesús, N. H.; Torres, P. M.

    2015-12-01

    Trace organic contaminants such as phthalates, among other chemicals of emerging concerns, have not historically been considered as pollutants but are being detected in water, posing a potential risk to public health and the environment. One of the most common phthalates of particular concern is di-(2-ethylhexyl) phthalate (DEHP), a plasticizer normally found in plastics and consumer products, including: cosmetics, pharmaceuticals, medical devices, food packages, water bottles, and wiring cables. DEHP has been associated with preterm birth, a major cause of neonatal mortality and health complications. This study aims at monitoring the presence and concentration of DEHP and other phthalates in groundwater and tap water systems in Puerto Rico, which has one of the highest rates of preterm birth in the U.S. The Environmental Protection Agency (EPA) suggests a liquid-liquid extraction method that uses methylene chloride as the preferred organic solvent for the extractions. This work presents modified EPA methods that reduce the volume of sample and solvent used, lower the time of analysis, increase productivity, and decrease hazards and waste. Distribution coefficient of DEHP between methylene chloride and water are estimated and related to sample extraction efficiency. Research results indicate that DEHP is in fact distributed between water and methylene chloride with a distribution coefficient average value of 1.24. The study concludes that the sample and solvent volumes have influence on the efficiency but have not an effect on the distribution coefficient. The tests show higher extraction efficiencies for lower DEHP concentrations and higher extraction volumes. Results from the water analysis show presence of DEHP in 55% of groundwater and 44% of tap water samples, indicating a potential exposure through water.

  10. The δ2H and δ18O of tap water from 349 sites in the United States and selected territories

    USGS Publications Warehouse

    Coplen, Tyler B.; Landwehr, Jurate M.; Qi, Haiping; Lorenz, Jennifer M.

    2013-01-01

    Because the stable isotopic compositions of hydrogen (δ2H) and oxygen (δ18O) of animal (including human) tissues, such as hair, nail, and urine, reflect the δ2H and δ18O of water and food ingested by an animal or a human and because the δ2H and δ18O of environmental waters vary geographically, δ2H and δ18O values of tap water samples collected in 2007-2008 from 349 sites in the United States and three selected U.S. territories have been measured in support of forensic science applications, creating one of the largest databases of tap water δ2H and δ18O values to date. The results of replicate isotopic measurements for these tap water samples confirm that the expanded uncertainties (U = 2μc) obtained over a period of years by the Reston Stable Isotope Laboratory from δ2H and δ18O dual-inlet mass spectrometric measurements are conservative, at ±2‰ and ±0.2 ‰, respectively. These uncertainties are important because U.S. Geological Survey data may be needed for forensic science applications, including providing evidence in court cases. Half way through the investigation, an isotope-laser spectrometer was acquired, enabling comparison of dual-inlet isotope-ratio mass spectrometric results with isotope-laser spectrometric results. The uncertainty of the laser-based δ2H measurement results for these tap water samples is comparable to the uncertainty of the mass spectrometric method, with the laser-based method having a slightly lower uncertainty. However, the δ18O uncertainty of the laser-based method is more than a factor of ten higher than that of the dual-inlet isotoperatio mass spectrometric method.

  11. Algal Populations and Water Quality in Florida Lakes: Sedimentary Evidence of Anthropogenic Impact

    NASA Astrophysics Data System (ADS)

    Whitmore, M. R.; Whitmore, T. J.; Brenner, M.; Smoak, J.; Curtis, J.

    2004-05-01

    Cyanobacteria and other algae dominate many highly productive Florida (U.S.A.) lakes. Algal proliferation is often attributed to eutrophication during the last century, but it is poorly documented because Florida's water-quality monitoring programs became common only after 1980. We examined sediment cores from 14 hypereutrophic Florida lakes. Study lakes have been subjected to urbanization, agriculture, and to inputs of municipal sewage effluent and food-processing wastes. Major algal-pigment groups were analyzed in sediments using pigment-extraction and spectrophotometric techniques. We compared myxoxanthophyll, oscillaxanthin, total carotenoid, and total chlorophyll pigment profiles with WACALIB-derived limnetic total-P and chlorophyll a inferences based on fossil diatoms, sediment chemistry, and stable isotope (δ 13C & δ 15N) signatures of organic matter. Sedimentary evidence showed that cyanobacterial and algal proliferation appeared during recent decades in 10 study lakes in response to eutrophication. Cyanobacterial increase was very recent and abrupt in 7 lakes. Six lakes showed recovery following nutrient-mitigation programs that reduced sewage and other point-source effluent inputs. Four lakes showed long-term presence of cyanobacterial populations because edaphic nutrient supply causes these lakes to be naturally productive. Three of these naturally eutrophic lakes remained unchanged, but one demonstrated eutrophication followed by subsequent recovery. Correlations were particularly strong among sedimented pigment profiles and diatom-inferred limnetic water-quality profiles. Paleolimnological methods provide informative assessment of anthropogenic influence on lakes when long-term water-quality data are lacking. Historic studies also are useful for evaluating the feasibility of improving water quality through lake-management programs, and for defining appropriate lake restoration goals.

  12. Water quality of Fremont Lake and New Fork Lakes, western Wyoming; a progress report

    USGS Publications Warehouse

    Peterson, D.A.; Averett, R.C.; Mora, K.L.

    1987-01-01

    Fremont Lake and New Fork Lakes in the New Fork River drainage of western Wyoming were selected for a comprehensive study of hydrologic processes affecting mountain lakes in the Rocky Mountains. Information is needed about lakes in this area to assess their response to existing and planned development. The concerns include regional issues such as acid precipitation from gas-sweetening plants, coal-fired powerplants, and smelters, as well as local issues, such as shoreline development and raising outlet control structures. Onsite measurements indicated strong thermal stratification in the lakes during the summer. Isothermal conditions occurred during December 1983 and May 1984. Mean phytoplankton concentrations were less than 5,000 cells/ml, and chlorophyll a concentrations were weakly correlated with phytoplankton concentrations. Zooplankton concentrations were small, less than 6 organisms/L. The numbers of benthic invertebrates/unit area in Fremont Lake were extremely small. The lake waters and inflow and outflow streams were chemically dilute solutions. Mean dissolved-solids concentrations were 13 mg/L in Fremont Lake and 24 mg/L in New Fork Lakes. Calcium and bicarbonate were the predominant ions. Concentrations of phosphorus and nitrogen usually were less than detection limits. Trace-metals concentrations in the lakes were similar to those in precipitation and generally were small. Dissolved organic-carbon concentrations were about 1 mg/L. Concentrations of fulvic and humic acids were relatively large in the inlet of Fremont Lake during the spring. Pine Creek has deposited 800 metric tons of sediment, on an annual average, to the delta of Fremont Lake. Most sediment is deposited during spring runoff. (USGS)

  13. Mercury and water level fluctuations in lakes of northern Minnesota

    USGS Publications Warehouse

    Larson, James H.; Maki, Ryan P; Christensen, Victoria G.; Sandheinrich, Mark B.; LeDuc, Jaime F.; Kissane, Claire; Knights, Brent C.

    2017-01-01

    Large lake ecosystems support a variety of ecosystem services in surrounding communities, including recreational and commercial fishing. However, many northern temperate fisheries are contaminated by mercury. Annual variation in mercury accumulation in fish has previously been linked to water level (WL) fluctuations, opening the possibility of regulating water levels in a manner that minimizes or reduces mercury contamination in fisheries. Here, we compiled a long-term dataset (1997-2015) of mercury content in young-of-year Yellow Perch (Perca flavescens) from six lakes on the border between the U.S. and Canada and examined whether mercury content appeared to be related to several metrics of WL fluctuation (e.g., spring WL rise, annual maximum WL, and year-to-year change in maximum WL). Using simple correlation analysis, several WL metrics appear to be strongly correlated to Yellow Perch mercury content, although the strength of these correlations varies by lake. We also used many WL metrics, water quality measurements, temperature and annual deposition data to build predictive models using partial least squared regression (PLSR) analysis for each lake. These PLSR models showed some variation among lakes, but also supported strong associations between WL fluctuations and annual variation in Yellow Perch mercury content. The study lakes underwent a modest change in WL management in 2000, when winter WL minimums were increased by about 1 m in five of the six study lakes. Using the PLSR models, we estimated how this change in WL management would have affected Yellow Perch mercury content. For four of the study lakes, the change in WL management that occurred in 2000 likely reduced Yellow Perch mercury content, relative to the previous WL management regime.

  14. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  15. Lake Urmia (Iran): can future socio-ecologically motivated river basin management restore lake water levels in an arid region with extensive agricultural development?

    NASA Astrophysics Data System (ADS)

    Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh

    2015-04-01

    Lake Urmia, one of the world's largest hyper saline lakes located in northwest of Iran, is a UNESCO Biosphere Reserve and Ramsar site, protected as a national park and, supports invaluable and unique biodiversity and related ecosystem services for the region's 6.5 million inhabitants. Due to increased development of the region's water resources for agriculture and industry and to a certain extent climate change, the lake has started to shrink dramatically since 1995 and now is holding less than 30 percent of its volume. Rapid development in agricultural sector and land-use changes has resulted in immense construction of dams and water diversions in almost all lake feeding rivers, intensifying lake shrinking, increasing salinity and degrading its ecosystem. Recently, lake's cultural and environmental importance and social pressure has raised concerns and brought government attention to the lake restoration plans. Along with poor management, low yield agriculture as the most water consuming activity in the region with, rapid, insufficient development is one of the most influential drivers in the lake desiccation. Part of the lake restoration plans in agricultural sector is to restrict the agricultural areas in the main feeding river basins flowing mostly in the southern part of the lake and decreasing the agricultural water use in this area. This study assess the efficiency and effectiveness of the proposed plans and its influence on the lake level rise and its impacts on economy in the region using a system dynamics model developed for the Lake consist of hydrological and agro-economical sub-systems. The effect of decrease in agricultural area in the region on GDP and region economy was evaluated and compared with released water contribution in lake level rise for a five year simulation period.

  16. Water Bacterial and Fungal Community Compositions Associated with Urban Lakes, Xi’an, China

    PubMed Central

    Zhang, Haihan; Wang, Yue; Chen, Shengnan; Zhao, Zhenfang; Feng, Ji; Zhang, Zhonghui; Lu, Kuanyu; Jia, Jingyu

    2018-01-01

    Urban lakes play a vital role in the sustainable development of urbanized areas. In this freshwater ecosystem, massive microbial communities can drive the recycling of nutrients and regulate the water quality. However, water bacterial and fungal communities in the urban lakes are not well understood. In the present work, scanning electron microscopy (SEM) was combined with community level physiological profiles (CLPPs) and Illumina Miseq sequence techniques to determine the diversity and composition of the water bacterial and fungal community in three urban lakes, namely Xingqing lake (LX), Geming lake (LG) and Lianhu lake (LL), located in Xi’an City (Shaanxi Province, China). The results showed that these three lakes were eutrophic water bodies. The highest total nitrogen (TN) was observed in LL, with a value of 12.1 mg/L, which is 2 times higher than that of LG. The permanganate index (CODMn) concentrations were 21.6 mg/L, 35.4 mg/L and 28.8 mg/L in LG, LL and LX, respectively (p < 0.01). Based on the CLPPs test, the results demonstrated that water bacterial communities in the LL and LX urban lakes had higher carbon source utilization ability. A total of 62,742 and 55,346 high quality reads were grouped into 894 and 305 operational taxonomic units (OTUs) for bacterial and fungal communities, respectively. Water bacterial and fungal community was distributed across 14 and 6 phyla. The most common phyla were Proteobacteriaand Cyanobacteria. Cryptomycota was particularly dominant in LL, while Chytridiomycota and Entomophthormycota were the most abundant fungal phyla, accounting for 95% of the population in the LL and 56% in the LG. Heat map and redundancy analysis (RDA) highlighted the dramatic differences of water bacterial communities among three urban lakes. Meanwhile, the profiles of fungal communities were significantly correlated with the water quality parameters (e.g., CODMn and total nitrogen, TN). Several microbes (Legionella sp. and Streptococcus sp

  17. Water Bacterial and Fungal Community Compositions Associated with Urban Lakes, Xi'an, China.

    PubMed

    Zhang, Haihan; Wang, Yue; Chen, Shengnan; Zhao, Zhenfang; Feng, Ji; Zhang, Zhonghui; Lu, Kuanyu; Jia, Jingyu

    2018-03-07

    Urban lakes play a vital role in the sustainable development of urbanized areas. In this freshwater ecosystem, massive microbial communities can drive the recycling of nutrients and regulate the water quality. However, water bacterial and fungal communities in the urban lakes are not well understood. In the present work, scanning electron microscopy (SEM) was combined with community level physiological profiles (CLPPs) and Illumina Miseq sequence techniques to determine the diversity and composition of the water bacterial and fungal community in three urban lakes, namely Xingqing lake (LX), Geming lake (LG) and Lianhu lake (LL), located in Xi'an City (Shaanxi Province, China). The results showed that these three lakes were eutrophic water bodies. The highest total nitrogen (TN) was observed in LL, with a value of 12.1 mg/L, which is 2 times higher than that of LG. The permanganate index (COD Mn ) concentrations were 21.6 mg/L, 35.4 mg/L and 28.8 mg/L in LG, LL and LX, respectively ( p < 0.01). Based on the CLPPs test, the results demonstrated that water bacterial communities in the LL and LX urban lakes had higher carbon source utilization ability. A total of 62,742 and 55,346 high quality reads were grouped into 894 and 305 operational taxonomic units (OTUs) for bacterial and fungal communities, respectively. Water bacterial and fungal community was distributed across 14 and 6 phyla. The most common phyla were Proteobacteriaand Cyanobacteria. Cryptomycota was particularly dominant in LL, while Chytridiomycota and Entomophthormycota were the most abundant fungal phyla, accounting for 95% of the population in the LL and 56% in the LG. Heat map and redundancy analysis (RDA) highlighted the dramatic differences of water bacterial communities among three urban lakes. Meanwhile, the profiles of fungal communities were significantly correlated with the water quality parameters (e.g., COD Mn and total nitrogen, TN). Several microbes ( Legionella sp. and Streptococcus sp

  18. Airborne exposure to trihalomethanes from tap water in homes with refrigeration-type and evaporative cooling systems.

    PubMed

    Kerger, Brent D; Suder, David R; Schmidt, Chuck E; Paustenbach, Dennis J

    2005-03-26

    This study evaluates airborne concentrations of common trihalomethane compounds (THM) in selected living spaces of homes supplied with chlorinated tap water containing >85 ppb total THM. Three small homes in an arid urban area were selected, each having three bedrooms, a full bath, and approximately 1000 square feet; two homes had standard (refrigeration-type) central air conditioning and the third had a central evaporative cooling system ("swamp cooler"). A high-end water-use pattern was used at each home in this exposure simulation. THM were concurrently measured on 4 separate test days in tap water and air in the bathroom, living room, the bedroom closest to the bathroom, and outside using Summa canisters. Chloroform (trichloromethane, TCM), bromodichloromethane (BDCM), and dibromochloromethane (DBCM) concentrations were quantified using U.S. EPA Method TO-14. The apparent volatilization fraction consistently followed the order: TCM > BDCM > DBCM. Relatively low airborne THM concentrations (similar to outdoors) were found in the living room and bedroom samples for the home with evaporative cooling, while the refrigeration-cooled homes showed significantly higher THM levels (three- to fourfold). This differential remained after normalizing the air concentrations based on estimated THM throughput or water concentrations. These findings indicate that, despite higher throughput of THM-containing water in homes using evaporative coolers, the higher air exchange rates associated with these systems rapidly clears THM to levels similar to ambient outdoor concentrations.

  19. Lake size and water-column stability affect the importance of methane for pelagic food webs of boreal lakes

    NASA Astrophysics Data System (ADS)

    Kankaala, Paula; Lopez-Bellido, Jessica; Ojala, Anne; Tulonen, Tiina; Jones, Roger I.

    2013-04-01

    Physical forcing, related to lake size and morphometry, plays an important role in the landscape-scale biogeochemical processing and fluxes of terrestrial carbon in lakes. Boreal lakes are typically dimictic, with mixing of the water column in spring and autumn, but in small, sheltered, humic, forest lakes the spring mixing is often incomplete. This leads to a steep summer stratification and oxygen depletion in the hypolimnion of the lakes. As a result of anaerobic decomposition of organic matter, high concentrations of CH4are typical in these lakes. At the oxic-anoxic interface zone methanotrophic microbes oxidize CH4 to CO2 and partly incorporate CH4-C into microbial biomass, and thus potentially provide a diet source for pelagic consumers. We studied production at the base of the pelagic food web by methane oxidising bacteria (MOB), heterotrophic bacteria (HB) and phytoplankton (PP) in five boreal lakes with a dissolved organic carbon (DOC) concentration varying between 7 and 25 mg C L-1 and an area ranging from 0.004 to 13.4 km2. High MOB activity was detected in the water columns of the three smallest lakes having anoxia in the hypolimnion during summer. The highest MOB activities (ca. 2-12 μmol L-1 d-1) were observed when the CH4:O2 ratio varied between ca. 0.5-12. Seasonally, the highest MOB activities were measured during late-summer mixed layer deepening and autumnal mixing of the whole water column. The proportion of MOB in the total basal production was highest in the two smallest lakes (24-56 and 13-36%), having the steepest summertime stratification. The proportion MOB in the basal production decreased with lake size being 70% of basal production was by PP. In all studied lakes HB contributed only 10-23% of the total basal production, suggesting that a transfer of allochthonous DOC via HB plays only a modest role for the nutrition of the higher trophic levels.

  20. Assessment of microcystins in lake water and fish (Mugilidae, Liza sp.) in the largest Spanish coastal lake.

    PubMed

    Romo, Susana; Fernández, Francisca; Ouahid, Youness; Barón-Sola, Ángel

    2012-01-01

    Cyanobacteria dominance and cyanotoxin production can become major threats to humans and aquatic life, especially in warm shallow lakes, which are often dominated by cyanobacteria. This study investigates the occurrence and distribution of microcystins (MCYST) in water, cell-bound and in the tissues of the commercial mugilid Liza sp. in the largest, coastal, Spanish Mediterranean lake (Albufera of Valencia). This is the first report concerning microcystin accumulation in tissues of mugilid fish species. Considerable amounts of microcystins were found in the water and seston, which correlated with development of Microcystis aeruginosa populations in the lake. The MCYST concentrations found in Lake Albufera (mean 1.7 and 17 μg/L and maximum 16 and 120 μg/L in water and seston, respectively) exceeded by one to two orders of magnitude the guideline levels proposed by the World Health Organization and were higher than that reported in other lakes of the Mediterranean zone. The presence of MCYST was found in all the fishes studied and accumulated differently among tissues of the commercial species Liza sp. Toxin accumulation in fish tissues showed that although the target organ for MCYST was the liver, high concentrations of microcystins were also found in other analysed tissues (liver>intestine>gills>muscle). Human tolerable daily intake for microcystins is assessed relative to the WHO guidelines, and potential toxicological risks for humans, wildlife and related ecosystems of the lake are discussed.

  1. Evaluation of biochemical urinary stone composition and its relationship to tap water hardness in Qom province, central Iran.

    PubMed

    Moslemi, Mohammad Kazem; Saghafi, Hossein; Joorabchin, Seyed Mohammad Amin

    2011-01-01

    The aim of this study was to evaluate the biochemical stone composition in general population of Qom province, central Iran, and its relationship with high tap water hardness. In a prospective study, from March 2008 to July 2011, biochemical analysis of urinary stones in patients living in Qom province for at least 5 years was performed. Stones were retrieved by spontaneous passage, endoscopic or open surgery, and after extracorporeal shockwave lithotripsy. Demographic findings and the drinking water supply of patients were evaluated and compared with biochemical stone analysis. Stone analysis was performed in 255 patients. The most dominant composition of urinary stones was calcium oxalate (73%), followed by uric acid (24%), ammonium urate (2%), and cystine (1%). The peak incidence of urinary stone was in patients in their forties. Overall male to female ratio was 4.93:1. The dominant stone composition in inhabitants of central Iran, where tap water hardness is high, was calcium oxalate stones. On the basis of this study, biochemical urinary stone composition of Qom does not differ from other regions of Iran with lower water hardness.

  2. Air-Water Exchange of Legacy and Emerging Organic Pollutants across the Great Lakes

    NASA Astrophysics Data System (ADS)

    Lohmann, R.; Ruge, Z.; Khairy, M.; Muir, D.; Helm, P.

    2014-12-01

    Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) are transported to great water bodies via long-range atmospheric transport and released from the surface water as air concentrations continue to diminish. As the largest fresh water bodies in North America, the Great Lakes have both the potential to accumulate and serve as a secondary source of persistent bioaccumulative toxins. OCP and PCB concentrations were sampled at 30+ sites across Lake Superior, Ontario and Erie in the summer of 2011. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine air-water gaseous exchange of OCPs and PCBs. In Lake Superior, surface water and atmospheric concentrations were dominated by α-HCH (average 250 pg/L and 4.2 pg/m3, respectively), followed by HCB (average 17 pg/L and 89 pg/m3, respectively). Air-water exchange varied greatly between sites and individual OCPs, however α-endosulfan was consistently deposited into the surface water (average 19 pg/m2/day). PCBs in the air and water were characterized by penta- and hexachlorobiphenyls with distribution along the coast correlated with proximity to developed areas. Air-water exchange gradients generally yielded net volatilization of PCBs out of Lake Superior. Gaseous concentrations of hexachlorobenzene, dieldrin and chlordanes were significantly higher (p < 0.05) at Lake Erie than Lake Ontario. A multiple linear regression that incorporated meteorological, landuse and population data was used to explain variability in the atmospheric concentrations. Results indicated that landuse (urban and/or cropland) greatly explained the variability in the data. Freely dissolved concentrations of OCPs (water quality guidelines for the protection of human health from the consumption of fish. Spatial distributions of

  3. The role of depth in regulating water quality and fish assemblages in oxbow lakes

    USGS Publications Warehouse

    Goetz, Daniel B.; Miranda, Leandro E.; Kroger, Robert; Andrews, Caroline S.

    2015-01-01

    We evaluated water quality and fish assemblages in deep (> 3.0 m; N = 7) and shallow (< 1.5 m; N = 6) floodplain lakes in the intensively cultivated Yazoo River Basin (Mississippi, USA) using indirect gradient multivariate procedures. Shallow lakes displayed wide diel oxygen fluctuations, some reaching hypoxic/anoxic conditions for extended periods of time, high suspended solids, and extreme water temperatures. Conversely, deeper lakes were represented by higher visibility, stable oxygen levels, and cooler water temperatures. Fish assemblages in shallow lakes were dominated by tolerant, small-bodied fishes and those able to breathe atmospheric oxygen. Deeper lakes had a greater representation of predators and other large-bodied fishes. Our evaluation suggests fish assemblages are reflective of oxbow lakes water quality, which is shaped by depth. Understanding the interactions between depth, water quality, and fish assemblages may facilitate development of effective management plans for improving conditions necessary to sustain diverse fish assemblages in agriculturally dominated basins.

