Sample records for taqman real-time polymerase

  1. Development of an on-site rapid real-time polymerase chain reaction system and the characterization of suitable DNA polymerases for TaqMan probe technology.

    PubMed

    Furutani, Shunsuke; Naruishi, Nahoko; Hagihara, Yoshihisa; Nagai, Hidenori

    2016-08-01

    On-site quantitative analyses of microorganisms (including viruses) by the polymerase chain reaction (PCR) system are significantly influencing medical and biological research. We have developed a remarkably rapid and portable real-time PCR system that is based on microfluidic approaches. Real-time PCR using TaqMan probes consists of a complex reaction. Therefore, in a rapid real-time PCR, the optimum DNA polymerase must be estimated by using actual real-time PCR conditions. In this study, we compared the performance of three DNA polymerases in actual PCR conditions using our rapid real-time PCR system. Although KAPA2G Fast HS DNA Polymerase has the highest enzymatic activity among them, SpeedSTAR HS DNA Polymerase exhibited better performance to rapidly increase the fluorescence signal in an actual real-time PCR using TaqMan probes. Furthermore, we achieved rapid detection of Escherichia coli in 7 min by using SpeedSTAR HS DNA Polymerase with the same sensitivity as that of a conventional thermal cycler.

  2. Detection of Food Allergens by Taqman Real-Time PCR Methodology.

    PubMed

    García, Aina; Madrid, Raquel; García, Teresa; Martín, Rosario; González, Isabel

    2017-01-01

    Real-time PCR (polymerase chain reaction) has shown to be a very effective technology for the detection of food allergens. The protocol described herein consists on a real-time PCR assay targeting the plant ITS (Internal Transcribed Spacer) region, using species-specific primers and hydrolysis probes (Taqman) dual labeled with a reporter fluorophore at the 5' end (6-carboxyfluorescein, FAM) and a quencher fluorophore at the 3' end (Blackberry, BBQ). The species-specific real-time PCR systems (primers/probe) described in this work allowed the detection of different nuts (peanut, hazelnut, pistachio, almond, cashew, macadamia, walnut and pecan), common allergens present in commercial food products, with a detection limit of 0.1 mg/kg.

  3. Novel TaqMan real-time polymerase chain reaction assay for verifying the authenticity of meat and commercial meat products from game birds.

    PubMed

    Rojas, María; González, Isabel; Pavón, Miguel Angel; Pegels, Nicolette; Lago, Adriana; Hernández, Pablo E; García, Teresa; Martín, Rosario

    2010-06-01

    Species-specific real-time polymerase chain reaction (PCR) assays using TaqMan probes have been developed for verifying the labeling of meat and commercial meat products from game birds, including quail, pheasant, partridge, guinea fowl, pigeon, Eurasian woodcock and song thrush. The method combines the use of species-specific primers and TaqMan probes that amplify small fragments (amplicons <150 base pairs) of the mitochondrial 12S rRNA gene, and an endogenous control primer pair that amplifies a 141-bp fragment of the nuclear 18S rRNA gene from eukaryotic DNA. Analysis of experimental raw and heat-treated binary mixtures as well as of commercial meat products from the target species demonstrated the suitability of the assay for the detection of the target DNAs.

  4. Detection of viable Salmonella in ice cream by TaqMan real-time polymerase chain reaction assay combining propidium monoazide.

    PubMed

    Wang, Yuexia; Yang, Ming; Liu, Shuchun; Chen, Wanyi; Suo, Biao

    2015-09-01

    Real-time polymerase chain reaction (PCR) allows rapid detection of Salmonella in frozen dairy products, but it might cause a false positive detection result because it might amplify DNA from dead target cells as well. In this study, Salmonella-free frozen ice cream was initially inoculated with heat-killed Salmonella Typhimurium cells and stored at -18°C. Bacterial DNA extracted from the sample was amplified using TaqMan probe-based real-time PCR targeting the invA gene. Our results indicated that DNA from the dead cells remained stable in frozen ice cream for at least 20 days, and could produce fluorescence signal for real-time PCR as well. To overcome this limitation, propidium monoazide (PMA) was combined with real-time PCR. PMA treatment can effectively prevent PCR amplification from heat-killed Salmonella cells in frozen ice cream. The PMA real-time PCR assay can selectively detect viable Salmonella at as low as 10 3  CFU/mL. Combining 18 hours of pre-enrichment with the assay allows for the detection of viable Salmonella at 10 0  CFU/mL and avoiding the false-positive result of dead cells. The PMA real-time PCR assay provides an alternative specifically for detection of viable Salmonella in ice cream. However, when the PMA real-time PCR assay was evaluated in ice cream subjected to frozen storage, it obviously underestimated the contamination situation of viable Salmonella, which might lead to a false negative result. According to this result, the use of enrichment prior to PMA real-time PCR analysis remains as the more appropriate approach. Copyright © 2015. Published by Elsevier B.V.

  5. Comparative evaluation of new TaqMan real-time assays for the detection of hepatitis A virus.

    PubMed

    Houde, Alain; Guévremont, Evelyne; Poitras, Elyse; Leblanc, Danielle; Ward, Pierre; Simard, Carole; Trottier, Yvon-Louis

    2007-03-01

    Three novel real-time TaqMan RT-PCR assays targeting the 5'-UTR, the viral protease and the viral polymerase regions of the hepatitis A virus (HAV) were developed, evaluated and compared against a new published 5'-UTR TaqMan assay (JN) and a widely used conventional RT-PCR assay (HAVc). All conventional RT-PCR (HAV, SH-Prot and SH-Poly systems) and TaqMan (SH-Prot, SH-Poly, JN and SH-5U systems) assays evaluated were consistent for the detection of the three different HAV strains (HM-175, HAS-15 and LSH/S) used and reproducible for both RNA duplicates with the exception of two reproducibility discrepancies observed with both 5'-UTR real-time systems (JN and SH-5U). Limits of detection for conventional HAV, SH-Prot and SH-Poly RT-PCR systems were found to be equivalent when tested with serially diluted suspensions of the HM-175 strain. Although the four real-time RT-PCR TaqMan assays evaluated herein produced similar and consistent quantification data down to the level of one genomic equivalent copy with their respectively cloned amplicons, significant and important differences were observed for the detection of HAV genomic RNA. Results showed that the new real-time TaqMan SH-Poly and SH-Prot primer and probe systems were more consistent and sensitive by 5 logs as compared to both 5'-UTR designs (JN and SH-5U) used for the detection of HAV genomic RNA as well as for the detection in cell culture by cytopathic effect. Considering their higher analytical sensitivity, the proposed SH-Poly and SH-Prot amplification systems could therefore represent valuable tools for the detection of HAV in clinical, environmental and food samples.

  6. Identification and quantification of three genetically modified insect resistant cotton lines using conventional and TaqMan real-time polymerase chain reaction methods.

    PubMed

    Yang, Litao; Pan, Aihu; Zhang, Kewei; Guo, Jinchao; Yin, Changsong; Chen, Jianxiu; Huang, Cheng; Zhang, Dabing

    2005-08-10

    As the genetically modified organisms (GMOs) labeling policies are issued in many countries, qualitative and quantitative polymerase chain reaction (PCR) techniques are increasingly used for the detection of genetically modified (GM) crops in foods. Qualitative PCR and TaqMan real-time quantitative PCR methods to detect and identify three varieties of insect resistant cotton, i.e., Mon531 cotton (Monsanto Co.) and GK19 and SGK321 cottons (Chinese Academy of Agricultural Sciences), which were approved for commercialization in China, were developed in this paper. Primer pairs specific to inserted DNAs, such as Cowpea trypsin inhibitor (CpTI) gene of SGK321 cotton and the specific junction DNA sequences containing partial Cry1A(c) gene and NOS terminator of Mon531, GK19, and SGK321 cotton varieties were designed to conduct the identified PCR assays. In conventional specific identified PCR assays, the limit of detection (LOD) was 0.05% for Mon531, GK19, or SGK321 in 100 ng of cotton genomic DNA for one reaction. Also, the multiplex PCR method for screening the three GM cottons was also established, which could save time and cost in practical detection. Furthermore, a real-time quantitative PCR assay based on TaqMan chemistry for detection of insect resistant gene, Cry1A(c), was developed. This assay also featured the use of a standard plasmid as a reference molecule, which contained both a specific region of the transgene Cry1A(c) and an endogenous stearoyl-acyl carrier protein desaturase (Sad1) gene of the cotton. In quantitative PCR assay, the quantification range was from 0.01 to 100% in 100 ng of the genome DNA template, and in the detection of 1.0, 3.0, and 5.0% levels of three insect resistant cotton lines, respectively, all of the relative standard deviations (RSDs) were less than 8.2% except for the GM cotton samples with 1.0% Mon531 or GK19, which meant that our real-time PCR assays involving the use of reference molecule were reliable and practical for GM

  7. Escherichia coli DNA contamination in AmpliTaq Gold polymerase interferes with TaqMan analysis of lacZ.

    PubMed

    Koponen, Jonna K; Turunen, Anna-Mari; Ylä-Herttuala, Seppo

    2002-03-01

    Real-time PCR is a powerful method for the quantification of gene expression in biological samples. This method uses TaqMan chemistry based on the 5' -exonuclease activity of the AmpliTaq Gold DNA polymerase which releases fluorescence from hybridized probes during synthesis of each new PCR product. Many gene therapy studies use lacZ, encoding Escherichia coli beta-galactosidase, as a marker gene. Our results demonstrate that E. coli DNA contamination in AmpliTaq Gold polymerase interferes with TaqMan analysis of lacZ gene expression and decreases sensitivity of the method below the level required for biodistribution and long-term gene expression studies. In biodistribution analyses the contamination can lead to false-negative results by masking low-level lacZ expression in target and ectopic tissues, and false-positive results if sufficient controls are not used. We conclude that, to get reliable TaqMan results with lacZ, adequate controls should be included in each run to rule out contamination from AmpliTaq Gold polymerase.

  8. Identification and quantification of genetically modified Moonshade carnation lines using conventional and TaqMan real-time polymerase chain reaction methods.

    PubMed

    Li, Peng; Jia, Junwei; Bai, Lan; Pan, Aihu; Tang, Xueming

    2013-07-01

    Genetically modified carnation (Dianthus caryophyllus L.) Moonshade was approved for planting and commercialization in several countries from 2004. Developing methods for analyzing Moonshade is necessary for implementing genetically modified organism labeling regulations. In this study, the 5'-transgene integration sequence was isolated using thermal asymmetric interlaced (TAIL)-PCR. Based upon the 5'-transgene integration sequence, conventional and TaqMan real-time PCR assays were established. The relative limit of detection for the conventional PCR assay was 0.05 % for Moonshade using 100 ng total carnation genomic DNA, corresponding to approximately 79 copies of the carnation haploid genome, and the limits of detection and quantification of the TaqMan real-time PCR assay were estimated to be 51 and 254 copies of haploid carnation genomic DNA, respectively. These results are useful for identifying and quantifying Moonshade and its derivatives.

  9. Bat white-nose syndrome: a real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructanstructans.

    USGS Publications Warehouse

    Muller, Laura K.; Lorch, Jeffrey M.; Lindner, Daniel L.; O'Connor, Michael; Gargas, Andrea; Blehert, David S.

    2013-01-01

    The fungus Geomyces destructans is the causative agent of white-nose syndrome (WNS), a disease that has killed millions of North American hibernating bats. We describe a real-time TaqMan PCR test that detects DNA from G. destructans by targeting a portion of the multicopy intergenic spacer region of the rRNA gene complex. The test is highly sensitive, consistently detecting as little as 3.3 fg of genomic DNA from G. destructans. The real-time PCR test specifically amplified genomic DNA from G. destructans but did not amplify target sequence from 54 closely related fungal isolates (including 43 Geomyces spp. isolates) associated with bats. The test was further qualified by analyzing DNA extracted from 91 bat wing skin samples, and PCR results matched histopathology findings. These data indicate the real-time TaqMan PCR method described herein is a sensitive, specific, and rapid test to detect DNA from G. destructans and provides a valuable tool for WNS diagnostics and research.

  10. Quantitative Tetraplex Real-Time Polymerase Chain Reaction Assay with TaqMan Probes Discriminates Cattle, Buffalo, and Porcine Materials in Food Chain.

    PubMed

    Hossain, M A Motalib; Ali, Md Eaqub; Sultana, Sharmin; Asing; Bonny, Sharmin Quazi; Kader, Md Abdul; Rahman, M Aminur

    2017-05-17

    Cattle, buffalo, and porcine materials are widely adulterated, and their quantification might safeguard health, religious, economic, and social sanctity. Recently, conventional polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP) assays have been documented but they are just suitable for identification, cannot quantify adulterations. We described here a quantitative tetraplex real-time PCR assay with TaqMan Probes to quantify contributions from cattle, buffalo, and porcine materials simultaneously. Amplicon-sizes were very short (106-, 90-, and 146-bp for cattle, buffalo, and porcine) because longer targets could be broken down, bringing serious ambiguity in molecular diagnostics. False negative detection was eliminated through an endogenous control (141-bp site of eukaryotic 18S rRNA). Analysis of 27 frankfurters and 27 meatballs reflected 84-115% target recovery at 0.1-10% adulterations. Finally, a test of 36 commercial products revealed 71% beef frankfurters, 100% meatballs, and 85% burgers contained buffalo adulteration, but no porcine was found in beef products.

  11. Comparison of real-time SYBR green dengue assay with real-time taqman RT-PCR dengue assay and the conventional nested PCR for diagnosis of primary and secondary dengue infection

    PubMed Central

    Paudel, Damodar; Jarman, Richard; Limkittikul, Kriengsak; Klungthong, Chonticha; Chamnanchanunt, Supat; Nisalak, Ananda; Gibbons, Robert; Chokejindachai, Watcharee

    2011-01-01

    Background: Dengue fever and dengue hemorrhagic fever are caused by dengue virus. Dengue infection remains a burning problem of many countries. To diagnose acute dengue in the early phase we improve the low cost, rapid SYBR green real time assay and compared the sensitivity and specificity with real time Taqman® assay and conventional nested PCR assay. Aims: To develop low cost, rapid and reliable real time SYBR green diagnostic dengue assay and compare with Taqman real-time assay and conventional nested PCR (modified Lanciotti). Materials and Methods: Eight cultured virus strains were diluted in tenth dilution down to undetectable level by the PCR to optimize the primer, temperature (annealing, and extension and to detect the limit of detection of the assay. Hundred and ninety three ELISA and PCR proved dengue clinical samples were tested with real time SYBR® Green assay, real time Taqman® assay to compare the sensitivity and specificity. Results: Sensitivity and specificity of real time SYBR® green dengue assay (84% and 66%, respectively) was almost comparable to those (81% and 74%) of Taqman real time PCR dengue assay. Real time SYBR® green RT-PCR was equally sensitive in primary and secondary infection while real time Taqman was less sensitive in the secondary infection. Sensitivity of real time Taqman on DENV3 (87%) was equal to SYBR green real time PCR dengue assay. Conclusion: We developed low cost rapid diagnostic SYBR green dengue assay. Further study is needed to make duplex primer assay for the serotyping of dengue virus. PMID:22363089

  12. Detection of KIT Genotype in Pigs by TaqMan MGB Real-Time Quantitative Polymerase Chain Reaction.

    PubMed

    Li, Xiuxiu; Li, Xiaoning; Luo, Rongrong; Wang, Wenwen; Wang, Tao; Tang, Hui

    2018-05-01

    The dominant white phenotype in domestic pigs is caused by two mutations in the KIT gene: a 450 kb duplication containing the entire KIT gene together with flanking sequences and one splice mutation with a G:A substitution in intron 17. The purpose of this study was to establish a simple, rapid method to determine KIT genotype in pigs. First, to detect KIT copy number variation (CNV), primers for exon 2 of the KIT gene, along with a TaqMan minor groove binder (MGB) probe, were designed. The single-copy gene, estrogen receptor (ESR), was used as an internal control. A real-time fluorescence-based quantitative PCR (FQ-PCR) protocol was developed to accurately detect KIT CNVs. Second, to detect the splice mutation ratio of the G:A substitution in intron 17, a 175 bp region, including the target mutation, was amplified from genomic DNA. Based on the sequence of the resulting amplified fragment, an MGB probe set was designed to detect the ratio of splice mutation to normal using FQ-PCR. A series of parallel amplification curves with the same internal distances were obtained using gradually diluted DNA as templates. The CT values among dilutions were significantly different (p < 0.001) and the coefficients of variation from each dilution were low (from 0.13% to 0.26%). The amplification efficiencies for KIT and ESR were approximately equal, indicating ESR was an appropriate control gene. Furthermore, use of the MGB probe set resulted in detection of the target mutation at a high resolution and stability; standard curves illustrated that the amplification efficiencies of KIT1 (G) and KIT2 (A) were approximately equal (98.8% and 97.2%). In conclusion, a simple, rapid method, with high specificity and stability, for the detection of the KIT genotype in pigs was established using TaqMan MGB probe real-time quantitative PCR.

  13. TaqMan real-time polymerase chain reaction for detection of Ophidiomyces ophiodiicola, the fungus associated with snake fungal disease.

    PubMed

    Bohuski, Elizabeth; Lorch, Jeffrey M; Griffin, Kathryn M; Blehert, David S

    2015-04-15

    Fungal skin infections associated with Ophidiomyces ophiodiicola, a member of the Chrysosporium anamorph of Nannizziopsis vriesii (CANV) complex, have been linked to an increasing number of cases of snake fungal disease (SFD) in captive snakes around the world and in wild snake populations in eastern North America. The emergence of SFD in both captive and wild situations has led to an increased need for tools to better diagnose and study the disease. We developed two TaqMan real-time polymerase chain reaction (PCR) assays to rapidly detect O. ophiodiicola in clinical samples. One assay targets the internal transcribed spacer region (ITS) of the fungal genome while the other targets the more variable intergenic spacer region (IGS). The PCR assays were qualified using skin samples collected from 50 snakes for which O. ophiodiicola had been previously detected by culture, 20 snakes with gross skin lesions suggestive of SFD but which were culture-negative for O. ophiodiicola, and 16 snakes with no clinical signs of infection. Both assays performed equivalently and proved to be more sensitive than traditional culture methods, detecting O. ophiodiicola in 98% of the culture-positive samples and in 40% of the culture-negative snakes that had clinical signs of SFD. In addition, the assays did not cross-react with a panel of 28 fungal species that are closely related to O. ophiodiicola or that commonly occur on the skin of snakes. The assays did, however, indicate that some asymptomatic snakes (~6%) may harbor low levels of the fungus, and that PCR should be paired with histology when a definitive diagnosis is required. These assays represent the first published methods to detect O. ophiodiicola by real-time PCR. The ITS assay has great utility for assisting with SFD diagnoses whereas the IGS assay offers a valuable tool for research-based applications.

  14. Bat white-nose syndrome: A real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructans

    Treesearch

    Laura K Muller; Jeffrey M. Lorch; Daniel L. Lindner; Michael O' Connor; Andrea Gargas; David S. Blehert

    2013-01-01

    The fungus Geomyces destructans is the causative agent of white-nose syndrome (WNS), a disease that has killed millions of North American hibernating bats. We describe a real-time TaqMan PCR test that detects DNA from G. destructans by targeting a portion of the multicopy intergenic spacer region of the rRNA gene complex. The...

  15. TaqMan probe real-time polymerase chain reaction assay for the quantification of canine DNA in chicken nugget.

    PubMed

    Rahman, Md Mahfujur; Hamid, Sharifah Bee Abd; Basirun, Wan Jefrey; Bhassu, Subha; Rashid, Nur Raifana Abdul; Mustafa, Shuhaimi; Mohd Desa, Mohd Nasir; Ali, Md Eaqub

    2016-01-01

    This paper describes a short-amplicon-based TaqMan probe quantitative real-time PCR (qPCR) assay for the quantitative detection of canine meat in chicken nuggets, which are very popular across the world, including Malaysia. The assay targeted a 100-bp fragment of canine cytb gene using a canine-specific primer and TaqMan probe. Specificity against 10 different animals and plants species demonstrated threshold cycles (Ct) of 16.13 ± 0.12 to 16.25 ± 0.23 for canine DNA and negative results for the others in a 40-cycle reaction. The assay was tested for the quantification of up to 0.01% canine meat in deliberately spiked chicken nuggets with 99.7% PCR efficiency and 0.995 correlation coefficient. The analysis of the actual and qPCR predicted values showed a high recovery rate (from 87% ± 28% to 112% ± 19%) with a linear regression close to unity (R(2) = 0.999). Finally, samples of three halal-branded commercial chicken nuggets collected from different Malaysian outlets were screened for canine meat, but no contamination was demonstrated.

  16. A real-time TaqMan polymerase chain reaction for the identification of Culex vectors of West Nile and Saint Louis encephalitis viruses in North America.

    PubMed

    Sanogo, Yibayiri O; Kim, Chang-Hyun; Lampman, Richard; Novak, Robert J

    2007-07-01

    In North America, West Nile and St. Louis encephalitis viruses have been detected in a wide range of vector species, but the majority of isolations continue to be from pools of mixed mosquitoes in the Culex subgenus Culex. Unfortunately, the morphologic identification of these important disease vectors is often difficult, particularly in regions of sympatry. We developed a sensitive real-time TaqMan polymerase chain reaction assay that allows reliable identification of Culex mosquitoes including Culex pipiens pipiens, Cx. p. quinquefasciatus, Cx. restuans, Cx. salinarius, Cx. nigripalpus, and Cx. tarsalis. Primers and fluorogenic probes specific to each species were designed based on sequences of the acetylcholinesterase gene (Ace2). Both immature and adult mosquitoes were successfully identified as individuals and as mixed species pools. This identification technique provides the basis for a rapid, sensitive, and high-throughput method for expounding the species-specific contribution of vectors to various phases of arbovirus transmission.

  17. Comparison of nested-multiplex, Taqman & SYBR Green real-time PCR in diagnosis of amoebic liver abscess in a tertiary health care institute in India

    PubMed Central

    Dinoop, K.P.; Parija, Subhash Chandra; Mandal, Jharna; Swaminathan, R.P.; Narayanan, P.

    2016-01-01

    Background & objectives: Amoebiasis is a common parasitic infection caused by Entamoeba histolytica and amoebic liver abscess (ALA) is the most common extraintestinal manifestation of amoebiasis. The aim of this study was to standardise real-time PCR assays (Taqman and SYBR Green) to detect E. histolytica from liver abscess pus and stool samples and compare its results with nested-multiplex PCR. Methods: Liver abscess pus specimens were subjected to DNA extraction. The extracted DNA samples were subjected to amplification by nested-multiplex PCR, Taqman (18S rRNA) and SYBR Green real-time PCR (16S-like rRNA assays to detect E. histolytica/E. dispar/E. moshkovskii). The amplification products were further confirmed by DNA sequence analysis. Receiver operator characteristic (ROC) curve analysis was done for nested-multiplex and SYBR Green real-time PCR and the area under the curve was calculated for evaluating the accuracy of the tests to dignose ALA. Results: In all, 17, 19 and 25 liver abscess samples were positive for E. histolytica by nested-multiplex PCR, SYBR Green and Taqman real-time PCR assays, respectively. Significant differences in detection of E. histolytica were noted in the real-time PCR assays evaluated (P<0.0001). The nested-multiplex PCR, SYBR Green real-time PCR and Taqman real-time PCR evaluated showed a positivity rate of 34, 38 and 50 per cent, respectively. Based on ROC curve analysis (considering Taqman real-time PCR as the gold standard), it was observed that SYBR Green real-time PCR was better than conventional nested-multiplex PCR for the diagnosis of ALA. Interpretation & conclusions: Taqman real-time PCR targeting the 18S rRNA had the highest positivity rate evaluated in this study. Both nested multiplex and SYBR Green real-time PCR assays utilized were evaluated to give accurate results. Real-time PCR assays can be used as the gold standard in rapid and reliable diagnosis, and appropriate management of amoebiasis, replacing the

  18. Comparison of nested-multiplex, Taqman & SYBR Green real-time PCR in diagnosis of amoebic liver abscess in a tertiary health care institute in India.

    PubMed

    Dinoop, K P; Parija, Subhash Chandra; Mandal, Jharna; Swaminathan, R P; Narayanan, P

    2016-01-01

    Amoebiasis is a common parasitic infection caused by Entamoeba histolytica and amoebic liver abscess (ALA) is the most common extraintestinal manifestation of amoebiasis. The aim of this study was to standardise real-time PCR assays (Taqman and SYBR Green) to detect E. histolytica from liver abscess pus and stool samples and compare its results with nested-multiplex PCR. Liver abscess pus specimens were subjected to DNA extraction. The extracted DNA samples were subjected to amplification by nested-multiplex PCR, Taqman (18S rRNA) and SYBR Green real-time PCR (16S-like rRNA assays to detect E. histolytica/E. dispar/E. moshkovskii). The amplification products were further confirmed by DNA sequence analysis. Receiver operator characteristic (ROC) curve analysis was done for nested-multiplex and SYBR Green real-time PCR and the area under the curve was calculated for evaluating the accuracy of the tests to dignose ALA. In all, 17, 19 and 25 liver abscess samples were positive for E. histolytica by nested-multiplex PCR, SYBR Green and Taqman real-time PCR assays, respectively. Significant differences in detection of E. histolytica were noted in the real-time PCR assays evaluated ( P<0.0001). The nested-multiplex PCR, SYBR Green real-time PCR and Taqman real-time PCR evaluated showed a positivity rate of 34, 38 and 50 per cent, respectively. Based on ROC curve analysis (considering Taqman real-time PCR as the gold standard), it was observed that SYBR Green real-time PCR was better than conventional nested-multiplex PCR for the diagnosis of ALA. Taqman real-time PCR targeting the 18S rRNA had the highest positivity rate evaluated in this study. Both nested multiplex and SYBR Green real-time PCR assays utilized were evaluated to give accurate results. Real-time PCR assays can be used as the gold standard in rapid and reliable diagnosis, and appropriate management of amoebiasis, replacing the conventional molecular methods.

  19. The development of a real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay using TaqMan technology for the pan detection of bluetongue virus (BTV).

    PubMed

    Mulholland, Catherine; McMenamy, Michael J; Hoffmann, Bernd; Earley, Bernadette; Markey, Bryan; Cassidy, Joseph; Allan, Gordon; Welsh, Michael D; McKillen, John

    2017-07-01

    Bluetongue virus (BTV) is an infectious, non-contagious viral disease of domestic and wild ruminants that is transmitted by adult females of certain Culicoides species. Since 2006, several serotypes including BTV-1, 2, 4, 6, 8, 9 and 16, have spread from the Mediterranean basin into Northern Europe for the first time. BTV-8 in particular, caused a major epidemic in northern Europe. As a result, it is evident that most European countries are at risk of BTV infection. The objective of this study was to develop and validate a real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) assay based on TaqMan technology for the detection of representative strains of all BTV serotypes. Primers and probes were based on genome segment 10 of the virus, the NS3 gene. The assay was tested for sensitivity, and specificity. The analytical sensitivity of the rRT-PCR assay was 200 copies of RNA per reaction. The assay did not amplify the closely related orbivirus epizootic hemorrhagic disease virus (EHDV) but successfully detected all BTV reference strains including clinical samples from animals experimentally infected with BTV-8. This real time RT-PCR assay offers a sensitive, specific and rapid alternative assay for the pan detection of BTV that could be used as part of a panel of diagnostic assays for the detection of all serotypes of BTV. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  20. Fast real-time polymerase chain reaction for quantitative detection of Lactobacillus delbrueckii bacteriophages in milk.

    PubMed

    Martín, Maria Cruz; del Rio, Beatriz; Martínez, Noelia; Magadán, Alfonso H; Alvarez, Miguel A

    2008-12-01

    One of the main microbiological problems of the dairy industry is the susceptibility of starter bacteria to virus infections. Lactobacillus delbrueckii, a component of thermophilic starter cultures used in the manufacture of several fermented dairy products, including yogurt, is also sensitive to bacteriophage attacks. To avoid the problems associated with these viruses, quick and sensitive detection methods are necessary. In the present study, a fast real-time quantitative polymerase chain reaction assay for the direct detection and quantification of L. delbrueckii phages in milk was developed. A set of primers and a TaqMan MGB probe was designed, based on the lysin gene sequence of different L. delbrueckii phages. The results show the proposed method to be a rapid (total processing time 30 min), specific and highly sensitive technique for detecting L. delbrueckii phages in milk.

  1. A comparative evaluation between real time Roche COBas TAQMAN 48 HCV and bDNA Bayer Versant HCV 3.0.

    PubMed

    Giraldi, Cristina; Noto, Alessandra; Tenuta, Robert; Greco, Francesca; Perugini, Daniela; Spadafora, Mario; Bianco, Anna Maria Lo; Savino, Olga; Natale, Alfonso

    2006-10-01

    The HCV virus is a common human pathogen made of a single stranded RNA genome with 9600nt. This work compared two different commercial methods used for HCV viral load, the bDNA Bayer Versant HCV 3.0 and the RealTime Roche COBAS TaqMan 48 HCV. We compared the reproducibility and linearity of the two methods. Seventy-five plasma samples with genotypes 1 to 4, which represent the population (45% genotype 1; 24% genotype 2; 13% genotype 3; 18% genotype 4) were directly processed with the Versanto method based upon signal amplification; the same samples were first extracted (COBAS Ampliprep - TNAI) and then amplified using RealTime PCR (COBAS TaqMan 48). The results obtained indicate the same performance for both methods if they have genotype 1, but in samples with genotypes 2, 3 and 4 the RealTime PCR Roche method gave an underestimation in respect to the Bayer bDNA assay.