  4. Stable hydrogen and oxygen isotopes of tap water reveal structure of the San Francisco Bay Area's water system and adjustments during a major drought.

    PubMed

    Tipple, Brett J; Jameel, Yusuf; Chau, Thuan H; Mancuso, Christy J; Bowen, Gabriel J; Dufour, Alexis; Chesson, Lesley A; Ehleringer, James R

    2017-08-01

    Water availability and sustainability in the Western United States is a major flashpoint among expanding communities, growing industries, and productive agricultural lands. This issue came to a head in 2015 in the State of California, when the State mandated a 25% reduction in urban water use following a multi-year drought that significantly depleted water resources. Water demands and challenges in supplying water are only expected to intensify as climate perturbations, such as the 2012-2015 California Drought, become more common. As a consequence, there is an increased need to understand linkages between urban centers, water transport and usage, and the impacts of climate change on water resources. To assess if stable hydrogen and oxygen isotope ratios could increase the understanding of these relationships within a megalopolis in the Western United States, we collected and analyzed 723 tap waters across the San Francisco Bay Area during seven collection campaigns spanning 21 months during 2013-2015. The San Francisco Bay Area was selected as it has well-characterized water management strategies and the 2012-2105 California Drought dramatically affected its water resources. Consistent with known water management strategies and previously collected isotope data, we found large spatiotemporal variations in the δ 2 H and δ 18 O values of tap waters within the Bay Area. This is indicative of complex water transport systems and varying municipality-scale management decisions. We observed δ 2 H and δ 18 O values of tap water consistent with waters originating from snowmelt from the Sierra Nevada Mountains, local precipitation, ground water, and partially evaporated reservoir sources. A cluster analysis of the isotope data collected in this study grouped waters from 43 static sampling sites that were associated with specific water utility providers within the San Francisco Bay Area and known management practices. Various management responses to the drought, such as

  5. Remotely Sensing Lake Water Volumes on the Inner Arctic Coastal Plain of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Simpson, C. E.; Arp, C. D.; Jones, B. M.; Hinkel, K. M.; Carroll, M.; Smith, L. C.

    2017-12-01

    Thermokarst lake depth is controlled by the amount of excess ice in near-surface permafrost, with lake depths of about 1 - 3 m in areas of epigenetic permafrost and over 10 m in areas of syngenetic permafrost. An important exception to these general patterns is found on the inner Arctic Coastal Plain (ACP) of northern Alaska, where deep lakes occur in Pleistocene-aged, ground-ice poor sandy terrain. These lakes cover 20% of the currently inactive sand sheet and dune deposit (referred to as the Pleistocene Sand Sea) that comprises approximately 7000 km2 of the ACP. Surrounded by high and eroding bluffs, sand sea lakes lie in natural depressions and are characterized by wide, shallow littoral shelves and central troughs that are typically oriented NNW to SSE and can reach depths greater than 20 m. Despite their unique form and extensive coverage, these lakes have received little prior study and a literature gap remains regarding regional water storage. This research classifies sand sea lakes, estimates individual lake volume, and provides a first quantification of water storage in a region of the lake-dominated ACP. We measured bathymetric profiles in 19 sand sea lakes using a sonar recorder to capture various lake depth gradients. Bathymetric surveys collected by oil industry consultants, lake monitoring programs, and habitat studies serve as additional datasets. These field measured lake depth data points were used to classify Color Infrared Photography, WorldView-2 satellite imagery, and Landsat-OLI satellite imagery to develop a spectral depth-classification algorithm and facilitate the interpolation of the bathymetry for study lakes in the inner ACP. Finally, we integrate the remotely sensed bathymetry and imagery-derived lake surface area to estimate individual and regional-scale lake volume. In addition to the natural function of these lakes in water storage, energy balance, and habitat provision, the need for winter water supply to build ice roads for oil

  6. The Great Lakes Water Balance: Data availability and annotated bibliography of selected references

    USGS Publications Warehouse

    Neff, Brian P.; Killian, Jason R.

    2003-01-01

    Water balance calculations for the Great Lakes have been made for several decades and are a key component of Great Lakes water management. Despite the importance of the water balance, little has been done to inventory and describe the data available for use in water balance calculations. This report provides a catalog and brief description of major datasets that are used to calculate the Great Lakes water balance. Several additional datasets are identified that could be used to calculate parts of the water balance but currently are not being used. Individual offices and web pages that are useful for attaining these datasets are included. Four specific data gaps are also identified. An annotated bibliography of important publications dealing with the Great Lakes water balance is included. The findings of this investigation permit resource managers and scientists to access data more easily, assess shortcomings of current datasets, and identify which data are not currently being utilized in water balance calculations.

  7. Rapid and highly variable warming of lake surface waters around the globe

    USGS Publications Warehouse

    O'Reilly, Catherine; Sharma, Sapna; Gray, Derek; Hampton, Stephanie; Read, Jordan S.; Rowley, Rex J.; Schneider, Philipp; Lenters, John D.; McIntyre, Peter B.; Kraemer, Benjamin M.; Weyhenmeyer, Gesa A.; Straile, Dietmar; Dong, Bo; Adrian, Rita; Allan, Mathew G.; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John L.; Baron, Jill S.; Brookes, Justin D; de Eyto, Elvira; Dokulil, Martin T.; Hamilton, David P.; Havens, Karl; Hetherington, Amy L.; Higgins, Scott N.; Hook, Simon; Izmest'eva, Lyubov R.; Jöhnk, Klaus D.; Kangur, Külli; Kasprzak, Peter; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; Livingstone, David M.; MacIntyre, Sally; May, Linda; Melack, John M.; Mueller-Navara, Doerthe C.; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; North, Ryan P.; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars G.; Rusak, James A.; Salmaso, Nico; Samal, Nihar R.; Schindler, Daniel E.; Schladow, Geoffrey; Schmid, Martin; Schmidt, Silke R.; Silow, Eugene A.; Soylu, M. Evren; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Williamson, Craig E.; Zhang, Guoqing

    2015-01-01

    In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.

  8. Cyanobacteria in lakes on Yungui Plateau, China are assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use

    PubMed Central

    Liao, Jingqiu; Zhao, Lei; Cao, Xiaofeng; Sun, Jinhua; Gao, Zhe; Wang, Jie; Jiang, Dalin; Fan, Hao; Huang, Yi

    2016-01-01

    Plateau lakes are important ecosystems with diverse ecological functions. Cyanobacteria play a key role in plateau lakes as primary producers. However, they are threatening when dense blooms occur. Identifying cyanobacteiral biogeography and the mechanism of assembly processes shaping the distribution of cyanobacteria in plateau lakes is critical for understanding cyanobacterial ecology and applying it to lake management. In the present study, the biogeographic pattern and importance of neutral and niche processes in assembly of cyanobacteria in 21 lakes on Yungui Plateau, China were examined. Results showed that cyanobacteria exhibit unique biogeographic pattern, and most of them have a narrow habitat preference in plateau lakes. They were assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use, which explained 62.4% of the biological variation. Neutral processes were not at play. Water physicochemical property (key variables - dissolved oxygen, salinity, trophic status and pH) was the most dominant driver shaping its unique biogeographic pattern. Watershed land-use especially urban land, water body and agricultural land also exhibited a strong impact on cyanobacterial distribution, followed by lake morphology. As most of the cyanobacteiral genus detected in these plateau lakes were potential toxin-producers, this study indicated that in order to protect waters from toxic-bloom in the future, reducing nutrient loading and land-use practices are two practical approaches in plateau lake management. PMID:27819304

  9. Cyanobacteria in lakes on Yungui Plateau, China are assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use

    NASA Astrophysics Data System (ADS)

    Liao, Jingqiu; Zhao, Lei; Cao, Xiaofeng; Sun, Jinhua; Gao, Zhe; Wang, Jie; Jiang, Dalin; Fan, Hao; Huang, Yi

    2016-11-01

    Plateau lakes are important ecosystems with diverse ecological functions. Cyanobacteria play a key role in plateau lakes as primary producers. However, they are threatening when dense blooms occur. Identifying cyanobacteiral biogeography and the mechanism of assembly processes shaping the distribution of cyanobacteria in plateau lakes is critical for understanding cyanobacterial ecology and applying it to lake management. In the present study, the biogeographic pattern and importance of neutral and niche processes in assembly of cyanobacteria in 21 lakes on Yungui Plateau, China were examined. Results showed that cyanobacteria exhibit unique biogeographic pattern, and most of them have a narrow habitat preference in plateau lakes. They were assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use, which explained 62.4% of the biological variation. Neutral processes were not at play. Water physicochemical property (key variables - dissolved oxygen, salinity, trophic status and pH) was the most dominant driver shaping its unique biogeographic pattern. Watershed land-use especially urban land, water body and agricultural land also exhibited a strong impact on cyanobacterial distribution, followed by lake morphology. As most of the cyanobacteiral genus detected in these plateau lakes were potential toxin-producers, this study indicated that in order to protect waters from toxic-bloom in the future, reducing nutrient loading and land-use practices are two practical approaches in plateau lake management.

  10. Cyanobacteria in lakes on Yungui Plateau, China are assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use.

    PubMed

    Liao, Jingqiu; Zhao, Lei; Cao, Xiaofeng; Sun, Jinhua; Gao, Zhe; Wang, Jie; Jiang, Dalin; Fan, Hao; Huang, Yi

    2016-11-07

    Plateau lakes are important ecosystems with diverse ecological functions. Cyanobacteria play a key role in plateau lakes as primary producers. However, they are threatening when dense blooms occur. Identifying cyanobacteiral biogeography and the mechanism of assembly processes shaping the distribution of cyanobacteria in plateau lakes is critical for understanding cyanobacterial ecology and applying it to lake management. In the present study, the biogeographic pattern and importance of neutral and niche processes in assembly of cyanobacteria in 21 lakes on Yungui Plateau, China were examined. Results showed that cyanobacteria exhibit unique biogeographic pattern, and most of them have a narrow habitat preference in plateau lakes. They were assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use, which explained 62.4% of the biological variation. Neutral processes were not at play. Water physicochemical property (key variables - dissolved oxygen, salinity, trophic status and pH) was the most dominant driver shaping its unique biogeographic pattern. Watershed land-use especially urban land, water body and agricultural land also exhibited a strong impact on cyanobacterial distribution, followed by lake morphology. As most of the cyanobacteiral genus detected in these plateau lakes were potential toxin-producers, this study indicated that in order to protect waters from toxic-bloom in the future, reducing nutrient loading and land-use practices are two practical approaches in plateau lake management.

  11. Lake Surface Water Temperature of European Lakes retrieved from AVHRR Data - Time Series and Quality Assessment

    NASA Astrophysics Data System (ADS)

    Wunderle, S.; Lieberherr, G.; Riffler, M.

    2016-12-01

    Data analysis of the recent years showed an increase of lake surface water temperature for many lakes around the world. But due to sparse in-situ measurements, which are often not well documented, only satellite data can provide the needed information of the last decades. The importance of lakes for climate research was also highlighted by the Global Climate Observing System (GCOS) defining lakes as Essential Climate Variables (ECVs). Within the frame of a research project funded by the Swiss National Science Foundation a procedure was developed to retrieve lake surface water temperature with high accuracy based on our archived AVHRR data at the University of Bern, Switzerland. The data archive starts in 1985 and is continuously filled with NOAA-/MetOp-AVHRR data received by our antenna resulting in a time series of more than 30 years (WMO definition of a climate period). The data set covering Europe is also used by other teams for climate related studies resulting in improved pre-processing to guarantee precise calibration and geocoding. The first part of our presentation will be dedicated to the quality of the LSWT retrieval comparing various in-situ measurements from lakes in Switzerland with varying sizes (150km2 - 9km2). The quality of the used split-window approach is sensitive to the derived split-window coefficients. The influence of water vapor, view angle, temporal and spatial validity and day vs. night data will be shown. In addition, some information will be presented about the influence of topography and climatic regions (e.g. Scandinavia vs. Greece) on the quality of the LSWT product. Based on these findings compiling time series for different lakes in Europe will be the focus of the second part of our presentation with details of the applied quality assessment to avoid erroneous signals. Hence, some information is given about hierarchical quality checks which are needed to guarantee a dataset without artefacts. Finally, some results of time series

  12. Water-resources appraisal of the Lake Traverse Indian Reservation in South Dakota

    USGS Publications Warehouse

    Lawrence, S.J.

    1989-01-01

    The water resources within the Lake Traverse Indian Reservation consist of streams, lakes, wetlands, and groundwater stored in alluvium and glacial outwash deposits. Streamflow may cease during dry periods and during the winter. Lakes and ponds within the reservation are found predominantly within an internally drained basin. Dissolved-solids concentrations in the lakes generally range from 500 to 10,000 mg/L. Dissolved-solids concentrations in the streams generally ranging from 500 to 1 ,000 mg/L. However, nutrient concentrations tend to be larger than natural background levels in both lakes and streams and indicate unidentified sources of nutrients that effect the quality of water. Major development of surface-water resources is hindered by the lack of storage capacity within the numerous lakes, the lack of sustained streamflow, and the lack of suitable sites for construction or reservoirs. Water within the Coteau des Prairies, a glacial upland, occurs in outwash deposits. The sand and gravel deposits in the Coteau may be as thick as 70 ft. The quality of water from these aquifers generally is suitable for most uses, with calcium, magnesium, and bicarbonate the dominant ions. Water in sand and gravel deposits within the Red River and Minnesota River lowlands tends to have larger concentrations of dissolved solids than the sand and gravel deposits in the Coteau des Prairies. The quality of water in these deposits tends to be more mineralized than water in the sand and gravel deposits in the Coteau des Prairies. The regional flow of groundwater generally is to the east towards the Minnesota and Red River basins and west in the Coteau des Prairies. (USGS)

  13. The Water Level Fall of Lake Megali Prespa (N Greece): an Indicator of Regional Water Stress Driven by Climate Change and Amplified by Water Extraction?

    NASA Astrophysics Data System (ADS)

    van der Schriek, Tim; Giannakopoulos, Christos

    2014-05-01

    The Mediterranean stands out globally due to its sensitivity to (future) climate change, with future projections predicting an increase in excessive drought events and declining rainfall. Regional freshwater ecosystems are particularly threatened: precipitation decreases, while extreme droughts increase and human impacts intensify (e.g. water extraction, drainage, pollution and dam-building). Many Mediterranean lake-wetland systems have shrunk or disappeared over the past two decades. Protecting the remaining systems is extremely important for supporting global biodiversity and for ensuring sustainable water availability. This protection should be based on a clear understanding of lake-wetland hydrological responses to natural and human-induced changes, which is currently lacking in many parts of the Mediterranean. The interconnected Prespa-Ohrid Lake system is a global hotspot of biodiversity and endemism. The unprecedented fall in water level (~8m) of Lake Megali Prespa threatens this system, but causes remain debated. Modelling suggests that the S Balkan will experience rainfall and runoff decreases of ~30% by 2050. However, projections revealing the potential impact of these changes on future lake level are unavailable as lake regime is not understood. A further drop in lake level may have serious consequences. The Prespa Lakes contribute ~25% of the total inflow into Lake Ohrid through underground karst channels; falling lake levels decrease this discharge. Lake Ohrid, in turn, feeds the Drim River. This entire catchment may therefore be affected by falling lake levels; its water resources are of great importance for Greece, Albania, FYROM and Montenegro (e.g. tourism, agriculture, hydro-energy, urban & industrial use). This new work proves that annual water level fluctuations of Lake Megali Prespa are predominantly related to precipitation during the first 7 months (Oct-Apr) of the hydrological year (Oct-Sep). Lake level is very sensitive to regional and

  14. Using isotopes to quantify evaporation and non-stationary transit times distributions in lake water budgets

    NASA Astrophysics Data System (ADS)

    Smith, A. A.; Tetzlaff, D.; Soulsby, C.

    2017-12-01

    Evaporative fluxes from northern lakes are essential components of catchment water balances, providing large supplies of water to the atmosphere, and affecting downstream water availability. However, measurement of lake evaporation is difficult in many catchments due to remoteness and inaccessibility. Evaporative flux may also influence mean transit times of lakes and catchments, identified through water- and tracer mass-balance. We combined stable water isotopes (δ2H and δ18O), transit, and residence time distributions in a non-stationary transit time model to estimate the evaporative flux from two lakes in the Scottish Highlands. The lakes were in close proximity to each other ( 2km), shallow (mean depth, 1.5 m) with one large (0.88km2) and one small (0.4km2). Model calibration used measurements of precipitation, air temperature, water level, and isotopic stream compositions of lake inflow and outflows. Evaporation flux was identified using lake fractionation of δ2H and δ18O. Mixing patterns of the lakes and their respective outlet isotopic compositions were accounted for by comparing three probability distributions for discharge and evaporation. We found that the evaporation flux was strongly influenced by these discharge and evaporation distributions. Decreased mixing within the lake resulted in greater evaporation fluxes. One of the three distributions yielded similar mean daily evaporation and uncertainty for both lakes (max 5mm/day), while evaporation using the other two distributions was inconsistent between the lakes. Importantly, our approach also estimated distributions of evaporation age, which were significantly different between the lakes, reflecting a combination of inflow stream magnitude and the mixing regimes. The mean evaporation flux age of the large lake was 160 days, and 14 days for the small lake. Our integrated approach of stable isotopes, time variant transit time distributions has shown to be a useful tool for quantifying evaporative

  15. Microcystins from tap water could be a risk factor for liver and colorectal cancer: a risk intensified by global change.

    PubMed

    Martínez Hernández, Juan; López-Rodas, V; Costas, E

    2009-05-01

    An increasing number of people drink water from fresh water supply reservoirs. However, with the global change a lot of reservoirs become eutrophic, which facilitates the occurrence of toxin-producing cyanobacterial blooms. Microcystins (powerful hepatotoxic water-soluble heptapeptides) are the most important cyanobacterial toxins affecting humans. High doses of microcystins produce hepatic necrosis. Consequently, WHO Guidelines limit microcystins to 1 ppb in drinking waters. However, microcystins are present frequently in tap water at lower doses. Here, we hypothesized that chronic consume of tap water containing low doses of microcystins may be a risk factor for liver and colorectal cancer. Two kinds of evidences support this hypothesis. On one hand some epidemiological data (mainly in China). On the other hand, the molecular mechanism of microcystins toxicity (inhibition of protein phosphatases PP1 and PP2) is just like okadaic acid (a potent tumor promoter). Cancer risk from drinking water is certainly less than smoking, occupational exposures or some foods. But it is significant and with a rapid increase of toxic cyanobacterial blooms by eutrophycation, become more frequent.

  16. Triple Isotope Water Measurements of Lake Untersee Ice using Off-Axis ICOS

    NASA Astrophysics Data System (ADS)

    Berman, E. S.; Huang, Y. W.; Andersen, D. T.; Gupta, M.; McKay, C. P.

    2015-12-01

    Lake Untersee (71.348°S, 13.458°E) is the largest surface freshwater lake in the interior of the Gruber Mountains of central Queen Maud Land in East Antarctica. The lake is permanently covered with ice, is partly bounded by glacier ice and has a mean annual air temperature of -10°C. In contrast to other Antarctic lakes the dominating physical process controlling ice-cover dynamics is low summer temperatures and high wind speeds resulting in sublimation rather than melting as the main mass-loss process. The ice-cover of the lake is composed of lake-water ice formed during freeze-up and rafted glacial ice derived from the Anuchin Glacier. The mix of these two fractions impacts the energy balance of the lake, which directly affects ice-cover thickness. Ice-cover is important if one is to understand the physical, chemical, and biological linkages within these unique, physically driven ecosystems. We have analyzed δ2H, δ18O, and δ17O from samples of lake and glacier ice collected at Lake Untersee in Dec 2014. Using these data we seek to answer two specific questions: Are we able to determine the origin and history of the lake ice, discriminating between rafted glacial ice and lake water? Can isotopic gradients in the surface ice indicate the ablation (sublimation) rate of the surface ice? The triple isotope water analyzer developed by Los Gatos Research (LGR 912-0032) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures δ2H, δ18O, and δ17O from water, as well as the calculated d-excess and 17O-excess. The laboratory precision in high performance mode for both δ17O and δ18O is 0.03 ‰, and for δ2H is 0.2 ‰. Methodology and isotope data from Lake Untersee samples are presented. Figure: Ice samples were collected across Lake Untersee from both glacial and lake ice regions for this study.

  17. Water resources of the Lake Erie shore region in Pennsylvania

    USGS Publications Warehouse

    Mangan, John William; Van Tuyl, Donald W.; White, Walter F.

    1952-01-01

    An abundant supply of water is available to the Lake Erie Shore region in Pennsylvania. Lake i£rie furnishes an almost inexhaustible supply of water of satisfactory chemical quality. Small quantities of water are available from small streams in the area and from the ground. A satisfactory water supply is one of the factors that affect the economic growth of a region. Cities and towns must have adequate amounts of pure water for human consumption. Industries must have suitable water ih sufficient quantities for all purposes. In order to assure. success and economy, the development of water resources should be based on adequate knowledge of the quantity and quality of the water. As a nation, we can not afford to run the risk of dissipating our resources, especially in times of national emergency, by building projects that are not founded on sound engineering and adequate water-resources information. The purpose of this report is to summarize and interpret all available water-resources information for the Lake Erie Shore region in Pennsylvania. The report will be useful for initial guidance in the location or expansion of water facilities for defense and nondefense industries and the municipalities upon which they are dependent. It will also be useful in evaluating the adequacy of the Geological Survey's part of the basic research necessary to plan the orderly development of the water resources of the Lake Erie Shore region. Most of the data contained inthis report have been obtained'by the U. S. Geological Survey in cooperation with the Pennsylvania Department of Forests and Waters, the Pennsylvania Department of Internal Affairs, and the Pennsylvania State Planning Board, Department of Commerce. The Pennsylv~nia Department of Health furnished information on water pollution. The report was prepared in the Water Resources Division of the U. S. Geological Survey b:y John W. Mangan (Surface Water). Donald W. VanTuyl (Ground Water). and Walter F. White, Jr. (Quality of

  18. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity

    USGS Publications Warehouse

    Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.

    2016-01-01

    Climate change is rapidly warming aquatic ecosystems including lakes and reservoirs. However, variability in lake characteristics can modulate how lakes respond to climate. Water clarity is especially important both because it influences the depth range over which heat is absorbed, and because it is changing in many lakes. Here, we show that simulated long-term water clarity trends influence how both surface and bottom water temperatures of lakes and reservoirs respond to climate change. Clarity changes can either amplify or suppress climate-induced warming, depending on lake depth and the direction of clarity change. Using a process-based model to simulate 1894 north temperate lakes from 1979 to 2012, we show that a scenario of decreasing clarity at a conservative yet widely observed rate of 0.92% yr−1 warmed surface waters and cooled bottom waters at rates comparable in magnitude to climate-induced warming. For lakes deeper than 6.5 m, decreasing clarity was sufficient to fully offset the effects of climate-induced warming on median whole-lake mean temperatures. Conversely, a scenario increasing clarity at the same rate cooled surface waters and warmed bottom waters relative to baseline warming rates. Furthermore, in 43% of lakes, increasing clarity more than doubled baseline bottom temperature warming rates. Long-term empirical observations of water temperature in lakes with and without clarity trends support these simulation results. Together, these results demonstrate that water clarity trends may be as important as rising air temperatures in determining how waterbodies respond to climate change.

  19. Polarization Lidar for Shallow Water Supraglacial Lake Depth Measurement

    NASA Astrophysics Data System (ADS)

    Mitchell, S.; Adler, J.; Thayer, J. P.; Hayman, M.

    2010-12-01

    A bathymetric, polarization lidar system transmitting at 532 nanometers and using a single photomultiplier tube is developed for applications of shallow water depth measurement, in particular those often found in supraglacial lakes of the ablation zone on the Greenland Ice Sheet. The technique exploits polarization attributes of the probed water body to isolate surface and floor returns, enabling constant fraction detection schemes to determine depth. The minimum resolvable water depth is no longer dictated by the system’s laser or detector pulse width and can achieve better than an order of magnitude improvement over current water depth determination techniques. In laboratory tests, a Nd:YAG microchip laser coupled with polarization optics, a photomultiplier tube, a constant fraction discriminator and a time to digital converter are used to target various water depths, using ice as the floor to simulate a supraglacial lake. Measurement of 1 centimeter water depths with an uncertainty of ±3 millimeters are demonstrated using the technique. This novel technique enables new approaches to designing laser bathymetry systems for shallow depth determination from remote platforms while not compromising deep water depth measurement, and will support comprehensive hydrodynamic studies of supraglacial lakes. Additionally, the compact size and low weight (<15 kg) of the field system currently in development presents opportunities for use in small unmanned aircraft systems (UAS) for large areal surveys of the ablation zone.

  20. Water sampling using a drone at Yugama crater lake, Kusatsu-Shirane volcano, Japan

    NASA Astrophysics Data System (ADS)

    Terada, Akihiko; Morita, Yuichi; Hashimoto, Takeshi; Mori, Toshiya; Ohba, Takeshi; Yaguchi, Muga; Kanda, Wataru

    2018-04-01

    Remote sampling of water from Yugama crater lake at Kusatsu-Shirane volcano, Japan, was performed using a drone. Despite the high altitude of over 2000 m above sea level, our simple method was successful in retrieving a 250 mL sample of lake water. The procedure presented here is easy for any researcher to follow who operates a drone without additional special apparatus. We compare the lake water sampled by drone with that sampled by hand at a site where regular samplings have previously been carried out. Chemical concentrations and stable isotope ratios are largely consistent between the two techniques. As the drone can fly automatically with the aid of navigation by Global Navigation Satellite System (GNSS), it is possible to repeatedly sample lake water from the same location, even when entry to Yugama crater lake is restricted due to the risk of eruption.[Figure not available: see fulltext.

  1. Projecting the impact of regional land-use change and water management policies on lake water quality: an application to periurban lakes and reservoirs.

    PubMed

    Catherine, Arnaud; Mouillot, David; Maloufi, Selma; Troussellier, Marc; Bernard, Cécile

    2013-01-01

    As the human population grows, the demand for living space and supplies of resources also increases, which may induce rapid change in land-use/land-cover (LULC) and associated pressures exerted on aquatic habitats. We propose a new approach to forecast the impact of regional land cover change and water management policies (i.e., targets in nutrient loads reduction) on lake and reservoir water eutrophication status using a model that requires minimal parameterisation compared with alternative methods. This approach was applied to a set of 48 periurban lakes located in the Ile de France region (IDF, France) to simulate catchment-scale management scenarios. Model outputs were subsequently compared to governmental agencies' 2030 forecasts. Our model indicated that the efforts made to reduce pressure in the catchment of seepage lakes might be expected to be proportional to the gain that might be obtained, whereas drainage lakes will display little improvement until a critical level of pressure reduction is reached. The model also indicated that remediation measures, as currently planned by governmental agencies, might only have a marginal impact on improving the eutrophication status of lakes and reservoirs within the IDF region. Despite the commitment to appropriately managing the water resources in many countries, prospective tools to evaluate the potential impacts of global change on freshwater ecosystems integrity at medium to large spatial scales are lacking. This study proposes a new approach to investigate the impact of region-scale human-driven changes on lake and reservoir ecological status and could be implemented elsewhere with limited parameterisation. Issues are discussed that relate to model uncertainty and to its relevance as a tool applied to decision-making.

  2. Projecting the Impact of Regional Land-Use Change and Water Management Policies on Lake Water Quality: An Application to Periurban Lakes and Reservoirs

    PubMed Central

    Catherine, Arnaud; Mouillot, David; Maloufi, Selma; Troussellier, Marc; Bernard, Cécile

    2013-01-01

    As the human population grows, the demand for living space and supplies of resources also increases, which may induce rapid change in land-use/land-cover (LULC) and associated pressures exerted on aquatic habitats. We propose a new approach to forecast the impact of regional land cover change and water management policies (i.e., targets in nutrient loads reduction) on lake and reservoir water eutrophication status using a model that requires minimal parameterisation compared with alternative methods. This approach was applied to a set of 48 periurban lakes located in the Ile de France region (IDF, France) to simulate catchment-scale management scenarios. Model outputs were subsequently compared to governmental agencies’ 2030 forecasts. Our model indicated that the efforts made to reduce pressure in the catchment of seepage lakes might be expected to be proportional to the gain that might be obtained, whereas drainage lakes will display little improvement until a critical level of pressure reduction is reached. The model also indicated that remediation measures, as currently planned by governmental agencies, might only have a marginal impact on improving the eutrophication status of lakes and reservoirs within the IDF region. Despite the commitment to appropriately managing the water resources in many countries, prospective tools to evaluate the potential impacts of global change on freshwater ecosystems integrity at medium to large spatial scales are lacking. This study proposes a new approach to investigate the impact of region-scale human-driven changes on lake and reservoir ecological status and could be implemented elsewhere with limited parameterisation. Issues are discussed that relate to model uncertainty and to its relevance as a tool applied to decision-making. PMID:23991066

  3. Monitoring and modeling water temperature and trophic status of a shallow Mediterranean lake

    NASA Astrophysics Data System (ADS)

    Giadrossich, Filippo; Bueche, Thomas; Pulina, Silvia; Marrosu, Roberto; Padedda, Bachisio Mario; Mariani, Maria Antonietta; Vetter, Mark; Cohen, Denis; Pirastru, Mario; Niedda, Marcello; Lugliè, Antonella

    2017-04-01

    Lakes are sensitive to changes in climate and human activities. Over the last few decades, Mediterranean lakes have experienced various problems due to the current climate change (drought, flood, warming, salt accumulation, water quality changes, etc.), often amplified by water use, intensification of land use activities, and pollution. The overall impact of these changes on water resources is still an open question. In this study we monitor the trophic status and the dynamics of water temperature of Lake Baratz, the only natural lake in Sardinia, Italy, characterized by high salinity and shallow depth. We extend the research carried out in the past 8 years by integrating new physical, chemical and biological data using a multidisciplinary approach that combines hydrological and biological dynamics. In particular, the lake water balance and the thermal and hydrochemical regime are studied with a lake dynamic model (the General Lake Model or GLM) which combine the energy budget method for estimating lake evaporation, and a physically-based rainfall-runoff simulator for estimating lake inflow, calibrated with measurements at the cross section of the main inlet stream. The trophic state of the lake was evaluated applying the OCDE Probability Distribution Diagrams method, which requires nutrient concentrations in the lake (total phosphorus), phytoplankton chlorophyll a and Secchi disk transparency data. We collected field data from a raft station and a land station, measuring net solar radiation, air temperature and relative humidity, precipitation, wind velocity, atmospheric pressure, and temperature from thermistors submerged in the uppermost three centimeters of water and beneath the lake surface at depths of 1, 2, 3, 4, 5, 6, and 8 m. Samples for nutrients and chlorophyll a analyses were collected at the same above mentioned depths close to the raft station using a Niskin bottle. Temperature, salinity, pH, and dissolved oxygen were measured using a multi

  4. Hydrological and chemical estimates of the water balance of a closed-basin lake in north central Minnesota

    USGS Publications Warehouse

    LaBaugh, James W.; Winter, Thomas C.; Rosenberry, Donald O.; Schuster, Paul F.; Reddy, Michael M.; Aiken, George R.

    1997-01-01

    Chemical mass balances for sodium, magnesium, chloride, dissolved organic carbon, and oxygen 18 were used to estimate groundwater seepage to and from Williams Lake, Minnesota, over a 15-month period, from April 1991 through June 1992. Groundwater seepage to the lake and seepage from the lake to groundwater were determined independently using a flow net approach using data from water table wells installed as part of the study. Hydrogeological analysis indicated groundwater seepage to the lake accounted for 74% of annual water input to the lake; the remainder came from atmospheric precipitation, as determined from a gage in the watershed and from nearby National Weather Service gages. Seepage from the lake accounted for 69% of annual water losses from the lake; the remainder was removed by evaporation, as determined by the energy budget method. Calculated annual water loss exceeded calculated annual water gain, and this imbalance was double the value of the independently measured decrease in lake volume. Seepage to the lake determined from oxygen 18 was larger (79% of annual water input) than that determined from the flow net approach and made the difference between calculated annual water gain and loss consistent with the independently measured decrease in lake volume. Although the net difference between volume of seepage to the lake and volume of seepage from the lake was 1% of average lake volume, movement of water into and out of the lake by seepage represented an annual exchange of groundwater with the lake equal to 26–27% of lake volume. Estimates of seepage to the lake from sodium, magnesium, chloride, and dissolved organic carbon did not agree with the values determined from flow net approach or oxygen 18. These results indicated the importance of using a combination of hydrogeological and chemical approaches to define volume of seepage to and from Williams Lake and identify uncertainties in chemical fluxes.

  5. Water quality monitoring: A comparative case study of municipal and Curtin Sarawak's lake samples

    NASA Astrophysics Data System (ADS)

    Anand Kumar, A.; Jaison, J.; Prabakaran, K.; Nagarajan, R.; Chan, Y. S.

    2016-03-01

    In this study, particle size distribution and zeta potential of the suspended particles in municipal water and lake surface water of Curtin Sarawak's lake were compared and the samples were analysed using dynamic light scattering method. High concentration of suspended particles affects the water quality as well as suppresses the aquatic photosynthetic systems. A new approach has been carried out in the current work to determine the particle size distribution and zeta potential of the suspended particles present in the water samples. The results for the lake samples showed that the particle size ranges from 180nm to 1345nm and the zeta potential values ranges from -8.58 mV to -26.1 mV. High zeta potential value was observed in the surface water samples of Curtin Sarawak's lake compared to the municipal water. The zeta potential values represent that the suspended particles are stable and chances of agglomeration is lower in lake water samples. Moreover, the effects of physico-chemical parameters on zeta potential of the water samples were also discussed.

  6. What happens to near-shore habitat when lake and reservoir water levels decline?

    EPA Science Inventory

    Water management and drought can lead to increased fluctuation and declines in lake and reservoir water levels. These changes can affect near-shore physical habitat and the biotic assemblages that depend upon it. Structural complexity at the land-water interface of lakes promote...

  7. Monitoring of Water-Level Fluctuation of Lake Nasser Using Altimetry Satellite Data

    NASA Astrophysics Data System (ADS)

    El-Shirbeny, Mohammed A.; Abutaleb, Khaled A.

    2018-05-01

    Apart from the Renaissance Dam and other constructed dams on the River Nile tributaries, Egypt is classified globally as a state of scarce water. Egypt's water resources are very limited and do not contribute a significant amount to its water share except the River Nile (55.5 billion m3/year). While the number of population increases every year, putting more stress on these limited resources. This study aims to use remote-sensing data to assess the change in surface area and water-level variation in Lake Nasser using remote-sensing data from Landsat-8 and altimetry data. In addition, it investigates the use of thermal data from Landsat-8 to calculate water loss based on evaporation from Lake Nasser. The eight Landsat-8 satellite images were used to study the change in surface area of Lake Nasser representing winter (January) and summer (June/July) seasons in two consecutive years (2015 and 2016). Time series analyses for 10-day temporal resolution water-level data from Jason-2/OSTM and Jason-3 altimetry was carried out to investigate water-level trends over the long term (1993 and 2016) and short term (2015-2016) in correspondence with the change of the surface area. Results indicated a shrink in the lake surface area in 2016 of approximately 14% compared to the 2015 area. In addition, the evaporation rate in the lake is very high causing a loss of approximately 20% of the total water share from the river Nile.

  8. Lake Diefenbaker: Water Quality Assessment and Modeling for Management under Environmental Change

    NASA Astrophysics Data System (ADS)

    Sereda, J.; Wheater, H. S.; Hudson, J.; Doig, L.; Liber, K.; Jones, P.; Giesy, J.; Bharadwaj, L.

    2011-12-01

    Preliminary results are presented for a comprehensive inter-disciplinary study on Lake Diefenbaker initiated by the Global Institute for Water Security to understand the physical and biogeochemical processes affecting water quality under climate change and their policy implications. Lake Diefenbaker is a large reservoir (surface area ~500km2 and Zmean ~33m) located in Southern Saskatchewan, Canada and is a critically-important water resource for Saskatchewan. It receives nearly all of its flow from the South Saskatchewan River, which flows through some of the most urbanized and intense agricultural lands of southern Alberta. As a result these waters contain high levels of nutrients [nitrogen (N) and phosphorus (P)] along with a variety of chemical contaminants characteristic of anthropogenic activity. In addition, riparian and in-lake activities provide local sources of nutrients, from domestic sewage, agriculture and fish farming. The South Saskatchewan River has been identified by the World Wildlife Fund (2009) as Canada's most threatened river in terms of environmental flow. Lake Diefenbaker has numerous large deep embayments (depth >20m) and an annual water level fluctuation of ~6m. A deep thermocline (~25m) forms infrequently. Stratification does not occur throughout the lake. Anecdotal information suggests that the frequency and severity of algal blooms are increasing; although blooms have been sporadic and localized. This localized eutrophication may be related to local stratification patterns, point source nutrient loading, and/or internal lake processes (i.e., internal nutrient loading). A paleolimnological reconstruction has begun to assess historical nutrient and contaminant loading to Lake Diefenbaker and hence the trajectory of water quality in the lake. Major point sources and diffuse sources of N and P are also under investigation. In addition, the type (N versus P) and degree of nutrient limitation of bacteria and algae are being assessed (spatially

  9. Cluster analysis of water-quality data for Lake Sakakawea, Audubon Lake, and McClusky Canal, central North Dakota, 1990-2003

    USGS Publications Warehouse

    Ryberg, Karen R.

    2006-01-01

    As a result of the Dakota Water Resources Act of 2000, the Bureau of Reclamation, U.S. Department of the Interior, identified eight water-supply alternatives (including a no-action alternative) to meet future water needs in portions of the Red River of the North (Red River) Basin. Of those alternatives, four include the interbasin transfer of water from the Missouri River Basin to the Red River Basin. Three of the interbasin transfer alternatives would use the McClusky Canal, located in central North Dakota, to transport the water. Therefore, the water quality of the McClusky Canal and the sources of its water, Lake Sakakawea and Audubon Lake, is of interest to water-quality stakeholders. The Bureau of Reclamation collected water-quality samples at 23 sites on Lake Sakakawea, Audubon Lake, and the McClusky Canal system from 1990 through 2003. Physical properties and water-quality constituents from these samples were summarized and analyzed by the U.S. Geological Survey using hierarchical agglomerative cluster analysis (HACA). HACA separated the samples into related clusters, or groups. These groups were examined for statistical significance and relation to structure of the McClusky Canal system. Statistically, the sample groupings found using HACA were significantly different from each other and appear to result from spatial and temporal water-quality differences corresponding with different sections of the canal and different operational conditions. Future operational changes of the canal system may justify additional water-quality sampling to characterize possible water-quality changes.

  10. Coastal Water Quality Modeling in Tidal Lake: Revisited with Groundwater Intrusion

    NASA Astrophysics Data System (ADS)

    Kim, C.

    2016-12-01

    A new method for predicting the temporal and spatial variation of water quality, with accounting for a groundwater effect, has been proposed and applied to a water body partially connected to macro-tidal coastal waters in Korea. The method consists of direct measurement of environmental parameters, and it indirectly incorporates a nutrients budget analysis to estimate the submarine groundwater fluxes. Three-dimensional numerical modeling of water quality has been used with the directly collected data and the indirectly estimated groundwater fluxes. The applied area is Saemangeum tidal lake that is enclosed by 33km-long sea dyke with tidal openings at two water gates. Many investigations of groundwater impact reveal that 10 50% of nutrient loading in coastal waters comes from submarine groundwater, particularly in the macro-tidal flat, as in the west coast of Korea. Long-term monitoring of coastal water quality signals the possibility of groundwater influence on salinity reversal and on the excess mass outbalancing the normal budget in Saemangeum tidal lake. In the present study, we analyze the observed data to examine the influence of submarine groundwater, and then a box model is demonstrated for quantifying the influx and efflux. A three-dimensional numerical model has been applied to reproduce the process of groundwater dispersal and its effect on the water quality of Saemangeum tidal lake. The results show that groundwater influx during the summer monsoon then contributes significantly, 20% more than during dry season, to water quality in the tidal lake.

  11. Surface water and climatologic data, Salt Lake County, Utah, water year 1981, with selected data for water years 1980 and 1982

    USGS Publications Warehouse

    McCormack, H.F.; Christensen, R.C.; Stephens, D.W.; Pyper, G.E.; Weigel, J.F.; Conroy, L.S.

    1983-01-01

    This report contains precipitation, atmospheric-deposition, water- discharge and water-quality data collected in Salt Lake County as part of two investigations by the U.S. Geological Survey. The purpose of this report is to release data collected mainly during the 1981 water year. Selected data collected during the 1980 water year not previously published or revised and the 1982 water year also are included in this report.The first investigation, which was carried out from September 1979 to August 1982, was an urban-runoff study done in cooperation with the Salt Lake County Division of Flood Control and Water Quality. The objectives of the urban-runoff study were to identify the impact of urban runoff on the quantity and quality of the water in the canals east of the Jordan River and on the major tributaries to the river.The second investigation, which was carried out from December 1979 to September 1983, is a study of water-quality problems in the Jordan River. The study was done primarily to provide information about toxic substances, dissolved-oxygen depletion, sanitary quality, and turbidity and suspended sediment in the Jordan River. It also was funded in part by the Salt Lake County Division of Flood Control and Water Quality.Several Salt Lake County employees assisted in the collection of water- quality samples from storm runoff. Of those employees, Lee R. Armstrong, Gilbert H. Heal, Steven J. Mitckes, and Ben Santistevan worked on a daily basis with the authors and made a significant contribution in the collection of the data contained in this report. Organizations that furnished data are acknowledged in the station descriptions in tables 1 and 4.Information for previously published water-discharge, water-quality, atmospheric-deposition, and precipitation data for Salt Lake County are reported by Pyper and others (1981); Dustin (1977); Hely and others (1971) and references that they cited; and Feth and others (1964). Additional water- discharge and water

  12. Bacterial Community in Water and Air of Two Sub-Alpine Lakes in Taiwan.

    PubMed

    Tandon, Kshitij; Yang, Shan-Hua; Wan, Min-Tao; Yang, Chia-Chin; Baatar, Bayanmunkh; Chiu, Chih-Yu; Tsai, Jeng-Wei; Liu, Wen-Cheng; Tang, Sen-Lin

    2018-04-21

    Very few studies have attempted to profile the microbial communities in the air above freshwater bodies, such as lakes, even though freshwater sources are an important part of aquatic ecosystems and airborne bacteria are the most dispersible microorganisms on earth. In the present study, we investigated microbial communities in the waters of two high mountain sub-alpine montane lakes-located 21 km apart and with disparate trophic characteristics-and the air above them. Although bacteria in the lakes had locational differences, their community compositions remained constant over time. However, airborne bacterial communities were diverse and displayed spatial and temporal variance. Proteobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria were dominant in both lakes, with different relative abundances between lakes, and Parcubacteria (OD1) was dominant in air samples for all sampling times, except two. We also identified certain shared taxa between lake water and the air above it. The results obtained on these communities in the present study provide putative candidates to study how airborne communities shape lake water bacterial compositions and vice versa.

  13. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    NASA Astrophysics Data System (ADS)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage

  14. The influence of TAP1 and TAP2 gene polymorphisms on TAP function and its inhibition by viral immune evasion proteins.

    PubMed

    Praest, P; Luteijn, R D; Brak-Boer, I G J; Lanfermeijer, J; Hoelen, H; Ijgosse, L; Costa, A I; Gorham, R D; Lebbink, R J; Wiertz, E J H J

    2018-06-04

    Herpesviruses encode numerous immune evasion molecules that interfere with the immune system, particularly with certain stages in the MHC class I antigen presentation pathway. In this pathway, the transporter associated with antigen processing (TAP) is a frequent target of viral immune evasion strategies. This ER-resident transporter is composed of the proteins TAP1 and TAP2, and plays a crucial role in the loading of viral peptides onto MHC class I molecules. Several variants of TAP1 and TAP2 occur in the human population, some of which are linked to autoimmune disorders and susceptibility to infections. Here, we assessed the influence of naturally occurring TAP variants on peptide transport and MHC class I expression. In addition, we tested the inhibitory capacity of three viral immune evasion proteins, the TAP inhibitors US6 from human cytomegalovirus, ICP47 from herpes simplex virus type 1 and BNLF2a from Epstein-Barr virus, for a series of TAP1 and TAP2 variants. Our results suggest that these TAP polymorphisms have no or limited effect on peptide transport or MHC class I expression. Furthermore, our study indicates that the herpesvirus-encoded TAP inhibitors target a broad spectrum of TAP variants; inhibition of TAP is not affected by the naturally occurring polymorphisms of TAP tested in this study. Our findings suggest that the long-term coevolution of herpesviruses and their host did not result in selection of inhibitor-resistant TAP variants in the human population. Copyright © 2018. Published by Elsevier Ltd.