  2. New approach to real-time nucleic acids detection: folding polymerase chain reaction amplicons into a secondary structure to improve cleavage of Förster resonance energy transfer probes in 5′-nuclease assays

    PubMed Central

    Kutyavin, Igor V.

    2010-01-01

    The article describes a new technology for real-time polymerase chain reaction (PCR) detection of nucleic acids. Similar to Taqman, this new method, named Snake, utilizes the 5′-nuclease activity of Thermus aquaticus (Taq) DNA polymerase that cleaves dual-labeled Förster resonance energy transfer (FRET) probes and generates a fluorescent signal during PCR. However, the mechanism of the probe cleavage in Snake is different. In this assay, PCR amplicons fold into stem–loop secondary structures. Hybridization of FRET probes to one of these structures leads to the formation of optimal substrates for the 5′-nuclease activity of Taq. The stem–loop structures in the Snake amplicons are introduced by the unique design of one of the PCR primers, which carries a special 5′-flap sequence. It was found that at a certain length of these 5′-flap sequences the folded Snake amplicons have very little, if any, effect on PCR yield but benefit many aspects of the detection process, particularly the signal productivity. Unlike Taqman, the Snake system favors the use of short FRET probes with improved fluorescence background. The head-to-head comparison study of Snake and Taqman revealed that these two technologies have more differences than similarities with respect to their responses to changes in PCR protocol, e.g. the variations in primer concentration, annealing time, PCR asymmetry. The optimal PCR protocol for Snake has been identified. The technology’s real-time performance was compared to a number of conventional assays including Taqman, 3′-MGB-Taqman, Molecular Beacon and Scorpion primers. The test trial showed that Snake supersedes the conventional assays in the signal productivity and detection of sequence variations as small as single nucleotide polymorphisms. Due to the assay’s cost-effectiveness and simplicity of design, the technology is anticipated to quickly replace all known conventional methods currently used for real-time nucleic acid detection

  3. Detection of cashew nut DNA in spiked baked goods using a real-time polymerase chain reaction method.

    PubMed

    Brzezinski, Jennifer L

    2006-01-01

    The detection of potentially allergenic foods, such as tree nuts, in food products is a major concern for the food processing industry. A real-time polymerase chain reaction (PCR) method was designed to determine the presence of cashew DNA in food products. The PCR amplifies a 67 bp fragment of the cashew 2S albumin gene, which is detected with a cashew-specific, dual-labeled TaqMan probe. This reaction will not amplify DNA derived from other tree nut species, such as almond, Brazil nut, hazelnut, and walnut, as well as 4 varieties of peanut. This assay was sensitive enough to detect 5 pg purified cashew DNA as well as cashew DNA in a spiked chocolate cookie sample containing 0.01% (100 mg/kg) cashew.

  4. Development of a real-time TaqMan assay to detect mendocina sublineage Pseudomonas species in contaminated metalworking fluids.

    PubMed

    Saha, Ratul; Donofrio, Robert S; Bagley, Susan T

    2010-08-01

    A TaqMan quantitative real-time polymerase chain reaction (qPCR) assay was developed for the detection and enumeration of three Pseudomonas species belonging to the mendocina sublineage (P. oleovorans, P. pseudoalcaligenes, and P. oleovorans subsp. lubricantis) found in contaminated metalworking fluids (MWFs). These microbes are the primary colonizers and serve as indicator organisms of biodegradation of used MWFs. Molecular techniques such as qPCR are preferred for the detection of these microbes since they grow poorly on typical growth media such as R2A agar and Pseudomonas isolation agar (PIA). Traditional culturing techniques not only underestimate the actual distribution of these bacteria but are also time-consuming. The primer-probe pair developed from gyrase B (gyrB) sequences of the targeted bacteria was highly sensitive and specific for the three species. qPCR was performed with both whole cell and genomic DNA to confirm the specificity and sensitivity of the assay. The sensitivity of the assay was 10(1) colony forming units (CFU)/ml for whole cell and 13.7 fg with genomic DNA. The primer-probe pair was successful in determining concentrations from used MWF samples, indicating levels between 2.9 x 10(3) and 3.9 x 10(6) CFU/ml. In contrast, the total count of Pseudomonas sp. recovered on PIA was in the range of <1.0 x 10(1) to 1.4 x 10(5) CFU/ml for the same samples. Based on these results from the qPCR assay, the designed TaqMan primer-probe pair can be efficiently used for rapid (within 2 h) determination of the distribution of these species of Pseudomonas in contaminated MWFs.

  5. Quantification of rice brown leaf spot through Taqman real-time PCR specific to the unigene encoding Cochliobolus miyabeanus SCYTALONE DEHYDRATASE1 involved in fungal melanin biosynthesis.

    PubMed

    Su'udi, Mukhamad; Park, Jong-Mi; Kang, Woo-Ri; Park, Sang-Ryeol; Hwang, Duk-Ju; Ahn, Il-Pyung

    2012-12-01

    Rice brown leaf spot is a major disease in the rice paddy field. The causal agent Cochliobolus miyabeanus is an ascomycete fungus and a representative necrotrophic pathogen in the investigation of rice-microbe interactions. The aims of this research were to identify a quantitative evaluation method to determine the amount of C. miyabeanus proliferation in planta and determine the method's sensitivity. Real-time polymerase chain reaction (PCR) was employed in combination with the primer pair and Taqman probe specific to CmSCD1, a C. miyabeanus unigene encoding SCYTALONE DEHYDRATASE, which is involved in fungal melanin biosynthesis. Comparative analysis of the nucleotide sequences of CmSCD1 from Korean strains with those from the Japanese and Taiwanese strains revealed some sequence differences. Based on the crossing point (CP) values from Taqman real-time PCR containing a series of increasing concentrations of cloned amplicon or fungal genomic DNA, linear regressions with a high level of reliability (R(2)>0.997) were constructed. This system was able to estimate fungal genomic DNA at the picogram level. The reliability of this equation was further confirmed using DNA samples from both resistant and susceptible cultivars infected with C. miyabeanus. In summary, our quantitative system is a powerful alternative in brown leaf spot forecasting and in the consistent evaluation of disease progression.

  6. High resolution TaqMan real-time PCR approach to detect hazelnut DNA encoding for ITS rDNA in foods.

    PubMed

    López-Calleja, Inés María; de la Cruz, Silvia; Pegels, Nicolette; González, Isabel; García, Teresa; Martín, Rosario

    2013-12-01

    A broad range of foods have been described as causing allergies, but the majority of allergic reactions can be ascribed to a limited number of food components. Recent extensive surveys showed how tree nuts, particularly hazelnut (Corylus avellana L.) seeds, rank amongst the most important sources of food allergy. In order to protect the allergic consumer, efficient and reliable methods are required for the detection of allergenic ingredients. For this purpose, we have developed a real-time polymerase chain reaction (PCR) for detection of hazelnut in commercial food products. In this way a specific hazelnut primer pair based on the ITS marker (70 bp) and a nuclease (TaqMan) probe labelled with FAM and BHQ were designed. Sensibility of real-time PCR was determined by analysis of raw and heat treated hazelnut-wheat flour mixtures with a range of detection of 0.1-100,000 ppm. Practical applicability of the real-time PCR assay developed for determining hazelnut in different food matrices was investigated by analyzing 179 commercial foodstuffs comprising snacks, biscuits, chocolates, bonbons, creams, nut bars, ice creams, precooked meals, breads, beverages, yogurts, cereals, meat products, rice cake and nougat. From the total of samples analyzed, 40 commercial food products that didn't declare hazelnut nor traces on the label were found to contain hazelnut. The real-time PCR method proposed herein due to its high sensitivity facilitates the detection of hazelnut traces in commercial food products and can also be useful for monitoring the effectiveness of cleaning processes and as consequence, can help to prevent the food allergic consumer from unintentional ingestion of hidden allergens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Simultaneous detection and differentiation of three Potyviridae viruses by a multiplex TaqMan real time RT-PCR assay

    USDA-ARS?s Scientific Manuscript database

    A multiplex TaqMan real time RT-PCR was developed for detection and differentiation of Sweet potato virus G, Sweet potato latent virus and Sweet potato mild mottle virus in one tube. Amplification and detection of a fluorogenic cytochrome oxidase gene was included as an internal control. The assay w...

  8. Sensitive detection of porcine DNA in processed animal proteins using a TaqMan real-time PCR assay.

    PubMed

    Pegels, N; González, I; Fernández, S; García, T; Martín, R

    2012-01-01

    A TaqMan real-time PCR method was developed for specific detection of porcine-prohibited material in industrial feeds. The assay combines the use of a porcine-specific primer pair, which amplifies a 79 bp fragment of the mitochondrial (mt) 12 S rRNA gene, and a locked nucleic acid (LNA) TaqMan probe complementary to a target sequence lying between the porcine-specific primers. The nuclear 18 S rRNA gene system, yielding a 77 bp amplicon, was employed as a positive amplification control to monitor the total content of amplifiable DNA in the samples. The specificity of the porcine primers-probe system was verified against different animal and plant species, including mammals, birds and fish. The applicability of the real-time PCR protocol to detect the presence of porcine mt DNA in feeds was determined through the analysis of 190 industrial feeds (19 known reference and 171 blind samples) subjected to stringent processing treatments. The performance of the method allows qualitative and highly sensitive detection of short fragments from porcine DNA in all the industrial feeds declared to contain porcine material. Although the method has quantitative potential, the real quantitative capability of the assay is limited by the existing variability in terms of composition and processing conditions of the feeds, which affect the amount and quality of amplifiable DNA.

  9. Detection and quantification of Renibacterium salmoninarum DNA in salmonid tissues by real-time quantitative polymerase chain reaction analysis

    USGS Publications Warehouse

    Chase, D.M.; Elliott, D.G.; Pascho, R.J.

    2006-01-01

    Renibacterium salmoninarum is an important salmonid pathogen that is difficult to culture. We developed and assessed a real-time, quantitative, polymerase chain reaction (qPCR) assay for the detection and enumeration of R. salmoninarum. The qPCR is based on TaqMan technology and amplifies a 69-base pair (bp) region of the gene encoding the major soluble antigen (MSA) of R. salmoninarum. The qPCR assay consistently detected as few as 5 R. salmoninarum cells per reaction in kidney tissue. The specificity of the qPCR was confirmed by testing the DNA extracts from a panel of microorganisms that were either common fish pathogens or reported to cause false-positive reactions in the enzyme-linked immunosorbent assay (ELISA). Kidney samples from 38 juvenile Chinook salmon (Oncorhynchus tshawytscha) in a naturally infected population were examined by real-time qPCR, a nested PCR, and ELISA, and prevalences of R. salmoninarum detected were 71, 66, and 71%, respectively. The qPCR should be a valuable tool for evaluating the R. salmoninarum infection status of salmonids.

  10. Clinical evaluation of a quantitative real time polymerase chain reaction assay for diagnosis of primary Epstein-Barr virus infection in children.

    PubMed

    Pitetti, Raymond D; Laus, Stella; Wadowsky, Robert M

    2003-08-01

    Epstein-Barr virus (EBV) infectious mononucleosis is often diagnosed based on characteristic clinical features and either a positive heterophil antibody test or serology, both of which can be unreliable in young children. Real time quantitative PCR assays that measure EBV DNA load in serum or plasma are highly sensitive in young children, but serum and plasma contain inhibitors of PCR which must be removed by DNA extraction techniques. A real time TaqMan PCR assay was designed and evaluated for simultaneously measuring EBV DNA load and validating the removal of PCR inhibitors from serum samples. A serum sample was available from patients classified serologically as primary EBV infection (n = 28), EBV-seronegative (n = 25) and EBV-seropositive (n = 26). Patients were classified as having EBV infectious mononucleosis if they had specified clinical findings and > or =10% atypical lymphocytes in peripheral blood or had a positive Monospot test result. DNA was purified by a spin column method and tested in PCR reactions with primers for EBV DNA polymerase gene and internal control targets. Amplification of the two PCR products was measured in real time with separate TaqMan DNA probes labeled with various fluorescent reporters. The mean age of study patients was 9 years, 4 months. Twenty-one (75%) of the patients in the primary EBV infection group, one (4%) of the seronegatives and none of the seropositives had detectable EBV DNA. Within the primary infection group, those with detectable virus were more likely than those without detectable virus to have evidence of lymphadenopathy (14 of 16 vs.1 of 5; P = 0.011), higher mean atypical (11.7 vs.0.9%; P = 0.002) and absolute atypical (1.5 vs.0.1 x 109/l; P = 0.004) lymphocyte count, higher mean absolute lymphocyte count (4.7 vs.2.3 x 109/l; P = 0.026) and higher mean aspartate aminotransferase value (119.8 vs.37.3 IU/l; P = 0.036). Ten patients, all in the primary infection group, had EBV infectious mononucleosis, and all

  11. Taqman real-time quantitative PCR for identification of western flower thrip (Frankliniella occidentalis) for plant quarantine

    PubMed Central

    Huang, K. S.; Lee, S. E.; Yeh, Y.; Shen, G. S.; Mei, E.; Chang, C. M.

    2010-01-01

    Western flower thrip (Frankliniella occidentalis) is a major global pest of agricultural products. It directly damages crops through feeding, oviposition activity or transmission of several plant viruses. We describe a Taqman real-time quantitative PCR detection system, which can rapidly identify F. occidentalis from thrips larvae to complement the traditional morphological identification. The data showed that our detection system targeted on the ribosomal RNA gene regions of F. occidentalis has high sensitivity and specificity. The rapid method can be used for on-site testing of samples at ports-of-entry in the future. PMID:20129946

  12. Taqman real-time quantitative PCR for identification of western flower thrip (Frankliniella occidentalis) for plant quarantine.

    PubMed

    Huang, K S; Lee, S E; Yeh, Y; Shen, G S; Mei, E; Chang, C M

    2010-08-23

    Western flower thrip (Frankliniella occidentalis) is a major global pest of agricultural products. It directly damages crops through feeding, oviposition activity or transmission of several plant viruses. We describe a Taqman real-time quantitative PCR detection system, which can rapidly identify F. occidentalis from thrips larvae to complement the traditional morphological identification. The data showed that our detection system targeted on the ribosomal RNA gene regions of F. occidentalis has high sensitivity and specificity. The rapid method can be used for on-site testing of samples at ports-of-entry in the future.

  13. [Comparative analysis of real-time quantitative PCR-Sanger sequencing method and TaqMan probe method for detection of KRAS/BRAF mutation in colorectal carcinomas].

    PubMed

    Zhang, Xun; Wang, Yuehua; Gao, Ning; Wang, Jinfen

    2014-02-01

    To compare the application values of real-time quantitative PCR-Sanger sequencing and TaqMan probe method in the detection of KRAS and BRAF mutations, and to correlate KRAS/BRAF mutations with the clinicopathological characteristics in colorectal carcinomas. Genomic DNA of the tumor cells was extracted from formalin fixed paraffin embedded (FFPE) tissue samples of 344 colorectal carcinomas by microdissection. Real-time quantitative PCR-Sanger sequencing and TaqMan probe method were performed to detect the KRAS/BRAF mutations. The frequency and types of KRAS/BRAF mutations, clinicopathological characteristics and survival time were analyzed. KRAS mutations were detected in 39.8% (137/344) and 38.7% (133/344) of 344 colorectal carcinomas by using real-time quantitative PCR-Sanger sequencing and TaqMan probe method, respectively. BRAF mutation was detected in 4.7% (16/344) and 4.1% (14/344), respectively. There was no significant correlation between the two methods. The frequency of the KRAS mutation in female was higher than that in male (P < 0.05). The frequency of the BRAF mutation in colon was higher than that in rectum. The frequency of the BRAF mutation in stage III-IV cases was higher than that in stageI-II cases. The frequency of the BRAF mutation in signet ring cell carcinoma was higher than that in mucinous carcinoma and nonspecific adenocarcinoma had the lowest mutation rate. The frequency of the BRAF mutation in grade III cases was higher than that in grade II cases (P < 0.05). The overall concordance for the two methods of KRAS/BRAF mutation detection was 98.8% (kappa = 0.976). There was statistic significance between BRAF and KRAS mutations for the survival time of colorectal carcinomas (P = 0.039). There were no statistic significance between BRAF mutation type and BRAF/KRAS wild type (P = 0.058). (1) Compared with real-time quantitative PCR-Sanger sequencing, TaqMan probe method is better with regard to handling time, efficiency, repeatability, cost

  14. Development of a non invasion real-time PCR assay for the quantitation of chicken parvovirus in fecal swabs

    USDA-ARS?s Scientific Manuscript database

    The present study describes the development of a real time Taqman polymerase chain reaction (PCR) assay using a fluorescent labeled probe for the detection and quantitation of chicken parvovirus (ChPV) in feces. The primers and probes were designed based on the nucleotide sequence of the non struct...

  15. [Application of transcription mediated amplification and real-time reverse transcription polymerase chain reaction in detection of human immunodeficiency virus RNA].

    PubMed

    Wu, Daxian; Tao, Shuhui; Liu, Shuiping; Zhou, Jiebin; Tan, Deming; Hou, Zhouhua

    2017-07-28

    To observe the sensitivity of transcription mediated amplification (TMA), and to compare its performance with real-time reverse transcription polymerase chain reaction (real-time RT-PCR) in detecting human immunodeficiency virus RNA (HIV RNA).
 Methods: TMA system was established with TaqMan probes, specific primers, moloney murine leukemia virus (MMLV) reverse transcriptase, T7 RNA polymerase, and reaction substrates. The sensitivity of TMA was evaluated by amplifying a group of 10-fold diluted HIV RNA standards which were transcribed in vitro. A total of 60 plasma of HIV infected patients were measured by TMA and Cobas Amplicor HIV-1 Monitor test to observe the positive rate. The correlation and concordance of the above two technologies were investigated by linear regression and Bland-Altman analysis.
 Results: TMA system was established successfully and HIV RNA transcribed standards at concentration of equal or more than 10 copies/mL could be detected by TMA technology. Among 60 samples of plasma from HIV infected patients, 46 were positively detected and 12 were negatively amplified by both TMA and Cobas reagents; 2 samples were positively tested by Cobas reagent but negatively tested by TMA system. The concordance rate of the two methods was 97.1% and the difference of positive detection rate between the two methods was not statistically significant (P>0.05). Linear regression was used for 46 samples which were positively detected by both TMA and Cobas reagents and showed an excellent correlation between the two reagents (r=0.997, P<0.001). Bland-Altma analysis revealed that the mean different value of HIV RNA levels for denary logarithm was 0.02. Forty-four samples were included in 95% of credibility interval of concordance.
 Conclusion: TMA system has the potential of high sensitivity. TMA and real-time RT-PCR keep an excellent correlation and consistency in detecting HIV RNA.

  16. Development and validation of a SYBR Green I-based real-time polymerase chain reaction method for detection of haptoglobin gene deletion in clinical materials.

    PubMed

    Soejima, Mikiko; Tsuchiya, Yuji; Egashira, Kouichi; Kawano, Hiroyuki; Sagawa, Kimitaka; Koda, Yoshiro

    2010-06-01

    Anhaptoglobinemic patients run the risk of severe anaphylactic transfusion reaction because they produce serum haptoglobin (Hp) antibodies. Being homozygous for the Hp gene deletion (HP(del)) is the only known cause of congenital anhaptoglobinemia, and clinical diagnosis of HP(del) before transfusion is important to prevent anaphylactic shock. We recently developed a 5'-nuclease (TaqMan) real-time polymerase chain reaction (PCR) method. A SYBR Green I-based duplex real-time PCR assay using two forward primers and a common reverse primer followed by melting curve analysis was developed to determine HP(del) zygosity in a single tube. In addition, to obviate initial DNA extraction, we examined serially diluted blood samples as PCR templates. Allelic discrimination of HP(del) yielded optimal results at blood sample dilutions of 1:64 to 1:1024. The results from 2231 blood samples were fully concordant with those obtained by the TaqMan-based real-time PCR method. The detection rate of the HP(del) allele by the SYBR Green I-based method is comparable with that using the TaqMan-based method. This method is readily applicable due to its low initial cost and analyzability using economical real-time PCR machines and is suitable for high-throughput analysis as an alternative method for allelic discrimination of HP(del).

  17. Universal detection of phytoplasmas and Xylella spp. by TaqMan singleplex and multiplex real-time PCR with dual priming oligonucleotides.

    PubMed

    Ito, Takao; Suzaki, Koichi

    2017-01-01

    Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays.

  18. Universal detection of phytoplasmas and Xylella spp. by TaqMan singleplex and multiplex real-time PCR with dual priming oligonucleotides

    PubMed Central

    Suzaki, Koichi

    2017-01-01

    Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays. PMID:28957362

  19. Sensitive and specific detection of potentially allergenic almond (Prunus dulcis) in complex food matrices by Taqman(®) real-time polymerase chain reaction in comparison to commercially available protein-based enzyme-linked immunosorbent assay.

    PubMed

    Röder, Martin; Vieths, Stefan; Holzhauser, Thomas

    2011-01-24

    Currently, causative immunotherapies are lacking in food allergy. The only option to prevent allergic reactions in susceptible individuals is to strictly avoid the offending food. Thus, reliable labelling of allergenic constituents is of major importance, but can only be achieved if appropriate specific and sensitive detection techniques for foods with allergenic potential are available. Almond is an allergenic food that requires mandatory labelling on prepackaged foods and belongs to the genus Prunus. Species of this genus are phylogenetically closely related. We observed commercially available almond specific ELISA being highly cross-reactive with other foods of the Prunoideae family, resulting in a false-positive detection of up to 500,000 mg kg(-1) almond. Previously published PCR methods were reported to be cross-reactive with false positive results >1200 mg kg(-1). We describe the development of a novel almond specific real-time PCR, based on mutated mismatch primers and sequence specific Taqman(®) probe detection, in comparison with two quantitative commercially available ELISA. PCR sensitivity was investigated with chocolate, chocolate coating and cookies spiked between 5 and 100,000 mg kg(-1) almond. In all matrices almond was reproducibly detected by real-time PCR at the lowest spike level of 5 mg kg(-1). Further, between 100 and 100,000 mg kg(-1) spiked almond, the method featured good correlation between quantified copy numbers and the amount of spiked almond. Within this range a similar relation between detectable signal and amount of almond was observed for both PCR and ELISA. In contrast to ELISA the Taqman(®) real-time PCR method was highly specific in 59 food items with negligible cross-reactivity for a very limited number of Prunoideae foods. The real-time PCR analysis of 24 retail samples was in concordance with ELISA results: 21% (n=5) contained undeclared almond. This is the first completely disclosed real-time PCR method for a specific and

  20. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay.

    PubMed

    Boyle, D G; Boyle, D B; Olsen, V; Morgan, J A T; Hyatt, A D

    2004-08-09

    Batrachochytrium dendrobatidis is a major pathogen of frogs worldwide, associated with declines in amphibian populations. Diagnosis of chytridiomycosis to date has largely relied upon histological and immunohistochemical examination of toe clips. This technique is invasive and insensitive particularly at early stages of infection when treatment may be possible. We have developed a real-time PCR Taqman assay that can accurately detect and quantify one zoospore in a diagnostic sample. This assay will assist the early detection of B. dendrobatidis in both captive and wild populations, with a high degree of sensitivity and specificity, thus facilitating treatment and protection of endangered populations, monitoring of pristine environments and preventing further global spread via amphibian trade.

  1. Real-time polymerase chain reaction-based approach for quantification of the pat gene in the T25 Zea mays event.

    PubMed

    Weighardt, Florian; Barbati, Cristina; Paoletti, Claudia; Querci, Maddalena; Kay, Simon; De Beuckeleer, Marc; Van den Eede, Guy

    2004-01-01

    In Europe, a growing interest for reliable techniques for the quantification of genetically modified component(s) of food matrixes is arising from the need to comply with the European legislative framework on novel food products. Real-time polymerase chain reaction (PCR) is currently the most powerful technique for the quantification of specific nucleic acid sequences. Several real-time PCR methodologies based on different molecular principles have been developed for this purpose. The most frequently used approach in the field of genetically modified organism (GMO) quantification in food or feed samples is based on the 5'-3'-exonuclease activity of Taq DNA polymerase on specific degradation probes (TaqMan principle). A novel approach was developed for the establishment of a TaqMan quantification system assessing GMO contents around the 1% threshold stipulated under European Union (EU) legislation for the labeling of food products. The Zea mays T25 elite event was chosen as a model for the development of the novel GMO quantification approach. The most innovative aspect of the system is represented by the use of sequences cloned in plasmids as reference standards. In the field of GMO quantification, plasmids are an easy to use, cheap, and reliable alternative to Certified Reference Materials (CRMs), which are only available for a few of the GMOs authorized in Europe, have a relatively high production cost, and require further processing to be suitable for analysis. Strengths and weaknesses of the use of novel plasmid-based standards are addressed in detail. In addition, the quantification system was designed to avoid the use of a reference gene (e.g., a single copy, species-specific gene) as normalizer, i.e., to perform a GMO quantification based on an absolute instead of a relative measurement. In fact, experimental evidences show that the use of reference genes adds variability to the measurement system because a second independent real-time PCR-based measurement

  2. The use of real-time polymerase chain reaction for rapid diagnosis of skeletal tuberculosis.

    PubMed

    Kobayashi, Naomi; Fraser, Thomas G; Bauer, Thomas W; Joyce, Michael J; Hall, Gerri S; Tuohy, Marion J; Procop, Gary W

    2006-07-01

    We identified Mycobacterium tuberculosis DNA using real-time polymerase chain reaction on a specimen from an osteolytic lesion of a femoral condyle, in which the frozen section demonstrated granulomas. The process was much more rapid than is possible with culture. The rapid detection of M tuberculosis and the concomitant exclusion of granulomatous disease caused by nontuberculous mycobacteria or systemic fungi are necessary to appropriately treat skeletal tuberculosis. The detection and identification of M tuberculosis by culture may require several weeks using traditional methods. The real-time polymerase chain reaction method used has been shown to be rapid and reliable, and is able to detect and differentiate both tuberculous and nontuberculous mycobacteria. Real-time polymerase chain reaction may become a diagnostic standard for the evaluation of clinical specimens for the presence of mycobacteria; this case demonstrates the potential utility of this assay for the rapid diagnosis of skeletal tuberculosis.

  3. TaqMan based real time PCR assay targeting EML4-ALK fusion transcripts in NSCLC.

    PubMed

    Robesova, Blanka; Bajerova, Monika; Liskova, Kvetoslava; Skrickova, Jana; Tomiskova, Marcela; Pospisilova, Sarka; Mayer, Jiri; Dvorakova, Dana

    2014-07-01

    Lung cancer with the ALK rearrangement constitutes only a small fraction of patients with non-small cell lung cancer (NSCLC). However, in the era of molecular-targeted therapy, efficient patient selection is crucial for successful treatment. In this context, an effective method for EML4-ALK detection is necessary. We developed a new highly sensitive variant specific TaqMan based real time PCR assay applicable to RNA from formalin-fixed paraffin-embedded tissue (FFPE). This assay was used to analyze the EML4-ALK gene in 96 non-selected NSCLC specimens and compared with two other methods (end-point PCR and break-apart FISH). EML4-ALK was detected in 33/96 (34%) specimens using variant specific real time PCR, whereas in only 23/96 (24%) using end-point PCR. All real time PCR positive samples were confirmed with direct sequencing. A total of 46 specimens were subsequently analyzed by all three detection methods. Using variant specific real time PCR we identified EML4-ALK transcript in 17/46 (37%) specimens, using end-point PCR in 13/46 (28%) specimens and positive ALK rearrangement by FISH was detected in 8/46 (17.4%) specimens. Moreover, using variant specific real time PCR, 5 specimens showed more than one EML4-ALK variant simultaneously (in 2 cases the variants 1+3a+3b, in 2 specimens the variants 1+3a and in 1 specimen the variant 1+3b). In one case of 96 EML4-ALK fusion gene and EGFR mutation were detected. All simultaneous genetic variants were confirmed using end-point PCR and direct sequencing. Our variant specific real time PCR assay is highly sensitive, fast, financially acceptable, applicable to FFPE and seems to be a valuable tool for the rapid prescreening of NSCLC patients in clinical practice, so, that most patients able to benefit from targeted therapy could be identified. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. TaqMan Real-Time PCR Assays To Assess Arbuscular Mycorrhizal Responses to Field Manipulation of Grassland Biodiversity: Effects of Soil Characteristics, Plant Species Richness, and Functional Traits▿ †

    PubMed Central

    König, Stephan; Wubet, Tesfaye; Dormann, Carsten F.; Hempel, Stefan; Renker, Carsten; Buscot, François

    2010-01-01

    Large-scale (temporal and/or spatial) molecular investigations of the diversity and distribution of arbuscular mycorrhizal fungi (AMF) require considerable sampling efforts and high-throughput analysis. To facilitate such efforts, we have developed a TaqMan real-time PCR assay to detect and identify AMF in environmental samples. First, we screened the diversity in clone libraries, generated by nested PCR, of the nuclear ribosomal DNA internal transcribed spacer (ITS) of AMF in environmental samples. We then generated probes and forward primers based on the detected sequences, enabling AMF sequence type-specific detection in TaqMan multiplex real-time PCR assays. In comparisons to conventional clone library screening and Sanger sequencing, the TaqMan assay approach provided similar accuracy but higher sensitivity with cost and time savings. The TaqMan assays were applied to analyze the AMF community composition within plots of a large-scale plant biodiversity manipulation experiment, the Jena Experiment, primarily designed to investigate the interactive effects of plant biodiversity on element cycling and trophic interactions. The results show that environmental variables hierarchically shape AMF communities and that the sequence type spectrum is strongly affected by previous land use and disturbance, which appears to favor disturbance-tolerant members of the genus Glomus. The AMF species richness of disturbance-associated communities can be largely explained by richness of plant species and plant functional groups, while plant productivity and soil parameters appear to have only weak effects on the AMF community. PMID:20418424

  5. A TaqMan real-time PCR-based assay for the identification of Fasciola spp.

    PubMed

    Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Jowers, Michael J; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan

    2011-06-30

    Real time quantitative PCR (qPCR) is one of the key technologies of the post-genome era, with clear advantages compared to normal end-point PCR. In this paper, we report the first qPCR-based assay for the identification of Fasciola spp. Based on sequences of the second internal transcribed spacers (ITS-2) of the ribosomal rRNA gene, we used a set of genus-specific primers for Fasciola ITS-2 amplification, and we designed species-specific internal TaqMan probes to identify F. hepatica and F. gigantica, as well as the hybrid 'intermediate'Fasciola. These primers and probes were used for the highly specific, sensitive, and simple identification of Fasciola species collected from different animal host from China, Spain, Niger and Egypt. The novel qPCR-based technique for the identification of Fasciola spp. may provide a useful tool for the epidemiological investigation of Fasciola infection, including their intermediate snail hosts. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. 9 CFR 147.31 - Laboratory procedures recommended for the real-time polymerase chain reaction test for Mycoplasma...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the real-time polymerase chain reaction test for Mycoplasma gallisepticum (MGLP ReTi). 147.31 Section... Examination Procedures § 147.31 Laboratory procedures recommended for the real-time polymerase chain reaction.... Following incubation, 100 µl of 100 percent ethanol is added to lysate. Wash and centrifuge following...