  15. Identification of yellow-pigmented bacteria isolated from hospital tap water in Japan and their chlorine resistance.

    PubMed

    Furuhata, Katsunori; Kato, Yuko; Goto, Keiichi; Saitou, Keiko; Sugiyama, Jun-Ichi; Hara, Motonobu; Fukuyama, Masahumi

    2007-06-01

    Twenty-five yellow chromogenic strains isolated from hospital tap water samples collected nationwide were identified by partial 16S rDNA sequencing. In addition, the chlorine resistance of the isolates was experimentally investigated. The results showed that of the strains tested, 12 strains (48.0%) were Sphingomonas ursincola/natatoria, which was most frequently identified, followed by 2 strains (8.0%) of Mycobacterium frederiksbergense and 1 strain (4.0%) each of Sphingomonas adhaesiva, Sphingopyxis witflariensis and Porphyrobacter donghaensis. The other strains were not identified clearly but they belonged to the order of Alphaproteobacteria. On the other hand, the identification results by sequencing and biochemical property testing were not consistent in any of the strains, showing that it was difficult to accurately identify the yellow chromogenic bacteria in tap water based on only their biochemical properties. When the 25 isolates were exposed to 0.1 mg/l residual free chlorine for 1 minute, 22 isolates (88.0%) survived. When the CT (Concentration Time) value killing 99.99% of the bacteria was investigated in 6 of these survivors, M. frederiksbergense (Y-1 strain) was most resistant to chlorine with the CT value of 32 mg x min/l, followed by S. ursincola/natatoria (Y-7 strain) with the CT value of 3.3 mg x min/l. The CT values of Y-5 (Sphingomonas sp.), Y-27 (S. ursincola/natatoria) and Y-21 (Asticacaulis sp.) were within the range of 0.9-0.1 mg x min /l. Of the 6 strains, S. adhaesiva (Y-10) showed the weakest resistance with the CT value of 0.03 mg x min/l. It was clarified that most yellow chromogenic bacteria isolated from hospital tap water were Sphingomonas spp., and these bacteria were experimentally resistant to chlorine.

  16. 40 CFR Appendix E to Part 132 - Great Lakes Water Quality Initiative Antidegradation Policy

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Great Lakes Water Quality Initiative Antidegradation Policy E Appendix E to Part 132 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Part 132—Great Lakes Water Quality Initiative Antidegradation Policy Great Lakes States and Tribes...

  17. Comparison of soymilk, powdered milk, Hank's balanced salt solution and tap water on periodontal ligament cell survival.

    PubMed

    Moazami, Fariborz; Mirhadi, Hosein; Geramizadeh, Bita; Sahebi, Safoura

    2012-04-01

    The purpose of this study was to evaluate the ability of soymilk, powdered milk, and Hank's balanced salt solution (HBSS) to maintain human periodontal ligament (PDL) cell viability in vitro. PDL cells were obtained from extracted healthy third molars and cultured in Dulbecco's modified Eagles medium (DMEM). The cultures were exposed for 1, 2, 4, and 8 h to experimental solutions (tap water served as negative control and DMEM as positive control) at 37°C. The viable cells were then counted using the trypan blue exclusion technique. Data were analyzed by using one-way anova, post hoc Scheffe and two-way anova test. Statistical analysis showed that HBSS, powdered baby formula, and soymilk maintain cell viability equally well in different periods of times. Tap water cannot keep cells viable as well as other solutions. Soymilk and powdered baby formula can be recommended as suitable storage media for avulsed teeth for up to 8 h. © 2011 John Wiley & Sons A/S.

  18. Relation of trihalomethane-formation potential to water-quality and physical characteristics of small water-supply lakes, eastern Kansas

    USGS Publications Warehouse

    Pope, L.M.; Arruda, J.A.; Fromm, C.H.

    1988-01-01

    The formation of carcinogenic trihalomethanes during the treatment of public surface water supplies has become a potentially serious problem. The U. S. Geological Survey, in cooperation with the Kansas Department of Health and Environment , investigated the potential for trihalomethane formation in water from 15 small, public water supply lakes in eastern Kansas from April 1984 through April 1986 in order to define the principal factors that affect or control the potential for trihalomethane formation during the water treatment process. Relations of mean concentrations of trihalomethane-formation potential to selected water quality and lake and watershed physical characteristics were investigated using correlation and regression analysis. Statistically significant, direct relations were developed between trihalomethanes produced in unfiltered and filtered lake water and mean concentrations of total and dissolved organic carbon. Correlation coefficients for these relations ranged from 0.86 to 0.93. Mean values of maximum depth of lake were shown to have statistically significant inverse relations to mean concentrations of trihalomethane-formation potential and total and dissolved organic carbon. Correlation coefficients for these relations ranged from -0.76 to -0.81. (USGS)

  19. The effect of lake water quality and wind turbines on Rhode Island property sales price

    NASA Astrophysics Data System (ADS)

    Gorelick, Susan Shim

    This dissertation uses the hedonic pricing model to study the impact of lake water quality and wind turbines on Rhode Island house sales prices. The first two manuscripts are on lake water quality and use RI house sales transactions from 1988--2012. The third studies wind turbines using RI house sales transactions from 2000--2013. The first study shows that good lake water quality increases lakefront property price premium. It also shows that environmental amenities, such as forests, substitute for lake amenity as the property's distance from the lake increases. The second lake water quality study incorporates time variables to examine how environmental amenity values change over time. The results show that property price premium associated with good lake water quality does not change as it is constant in proportion to housing prices with short term economic fluctuations. The third study shows that wind turbines have a negative and significant impact on housing prices. However, this is highly location specific and varies with neighborhood demographics. All three studies have policy implications which are discussed in detail in the manuscripts below.

  20. Risk Assessment of Exposure to Lead in Tap Water among Residents of Seri Kembangan, Selangor State, Malaysia

    PubMed Central

    C. S., Lim; M. S., Shaharuddin; W. Y., Sam

    2013-01-01

    Introduction: A cross sectional study was conducted to estimate risk of exposure to lead via tap water ingestion pathway for the population of Seri Kembangan (SK). Methodology: By using purposive sampling method, 100 respondents who fulfilled the inclusive criteria were selected from different housing areas of SK based on geographical population distribution. Residents with filtration systems installed were excluded from the study. Questionnaires were administered to determine water consumption-related information and demographics. Two water samples (first-flushed and fully-flushed samples) were collected from kitchen tap of each household using HDPE bottles. A total of 200 water samples were collected and lead concentrations were determined using a Graphite Furnace Atomic Absorption Spectrophotometer (GFAAS). Results: Mean lead concentration in first-flushed samples was 3.041± SD 6.967µg/L and 1.064± SD 1.103µg/L for fully-flushed samples. Of the first-flushed samples, four (4) had exceeded the National Drinking Water Quality Standard (NDWQS) lead limit value of 10µg/L while none of the fully-flushed samples had lead concentration exceeded the limit. There was a significant difference between first-flushed samples and fully-flushed samples and flushing had elicited a significant change in lead concentration in the water (Z = -5.880, p<0.05). It was also found that lead concentration in both first-flushed and fully flushed samples was not significantly different across nine (9) areas of Seri Kembangan (p>0.05). Serdang Jaya was found to have the highest lead concentration in first-flushed water (mean= 10.44± SD 17.83µg/L) while Taman Universiti Indah had the highest lead concentration in fully-flushed water (mean=1.45± SD 1.83µg/L). Exposure assessment found that the mean chronic daily intake (CDI) was 0.028± SD 0.034µgday-1kg-1. None of the hazard quotient (HQ) value was found to be greater than 1. Conclusion: The overall quality of water supply in SK

  1. Risk assessment of exposure to lead in tap water among residents of Seri Kembangan, Selangor state, Malaysia.

    PubMed

    Lim, C S; Shaharuddin, M S; Sam, W Y

    2012-11-21

    A cross sectional study was conducted to estimate risk of exposure to lead via tap water ingestion pathway for the population of Seri Kembangan (SK). By using purposive sampling method, 100 respondents who fulfilled the inclusive criteria were selected from different housing areas of SK based on geographical population distribution. Residents with filtration systems installed were excluded from the study. Questionnaires were administered to determine water consumption-related information and demographics. Two water samples (first-flushed and fully-flushed samples) were collected from kitchen tap of each household using HDPE bottles. A total of 200 water samples were collected and lead concentrations were determined using a Graphite Furnace Atomic Absorption Spectrophotometer (GFAAS). Mean lead concentration in first-flushed samples was 3.041± SD 6.967µg/L and 1.064± SD 1.103µg/L for fully-flushed samples. Of the first-flushed samples, four (4) had exceeded the National Drinking Water Quality Standard (NDWQS) lead limit value of 10µg/L while none of the fully-flushed samples had lead concentration exceeded the limit. There was a significant difference between first-flushed samples and fully-flushed samples and flushing had elicited a significant change in lead concentration in the water (Z = -5.880, p<0.05). It was also found that lead concentration in both first-flushed and fully flushed samples was not significantly different across nine (9) areas of Seri Kembangan (p>0.05). Serdang Jaya was found to have the highest lead concentration in first-flushed water (mean= 10.44± SD 17.83µg/L) while Taman Universiti Indah had the highest lead concentration in fully-flushed water (mean=1.45± SD 1.83µg/L). Exposure assessment found that the mean chronic daily intake (CDI) was 0.028± SD 0.034µgday-1kg-1. None of the hazard quotient (HQ) value was found to be greater than 1. The overall quality of water supply in SK was satisfactory because most of the

  2. Numerical methods for assessing water quality in lakes and reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahamah, D.S.

    1984-01-01

    Water quality models are used as tools for predicting both short-term and long-term trends in water quality. They are generally classified into two groups based on the degree of empiricism. The two groups consists of the purely empirical types known as black-box models and the theoretical types called ecosystem models. This dissertation deals with both types of water quality models. The first part deals with empirical phosphorus models. The theory behind this class of models is discussed, leading to the development of an empirical phosphorus model using data from 79 western US lakes. A new approach to trophic state classificationmore » is introduced. The data used for the model was obtained from the Environmental Protection Agency National Eutrophication Study (EPA-NES) of western US lakes. The second portion of the dissertation discusses the development of an ecosystem model for culturally eutrophic Liberty Lake situated in eastern Washington State. The model is capable of simulating chlorophyll-a, phosphorus, and nitrogen levels in the lake on a weekly basis. For computing sediment release rates of phosphorus and nitrogen, equations based on laboratory bench-top studies using sediment samples from Liberty Lake are used. The model is used to simulate certain hypothetical nutrient control techniques such as phosphorus flushing, precipitation, and diversion.« less

  3. Introducing TEX86 as a Water pH Proxy for Alkaline Lakes on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, M.; Tian, Q.; Li, X.; Liang, J.; Yue, H.; Hou, J.

    2017-12-01

    Lake water pH represents one of the most important indicators for lake evolution and factors influencing the evolution of aquatic ecosystem, however, which is less studied on the Tibetan Plateau (TP). Applicability of diatom assemblages, an effective proxy of lake water pH variation in freshwater lakes, is highly limited on the TP because the widespread distribution of alkaline lakes is unfavorable for preservation of diatom shells. Glycerol dialkyl glycerol tetraethers (GDGTs) are a series of specific membrane lipids biosynthesized by archaea and bacteria, which appear to be a promising method to reflect lake water pH variation. Here we present the distribution of iGDGTs compounds in surface sediments across the TP to discuss the effect of various environmental factors on iGDGTs distribution. The results show that TEX86 is a promising proxy for lake water pH in high-elevation alkaline lakes, as water pH appears to be the most important factor to affect the cyclization of iGDGTs. We proposed the water pH calibration for lakes (salinity<20g/L) on TP, pH=1.8176×TEX86+8.2376 (n=31, r=0.86, RMSE=0.24). To evaluate its performance, we applied the calibration at Bangong Co in western TP and reconstructed past changes in lake water pH. The TEX86-derived pH at Bangong Co varied from 8.69 to 9.49 since the last 16 kyr BP, which is generally consistent with precipitation isotope variation that was reconstructed from leaf wax D/H ratios in the same sediment core, suggesting the lake water pH was mainly controlled by local hydrology. We believe that TEX86 will be able to infer past water pH of alkaline lakes over TP and could be a potentially useful tool for reconstructing pH in alkaline lakes worldwide after regional calibrated.

  4. Spatiotemporal assessment of water chemistry in intermittently open/closed coastal lakes of Southern Baltic

    NASA Astrophysics Data System (ADS)

    Astel, Aleksander M.; Bigus, Katarzyna; Obolewski, Krystian; Glińska-Lewczuk, Katarzyna

    2016-12-01

    Ionic profile, pH, electrolytic conductivity, chemical oxygen demand and concentration of selected heavy metals (Ni, Cu, Zn, Fe and Mn) were determined in water of 11 intermittently closed and open lakes and lagoons (ICOLLs) located in Polish coastline. Multidimensional data set was explored by the use of the self-organizing map (SOM) technique to avoid supervised and predictable division for fully isolated, partially and fully connected lakes. Water quality assessment based on single parameter's mean value allowed classification of majority of lakes to first or second class of purity according to regulation presenting classification approach applicable to uniform parts of surface waters. The SOM-based grouping revealed seven clusters comprising water samples of similar physico-chemical profile. Fully connected lakes were characterized by the highest concentration of components characteristic for sea salts (NaCl, MgCl2, MgSO4, CaSO4, K2SO4 and MgBr2), however spring samples from Łebsko were shifted to another cluster suggesting that intensive surface run-off and fresh-water inflow through Łupawa river decreases an impact of sea water intrusions. Forecasted characteristic of water collected in Resko Przymorskie lake was disturbed by high contamination by nitrites indicating accidental and local contamination due to usage of sodium nitrite for the curing of meat. Some unexpected sources of contamination was discovered in intermittently open and closed lakes. Presumably Zn contamination is due to use of wood preservatives to protect small wooden playgrounds or camping places spread around one of the lake, while increased concentration of Ni could be connected with grass and vegetation burning. Waters of Jamno lake are under the strongest anthropogenic impact due to inefficient removal of phosphates by waste water treatment plant and contamination by Fe and Mn caused by backwashing of absorption filters. Generally, the quality of ICOLLs' water was diversified, while

  5. Identification, toxicity and control of iodinated disinfection byproducts in cooking with simulated chlor(am)inated tap water and iodized table salt.

    PubMed

    Pan, Yang; Zhang, Xiangru; Li, Yu

    2016-01-01

    Chlorine/chloramine residuals are maintained in drinking water distribution systems to prevent microbial contamination and microorganism regrowth. During household cooking processes (e.g., soup making), the residual chlorine/chloramines in tap water may react with the iodide in iodized table salt to form hypoiodous acid, which could react with remaining natural organic matter in tap water and organic matter in food to generate iodinated disinfection byproducts (I-DBPs). However, I-DBPs formed during cooking with chloraminated/chlorinated tap water are almost completely new to researchers. In this work, by adopting precursor ion scan of m/z 127 using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry, many new polar I-DBPs formed during cooking with chloraminated/chlorinated tap water were detected and proposed with structures, of which 3-iodo-4-hydroxybenzaldehyde, 3-iodo-4-hydroxybenzoic acid, 3-iodo-4-hydroxy-5-methylbenzoic acid, diiodoacetic acid, 3,5-diiodo-4-hydroxybenzaldehyde, 3,5-diiodo-4-hydroxybenzoic acid, 2,6-diiodo-4-nitrophenol, 2,4-diiodo-6-nitrophenol, and 2,4,6-triiodophenol were confirmed with standard compounds. With the aid of ultra fast liquid chromatography/ion trap-time of flight-mass spectrometry, molecular formula identification of five new I-DBPs (C8H5O4I, C7H4NO4I, C8H5O5I, C7H4NO5I, and C8H6O3I2) was achieved. A developmental toxicity with a recently developed sensitive bioassay was conducted for the newly identified I-DBPs, suggesting that phenolic I-DBPs (except for iodinated carboxyphenols) were about 50-200 times more developmentally toxic than aliphatic I-DBPs. The major I-DBPs in a baseline simulated cooking water sample were determined to be from 0.72 to 7.63 μg/L. Polar I-DBPs formed under various disinfection and cooking conditions were compared, and suggestions for controlling their formation were provided. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Mercury in sediment, water, and fish in a managed tropical wetland-lake ecosystem.

    PubMed

    Malczyk, Evan A; Branfireun, Brian A

    2015-08-15

    Mercury pollution has not been well documented in the inland lakes or fishes of Mexico, despite the importance of freshwater fish as a source of protein in local diets. Total mercury and methylmercury in waters, sediments, and the commercial fish catch were investigated in Lake Zapotlán, Mexico. Concentrations of total and methylmercury were very high in runoff and wastewater inputs, but very low in sediments and surface waters of the open water area of the lake. Concentrations of total mercury in tilapia and carp were very low, consistent with the low concentrations in lake water and sediments. Particle settling, sorption, the biogeochemical environment, and/or bloom dilution are all plausible explanations for the significant reductions in both total mercury and methylmercury. Despite very high loading of mercury, this shallow tropical lake was not a mercury-impaired ecosystem, and these findings may translate across other shallow, alkaline tropical lakes. Importantly, the ecosystem services that seemed to be provided by peripheral wetlands in reducing mercury inputs highlight the potential for wetland conservation or restoration in Mexico. Copyright © 2015. Published by Elsevier B.V.

  7. Evaluation of biochemical urinary stone composition and its relationship to tap water hardness in Qom province, central Iran

    PubMed Central

    Moslemi, Mohammad Kazem; Saghafi, Hossein; Joorabchin, Seyed Mohammad Amin

    2011-01-01

    Purpose The aim of this study was to evaluate the biochemical stone composition in general population of Qom province, central Iran, and its relationship with high tap water hardness. Materials and methods In a prospective study, from March 2008 to July 2011, biochemical analysis of urinary stones in patients living in Qom province for at least 5 years was performed. Stones were retrieved by spontaneous passage, endoscopic or open surgery, and after extracorporeal shockwave lithotripsy. Demographic findings and the drinking water supply of patients were evaluated and compared with biochemical stone analysis. Results Stone analysis was performed in 255 patients. The most dominant composition of urinary stones was calcium oxalate (73%), followed by uric acid (24%), ammonium urate (2%), and cystine (1%). The peak incidence of urinary stone was in patients in their forties. Overall male to female ratio was 4.93:1. Conclusion The dominant stone composition in inhabitants of central Iran, where tap water hardness is high, was calcium oxalate stones. On the basis of this study, biochemical urinary stone composition of Qom does not differ from other regions of Iran with lower water hardness. PMID:22163171

  8. Assessment of drinking water quality at the tap using fluorescence spectroscopy.

    PubMed

    Heibati, Masoumeh; Stedmon, Colin A; Stenroth, Karolina; Rauch, Sebastien; Toljander, Jonas; Säve-Söderbergh, Melle; Murphy, Kathleen R

    2017-11-15

    Treated drinking water may become contaminated while travelling in the distribution system on the way to consumers. Elevated dissolved organic matter (DOM) at the tap relative to the water leaving the treatment plant is a potential indicator of contamination, and can be measured sensitively, inexpensively and potentially on-line via fluorescence and absorbance spectroscopy. Detecting elevated DOM requires potential contamination events to be distinguished from natural fluctuations in the system, but how much natural variation to expect in a stable distribution system is unknown. In this study, relationships between DOM optical properties, microbial indicator organisms and trace elements were investigated for households connected to a biologically-stable drinking water distribution system. Across the network, humic-like fluorescence intensities showed limited variation (RSD = 3.5-4.4%), with half of measured variation explained by interactions with copper. After accounting for quenching by copper, fluorescence provided a very stable background signal (RSD < 2.2%) against which a ∼2% infiltration of soil water would be detectable. Smaller infiltrations would be detectable in the case of contamination by sewage with a strong tryptophan-like fluorescence signal. These findings indicate that DOM fluorescence is a sensitive indicator of water quality changes in drinking water networks, as long as potential interferents are taken into account. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Water quality indicators obtainable from aircraft and Landsat images and their use in classifying lakes

    NASA Technical Reports Server (NTRS)

    Scherz, J. P.; Van Domelen, J. F.

    1975-01-01

    Equations describing the interaction of sunlight and skylight with the surface of a lake, particles in the water to the depth where light is extinguished, and lake bottom are presented, and the use of aircraft and Landsat images to derive water quality indicators on the basis of these interactions is discussed. A very clear, deep lake with a backscatter signal similar to that of distilled water is used as a reference standard. The degree of turbidity of other target lakes is determined by comparing their residual radiance with the clear lake standard and with the residual radiance of a lake whose turbidity has been determined from water samples. The relative and absolute strengths of residual radiance are used to determine the type and concentration of suspended material, respectively. Oil slicks are characterized by an increased specular reflectance component, decreased signal from the underlying water, and added backscatter signal from the oil volume.

  10. ARSENIC CYCLING WITHIN THE WATER COLUMN OF A SMALL LAKE RECEIVING CONTAMINATED GROUND WATER DISCHARGE

    EPA Science Inventory

    The fate of arsenic discharged from contaminated ground water to a small, shallow lake at a hazardous waste site is controlled, in part, by the rate of ferrous iron oxidation-precipitation and arsenic sorption occurring near the lake chemocline. Laboratory experiments were condu...

  11. Water quality in Gaines Creek and Gaines Creek arm of Eufaula Lake, Oklahoma

    USGS Publications Warehouse

    Kurklin, J.K.

    1990-01-01

    Based on samples collected from May 1978 to May 1980 and analyzed for major anions, nitrogen, trace elements, phytoplankton, and bacteria, the water in Gaines Creek and the Gaines Creek arm of Eufaula Lake was similar with respect to suitability for municipal use. Water from Gaines Creek had a pH range of 5.7 to 7.6 and a maximum specific conductance of 97 microsiemens per centimeter at 25o Celsius, whereas water from the Gaines Creek arm of Eufaula Lake had a pH range of 6.0 to 9.2 and a maximum specific conductance of 260 microsiemens per centimeter at 25o Celsius. Dissolved oxygen, pH, temperature, and specific conductance values for the lake varied with depth. With the exceptions of cadmium, iron, lead, and manganese, trace-element determinations of samples were within recommended national primary and secondary drinking-water standards. When compared to the National Academy of Sciences water-quality criteria, phytoplankton and bacteria counts exceeded recommendations; however, water from either Gaines Creek or Eufaula Lake could be treated similarly and used as a municipal water supply.

  12. The Summertime Warming Trends in Surface Water Temperature of the Great Lakes

    NASA Astrophysics Data System (ADS)

    Sugiyama, N.; Kravtsov, S.; Roebber, P.