  7. 9 CFR 147.31 - Laboratory procedures recommended for the real-time polymerase chain reaction test for Mycoplasma...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the real-time polymerase chain reaction test for Mycoplasma gallisepticum (MGLP ReTi). 147.31 Section... Examination Procedures § 147.31 Laboratory procedures recommended for the real-time polymerase chain reaction.... Following incubation, 100 µl of 100 percent ethanol is added to lysate. Wash and centrifuge following...

  8. 9 CFR 147.31 - Laboratory procedures recommended for the real-time polymerase chain reaction test for Mycoplasma...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the real-time polymerase chain reaction test for Mycoplasma gallisepticum (MGLP ReTi). 147.31 Section... Examination Procedures § 147.31 Laboratory procedures recommended for the real-time polymerase chain reaction.... Following incubation, 100 µl of 100 percent ethanol is added to lysate. Wash and centrifuge following...

  9. Development and validation of a novel hydrolysis probe real-time polymerase chain reaction for agamid adenovirus 1 in the central bearded dragon (Pogona vitticeps).

    PubMed

    Fredholm, Daniel V; Coleman, James K; Childress, April L; Wellehan, James F X

    2015-03-01

    Agamid adenovirus 1 (AgAdv-1) is a significant cause of disease in bearded dragons (Pogona sp.). Clinical manifestations of AgAdv-1 infection are variable and often nonspecific; the manifestations range from lethargy, weight loss, and inappetence, to severe enteritis, hepatitis, and sudden death. Currently, diagnosis of AgAdv-1 infection is achieved through a single published method: standard nested polymerase chain reaction (nPCR) and sequencing. Standard nPCR with sequencing provides reliable sensitivity, specificity, and validation of PCR products. However, this process is comparatively expensive, laborious, and slow. Probe hybridization, as used in a TaqMan assay, represents the best option for validating PCR products aside from the time-consuming process of sequencing. This study developed a real-time PCR (qPCR) assay using a TaqMan probe-based assay, targeting a highly conserved region of the AgAdv-1 genome. Standard curves were generated, detection results were compared with the gold standard conventional PCR and sequencing assay, and limits of detection were determined. Additionally, the qPCR assay was run on samples known to be positive for AgAdv-1 and samples known to be positive for other adenoviruses. Based on the results of these evaluations, this assay allows for a less expensive, rapid, quantitative detection of AgAdv-1 in bearded dragons. © 2015 The Author(s).

  10. Development of SYBR Green and TaqMan quantitative real-time PCR assays for hepatopancreatic parvovirus (HPV) infecting Penaeus monodon in India.

    PubMed

    Yadav, Reena; Paria, Anutosh; Mankame, Smruti; Makesh, M; Chaudhari, Aparna; Rajendran, K V

    2015-12-01

    Hepatopancreatic parvovirus (HPV) infects Penaeus monodon and causes mortality in the larval stages. Further, it has been implicated in the growth retardation in cultured P. monodon. Though different geographical isolates of HPV show large sequence variations, a sensitive PCR assay specific to Indian isolate has not yet been reported. Here, we developed a sensitive SYBR Green-based and TaqMan real-time PCR for the detection and quantification of the virus. A 441-bp PCR amplicon was cloned in pTZ57 R/T vector and the plasmid copy number was estimated. A 10-fold serial dilution of the plasmid DNA from 1 × 10(9) copies to 1 copy was prepared and used as the standard. The primers were tested initially using the standard on a conventional PCR format to determine the linearity of detection. The standards were further tested on real-time PCR format using SYBR Green and TaqMan chemistry and standard curves were generated based on the Ct values from three well replicates for each dilution. The assays were found to be sensitive, specific and reproducible with a wide dynamic range (1 × 10(9) to 10 copies) with coefficient of regression (R(2)) > 0.99, calculated average slope -3.196 for SYBR Green assay whereas, for TaqMan assay it was >0.99 and -3.367, respectively. The intra- and inter-assay variance of the Ct values ranged from 0.26% to 0.94% and 0.12% to 0.81%, respectively, for SYBR Green assay, and the inter-assay variance of the Ct values for TaqMan assay ranged from 0.07% to 1.93%. The specificity of the assays was proved by testing other DNA viruses of shrimp such as WSSV, IHHNV and MBV. Standardized assays were further tested to detect and quantify HPV in the post-larvae of P. monodon. The result was further compared with conventional PCR to test the reproducibility of the test. The assay was also used to screen Litopeneaus vannamei, Macrobrachium rosenbergii and Scylla serrata for HPV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Identification of four squid species by quantitative real-time polymerase chain reaction.

    PubMed

    Ye, Jian; Feng, Junli; Liu, Shasha; Zhang, Yanping; Jiang, Xiaona; Dai, Zhiyuan

    2016-02-01

    Squids are distributed worldwide, including many species of commercial importance, and they are often made into varieties of flavor foods. The rapid identification methods for squid species especially their processed products, however, have not been well developed. In this study, quantitative real-time PCR (qPCR) systems based on specific primers and TaqMan probes have been established for rapid and accurate identification of four common squid species (Ommastrephes bartramii, Dosidicus gigas, Illex argentinus, Todarodes pacificus) in Chinese domestic market. After analyzing mitochondrial genes reported in GenBank, the mitochondrial cytochrome b (Cytb) gene was selected for O. bartramii detection, cytochrome c oxidase subunit I (COI) gene for D. gigas and T. Pacificus detection, ATPase subunit 6 (ATPase 6) gene for I. Argentinus detection, and 12S ribosomal RNA (12S rDNA) gene for designing Ommastrephidae-specific primers and probe. As a result, all the TaqMan systems are of good performance, and efficiency of each reaction was calculated by making standard curves. This method could detect target species either in single or mixed squid specimen, and it was applied to identify 12 squid processed products successfully. Thus, it would play an important role in fulfilling labeling regulations and squid fishery control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. 9 CFR 147.31 - Laboratory procedures recommended for the real-time polymerase chain reaction test for Mycoplasma...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the real-time polymerase chain reaction test for Mycoplasma gallisepticum (MGLP ReTi). 147.31 Section... Examination Procedures § 147.31 Laboratory procedures recommended for the real-time polymerase chain reaction... lp gene. (c) MGLP ReTi. Primers and probe should be utilized in a 25 µl reaction containing 12.5 µl...

  13. 9 CFR 147.31 - Laboratory procedures recommended for the real-time polymerase chain reaction test for Mycoplasma...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the real-time polymerase chain reaction test for Mycoplasma gallisepticum (MGLP ReTi). 147.31 Section... Examination Procedures § 147.31 Laboratory procedures recommended for the real-time polymerase chain reaction... lp gene. (c) MGLP ReTi. Primers and probe should be utilized in a 25 µl reaction containing 12.5 µl...

  14. Standardization and application of real-time polymerase chain reaction for rapid detection of bluetongue virus.

    PubMed

    Lakshmi, I Karthika; Putty, Kalyani; Raut, Satya Samparna; Patil, Sunil R; Rao, P P; Bhagyalakshmi, B; Jyothi, Y Krishna; Susmitha, B; Reddy, Y Vishnuvardhan; Kasulanati, Sowmya; Jyothi, J Shiva; Reddy, Y N

    2018-04-01

    The present study was designed to standardize real-time polymerase chain reaction (PCR) for detecting the bluetongue virus from blood samples of sheep collected during outbreaks of bluetongue disease in the year 2014 in Andhra Pradesh and Telangana states of India. A 10-fold serial dilution of Plasmid PUC59 with bluetongue virus (BTV) NS3 insert was used to plot the standard curve. BHK-21 and KC cells were used for in vitro propagation of virus BTV-9 at a TCID50/ml of 10 5 ml and RNA was isolated by the Trizol method. Both reverse transcription-PCR and real-time PCR using TaqMan probe were carried out with RNA extracted from virus-spiked culture medium and blood to compare the sensitivity by means of finding out the limit of detection (LoD). The results were verified by inoculating the detected and undetected dilutions onto cell cultures with further cytological (cytopathic effect) and molecular confirmation (by BTV-NS1 group-specific PCR). The standardized technique was then applied to field samples (blood) for detecting BTV. The slope of the standard curve obtained was -3.23, and the efficiency was 103%. The LoD with RT-PCR was 8.269E×10 3 number of copies of plasmid, whereas it was 13 with real-time PCR for plasmid dilutions. Similarly, LoD was determined for virus-spiked culture medium, and blood with both the types of PCR and the values were 10 3 TCID 50/ml and 10 4 TCID 50/ml with RT-PCR and 10° TCID 50/ml and 10 2 TCID 50/ml with real-time PCR, respectively. The standardized technique was applied to blood samples collected from BTV suspected animals; 10 among 20 samples were found positive with Cq values ranging from 27 to 39. The Cq value exhibiting samples were further processed in cell cultures and were confirmed to be BT positive. Likewise, Cq undetected samples on processing in cell cultures turned out to be BTV negative. Real-time PCR was found to be a very sensitive as well as reliable method to detect BTV present in different types of samples

  15. Rapid detection of Enterovirus and Coxsackievirus A10 by a TaqMan based duplex one-step real time RT-PCR assay.

    PubMed

    Chen, Jingfang; Zhang, Rusheng; Ou, Xinhua; Yao, Dong; Huang, Zheng; Li, Linzhi; Sun, Biancheng

    2017-06-01

    A TaqMan based duplex one-step real time RT-PCR (rRT-PCR) assay was developed for the rapid detection of Coxsackievirus A10 (CV-A10) and other enterovirus (EVs) in clinical samples. The assay was fully evaluated and found to be specific and sensitive. When applied in 115 clinical samples, a 100% diagnostic sensitivity in CV-A10 detection and 97.4% diagnostic sensitivity in other EVs were found. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Detection and quantification of genetically modified organisms using very short, locked nucleic acid TaqMan probes.

    PubMed

    Salvi, Sergio; D'Orso, Fabio; Morelli, Giorgio

    2008-06-25

    Many countries have introduced mandatory labeling requirements on foods derived from genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (PCR) based upon the TaqMan probe chemistry has become the method mostly used to support these regulations; moreover, event-specific PCR is the preferred method in GMO detection because of its high specificity based on the flanking sequence of the exogenous integrant. The aim of this study was to evaluate the use of very short (eight-nucleotide long), locked nucleic acid (LNA) TaqMan probes in 5'-nuclease PCR assays for the detection and quantification of GMOs. Classic TaqMan and LNA TaqMan probes were compared for the analysis of the maize MON810 transgene. The performance of the two types of probes was tested on the maize endogenous reference gene hmga, the CaMV 35S promoter, and the hsp70/cryIA(b) construct as well as for the event-specific 5'-integration junction of MON810, using plasmids as standard reference molecules. The results of our study demonstrate that the LNA 5'-nuclease PCR assays represent a valid and reliable analytical system for the detection and quantification of transgenes. Application of very short LNA TaqMan probes to GMO quantification can simplify the design of 5'-nuclease assays.

  17. Real-time PCR detection chemistry.

    PubMed

    Navarro, E; Serrano-Heras, G; Castaño, M J; Solera, J

    2015-01-15

    Real-time PCR is the method of choice in many laboratories for diagnostic and food applications. This technology merges the polymerase chain reaction chemistry with the use of fluorescent reporter molecules in order to monitor the production of amplification products during each cycle of the PCR reaction. Thus, the combination of excellent sensitivity and specificity, reproducible data, low contamination risk and reduced hand-on time, which make it a post-PCR analysis unnecessary, has made real-time PCR technology an appealing alternative to conventional PCR. The present paper attempts to provide a rigorous overview of fluorescent-based methods for nucleic acid analysis in real-time PCR described in the literature so far. Herein, different real-time PCR chemistries have been classified into two main groups; the first group comprises double-stranded DNA intercalating molecules, such as SYBR Green I and EvaGreen, whereas the second includes fluorophore-labeled oligonucleotides. The latter, in turn, has been divided into three subgroups according to the type of fluorescent molecules used in the PCR reaction: (i) primer-probes (Scorpions, Amplifluor, LUX, Cyclicons, Angler); (ii) probes; hydrolysis (TaqMan, MGB-TaqMan, Snake assay) and hybridization (Hybprobe or FRET, Molecular Beacons, HyBeacon, MGB-Pleiades, MGB-Eclipse, ResonSense, Yin-Yang or displacing); and (iii) analogues of nucleic acids (PNA, LNA, ZNA, non-natural bases: Plexor primer, Tiny-Molecular Beacon). In addition, structures, mechanisms of action, advantages and applications of such real-time PCR probes and analogues are depicted in this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Detection of rabbit and hare processed material in compound feeds by TaqMan real-time PCR.

    PubMed

    Pegels, N; López-Calleja, I; García, T; Martín, R; González, I

    2013-01-01

    Food and feed traceability has become a priority for governments due to consumer demand for comprehensive and integrated safety policies. In the present work, a TaqMan real-time PCR assay targeting the mitochondrial 12S rRNA gene was developed for specific detection of rabbit and hare material in animal feeds and pet foods. The technique is based on the use of three species-specific primer/probe detection systems targeting three 12S rRNA gene fragments: one from rabbit species, another one from hare species and a third fragment common to rabbit and hare (62, 102 and 75 bp length, respectively). A nuclear 18S rRNA PCR system, detecting a 77-bp amplicon, was used as positive amplification control. Assay performance and sensitivity were assessed through the analysis of a batch of laboratory-scale feeds treated at 133°C at 3 bar for 20 min to reproduce feed processing conditions dictated by European regulations. Successful detection of highly degraded rabbit and hare material was achieved at the lowest target concentration assayed (0.1%). Furthermore, the method was applied to 96 processed commercial pet food products to determine whether correct labelling had been used at the market level. The reported real-time PCR technique detected the presence of rabbit tissues in 80 of the 96 samples analysed (83.3%), indicating a possible labelling fraud in some pet foods. The real-time PCR method reported may be a useful tool for traceability purposes within the framework of feed control.

  19. Dual Combined Real-Time Reverse Transcription Polymerase Chain Reaction Assay for the Diagnosis of Lyssavirus Infection.

    PubMed

    Dacheux, Laurent; Larrous, Florence; Lavenir, Rachel; Lepelletier, Anthony; Faouzi, Abdellah; Troupin, Cécile; Nourlil, Jalal; Buchy, Philippe; Bourhy, Herve

    2016-07-01

    The definitive diagnosis of lyssavirus infection (including rabies) in animals and humans is based on laboratory confirmation. The reference techniques for post-mortem rabies diagnosis are still based on direct immunofluorescence and virus isolation, but molecular techniques, such as polymerase chain reaction (PCR) based methods, are increasingly being used and now constitute the principal tools for diagnosing rabies in humans and for epidemiological analyses. However, it remains a key challenge to obtain relevant specificity and sensitivity with these techniques while ensuring that the genetic diversity of lyssaviruses does not compromise detection. We developed a dual combined real-time reverse transcription polymerase chain reaction (combo RT-qPCR) method for pan-lyssavirus detection. This method is based on two complementary technologies: a probe-based (TaqMan) RT-qPCR for detecting the RABV species (pan-RABV RT-qPCR) and a second reaction using an intercalating dye (SYBR Green) to detect other lyssavirus species (pan-lyssa RT-qPCR). The performance parameters of this combined assay were evaluated with a large panel of primary animal samples covering almost all the genetic variability encountered at the viral species level, and they extended to almost all lyssavirus species characterized to date. This method was also evaluated for the diagnosis of human rabies on 211 biological samples (positive n = 76 and negative n = 135) including saliva, skin and brain biopsies. It detected all 41 human cases of rabies tested and confirmed the sensitivity and the interest of skin biopsy (91.5%) and saliva (54%) samples for intra-vitam diagnosis of human rabies. Finally, this method was successfully implemented in two rabies reference laboratories in enzootic countries (Cambodia and Morocco). This combined RT-qPCR method constitutes a relevant, useful, validated tool for the diagnosis of rabies in both humans and animals, and represents a promising tool for lyssavirus

  20. Dual Combined Real-Time Reverse Transcription Polymerase Chain Reaction Assay for the Diagnosis of Lyssavirus Infection

    PubMed Central

    Lavenir, Rachel; Lepelletier, Anthony; Faouzi, Abdellah; Troupin, Cécile; Nourlil, Jalal; Buchy, Philippe; Bourhy, Herve

    2016-01-01

    The definitive diagnosis of lyssavirus infection (including rabies) in animals and humans is based on laboratory confirmation. The reference techniques for post-mortem rabies diagnosis are still based on direct immunofluorescence and virus isolation, but molecular techniques, such as polymerase chain reaction (PCR) based methods, are increasingly being used and now constitute the principal tools for diagnosing rabies in humans and for epidemiological analyses. However, it remains a key challenge to obtain relevant specificity and sensitivity with these techniques while ensuring that the genetic diversity of lyssaviruses does not compromise detection. We developed a dual combined real-time reverse transcription polymerase chain reaction (combo RT-qPCR) method for pan-lyssavirus detection. This method is based on two complementary technologies: a probe-based (TaqMan) RT-qPCR for detecting the RABV species (pan-RABV RT-qPCR) and a second reaction using an intercalating dye (SYBR Green) to detect other lyssavirus species (pan-lyssa RT-qPCR). The performance parameters of this combined assay were evaluated with a large panel of primary animal samples covering almost all the genetic variability encountered at the viral species level, and they extended to almost all lyssavirus species characterized to date. This method was also evaluated for the diagnosis of human rabies on 211 biological samples (positive n = 76 and negative n = 135) including saliva, skin and brain biopsies. It detected all 41 human cases of rabies tested and confirmed the sensitivity and the interest of skin biopsy (91.5%) and saliva (54%) samples for intra-vitam diagnosis of human rabies. Finally, this method was successfully implemented in two rabies reference laboratories in enzootic countries (Cambodia and Morocco). This combined RT-qPCR method constitutes a relevant, useful, validated tool for the diagnosis of rabies in both humans and animals, and represents a promising tool for lyssavirus

  1. A novel duplex real-time reverse transcriptase-polymerase chain reaction assay for the detection of hepatitis C viral RNA with armored RNA as internal control

    PubMed Central

    2010-01-01

    Background The hepatitis C virus (HCV) genome is extremely heterogeneous. Several HCV infections can not be detected using currently available commercial assays, probably because of mismatches between the template and primers/probes. By aligning the HCV sequences, we developed a duplex real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay using 2 sets of primers/probes and a specific armored RNA as internal control. The 2 detection probes were labelled with the same fluorophore, namely, 6-carboxyfluorescein (FAM), at the 5' end; these probes could mutually combine, improving the power of the test. Results The limit of detection of the duplex primer/probe assay was 38.99 IU/ml. The sensitivity of the assay improved significantly, while the specificity was not affected. All HCV genotypes in the HCV RNA Genotype Panel for Nucleic Acid Amplification Techniques could be detected. In the testing of 109 serum samples, the performance of the duplex real-time RT-PCR assay was identical to that of the COBAS AmpliPrep (CAP)/COBAS TaqMan (CTM) assay and superior to 2 commercial HCV assay kits. Conclusions The duplex real-time RT-PCR assay is an efficient and effective viral assay. It is comparable with the CAP/CTM assay with regard to the power of the test and is appropriate for blood-donor screening and laboratory diagnosis of HCV infection. PMID:20529244

  2. A TaqMan real-time PCR method based on alternative oxidase genes for detection of plant species in animal feed samples.

    PubMed

    Campos, Maria Doroteia; Valadas, Vera; Campos, Catarina; Morello, Laura; Braglia, Luca; Breviario, Diego; Cardoso, Hélia G

    2018-01-01

    Traceability of processed food and feed products has been gaining importance due to the impact that those products can have on human/animal health and to the associated economic and legal concerns, often related to adulterations and frauds as it can be the case for meat and milk. Despite mandatory traceability requirements for the analysis of feed composition, few reliable and accurate methods are presently available to enforce the legislative frame and allow the authentication of animal feeds. In this study, nine sensitive and species-specific real-time PCR TaqMan MGB assays are described for plant species detection in animal feed samples. The method is based on selective real-time qPCR (RT-qPCR) amplification of target genes belonging to the alternative oxidase (AOX) gene family. The plant species selected for detection in feed samples were wheat, maize, barley, soybean, rice and sunflower as common components of feeds, and cotton, flax and peanut as possible undesirable contaminants. The obtained results were compared with end-point PCR methodology. The applicability of the AOX TaqMan assays was evaluated through the screening of commercial feed samples, and by the analysis of plant mixtures with known composition. The RT-qPCR methodology allowed the detection of the most abundant species in feeds but also the identification of contaminant species present in lower amounts, down to 1% w/w. AOX-based methodology provides a suitable molecular marker approach to ascertain plant species composition of animal feed samples, thus supporting feed control and enforcement of the feed sector and animal production.

  3. Development and validation of a real-time TaqMan assay for the detection and enumeration of Pseudomonas fluorescens ATCC 13525 used as a challenge organism in testing of food equipments.

    PubMed

    Saha, Ratul; Bestervelt, Lorelle L; Donofrio, Robert S

    2012-02-01

    Pseudomonas fluorescens ATCC 13525 is used as the challenge organism to evaluate the efficacy of the clean-in-place (CIP) process of food equipment (automatic ice-maker) as per NSF/ANSI Standard 12. Traditional culturing methodology is presently used to determine the concentration of the challenge organism, which takes 48 h to confirm the cell density. Storage of the challenge preparation in the refrigerator might alter the cell density as P. fluorescens is capable of growing at 4 °C. Also, background organism can grow on the Pseudomonas F agar (PFA) used for the recovery of P. fluorescens thus affecting the results of the test. Real-time TaqMan assay targeting the cpn60 gene was developed for the enumeration and the identification of P. fluorescens because of its specificity, accuracy, and shorter turnaround time. The TaqMan primer-probe pair developed using the Allele ID® 7.0 probe design software was highly specific and sensitive for the target organism. The sensitivity of the assay was 10 colony forming units (CFU)/mL. The assay was also successful in determining the concentration of the challenge preparation within 2 h. Based on these observations, TaqMan assay targeting the cpn60 gene can be efficiently used for strain level identification and enumeration of bacteria. Pseudomonas fluorescens ATCC 13525 is used as a challenge organism in the efficacy testing of clean-in-place process of food equipments. Currently, culturing technique is used for its identification and estimation, which is not only time-consuming but also prone to error. Real-time TaqMan assay is more specific, sensitive, and accurate along with a shorter turnaround time compared to culturing techniques, thereby increasing the overall quality of the testing methodology to evaluate the clean-in-place process critical for the food industry to protect public health and safety. © 2012 Institute of Food Technologists®

  4. Influence of PCR reagents on DNA polymerase extension rates measured on real-time PCR instruments.

    PubMed

    Montgomery, Jesse L; Wittwer, Carl T

    2014-02-01

    Radioactive DNA polymerase activity methods are cumbersome and do not provide initial extension rates. A simple extension rate assay would enable study of basic assumptions about PCR and define the limits of rapid PCR. A continuous assay that monitors DNA polymerase extension using noncovalent DNA dyes on common real-time PCR instruments was developed. Extension rates were measured in nucleotides per second per molecule of polymerase. To initiate the reaction, a nucleotide analog was heat activated at 95 °C for 5 min, the temperature decreased to 75 °C, and fluorescence monitored until substrate exhaustion in 30-90 min. The assay was linear with time for over 40% of the reaction and for polymerase concentrations over a 100-fold range (1-100 pmol/L). Extension rates decreased continuously with increasing monovalent cation concentrations (lithium, sodium, potassium, cesium, and ammonium). Melting-temperature depressors had variable effects. DMSO increased rates up to 33%, whereas glycerol had little effect. Betaine, formamide, and 1,2-propanediol decreased rates with increasing concentrations. Four common noncovalent DNA dyes inhibited polymerase extension. Heat-activated nucleotide analogs were 92% activated after 5 min, and hot start DNA polymerases were 73%-90% activated after 20 min. Simple DNA extension rate assays can be performed on real-time PCR instruments. Activity is decreased by monovalent cations, DNA dyes, and most melting temperature depressors. Rational inclusion of PCR components on the basis of their effects on polymerase extension is likely to be useful in PCR, particularly rapid-cycle or fast PCR.

  5. Results of the Abbott RealTime HIV-1 assay for specimens yielding "target not detected" results by the Cobas AmpliPrep/Cobas TaqMan HIV-1 Test.

    PubMed

    Babady, N Esther; Germer, Jeffrey J; Yao, Joseph D C

    2010-03-01

    No significantly discordant results were observed between the Abbott RealTime HIV-1 assay and the COBAS AmpliPrep/COBAS TaqMan HIV-1 Test (CTM) among 1,190 unique clinical plasma specimens obtained from laboratories located in 40 states representing all nine U.S. geographic regions and previously yielding "target not detected" results by CTM.

  6. Rapid and Reliable Genotyping of HLA-B*57:01 in Four Chinese Populations Using a Single-Tube Duplex Real-Time Polymerase Chain Reaction Assay.

    PubMed

    Han, Min; Kang, Xing; Liu, Zhengbin; Zhang, Tingting; Li, Yanwei; Chen, Chao; Wang, Huijuan

    2017-07-01

    HLA-B*57:01 is strongly associated with severe adverse drug reaction induced by the anti-HIV drug abacavir (ABC) and antibiotic flucloxacillin. This study was dedicated to establishing a new method for HLA-B*57:01 genotyping and investigating the HLA-B*57:01 distribution pattern in four Chinese populations. A single-tube duplex real-time polymerase chain reaction (PCR) system was established by combining the amplification refractory mutation system and TaqMan probe. The reliability of this assay was validated by comparing the genotyping results with those by sequence-based typing. With this assay, the distribution of HLA-B*57:01 in 354 blood samples from four ethnic groups, namely, Han, Tibetan, Uighur, and Buyei, was determined. A 100% concordance was observed between the results of real-time PCR and sequence-based typing in 50 Uighur samples. As low as 0.016 ng DNA that carried HLA-B*57:01 could be detected with this assay. HLA-B*57:01 carriers identified in 100 Northern Han Chinese, 104 Buyeis, 100 Tibetans, and 50 Uighurs were 0, 1 (0.96%), 3 (3%), and 6 (12%), respectively. The carrier rate of HLA-B*57:01 in Uighur was significantly higher than those in Northern Han (p = .001) and Buyei (p = .005). The newly established real-time PCR assay provides a rapid and reliable tool for HLA-B*57:01 allele screening before the prescription of ABC and flucloxacillin in clinical practice.

  7. Novel approach to quantitative polymerase chain reaction using real-time detection: application to the detection of gene amplification in breast cancer.

    PubMed

    Bièche, I; Olivi, M; Champème, M H; Vidaud, D; Lidereau, R; Vidaud, M

    1998-11-23

    Gene amplification is a common event in the progression of human cancers, and amplified oncogenes have been shown to have diagnostic, prognostic and therapeutic relevance. A kinetic quantitative polymerase-chain-reaction (PCR) method, based on fluorescent TaqMan methodology and a new instrument (ABI Prism 7700 Sequence Detection System) capable of measuring fluorescence in real-time, was used to quantify gene amplification in tumor DNA. Reactions are characterized by the point during cycling when PCR amplification is still in the exponential phase, rather than the amount of PCR product accumulated after a fixed number of cycles. None of the reaction components is limited during the exponential phase, meaning that values are highly reproducible in reactions starting with the same copy number. This greatly improves the precision of DNA quantification. Moreover, real-time PCR does not require post-PCR sample handling, thereby preventing potential PCR-product carry-over contamination; it possesses a wide dynamic range of quantification and results in much faster and higher sample throughput. The real-time PCR method, was used to develop and validate a simple and rapid assay for the detection and quantification of the 3 most frequently amplified genes (myc, ccndl and erbB2) in breast tumors. Extra copies of myc, ccndl and erbB2 were observed in 10, 23 and 15%, respectively, of 108 breast-tumor DNA; the largest observed numbers of gene copies were 4.6, 18.6 and 15.1, respectively. These results correlated well with those of Southern blotting. The use of this new semi-automated technique will make molecular analysis of human cancers simpler and more reliable, and should find broad applications in clinical and research settings.