    2014-12-01

    Over the past 30 years, the Laurentian Great Lakes have exhibited summertime warming trends in surface water temperature which were greater than those in surface air temperature of the surrounding land, by as much as an order of magnitude over some of the regions. For the years 1995-2012, Lake Superior exhibited the most dramatic warming trend in July-mean temperature, of 0.27±0.15 deg. C yr-1, based on the NOAA's GLSEA satellite observations. Shallower lakes, such as Lake Erie, exhibited smaller warming trends. In addition, within each lake, the warming was also the greatest in the regions of larger water depth; for example, some regions of Lake Superior deeper than 200m exhibited surface-water July-mean warming trends which exceeded 0.3 deg. C yr-1. We used a three-column lake model based on the one developed by Hostetler and Barnstein (1990) coupled with a two-layer atmospheric energy balance model to explore the physics behind these warming trends. We found that, as suggested by Austin and Colman (2007), the ice-albedo feedback plays an important role in amplifying the overlake warming trends. Our particular emphasis was on the question of whether the ice-albedo feedback alone is enough to account for lacustrine amplification of surface warming observed over the Great Lakes region. We found that the answer to this question depends on a number of model parameters, including the diffusion and light attenuation coefficients, which greatly affect the model's skill in reproducing the observed ice coverage of the deep lakes.

  13. A Comparison of Alternative Strategies for Cost-Effective Water Quality Management in Lakes

    Treesearch

    Daniel Boyd Kramer; Stephen Polasky; Anthony Starfield; Brian Palik; Lynn Westphal; Stephanie Snyder; Pamela Jakes; Rachel Hudson; Eric Gustafson

    2006-01-01

    Roughly 45% of the assessed lakes in the United States are impaired for one or more reasons. Eutrophication due to excess phosphorus loading is common in many impaired lakes. Various strategies are available to lake residents for addressing declining lake water quality, including septic system upgrades and establishing riparian buffers. This study examines 25 lakes to...

  14. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies

    USGS Publications Warehouse

    Feinstein, D.T.; Hunt, R.J.; Reeves, H.W.

    2010-01-01

    A regional groundwater-flow model of the Lake Michigan Basin and surrounding areas has been developed in support of the Great Lakes Basin Pilot project under the U.S. Geological Survey's National Water Availability and Use Program. The transient 2-million-cell model incorporates multiple aquifers and pumping centers that create water-level drawdown that extends into deep saline waters. The 20-layer model simulates the exchange between a dense surface-water network and heterogeneous glacial deposits overlying stratified bedrock of the Wisconsin/Kankakee Arches and Michigan Basin in the Lower and Upper Peninsulas of Michigan; eastern Wisconsin; northern Indiana; and northeastern Illinois. The model is used to quantify changes in the groundwater system in response to pumping and variations in recharge from 1864 to 2005. Model results quantify the sources of water to major pumping centers, illustrate the dynamics of the groundwater system, and yield measures of water availability useful for water-resources management in the region. This report is a complete description of the methods and datasets used to develop the regional model, the underlying conceptual model, and model inputs, including specified values of material properties and the assignment of external and internal boundary conditions. The report also documents the application of the SEAWAT-2000 program for variable-density flow; it details the approach, advanced methods, and results associated with calibration through nonlinear regression using the PEST program; presents the water-level, drawdown, and groundwater flows for various geographic subregions and aquifer systems; and provides analyses of the effects of pumping from shallow and deep wells on sources of water to wells, the migration of groundwater divides, and direct and indirect groundwater discharge to Lake Michigan. The report considers the role of unconfined conditions at the regional scale as well as the influence of salinity on groundwater flow

  15. Great Lakes nearshore-offshore: Distinct water quality regions

    EPA Science Inventory

    We compared water quality of nearshore regions in the Laurentian Great Lakes to water quality in offshore regions. Sample sites for the nearshore region were from the US EPA National Coastal Condition Assessment and based on a criteria or sample-frame of within the 30-m depth co...

  16. Near-shore talik development beneath shallow water in expanding thermokarst lakes, Old Crow Flats, Yukon

    NASA Astrophysics Data System (ADS)

    Roy-Leveillee, Pascale; Burn, Christopher R.

    2017-05-01

    It is generally assumed that permafrost is preserved beneath shallow lakes and ponds in the Western North American Arctic where water depth is less than about two thirds of the late-winter lake ice thickness. Here we present field observations of talik development beneath water as shallow as 0.2 m despite a lake ice thickness of 1.5 m, in Old Crow Flats (OCF), YT. Conditions leading to the initiation and development of taliks beneath shallow water were investigated with field measurements of shore erosion rates, bathymetry, ice thickness, snow accumulation, and lake bottom temperature near the shores of two expanding lakes in OCF. The sensitivity of talik development to variations in lake bottom thermal regime was then investigated numerically. Where ice reached the lake bottom, talik development was controlled by the ratio of freezing degree days to thawing degree days at the lake bottom (FDDlb/TDDlb). In some cases, spatial variations in on-ice snow depth had a minimal effect on annual mean lake bottom temperature (Tlb) but caused sufficient variations in FDDlb/TDDlb to influence talik development. Where Tlb was close to but greater than 0°C simulations indicated that the thermal offset allowed permafrost aggradation to occur under certain conditions, resulting in irregular near-shore talik geometries. The results highlight the sensitivity of permafrost to small changes in lake bottom thermal conditions where the water column freezes through in early winter and indicate the occurrence of permafrost degradation beneath very shallow water in the near-shore zone of Arctic ponds and lakes.

  17. Study on the influence on water ecosystem by a lake inflow filtration system

    NASA Astrophysics Data System (ADS)

    Wu, Sushu; Gao, Shipei; Hu, Xiaodong; Weng, Songgan; Guo, Liuchao

    2018-06-01

    Lakes play important roles in the economic-social sustainable development. However, due to unreasonable development and urbanization in recent years, lake water pollution and ecological degradation have occurred in China. The improvement of the lake inflow water quality is very important. A filtration system includes Gravel filtering system, Aquatic plant area and Ecological bag area was established. The test river is one of the typical lake inflow river and located in the river network in the Chang Dang lake, China. Water quality, zooplankton and phytoplankton in the inflow river were observed form July to mid-August in order to analyze the general process. The average removal rate of NH3-N (ammonia nitrogen) TN (total nitrogen) and TP (total phosphorus) is 28.33, 25.76 and 24.43 %, respectively. The Pantle-Buck method was used to evaluate the water quality and the B/T index was used to evaluate the nutrition situation. The B/T values were reduced by 20 % and the SI pollution index was reduced by 11.8 %. Therefore, a positive effect on the water's ecological restoration was achieved by the filtration system.

  18. Temporal and spatial changes of water quality and management strategies of Dianchi Lake in southwest China

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Zeng, W. H.; Wang, S. R.; Ni, Z. K.

    2014-04-01

    Temporal and spatial changes to the water quality of Dianchi Lake in southwest China were investigated using monthly monitoring data from 2005 to 2012. Dianchi Lake is divided into two parts, Caohai Lake and Waihai Lake, by a man-made dike. Caohai Lake lies at the north of Dianchi Lake, while Waihai Lake is the main water body of Dianchi Lake and accounts for 96.7% of the whole area of the lake. Based on the analysis of total phosphorus (TP), total nitrogen (TN), and chlorophyll a (Chl a) concentrations, it was determined that, in Caohai Lake, the annual concentrations of these variables ranged from 0.19-1.46 mg L-1, 6.11-16.79 mg L-1, 0.06-0.14 mg L-1, respectively. In addition, the annual concentrations of TP, TN and Chl a in Waihai Lake ranged between 0.13 and 0.20 mg L-1, 1.82 and 3.01 mg L-1, and 0.04 and 0.09 mg L-1, respectively. Cluster analysis (CA) classified the 10 monitoring sites into two clusters (cluster A and cluster B) based on similarities of water quality characteristics. Our data revealed that the current status of water quality within Caohai Lake was much worse than that of Waihai Lake. Water quality was seriously degraded during the economic boom near the period of the "Eleventh Five-Year Plan" (2005-2010), and gradually improved from 2010 to 2012 because of the "standard emission directive to industry". The main factors that influenced the spatial and temporal changes to water quality were natural factors including lake evolution and regional characteristic as well as human factors such as pollution load into the lake and management strategies that were already adopted. Some activities and regulations were implemented to enhance the lake environment by controlling wastewater emissions and establishing regulations to protect the lakes in the Yunnan Province. However, problems with institutional fragmentation (horizontal and vertical), simple treatment methods, low-intensity investment in pollution control, and lack of meaningful endogenous

  19. Simulated Effects of Ground-Water Augmentation on the Hydrology of Round and Halfmoon Lakes in Northwestern Hillsborough County, Florida

    USGS Publications Warehouse

    Yager, Richard M.; Metz, P.A.

    2004-01-01

    Pumpage from the Upper Floridan aquifer in northwest Hillsborough County near Tampa, Florida, has induced downward leakage from the overlying surficial aquifer and lowered the water table in many areas. Leakage is highest where the confining layer separating the aquifers is breached, which is common beneath many of the lakes in the study area. Leakage of water to the Upper Floridan aquifer has lowered the water level in many lakes and drained many wetlands. Ground water from the Upper Floridan aquifer has been added (augmented) to some lakes in an effort to maintain lake levels, but the resulting lake-water chemistry and lake leakage patterns are substantially different from those of natural lakes. Changes in lake-water chemistry can cause changes in lake flora, fauna, and lake sediment composition, and large volumes of lake leakage are suspected to enhance the formation of sinkholes near the shoreline of augmented lakes. The leakage rate of lake water through the surficial aquifer to the Upper Floridan aquifer was estimated in this study using ground-water-flow models developed for an augmented lake (Round Lake) and non-augmented lake (Halfmoon Lake). Flow models developed with MODFLOW were calibrated through nonlinear regression with UCODE to measured water levels and monthly net ground-water-flow rates from the lakes estimated from lake-water budgets. Monthly estimates of ground-water recharge were computed using an unsaturated flow model (LEACHM) that simulated daily changes in storage of water in the soil profile, thus estimating recharge as drainage to the water table. Aquifer properties in the Round Lake model were estimated through transient-state simulations using two sets of monthly recharge rates computed during July 1996 to February 1999, which spanned both average conditions (July 1996 through October 1997), and an El Ni?o event (November 1997 through September 1998) when the recharge rate doubled. Aquifer properties in the Halfmoon Lake model were

  20. Water-quality and biological data for selected streams, lakes, and wells in the High Point Lake watershed, Guilford County, North Carolina, 1988-89

    USGS Publications Warehouse

    Davenport, M.S.

    1993-01-01

    Water and bottom-sediment samples were collected at 26 sites in the 65-square-mile High Point Lake watershed area of Guilford County, North Carolina, from December 1988 through December 1989. Sampling locations included 10 stream sites, 8 lake sites, and 8 ground-water sites. Generally, six steady-flow samples were collected at each stream site and three storm samples were collected at five sites. Four lake samples and eight ground-water samples also were collected. Chemical analyses of stream and lake sediments and particle-size analyses of lake sediments were performed once during the study. Most stream and lake samples were analyzed for field characteristics, nutrients, major ions, trace elements, total organic carbon, and chemical-oxygen demand. Analyses were performed to detect concentrations of 149 selected organic compounds, including acid and base/neutral extractable and volatile constituents and carbamate, chlorophenoxy acid, triazine, organochlorine, and organophosphorus pesticides and herbicides. Selected lake samples were analyzed for all constituents listed in the Safe Drinking Water Act of 1986, including Giardia, Legionella, radiochemicals, asbestos, and viruses. Various chromatograms from organic analyses were submitted to computerized library searches. The results of these and all other analyses presented in this report are in tabular form.

  1. Effect of agriculture on water quality of Lake Biwa tributaries, Japan.

    PubMed

    Nakano, Takanori; Tayasu, Ichiro; Yamada, Yoshihiro; Hosono, Takahiro; Igeta, Akitake; Hyodo, Fujio; Ando, Atsushi; Saitoh, Yu; Tanaka, Takuya; Wada, Eitaro; Yachi, Shigeo

    2008-01-15

    We investigated the effects of natural environments and human activity on Lake Biwa, central Japan. We determined the concentrations of 19 elements and the compositions of stable S and Sr isotopes in the main tributaries of the lake and compared them with the corresponding values obtained from the lake water during the circulation period. Results of a principal component analysis indicated that the components dissolved in the lower reaches of the tributaries can be divided into group 1 (HCO(3), SO(4), NO(3), Ca, Mg, Sr) and group 2 components (Cl, Br, Na, K, Ba, Rb, Cs). The concentrations of group 1 components were high in the rivers of the southern area, which is urbanized and densely populated, and the eastern area, which consists of plains where agriculture predominates, compared with the rivers of the northern and western areas, which are mostly mountainous and sparsely populated. The concentrations of group 2 components tended to be high in the river water of industrial areas. The delta(34)S values of SO(4) in the river water converged to 0+/-2 per thousand as the SO(4) concentration increased and, excluding the areas where limestone is extensively distributed, as the HCO(3) concentration increased. In particular, both the delta(34)S values (0+/-2 per thousand) and the (87)Sr/(86)Sr ratios (0.7117+/-0.0005) fell within narrow ranges in the small and medium rivers of the eastern plain area, where rice is widely grown. These values agreed respectively with the delta(34)S values of the fertilizers used in the Lake Biwa basin and the soil-exchangeable (87)Sr/(86)Sr in the eastern plain. The characteristics of water quality in the small and medium rivers of the eastern area can be explained by a model in which sulfuric, nitric, and bicarbonic acids generated by the decomposition of agricultural fertilizer and paddy rice selectively leached out alkaline-earth elements adsorbed on the soil and sediments of the plain or dissolved calcium carbonate enriched with Mg

  2. Sensitive naked eye detection and quantification assay for nitrite by a fluorescence probe in various water resources

    NASA Astrophysics Data System (ADS)

    Zhang, Fengyuan; Zhu, Xinyue; Jiao, Zhijuan; Liu, Xiaoyan; Zhang, Haixia

    2018-07-01

    An uncontrolled increase of nitrite concentration in groundwater, rivers and lakes is a growing threat to public health and environment. It is important to monitor the nitrite levels in water and clinical diagnosis. Herein, we developed a switch-off fluorescence probe (PyI) for the sensitive detection of nitrite ions in the aqueous media. This probe selectively recognizes nitrite ions through a distinct visual color change from colorless to pink with a detection limit of 0.1 μM. This method has been successfully applied to the determination of nitrites in tap water, lake water and Yellow River water with recoveries in the range of 94.8%-105.4%.

  3. Monitoring of Emerging and Legacy Contaminants in Groundwater and Tap Water of the Karst Region in Northern Puerto Rico for Assessment of Sources and Fate and Transport Processes

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Cotto, I.; Torres, P. M.

    2014-12-01

    The karst aquifer region of northern Puerto Rico is the area with the highest groundwater extraction in the island. Urban and industrial development has led to extensive contamination of the groundwater in the region. Of particular concern, is the presence of emerging and legacy organic contaminants, such as phthalates and chlorinated organic compounds (CVOCs), because there high risk for exposure and adverse health impact. Variable sources and the heterogeneous and dynamic conditions of karst groundwater systems, limits the ability to properly assess and manage the water quality of these precious water resources. This work develops a monitoring and water analysis scheme to assess spatial-temporal exposure of hazardous contaminants trough karst water in northern Puerto Rico. Groundwater and tap water are sampled in the region and analyzed for phthalates, CVOCs, and common ions. Detections and concentrations of phthalates and CVOCs are determined by using modified EPA methods, which rely on liquid-liquid extractions and gas chromatography techniques. The modified methods have reduced the volume of samples and solvent waste, decreased the time of analysis, increased analysis outcomes, and lower potential for hazardous exposure. Results show intermittent presence of di-ethyl, di-butyl and di (2-ethyl hexyl) phthalates in 36% of the groundwater and 53% of tap water samples, with detected concentrations ranging between 0.1-88.7 μg/L. These results indicate that karst groundwater can serve as a route of exposure for phthalates, but there are additional disperse sources in the water system. CVOCs are detected in groundwater at much higher frequencies (50%) than phthalates, and include trichloromethane (TCM), carbon tetrachloride (CT), trichloroethylene (TCE), and tetrachloroethylene (TCE). CVOCs, except for TCM, are found at lower frequencies on tap water (5.8%) than groundwater (27%). TCM is detected more frequently and at higher concentrations in tap water (56.8%) than

  4. State and regional water-quality characteristics and trophic conditions of Michigan's inland lakes, 2001-2005

    USGS Publications Warehouse

    Fuller, L.M.; Minnerick, R.J.

    2008-01-01

    The U.S. Geological Survey and the Michigan Department of Environmental Quality are jointly monitoring selected water-quality constituents of inland lakes through 2015 as part of Michigan’s Lake Water Quality Assessment program. During 2001–2005, 433 lake basins from 364 inland lakes were monitored for baseline water-quality conditions and trophic status. This report summarizes the water-quality characteristics and trophic conditions of those monitored lake basins throughout the State. Regional variation of water quality in lake basins was examined by grouping on the basis of the five Omernik level III ecoregions within Michigan. Concentrations of most constituents measured were significantly different between ecoregions. Less regional variation of phosphorus concentrations was noted between Northern Lakes and Forests (50) and North Central Hardwoods (51) ecoregions during summer possibly because water samples were collected when lake productivity was high; hence the utilization of the limited amount of phosphorus by algae and macrophytes may have resulted in the more uniform concentrations between these two ecoregions. Concentrations of common ions (calcium, magnesium, potassium, sodium, chloride, and sulfate) measured in the spring typically were higher in the Michigan southern Lower Peninsula in the Eastern Corn Belt Plains (55), Southern Michigan/Northern Indiana Drift Plains (56), and Huron/Erie Lake Plains (57) ecoregions. Most ions whose concentrations were less than the minimum reporting levels or were nondetectable were from lakes in the Michigan northern Lower Peninsula and the Upper Peninsula in the Northern Lakes and Forests (50) and North Central Hardwoods (51) ecoregions. Chlorophyll a concentrations followed a similar distribution pattern. Measured properties such as pH and specific conductance (indicative of dissolved solids) also showed a regional relation. The lakes with the lowest pH and specific conductance were generally in the western

  5. Developing the greatest Blue Economy: Water productivity, fresh water depletion, and virtual water trade in the Great Lakes basin

    NASA Astrophysics Data System (ADS)

    Mayer, A. S.; Ruddell, B. L.; Mubako, S. T.

    2016-12-01

    The Great Lakes basin hosts the world's most abundant surface fresh water reserve. Historically an industrial and natural resource powerhouse, the region has suffered economic stagnation in recent decades. Meanwhile, growing water resource scarcity around the world is creating pressure on water-intensive human activities. This situation creates the potential for the Great Lakes region to sustainably utilize its relative water wealth for economic benefit. We combine economic production and trade datasets with water consumption data and models of surface water depletion in the region. We find that, on average, the current economy does not create significant impacts on surface waters, but there is some risk that unregulated large water uses can create environmental flow impacts if they are developed in the wrong locations. Water uses drawing on deep groundwater or the Great Lakes themselves are unlikely to create a significant depletion, and discharge of groundwater withdrawals to surface waters offsets most surface water depletion. This relative abundance of surface water means that science-based management of large water uses to avoid accidentally creating "hotspots" is likely to be successful in avoiding future impacts, even if water use is significantly increased. Commercial water uses are the most productive, with thermoelectric, mining, and agricultural water uses in the lowest tier of water productivity. Surprisingly for such a water-abundant economy, the region is a net importer of water-derived goods and services. This, combined with the abundance of surface water, suggests that the region's water-based economy has room to grow in the 21st century.

  6. Climate change projections for lake whitefish (Coregonus clupeaformis) recruitment in the 1836 Treaty Waters of the Upper Great Lakes

    USGS Publications Warehouse

    Lynch, Abigail J.; Taylor, William W.; Beard, T. Douglas; Lofgren, Brent M.

    2015-01-01

    Lake whitefish (Coregonus clupeaformis) is an ecologically, culturally, and economically important species in the Laurentian Great Lakes. Lake whitefish have been a staple food source for thousands of years and, since 1980, have supported the most economically valuable (annual catch value ≈ US$16.6 million) and productive (annual harvest ≈ 7 million kg) commercial fishery in the upper Great Lakes (Lakes Huron, Michigan, and Superior). Climate changes, specifically changes in temperature, wind, and ice cover, are expected to impact the ecology, production dynamics, and value of this fishery because the success of recruitment to the fishery has been linked with these climatic variables. We used linear regression to determine the relationship between fall and spring air temperature indices, fall wind speed, winter ice cover, and lake whitefish recruitment in 13 management units located in the 1836 Treaty Waters of the Upper Great Lakes ceded by the Ottawa and Chippewa nations, a culturally and commercially important region for the lake whitefish fishery. In eight of the 13 management units evaluated, models including one or more climate variables (temperature, wind, ice cover) explained significantly more variation in recruitment than models with only the stock–recruitment relationship, using corrected Akaike's Information Criterion comparisons (ΔAICc > 3). Isolating the climate–recruitment relationship and projecting recruitment with the Coupled Hydrosphere-Atmosphere Research Model (CHARM) indicated the potential for increased lake whitefish recruitment in the majority of the 1836 Treaty Waters management units. These results can inform adaptive management strategies by providing anticipated implications of climate on lake whitefish recruitment.

  7. Great Lakes Climate and Water Movement. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Miller, Heidi, Ed.; Sheaffer, Amy L., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The theme of this book is Great Lakes climate and water movement. Students learn about land-sea…

  8. The evaluation of water hyacinth (Eichhornia crassiper) control program in Rawapening Lake, Central Java Indonesia

    NASA Astrophysics Data System (ADS)

    Hidayati, N.; Soeprobowati, T. R.; Helmi, M.

    2018-03-01

    The existence of water hyacinths and other aquatic plants have been a major concern in Rawapening Lake for many years. Nutrient input from water catchment area and fish feed residues suspected to leads eutrophication, a condition that induces uncontrolled growth of aquatic plants. In dry season, aquatic plants cover almost 70% of lake area. This problem should be handled properly due to wide range of lake function such as water resources, fish farming, power plants, flood control, irrigation and many other important things. In 2011, Rawapening Lake was appointed as pilot project of Save Indonesian Lake Movement: the Indonesian movement for lakes ecosystem conservation and rehabilitation. This project consists of 6 super priority programs and 11 priority programs. This paper will evaluate the first super priority program which aims to control water hyacinth bloom. Result show that the three indicators in water hyacinth control program was not achieved. The coverage area of Water hyacinth was not reduced, tend to increase during period 2012 to 2016. We suggesting better coordination should be performed in order to avoid policies misinterpretation and to clarify the authority from each institution. We also give a support to the establishment of lake zonation plan and keep using all the three methods of cleaning water hyacinth with a maximum population remained at 20%.

  9. Assessment of Lake Water Quality and Quantity Using Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Daniel, K. C.; Suresh, A.; Paredes Mesa, S.

    2017-12-01

    Lakes are one of the few sources of freshwater used throughout the world but due to human activities, its quality and availability has been decreasing. The drying of lakes is a concerning issue in different communities around the world. This problem can affect jobs and the lives of individuals who use lakes as a source of income, consumption and recreation. Another dilemma that has occurred in lakes is eutrophication which is the buildup of excess nutrients in the lakes caused by runoff. This natural process can lead to anoxic conditions that may have a detrimental impact on surrounding ecosystems. Therefore, causing a devastating impact to economies and human livelihood worldwide. To monitor these issues, satellite data can be used to assess the water quality of different lakes throughout the world. Landsat satellite data from the past 10 years was used to conduct this research. By using the IOP (Inherent Optical Properties) of chlorophyll and suspended solids in the visible spectrum, the presence of algal blooms and sediments was determined. ARCGIS was used to outline the areas of the lakes and obtain reflectance values for quantity and quality assessment. Because there is always a certain amount of contamination in the lake, this research is used to evaluate the condition of the lakes throughout the years. Using the data that we have collected, we are able to understand how the issues addressed can harm civilians seasonally. Key Words: Lakes, Water Quality, Algal Blooms, Eutrophication, Remote Sensing, Satellite DataData Source: Landsat 4, Landsat 5, Landsat 7, Landsat 8

  10. Water-quality characteristics of selected public recreational lakes and ponds in Connecticut

    USGS Publications Warehouse

    Healy, D.F.; Kulp, K.P.

    1995-01-01

    Reconnaissance limnological and lakebed-sediment surveys were conducted in Connecticut during 1989-91 by the U.S. Geological Survey, in cooperation with the Connecticut Department of Environmental Protec- tion, to evaluate water-quality characteristics of selected public recreational lakes and ponds in the State. Limnological surveys were conducted on 49 lakes and ponds selected from a list of 105 publicly owned waterbodies that qualified for water- quality assessments under Section 314 of the Federal Clean Water Act. Lakebed-sediment surveys were conducted in 9 river impoundments and 1 riverine lake below industrial areas and 2 headwater lakes in relatively pristine areas. The limnological surveys consisted of two sampling events--during spring turnover and during the summer stratifi- cation. Each sampling event included depth profiles of water temperature, specific conductance, hydrogen-ion activity, and dissolved oxygen concen- trations; measurements of Secchi disc transparency; and the collection of samples for the analyses of alkalinity, chlorophyll, phosphorus, and nitrogen concentrations. Areal extent and population density of the dominant aquatic macrophytes were qualita- tively noted during the summer sampling event. These water-quality data were used to determine the trophic classification and acidification status of the 49 lakes. The trophic classification yielded the following results: 2 oligotrophic, 8 early mesotrophic, 13 mesotrophic, 5 late mesotrophic, 10 eutrophic, and 11 highly eutrophic lakes. In terms of acidification status, 7 lakes were classified as acid threatened and 42 as not threatened. A Wilcoxon two-tailed signed rank test was used to compare data for 13 lakes and ponds from the present survey with data from the 1973-75 or 1978-79 surveys conducted by the Connecticut Agricultural Experiment Station and Connecticut Department of Environmental Protection. The test showed no significant difference at the 90 percent confidence level for

  11. Lake Mixing Regime Influences Arsenic Transfer from Sediments into the Water Column and Uptake in Plankton

    NASA Astrophysics Data System (ADS)

    Gawel, J.; Barrett, P. M.; Hull, E.; Burkart, K.; McLean, J.; Hargrave, O.; Neumann, R.

    2017-12-01

    The former ASARCO copper smelter in Ruston, WA, now a Superfund site, contaminated a large area of the south-central Puget Sound region with arsenic over its almost 100-year history. Arsenic, a priority Superfund contaminant and carcinogen, is a legacy pollutant impacting aquatic ecosystems in urban lakes downwind of the ASARCO emissions stack. We investigated the impact of lake mixing regime on arsenic transfer from sediments into lake water and aquatic biota. We regularly collected water column and plankton samples from four study lakes for two years, and deployed sediment porewater peepers and sediment traps to estimate arsenic flux rates to and from the sediments. In lakes with strong seasonal stratification, high aqueous arsenic concentrations were limited to anoxic hypolimnetic waters while low arsenic concentrations were observed in oxic surface waters. However, in polymictic, shallow lakes, we observed elevated arsenic concentrations throughout the entire oxic water column. Sediment flux estimates support higher rates of arsenic release from sediments and vertical transport. Because high arsenic in oxic waters results in spatial overlap between arsenate, a phosphate analog, and lake biota, we observed enhanced trophic transfer of arsenic in polymictic, shallow study lakes, with higher arsenic accumulation (up to an order of magnitude) in both phytoplankton and zooplankton compared to stratified lakes. Chemical and physical mechanisms for higher steady-state arsenic concentrations will be explored. Our work demonstrates that physical mixing processes coupled with sediment/water redox status exert significant control over bioaccumulation, making shallow, periodically-mixed urban lakes uniquely vulnerable to environmental and human health risks from legacy arsenic contamination.

  12. Hydrology, water quality, trophic status, and aquatic plants of Fowler Lake, Wisconsin

    USGS Publications Warehouse

    Hughes, P.E.

    1993-01-01

    The low annual phosphorus input (28 pounds per square mile) to the lake from the Oconomowoc River shows the benefit of upstream lakes on the Oconomowoc River. Fourteen percent of the phosphorus input load to Fowler Lake is deposited in the lake sediments and the rest is transported through the lake by surface-water flow to downstream Lac La Belle. Dense growths of macrophytes in the lake change in composition seasonally; chara sp. (muskgrass) and Myriophyllum sp. (milfoil) are abundant in June and Najas marina and Vallesneria Americana (wild celery) are abundant in August.

  13. 40 CFR Appendix E to Part 132 - Great Lakes Water Quality Initiative Antidegradation Policy

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operational variability; (2) Changes in intake water pollutants; (3) Increasing the production hours of the... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Great Lakes Water Quality Initiative... (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Pt. 132, App. E Appendix E to...

  14. A Novel Liquid-Liquid Extraction for the Determination of Sertraline in Tap Water and Waste Water at Trace Levels by GC-MS.

    PubMed

    Koçoğlu, Elif Seda; Bakırdere, Sezgin; Keyf, Seyfullah

    2017-09-01

    A simple, green and fast analytical method was developed for the determination of sertraline in tap and waste water samples at trace levels by using supportive liquid-liquid extraction with gas chromatography-mass spectrometry. Different parameters affecting extraction efficiency such as types and volumes of extraction and supporter solvents, extraction period, salt type and amount were optimized to get lower detection limits. Ethyl acetate was selected as optimum extraction solvent. In order to improve the precision, anthracene-D10 was used as an internal standard. The calibration plot of sertraline was linear from 1.0 to 1000 ng/mL with a correlation coefficient of 0.999. The limit of detection value under the optimum conditions was found to be 0.43 ng/mL. In real sample measurements, spiking experiments were performed to check the reliability of the method for these matrices. The spiking experiments yielded satisfactory recoveries of 91.19 ± 2.48%, 90.48 ± 5.19% and 95.46 ± 6.56% for 100, 250 and 500 ng/mL sertraline for tap water, and 85.80 ± 2.15% and 92.43 ± 4.02% for 250 and 500 ng/mL sertraline for waste water.

  15. Lake responses following lanthanum-modified bentonite clay (Phoslock®) application: an analysis of water column lanthanum data from 16 case study lakes.

    PubMed

    Spears, Bryan M; Lürling, Miquel; Yasseri, Said; Castro-Castellon, Ana T; Gibbs, Max; Meis, Sebastian; McDonald, Claire; McIntosh, John; Sleep, Darren; Van Oosterhout, Frank

    2013-10-01

    Phoslock(®) is a lanthanum (La) modified bentonite clay that is being increasingly used as a geo-engineering tool for the control of legacy phosphorus (P) release from lake bed sediments to overlying waters. This study investigates the potential for negative ecological impacts from elevated La concentrations associated with the use of Phoslock(®) across 16 case study lakes. Impact-recovery trajectories associated with total lanthanum (TLa) and filterable La (FLa) concentrations in surface and bottom waters were quantified over a period of up to 60 months following Phoslock(®) application. Both surface and bottom water TLa and FLa concentrations were <0.001 mg L(-1) in all lakes prior to the application of Phoslock(®). The effects of Phoslock(®) application were evident in the post-application maximum TLa and FLa concentrations reported for surface waters between 0.026 mg L(-1)-2.30 mg L(-1) and 0.002 mg L(-1) to 0.14 mg L(-1), respectively. Results of generalised additive modelling indicated that recovery trajectories for TLa and FLa in surface and bottom waters in lakes were represented by 2nd order decay relationships, with time, and that recovery reached an end-point between 3 and 12 months post-application. Recovery in bottom water was slower (11-12 months) than surface waters (3-8 months), most probably as a result of variation in physicochemical conditions of the receiving waters and associated effects on product settling rates and processes relating to the disturbance of bed sediments. CHEAQS PRO modelling was also undertaken on 11 of the treated lakes in order to predict concentrations of La(3+) ions and the potential for negative ecological impacts. This modelling indicated that the concentrations of La(3+) ions will be very low (<0.0004 mg L(-1)) in lakes of moderately low to high alkalinity (>0.8 mEq L(-1)), but higher (up to 0.12 mg L(-1)) in lakes characterised by very low alkalinity. The effects of elevated La(3+) concentrations following

  16. Flood frequency matters: Why climate change degrades deep-water quality of peri-alpine lakes

    NASA Astrophysics Data System (ADS)

    Fink, Gabriel; Wessels, Martin; Wüest, Alfred

    2016-09-01

    Sediment-laden riverine floods transport large quantities of dissolved oxygen into the receiving deep layers of lakes. Hence, the water quality of deep lakes is strongly influenced by the frequency of riverine floods. Although flood frequency reflects climate conditions, the effects of climate variability on the water quality of deep lakes is largely unknown. We quantified the effects of climate variability on the potential shifts in the flood regime of the Alpine Rhine, the main catchment of Lake Constance, and determined the intrusion depths of riverine density-driven underflows and the subsequent effects on water exchange rates in the lake. A simplified hydrodynamic underflow model was developed and validated with observed river inflow and underflow events. The model was implemented to estimate underflow statistics for different river inflow scenarios. Using this approach, we integrated present and possible future flood frequencies to underflow occurrences and intrusion depths in Lake Constance. The results indicate that more floods will increase the number of underflows and the intensity of deep-water renewal - and consequently will cause higher deep-water dissolved oxygen concentrations. Vice versa, fewer floods weaken deep-water renewal and lead to lower deep-water dissolved oxygen concentrations. Meanwhile, a change from glacial nival regime (present) to a nival pluvial regime (future) is expected to decrease deep-water renewal. While flood frequencies are not expected to change noticeably for the next decades, it is most likely that increased winter discharge and decreased summer discharge will reduce the number of deep density-driven underflows by 10% and favour shallower riverine interflows in the upper hypolimnion. The renewal in the deepest layers is expected to be reduced by nearly 27%. This study underlines potential consequences of climate change on the occurrence of deep river underflows and water residence times in deep lakes.

  17. Disappearing Twelvemile Lake in Alaska's Discontinuous Permafrost: Scoping Analysis of Water Budget

    NASA Astrophysics Data System (ADS)

    Jepsen, S. M.; Voss, C. I.; Walvoord, M. A.; Minsley, B. J.; Rose, J.; Smith, B. D.

    2011-12-01

    The number and size of lakes in northern high-latitude regions have undergone significant changes over the last 3 decades or longer, possibly in association with climate warming. In the Yukon Flats Basin (YFB) of interior Alaska, a region underlain by discontinuous permafrost, these changes have not been uniform among lake drainage basins, suggesting the importance of local processes that are not well understood. As an example in the YFB, Twelvemile Lake has decreased in area by 60% since 1984, while neighboring Buddy Lake, 2 km to the southeast, has shown no significant change (see Figure). The objective of this study is to evaluate physical mechanisms that could account for the lowering of Twelvemile Lake, using a combination of water flux approximations, historical climate data and the permafrost distribution as interpreted from airborne electromagnetics (AEM). All possible in- and out-flux pathways to the lake are considered and compared with the observed rate of change in the lake's volume, to rank the importance of each pathway as a contributor to the change in lake level. Results from the AEM survey suggest the presence of a ~200 m diameter open-talik beneath the lake, and subsurface, channel-shaped depressions in the permafrost table ("channels") that may direct shallow groundwater (GW) flow into or out of the lake basin. An increase in potential evapotranspiration of only ~2 cm yr-1 from the period of 1950-1980 to 1981-2010 is found to be insignificant relative to the observed 13 cm yr-1 rate of lake level lowering since the early 1980's. Thus, alternative water pathways are needed to explain the lake level change. The following four processes are shown to potentially have a significant contribution to the observed rate of lake level change: (i) Reduced water inputs from decreased snowpacks; (ii) Increased infiltration of snowmelt due to changes in wintertime ice content of subnivean soil; (iii) Changes in GW flow through inlet and outlet channels to the

  18. Water quality of lakes and streams in Voyageurs National Park, northern Minnesota, 1977-84

    USGS Publications Warehouse

    Payne, G.A.

    1991-01-01

    Water-quality investigations in six interconnected lakes that comprise most of the surface area of Voyageurs National Park in northern Minnesota revealed substantial differences in water-quality. Three large lakes; Sand Point, Namakan, and Rainy, near the eastern and northern boundaries of the Park; are oligotrophic to mesotrophic, having low dissolved solids and alkalinity, and dimictic circulation. In contrast, Kabetogama Lake, Black Bay, and Sullivan Bay, near the western and southern boundaries of the Park, were eutrophic, having higher dissolved solids and alkalinity, and polymictic circulation. Chemical characteristics of the three lakes along the eastern and northern boundary were similar to those of the Namakan River--a major source of inflow that drains an extensive area of exposed bedrock and thin noncalcareous drift east of the Park. The lake and embayments along the western and southern boundary receive inflow from two streams that drain an area west and south of the Park that is overlain by calcareous drift. Samples from one of these streams contained dissolved-solids concentrations about five times, and total alkalinity concentrations about eight times concentrations measured in the Namakan River. The nutrient-enriched lakes and embayments had high algal productivity that produced blooms of blue-green algae in some years. Annual patterns in the levels of trophic-state indicators revealed that the shallow, polymictic lakes experienced seasonal increases in totalphosphorus concentrations in their euphotic zones that did not occur in the deeper, dimictic lakes; this indicates a link between the frequent recirculation of these lakes and internal cycling of phosphorus. Secchi-disk transparency was limited by organic color in Sand Point, Namakan, and Rainy Lakes, and resuspended bottom material reduced transparency in Black Bay. Waters in the large lakes and embayments met nearly all U.S. Environmental Protection Agency criteria for protection of freshwater

  19. Multistate Evaluation of an Ultrafiltration-Based Procedure for Simultaneous Recovery of Enteric Microbes in 100-Liter Tap Water Samples▿

    PubMed Central

    Hill, Vincent R.; Kahler, Amy M.; Jothikumar, Narayanan; Johnson, Trisha B.; Hahn, Donghyun; Cromeans, Theresa L.

    2007-01-01

    Ultrafiltration (UF) is increasingly being recognized as a potentially effective procedure for concentrating and recovering microbes from large volumes of water and treated wastewater. Because of their very small pore sizes, UF membranes are capable of simultaneously concentrating viruses, bacteria, and parasites based on size exclusion. In this study, a UF-based water sampling procedure was used to simultaneously recover representatives of these three microbial classes seeded into 100-liter samples of tap water collected from eight cities covering six hydrologic areas of the United States. The UF-based procedure included hollow-fiber UF as the primary step for concentrating microbes and then used membrane filtration for bacterial culture assays, immunomagnetic separation for parasite recovery and quantification, and centrifugal UF for secondary concentration of viruses. Water samples were tested for nine water quality parameters to investigate whether water quality data correlated with measured recovery efficiencies and molecular detection levels. Average total method recovery efficiencies were 71, 97, 120, 110, and 91% for φX174 bacteriophage, MS2 bacteriophage, Enterococcus faecalis, Clostridium perfringens spores, and Cryptosporidium parvum oocysts, respectively. Real-time PCR and reverse transcription-PCR (RT-PCR) for seeded microbes and controls indicated that tap water quality could affect the analytical performance of molecular amplification assays, although no specific water quality parameter was found to correlate with reduced PCR or RT-PCR performance. PMID:17483281

  20. Relation between selected water-quality variables and lake level in Upper Klamath and Agency Lakes, Oregon

    USGS Publications Warehouse

    Wood, Tamara M.; Fuhrer, Gregory J.; Morace, Jennifer L.

    1996-01-01

    Based on the analysis of data that they have been collecting for several years, the Klamath Tribes recently recommended that the Bureau of Reclamation (Reclamation) modify the operating plan for the dam to make the minimum lake levels for the June-August period more closely resemble pre-dam conditions (Jacob Kann, written commun., 1995). The U.S. Geological Survey (USGS) was asked to analyze the available data for the lake and to assess whether the evidence exists to conclude that year-to-year differences in certain lake water-quality variables are related to year-to-year differences in lake level. The results of the analysis will be used as scientific input in the process of developing an operating plan for the Link River Dam.

  1. 40 CFR Appendix F to Part 132 - Great Lakes Water Quality Initiative Implementation Procedures

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aquatic life criteria or values may be developed when: i. The local water quality characteristics such as... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Great Lakes Water Quality Initiative... (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Pt. 132, App. F Appendix F to...

  2. 40 CFR Appendix F to Part 132 - Great Lakes Water Quality Initiative Implementation Procedures

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... use of this methodology may be found in the Great Lakes Water Quality Initiative Technical Support... (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Pt. 132, App. F Appendix F to... that is freely dissolved in the ambient water is different than that used to derive the system-wide...

  3. 40 CFR Appendix F to Part 132 - Great Lakes Water Quality Initiative Implementation Procedures

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... use of this methodology may be found in the Great Lakes Water Quality Initiative Technical Support... (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Pt. 132, App. F Appendix F to... that is freely dissolved in the ambient water is different than that used to derive the system-wide...

  4. Simulation of Fish, Mud, and Crystal Lakes and the shallow ground-water system, Dane County, Wisconsin

    USGS Publications Warehouse

    Krohelski, James T.; Lin, Yu-Feng; Rose, William J.; Hunt, Randall J.

    2002-01-01

    Model results suggest that the increase in regional ground-water recharge resulted in increased ground-water flow to the lake, which in turn resulted in increased lake stages. Simulation results of withdrawal of water from Fish Lake at 500 gallons per minute, assuming 1990?98 climatic conditions, indicate that after 1 year of pumping the stage of Fish and Mud Lakes would be reduced more than 1 foot and the stage of Crystal Lake would be reduced by less than 0.2 foot. When pumping is stopped, the lake stages would recover to near pre-pumping levels within about 3 years. When pumping is extended to 5 years, Fish and Mud Lake stage would be reduced by a maximum of 3.8 feet and Crystal Lake stage is reduced a maximum of 0.8 feet. After 4 years of recovery, Fish and Mud Lake stages are within 0.9 foot of prepumping levels and Crystal Lake stage is within 0.7 foot.

  5. PATTERNS OF LAKE HYDROLOGIC CHARACTERISTICS RELATED TO WATER LEVEL DRAWDOWN ACROSS THE CONTERMINOUS U.S.

    EPA Science Inventory

    Lake hydrologic characteristics related to water levels, such as drawdown distance and evaporative water loss, affect the physical, chemical, and biological condition of lakes. Disturbances such as water withdrawal and changing climate may alter water-level regimes and impact lak...

  6. Storage Capacity and Water Quality of Lake Ngardok, Babeldaob Island, Republic of Palau, 1996-98

    USGS Publications Warehouse

    Yeung, Chiu Wang; Wong, Michael F.

    1999-01-01

    A bathymetric survey conducted during March and April, 1996, determined the total storage capacity Lake Ngardok to be between 90 and 168 acre-feet. Elevation-surface area and elevation-capacity curves summarizing the current relations among elevation, surface area, and storage capacity were created from the bathymetric map. Rainfall and lake-elevation data collected from April 1996 to March 1998 indicated that lake levels correlated to rainfall values with lake elevation rising rapidly in response to heavy rainfall and then returning to normal levels within a few days. Mean lake elevation for the 22 month period of data was 59.5 feet which gives a mean storage capacity of 107 acre-feet and a mean surface area of 24.1 acre. A floating mat of reeds, which covered 58 percent of the lake surface area at the time of the bathymetric survey, makes true storage capacity difficult to estimate. Water-quality sampling during April 1996 and November 1997 indicated that no U.S. Environmental Protection Agency primary drinking-water standards were violated for analyzed organic and inorganic compounds and radionuclides. With suitable biological treatment, the lake water could be used for drinking-water purposes. Temperature and dissolved oxygen measurements indicated that Lake Ngardok is stratified. Given that air temperature on Palau exhibits little seasonal variation, it is likely that this pattern of stratification is persistent. As a result, complete mixing of the lake is probably rare. Near anaerobic conditions exist at the lake bottom. Low dissolved oxygen (3.2 milligrams per liter) measured at the outflow indicated that water flowing past the outflow was from the deep oxygen-depleted depths of the lake.

  7. Environmental characteristics and changes of sediment pore water dissolved organic matter in four Chinese lakes.

    PubMed

    Mostofa, Khan M G; Li, Wen; Wu, Fengchang; Liu, Cong-Qiang; Liao, Haiqing; Zeng, Li; Xiao, Min

    2018-01-01

    Sediment pore waters were examined in four Chinese lakes (Bosten, Qinghai, Chenghai and Dianchi) to characterise the sources of dissolved organic matter (DOM) and their microbial changes in the sediment depth profiles. Parallel factor (PARAFAC) modelling on the sample fluorescence spectra confirmed that the pore water DOM was mostly composed of two components with a mixture of both allochthonous and autochthonous fulvic acid-like substances in three lakes, except Lake Dianchi, and protein-like components in Lake Bosten. However, DOM in Lake Dianchi was composed of three components, including a fulvic acid-like, and two unidentified components, which could originate from mixed sources of either sewerage-impacted allochthonous or autochthonous organic matter (OM). Dissolved organic carbon (DOC) concentrations were typically high (583-7410 μM C) and fluctuated and increased vertically in the depth profile. The fluorescence intensity of the fulvic acid-like substance and absorbance at 254 nm increased vertically in the sediment pore waters of three lakes. A significant relationship between DOC and the fluorescence intensity of the fulvic acid-like component in the sediment pore waters of three lakes, except Lake Dianchi, suggested that the fulvic acid-like component could significantly contribute to total DOM and could originate via complex microbial processes in early diagenesis on OM (ca. phytoplankton, terrestrial plant material) in these lakes. Pore water DOM components could therefore be a useful indicator to assess the DOM sources of the lake sediment during sedimentation over the past several decades, which have been heavily affected by ambient terrestrial vegetation and human activities.