  8. Development of a Real-Time, TaqMan Reverse Transcription-PCR Assay for Detection and Differentiation of Lyssavirus Genotypes 1, 5, and 6

    PubMed Central

    Wakeley, P. R.; Johnson, N.; McElhinney, L. M.; Marston, D.; Sawyer, J.; Fooks, A. R.

    2005-01-01

    Several reverse transcription-PCR (RT-PCR) methods have been reported for the detection of rabies and rabies-related viruses. These methods invariably involve multiple transfers of nucleic acids between different tubes, with the risk of contamination leading to the production of false-positive results. Here we describe a single, closed-tube, nonnested RT-PCR with TaqMan technology that distinguishes between classical rabies virus (genotype 1) and European bat lyssaviruses 1 and 2 (genotypes 5 and 6) in real time. The TaqMan assay is rapid, sensitive, and specific and allows for the genotyping of unknown isolates concomitant with the RT-PCR. The assay can be applied quantitatively and the use of an internal control enables the quality of the isolated template to be assessed. Despite sequence heterogeneity in the N gene between the different genotypes, a universal forward and reverse primer set has been designed, allowing for the simplification of previously described assays. We propose that within a geographically constrained area, this assay will be a useful tool for the detection and differentiation of members of the Lyssavirus genus. PMID:15956398

  9. Quantitative detection method of Enterocytozoon hepatopenaei using TaqMan probe real-time PCR.

    PubMed

    Liu, Ya-Mei; Qiu, Liang; Sheng, An-Zhi; Wan, Xiao-Yuan; Cheng, Dong-Yuan; Huang, Jie

    2018-01-01

    A TaqMan probe and a pair of specific primers were selected from the small subunit ribosomal DNA (SSU rDNA) sequence of Enterocytozoon hepatopenaei (EHP); this real-time PCR assay was developed and optimized. It showed a good linearity in detecting standards of EHP SSU rDNA fragments from 4 × 10 2 to 4 × 10 8 copies/reaction using the established method. The detection limit of the qPCR method was as low as 4 × 10 1 copies per reaction, which was higher than the conventional PCR and SYBR Green I-based EHP qPCR reported. Using the qPCR assay, EHP was detected in four batches of slow-growing Penaeus vannamei specimens collected from Tianjin and Zhejiang Province in China was detected using qPCR. The results showed that all the hepatopancreas from the slow-growing P. vannamei specimens were detected as EHP-positive. EHP copies of hepatopancreas in some batches had a negative correlation with the body mass index (BMI) of shrimps; however, not all batches of specimens had this negative correlation between EHP copies of hepatopancreas and BMI. This qPCR technique is sensitive, specific and easy to perform (96 tests in <3 h), which provides technical support for the detection and prevention of EHP. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Quantification of the biocontrol agent Trichoderma harzianum with real-time TaqMan PCR and its potential extrapolation to the hyphal biomass.

    PubMed

    López-Mondéjar, Rubén; Antón, Anabel; Raidl, Stefan; Ros, Margarita; Pascual, José Antonio

    2010-04-01

    The species of the genus Trichoderma are used successfully as biocontrol agents against a wide range of phytopathogenic fungi. Among them, Trichoderma harzianum is especially effective. However, to develop more effective fungal biocontrol strategies in organic substrates and soil, tools for monitoring the control agents are required. Real-time PCR is potentially an effective tool for the quantification of fungi in environmental samples. The aim of this study consisted of the development and application of a real-time PCR-based method to the quantification of T. harzianum, and the extrapolation of these data to fungal biomass values. A set of primers and a TaqMan probe for the ITS region of the fungal genome were designed and tested, and amplification was correlated to biomass measurements obtained with optical microscopy and image analysis, of the hyphal length of the mycelium of the colony. A correlation of 0.76 between ITS copies and biomass was obtained. The extrapolation of the quantity of ITS copies, calculated based on real-time PCR data, into quantities of fungal biomass provides potentially a more accurate value of the quantity of soil fungi. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Real-Time Reverse Transcription–Polymerase Chain Reaction Assay for SARS-associated Coronavirus

    PubMed Central

    Emery, Shannon L.; Bowen, Michael D.; Newton, Bruce R.; Winchell, Jonas M.; Meyer, Richard F.; Tong, Suxiang; Cook, Byron T.; Holloway, Brian P.; McCaustland, Karen A.; Rota, Paul A.; Bankamp, Bettina; Lowe, Luis E.; Ksiazek, Tom G.; Bellini, William J.; Anderson, Larry J.

    2004-01-01

    A real-time reverse transcription–polymerase chain reaction (RT-PCR) assay was developed to rapidly detect the severe acute respiratory syndrome–associated coronavirus (SARS-CoV). The assay, based on multiple primer and probe sets located in different regions of the SARS-CoV genome, could discriminate SARS-CoV from other human and animal coronaviruses with a potential detection limit of <10 genomic copies per reaction. The real-time RT-PCR assay was more sensitive than a conventional RT-PCR assay or culture isolation and proved suitable to detect SARS-CoV in clinical specimens. Application of this assay will aid in diagnosing SARS-CoV infection. PMID:15030703

  12. Real-time PCR and its application to mumps rapid diagnosis.

    PubMed

    Jin, L; Feng, Y; Parry, R; Cui, A; Lu, Y

    2007-11-01

    A real-time polymerase chain reaction assay was initially developed in China to detect mumps genome. The primers and TaqMan-MGB probe were selected from regions of the hemagglutinin gene of mumps virus. The primers and probe for the real-time PCR were evaluated by both laboratories in China and in the UK using three different pieces of equipment, LightCycler (Roche), MJ DNA Engine Option 2 (BIO-RAD) and TaqMan (ABI Prism) on different samples. The reaction was performed with either a one-step (China) or two-step (UK) process. The sensitivity (10 copies) was estimated using a serial dilution of constructed mumps-plasmid DNA and a linear standard curve was obtained between 10 and 10(7) DNA copies/reaction, which can be used to quantify viral loads. The detection limit on cell culture-grown virus was approximately 2 pfu/ml with a two-step assay on TaqMan, which was equivalent to the sensitivity of the nested PCR routinely used in the UK. The specificity was proved by testing a range of respiratory viruses and several genotypes of mumps strains. The concentration of primers and probe is 22 pmol and 6.25 or 7 pmol respectively for a 25 microl reaction. The assay took 3 hr from viral RNA extraction to complete the detection using any of the three pieces of equipment. Three hundred forty-one (35 in China and 306 in the UK) clinical specimens were tested, the results showing that this real-time PCR assay is suitable for rapid and accurate detection of mumps virus RNA in various types of clinical specimens. (c) 2007 Wiley-Liss, Inc.

  13. Development of a rapid, sensitive TaqMan real-time RT-PCR assay for the detection of Rose rosette virus using multiple gene targets.

    PubMed

    Babu, Binoy; Jeyaprakash, Ayyamperumal; Jones, Debra; Schubert, Timothy S; Baker, Carlye; Washburn, Brian K; Miller, Steven H; Poduch, Kristina; Knox, Gary W; Ochoa-Corona, Francisco M; Paret, Mathews L

    2016-09-01

    Rose rosette virus (RRV), belonging to the genus Emaravirus, is a highly destructive pathogen that causes rose rosette disease. The disease is a major concern for the rose industry in the U.S. due to the lack of highly sensitive methods for early detection of RRV. This is critical, as early identification of the infected plants and eradication is necessary in minimizing the risks associated with the spread of the disease. A highly reliable, specific and sensitive detection assay is thus required to test and confirm the presence of RRV in suspected plant samples. In this study a TaqMan real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was developed for the detection of RRV from infected roses, utilizing multiple gene targets. Four pairs of primers and probes; two of them (RRV_2-1 and RRV_2-2) based on the consensus sequences of the glycoprotein gene (RNA2) and the other two (RRV_3-2 and RRV_3-5) based on the nucleocapsid gene (RNA3) were designed. The specificity of the primers and probes was evaluated against other representative viruses infecting roses, belonging to the genera Alfamovirus, Cucumovirus, Ilarvirus, Nepovirus, Tobamovirus, and Tospovirus and one Emaravirus (Wheat mosaic virus). Dilution assays using the in vitro transcripts (spiked with total RNA from healthy plants, and non-spiked) showed that all the primers and probes are highly sensitive in consistently detecting RRV with a detection limit of 1 fg. Testing of the infected plants over a period of time (three times in monthly intervals) indicated high reproducibility, with the primer/probe RRV_3-5 showing 100% positive detection, while RRV_2-1, RRV_2-2 and RRV_3-2 showed 90% positive detection. The developed real-time RT-PCR assay is reliable, highly sensitive, and can be easily used in diagnostic laboratories for testing and confirmation of RRV. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Comparison between qualitative and real-time polymerase chain reaction to evaluate minimal residual disease in children with acute lymphoblastic leukemia.

    PubMed

    Paula, Francisco Danilo Ferreira; Elói-Santos, Silvana Maria; Xavier, Sandra Guerra; Ganazza, Mônica Aparecida; Jotta, Patricia Yoshioka; Yunes, José Andrés; Viana, Marcos Borato; Assumpção, Juliana Godoy

    2015-01-01

    Minimal residual disease is an important independent prognostic factor that can identify poor responders among patients with acute lymphoblastic leukemia. The aim of this study was to analyze minimal residual disease using immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements by conventional polymerase chain reaction followed by homo-heteroduplex analysis and to compare this with real-time polymerase chain reaction at the end of the induction period in children with acute lymphoblastic leukemia. Seventy-four patients diagnosed with acute lymphoblastic leukemia were enrolled. Minimal residual disease was evaluated by qualitative polymerase chain reaction in 57 and by both tests in 44. The Kaplan-Meier and multivariate Cox methods and the log-rank test were used for statistical analysis. Nine patients (15.8%) were positive for minimal residual disease by qualitative polymerase chain reaction and 11 (25%) by real-time polymerase chain reaction considering a cut-off point of 1×10(-3) for precursor B-cell acute lymphoblastic leukemia and 1×10(-2) for T-cell acute lymphoblastic leukemia. Using the qualitative method, the 3.5-year leukemia-free survival was significantly higher in children negative for minimal residual disease compared to those with positive results (84.1%±5.6% versus 41.7%±17.3%, respectively; p-value=0.004). There was no significant association between leukemia-free survival and minimal residual disease by real-time polymerase chain reaction. Minimal residual disease by qualitative polymerase chain reaction was the only variable significantly correlated to leukemia-free survival. Given the difficulties in the implementation of minimal residual disease monitoring by real-time polymerase chain reaction in most treatment centers in Brazil, the qualitative polymerase chain reaction strategy may be a cost-effective alternative. Copyright © 2015 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier

  15. Development a of multiplex TaqMan real-time RT-PCR assay for simultaneous detection of Asian prunus viruses, plum bark necrosis stem pitting associated virus, and peach latent mosaic virus

    USDA-ARS?s Scientific Manuscript database

    Asian prunus viruses (APV 1, APV 2 and APV 3) and Plum bark necrosis stem pitting associated virus (PBNSPaV) are two recently described viruses infecting Prunus spp., and Peach latent mosaic viroid (PLMVd) is a viroid that infects the same species. A single-tube multiplex, TaqMan real-time RT-PCR as...

  16. Delayed vaccine virus replication in chickens vaccinated subcutaneously with an immune complex infectious bursal disease vaccine: Quantification of vaccine virus by real-time polymerase chain reaction

    PubMed Central

    2005-01-01

    Abstract The distribution of the immune complex vaccine virus for infectious bursal disease (IBD) in tissue was examined and the viral loads of the organs were quantitatively compared. One-day-old specific pathogen free (SPF) and maternally immune broiler chickens were injected subcutaneously with the vaccine. Lymphoid and non-lymphoid tissues were collected at various time intervals during the experiment to test for infectious bursal disease virus (IBDV)-RNA by using reverse transcriptase-polymerase chain reaction (RT-PCR). Only the bursa of Fabricius was found to be positive with unusually long viral persistence in the broiler group. The positive bursa samples were further investigated by using real-time PCR coupled with a TaqMan probe. The highest amounts of the virus were detected at its first appearance in the bursa: on day 14 post vaccination (PV) in the SPF chickens and on day 17 and day 21 PV in the maternally immune broiler group. The virus then gradually cleared, most likely due to the parallel appearance of the active immune response indicated by seroconversion. PMID:15971678

  17. Detection of Citrus leprosis virus C using specific primers and TaqMan probe in one-step real-time reverse-transcription polymerase chain reaction assays.

    PubMed

    Choudhary, Nandlal; Wei, G; Govindarajulu, A; Roy, Avijit; Li, Wenbin; Picton, Deric D; Nakhla, M K; Levy, L; Brlansky, R H

    2015-11-01

    Citrus leprosis virus C (CiLV-C), a causal agent of the leprosis disease in citrus, is mostly present in the South and Central America and spreading toward the North America. To enable better diagnosis and inhibit the further spread of this re-emerging virus a quantitative (q) real-time reverse transcription polymerase chain reaction (qRT-PCR) assay is needed for early detection of CiLV-C when the virus is present in low titer in citrus leprosis samples. Using the genomic sequence of CiLV-C, specific primers and probe were designed and synthesized to amplify a 73 nt amplicon from the movement protein (MP) gene. A standard curve of the 73 nt amplicon MP gene was developed using known 10(10)-10(1) copies of in vitro synthesized RNA transcript to estimate the copy number of RNA transcript in the citrus leprosis samples. The one-step qRT-PCR detection assays for CiLV-C were determined to be 1000 times more sensitive when compared to the one-step conventional reverse transcription polymerase chain reaction (RT-PCR) CiLV-C detection method. To evaluate the quality of the total RNA extracts, NADH dehydrogenase gene specific primers (nad5) and probe were included in reactions as an internal control. The one-step qRT-PCR specificity was successfully validated by testing for the presence of CiLV-C in the total RNA extracts of the citrus leprosis samples collected from Belize, Costa Rica, Mexico and Panama. Implementation of the one-step qRT-PCR assays for CiLV-C diagnosis should assist regulatory agencies in surveillance activities to monitor the distribution pattern of CiLV-C in countries where it is present and to prevent further dissemination into citrus growing countries where there is no report of CiLV-C presence. Published by Elsevier B.V.

  18. Multicentre study of Y chromosome microdeletions in 1,808 Chinese infertile males using multiplex and real-time polymerase chain reaction.

    PubMed

    Zhu, X-B; Gong, Y-H; He, J; Guo, A-L; Zhi, E-L; Yao, J-E; Zhu, B-S; Zhang, A-J; Li, Z

    2017-06-01

    Azoospermia factor (AZF) genes on the long arm of the human Y chromosome are involved in spermatogenesis, and microdeletions in the AZF region have been recognised to be the second major genetic cause of spermatogenetic failure resulting in male infertility. While screening for these microdeletions can avoid unnecessary medical and surgical treatments, current methods are generally time-consuming. Therefore, we established a new method to detect and analyse microdeletions in the AZF region quickly, safely and efficiently. In total, 1,808 patients with spermatogenetic failure were recruited from three hospitals in southern China, of which 600 patients were randomly selected for screening for Y chromosome microdeletions in AZF regions employing real-time polymerase chain reaction with a TaqMan probe. In our study, of 1,808 infertile patients, 150 (8.3%) were found to bear microdeletions in the Y chromosome using multiplex PCR, while no deletions were found in the controls. Among the AZF deletions detected, two were in AZFa, three in AZFb, 35 in AZFc, three in AZFb+c and two in AZFa+b+c. Our method is fast-it permits the scanning of DNA from a patient in one and a half hours-and reliable, minimising the risk of cross-contamination and false-positive and false-negative results. © 2016 Blackwell Verlag GmbH.

  19. Development of real-time PCR for detection and quantitation of Streptococcus parauberis.

    PubMed

    Nguyen, T L; Lim, Y J; Kim, D-H; Austin, B

    2016-01-01

    Streptococcus parauberis is an increasing threat to aquaculture of olive flounder, Paralichthys olivaceus Temminck & Schlegel, in South Korea. We developed a real-time polymerase chain reaction (PCR) method using the TaqMan probe assay to detect and quantify S. parauberis by targeting the gyrB gene sequences, which are effective for molecular analysis of the genus Streptococcus. Our real-time PCR assay is capable of detecting 10 fg of genomic DNA per reaction. The intra- and interassay coefficient of variation (CV) values ranged from 0.42-1.95%, demonstrating that the assay has good reproducibility. There was not any cross-reactivity to Streptococcus iniae or to other streptococcal/lactococcal fish pathogens, such as S. agalactiae and Lactococcus garvieae, indicating that the assay is highly specific to S. parauberis. The results of the real-time PCR assay corresponded well to those of conventional culture assays for S. parauberis from inoculated tissue homogenates (r = 0.957; P < 0.05). Hence, this sensitive and specific real-time PCR is a valuable tool for diagnostic quantitation of S. parauberis in clinical samples. © 2014 John Wiley & Sons Ltd.

  20. New design, development, and optimization of an in-house quantitative TaqMan Real-time PCR assay for HIV-1 viral load measurement.

    PubMed

    Noorbazargan, Hassan; Nadji, Seyed Alireza; Samiee, Siamak Mirab; Paryan, Mahdi; Mohammadi-Yeganeh, Samira

    2018-04-01

    Background Viral load measurement is commonly applicable to monitor HIV infection in patients to determine the number of HIV-RNA in serum samples of individuals. The aim of the present study was to set up a highly specific, sensitive, and reproducible home-brewed Real-time PCR assay based on TaqMan chemistry to quantify HIV-1 RNA genome. Methods In this study, three sets of primer pairs and a TaqMan probe were designed for HIV subtypes conserved sequences. An internal control was included in this assay to evaluate the presence of inhibition. Standard curve and threshold cycle values were determined using in vitro transcribed RNA from int region of HIV-1. A serial dilution of RNA standards was generated by in vitro transcription, from 10 to 10 9 copies/ml to find the sensitivity and the limit of detection (LOD) of the assay and to evaluate its performance in a quantitative RT-PCR assay. Results The assay has a low LOD equivalent to 33.13 copies/ml of HIV-1 RNA and a linear range of detection from 10 to 10 9 copies/ml. The coefficient of variation (CV) for Inter and Intra-assay precision of this in-house HIV Real-time RT-PCR ranged from 0.28 to 2.49% and 0.72 to 4.47%, respectively. The analytical and clinical specificity was 100%. Conclusions The results indicate that the developed method has a suitable specificity and sensitivity and is highly reproducible and cost-benefit. Therefore, it will be useful to monitor HIV infection in plasma samples of individuals.

  1. [Identification of human pathogenic variola and monkeypox viruses by real-time polymerase chain reaction].

    PubMed

    Kostina, E V; Gavrilova, E V; Riabinin, V A; Shchelkunov, S N; Siniakov, A N

    2009-01-01

    A kit of specific oligonucleotide primers and hybridization probes has been proposed to detect orthopoxviruses (OPV) and to discriminate human pathogenic viruses, such as variola virus and monkey virus by real-time polymerase chain reaction (PCR). For real-time PCR, the following pairs of fluorophore and a fluorescence quencher were used: TAMRA-BHQ2 for genus-specific probes and FAM-BHQ1 for species-specific ones (variola virus, monkeypox virus, ectomelia virus). The specificity of this assay was tested on 38 strains of 6 OPV species and it was 100%.

  2. Specific and straightforward molecular investigation of β-thalassemia mutations in the Malaysian Malays and Chinese using direct TaqMan genotyping assays.

    PubMed

    Kho, S L; Chua, K H; George, E; Tan, J A M A

    2013-07-15

    Beta-thalassemia is a life-threatening inherited blood disorder. Rapid characterization of β-globin gene mutations is necessary because of the high frequency of Malaysian β-thalassemia carriers. A combination real-time polymerase chain reaction genotyping assay using TaqMan probes was developed to confirm β-globin gene mutations. In this study, primers and probes were designed to specifically identify 8 common β-thalassemia mutations in the Malaysian Malay and Chinese ethnic groups using the Primer Express software. "Blind tests" using DNA samples from healthy individuals and β-thalassemia patients with different genotypes were performed to determine the specificity and sensitivity of this newly designed assay. Our results showed 100% sensitivity and specificity for this novel assay. In conclusion, the TaqMan genotyping assay is a straightforward assay that allows detection of β-globin gene mutations in less than 40 min. The simplicity and reproducibility of the TaqMan genotyping assay permit its use in laboratories as a rapid and cost-effective diagnostic tool for confirmation of common β-thalassemia mutations in Malaysia.

  3. TaqMan real-time RT-PCR detection of infectious salmon anaemia virus (ISAV) from formalin-fixed paraffin-embedded Atlantic salmon Salmo salar tissues.

    PubMed

    Godoy, M G; Kibenge, F S; Kibenge, M J; Olmos, P; Ovalle, L; Yañez, A J; Avendaño-Herrera, R

    2010-05-18

    The objective of this study was to evaluate the application of a TaqMan real-time reverse transcriptase PCR (RT-PCR) assay for the detection of infectious salmon anaemia virus (ISAV) in formalin-fixed paraffin-embedded (FFPE) fish tissues from Atlantic salmon Salmo salar with and without clinical signs of infection, and to compare it with histological and immunohistochemical (IHC) techniques. Sixteen fish samples obtained in 2007 and 2008 from 4 different farms in Chile were examined. The real-time RT-PCR allowed the detection of ISAV in FFPE samples from 9 of 16 fish, regardless of the organs analyzed, whereas 4 of the real-time RT-PCR negative fish were positive as indicated by histological examination and 3 of the real-time RT-PCR positive fish were negative as indicated by immunohistochemistry evaluation. The presence of ISAV in RT-PCR positive samples was confirmed by amplicon sequencing. This work constitutes the first report on the use of real-time RT-PCR for the detection of ISAV in FFPE sections. The assay is very useful for the examination of archival wax-embedded tissues, and allows for both prospective and retrospective evaluation of tissue samples for the presence of ISAV. However, the method only confirms the presence of the pathogen and should be used in combination with histopathology, which is a more precise tool. The combination of both techniques would be invaluable for confirmatory diagnosis of infectious salmon anaemia (ISA), which is essential for solving salmon farm problems.

  4. Quantification of HIV-1 DNA using real-time recombinase polymerase amplification.

    PubMed

    Crannell, Zachary Austin; Rohrman, Brittany; Richards-Kortum, Rebecca

    2014-06-17

    Although recombinase polymerase amplification (RPA) has many advantages for the detection of pathogenic nucleic acids in point-of-care applications, RPA has not yet been implemented to quantify sample concentration using a standard curve. Here, we describe a real-time RPA assay with an internal positive control and an algorithm that analyzes real-time fluorescence data to quantify HIV-1 DNA. We show that DNA concentration and the onset of detectable amplification are correlated by an exponential standard curve. In a set of experiments in which the standard curve and algorithm were used to analyze and quantify additional DNA samples, the algorithm predicted an average concentration within 1 order of magnitude of the correct concentration for all HIV-1 DNA concentrations tested. These results suggest that quantitative RPA (qRPA) may serve as a powerful tool for quantifying nucleic acids and may be adapted for use in single-sample point-of-care diagnostic systems.

  5. Development of a real-time quantitative PCR assay to enumerate Yersinia pestis in fleas.

    PubMed

    Gabitzsch, Elizabeth S; Vera-Tudela, Rommelle; Eisen, Rebecca J; Bearden, Scott W; Gage, Kenneth L; Zeidner, Nordin S

    2008-07-01

    A real-time quantitative polymerase chain reaction (qPCR) assay was developed for Yersina pestis. The qPCR assay was developed utilizing a conserved region of the Y. pestis ferric iron uptake regulator gene (fur) to design primers and a fluorescent (FAM-labeled) TaqMan probe. The assay was optimized using cultured Y. pestis (UG05-0454) and was confirmed to work with strains from 3 Y. pestis biovars. The optimized assay was capable of detecting a single organism of cultured Y. pestis and as little as 300 bacteria in infected flea triturates. This qPCR assay enables rapid enumeration of Y. pestis bacterium in laboratory-infected fleas when compared with conventional serial dilution plating.

  6. Development of a real-time polymerase chain reaction assay for the detection of the invasive Mediterranean fanworm, Sabella spallanzanii, in environmental samples.

    PubMed

    Wood, Susanna A; Zaiko, Anastasija; Richter, Ingrid; Inglis, Graeme J; Pochon, Xavier

    2017-07-01

    The Mediterranean fanworm, Sabella spallanzanii Gmelin 1791, was first detected in the Southern Hemisphere in the 1990s and is now abundant in many parts of southern Australia and in several locations around northern New Zealand. Once established, it can proliferate rapidly, reaching high densities with potential ecological and economic impacts. Early detection of new S. spallanzanii incursions is important to prevent its spread, guide eradication or control efforts and to increase knowledge on the species' dispersal pathways. In this study, we developed a TaqMan probe real-time polymerase chain reaction assay targeting a region of the mitochondrial cytochrome oxidase I gene. The assay was validated in silico and in vitro using DNA from New Zealand and Australian Sabellidae with no cross-reactivity detected. The assay has a linear range of detection over seven orders of magnitude with a limit of detection reached at 12.4 × 10 -4  ng/μL of DNA. We analysed 145 environmental (water, sediment and biofouling) samples and obtained positive detections only from spiked samples and those collected at a port where S. spallanzanii is known to be established. This assay has the potential to enhance current morphological and molecular-based methods, through its ability to rapidly and accurately identify S. spallanzanii in environmental samples.

  7. Taqman Real-Time PCR Detects Avipoxvirus DNA in Blood of Hawaìi `Amakihi (Hemignathus virens)

    PubMed Central

    Farias, Margaret E. M.; LaPointe, Dennis A.; Atkinson, Carter T.; Czerwonka, Christopher; Shrestha, Rajesh; Jarvi, Susan I.

    2010-01-01

    Background Avipoxvirus sp. is a significant threat to endemic bird populations on several groups of islands worldwide, including Hawaìi, the Galapagos Islands, and the Canary Islands. Accurate identification and genotyping of Avipoxvirus is critical to the study of this disease and how it interacts with other pathogens, but currently available methods rely on invasive sampling of pox-like lesions and may be especially harmful in smaller birds. Methodology/Principal Findings Here, we present a nested TaqMan Real-Time PCR for the detection of the Avipoxvirus 4b core protein gene in archived blood samples from Hawaiian birds. The method was successful in amplifying Avipoxvirus DNA from packed blood cells of one of seven Hawaiian honeycreepers with confirmed Avipoxvirus infections and 13 of 28 Hawaìi `amakihi (Hemignathus virens) with suspected Avipoxvirus infections based on the presence of pox-like lesions. Mixed genotype infections have not previously been documented in Hawaìi but were observed in two individuals in this study. Conclusions/Significance We anticipate that this method will be applicable to other closely related strains of Avipoxvirus and will become an important and useful tool in global studies of the epidemiology of Avipoxvirus. PMID:20523726

  8. Comparison of the Roche COBAS Amplicor Monitor, Roche COBAS Ampliprep/COBAS Taqman and Abbott RealTime Test assays for quantification of hepatitis C virus and HIV RNA.

    PubMed

    Wolff, Dietmar; Gerritzen, Andreas

    2007-01-01

    We have evaluated the performance of two newly developed automated real-time PCR assays, the COBAS Ampliprep/COBAS TaqMan (CAP/CTM) and the Abbott RealTime tests, in the quantification of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) RNA. The widely used semi-automated COBAS Amplicor Monitor (CAM) assay served as the reference test. Several specimens were analyzed, including 102 plasma samples from HCV patients and 109 from HIV patients and 10 samples from negative donors, as well as Quality Control in Molecular Diagnostics (QCMD) and National Institute for Biological Standards and Controls (NIBSC) proficiency program panels. Good correlation was observed among the three assays, with correlation coefficients (R2) of 0.8 (CAM-CAP/CTM), 0.89 (CAM-RealTime) and 0.91 (CAP/CTM-RealTime) for HCV and 0.83 (CAM-RealTime), 0.85 (CAM-CAP/CTM) and 0.89 (CAP/CTM-RealTime) for HIV. The overall concordance for negative/positive results was 100% for HCV and 98% for HIV. All assays were equally able to quantify HCV genotypes 1, 3, 5 and HIV group M (subtypes A-H) and N from QCMD and NIBSC panels. In terms of workflow, the RealTime assay requires more hands-on-time than the CAP/CTM assay. The results indicate that real-time PCR assays can improve the efficiency of end-point PCR tests by better covering viral dynamic ranges and providing higher throughput and automation.

  9. Real-time observation of the initiation of RNA polymerase II transcription.

    PubMed

    Fazal, Furqan M; Meng, Cong A; Murakami, Kenji; Kornberg, Roger D; Block, Steven M

    2015-09-10

    Biochemical and structural studies have shown that the initiation of RNA polymerase II transcription proceeds in the following stages: assembly of the polymerase with general transcription factors and promoter DNA in a 'closed' preinitiation complex (PIC); unwinding of about 15 base pairs of the promoter DNA to form an 'open' complex; scanning downstream to a transcription start site; synthesis of a short transcript, thought to be about 10 nucleotides long; and promoter escape. Here we have assembled a 32-protein, 1.5-megadalton PIC derived from Saccharomyces cerevisiae, and observe subsequent initiation processes in real time with optical tweezers. Contrary to expectation, scanning driven by the transcription factor IIH involved the rapid opening of an extended transcription bubble, averaging 85 base pairs, accompanied by the synthesis of a transcript up to the entire length of the extended bubble, followed by promoter escape. PICs that failed to achieve promoter escape nevertheless formed open complexes and extended bubbles, which collapsed back to closed or open complexes, resulting in repeated futile scanning.