  8. Natural radioactivity in various water samples and radiation dose estimations in Bolu province, Turkey.

    PubMed

    Gorur, F Korkmaz; Camgoz, H

    2014-10-01

    The level of natural radioactivity for Bolu province of north-western Turkey was assessed in this study. There is no information about radioactivity measurement reported in water samples in the Bolu province so far. For this reason, gross α and β activities of 55 different water samples collected from tap, spring, mineral, river and lake waters in Bolu were determined. The mean activity concentrations were 68.11 mBq L(-1), 169.44 mBq L(-1) for gross α and β in tap water. For all samples the gross β activity is always higher than the gross α activity. All value of the gross α were lower than the limit value of 500 mBq L(-1) while two spring and one mineral water samples were found to have gross β activity concentrations of greater than 1000 mBq L(-1). The associated age-dependent dose from all water ingestion in Bolu was estimated. The total dose for adults had an average value exceeds the WHO recommended limit value. The risk levels from the direct ingestion of the natural radionuclides in tap and mineral water in Bolu were determinated. The mean (210)Po and (228)Ra risk the value of tap and mineral waters slightly exceeds what some consider on acceptable risk of 10(-4) or less. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Simulation of climate-change effects on streamflow, lake water budgets, and stream temperature using GSFLOW and SNTEMP, Trout Lake Watershed, Wisconsin

    USGS Publications Warehouse

    Hunt, Randall J.; Walker, John F.; Selbig, William R.; Westenbroek, Stephen M.; Regan, R. Steve

    2013-01-01

    Although groundwater and surface water are considered a single resource, historically hydrologic simulations have not accounted for feedback loops between the groundwater system and other hydrologic processes. These feedbacks include timing and rates of evapotranspiration, surface runoff, soil-zone flow, and interactions with the groundwater system. Simulations that iteratively couple the surface-water and groundwater systems, however, are characterized by long run times and calibration challenges. In this study, calibrated, uncoupled transient surface-water and steady-state groundwater models were used to construct one coupled transient groundwater/surface-water model for the Trout Lake Watershed in north-central Wisconsin, USA. The computer code GSFLOW (Ground-water/Surface-water FLOW) was used to simulate the coupled hydrologic system; a surface-water model represented hydrologic processes in the atmosphere, at land surface, and within the soil-zone, and a groundwater-flow model represented the unsaturated zone, saturated zone, stream, and lake budgets. The coupled GSFLOW model was calibrated by using heads, streamflows, lake levels, actual evapotranspiration rates, solar radiation, and snowpack measurements collected during water years 1998–2007; calibration was performed by using advanced features present in the PEST parameter estimation software suite. Simulated streamflows from the calibrated GSFLOW model and other basin characteristics were used as input to the one-dimensional SNTEMP (Stream-Network TEMPerature) model to simulate daily stream temperature in selected tributaries in the watershed. The temperature model was calibrated to high-resolution stream temperature time-series data measured in 2002. The calibrated GSFLOW and SNTEMP models were then used to simulate effects of potential climate change for the period extending to the year 2100. An ensemble of climate models and emission scenarios was evaluated. Downscaled climate drivers for the period

  10. Occurrence, Source, and Human Infection Potential of Cryptosporidium and Giardia spp. in Source and Tap Water in Shanghai, China▿

    PubMed Central

    Feng, Yaoyu; Zhao, Xukun; Chen, Jiaxu; Jin, Wei; Zhou, Xiaonong; Li, Na; Wang, Lin; Xiao, Lihua

    2011-01-01

    Genotyping studies on the source and human infection potential of Cryptosporidium oocysts in water have been almost exclusively conducted in industrialized nations. In this study, 50 source water samples and 30 tap water samples were collected in Shanghai, China, and analyzed by the U.S. Environmental Protection Agency (EPA) Method 1623. To find a cost-effective method to replace the filtration procedure, the water samples were also concentrated by calcium carbonate flocculation (CCF). Of the 50 source water samples, 32% were positive for Cryptosporidium and 18% for Giardia by Method 1623, whereas 22% were positive for Cryptosporidium and 10% for Giardia by microscopy of CCF concentrates. When CCF was combined with PCR for detection, the occurrence of Cryptosporidium (28%) was similar to that obtained by Method 1623. Genotyping of Cryptosporidium in 17 water samples identified the presence of C. andersoni in 14 water samples, C. suis in 7 water samples, C. baileyi in 2 water samples, C. meleagridis in 1 water sample, and C. hominis in 1 water sample. Therefore, farm animals, especially cattle and pigs, were the major sources of water contamination in Shanghai source water, and most oocysts found in source water in the area were not infectious to humans. Cryptosporidium oocysts were found in 2 of 30 tap water samples. The combined use of CCF for concentration and PCR for detection and genotyping provides a less expensive alternative to filtration and fluorescence microscopy for accurate assessment of Cryptosporidium contamination in water, although the results from this method are semiquantitative. PMID:21498768

  11. Water-Sediment Partition of Polycyclic Aromatic Hydrocarbons (PAHs) in Nansi Lake

    NASA Astrophysics Data System (ADS)

    Zhang, Guizhai; Diao, Youjiang

    2018-06-01

    Based on field data of polycyclic aromatic hydrocarbons (PAHs) in water and sediment in Nansi Lake. The concentrations and the partitioning characteristic of PAHs in the water and sediment were studied. The lgKd of high molecular weight PAHs were higher than the low molecular weight PAHs. The most of PAHs Kd values were negligible correlated with TOC, soluble salt, clay and pH of the sediment in Nansi Lake.

  12. Transporters associated with antigen processing (TAP) in sea bass (Dicentrarchus labrax, L.): molecular cloning and characterization of TAP1 and TAP2.

    PubMed

    Pinto, Rute D; Pereira, Pedro J B; dos Santos, Nuno M S

    2011-11-01

    The transporters associated with antigen processing (TAP), play an important role in the MHC class I antigen presentation pathway. In this work, sea bass (Dicentrarchus labrax) TAP1 and TAP2 genes and transcripts were isolated and characterized. Only the TAP2 gene is structurally similar to its human orthologue. As other TAP molecules, sea bass TAP1 and TAP2 are formed by one N-terminal accessory domain, one core membrane-spanning domain and one canonical C-terminal nucleotide-binding domain. Homology modelling of the sea bass TAP dimer predicts that its quaternary structure is in accordance with that of other ABC transporters. Phylogenetic analysis segregates sea bass TAP1 and TAP2 into each subfamily cluster of transporters, placing them in the fish class and suggesting that the basic structure of these transport-associated proteins is evolutionarily conserved. Furthermore, the present data provides information that will enable more studies on the class I antigen presentation pathway in this important fish species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Ecological Health and Water Quality Assessments in Big Creek Lake, AL

    NASA Astrophysics Data System (ADS)

    Childs, L. M.; Frey, J. W.; Jones, J. B.; Maki, A. E.; Brozen, M. W.; Malik, S.; Allain, M.; Mitchell, B.; Batina, M.; Brooks, A. O.

    2008-12-01

    Big Creek Lake (aka J.B. Converse Reservoir) serves as the water supply for the majority of residents in Mobile County, Alabama. The area surrounding the reservoir serves as a gopher tortoise mitigation bank and is protected from further development, however, impacts from previous disasters and construction have greatly impacted the Big Creek Lake area. The Escatawpa Watershed drains into the lake, and of the seven drainage streams, three have received a 303 (d) (impaired water bodies) designation in the past. In the adjacent ecosystem, the forest is experiencing major stress from drought and pine bark beetle infestations. Various agencies are using control methods such as pesticide treatment to eradicate the beetles. There are many concerns about these control methods and the run-off into the ecosystem. In addition to pesticide control methods, the Highway 98 construction projects cross the north area of the lake. The community has expressed concern about both direct and indirect impacts of these construction projects on the lake. This project addresses concerns about water quality, increasing drought in the Southeastern U.S., forest health as it relates to vegetation stress, and state and federal needs for improved assessment methods supported by remotely sensed data to determine coastal forest susceptibility to pine bark beetles. Landsat TM, ASTER, MODIS, and EO-1/ALI imagery was employed in Normalized Difference Vegetation Index (NDVI) and Normalized Difference Moisture Index (NDMI), as well as to detect concentration of suspended solids, chlorophyll and water turbidity. This study utilizes NASA Earth Observation Systems to determine how environmental conditions and human activity relate to pine tree stress and the onset of pine beetle invasion, as well as relate current water quality data to community concerns and gain a better understanding of human impacts upon water resources.

  14. Evaluation of thermokarst lake water balance in the Qinghai-Tibet Plateau via isotope tracers.

    PubMed

    Gao, Zeyong; Niu, Fujun; Lin, Zhanju; Luo, Jing; Yin, Guoan; Wang, Yibo

    2018-04-24

    Thermokarst lakes are a ubiquitous landscape feature, which widely distributed in the pan-arctic and some low latitude regions, and are associated with regional hydrological processes. The studies were taken to obtain a better understanding of the water balance of thermokarst lakes in the Qinghai-Tibet Plateau (QTP) in order to gain insight of the regional hydrological cycle. The characteristics of the stable isotopes δ 18 O and δ D were investigated in precipitation, permafrost meltwater, and thermokarst lake water in the continuous permafrost region of the QTP and analyzed the lake water balance using the isotope mass model. The results showed that the δ D-δ 18 O relationship in the thermokarst lakes (δ D = 5.45 δ 18 O - 18.95) differed from that of the local precipitation (δ D = 8.30 δ 18 O + 18.49) and permafrost meltwater (δ D = 5.78 δ 18 O - 23.41), and the mean isotope compositions in the thermokarst lakes were -7.2‰ in δ 18 O and -58.0‰ in δ D. The more positive isotope signals in thermokarst lakes than in the precipitation and permafrost meltwater revealed that the lakes had experienced stronger isotope enrichment. Additionally, the evaporation-to-inflow ratio (E/I) values were < 1 in most of the thermokarst lakes (84%), which might be explained by the recent expansion of the lake surfaces. However, 16% of the thermokarst lakes had shrunk, owing to thermokarst erosion, lateral expansion as the temperature increases, and lower recharge volume. Moreover, precipitation on the lake surface was only 14-18% of the inflow volume in the thermokarst lakes, and the surface-subsurface inflow and permafrost meltwater are very important for recharging the lakes and maintaining the water balance. The results of this study provide a comprehensive understanding of the influence of climate warming on hydrological processes in the permafrost regions in the QTP. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Water quality of selected lakes in Mount Rainier National Park, Washington with respect to lake acidification

    USGS Publications Warehouse

    Turney, G.L.; Dion, N.P.; Sumioka, S.S.

    1986-01-01

    Thirteen lakes in Mount Rainier National Park were evaluated for general chemical characteristics, sensitivity to acidification by acidic precipitation, and degree of existing acidification. The lakes studies were Allen, one of the Chenuis group, Crescent , Crystal, Eleanor, Fan, one of the Golden group, Marsh, Mowich, Mystic, Shriner, and two unnamed lakes. The lakes were sampled in August 1983. Specific conductance values were generally 21 microsiemens/cm at 25 C or less, and dissolved solids concentrations were generally 20 mg/L or less. The major cations were calcium and sodium, and the major anion was bicarbonate. Alkalinity concentrations ranged from 2.1 to 9.0 mg/L in 12 of the lakes. Allen Lake was the exception, having an alkalinity concentration of 27 mg/L. The pH values for all of the lakes ranged from 5.8 to 6.5. In most of the lakes, vertical profiles of temperature, dissolved oxygen, pH, and specific conductance were relatively uniform. In the deeper lakes, temperature decreased with depth and dissolved-oxygen concentrations increased to about 20 feet, remained constant to 80 ft, then decreased with increasing depth. Exceptions to general water quality patterns were observed in three lakes. Allen Lake had a specific conductance value of 58 Microsiemens/cm. The lake of the Golden group was anaerobic at the bottom and had relatively high concentrations of dissolved organic carbon and dissolved metals, and a lower light transmission than the other lakes studied. One of the unnamed lakes had relatively high concentrations of phytoplankton and dissolved organic carbon and relatively low levels of light transmission. Comparisons of lake data to acid-sensitivity thresholds for specific conductance and alkalinity indicated that all of the lakes except Allen would be sensitive to acidic precipitation. The small sizes of the lakes, and their locations in basins of high precipitation and weathering-resistant rock types, enhance their sensitivity. None of the

  16. Harnessing Alaska. [Hydroelectric power in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Four hydropower projects will provide electricity for isolated Alaskan cities by late 1984. A 15Mw project is already producing power. The three remaining hydro projects are described. Tyee Lake is a lake tap project. Water is supplied to the powerhouse by tapping the lake via a tunnel blasted through the lake bottom. Water then flows through a vertical pressure shaft to a power tunnel and into an aboveground powerhouse. Swan Lake consists of a double-curved arch dam and a power tunnel. Terror Lake consists of a concrete-faced compacted rockfill dam and a power tunnel.

  17. Effects of the human activities on the water level process of the Poyang Lake

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-kai; Chen, Li; Yang, Yun-xian

    2017-12-01

    The hydrological cycles in basin is profoundly affected by human activities. Yangtze River is a world class river with complex river-lake relations in the middle reaches. As the Three Gorges Reservoir (TGR) and other controlled reservoirs in the main stream and tributaries have been put into operation, the water regimes of the main stream in the middle reaches and Poyang Lake have been changed by water impounding and sediments trapping, clean water discharged from reservoirs, accelerating the evolution of the relationship of river and lake. After entering the 21st century, autumn droughts become more serious in Poyang Lake basin; the relationship between river and lake becomes tense. In light of the hydrological data in Poyang Lake since 2000s, this article made quantitative analyses of the influences of the human activities on the variation of the Poyang Lake level by authors. The results indicate that the main stream of Yangtze River, particularly the regulation of Three Gorges Reservoir, exerts a profound influence on the variation process of the Poyang Lake level. The regulation influence of the Upper Reach of the Yangtze River’s Reservoir Group (URYRRG) could spread to Tangyin area in the middle of the lake in October.

  18. Tracing of the Rhône River within Lake Geneva using stable isotope composition of water

    NASA Astrophysics Data System (ADS)

    Cotte, Gabriel; Vennemann, Torsten

    2017-04-01

    Determining the hydrodynamics of lake water is essential for a better understanding of nutrient transport but also of the distribution of potential pollutants through water reservoirs. The objective of this study is to understand the mixing of Rhône River water within Lake Geneva. During summer and autumn, when the lake thermally well stratified, the Rhône River water can potentially flow more or less directly towards and finally out of the "Petit Lac" (small lake basin close to Geneva) more than 55 km from its mouth. During winter, when stratification is weakened, the water from the Rhône River mixes more diffusively with the water of Lake Geneva. The aim of this study is to determine the path of the Rhône River through the lake more precisely and identify the thermal and meteorologic conditions favourable for different types of flows as suggested by physical circulation models of the Rhône River interflows. Waters are sampled from different North-South transects across the lake. Bathymetric profiles are measured for temperature, pH, conductivity and oxygen concentrations. In addition, the H- and O-isotope compositions of water, the C-isotope composition of dissolved inorganic carbon and the major ions are analysed. Sampling campaigns are carried out every two months to study the hydrodynamics of the lake at varying thermal conditions. The isotopic composition of water was already proven to be a powerful tool to trace the Rhône River interflow within the lake (Halder et al., 2013) but the details of this interflow remain debatable. It is the aim of the present study to use the isotopic tracer method in much more detailed cross-sections as a tool to both test and verify interflow models based on wind patterns and thermal dispersion of the waters. The chosen cross-sections, to be sampled regularly and "event-based", that is after extended periods of similar meteorological conditions, should allow for more precise estimates of the path of the Rhône water

  19. A classification of freshwater Louisiana lakes based on water quality and user perception data.

    PubMed

    Burden, D G; Malone, R F

    1987-09-01

    An index system developed for Louisiana lakes was based on correlations between measurable water quality parameters and perceived lake quality. Support data was provided by an extensive monitoring program of 30 lakes coordinated with opinion surveys undertaken during summer 1984. Lakes included in the survey ranged from 4 to 735 km(2) in surface area with mean depths ranging from 0.5 to 8.0 m. Water quality data indicated most of these lakes are eutrophic, although many have productive fisheries and are considered recreational assets. Perception ratings of fishing quality and its associated water quality were obtained by distributing approximately 1200 surveys to Louisiana Bass Club Associaton members. The ability of Secchi disc transparency, total organic carbon, total Kjeldahl nitrogen, total phosphorus, and chlorophyll a to discriminate between perception classes was examined using probability distributions and multivariate analyses. Secchi disc and total organic carbon best reflected perceived lake conditions; however, these parameters did not provide the discrimination necessary for developing a quantitative risk assessment of lake trophic state. Consequently, an interim lakes index system was developed based on total organic carbon and perceived lake conditions. The developed index system will aid State officials in interpretating and evaluating regularly collected lake quality data, recognizing potential problem areas, and identifying proper management policies for protecting fisheries usage within the State.

  20. The blue-to-green reflectance ratio and lake water quality

    NASA Technical Reports Server (NTRS)

    Piech, K. R.; Schott, J. R.; Stewart, K. M.

    1978-01-01

    Correlations between the relative values of the blue and green reflectances of a lake and water quality indices, such as depth of photic zone, Secchi disk transparency, attenuation coefficient, and chlorophyll concentration, have been observed during an intensive satellite, aircraft, and surface vessel study of Lake Ontario and Conesus Lake. Determinations of blue and green reflectances from Skylab S190A color imagery are in excellent agreement with values obtained from small-scale color imagery from aircraft. Further, the accuracy of the satellite data appears within that required for extrapolation to the water quality indices. The study has also determined that changes in chlorophyll, lignin, and humic acid concentration can be discriminated by the behavior of the blue-to-green reflectance ratio and the reflectances of the green and red bands.

  1. Declining survival of lake trout stocked during 1963-1986 in U.S. waters of Lake Superior

    USGS Publications Warehouse

    Hansen, Michael J.; Ebener, Mark P.; Schorfhaar, Richard G.; Schram, Stephen T.; Schreiner, Donald R.; Selgeby, James H.

    1994-01-01

    The average catch per effort (CPE) values for the 1963–1982 year-classes of stocked lake trout Salvelinus namaycush caught at age 7 in gill nets and for the 1976–1986 year-classes caught at ages 2–4 in trawls declined significantly in U.S. waters of Lake Superior. The declines in CPE were not explained by reduced stocking, but rather by significant declines in survival indices of the year-classes of stocked lake trout. Increases in mortality occurred in year-classes before the fish reached ages 2–4, before they were recruited into the sport and commercial fisheries, and before they reached sizes vulnerable to sea lamprey predation. We conclude that declining abundance of stocked lake trout resulted from increased mortality, which may have been caused by competition, predation, or by a combination of these and other factors. Restoration of lake trout in Lake Superior may now depend on prudent management of naturally reproducing stocks rather than on stocking of hatchery-reared fish.

  2. Hydrology and water quality of lakes and streams in Orange County, Florida

    USGS Publications Warehouse

    German, Edward R.; Adamski, James C.

    2005-01-01

    Orange County, Florida, is continuing to experience a large growth in population. In 1920, the population of Orange County was less than 20,000; in 2000, the population was about 896,000. The amount of urban area around Orlando has increased considerably, especially in the northwest part of the County. The eastern one-third of the County, however, had relatively little increase in urbanization from 1977-97. The increase of population, tourism, and industry in Orange County and nearby areas changed land use; land that was once agricultural has become urban, industrial, and major recreation areas. These changes could impact surface-water resources that are important for wildlife habitat, for esthetic reasons, and potentially for public supply. Streamflow characteristics and water quality could be affected in various ways. As a result of changing land use, changes in the hydrology and water quality of Orange County's lakes and streams could occur. Median runoff in 10 selected Orange County streams ranges from about 20 inches per year (in/yr) in the Wekiva River to about 1.1 in/yr in Cypress Creek. The runoff for the Wekiva River is significantly higher than other river basins because of the relatively constant spring discharge that sustains streamflow, even during drought conditions. The low runoff for the Cypress Creek basin results from a lack of sustained inflow from ground water and a relatively large area of lakes within the drainage basin. Streamflow characteristics for 13 stations were computed on an annual basis and examined for temporal trends. Results of the trend testing indicate changes in annual mean streamflow, 1-day high streamflow, or 7-day low streamflow at 8 of the 13 stations. However, changes in 7-day low streamflow are more common than changes in annual mean or 1-day high streamflow. There is probably no single reason for the changes in 7-day low streamflows, and for most streams, it is difficult to determine definite reasons for the flow

  3. Nutrient additions by waterfowl to lakes and reservoirs: predicting their effects on productivity and water quality

    USGS Publications Warehouse

    Manny, Bruce A.; Johnson, W.C.; Wetzel, R.G.

    1994-01-01

    Lakes and reservoirs provide water for human needs and habitat for aquatic birds. Managers of such waters may ask whether nutrients added by waterfowl degrade water quality. For lakes and reservoirs where primary productivity is limited by phosphorus (P), we developed a procedure that integrates annual P loads from waterfowl and other external sources, applies a nutrient load-response model, and determines whether waterfowl that used the lake or reservoir degraded water quality. Annual P loading by waterfowl can be derived from a figure in this report, using the days per year that each kind spent on any lake or reservoir. In our example, over 6500 Canada geese (Branta canadensis) and 4200 ducks (mostly mallards, Anas platyrhynchos) added 4462 kg of carbon (C), 280 kg of nitrogen (N), and 88 kg of P y-1 to Wintergreen Lake in southwestern Michigan, mostly during their migration. These amounts were 69% of all C, 27% of all N, and 70% of all P that entered the lake from external sources. Loads from all external sources totaled 840 mg P m-2 y-1. Application of a nutrient load-response model to this concentration, the hydraulic load (0.25 m y-1), and the water residence time (9.7 y) of Wintergreen Lake yielded an average annual concentration of total P in the lake of 818 mg m-3 that classified the lake as hypertrophic. This trophic classification agreed with independent measures of primary productivity, chlorophyll-a, total P, total N, and Secchi disk transparency made in Wintergreen Lake. Our procedure showed that waterfowl caused low water quality in Wintergreen Lake.

  4. Fusion of hyperspectral remote sensing data for near real-time monitoring of microcystin distribution in Lake Erie

    NASA Astrophysics Data System (ADS)

    Vannah, Benjamin; Chang, Ni-Bin

    2013-09-01

    Urban growth and agricultural production have caused an influx of nutrients into Lake Erie, leading to eutrophic zones. These conditions result in the formation of algal blooms, some of which are toxic due to the presence of Microcystis (a cyanobacteria), which produces the hepatotoxin microcystin. Microcystis has a unique advantage over its competition as a result of the invasive zebra mussel population that filters algae out of the water column except for the toxic Microcystis. The toxin threatens human health and the ecosystem, and it is a concern for water treatment plants using the lake water as a tap water source. This presentation demonstrates the prototype of a near real-time early warning system using Integrated Data Fusion techniques with the aid of both hyperspectral remote sensing data to determine spatiotemporal microcystin concentrations. The temporal resolution of MODIS is fused with the higher spatial and spectral resolution of MERIS to create synthetic images on a daily basis. As a demonstration, the spatiotemporal distributions of microcystin within western Lake Erie are reconstructed using the band data from the fused products and applied machine-learning techniques. Analysis of the results through statistical indices confirmed that the this type of algorithm has better potential to accurately estimating microcystin concentrations in the lake, which is better than current two band models and other computational intelligence models.