  10. Development and Evaluation of a Multiplex Real-Time Polymerase Chain Reaction Procedure to Clinically Type Prevalent Salmonella enterica Serovars

    PubMed Central

    Muñoz, Nélida; Diaz-Osorio, Miguel; Moreno, Jaime; Sánchez-Jiménez, Miryan; Cardona-Castro, Nora

    2010-01-01

    A multiplex real-time polymerase chain reaction procedure was developed to identify the most prevalent clinical isolates of Salmonella enterica subsp. enterica. Genes from the rfb, fliC, fljB, and viaB groups that encode the O, H, and Vi antigens were used to design 15 primer pairs and TaqMan probes specific for the genes rfbJ, wzx, fliC, fljB, wcdB, the sdf-l sequence, and invA, which was used as an internal amplification control. The primers and probes were variously combined into six sets. The first round of reactions used two of these sets to detect Salmonella O:4, O:9, O:7, O:8, and O:3,10 serogroups. Once the serogroups were identified, the results of a second round of reactions that used primers and probes for the flagellar antigen l genes, 1,2; e,h; g,m; d; e,n,x; and z10, and the Vi gene were used to identify individual serovars. The procedure was standardized using 18 Salmonella reference strains and other enterobacteria. The procedure's reliability and sensitivity was evaluated using 267 randomly chosen serotyped Salmonella clinical isolates. The procedure had a sensitivity of 95.5% and was 100% specific. Thus, our technique is a quick, sensitive, reliable, and specific means of identifying S. enterica serovars and can be used in conjunction with traditional serotyping. Other primer and probe combinations could be used to increase the number of identifiable serovars. PMID:20110454

  11. FY*X real-time polymerase chain reaction with melting curve analysis associated with a complete one-step real-time FY genotyping.

    PubMed

    Ansart-Pirenne, H; Martin-Blanc, S; Le Pennec, P-Y; Rouger, P; Cartron, J-P; Tournamille, C

    2007-02-01

    The Duffy (FY) blood group system is controlled by four major alleles: FY*A and FY*B, the Caucasian common alleles, encoding Fy(a) and Fy(b) antigens; FY*X allele responsible for a poorly expressed Fy(b) antigen, and FY*Fy a silent predominant allele among Black population. Despite the recent development of a real-time fluorescent polymerase chain reaction (PCR) method for FY genotyping FY*X genotyping has not been described by this method. This study focused on the real-time FY*X genotyping development associated with a complete, one-step real-time FY genotyping, based on fluorescence resonance energy transfer (FRET) technology. Seventy-two blood samples from Fy(a+b-) Caucasian blood donors were studied by real-time PCR only. Forty-seven Caucasian and Black individual blood samples, referred to our laboratory, were studied by PCR-RFLP and real-time PCR. For each individual, the result of the genotype was compared to the known phenotype. The FY*X allele frequency calculated in an Fy(a+b-) Caucasian blood donors population was 0.014. With the Caucasian and Black patient samples we found a complete correlation between PCR-RFLP and the real-time PCR method whatever the alleles combination tested. When the known phenotype was not correlated to FY*X genotype, the presence of the Fy(b) antigen was always confirmed by adsorption-elution. The real-time technology method is rapid and accurate for FY genotyping. From now, we are able to detect the FY*X allele in all the alleles combinations studied. Regarding its significant frequency, the detection of the FY*X allele is useful for the correct typing of blood donors and recipients considering the therapeutic use of blood units and the preparation of test red blood cells for antibody screening.

  12. Development of a TaqMan based real-time PCR assay for detection of Clonorchis sinensis DNA in human stool samples and fishes.

    PubMed

    Cai, Xian-Quan; Yu, Hai-Qiong; Bai, Jian-Shan; Tang, Jian-Dong; Hu, Xu-Chu; Chen, Ding-Hu; Zhang, Ren-Li; Chen, Mu-Xin; Ai, Lin; Zhu, Xing-Quan

    2012-03-01

    Clonorchiasis caused by the oriental liver fluke Clonorchis sinensis is a fish-borne zoonosis endemic in a number of countries. This article describes the development of a TaqMan based real-time PCR assay for detection of C. sinensis DNA in human feces and in fishes. Primers targeting the first internal transcribed spacer (ITS-1) sequence of the fluke were highly specific for C. sinensis, as evidenced by the negative amplification of closely related trematodes in the test with the exception of Opisthorchis viverrini. The detection limit of the assay was 1pg of purified genomic DNA, 5EPG (eggs per gram feces) or one metacercaria per gram fish filet. The assay was evaluated by testing 22 human fecal samples and 37 fish tissues microscopically determined beforehand, and the PCR results were highly in agreement with the microscopic results. This real-time PCR assay provides a useful tool for the sensitive detection of C. sinensis DNA in human stool and aquatic samples in China and other endemic countries where O. viverrini and Opisthorchis felineus are absent. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Detection of hepatitis B virus core antigen by phage display mediated TaqMan real-time immuno-PCR.

    PubMed

    Monjezi, Razieh; Tan, Sheau Wei; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang

    2013-01-01

    The core antigen (HBcAg) of hepatitis B virus (HBV) is one of the markers for the identification of the viral infection. The main purpose of this study was to develop a TaqMan real-time detection assay based on the concept of phage display mediated immuno-PCR (PD-IPCR) for the detection of HBcAg. PD-IPCR combines the advantages of immuno-PCR (IPCR) and phage display technology. IPCR integrates the versatility of enzyme-linked immunosorbent assay (ELISA) with the sensitivity and signal generation power of PCR. Whereas, phage display technology exploits the physical association between the displayed peptide and the encoding DNA within the same phage particle. In this study, a constrained peptide displayed on the surface of an M13 recombinant bacteriophage that interacts tightly with HBcAg was applied as a diagnostic reagent in IPCR. The phage displayed peptide and its encoding DNA can be used to replace monoclonal antibody (mAb) and chemically bound DNA, respectively. This method is able to detect as low as 10ng of HBcAg with 10(8)pfu/ml of the recombinant phage which is about 10,000 times more sensitive than the phage-ELISA. The PD-IPCR provides an alternative means for the detection of HBcAg in human serum samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Real-time dynamics of RNA Polymerase II clustering in live human cells

    NASA Astrophysics Data System (ADS)

    Cisse, Ibrahim

    2014-03-01

    Transcription is the first step in the central dogma of molecular biology, when genetic information encoded on DNA is made into messenger RNA. How this fundamental process occurs within living cells (in vivo) is poorly understood,[1] despite extensive biochemical characterizations with isolated biomolecules (in vitro). For high-order organisms, like humans, transcription is reported to be spatially compartmentalized in nuclear foci consisting of clusters of RNA Polymerase II, the enzyme responsible for synthesizing all messenger RNAs. However, little is known of when these foci assemble or their relative stability. We developed an approach based on photo-activation localization microscopy (PALM) combined with a temporal correlation analysis, which we refer to as tcPALM. The tcPALM method enables the real-time characterization of biomolecular spatiotemporal organization, with single-molecule sensitivity, directly in living cells.[2] Using tcPALM, we observed that RNA Polymerase II clusters form transiently, with an average lifetime of 5.1 (+/- 0.4) seconds. Stimuli affecting transcription regulation yielded orders of magnitude changes in the dynamics of the polymerase clusters, implying that clustering is regulated and plays a role in the cells ability to effect rapid response to external signals. Our results suggest that the transient crowding of enzymes may aid in rate-limiting steps of genome regulation.

  15. One step screening of retroviral producer clones by real time quantitative PCR.

    PubMed

    Towers, G J; Stockholm, D; Labrousse-Najburg, V; Carlier, F; Danos, O; Pagès, J C

    1999-01-01

    Recombinant retroviruses are obtained from either stably or transiently transfected retrovirus producer cells. In the case of stably producing lines, a large number of clones must be screened in order to select the one with the highest titre. The multi-step selection of high titre producing clones is time consuming and expensive. We have taken advantage of retroviral endogenous reverse transcription to develop a quantitative PCR assay on crude supernatant from producing clones. We used Taqman PCR technology, which, by using fluorescence measurement at each cycle of amplification, allows PCR product quantification. Fluorescence results from specific degradation of a probe oligonucleotide by the Taq polymerase 3'-5' exonuclease activity. Primers and probe sequences were chosen to anneal to the viral strong stop species, which is the first DNA molecule synthesised during reverse transcription. The protocol consists of a single real time PCR, using as template filtered viral supernatant without any other pre-treatment. We show that the primers and probe described allow quantitation of serially diluted plasmid to as few as 15 plasmid molecules. We then test 200 GFP-expressing retroviral-producing clones either by FACS analysis of infected cells or by using the quantitative PCR. We confirm that the Taqman protocol allows the detection of virus in supernatant and selection of high titre clones. Furthermore, we can determine infectious titre by quantitative PCR on genomic DNA from infected cells, using an additional set of primers and probe to albumin to normalise for the genomic copy number. We demonstrate that real time quantitative PCR can be used as a powerful and reliable single step, high throughput screen for high titre retroviral producer clones.

  16. Diagnosis of ocular toxoplasmosis by two polymerase chain reaction (PCR) examinations: qualitative multiplex and quantitative real-time.

    PubMed

    Sugita, Sunao; Ogawa, Manabu; Inoue, Shizu; Shimizu, Norio; Mochizuki, Manabu

    2011-09-01

    To establish a two-step polymerase chain reaction (PCR) diagnostic system for ocular toxoplasmosis. A total of 13 ocular fluid samples (11 aqueous humor and 2 vitreous fluid) were collected from 13 patients with clinically suspected ocular toxoplasmosis. Ten ocular samples from other uveitis patients and 20 samples from subjects without ocular inflammation were used as controls. Two polymerase chain reaction (PCR) methods, i.e., qualitative multiplex PCR and quantitative real-time PCR, were used to measure the toxoplasma genome (T. gondii B1 gene). Qualitative multiplex PCR detected T. gondii B1 gene in the ocular fluids of 11 out of 13 patients with clinically suspected ocular toxoplasmosis. In real-time PCR, we detected high copy numbers of T. gondii DNA (5.1 × 10(2)-2.1 × 10(6) copies/mL) in a total of 10 patients (10/13, 77%). Only ocular toxoplasmosis scar lesions were observed in the three real-time PCR-negative patients. PCR assay results for the samples from the two control groups were all negative. The two-step PCR examination to detect toxoplasma DNA is a useful tool for diagnosing ocular toxoplasmosis.

  17. Detection of Bordetella avium by TaqMan real-time PCR in tracheal swabs from wildlife birds.

    PubMed

    Stenzel, T; Pestka, D; Tykałowski, B; Śmiałek, M; Koncicki, A; Bancerz-Kisiel, A

    2017-03-28

    Bordetella avium, the causing agent of bordetellosis, a highly contagious infection of the respiratory tract in young poultry, causes significant losses in poultry farming throughout the world. Wildlife birds can be a reservoir of various pathogens that infect farm animals. For this reason the studies were conducted to estimate the prevalence of Bordetella avium in wildlife birds in Poland. Tracheal swab samples were collected from 650 birds representing 27 species. The bacterial DNA was isolated directly from the swabs and screened for Bordetella avium by TaqMan real-time PCR. The assay specificity was evaluated by testing DNA isolated from 8 other bacteria that can be present in avian respiratory tract, and there was no amplification from non-Bordetella avium agents. Test sensitivity was determined by preparing standard tenfold serial dilutions of DNA isolated from positive control. The assay revealed to be sensitive, with detection limit of approximately 4.07x10^2 copies of Bordetella avium DNA. The genetic material of Bordetella avium was found in 54.54% of common pheasants, in 9.09% of Eurasian coots, in 3.22% of black-headed gulls and in 2.77% of mallard ducks. The results of this study point to low prevalence of Bordetella avium infections in wildlife birds. The results also show that described molecular assay proved to be suitable for the rapid diagnosis of bordetellosis in the routine diagnostic laboratory.

  18. A multiplex real-time polymerase chain reaction assay differentiates between Bolbphorus damnificus and Bolbophorus type II sp

    USDA-ARS?s Scientific Manuscript database

    A duplex quantitative real-time polymerase chain reaction (qPCR) assay was developed to differentiate between Bolbophorus damnificus and Bolbophorus type II species cercariae. Both trematode species are prevalent throughout the commercial catfish industry,.as both infect the ram’s horn snail, Plano...

  19. Detection of Listeria monocytogenes in ready-to-eat food by Step One real-time polymerase chain reaction.

    PubMed

    Pochop, Jaroslav; Kačániová, Miroslava; Hleba, Lukáš; Lopasovský, L'ubomír; Bobková, Alica; Zeleňáková, Lucia; Stričík, Michal

    2012-01-01

    The aim of this study was to follow contamination of ready-to-eat food with Listeria monocytogenes by using the Step One real time polymerase chain reaction (PCR). We used the PrepSEQ Rapid Spin Sample Preparation Kit for isolation of DNA and MicroSEQ® Listeria monocytogenes Detection Kit for the real-time PCR performance. In 30 samples of ready-to-eat milk and meat products without incubation we detected strains of Listeria monocytogenes in five samples (swabs). Internal positive control (IPC) was positive in all samples. Our results indicated that the real-time PCR assay developed in this study could sensitively detect Listeria monocytogenes in ready-to-eat food without incubation.

  20. Development and evaluation of a Quadruplex Taq Man real-time PCR assay for simultaneous detection of clinical isolates of Enterococcus faecalis, Enterococcus faecium and their vanA and vanB genotypes.

    PubMed

    Naserpour Farivar, Taghi; Najafipour, Reza; Johari, Pouran; Aslanimehr, Masoumeh; Peymani, Amir; Jahani Hashemi, Hoasan; Mirzaui, Baman

    2014-10-01

    We developed and evaluated the utility of a quadruplex Taqman real-time PCR assay that allows simultaneous identification of vancomycin-resistant genotypes and clinically relevant enterococci. The specificity of the assay was tested using reference strains of vancomycin-resistant and susceptible enterococci. In total, 193 clinical isolates were identified and subsequently genotyped using a Quadruplex Taqman real-time PCR assay and melting curve analysis. Representative Quadruplex Taqman real-time PCR amplification curve were obtained for Enterococcus faecium, Enterococcus faecalis, vanA-containing E. faecium, vanB-containing E. faecalis. Phenotypic and genotypic analysis of the isolates gave same results for 82 enterococcal isolates, while in 5 isolates, they were inconsistent. We had three mixed strains, which were detected by the TaqMan real-time PCR assay and could not be identified correctly using phenotypic methods. Vancomycin resistant enterococci (VRE) genotyping and identification of clinically relevant enterococci were rapidly and correctly performed using TaqMan real-time multiplex real-time PCR assay.

  1. Concordance of HIV-1 RNA Values by Amplicor and TaqMan 2.0 in Patients With Confirmed Suppression in Clinical Trials

    PubMed Central

    Garner, Will; White, Kirsten; Szwarcberg, Javier; McCallister, Scott; Zhong, Lijie; Wulfsohn, Mike

    2016-01-01

    Background. The COBAS AMPLICOR HIV-1 MONITOR Test, version 1.5 (Amplicor) has been replaced with the COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, version 2.0 (TaqMan 2.0), a real-time polymerase chain reaction human immunodeficiency virus type 1 (HIV-1) assay with higher sensitivity and broader dynamic range. HIV-1 RNA values at the 50 copies/mL cutoff drive major patient management decisions and clinical study outcomes. Methods. A total of 2217 samples were collected from 1922 HIV-1–infected subjects taking antiretroviral therapy for at least 48 weeks and had at least 2 consecutive samples with HIV-1 RNA <50 copies/mL by Amplicor from 7 recent clinical trials. HIV-1 RNA results were obtained from the Amplicor and TaqMan 2.0 assays in parallel by a reference laboratory. Results. The overall concordance between assay results was 96% at the cutoff of 50 copies/mL. However, statistically significant discordance at the 50 copies/mL cutoff was found between the assays for 3.9% of samples (n = 87). By TaqMan 2.0, virologic failure defined as HIV-1 RNA ≥50 copies/mL was reported for 2.8% more samples than Amplicor. Of these 87 samples, 68 samples fell within the predicted range of assay variability. Retesting of HIV-1 RNA by TaqMan 2.0 confirmed the discordance in only 28 of the 87 samples. Conclusions. The TaqMan 2.0 assay reports fewer subjects below the clinical endpoint of HIV-1 RNA <50 copies/mL in HIV clinical trials than the Amplicor assay. This difference must be considered when assessing disease progression, designing clinical trials, and comparisons with historical trials that used the Amplicor assay. PMID:26689956

  2. Real-time quantitative PCR for retrovirus-like particle quantification in CHO cell culture.

    PubMed

    de Wit, C; Fautz, C; Xu, Y

    2000-09-01

    Chinese hamster ovary (CHO) cells have been widely used to manufacture recombinant proteins intended for human therapeutic uses. Retrovirus-like particles, which are apparently defective and non-infectious, have been detected in all CHO cells by electron microscopy (EM). To assure viral safety of CHO cell-derived biologicals, quantification of retrovirus-like particles in production cell culture and demonstration of sufficient elimination of such retrovirus-like particles by the down-stream purification process are required for product market registration worldwide. EM, with a detection limit of 1x10(6) particles/ml, is the standard retrovirus-like particle quantification method. The whole process, which requires a large amount of sample (3-6 litres), is labour intensive, time consuming, expensive, and subject to significant assay variability. In this paper, a novel real-time quantitative PCR assay (TaqMan assay) has been developed for the quantification of retrovirus-like particles. Each retrovirus particle contains two copies of the viral genomic particle RNA (pRNA) molecule. Therefore, quantification of retrovirus particles can be achieved by quantifying the pRNA copy number, i.e. every two copies of retroviral pRNA is equivalent to one retrovirus-like particle. The TaqMan assay takes advantage of the 5'-->3' exonuclease activity of Taq DNA polymerase and utilizes the PRISM 7700 Sequence Detection System of PE Applied Biosystems (Foster City, CA, U.S.A.) for automated pRNA quantification through a dual-labelled fluorogenic probe. The TaqMan quantification technique is highly comparable to the EM analysis. In addition, it offers significant advantages over the EM analysis, such as a higher sensitivity of less than 600 particles/ml, greater accuracy and reliability, higher sample throughput, more flexibility and lower cost. Therefore, the TaqMan assay should be used as a substitute for EM analysis for retrovirus-like particle quantification in CHO cell

  3. DETECTION OF FECAL ENTEROCOCCI USING A REAL TIME PCR METHOD

    EPA Science Inventory

    In spite of their importance in public health, the detection of fecal enterococci is performed via culturing methods that are time consuming and that are subject to inaccuracies that relate to their culturable status. In order to address these problems, a real time PCR (TaqMan) ...

  4. [Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus].

    PubMed

    Yang, Yu; Bai, Lin; Hu, Kong-Xin; Yang, Zhi-Hong; Hu, Jian-Ping; Wang, Jing

    2012-08-01

    Marburg virus and Ebola virus are acute infections with high case fatality rates. A rapid, sensitive detection method was established to detect Marburg virus and Ebola virus by multiplex real-time fluorescence quantitative PCR. Designing primers and Taqman probes from highly conserved sequences of Marburg virus and Ebola virus through whole genome sequences alignment, Taqman probes labeled by FAM and Texas Red, the sensitivity of the multiplex real-time quantitative PCR assay was optimized by evaluating the different concentrations of primers and Probes. We have developed a real-time PCR method with the sensitivity of 30.5 copies/microl for Marburg virus positive plasmid and 28.6 copies/microl for Ebola virus positive plasmids, Japanese encephalitis virus, Yellow fever virus, Dengue virus were using to examine the specificity. The Multiplex real-time PCR assays provide a sensitive, reliable and efficient method to detect Marburg virus and Ebola virus simultaneously.

  5. Improved safety for molecular diagnosis of classical rabies viruses by use of a TaqMan real-time reverse transcription-PCR "double check" strategy.

    PubMed

    Hoffmann, B; Freuling, C M; Wakeley, P R; Rasmussen, T B; Leech, S; Fooks, A R; Beer, M; Müller, T

    2010-11-01

    To improve the diagnosis of classical rabies virus with molecular methods, a validated, ready-to-use, real-time reverse transcription-PCR (RT-PCR) assay was developed. In a first step, primers and 6-carboxyfluorescien-labeled TaqMan probes specific for rabies virus were selected from the consensus sequence of the nucleoprotein gene of 203 different rabies virus sequences derived from GenBank. The selected primer-probe combination was highly specific and sensitive. During validation using a sample set of rabies virus strains from the virus archives of the Friedrich-Loeffler-Institut (FLI; Germany), the Veterinary Laboratories Agency (VLA; United Kingdom), and the DTU National Veterinary Institute (Lindholm, Denmark), covering the global diversity of rabies virus lineages, it was shown that both the newly developed assay and a previously described one had some detection failures. This was overcome by a combined assay that detected all samples as positive. In addition, the introduction of labeled positive controls (LPC) increased the diagnostic safety of the single as well as the combined assay. Based on the newly developed, alternative assay for the detection of rabies virus and the application of LPCs, an improved diagnostic sensitivity and reliability can be ascertained for postmortem and intra vitam real-time RT-PCR analyses in rabies reference laboratories.

  6. Real-Time Polymerase Chain Reaction Detection of Angiostrongylus cantonensis DNA in Cerebrospinal Fluid from Patients with Eosinophilic Meningitis.

    PubMed

    Qvarnstrom, Yvonne; Xayavong, Maniphet; da Silva, Ana Cristina Aramburu; Park, Sarah Y; Whelen, A Christian; Calimlim, Precilia S; Sciulli, Rebecca H; Honda, Stacey A A; Higa, Karen; Kitsutani, Paul; Chea, Nora; Heng, Seng; Johnson, Stuart; Graeff-Teixeira, Carlos; Fox, LeAnne M; da Silva, Alexandre J

    2016-01-01

    Angiostrongylus cantonensis is the most common infectious cause of eosinophilic meningitis. Timely diagnosis of these infections is difficult, partly because reliable laboratory diagnostic methods are unavailable. The aim of this study was to evaluate the usefulness of a real-time polymerase chain reaction (PCR) assay for the detection of A. cantonensis DNA in human cerebrospinal fluid (CSF) specimens. A total of 49 CSF specimens from 33 patients with eosinophilic meningitis were included: A. cantonensis DNA was detected in 32 CSF specimens, from 22 patients. Four patients had intermittently positive and negative real-time PCR results on subsequent samples, indicating that the level of A. cantonensis DNA present in CSF may fluctuate during the course of the illness. Immunodiagnosis and/or supplemental PCR testing supported the real-time PCR findings for 30 patients. On the basis of these observations, this real-time PCR assay can be useful to detect A. cantonensis in the CSF from patients with eosinophilic meningitis. © The American Society of Tropical Medicine and Hygiene.

  7. Real-Time Polymerase Chain Reaction Detection of Angiostrongylus cantonensis DNA in Cerebrospinal Fluid from Patients with Eosinophilic Meningitis

    PubMed Central

    Qvarnstrom, Yvonne; Xayavong, Maniphet; da Silva, Ana Cristina Aramburu; Park, Sarah Y.; Whelen, A. Christian; Calimlim, Precilia S.; Sciulli, Rebecca H.; Honda, Stacey A. A.; Higa, Karen; Kitsutani, Paul; Chea, Nora; Heng, Seng; Johnson, Stuart; Graeff-Teixeira, Carlos; Fox, LeAnne M.; da Silva, Alexandre J.

    2016-01-01

    Angiostrongylus cantonensis is the most common infectious cause of eosinophilic meningitis. Timely diagnosis of these infections is difficult, partly because reliable laboratory diagnostic methods are unavailable. The aim of this study was to evaluate the usefulness of a real-time polymerase chain reaction (PCR) assay for the detection of A. cantonensis DNA in human cerebrospinal fluid (CSF) specimens. A total of 49 CSF specimens from 33 patients with eosinophilic meningitis were included: A. cantonensis DNA was detected in 32 CSF specimens, from 22 patients. Four patients had intermittently positive and negative real-time PCR results on subsequent samples, indicating that the level of A. cantonensis DNA present in CSF may fluctuate during the course of the illness. Immunodiagnosis and/or supplemental PCR testing supported the real-time PCR findings for 30 patients. On the basis of these observations, this real-time PCR assay can be useful to detect A. cantonensis in the CSF from patients with eosinophilic meningitis. PMID:26526920

  8. Comparison of Nested Polymerase Chain Reaction and Real-Time Polymerase Chain Reaction with Parasitological Methods for Detection of Strongyloides stercoralis in Human Fecal Samples

    PubMed Central

    Sharifdini, Meysam; Mirhendi, Hossein; Ashrafi, Keyhan; Hosseini, Mostafa; Mohebali, Mehdi; Khodadadi, Hossein; Kia, Eshrat Beigom

    2015-01-01

    This study was performed to evaluate nested polymerase chain reaction (PCR) and real-time PCR methods for detection of Strongyloides stercoralis in fecal samples compared with parasitological methods. A total of 466 stool samples were examined by conventional parasitological methods (formalin ether concentration [FEC] and agar plate culture [APC]). DNA was extracted using an in-house method, and mitochondrial cytochrome c oxidase subunit 1 and 18S ribosomal genes were amplified by nested PCR and real-time PCR, respectively. Among 466 samples, 12.7% and 18.2% were found infected with S. stercoralis by FEC and APC, respectively. DNA of S. stercoralis was detected in 18.9% and 25.1% of samples by real-time PCR and nested PCR, respectively. Considering parasitological methods as the diagnostic gold standard, the sensitivity and specificity of nested PCR were 100% and 91.6%, respectively, and that of real-time PCR were 84.7% and 95.8%, respectively. However, considering sequence analyzes of the selected nested PCR products, the specificity of nested PCR is increased. In general, molecular methods were superior to parasitological methods. They were more sensitive and more reliable in detection of S. stercoralis in comparison with parasitological methods. Between the two molecular methods, the sensitivity of nested PCR was higher than real-time PCR. PMID:26350449

  9. Use of Base Modifications in Primers and Amplicons to Improve Nucleic Acids Detection in the Real-Time Snake Polymerase Chain Reaction

    PubMed Central

    2011-01-01

    Abstract The addition of relatively short flap sequence at the 5′-end of one of the polymerase chain reaction (PCR) primers considerably improves performance of real-time assays based on 5′-nuclease activity. This new technology, called Snake, was shown to supersede the conventional methods like TaqMan, Molecular Beacons, and Scorpions in the signal productivity and discrimination of target polymorphic variations as small as single nucleotides. The present article describes a number of reaction conditions and methods that allow further improvement of the assay performance. One of the identified approaches is the use of duplex-destabilizing modifications such as deoxyinosine and deoxyuridine in the design of the Snake primers. This approach was shown to solve the most serious problem associated with the antisense amplicon folding and cleavage. As a result, the method permits the use of relatively long—in this study—14-mer flap sequences. Investigation also revealed that only the 5′-segment of the flap requires the deoxyinosine/deoxyuridine destabilization, whereas the 3′-segment is preferably left unmodified or even stabilized using 2-amino deoxyadenosine d(2-amA) and 5-propynyl deoxyuridine d(5-PrU) modifications. The base-modification technique is especially effective when applied in combination with asymmetric three-step PCR. The most valuable discovery of the present study is the effective application of modified deoxynucleoside 5′-triphosphates d(2-amA)TP and d(5-PrU)TP in Snake PCR. This method made possible the use of very short 6-8-mer 5′-flap sequences in Snake primers. PMID:21050073

  10. Development of real-time recombinase polymerase amplification assay for rapid and sensitive detection of canine parvovirus 2.

    PubMed

    Geng, Yunyun; Wang, Jianchang; Liu, Libing; Lu, Yan; Tan, Ke; Chang, Yan-Zhong

    2017-11-06

    Canine parvovirus 2, a linear single-stranded DNA virus belonging to the genus Parvovirus within the family Parvoviridae, is a highly contagious pathogen of domestic dogs and several wild canidae species. Early detection of canine parvovirus (CPV-2) is crucial to initiating appropriate outbreak control strategies. Recombinase polymerase amplification (RPA), a novel isothermal gene amplification technique, has been developed for the molecular detection of diverse pathogens. In this study, a real-time RPA assay was developed for the detection of CPV-2 using primers and an exo probe targeting the CPV-2 nucleocapsid protein gene. The real-time RPA assay was performed successfully at 38 °C, and the results were obtained within 4-12 min for 10 5 -10 1 molecules of template DNA. The assay only detected CPV-2, and did not show cross-detection of other viral pathogens, demonstrating a high level of specificity. The analytical sensitivity of the real-time RPA was 10 1 copies/reaction of a standard DNA template, which was 10 times more sensitive than the common RPA method. The clinical sensitivity of the real-time RPA assay matched 100% (n = 91) to the real-time PCR results. The real-time RPA assay is a simple, rapid, reliable and affordable method that can potentially be applied for the detection of CPV-2 in the research laboratory and point-of-care diagnosis.

  11. Diagnosis of feline leukaemia virus infection by semi-quantitative real-time polymerase chain reaction.

    PubMed

    Pinches, Mark D G; Helps, Christopher R; Gruffydd-Jones, Tim J; Egan, Kathy; Jarrett, Oswald; Tasker, Séverine

    2007-02-01

    In this paper the design and use of a semi-quantitative real-time polymerase chain reaction assay (RT-PCR) for feline leukaemia virus (FeLV) provirus is described. Its performance is evaluated against established methods of FeLV diagnosis, including virus isolation and enzyme-linked immunoassay (ELISA) in a population of naturally infected cats. The RT-PCR assay is found to have both a high sensitivity (0.92) and specificity (0.99) when examined by expectation maximisation methods and is also able to detect a large number of cats with low FeLV proviral loads that were negative by other conventional test methods.

  12. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction.

    PubMed

    Corman, V M; Eckerle, I; Bleicker, T; Zaki, A; Landt, O; Eschbach-Bludau, M; van Boheemen, S; Gopal, R; Ballhause, M; Bestebroer, T M; Muth, D; Müller, M A; Drexler, J F; Zambon, M; Osterhaus, A D; Fouchier, R M; Drosten, C

    2012-09-27

    We present two real-time reverse-transcription polymerase chain reaction assays for a novel human coronavirus (CoV), targeting regions upstream of the E gene (upE) or within open reading frame (ORF)1b, respectively. Sensitivity for upE is 3.4 copies per reaction (95% confidence interval (CI): 2.5–6.9 copies) or 291 copies/mL of sample. No cross-reactivity was observed with coronaviruses OC43, NL63, 229E, SARS-CoV, nor with 92 clinical specimens containing common human respiratory viruses. We recommend using upE for screening and ORF1b for confirmation.

  13. Incidence of pulmonary aspergillosis and correlation of conventional diagnostic methods with nested PCR and real-time PCR assay using BAL fluid in intensive care unit patients.

    PubMed

    Zarrinfar, Hossein; Makimura, Koichi; Satoh, Kazuo; Khodadadi, Hossein; Mirhendi, Hossein

    2013-05-01

    Although the incidence of invasive aspergillosis in the intensive care unit (ICU) is scarce, it has emerged as major problems in critically ill patients. In this study, the incidence of pulmonary aspergillosis (PA) in ICU patients has evaluated and direct microscopy and culture has compared with nested polymerase chain reaction (PCR) and real-time PCR for detection of Aspergillus fumigatus and A. flavus in bronchoalveolar lavage (BAL) samples of the patients. Thirty BAL samples obtained from ICU patients during a 16-month period were subjected to direct examinations on 20% potassium hydroxide (KOH) and culture on two culture media. Nested PCR targeting internal transcribed spacer ribosomal DNA and TaqMan real-time PCR assay targeting β-tubulin gene were used for the detection of A. fumigatus and A. flavus. Of 30 patients, 60% were men and 40% were women. The diagnosis of invasive PA was probable in 1 (3%), possible in 11 (37%), and not IPA in 18 (60%). Nine samples were positive in nested PCR including seven samples by A. flavus and two by A. fumigatus specific primers. The lowest amount of DNA that TaqMan real-time PCR could detect was ≥40 copy numbers. Only one of the samples had a positive result of A. flavus real-time PCR with Ct value of 37.5. Although a significant number of specimens were positive in nested PCR, results of this study showed that establishment of a correlation between the conventional methods with nested PCR and real-time PCR needs more data confirmed by a prospective study with a larger sample group. © 2013 Wiley Periodicals, Inc.

  14. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence.

    PubMed

    Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing

    2005-11-30

    Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.

  15. Use of the Genomic Subtractive Hybridization Technique To Develop a Real-Time PCR Assay for Quantitative Detection of Prevotella spp. in Oral Biofilm Samples

    PubMed Central

    Nagashima, Shiori; Yoshida, Akihiro; Suzuki, Nao; Ansai, Toshihiro; Takehara, Tadamichi

    2005-01-01

    Genomic subtractive hybridization was used to design Prevotella nigrescens-specific primers and TaqMan probes. Based on this technique, a TaqMan real-time PCR assay was developed for quantifying four oral black-pigmented Prevotella species. The combination of real-time PCR and genomic subtractive hybridization is useful for preparing species-specific primer-probe sets for closely related species. PMID:15956428

  16. Market analysis of food products for detection of allergenic walnut (Juglans regia) and pecan (Carya illinoinensis) by real-time PCR.

    PubMed

    López-Calleja, Inés María; de la Cruz, Silvia; González, Isabel; García, Teresa; Martín, Rosario

    2015-06-15

    Two real-time polymerase chain reaction (PCR)-based assays for detection of walnut (Juglans regia) and pecan (Carya illinoinensis) traces in a wide range of processed foods are described here. The method consists on a real-time PCR assay targeting the ITS1 region, using a nuclease (TaqMan) probe labeled with FAM and BBQ. The method was positive for walnut and pecan respectively, and negative for all other heterologous plants and animals tested. Using a series of model samples with defined raw walnut in wheat flour and heat-treated walnut in wheat flour with a range of concentrations of 0.1-100,000 mg kg(-1), a practical detection limit of 0.1 mg kg(-1) of walnut content was estimated. Identical binary mixtures were done for pecan, reaching the same limit of detection of 0.1 mg kg(-1). The assay was successfully trialed on a total of 232 commercial foodstuffs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means ofmore » rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.« less

  18. Real-time PCR array as a universal platform for the detection of genetically modified crops and its application in identifying unapproved genetically modified crops in Japan.

    PubMed

    Mano, Junichi; Shigemitsu, Natsuki; Futo, Satoshi; Akiyama, Hiroshi; Teshima, Reiko; Hino, Akihiro; Furui, Satoshi; Kitta, Kazumi

    2009-01-14

    We developed a novel type of real-time polymerase chain reaction (PCR) array with TaqMan chemistry as a platform for the comprehensive and semiquantitative detection of genetically modified (GM) crops. Thirty primer-probe sets for the specific detection of GM lines, recombinant DNA (r-DNA) segments, endogenous reference genes, and donor organisms were synthesized, and a 96-well PCR plate was prepared with a different primer-probe in each well as the real-time PCR array. The specificity and sensitivity of the array were evaluated. A comparative analysis with the data and publicly available information on GM crops approved in Japan allowed us to assume the possibility of unapproved GM crop contamination. Furthermore, we designed a Microsoft Excel spreadsheet application, Unapproved GMO Checker version 2.01, which helps process all the data of real-time PCR arrays for the easy assumption of unapproved GM crop contamination. The spreadsheet is available free of charge at http://cse.naro.affrc.go.jp/jmano/index.html .

  19. Real-time PCR for type-specific identification of herpes simplex in clinical samples: evaluation of type-specific results in the context of CNS diseases.

    PubMed

    Meylan, Sylvain; Robert, Daniel; Estrade, Christine; Grimbuehler, Valérie; Péter, Olivier; Meylan, Pascal R; Sahli, Roland

    2008-02-01

    HSV-1 and HSV-2 cause CNS infections of dissimilar clinico-pathological characteristics with prognostic and therapeutic implications. To validate a type-specific real-time PCR that uses MGB/LNA Taqman probes and to review the virologico-clinical data of 25 eligible patients with non-neonatal CNS infections. This real-time PCR was evaluated against conventional PCR (26 CSF and 20 quality controls), and LightCycler assay (51 mucocutaneous, 8 CSF and 32 quality controls) and culture/immunofluorescence (75 mucocutaneous) to assess typing with independent methods. Taqman real-time PCR detected 240 HSV genomes per ml CSF, a level appropriate for the management of patients, and provided unambiguous typing for the 104 positive (62 HSV-1 and 42 HSV-2) out the 160 independent clinical samples tested. HSV type diagnosed by Taqman real-time PCR predicted final diagnosis (meningitis versus encephalitis/meningoencephalitis, p<0.001) in 24/25 patients at time of presentation, in contrast to clinical evaluation. Our real-time PCR, as a sensitive and specific means for type-specific HSV diagnosis, provided rapid prognostic information for patient management.

  20. Real-time polymerase chain reaction assay for rapid and sensitive detection of anthrax spores in spiked soil and talcum powder.

    PubMed

    Jain, Neha; Merwyn, S; Rai, G P; Agarwal, G S

    2012-05-01

    Real-time polymerase chain reaction (real-time PCR) is a laboratory technique based on PCR. This technique is able to detect sequence-specific PCR products as they accumulate in "real time" during the PCR amplification, and also to quantify the number of substrates present in the initial PCR mixture before amplification begins. In the present study, real-time PCR assay was employed for rapid and real-time detection of Bacillus anthracis spores spiked in 0.1 g of soil and talcum powder ranging from 5 to 10(7) spores. DNA was isolated from spiked soil and talcum powder, using PBS containing 1 % Triton-X-100, followed by heat treatment. The isolated DNA was used as template for real-time PCR and PCR. Real-time PCR amplification was obtained in 60 min under the annealing condition at 60°C by employing primers targeting the pag gene of B. anthracis. In the present study, the detection limit of real-time PCR assay in soil was 10(3) spores and 10(2) spores in talcum powder, respectively, whereas PCR could detect 10(4) spores in soil and 10(3) spores in talcum powder, respectively.

  1. Improved Safety for Molecular Diagnosis of Classical Rabies Viruses by Use of a TaqMan Real-Time Reverse Transcription-PCR “Double Check” Strategy▿ †

    PubMed Central

    Hoffmann, B.; Freuling, C. M.; Wakeley, P. R.; Rasmussen, T. B.; Leech, S.; Fooks, A. R.; Beer, M.; Müller, T.

    2010-01-01

    To improve the diagnosis of classical rabies virus with molecular methods, a validated, ready-to-use, real-time reverse transcription-PCR (RT-PCR) assay was developed. In a first step, primers and 6-carboxyfluorescien-labeled TaqMan probes specific for rabies virus were selected from the consensus sequence of the nucleoprotein gene of 203 different rabies virus sequences derived from GenBank. The selected primer-probe combination was highly specific and sensitive. During validation using a sample set of rabies virus strains from the virus archives of the Friedrich-Loeffler-Institut (FLI; Germany), the Veterinary Laboratories Agency (VLA; United Kingdom), and the DTU National Veterinary Institute (Lindholm, Denmark), covering the global diversity of rabies virus lineages, it was shown that both the newly developed assay and a previously described one had some detection failures. This was overcome by a combined assay that detected all samples as positive. In addition, the introduction of labeled positive controls (LPC) increased the diagnostic safety of the single as well as the combined assay. Based on the newly developed, alternative assay for the detection of rabies virus and the application of LPCs, an improved diagnostic sensitivity and reliability can be ascertained for postmortem and intra vitam real-time RT-PCR analyses in rabies reference laboratories. PMID:20739489

  2. A novel quantitative real-time polymerase chain reaction method for detecting toxigenic Pasteurella multocida in nasal swabs from swine.

    PubMed

    Scherrer, Simone; Frei, Daniel; Wittenbrink, Max Michael

    2016-12-01

    Progressive atrophic rhinitis (PAR) in pigs is caused by toxigenic Pasteurella multocida. In Switzerland, PAR is monitored by selective culture of nasal swabs and subsequent polymerase chain reaction (PCR) screening of bacterial colonies for the P. multocida toxA gene. A panel of 203 nasal swabs from a recent PAR outbreak were used to evaluate a novel quantitative real-time PCR for toxigenic P. multocida in porcine nasal swabs. In comparison to the conventional PCR with a limit of detection of 100 genome equivalents per PCR reaction, the real-time PCR had a limit of detection of 10 genome equivalents. The real-time PCR detected toxA-positive P. multocida in 101 samples (49.8%), whereas the conventional PCR was less sensitive with 90 toxA-positive samples (44.3%). In comparison to the real-time PCR, 5.4% of the toxA-positive samples revealed unevaluable results by conventional PCR. The approach of culture-coupled toxA PCR for the monitoring of PAR in pigs is substantially improved by a novel quantitative real-time PCR.

  3. Problem-Solving Test: Real-Time Polymerase Chain Reaction

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    Terms to be familiar with before you start to solve the test: polymerase chain reaction, DNA amplification, electrophoresis, breast cancer, "HER2" gene, genomic DNA, "in vitro" DNA synthesis, template, primer, Taq polymerase, 5[prime][right arrow]3[prime] elongation activity, 5[prime][right arrow]3[prime] exonuclease activity, deoxyribonucleoside…

  4. [REAL TIME POLYMERASE CHAIN REACTION IN TULAREMIA LABORATORY DIAGNOSTICS].

    PubMed

    Kormilitsyna, M I; Mescheryakova, I S; Mikhailova, T V; Dobrovolsky, A A

    2015-01-01

    Enhancement of tularemia laboratory diagnostics by F. tularensis DNA determination in blood sera of patients using real time polymerase chain reaction (RT-PCR). 39 blood sera of patients obtained during transmissive epidemic outbreak of tularemia in Khanty-Mansiysk in 2013 were studied in agglutination reaction, passive hemagglutination, RT-PCR. Specific primers and fluorescent probes were used: ISFTu2F/R+ISFTu2P, Tu14GF/R+tul4-PR2. Advantages of using RT-PCR for early diagnostics of tularemia, when specific antibodies are not detected using traditional immunologic methods, were established. Use of a combination of primers and ISFTu2F/R+ISFTu2P probe allowed to detect F. tularensis DNA in 100% of sera, whereas Tul4G F/R+tul4-PR2 combination--92% of sera. The data were obtained when DNA was isolated from sera using "Proba Rapid" express method. Clinical-epidemiologic diagnosis oftularemia was confirmed by both immune-serologic and RT-PCR methods when sera were studied 3-4 weeks after the onset of the disease. RT-PCR with ISFTu2F/R primers and fluorescent probe ISFTu2P, having high sensitivity and specificity, allows to determine F. tularensis DNA in blood sera of patients at both the early stage and 3-4 weeks after the onset of the disease.

  5. Detection and Quantification of Viable and Nonviable Trypanosoma cruzi Parasites by a Propidium Monoazide Real-Time Polymerase Chain Reaction Assay

    PubMed Central

    Cancino-Faure, Beatriz; Fisa, Roser; Alcover, M. Magdalena; Jimenez-Marco, Teresa; Riera, Cristina

    2016-01-01

    Molecular techniques based on real-time polymerase chain reaction (qPCR) allow the detection and quantification of DNA but are unable to distinguish between signals from dead or live cells. Because of the lack of simple techniques to differentiate between viable and nonviable cells, the aim of this study was to optimize and evaluate a straightforward test based on propidium monoazide (PMA) dye action combined with a qPCR assay (PMA-qPCR) for the selective quantification of viable/nonviable epimastigotes of Trypanosoma cruzi. PMA has the ability to penetrate the plasma membrane of dead cells and covalently cross-link to the DNA during exposure to bright visible light, thereby inhibiting PCR amplification. Different concentrations of PMA (50–200 μM) and epimastigotes of the Maracay strain of T. cruzi (1 × 105–10 parasites/mL) were assayed; viable and nonviable parasites were tested and quantified by qPCR with a TaqMan probe specific for T. cruzi. In the PMA-qPCR assay optimized at 100 μM PMA, a significant qPCR signal reduction was observed in the nonviable versus viable epimastigotes treated with PMA, with a mean signal reduction of 2.5 logarithm units and a percentage of signal reduction > 98%, in all concentrations of parasites assayed. This signal reduction was also observed when PMA-qPCR was applied to a mixture of live/dead parasites, which allowed the detection of live cells, except when the concentration of live parasites was low (10 parasites/mL). The PMA-qPCR developed allows differentiation between viable and nonviable epimastigotes of T. cruzi and could thus be a potential method of parasite viability assessment and quantification. PMID:27139452

  6. Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection.

    PubMed

    Buh Gasparic, Meti; Tengs, Torstein; La Paz, Jose Luis; Holst-Jensen, Arne; Pla, Maria; Esteve, Teresa; Zel, Jana; Gruden, Kristina

    2010-03-01

    Several techniques have been developed for detection and quantification of genetically modified organisms, but quantitative real-time PCR is by far the most popular approach. Among the most commonly used real-time PCR chemistries are TaqMan probes and SYBR green, but many other detection chemistries have also been developed. Because their performance has never been compared systematically, here we present an extensive evaluation of some promising chemistries: sequence-unspecific DNA labeling dyes (SYBR green), primer-based technologies (AmpliFluor, Plexor, Lux primers), and techniques involving double-labeled probes, comprising hybridization (molecular beacon) and hydrolysis (TaqMan, CPT, LNA, and MGB) probes, based on recently published experimental data. For each of the detection chemistries assays were included targeting selected loci. Real-time PCR chemistries were subsequently compared for their efficiency in PCR amplification and limits of detection and quantification. The overall applicability of the chemistries was evaluated, adding practicability and cost issues to the performance characteristics. None of the chemistries seemed to be significantly better than any other, but certain features favor LNA and MGB technology as good alternatives to TaqMan in quantification assays. SYBR green and molecular beacon assays can perform equally well but may need more optimization prior to use.

  7. Babesia microti real-time polymerase chain reaction testing of Connecticut blood donors: potential implications for screening algorithms.

    PubMed

    Johnson, Stephanie T; Van Tassell, Eric R; Tonnetti, Laura; Cable, Ritchard G; Berardi, Victor P; Leiby, David A

    2013-11-01

    Babesia microti, an intraerythrocytic parasite, has been implicated in transfusion transmission. B. microti seroprevalence in Connecticut (CT) blood donors is approximately 1%; however, it is not known what percentage of donors is parasitemic and poses a risk for transmitting infection. Therefore, we determined the prevalence of demonstrable B. microti DNA in donors from a highly endemic area of CT and compared observed rates with concurrent immunofluorescence assay (IFA) testing results. Blood samples from consenting donors in southeastern CT were collected from mid-August through early October 2009 and tested by IFA for immunoglobulin G antibodies and real-time polymerase chain reaction (PCR) for B. microti DNA. IFA specificity was determined using blood donor samples collected in northwestern Vermont (VT), an area nonendemic for Babesia. Of 1002 CT donors, 25 (2.5%) were IFA positive and three (0.3%) were real-time PCR positive. Among the three real-time PCR-positive donors, two were also IFA positive, while one was IFA negative and may represent a window period infection. The two IFA- and real-time PCR-positive donors appeared to subsequently clear infection. The other real-time PCR-positive donor did not provide follow-up samples. Of 1015 VT donors tested by IFA, only one (0.1%) was positive, but may have acquired infection during travel to an endemic area. We prospectively identified several real-time PCR-positive blood donors, including an IFA-negative real-time PCR-positive donor, in an area highly endemic for B. microti. These results suggest the need to include nucleic acid testing in planned mitigation strategies for B. microti. © 2013 American Association of Blood Banks.

  8. Sexing chick mRNA: A protocol based on quantitative real-time polymerase chain reaction.

    PubMed

    Wan, Z; Lu, Y; Rui, L; Yu, X; Li, Z

    2017-03-01

    The accurate identification of sex in birds is important for research on avian sex determination and differentiation. Polymerase chain reaction (PCR)-based methods have been widely applied for the molecular sexing of birds. However, these methods have used genomic DNA. Here, we present the first sexing protocol for chick mRNA based on real-time quantitative PCR. We demonstrate that this method can accurately determine sex using mRNA from chick gonads and other tissues, such as heart, liver, spleen, lung, and muscle. The strategy of this protocol also may be suitable for other species in which sex is determined by the inheritance of sex chromosomes (ZZ male and ZW female). © 2016 Poultry Science Association Inc.

  9. On-site identification of meat species in processed foods by a rapid real-time polymerase chain reaction system.

    PubMed

    Furutani, Shunsuke; Hagihara, Yoshihisa; Nagai, Hidenori

    2017-09-01

    Correct labeling of foods is critical for consumers who wish to avoid a specific meat species for religious or cultural reasons. Therefore, gene-based point-of-care food analysis by real-time Polymerase Chain Reaction (PCR) is expected to contribute to the quality control in the food industry. In this study, we perform rapid identification of meat species by our portable rapid real-time PCR system, following a very simple DNA extraction method. Applying these techniques, we correctly identified beef, pork, chicken, rabbit, horse, and mutton in processed foods in 20min. Our system was sensitive enough to detect the interfusion of about 0.1% chicken egg-derived DNA in a processed food sample. Our rapid real-time PCR system is expected to contribute to the quality control in food industries because it can be applied for the identification of meat species, and future applications can expand its functionality to the detection of genetically modified organisms or mutations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Detection of medically important Candida species by absolute quantitation real-time polymerase chain reaction.

    PubMed

    Than, Leslie Thian Lung; Chong, Pei Pei; Ng, Kee Peng; Seow, Heng Fong

    2015-01-01

    The number of invasive candidiasis cases has risen especially with an increase in the number of immunosuppressed and immunocom promised patients. The early detection of Candida species which is specific and sensitive is important in determining the correct administration of antifungal drugs to patients. This study aims to develop a method for the detection, identification and quantitation of medically important Candida species through quantitative polymerase chain reaction (qPCR). The isocitrate lyase (ICL) gene which is not found in mammals was chosen as the target gene of real-time PCR. Absolute quantitation of the gene copy number was achieved by constructing the plasmid containing the ICL gene which is used to generate standard curve. Twenty fungal species, two bacterial species and human DNA were tested to check the specificity of the detection method. All eight Candida species were successfully detected, identified and quantitated based on the ICL gene. A seven-log range of the gene copy number and a minimum detection limit of 10(3) copies were achieved. A one-tube absolute quantification real-time PCR that differentiates medically important Candida species via individual unique melting temperature was achieved. Analytical sensitivity and specificity were not compromised.

  11. Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions.

    PubMed

    Ponchel, Frederique; Toomes, Carmel; Bransfield, Kieran; Leong, Fong T; Douglas, Susan H; Field, Sarah L; Bell, Sandra M; Combaret, Valerie; Puisieux, Alain; Mighell, Alan J; Robinson, Philip A; Inglehearn, Chris F; Isaacs, John D; Markham, Alex F

    2003-10-13

    Real-time PCR is increasingly being adopted for RNA quantification and genetic analysis. At present the most popular real-time PCR assay is based on the hybridisation of a dual-labelled probe to the PCR product, and the development of a signal by loss of fluorescence quenching as PCR degrades the probe. Though this so-called 'TaqMan' approach has proved easy to optimise in practice, the dual-labelled probes are relatively expensive. We have designed a new assay based on SYBR-Green I binding that is quick, reliable, easily optimised and compares well with the published assay. Here we demonstrate its general applicability by measuring copy number in three different genetic contexts; the quantification of a gene rearrangement (T-cell receptor excision circles (TREC) in peripheral blood mononuclear cells); the detection and quantification of GLI, MYC-C and MYC-N gene amplification in cell lines and cancer biopsies; and detection of deletions in the OPA1 gene in dominant optic atrophy. Our assay has important clinical applications, providing accurate diagnostic results in less time, from less biopsy material and at less cost than assays currently employed such as FISH or Southern blotting.

  12. Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples.

    PubMed

    Cura, Carolina I; Duffy, Tomas; Lucero, Raúl H; Bisio, Margarita; Péneau, Julie; Jimenez-Coello, Matilde; Calabuig, Eva; Gimenez, María J; Valencia Ayala, Edward; Kjos, Sonia A; Santalla, José; Mahaney, Susan M; Cayo, Nelly M; Nagel, Claudia; Barcán, Laura; Málaga Machaca, Edith S; Acosta Viana, Karla Y; Brutus, Laurent; Ocampo, Susana B; Aznar, Christine; Cuba Cuba, Cesar A; Gürtler, Ricardo E; Ramsey, Janine M; Ribeiro, Isabela; VandeBerg, John L; Yadon, Zaida E; Osuna, Antonio; Schijman, Alejandro G

    2015-05-01

    Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI-TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR). The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm. Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production.

  13. Quantitative analysis of periodontal pathogens by ELISA and real-time polymerase chain reaction.

    PubMed

    Hamlet, Stephen M

    2010-01-01

    The development of analytical methods enabling the accurate identification and enumeration of bacterial species colonizing the oral cavity has led to the identification of a small number of bacterial pathogens that are major factors in the etiology of periodontal disease. Further, these methods also underpin more recent epidemiological analyses of the impact of periodontal disease on general health. Given the complex milieu of over 700 species of microorganisms known to exist within the complex biofilms found in the oral cavity, the identification and enumeration of oral periodontopathogens has not been an easy task. In recent years however, some of the intrinsic limitations of the more traditional microbiological analyses previously used have been overcome with the advent of immunological and molecular analytical methods. Of the plethora of methodologies reported in the literature, the enzyme-linked immunosorbent assay (ELISA), which combines the specificity of antibody with the sensitivity of simple enzyme assays and the polymerase chain reaction (PCR), has been widely utilized in both laboratory and clinical applications. Although conventional PCR does not allow quantitation of the target organism, real-time PCR (rtPCR) has the ability to detect amplicons as they accumulate in "real time" allowing subsequent quantitation. These methods enable the accurate quantitation of as few as 10(2) (using rtPCR) to 10(4) (using ELISA) periodontopathogens in dental plaque samples.

  14. A new multiplex real-time polymerase chain reaction assay for the diagnosis of periprosthetic joint infection.

    PubMed

    Kawamura, Masaki; Kobayashi, Naomi; Inaba, Yutaka; Choe, Hyonmin; Tezuka, Taro; Kubota, So; Saito, Tomoyuki

    2017-11-01

    A new multiplex real-time polymerase chain reaction (PCR) assay was developed to detect methicillin-resistant Staphylococcus (MRS) and to distinguish between gram-positive and gram-negative bacteria. In this study, we validated the sensitivity and specificity of this assay with periprosthetic joint infections (PJIs) and evaluated the utility of PCR for culture-negative PJI. Forty-five samples from 23 infectious PJI cases and 106 samples from 64 non-infectious control cases were analyzed by real-time PCR using a LightCycler Nano ® system. Twenty-eight clinical samples, comprising bacteria of known species isolated consecutively in the microbiological laboratory of our hospital, were used to determine the spectrum of bacterial species that could be detected using the new multiplex primers and probes. The sensitivity and specificity of the MRS- and universal-PCR assays were 92% and 99%, and 91% and 88%, respectively. Twenty-eight species of clinically isolated bacteria were detected using this method and the concordance rate for the identification of gram-positive or gram-negative organisms was 96%. Eight samples were identified as PCR-positive despite a culture-negative result. This novel multiplex real-time PCR system has acceptable sensitivity and specificity and several advantages; therefore, it has potential use for the diagnosis of PJIs, particularly in culture-negative cases.

  15. Real-time polymerase chain reaction detection of cauliflower mosaic virus to complement the 35S screening assay for genetically modified organisms.

    PubMed

    Cankar, Katarina; Ravnikar, Maja; Zel, Jana; Gruden, Kristina; Toplak, Natasa

    2005-01-01

    Labeling of genetically modified organisms (GMOs) is now in place in many countries, including the European Union, in order to guarantee the consumer's choice between GM and non-GM products. Screening of samples is performed by polymerase chain reaction (PCR) amplification of regulatory sequences frequently introduced into genetically modified plants. Primers for the 35S promoter from Cauliflower mosaic virus (CaMV) are those most frequently used. In virus-infected plants or in samples contaminated with plant material carrying the virus, false-positive results can consequently occur. A system for real-time PCR using a TaqMan minor groove binder probe was designed that allows recognition of virus coat protein in the sample, thus allowing differentiation between transgenic and virus-infected samples. We measured the efficiency of PCR amplification, limits of detection and quantification, range of linearity, and repeatability of the assay in order to assess the applicability of the assay for routine analysis. The specificity of the detection system was tested on various virus isolates and plant species. All 8 CaMV isolates were successfully amplified using the designed system. No cross-reactivity was detected with DNA from 3 isolates of the closely related Carnation etched ring virus. Primers do not amplify plant DNA from available genetically modified maize and soybean lines or from different species of Brassicaceae or Solanaceae that are natural hosts for CaMV. We evaluated the assay for different food matrixes by spiking CaMV DNA into DNA from food samples and have successfully amplified CaMV from all samples. The assay was tested on rapeseed samples from routine GMO testing that were positive in the 35S screening assay, and the presence of the virus was confirmed.

  16. Rapid and sensitive detection of canine distemper virus by real-time reverse transcription recombinase polymerase amplification.

    PubMed

    Wang, Jianchang; Wang, Jinfeng; Li, Ruiwen; Liu, Libing; Yuan, Wanzhe

    2017-08-15

    Canine distemper, caused by Canine distemper virus (CDV), is a highly contagious and fatal systemic disease in free-living and captive carnivores worldwide. Recombinase polymerase amplification (RPA), as an isothermal gene amplification technique, has been explored for the molecular detection of diverse pathogens. A real-time reverse transcription RPA (RT-RPA) assay for the detection of canine distemper virus (CDV) using primers and exo probe targeting the CDV nucleocapsid protein gene was developed. A series of other viruses were tested by the RT-RPA.Thirty-two field samples were further tested by RT-RPA, and the resuts were compared with those obtained by the real-time RT-PCR. The RT-RPA assay was performed successfully at 40 °C, and the results were obtained within 3 min-12 min. The assay could detect CDV, but did not show cross-detection of canine parvovirus-2 (CPV-2), canine coronavirus (CCoV), canine parainfluenza virus (CPIV), pseudorabies virus (PRV) or Newcastle disease virus (NDV), demonstrating high specificity. The analytical sensitivity of RT-RPA was 31.8 copies in vitro transcribed CDV RNA, which is 10 times lower than the real-time RT-PCR. The assay performance was validated by testing 32 field samples and compared to real-time RT-PCR. The results indicated an excellent correlation between RT-RPA and a reference real-time RT-PCR method. Both assays provided the same results, and R 2 value of the positive results was 0.947. The results demonstrated that the RT-RPA assay offers an alternative tool for simple, rapid, and reliable detection of CDV both in the laboratory and point-of-care facility, especially in the resource-limited settings.