  5. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments

    PubMed Central

    He, Ruo; Wooller, Matthew J; Pohlman, John W; Quensen, John; Tiedje, James M; Leigh, Mary Beth

    2012-01-01

    Methane (CH4) emitted from high-latitude lakes accounts for 2–6% of the global atmospheric CH4 budget. Methanotrophs in lake sediments and water columns mitigate the amount of CH4 that enters the atmosphere, yet their identity and activity in arctic and subarctic lakes are poorly understood. We used stable isotope probing (SIP), quantitative PCR (Q-PCR), pyrosequencing and enrichment cultures to determine the identity and diversity of active aerobic methanotrophs in the water columns and sediments (0–25 cm) from an arctic tundra lake (Lake Qalluuraq) on the north slope of Alaska and a subarctic taiga lake (Lake Killarney) in Alaska's interior. The water column CH4 oxidation potential for these shallow (∼2 m deep) lakes was greatest in hypoxic bottom water from the subarctic lake. The type II methanotroph, Methylocystis, was prevalent in enrichment cultures of planktonic methanotrophs from the water columns. In the sediments, type I methanotrophs (Methylobacter, Methylosoma and Methylomonas) at the sediment-water interface (0–1 cm) were most active in assimilating CH4, whereas the type I methanotroph Methylobacter and/or type II methanotroph Methylocystis contributed substantially to carbon acquisition in the deeper (15–20 cm) sediments. In addition to methanotrophs, an unexpectedly high abundance of methylotrophs also actively utilized CH4-derived carbon. This study provides new insight into the identity and activity of methanotrophs in the sediments and water from high-latitude lakes. PMID:22592821

  6. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments

    USGS Publications Warehouse

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Quensen, John; Tiedje, James M.; Leigh, Mary Beth

    2012-01-01

    Methane (CH4) emitted from high-latitude lakes accounts for 2–6% of the global atmospheric CH4 budget. Methanotrophs in lake sediments and water columns mitigate the amount of CH4 that enters the atmosphere, yet their identity and activity in arctic and subarctic lakes are poorly understood. We used stable isotope probing (SIP), quantitative PCR (Q-PCR), pyrosequencing and enrichment cultures to determine the identity and diversity of active aerobic methanotrophs in the water columns and sediments (0–25 cm) from an arctic tundra lake (Lake Qalluuraq) on the north slope of Alaska and a subarctic taiga lake (Lake Killarney) in Alaska's interior. The water column CH4 oxidation potential for these shallow (~2m deep) lakes was greatest in hypoxic bottom water from the subarctic lake. The type II methanotroph, Methylocystis, was prevalent in enrichment cultures of planktonic methanotrophs from the water columns. In the sediments, type I methanotrophs (Methylobacter, Methylosoma and Methylomonas) at the sediment-water interface (0–1 cm) were most active in assimilating CH4, whereas the type I methanotroph Methylobacter and/or type II methanotroph Methylocystis contributed substantially to carbon acquisition in the deeper (15–20 cm) sediments. In addition to methanotrophs, an unexpectedly high abundance of methylotrophs also actively utilized CH4-derived carbon. This study provides new insight into the identity and activity of methanotrophs in the sediments and water from high-latitude lakes.

  7. Rapid rise of water level for Tibetan lakes: an analysis of the relation with climate

    NASA Astrophysics Data System (ADS)

    Song, C.; Huang, B.

    2013-12-01

    The Tibetan Plateau (TP) has a large number of alpine lakes, which are sensitive indicators of climate variability due to minimal disturbances from human activities. Although earlier work has examined lake area and water level changes on the TP in the past several decades, so far, the climate-driven mechanism of lake variations is still not clear. In particular, it is uncertain which climatic factor (increased glacial meltwater caused by climate warming, or precipitation changes, etc.) induced the acceleration of lake growth since mid-1990s. This study examines water level changes of lakes during1990s~2011 by combining satellite Laser altimetry (covering small lakes due to finer footprints, but only during 2003~2009) and Radar altimetry (since 1990s, but only for a few large lakes due to coarse footprints). The precipitation and evaporation changes are also analyzed based on the GPCP data and station observations, which reveal that precipitation on the inner and northeast TP has experienced a significant increase of 2~8 mm/yr since mid-1990s and evaporation of most stations has showed an upward tendency. Two main findings of analyses on the relation of lake expansion and climate variability are summarized as follows: (1) The ICESat altimetry data during 2003~2009 shows that there is no significant difference between the change rates of water level of the 56 glacier-fed lakes and other 40 lakes without glacial meltwater supply, which implies that glacier melting induced by climate warming is probably not the dominating factor of rapid lake expansion. Six pairs of adjacent lakes with and without glacier supply (each pair is assumed under similar climate conditions) in different geographical regions (near the Nyainqêntanglha Mts., east Gangdise Mts., southeast Karakorum Mts., the Kunlun Mts., and the HolXil) were selected to further examine the impact of the glacier melting on lake expansions. Results show that some lakes without glacier supply even have higher

  8. GROUND WATER QUALITY SURROUNDING LAKE TEXOMA DURING DROUGHT CONDITIONS

    EPA Science Inventory

    Water quality data from 55 producing monitoring wells during drought conditions surrounding Lake Texoma, located on the border of Oklahoma and Texas, was compared to assess the influence of drought on groundwater quality. The main water quality parameter measured was nitrate, an...

  9. WATER QUALITY ASSESSMENT OF LAKE TEXOMA BEACHES, 1999-2001

    EPA Science Inventory

    A biological and inorganic assessment of five beaches on Lake Texoma was conducted from September 1999 through July 2001. Water samples for each beach site were divided into two groups, a swimming season and non-swimming season. Water properties such as temperature, alkalinity,...

  10. Physical and hydrochemical evidence of lake leakage near Jim Woodruff lock and dam and ground-water inflow to Lake Seminole, and an assessment of karst features in and near the lake, southwestern Georgia and northwestern Florida

    USGS Publications Warehouse

    Torak, Lynn J.; Crilley, Dianna M.; Painter, Jaime A.

    2006-01-01

    Hydrogeologic data and water-chemistry analyses indicate that Lake Seminole leaks into the Upper Floridan aquifer near Jim Woodruff Lock and Dam, southwestern Georgia and northwestern Florida, and that ground water enters Lake Seminole along upstream reaches of the lake's four impoundment arms (Chattahoochee and Flint Rivers, Spring Creek, and Fishpond Drain). Written accounts by U.S. Army Corps of Engineers geologists during dam construction in the late 1940s and early 1950s, and construction-era photographs, document karst-solution features in the limestone that comprise the lake bottom and foundation rock to the dam, and confirm the hydraulic connection of the lake and aquifer. More than 250 karst features having the potential to connect the lake and aquifer were identified from preimpoundment aerial photographs taken during construction. An interactive map containing a photomosaic of 53 photographic negatives was orthorectfied to digital images of 1:24,000-scale topographic maps to aid in identifying karst features that function or have the potential to function as locations of water exchange between Lake Seminole and the Upper Floridan aquifer. Some identified karst features coincide with locations of mapped springs, spring runs, and depressions that are consistent with sinkholes and sinkhole ponds. Hydrographic surveys using a multibeam echosounder (sonar) with sidescan sonar identified sinkholes in the lake bottom along the western lakeshore and in front of the dam. Dye-tracing experiments indicate that lake water enters these sinkholes and is transported through the Upper Floridan aquifer around the west side of the dam at velocities of about 500 feet per hour to locations where water 'boils up' on land (at Polk Lake Spring) and in the channel bottom of the Apalachicola River (at the 'River Boil'). Water discharging from Polk Lake Spring joins flow from a spring-fed ground-water discharge zone located downstream of the dam; the combined flow disappears into

  11. Water level monitoring using radar remote sensing data: Application to Lake Kivu, central Africa

    NASA Astrophysics Data System (ADS)

    Munyaneza, Omar; Wali, Umaru G.; Uhlenbrook, Stefan; Maskey, Shreedhar; Mlotha, McArd J.

    Satellite radar altimetry measures the time required for a pulse to travel from the satellite antenna to the earth’s surface and back to the satellite receiver. Altimetry on inland lakes generally shows some deviation from in situ level measurements. The deviation is attributed to the geographically varying corrections applied to account for atmospheric effects on radar waves. This study was focused on verification of altimetry data for Lake Kivu (2400 km 2), a large inland lake between Rwanda and the Democratic Republic of Congo (DRC) and estimating the lake water levels using bathymetric data combined with satellite images. Altimetry data obtained from ENVISAT and ERS-2 satellite missions were compared with water level data from gauging stations for Lake Kivu. Gauge data for Lake Kivu were collected from the stations ELECTROGAZ and Rusizi. ENVISAT and ERS-2 data sets for Lake Kivu are in good agreement with gauge data having R2 of 0.86 and 0.77, respectively. A combination of the two data sets improved the coefficient of determination to 95% due to the improved temporal resolution of the data sets. The calculated standard deviation for Lake Kivu water levels was 0.642 m and 0.701 m, for ENVISAT and ERS-2 measurements, respectively. The elevation-surface area characteristics derived from bathymetric data in combination with satellite images were used to estimate the lake level gauge. Consequently, the water level of Lake Kivu could be estimated with an RMSE of 0.294 m and an accuracy of ±0.58 m. In situations where gauges become malfunctioning or inaccessible due to damage or extreme meteorological events, the method can be used to ensure data continuity.

  12. Modelling the Loktak Lake Basin to Assess Human Impact on Water Resources

    NASA Astrophysics Data System (ADS)

    Eliza, K.

    2015-12-01

    Loktak Lake is an internationally important, Ramsar designated, fresh water wetland system in the state of Manipur, India. The lake was also listed under Montreux Record on account of the ecological modifications that the lake system has witnessed over time. A characteristic feature of this lake is the extensive occurrence of coalesced, naturally or otherwise, vegetative masses floating over it. A contiguous 40 km2 area of Phumdis, as these vegetative masses are locally referred to, also constitutes the only natural home of the endemic and endangered species of Manipur's brow-antlered deer popularly known as Sangai. Appropriately notified as Keibul Lamjao National Park by Government of India, this natural feature is known to be the world's largest floating park. Water quality and sediment deposition on account of soil erosion in its catchments are some of the emerging concerns along with a reported enhanced frequency and duration of flooding of the shore areas, reduced fish catch within a visibly deteriorated overall natural ecosystem. Disturbances of watershed processes, command area management practices, ineffective as indeed largely absent, waste management practices and management interventions linked to the Loktak Hydroelectric Project are often cited as the principal triggers that are seen to be responsible for the damage. An effective management protocol for the Lake requires a rigorous understanding of its hydrobiology and eco-hydrodynamics. The present study is carried out to establish such a characterization of the various rivers systems draining directly into the Lake using MIKE SHE, MIKE 11 HD and MIKE 11 ECO Lab modelling platforms. Water quality modelling was limited to dissolved oxygen (DO), biological oxygen demand (BOD) and water temperature. Model calibration was done using the available measured water quality data. The derived results were then investigated for causal correlation with anthropogenic influences to assess human impact on water

  13. A WHOLE-LAKE WATER QUALITY SURVEY OF LAKE OAHE BASED ON A SPATIALLY-BALANCED PROBABILISTIC DESIGN

    EPA Science Inventory

    Assessing conditions on large bodies of water presets multiple statistical and logistical challenges. As part of the Upper Missouri River Program of the Environmental Monitoring and Assessment Project (EMAP) we surveyed water quality of Lake Oahe in July-August, 2002 using a spat...

  14. Water quality and algal community dynamics of three deepwater lakes in Minnesota utilizing CE-QUAL-W2 models

    USGS Publications Warehouse

    Smith, Erik A.; Kiesling, Richard L.; Galloway, Joel M.; Ziegeweid, Jeffrey R.

    2014-01-01

    Water quality, habitat, and fish in Minnesota lakes will potentially be facing substantial levels of stress in the coming decades primarily because of two stressors: (1) land-use change (urban and agricultural) and (2) climate change. Several regional and statewide lake modeling studies have identified the potential linkages between land-use and climate change on reductions in the volume of suitable lake habitat for coldwater fish populations. In recent years, water-resource scientists have been making the case for focused assessments and monitoring of sentinel systems to address how these stress agents change lakes over the long term. Currently in Minnesota, a large-scale effort called “Sustaining Lakes in a Changing Environment” is underway that includes a focus on monitoring basic watershed, water quality, habitat, and fish indicators of 24 Minnesota sentinel lakes across a gradient of ecoregions, depths, and nutrient levels. As part of this effort, the U.S. Geological Survey, in cooperation with the Minnesota Department of Natural Resources, developed predictive water quality models to assess water quality and habitat dynamics of three select deepwater lakes in Minnesota. The three lakes (Lake Carlos in Douglas County, Elk Lake in Clearwater County, and Trout Lake in Cook County) were assessed under recent (2010–11) meteorological conditions. The three selected lakes contain deep, coldwater habitats that remain viable during the summer months for coldwater fish species. Hydrodynamics and water-quality characteristics for each of the three lakes were simulated using the CE-QUAL-W2 model, which is a carbon-based, laterally averaged, two-dimensional water-quality model. The CE-QUAL-W2 models address the interaction between nutrient cycling, primary production, and trophic dynamics to predict responses in the distribution of temperature and oxygen in lakes. The CE-QUAL-W2 models for all three lakes successfully predicted water temperature, on the basis of the

  15. Water resources of the Red Lake Indian Reservation, northwestern Minnesota

    USGS Publications Warehouse

    Ruhl, J.F.

    1991-01-01

    The quality of ground water is suitable for drinking and other household uses, and the quality of the surface water generally meets U.S. Environmental Protection Agency criteria necessary for the maintenance of aquatic life. The major ions in both ground and surface water are calcium, magnesium, and bicarbonate. Lower and Upper Red Lakes are eutrophic to mesotrophic on the basis of their summer Secchi disk-transparency readings, which ranged from 2.6 to 8.2 feet. The concentration of total organic carbon in samples from Lower and Upper Red Lakes and four streams were below or, in the case of one stream, about equal to 30 milligrams per liter, which is indicative of water little affected by human activities. The sample with the highest organic carbon content was collected from a stream that drained peatlands, which were probably sources of organic matter in the runoff. The concentration of nitrite plus nitrate in samples collected from Lower and Upper Red Lakes in late summer was below 0.01 milligrams per liter, which is characteristic of water uncontaminated by animal wastes. Total phosphorus in these samples ranged from 0.01 to 0.02 milligrams per liter. Most of this phosphorus was in the particulate organic fraction because of the abundance of phytoplankton.

  16. Do changes in climate and land use pose a risk to the future water availability of Mediterranean Lakes?

    NASA Astrophysics Data System (ADS)

    Bucak, T.; Trolle, D.; Andersen, H. E.; Thodsen, H.; Erdoğan, Ş.; Levi, E. E.; Filiz, N.; Jeppesen, E.; Beklioğlu, M.

    2016-12-01

    Inter- and intra-annual water level fluctuations and change in water flow regime are intrinsic characteristics of Mediterranean lakes. However, considering the climate change projections for the water-limited Mediterranean region where potential evapotranspiration exceeds precipitation and with increased air temperatures and decreased precipitation, more dramatic water level declines in lakes and severe water scarcity problems are expected to occur in the future. Our study lake, Lake Beyşehir, the largest freshwater lake in the Mediterranean basin, is - like other Mediterranean lakes - under pressure due to water abstraction for irrigated crop farming and climatic changes, and integrated water level management is therefore required. We used an integrated modeling approach to predict the future lake water level of Lake Beyşehir in response to the future changes in both climate and, potentially, land use by linking the catchment model Soil and Water Assessment Tool (SWAT) with a Support Vector Machine Regression model (ɛ-SVR). We found that climate change projections caused enhanced potential evapotranspiration and reduced total runoff, whereas the effects of various land use scenarios within the catchment were comparatively minor. In all climate scenarios applied in the ɛ-SVR model, changes in hydrological processes caused a water level reduction, predicting that the lake may dry out already in the 2040s with the current outflow regulation considering the most pessimistic scenario. Based on model runs with optimum outflow management, a 9-60% reduction in outflow withdrawal is needed to prevent the lake from drying out by the end of this century. Our results indicate that shallow Mediterranean lakes may face a severe risk of drying out and loss of ecosystem value in near future if the current intense water abstraction is maintained. Therefore, we conclude that outflow management in water-limited regions in a warmer and drier future and sustainable use of water

  17. Aquatic environmental assessment of Lake Balaton in the light of physical-chemical water parameters.

    PubMed

    Sebestyén, Vitkor; Németh, József; Juzsakova, Tatjana; Domokos, Endre; Kovács, Zsófia; Rédey, Ákos

    2017-11-01

    One of the issues of the Hungarian Water Management Strategy is the improvement and upgrading of the water of Lake Balaton. The Water Framework Directive (WFD) specifies and sets forth the achievement of the good ecological status. However, the assessment of the water quality of the lake as a complex system requires a comprehensive monitoring and evaluation procedure. Measurements were carried out around the Lake Balaton at ten different locations/sites and 13 physical-chemical parameters were monitored at each measurement site.For the interpretation of the water chemistry parameters the Aquatic Environmental Assessment (AEA) method devised by authors was used for the water body of the Lake Balaton. The AEA method can be used for all types of the water bodies since it is flexible and using individual weighting procedure for the water chemistry parameters comprehensive information can be obtain. The AEA method was compared with existing EIA methods according to a predefined criterion system and proved to be the most suitable tool for evaluating the environmental impacts in our study.On the basis of the results it can be concluded that the status of the quality of studied area on the Lake Balaton can be categorized as proper quality (from the outcome of the ten measurement sites this conclusion was reached at seven sites).

  18. An Analysis of Total Phosphorus Dispersion in Lake Used As a Municipal Water Supply.

    PubMed

    Lima, Rômulo C; Mesquita, André L A; Blanco, Claudio J C; Santos, Maria de Lourdes S; Secretan, Yves

    2015-09-01

    In Belém city is located the potable water supply system of its metropolitan area, which includes, in addition to this city, four more municipalities. In this water supply complex is the Água Preta lake, which serves as a reservoir for the water pumped from the Guamá river. Due to the great importance of this lake for this system, several works have been devoted to its study, from the monitoring of the quality of its waters to its hydrodynamic modeling. This paper presents the results obtained by computer simulation of the phosphorus dispersion within this reservoir by the numerical solution of two-dimensional equation of advection-diffusion-reaction by the method θ/SUPG. Comparing these results with data concentration of total phosphorus collected from November 2008 to October 2009 and from satellite photos show that the biggest polluters of the water of this lake are the domestic sewage dumps from the population living in its vicinity. The results obtained indicate the need for more information for more precise quantitative analysis. However, they show that the phosphorus brought by the Guamá river water is consumed in an area adjacent to the canal that carries this water into the lake. Phosphorus deposits in the lake bottom should be monitored to verify their behavior, thus preventing the quality of water maintained therein.

  19. Water quality parameters response to temperature change in small shallow lakes

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Li, Hua; Liang, Xinqiang; Yao, Yuxin; Zhou, Li; Cui, Xinyi

    Effects of temperature (T) on water quality of three small shallow lakes in Taihu Lake region of China were investigated. The annual temperature was classified into three levels: low temperature (LT, 4 °C < T ⩽ 10 °C), middle temperature (MT, 10 °C < T ⩽ 20 °C), and high temperature (HT, 20 °C < T ⩽ 30 °C). Results showed that total nitrogen (TN) and total phosphorus (TP) concentrations might go to a fixed value (or range) in small shallow lakes receiving domestic sewage and farm drainage water. Nitrogen concentrations in the lakes were mainly in the form of nitrate (NO3-) at above concerned three temperature levels, and nitrogen concentrations in the forms of TN, TIN, and NO3- were increased with the increase of nutrient input. At the LT and MT levels, there was a series of good cubic curve relationships between temperatures and three N forms (TN, NO3- and NH4+). The temperatural inflexion change points in the curves were nearly at 7 °C and 14 °C, respectively. However, no significant relationship between temperature and any water quality parameter was observed at the HT level. The significant relationship of TIN to TN, NO3- to TN and NH4+ to dissolve oxygen (DO) was exist in three temperature portions, and TP to Chemical oxygen demand (COD, determined by potassium permanganate oxidation methods) in LT and MT, TP to pH or DO in HT also exist. COD were less than 6 mg L-1 at each temperature level, and pH values were the largest in HT than it in LT or MT. Thus, changes between temperature and water quality parameters (TN, NO3-, NH4+ and TP) obviously nearly in 7 °C or 14 °C in lakes show that water self-purification of natural small shallow lakes were obviously with temperature changed.

  20. Water-quality assessment of Lakes Maumelle and Winona, Arkansas, 1991 through 2003

    USGS Publications Warehouse

    Galloway, Joel M.; Green, W. Reed

    2004-01-01

    Lakes Maumelle and Winona are water-supply reservoirs for the Little Rock and North Little Rock metropolitan areas in central Arkansas. In addition to water supply, the reservoirs are used for recreation and fish and wildlife habitat. The purpose of this report is to describe the hydrology and water quality of Lakes Maumelle and Winona and their inflows from data collected by the U.S. Geological Survey in cooperation with Central Arkansas Water for calendar years 1991 through 2003. The main inflows into Lakes Maumelle and Winona, the Maumelle River and Alum Fork Saline River, exhibited typical seasonal variability in streamflow with high flows usually occurring in the late fall, winter, and early spring, and low or no flow in the summer and early fall. The highest annual mean streamflow occurred in 1991 and the lowest annual mean streamflow occurred in 1992 for the Maumelle River and 1995 for the Alum Fork Saline River. Water quality measured in Lakes Maumelle and Winona varied spatially and temporally. Although total phosphorus concentrations were substantially higher at the upper ends of the lakes than at the lower ends of the lakes, nitrogen and orthophosphorus concentrations were not significantly different among the sampling sites on each lake. The highest concentrations of nitrogen generally were measured in 1991 and from 1998 through 2003 at all of the sampling sites. The highest total phosphorus concentrations were measured from 1994 to 1996 and from 1998 to 2001 on Lake Maumelle and from 1993 to 1994 on Lake Winona. Total and dissolved organic carbon concentrations were similar among sites on each lake and the greatest concentrations were measured in 1996 and 1997 at all of the sites. The chlorophyll a concentrations varied seasonally, with the highest concentrations in October and November, but were relatively uniform spatially and annually in Lakes Maumelle and Winona for 1991 through 2003. Water clarity was greater at the lower ends of the lakes than at