  17. DNA barcoding and real-time PCR detection of Bactrocera xanthodes (Tephritidae: Diptera) complex.

    PubMed

    Li, D; Waite, D W; Gunawardana, D N; McCarthy, B; Anderson, D; Flynn, A; George, S

    2018-05-06

    Immature fruit fly stages of the family Tephritidae are commonly intercepted on breadfruit from Pacific countries at the New Zealand border but are unable to be identified to the species level using morphological characters. Subsequent molecular identification showed that they belong to Bactrocera xanthodes, which is part of a species complex that includes Bactrocera paraxanthodes, Bactrocera neoxanthodes and an undescribed species. To establish a more reliable molecular identification system for B. xanthodes, a reference database of DNA barcode sequences for the 5'-fragment of COI gene region was constructed for B. xanthodes from Fiji, Samoa and Tonga. To better understand the species complex, B. neoxanthodes from Vanuatu and B. paraxanthodes from New Caledonia were also barcoded. Using the results of this analysis, real-time TaqMan polymerase chain reaction (PCR) assays for the detection of B. xanthodes complex and for the three individual species of the complex were developed and validated. The assay showed high specificity for the target species, with no cross-reaction observed for closely related organisms. Each of the real-time PCR assays is sensitive, detecting the target sequences at concentrations as low as ten copies µl-1 and can be used as either singleplex or multiplex formats. This real-time PCR assay for B. xanthodes has been successfully applied at the borders in New Zealand, leading to the rapid identification of intercepted Tephritidae eggs and larvae. The developed assays will be useful biosecurity tools for rapid detection of species in the B. xanthodes complex worldwide.

  18. An intra-laboratory cultural and real-time PCR method comparison and evaluation for the detection of subclinical paratuberculosis in dairy herds.

    PubMed

    Heuvelink, Annet; Hassan, Abdulwahed Ahmed; van Weering, Hilmar; van Engelen, Erik; Bülte, Michael; Akineden, Ömer

    2017-05-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is a vigorous microorganism which causes incurable chronic enteritis, Johne's disease (JD) in cattle. A target of control programmes for JD is to accurately detect MAP-infected cattle early to reduce disease transmission. The present study evaluated the efficacy of two different cultural procedures and a TaqMan real-time PCR assay for detection of subclinical paratuberculosis in dairy herds. Therefore, sixty-one faecal samples were collected from two Dutch dairy herds (n = 40 and n = 21, respectively) which were known to be MAP-ELISA positive. All individual samples were assessed using two different cultural protocols in two different laboratories. The first cultural protocol (first laboratory) included a decontamination step with 0.75% hexadecylpyridinium chloride (HPC) followed by inoculation on Herrold's egg yolk media (HEYM). The second protocol (second laboratory) comprised of a decontamination step using 4% NaOH and malachite green-oxalic acid followed by inoculation on two media, HEYM and in parallel on modified Löwenstein-Jensen media (mLJ). For the TaqMan real-time PCR assay, all faecal samples were tested in two different laboratories using TaqMan® MAP (Johne's) reagents (Life Technologies). The cultural procedures revealed positive reactions in 1.64% of the samples for cultivation protocol 1 and 6.56 and 8.20% of the samples for cultivation protocol 2, respectively. The results of the TaqMan real-time PCR performed in two different laboratories yielded 13.11 and 19.76% positive reaction. The kappa test showed proportional agreement 0.54 between the mLJ media (second laboratory) and TaqMan® real-time PCR method (second laboratory). In conclusion, the TaqMan real-time PCR could be a strongly useful and efficient assay for the detection of subclinical paratuberculosis in dairy cattle leading to an improvement in the efficiency of MAP control strategies.

  19. EQUAL-quant: an international external quality assessment scheme for real-time PCR.

    PubMed

    Ramsden, Simon C; Daly, Sarah; Geilenkeuser, Wolf-Jochen; Duncan, Graeme; Hermitte, Fabienne; Marubini, Ettore; Neumaier, Michael; Orlando, Claudio; Palicka, Vladimir; Paradiso, Angelo; Pazzagli, Mario; Pizzamiglio, Sara; Verderio, Paolo

    2006-08-01

    Quantitative gene expression analysis by real-time PCR is important in several diagnostic areas, such as the detection of minimum residual disease in leukemia and the prognostic assessment of cancer patients. To address quality assurance in this technically challenging area, the European Union (EU) has funded the EQUAL project to develop methodologic external quality assessment (EQA) relevant to diagnostic and research laboratories among the EU member states. We report here the results of the EQUAL-quant program, which assesses standards in the use of TaqMan probes, one of the most widely used assays in the implementation of real-time PCR. The EQUAL-quant reagent set was developed to assess the technical execution of a standard TaqMan assay, including RNA extraction, reverse transcription, and real-time PCR quantification of target DNA copy number. The multidisciplinary EQA scheme included 137 participating laboratories from 29 countries. We demonstrated significant differences in performance among laboratories, with 20% of laboratories reporting at least one result lacking in precision and/or accuracy according to the statistical procedures described. No differences in performance were observed for the >10 different testing platforms used by the study participants. This EQA scheme demonstrated both the requirement and demand for external assessment of technical standards in real-time PCR. The reagent design and the statistical tools developed within this project will provide a benchmark for defining acceptable working standards in this emerging technology.

  20. Real-Time Reverse-Transcription Quantitative Polymerase Chain Reaction Assay Is a Feasible Method for the Relative Quantification of Heregulin Expression in Non-Small Cell Lung Cancer Tissue.

    PubMed

    Kristof, Jessica; Sakrison, Kellen; Jin, Xiaoping; Nakamaru, Kenji; Schneider, Matthias; Beckman, Robert A; Freeman, Daniel; Spittle, Cindy; Feng, Wenqin

    2017-01-01

    In preclinical studies, heregulin ( HRG ) expression was shown to be the most relevant predictive biomarker for response to patritumab, a fully human anti-epidermal growth factor receptor 3 monoclonal antibody. In support of a phase 2 study of erlotinib ± patritumab in non-small cell lung cancer (NSCLC), a reverse-transcription quantitative polymerase chain reaction (RT-qPCR) assay for relative quantification of HRG expression from formalin-fixed paraffin-embedded (FFPE) NSCLC tissue samples was developed and validated and described herein. Test specimens included matched FFPE normal lung and NSCLC and frozen NSCLC tissue, and HRG -positive and HRG -negative cell lines. Formalin-fixed paraffin-embedded tissue was examined for functional performance. Heregulin distribution was also analyzed across 200 NSCLC commercial samples. Applied Biosystems TaqMan Gene Expression Assays were run on the Bio-Rad CFX96 real-time PCR platform. Heregulin RT-qPCR assay specificity, PCR efficiency, PCR linearity, and reproducibility were demonstrated. The final assay parameters included the Qiagen FFPE RNA Extraction Kit for RNA extraction from FFPE NSCLC tissue, 50 ng of RNA input, and 3 reference (housekeeping) genes ( HMBS, IPO8 , and EIF2B1 ), which had expression levels similar to HRG expression levels and were stable among FFPE NSCLC samples. Using the validated assay, unimodal HRG distribution was confirmed across 185 evaluable FFPE NSCLC commercial samples. Feasibility of an RT-qPCR assay for the quantification of HRG expression in FFPE NSCLC specimens was demonstrated.

  1. Analytical Performance of a Multiplex Real-Time PCR Assay Using TaqMan Probes for Quantification of Trypanosoma cruzi Satellite DNA in Blood Samples

    PubMed Central

    Abate, Teresa; Cayo, Nelly M.; Parrado, Rudy; Bello, Zoraida Diaz; Velazquez, Elsa; Muñoz-Calderon, Arturo; Juiz, Natalia A.; Basile, Joaquín; Garcia, Lineth; Riarte, Adelina; Nasser, Julio R.; Ocampo, Susana B.; Yadon, Zaida E.; Torrico, Faustino; de Noya, Belkisyole Alarcón; Ribeiro, Isabela; Schijman, Alejandro G.

    2013-01-01

    Background The analytical validation of sensitive, accurate and standardized Real-Time PCR methods for Trypanosoma cruzi quantification is crucial to provide a reliable laboratory tool for diagnosis of recent infections as well as for monitoring treatment efficacy. Methods/Principal Findings We have standardized and validated a multiplex Real-Time quantitative PCR assay (qPCR) based on TaqMan technology, aiming to quantify T. cruzi satellite DNA as well as an internal amplification control (IAC) in a single-tube reaction. IAC amplification allows rule out false negative PCR results due to inhibitory substances or loss of DNA during sample processing. The assay has a limit of detection (LOD) of 0.70 parasite equivalents/mL and a limit of quantification (LOQ) of 1.53 parasite equivalents/mL starting from non-boiled Guanidine EDTA blood spiked with T. cruzi CL-Brener stock. The method was evaluated with blood samples collected from Chagas disease patients experiencing different clinical stages and epidemiological scenarios: 1- Sixteen Venezuelan patients from an outbreak of oral transmission, 2- Sixty three Bolivian patients suffering chronic Chagas disease, 3- Thirty four Argentinean cases with chronic Chagas disease, 4- Twenty seven newborns to seropositive mothers, 5- A seronegative receptor who got infected after transplantation with a cadaveric kidney explanted from an infected subject. Conclusions/Significance The performing parameters of this assay encourage its application to early assessment of T. cruzi infection in cases in which serological methods are not informative, such as recent infections by oral contamination or congenital transmission or after transplantation with organs from seropositive donors, as well as for monitoring Chagas disease patients under etiological treatment. PMID:23350002

  2. Trends and advances in food analysis by real-time polymerase chain reaction.

    PubMed

    Salihah, Nur Thaqifah; Hossain, Mohammad Mosharraf; Lubis, Hamadah; Ahmed, Minhaz Uddin

    2016-05-01

    Analyses to ensure food safety and quality are more relevant now because of rapid changes in the quantity, diversity and mobility of food. Food-contamination must be determined to maintain health and up-hold laws, as well as for ethical and cultural concerns. Real-time polymerase chain reaction (RT-PCR), a rapid and inexpensive quantitative method to detect the presence of targeted DNA-segments in samples, helps in determining both accidental and intentional adulterations of foods by biological contaminants. This review presents recent developments in theory, techniques, and applications of RT-PCR in food analyses, RT-PCR addresses the limitations of traditional food analyses in terms of sensitivity, range of analytes, multiplexing ability, cost, time, and point-of-care applications. A range of targets, including species of plants or animals which are used as food ingredients, food-borne bacteria or viruses, genetically modified organisms, and allergens, even in highly processed foods can be identified by RT-PCR, even at very low concentrations. Microfluidic RT-PCR eliminates the separate sample-processing step to create opportunities for point-of-care analyses. We also cover the challenges related to using RT-PCR for food analyses, such as the need to further improve sample handling.

  3. Application of quantitative real-time PCR compared to filtration methods for the enumeration of Escherichia coli in surface waters within Vietnam.

    PubMed

    Vital, Pierangeli G; Van Ha, Nguyen Thi; Tuyet, Le Thi Hong; Widmer, Kenneth W

    2017-02-01

    Surface water samples in Vietnam were collected from the Saigon River, rural and suburban canals, and urban runoff canals in Ho Chi Minh City, Vietnam, and were processed to enumerate Escherichia coli. Quantification was done through membrane filtration and quantitative real-time polymerase chain reaction (PCR). Mean log colony-forming unit (CFU)/100 ml E. coli counts in the dry season for river/suburban canals and urban canals were log 2.8 and 3.7, respectively, using a membrane filtration method, while using Taqman quantitative real-time PCR they were log 2.4 and 2.8 for river/suburban canals and urban canals, respectively. For the wet season, data determined by the membrane filtration method in river/suburban canals and urban canals samples had mean counts of log 3.7 and 4.1, respectively. While mean log CFU/100 ml counts in the wet season using quantitative PCR were log 3 and 2, respectively. Additionally, the urban canal samples were significantly lower than those determined by conventional culture methods for the wet season. These results show that while quantitative real-time PCR can be used to determine levels of fecal indicator bacteria in surface waters, there are some limitations to its application and it may be impacted by sources of runoff based on surveyed samples.

  4. Real-time polymerase chain reaction in transfusion medicine: applications for detection of bacterial contamination in blood products.

    PubMed

    Dreier, Jens; Störmer, Melanie; Kleesiek, Knut

    2007-07-01

    Bacterial contamination of blood components, particularly of platelet concentrates (PCs), represents the greatest infectious risk in blood transfusion. Although the incidence of platelet bacterial contamination is approximately 1 per 2,000 U, the urgent need for a method for the routine screening of PCs to improve safety for patients had not been considered for a long time. Besides the culturing systems, which will remain the criterion standard, rapid methods for sterility screening will play a more important role in transfusion medicine in the future. In particular, nucleic acid amplification techniques (NATs) are powerful potential tools for bacterial screening assays. The combination of excellent sensitivity and specificity, reduced contamination risk, ease of performance, and speed has made real-time polymerase chain reaction (PCR) technology an appealing alternative to conventional culture-based testing methods. When using real-time PCR for the detection of bacterial contamination, several points have to be considered. The main focus is the choice of the target gene; the assay format; the nucleic acid extraction method, depending on the sample type; and the evaluation of an ideal sampling strategy. However, several factors such as the availability of bacterial-derived nucleic acid amplification reagents, the impracticability, and the cost have limited the use of NATs until now. Attempts to reduce the presence of contaminating nucleic acids from reagents in real-time PCR have been described, but none of these approaches have proven to be very effective or to lower the sensitivity of the assay. Recently, a number of broad-range NAT assays targeting the 16S ribosomal DNA or 23S ribosomal RNA for the detection of bacteria based on real-time technology have been reported. This review will give a short survey of current approaches to and the limitations of the application of real-time PCR for bacterial detection in blood components, with emphasis on the bacterial

  5. EVALUATION OF RAPID, QUANTITATIVE REAL-TIME PCR METHOD FOR ENUMERATION OF PATHOGENIC CANDIDA CELLS IN WATER

    EPA Science Inventory

    Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan (trademark)) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glab...

  6. Detection of Brucella spp. in milk from seronegative cows by real-time polymerase chain reaction in the region of Batna, Algeria

    PubMed Central

    Sabrina, Rabehi; Mossadak, Hamdi Taha; Bakir, Mamache; Asma, Meghezzi; Khaoula, Boushaba

    2018-01-01

    Aim: The aim of this study was to detect Brucella spp. DNA in milk samples collected from seronegative cows using the real-time polymerase chain reaction (PCR) assay for diagnosis of brucellosis in seronegative dairy cows to prevent transmission of disease to humans and to reduce economic losses in animal production. Materials and Methods: In this study, 65 milk samples were investigated for the detection of Brucella spp. The detection of the IS711 gene in all samples was done by real-time PCR assay by comparative cycle threshold method. Results: The results show that of the 65 DNA samples tested, 2 (3.08%) were positive for Brucella infection. The mean cyclic threshold values of IS711 real-time PCR test were 37.97 and 40.48, indicating a positive reaction. Conclusion: The results of the present study indicated that the real-time PCR appears to offer several advantages over serological tests. For this reason, the real-time PCR should be validated on representative numbers of Brucella-infected and free samples before being implemented in routine diagnosis in human and animal brucellosis for controlling this disease. PMID:29657430

  7. Basic quantitative polymerase chain reaction using real-time fluorescence measurements.

    PubMed

    Ares, Manuel

    2014-10-01

    This protocol uses quantitative polymerase chain reaction (qPCR) to measure the number of DNA molecules containing a specific contiguous sequence in a sample of interest (e.g., genomic DNA or cDNA generated by reverse transcription). The sample is subjected to fluorescence-based PCR amplification and, theoretically, during each cycle, two new duplex DNA molecules are produced for each duplex DNA molecule present in the sample. The progress of the reaction during PCR is evaluated by measuring the fluorescence of dsDNA-dye complexes in real time. In the early cycles, DNA duplication is not detected because inadequate amounts of DNA are made. At a certain threshold cycle, DNA-dye complexes double each cycle for 8-10 cycles, until the DNA concentration becomes so high and the primer concentration so low that the reassociation of the product strands blocks efficient synthesis of new DNA and the reaction plateaus. There are two types of measurements: (1) the relative change of the target sequence compared to a reference sequence and (2) the determination of molecule number in the starting sample. The first requires a reference sequence, and the second requires a sample of the target sequence with known numbers of the molecules of sequence to generate a standard curve. By identifying the threshold cycle at which a sample first begins to accumulate DNA-dye complexes exponentially, an estimation of the numbers of starting molecules in the sample can be extrapolated. © 2014 Cold Spring Harbor Laboratory Press.

  8. Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples

    PubMed Central

    Cura, Carolina I.; Duffy, Tomas; Lucero, Raúl H.; Bisio, Margarita; Péneau, Julie; Jimenez-Coello, Matilde; Calabuig, Eva; Gimenez, María J.; Valencia Ayala, Edward; Kjos, Sonia A.; Santalla, José; Mahaney, Susan M.; Cayo, Nelly M.; Nagel, Claudia; Barcán, Laura; Málaga Machaca, Edith S.; Acosta Viana, Karla Y.; Brutus, Laurent; Ocampo, Susana B.; Aznar, Christine; Cuba Cuba, Cesar A.; Gürtler, Ricardo E.; Ramsey, Janine M.; Ribeiro, Isabela; VandeBerg, John L.; Yadon, Zaida E.; Osuna, Antonio; Schijman, Alejandro G.

    2015-01-01

    Background Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI–TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR). Methods/Principal Findings The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm. Conclusions/Significance Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production. PMID:25993316

  9. A Pan-Lyssavirus Taqman Real-Time RT-PCR Assay for the Detection of Highly Variable Rabies virus and Other Lyssaviruses

    PubMed Central

    Wadhwa, Ashutosh; Wilkins, Kimberly; Gao, Jinxin; Condori Condori, Rene Edgar; Gigante, Crystal M.; Zhao, Hui; Ma, Xiaoyue; Ellison, James A.; Greenberg, Lauren; Velasco-Villa, Andres; Orciari, Lillian

    2017-01-01

    Rabies, resulting from infection by Rabies virus (RABV) and related lyssaviruses, is one of the most deadly zoonotic diseases and is responsible for up to 70,000 estimated human deaths worldwide each year. Rapid and accurate laboratory diagnosis of rabies is essential for timely administration of post-exposure prophylaxis in humans and control of the disease in animals. Currently, only the direct fluorescent antibody (DFA) test is recommended for routine rabies diagnosis. Reverse-transcription polymerase chain reaction (RT-PCR) based diagnostic methods have been widely adapted for the diagnosis of other viral pathogens, but there is currently no widely accepted rapid real-time RT-PCR assay for the detection of all lyssaviruses. In this study, we demonstrate the validation of a newly developed multiplex real-time RT-PCR assay named LN34, which uses a combination of degenerate primers and probes along with probe modifications to achieve superior coverage of the Lyssavirus genus while maintaining sensitivity and specificity. The primers and probes of the LN34 assay target the highly conserved non-coding leader region and part of the nucleoprotein (N) coding sequence of the Lyssavirus genome to maintain assay robustness. The probes were further modified by locked nucleotides to increase their melting temperature to meet the requirements for an optimal real-time RT-PCR assay. The LN34 assay was able to detect all RABV variants and other lyssaviruses in a validation panel that included representative RABV isolates from most regions of the world as well as representatives of 13 additional Lyssavirus species. The LN34 assay was successfully used for both ante-mortem and post-mortem diagnosis of over 200 clinical samples as well as field derived surveillance samples. This assay represents a major improvement over previously published rabies specific RT-PCR and real-time RT-PCR assays because of its ability to universally detect RABV and other lyssaviruses, its high

  10. A Pan-Lyssavirus Taqman Real-Time RT-PCR Assay for the Detection of Highly Variable Rabies virus and Other Lyssaviruses.

    PubMed

    Wadhwa, Ashutosh; Wilkins, Kimberly; Gao, Jinxin; Condori Condori, Rene Edgar; Gigante, Crystal M; Zhao, Hui; Ma, Xiaoyue; Ellison, James A; Greenberg, Lauren; Velasco-Villa, Andres; Orciari, Lillian; Li, Yu

    2017-01-01

    Rabies, resulting from infection by Rabies virus (RABV) and related lyssaviruses, is one of the most deadly zoonotic diseases and is responsible for up to 70,000 estimated human deaths worldwide each year. Rapid and accurate laboratory diagnosis of rabies is essential for timely administration of post-exposure prophylaxis in humans and control of the disease in animals. Currently, only the direct fluorescent antibody (DFA) test is recommended for routine rabies diagnosis. Reverse-transcription polymerase chain reaction (RT-PCR) based diagnostic methods have been widely adapted for the diagnosis of other viral pathogens, but there is currently no widely accepted rapid real-time RT-PCR assay for the detection of all lyssaviruses. In this study, we demonstrate the validation of a newly developed multiplex real-time RT-PCR assay named LN34, which uses a combination of degenerate primers and probes along with probe modifications to achieve superior coverage of the Lyssavirus genus while maintaining sensitivity and specificity. The primers and probes of the LN34 assay target the highly conserved non-coding leader region and part of the nucleoprotein (N) coding sequence of the Lyssavirus genome to maintain assay robustness. The probes were further modified by locked nucleotides to increase their melting temperature to meet the requirements for an optimal real-time RT-PCR assay. The LN34 assay was able to detect all RABV variants and other lyssaviruses in a validation panel that included representative RABV isolates from most regions of the world as well as representatives of 13 additional Lyssavirus species. The LN34 assay was successfully used for both ante-mortem and post-mortem diagnosis of over 200 clinical samples as well as field derived surveillance samples. This assay represents a major improvement over previously published rabies specific RT-PCR and real-time RT-PCR assays because of its ability to universally detect RABV and other lyssaviruses, its high

  11. A new TaqMan method for the reliable diagnosis of Ehrlichia spp. in canine whole blood.

    PubMed

    Thomson, Kirsty; Yaaran, Tal; Belshaw, Alex; Curson, Lucia; Tisi, Laurence; Maurice, Sarah; Kiddle, Guy

    2018-06-18

    Ehrlichiosis is an important emerging infectious disease of the canid family and humans worldwide. To date, no extensive evaluation or validation of a molecular diagnostic test for ehrlichiosis has been published. Here, we present data for a newly designed TaqMan assay and compare its performance to a commercial technology (PCRun®). Both of these real-time methods of analysis were evaluated using a comprehensive number of prospective and retrospective samples collected from dogs exhibiting symptoms of ehrlichiosis. Whole blood samples collected from dogs, retrospectively in the United Kingdom and prospectively in Israel, were analysed for the presence of Ehrlichia canis and Ehrlichia minasensis DNA using the TaqMan PCR, developed specifically for this study. The results were compared to those of a real time commercial isothermal amplification method (PCRun® system developed by Biogal Galed Labs ACS, Galed, Israel). The sensitivity and specificity (CI: 95%) of the TaqMan PCR and PCRun® were both determined to be 100% and absolute, for all of the samples tested. Interestingly, both tests were demonstrated to be highly comparable, irrespective of differences in amplification chemistry or sequences targeted. Host differences, incidence of disease and geographical location of the isolates had little impact on the positivity recorded by each of the diagnostic methods. It was evident that both amplification methods were equally suited for diagnosing canine ehrlichiosis and while the PCRun® clearly amplified all clinically relevant Ehrlichia species known to infect dogs and humans, the TaqMan method was more specific for E. canis and E. minasensis. This work demonstrates that despite good analytical sensitivities and specificities for Ehrlichia spp. neither method could fully account for the clinical diagnosis of thrombocytopenia.

  12. Detection of minute virus of mice using real time quantitative PCR in assessment of virus clearance during the purification of Mammalian cell substrate derived biotherapeutics.

    PubMed

    Zhan, Dejin; Roy, Margaret R; Valera, Christine; Cardenas, Jesse; Vennari, Joann C; Chen, Janice W; Liu, Shengjiang

    2002-12-01

    A real time quantitative PCR assay has been developed for detecting minute virus of mice (MVM). This assay directly quantifies PCR product by monitoring the increase of fluorescence intensity emitted during enzymatic hydrolysis of an oligonucleotide probe labelled covalently with fluorescent reporting and quenching dyes via Taq polymerase 5'-->3' exonuclease activity. The quantity of MVM DNA molecules in the samples was determined using a known amount of MVM standard control DNA fragment cloned into a plasmid (pCR-MVM). We have demonstrated that MVM TaqMan PCR assay is approximately 1000-fold more sensitive than the microplate infectivity assay with the lowest detection limit of approximately one particle per reaction. The reliable detection range is within 100 to 10(9) molecules per reaction with high reproducibility. The intra assay variation is <2.5%, and the inter assays variation is <6.5% when samples contain >100 particles/assay. When we applied the TaqMan PCR to MVM clearance studies done by column chromatography or normal flow viral filtration, we found that the virus removal factors were similar to that of virus infectivity assay. It takes about a day to complete entire assay processes, thus, the TaqMan PCR assay is at least 10-fold faster than the infectivity assay. Therefore, we concluded that this fast, specific, sensitive, and robust assay could replace the infectivity assay for virus clearance evaluation. Copyright 2002 The International Association for Biologicals. Published by Elsevier Science Ltd. All rights reserved.

  13. Real-time isothermal detection of Shiga toxin-producing Escherichia coli using recombinase polymerase amplification.

    PubMed

    Murinda, Shelton E; Ibekwe, A Mark; Zulkaffly, Syaizul; Cruz, Andrew; Park, Stanley; Razak, Nur; Paudzai, Farah Md; Ab Samad, Liana; Baquir, Khairul; Muthaiyah, Kokilah; Santiago, Brenna; Rusli, Amirul; Balkcom, Sean

    2014-07-01

    Shiga toxin-producing Escherichia coli (STEC) are a major family of foodborne pathogens of public health, zoonotic, and economic significance in the United States and worldwide. To date, there are no published reports on use of recombinase polymerase amplification (RPA) for STEC detection. The primary goal of this study was to assess the potential application of RPA in detection of STEC. This study focused on designing and evaluating RPA primers and fluorescent probes for isothermal (39°C) detection of STEC. Compatible sets of candidate primers and probes were designed for detection of Shiga toxin 1 and 2 (Stx1 and 2), respectively. The sets were evaluated for specificity and sensitivity against STEC (n=12) of various stx genotypes (stx1/stx2, stx1, or stx2, respectively), including non-Stx-producing E. coli (n=28) and other genera (n=7). The primers and probes that were designed targeted amplification of the subunit A moiety of stx1 and stx2. The assay detected STEC in real time (within 5-10 min at 39°C) with high sensitivity (93.5% vs. 90%; stx1 vs. stx2), specificity (99.1% vs. 100%; stx1 vs. stx2), and predictive value (97.9% for both stx1 vs. stx2). Limits of detection of ∼ 5-50 colony-forming units/mL were achieved in serially diluted cultures grown in brain heart infusion broth. This study successfully demonstrated for the first time that RPA can be used for isothermal real-time detection of STEC.

  14. Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species.

    PubMed

    Doi, Hideyuki; Takahara, Teruhiko; Minamoto, Toshifumi; Matsuhashi, Saeko; Uchii, Kimiko; Yamanaka, Hiroki

    2015-05-05

    Environmental DNA (eDNA) has been used to investigate species distributions in aquatic ecosystems. Most of these studies use real-time polymerase chain reaction (PCR) to detect eDNA in water; however, PCR amplification is often inhibited by the presence of organic and inorganic matter. In droplet digital PCR (ddPCR), the sample is partitioned into thousands of nanoliter droplets, and PCR inhibition may be reduced by the detection of the end-point of PCR amplification in each droplet, independent of the amplification efficiency. In addition, real-time PCR reagents can affect PCR amplification and consequently alter detection rates. We compared the effectiveness of ddPCR and real-time PCR using two different PCR reagents for the detection of the eDNA from invasive bluegill sunfish, Lepomis macrochirus, in ponds. We found that ddPCR had higher detection rates of bluegill eDNA in pond water than real-time PCR with either of the PCR reagents, especially at low DNA concentrations. Limits of DNA detection, which were tested by spiking the bluegill DNA to DNA extracts from the ponds containing natural inhibitors, found that ddPCR had higher detection rate than real-time PCR. Our results suggest that ddPCR is more resistant to the presence of PCR inhibitors in field samples than real-time PCR. Thus, ddPCR outperforms real-time PCR methods for detecting eDNA to document species distributions in natural habitats, especially in habitats with high concentrations of PCR inhibitors.

  15. Detection of Haemophilus influenzae in respiratory secretions from pneumonia patients by quantitative real-time polymerase chain reaction.

    PubMed

    Abdeldaim, Guma M K; Strålin, Kristoffer; Kirsebom, Leif A; Olcén, Per; Blomberg, Jonas; Herrmann, Björn

    2009-08-01

    A quantitative real-time polymerase chain reaction (PCR) based on the omp P6 gene was developed to detect Haemophilus influenzae. Its specificity was determined by analysis of 29 strains of 11 different Haemophilus spp. and was compared with PCR assays having other target genes: rnpB, 16S rRNA, and bexA. The method was evaluated on nasopharyngeal aspirates from 166 adult patients with community-acquired pneumonia. When 10(4) DNA copies/mL was used as cutoff limit for the method, P6 PCR had a sensitivity of 97.5% and a specificity of 96.0% compared with the culture. Of 20 culture-negative but P6 PCR-positive cases, 18 were confirmed by fucK PCR as H. influenzae. Five (5.9%) of 84 nasopharyngeal aspirates from adult controls tested PCR positive. We conclude that the P6 real-time PCR is both sensitive and specific for identification of H. influenzae in respiratory secretions. Quantification facilitates discrimination between disease-causing H. influenzae strains and commensal colonization.

  16. Smallpox and pan-orthopox virus detection by real-time 3'-minor groove binder TaqMan assays on the roche LightCycler and the Cepheid smart Cycler platforms.

    PubMed

    Kulesh, David A; Baker, Robert O; Loveless, Bonnie M; Norwood, David; Zwiers, Susan H; Mucker, Eric; Hartmann, Chris; Herrera, Rafael; Miller, David; Christensen, Deanna; Wasieloski, Leonard P; Huggins, John; Jahrling, Peter B

    2004-02-01

    We designed, optimized, and extensively tested several sensitive and specific real-time PCR assays for rapid detection of both smallpox and pan-orthopox virus DNAs. The assays are based on TaqMan 3'-minor groove binder chemistry and were performed on both the rapid-cycling Roche LightCycler and the Cepheid Smart Cycler platforms. The hemagglutinin (HA) J7R, B9R, and B10R genes were used as targets for the variola virus-specific assays, and the HA and DNA polymerase-E9L genes were used as targets for the pan-orthopox virus assays. The five orthopox virus assays were tested against a panel of orthopox virus DNAs (both genomic and cloned) at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID). The results indicated that each assay was capable of detecting both the appropriate cloned gene and genomic DNA. The assays showed no cross-reactivity to the 78 DNAs in the USAMRIID bacterial cross-reactivity panel. The limit of detection (LOD) of each assay was determined to be between 12 and 25 copies of target DNA. The assays were also run against a blind panel of DNAs at the Centers for Disease Control and Prevention (CDC) on both the LightCycler and the Smart Cycler. The panel consisted of eight different variola virus isolates, five non-variola virus orthopox virus isolates, two varicella-zoster virus isolates, and one herpes simplex virus isolate. Each sample was tested in triplicate at 2.5 ng, 25 pg, 250 fg, and 2.5 fg, which represent 1.24 x 10(7), 1.24 x 10(5), 1.24 x 10(3), and 1.24 x 10(1) genome equivalents, respectively. The results indicated that each of the five assays was 100% specific (no false positives) when tested against both the USAMRIID panels and the CDC blind panel. With the CDC blind panel, the LightCycler was capable of detecting 96.2% of the orthopox virus DNAs and 93.8% of the variola virus DNAs. The Smart Cycler was capable of detecting 92.3% of the orthopox virus DNAs and between 75 and 93.8% of the variola virus DNAs

  17. Detection of central nervous system leukemia in children with acute lymphoblastic leukemia by real-time polymerase chain reaction.

    PubMed

    Pine, Sharon R; Yin, Changhong; Matloub, Yousif H; Sabaawy, Hatem E; Sandoval, Claudio; Levendoglu-Tugal, Oya; Ozkaynak, M Fevzi; Jayabose, Somasundaram

    2005-02-01

    Accurate detection of central nervous system (CNS) involvement in children with newly diagnosed acute lymphoblastic leukemia (ALL) could have profound prognostic and therapeutic implications. We examined various cerebrospinal fluid (CSF) preservation methods to yield adequate DNA stability for polymerase chain reaction (PCR) analysis and developed a quantitative real-time PCR assay to detect occult CNS leukemia. Sixty CSF specimens were maintained in several storage conditions for varying amounts of time, and we found that preserving CSF in 1:1 serum-free RPMI tissue culture medium offers the best stability of DNA for PCR analysis. Sixty CSF samples (30 at diagnosis and 30 at the end of induction therapy) from 30 children with ALL were tested for CNS leukemic involvement by real-time PCR using patient-specific antigen receptor gene rearrangement primers. Six of thirty patient diagnosis samples were PCR-positive at levels ranging from 0.5 to 66% leukemic blasts in the CSF. Four of these patients had no clinical or cytomorphological evidence of CNS leukemia involvement at that time. All 30 CSF samples drawn at the end of induction therapy were PCR-negative. The data indicate that real-time PCR analysis of CSF is an excellent tool to assess occult CNS leukemia involvement in patients with ALL and can possibly be used to refine CNS status classification.

  18. Detection of Central Nervous System Leukemia in Children with Acute Lymphoblastic Leukemia by Real-Time Polymerase Chain Reaction

    PubMed Central

    Pine, Sharon R.; Yin, Changhong; Matloub, Yousif H.; Sabaawy, Hatem E.; Sandoval, Claudio; Levendoglu-Tugal, Oya; Ozkaynak, M. Fevzi; Jayabose, Somasundaram

    2005-01-01

    Accurate detection of central nervous system (CNS) involvement in children with newly diagnosed acute lymphoblastic leukemia (ALL) could have profound prognostic and therapeutic implications. We examined various cerebrospinal fluid (CSF) preservation methods to yield adequate DNA stability for polymerase chain reaction (PCR) analysis and developed a quantitative real-time PCR assay to detect occult CNS leukemia. Sixty CSF specimens were maintained in several storage conditions for varying amounts of time, and we found that preserving CSF in 1:1 serum-free RPMI tissue culture medium offers the best stability of DNA for PCR analysis. Sixty CSF samples (30 at diagnosis and 30 at the end of induction therapy) from 30 children with ALL were tested for CNS leukemic involvement by real-time PCR using patient-specific antigen receptor gene rearrangement primers. Six of thirty patient diagnosis samples were PCR-positive at levels ranging from 0.5 to 66% leukemic blasts in the CSF. Four of these patients had no clinical or cytomorphological evidence of CNS leukemia involvement at that time. All 30 CSF samples drawn at the end of induction therapy were PCR-negative. The data indicate that real-time PCR analysis of CSF is an excellent tool to assess occult CNS leukemia involvement in patients with ALL and can possibly be used to refine CNS status classification. PMID:15681484

  19. EVALUATION OF A RAPID, QUANTITATIVE REAL-TIME PCR METHOD FOR ENUMERATION OF PATHOGENIC CANDIDA CELLS IN WATER

    EPA Science Inventory

    Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan?) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C....

  20. Comprehensive Multiplex One-Step Real-Time TaqMan qRT-PCR Assays for Detection and Quantification of Hemorrhagic Fever Viruses

    PubMed Central

    Li, Jiandong; Qu, Jing; He, Chengcheng; Zhang, Shuo; Li, Chuan; Zhang, Quanfu; Liang, Mifang; Li, Dexin

    2014-01-01

    Background Viral hemorrhagic fevers (VHFs) are a group of animal and human illnesses that are mostly caused by several distinct families of viruses including bunyaviruses, flaviviruses, filoviruses and arenaviruses. Although specific signs and symptoms vary by the type of VHF, initial signs and symptoms are very similar. Therefore rapid immunologic and molecular tools for differential diagnosis of hemorrhagic fever viruses (HFVs) are important for effective case management and control of the spread of VHFs. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assay is one of the reliable and desirable methods for specific detection and quantification of virus load. Multiplex PCR assay has the potential to produce considerable savings in time and resources in the laboratory detection. Results Primers/probe sets were designed based on appropriate specific genes for each of 28 HFVs which nearly covered all the HFVs, and identified with good specificity and sensitivity using monoplex assays. Seven groups of multiplex one-step real-time qRT-PCR assays in a universal experimental system were then developed by combining all primers/probe sets into 4-plex reactions and evaluated with serial dilutions of synthesized viral RNAs. For all the multiplex assays, no cross-reactivity with other HFVs was observed, and the limits of detection were mainly between 45 and 150 copies/PCR. The reproducibility was satisfactory, since the coefficient of variation of Ct values were all less than 5% in each dilution of synthesized viral RNAs for both intra-assays and inter-assays. Evaluation of the method with available clinical serum samples collected from HFRS patients, SFTS patients and Dengue fever patients showed high sensitivity and specificity of the related multiplex assays on the clinical specimens. Conclusions Overall, the comprehensive multiplex one-step real-time qRT-PCR assays were established in this study, and proved to be specific, sensitive

  1. A novel duplex real time quantitative reverse transcription polymerase chain reaction for rubella virus with armored RNA as a noncompetitive internal positive control.

    PubMed

    Zhao, Lihong; Li, Ruiying; Liu, Aihua; Zhao, Shuping

    2015-07-01

    The objective of this study was to build and apply a duplex real time quantitative reverse transcription-polymerase chain reaction (RT-PCR) for rubella virus. Firstly, a 60-bp-long armored RV RNA was constructed in the laboratory. Secondly, a duplex real time RT-PCR assay was established. Thirdly, the 60-bp-long armored RV RNA was used as an internal positive control (IPC) for the duplex real time RT-PCR. And finally the duplex real time RT-PCR assay was applied to detect RV RNA in clinical specimens. The in-house assay has a high amplification efficiency (0.99), a high analytical sensitivity (200 copies/mL), and a good reproducibility. The diagnostic specificity and sensitivity of the in-house assay were both 100%, due to the monitoring of the armored RV RNA IPC. Therefore, the in-house duplex real time quantitative RT-PCR assay is a specific, sensitive, reproducible and accurate assay for quantitation of RV RNA in clinical specimens. And noncompetitive armored RV RNA IPC can monitor RT-PCR inhibition and prevent false-negative and inaccurate results in the real time detection system. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. [The development and implementation of polymerase chain reaction to detect in real-time operation mode yersinia pestis in field material].

    PubMed

    Afanas'ev, M V; Chipanin, E V; Shestakov, V E; Denisov, A V; Fomina, L A; Ostiak, A S; Balakhonov, S V

    2013-03-01

    The article presents the results of development and practical implementation of system of polymerase chain reaction testing in real-time operation mode to detect agent of plague infield material. In laboratory conditions the system demonstrated good results and hence it was applied in conditions of field laboratory of epidemiologic team during planned epizootologic examination of Gorno-Altaisk hot spot of plague. The sampling consisted of more than 1400 objects. It was demonstrated that high sensitivity and specificity is immanent to proposed system. The adaptation of the system to the real time amplifier "Smart Cycler" (Cephid, USA) having some specific technical characteristics makes it possible to consider the proposed test-system as an effective sensitive and precise instrument for screening studies in the process of regular epizootologic examinations of hot spots of plague.

  3. Application of TaqMan fluorescent probe-based quantitative real-time PCR assay for the environmental survey of Legionella spp. and Legionella pneumophila in drinking water reservoirs in Taiwan.

    PubMed

    Kao, Po-Min; Hsu, Bing-Mu; Hsu, Tsui-Kang; Ji, Wen-Tsai; Huang, Po-Hsiang; Hsueh, Chih-Jen; Chiang, Chuen-Sheue; Huang, Shih-Wei; Huang, Yu-Li

    2014-08-15

    In this study, TaqMan fluorescent quantitative real-time PCR was performed to quantify Legionella species in reservoirs. Water samples were collected from 19 main reservoirs in Taiwan, and 12 (63.2%) were found to contain Legionella spp. The identified species included uncultured Legionella spp., L. pneumophila, L. jordanis, and L. drancourtii. The concentrations of Legionella spp. and L. pneumophila in the water samples were in the range of 1.8×10(2)-2.6×10(3) and 1.6×10(2)-2.4×10(2) cells/L, respectively. The presence and absence of Legionella spp. in the reservoir differed significantly in pH values. These results highlight the importance that L. pneumophila, L. jordanis, and L. drancourtii are potential pathogens in the reservoirs. The presence of L. pneumophila in reservoirs may be a potential public health concern that must be further examined. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Multiplex real-time PCR assays for the identification of the potato cyst and tobacco cyst nematodes

    USDA-ARS?s Scientific Manuscript database

    TaqMan primer-probe sets were developed for the detection and identification of potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis using two-tube, multiplex real-time PCR. One tube contained a primer-probe set specific for G. pallida (pale cyst nematode) multiplexed with another prim...

  5. Smallpox and pan-Orthopox Virus Detection by Real-Time 3′-Minor Groove Binder TaqMan Assays on the Roche LightCycler and the Cepheid Smart Cycler Platforms

    PubMed Central

    Kulesh, David A.; Baker, Robert O.; Loveless, Bonnie M.; Norwood, David; Zwiers, Susan H.; Mucker, Eric; Hartmann, Chris; Herrera, Rafael; Miller, David; Christensen, Deanna; Wasieloski, Leonard P.; Huggins, John; Jahrling, Peter B.

    2004-01-01

    We designed, optimized, and extensively tested several sensitive and specific real-time PCR assays for rapid detection of both smallpox and pan-orthopox virus DNAs. The assays are based on TaqMan 3′-minor groove binder chemistry and were performed on both the rapid-cycling Roche LightCycler and the Cepheid Smart Cycler platforms. The hemagglutinin (HA) J7R, B9R, and B10R genes were used as targets for the variola virus-specific assays, and the HA and DNA polymerase-E9L genes were used as targets for the pan-orthopox virus assays. The five orthopox virus assays were tested against a panel of orthopox virus DNAs (both genomic and cloned) at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID). The results indicated that each assay was capable of detecting both the appropriate cloned gene and genomic DNA. The assays showed no cross-reactivity to the 78 DNAs in the USAMRIID bacterial cross-reactivity panel. The limit of detection (LOD) of each assay was determined to be between 12 and 25 copies of target DNA. The assays were also run against a blind panel of DNAs at the Centers for Disease Control and Prevention (CDC) on both the LightCycler and the Smart Cycler. The panel consisted of eight different variola virus isolates, five non-variola virus orthopox virus isolates, two varicella-zoster virus isolates, and one herpes simplex virus isolate. Each sample was tested in triplicate at 2.5 ng, 25 pg, 250 fg, and 2.5 fg, which represent 1.24 × 107, 1.24 × 105, 1.24 × 103, and 1.24 × 101 genome equivalents, respectively. The results indicated that each of the five assays was 100% specific (no false positives) when tested against both the USAMRIID panels and the CDC blind panel. With the CDC blind panel, the LightCycler was capable of detecting 96.2% of the orthopox virus DNAs and 93.8% of the variola virus DNAs. The Smart Cycler was capable of detecting 92.3% of the orthopox virus DNAs and between 75 and 93.8% of the variola virus DNAs. However

  6. Use of extremely short Förster resonance energy transfer probes in real-time polymerase chain reaction

    PubMed Central

    Kutyavin, Igor V.

    2013-01-01

    Described in the article is a new approach for the sequence-specific detection of nucleic acids in real-time polymerase chain reaction (PCR) using fluorescently labeled oligonucleotide probes. The method is based on the production of PCR amplicons, which fold into dumbbell-like secondary structures carrying a specially designed ‘probe-luring’ sequence at their 5′ ends. Hybridization of this sequence to a complementary ‘anchoring’ tail introduced at the 3′ end of a fluorescent probe enables the probe to bind to its target during PCR, and the subsequent probe cleavage results in the florescence signal. As it has been shown in the study, this amplicon-endorsed and guided formation of the probe-target duplex allows the use of extremely short oligonucleotide probes, up to tetranucleotides in length. In particular, the short length of the fluorescent probes makes possible the development of a ‘universal’ probe inventory that is relatively small in size but represents all possible sequence variations. The unparalleled cost-effectiveness of the inventory approach is discussed. Despite the short length of the probes, this new method, named Angler real-time PCR, remains highly sequence specific, and the results of the study indicate that it can be effectively used for quantitative PCR and the detection of polymorphic variations. PMID:24013564

  7. Habitat associations of two entomopathogenic nematodes: a quantitative study using real-time quantitative polymerase chain reactions.

    PubMed

    Torr, Peter; Spiridonov, Sergei E; Heritage, Stuart; Wilson, Michael J

    2007-03-01

    1. Despite nematodes being the most abundant animals on earth, very few animal ecologists study them, probably because of the difficulties of identifying them to species by morphological methods. 2. A group of nematodes that are important both ecologically and economically is the entomopathogenic nematodes, which play a key role in regulating soil food webs and are sold throughout the world as biological insecticides, yet for which very little is known of their population ecology. 3. A novel detection and quantification method was developed for soil nematodes using real-time polymerase chain reaction (PCR), and the technique was used to estimate numbers of two closely related species of entomopathogenic nematodes, Steinernema kraussei and S. affine in 50 soil samples from 10 sites in Scotland representing two distinct habitats (woodland and grassland). 4. There was a high degree of correlation between our molecular and traditional morphological estimates of population size and our data clearly showed that Steinernema affine occurred only in grassland areas, whereas S. kraussei was found in grassland and woodland samples to a similar degree. 5. Real-time PCR offers a rapid and accurate method of detecting individual nematode species from soil samples without the need for a specialist taxonomist, and has much potential for use in studies of nematode population ecology.

  8. Real-time polymerase chain reaction for detection of encapsulated Haemophilus influenzae using degenerate primers to target the capsule transport gene bexA.

    PubMed

    Law, Dennis K S; Tsang, Raymond S W

    2013-05-01

    A real-time polymerase chain reaction assay that uses degenerate primers and a dual-labelled probe was developed to detect the bexA gene of Haemophilus influenzae, including those belonging to non-b serotypes as well as clonal division II strains. This assay is sensitive and specific, detecting 20 copies of the gene, but negative with a variety of bacteria associated with meningitis and bacteremia or septicemia.

  9. [The validation of kit of reagents for quantitative detection of DNA of human cytomegalovirus in biological material using polymerase chain reaction technique in real time operation mode].

    PubMed

    Sil'veĭstrova, O Iu; Domonova, É A; Shipulina, O Iu

    2014-04-01

    The validation of kit of reagents destined to detection and quantitative evaluation of DNA of human cytomegalovirus in biological material using polymerase chain reaction technique in real time operation mode was implemented. The comparison was made against international WHO standard--The first WHO international standard for human cytomegalovirus to implement measures the kit of reagents "AmpliSens CMV-screen/monitor-FL" and standard sample of enterprise DNA HCMV (The central research institute of epidemiology of Rospotrebnadzor) was applied. The fivefold dilution of international WHO standard and standard sample of enterprise were carried out in concentrations of DNA HCMV from 106 to 102. The arrangement of polymerase chain reaction and analysis of results were implemented using programed amplifier with system of detection of fluorescent signal in real-time mode "Rotor-Gene Q" ("Qiagen", Germany). In the total of three series of experiments, all stages of polymerase chain reaction study included, the coefficient of translation of quantitative evaluation of DNA HCMV from copy/ml to ME/ml equal to 0.6 was introduced for this kit of reagents.

  10. Variation in Bluetongue virus real-time reverse transcription polymerase chain reaction assay results in blood samples of sheep, cattle, and alpaca.

    PubMed

    Brito, Barbara P; Gardner, Ian A; Hietala, Sharon K; Crossley, Beate M

    2011-07-01

    Bluetongue is a vector-borne viral disease that affects domestic and wild ruminants. The epidemiology of this disease has recently changed, with occurrence in new geographic areas. Various real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) assays are used to detect Bluetongue virus (BTV); however, the impact of biologic differences between New World camelids and domestic ruminant samples on PCR efficiency, for which the BTV real-time qRT-PCR was initially validated are unknown. New world camelids are known to have important biologic differences in whole blood composition, including hemoglobin concentration, which can alter PCR performance. In the present study, sheep, cattle, and alpaca blood were spiked with BTV serotypes 10, 11, 13, and 17 and analyzed in 10-fold dilutions by real-time qRT-PCR to determine if species affected nucleic acid recovery and assay performance. A separate experiment was performed using spiked alpaca blood subsequently diluted in 10-fold series in sheep blood to assess the influence of alpaca blood on performance efficiency of the BTV real-time qRT-PCR assay. Results showed that BTV-specific nucleic acid detection from alpaca blood was consistently 1-2 logs lower than from sheep and cattle blood, and results were similar for each of the 4 BTV serotypes analyzed.

  11. Development of real-time and lateral flow dipstick recombinase polymerase amplification assays for rapid detection of goatpox virus and sheeppox virus.

    PubMed

    Yang, Yang; Qin, Xiaodong; Zhang, Xiangle; Zhao, Zhixun; Zhang, Wei; Zhu, Xueliang; Cong, Guozheng; Li, Yanmin; Zhang, Zhidong

    2017-07-17

    Goatpox virus (GTPV) and sheeppox virus (SPPV), which belong to the Capripoxvirus (CaPV), are economically important pathogens of small ruminants. Therefore, a sensitive, specific and rapid diagnostic assay for detection of GTPV and SPPV is necessary to accurately and promptly control these diseases. Recombinase polymerase amplification (RPA) assays combined with a real-time fluorescent detection (real-time RPA assay) and lateral flow dipstick (RPA LFD assay) were developed targeting the CaPV G-protein-coupled chemokine receptor (GPCR) gene, respectively. The sensitivity of both CaPV real-time RPA assay and CaPV RPA LFD assay were 3 × 10 2 copies per reaction within 20 min at 38 °C. Both assays were highly specific for CaPV, with no cross-reactions with peste des petits ruminants virus, foot-and-mouth disease virus and Orf virus. The evaluation of the performance of these two assays with clinical sample (n = 107) showed that the CaPV real-time RPA assay and CaPV RPA LFD assay were able to specially detect SPPV or GTPV present in samples of ovine in liver, lung, kidney, spleen, skin and blood. This study provided a highly time-efficient and simple alternative for rapid detection of GTPV and SPPV.

  12. Predictive Modeling for the Growth of Salmonella Enteritidis in Chicken Juice by Real-Time Polymerase Chain Reaction.

    PubMed

    Noviyanti, Fia; Hosotani, Yukie; Koseki, Shigenobu; Inatsu, Yasuhiro; Kawasaki, Susumu

    2018-04-02

    The goals of this study were to monitor the growth kinetics of Salmonella Enteritidis in chicken juice using real-time polymerase chain reaction (PCR) and to evaluate its efficacy by comparing the results with an experimental database. Salmonella Enteritidis was inoculated in chicken juice samples at an initial inoculum of 10 4 CFU/mL with inoculated samples incubated at six different temperatures (10, 15, 20, 25, 30, and 35°C). Sampling was carried out for 36 h to observe the growth of Salmonella Enteritidis. The total DNA was extracted from the samples, and the copy number of the Salmonella invasion gene (invA) was quantified by real-time PCR and converted to Salmonella Enteritidis cell concentration. Growth kinetics data were analyzed by the Baranyi and Roberts model to obtain growth parameters, whereas the Ratkowsky's square-root model was used to describe the effect of the interactions between growth parameters and temperature on the growth of Salmonella Enteritidis. The growth parameters of Salmonella Enteritidis obtained from an experiment conducted at a constant temperature were validated with growth data from chicken juice samples that were incubated under fluctuating temperature conditions between 5°C and 30°C for 30-min periods. A high correlation was observed between maximum growth rate (μ max ) and storage temperature, indicating that the real-time PCR-monitoring method provides a precise estimation of Salmonella Enteritidis growth in food material with a microbial flora. Moreover, the μ max data reflected data from microbial responses viewer database and ComBase. The results of this study suggested that real-time PCR monitoring provides a precise estimation of Salmonella Enteritidis growth in food materials with a background microbial flora.

  13. Development of a fluorescent quantitative real-time polymerase chain reaction assay for the detection of Goose parvovirus in vivo

    PubMed Central

    Yang, Jin-Long; Cheng, An-Chun; Wang, Ming-Shu; Pan, Kang-Cheng; Li, Min; Guo, Yu-Fei; Li, Chuan-Feng; Zhu, De-Kang; Chen, Xiao-Yue

    2009-01-01

    Background Goose parvovirus (GPV) is a Dependovirus associated with latent infection and mortality in geese. Currently, it severely affects geese production worldwide. The objective of this study was to develop a fluorescent quantitative real-time polymerase chain reaction (PCR) (FQ-PCR) assay for fast and accurate quantification of GPV DNA in infected goslings, which can aid in the understanding of the regular distribution pattern and the nosogenesis of GPV in vivo. Results The detection limit of the assay was 2.8 × 101 standard DNA copies, with a sensitivity of 3 logs higher than that of the conventional gel-based PCR assay targeting the same gene. The real-time PCR was reproducible, as shown by satisfactory low intraassay and interassay coefficients of variation. Conclusion The high sensitivity, specificity, simplicity, and reproducibility of the GPV fluorogenic PCR assay, combined with a high throughput, make this method suitable for a broad spectrum of GPV etiology-related applications. PMID:19754946

  14. Optimization of the elution buffer and concentration method for detecting hepatitis E virus in swine liver using a nested reverse transcription-polymerase chain reaction and real-time reverse transcription-polymerase chain reaction.

    PubMed

    Son, Na Ry; Seo, Dong Joo; Lee, Min Hwa; Seo, Sheungwoo; Wang, Xiaoyu; Lee, Bog-Hieu; Lee, Jeong-Su; Joo, In-Sun; Hwang, In-Gyun; Choi, Changsun

    2014-09-01

    The aim of this study was to develop an optimal technique for detecting hepatitis E virus (HEV) in swine livers. Here, three elution buffers and two concentration methods were compared with respect to enhancing recovery of HEV from swine liver samples. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and nested RT-PCR were performed to detect HEV RNA. When phosphate-buffered saline (PBS, pH 7.4) was used to concentrate HEV in swine liver samples using ultrafiltration, real-time RT-PCR detected HEV in 6 of the 26 samples. When threonine buffer was used to concentrate HEV using polyethylene glycol (PEG) precipitation and ultrafiltration, real-time RT-PCR detected HEV in 1 and 3 of the 26 samples, respectively. When glycine buffer was used to concentrate HEV using ultrafiltration and PEG precipitation, real-time RT-PCR detected HEV in 1 and 3 samples of the 26 samples, respectively. When nested RT-PCR was used to detect HEV, all samples tested negative regardless of the type of elution buffer or concentration method used. Therefore, the combination of real-time RT-PCR and ultrafiltration with PBS buffer was the most sensitive and reliable method for detecting HEV in swine livers. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Evaluation of the Abbott RealTime HCV assay for quantitative detection of hepatitis C virus RNA.

    PubMed

    Michelin, Birgit D A; Muller, Zsofia; Stelzl, Evelyn; Marth, Egon; Kessler, Harald H

    2007-02-01

    The Abbott RealTime HCV assay for quantitative detection of HCV RNA has recently been introduced. In this study, the performance of the Abbott RealTime HCV assay was evaluated and compared to the COBAS AmpliPrep/COBAS TaqMan HCV test. Accuracy, linearity, interassay and intra-assay variations were determined, and a total of 243 routine clinical samples were investigated. When accuracy of the new assay was tested, the majority of results were found to be within +/-0.5 log(10) unit of the results obtained by reference laboratories. Determination of linearity resulted in a quasilinear curve up to 1.0 x 10(6)IU/ml. The interassay variation ranged from 15% to 32%, and the intra-assay variation ranged from 5% to 8%. When clinical samples were tested by the Abbott RealTime HCV assay and the results were compared with those obtained by the COBAS AmpliPrep/COBAS TaqMan HCV test, the results for 93% of all samples with positive results by both tests were found to be within +/-1.0 log(10) unit. The viral loads for all patients measured by the Abbott and Roche assays showed a high correlation (R(2)=0.93); quantitative results obtained by the Abbott assay were found to be lower than those obtained by the Roche assay. The Abbott RealTime HCV assay proved to be suitable for use in the routine diagnostic laboratory. The time to results was similar for both of the assays.

  16. Molecular identification and quantification of bacteria from endodontic infections using real-time polymerase chain reaction.

    PubMed

    Blome, B; Braun, A; Sobarzo, V; Jepsen, S

    2008-10-01

    It was the aim of the present study to evaluate root canal samples for the presence and numbers of specific species as well as for total bacterial load in teeth with chronic apical periodontitis using quantitative real-time polymerase chain reaction (PCR). Forty adult patients with one radiographically documented periapical lesion were included. Twenty teeth presented with primary infections and 20 with secondary infections, requiring retreatment. After removal of necrotic pulp tissue or root canal filling, a first bacterial sample was obtained. Following chemo-mechanical root canal preparation a second sample was taken and a third sample was obtained after 14 days of intracanal dressing with calcium hydroxide. Analysis by real-time PCR enabled the quantification of total bacterial counts and of nine selected species. Root canals with primary infections harbored significantly more bacteria (by total bacterial count) than teeth with secondary infections (P < 0.05). Mean total bacterial count in the retreatment group was 2.1 x 10(6) and was significantly reduced following root canal preparation (3.6 x 10(4)) and intracanal dressing (1.4 x 10(5)). Corresponding values for primary infections were: 4.6 x 10(7), 3.6 x 10(4), and 6.9 x 10(4). The numbers of the selected bacteria and their detection frequency were also significantly reduced. Root canals with primary infections contained a higher bacterial load. Chemo-mechanical root canal preparation reduced bacterial counts by at least 95%.

  17. TaqMan RT-PCR and VERSANT HIV-1 RNA 3.0 (bDNA) assay Quantification of HIV-1 RNA viral load in breast milk.

    PubMed

    Israel-Ballard, Kiersten; Ziermann, Rainer; Leutenegger, Christian; Di Canzio, James; Leung, Kimmy; Strom, Lynn; Abrams, Barbara; Chantry, Caroline

    2005-12-01

    Transmission of HIV via breast milk is a primary cause of pediatric HIV infection in developing countries. Reliable methods to detect breast milk viral load are important. To correlate the ability of the VERSANT HIV 3.0 (bDNA) assay to real-time (RT) TaqMan PCR in quantifying breast milk HIV-1 RNA. Forty-six breast milk samples that had been spiked with cell-free HIV-1 and eight samples spiked with cell-associated HIV-1 were assayed for HIV-1 RNA by both VERSANT HIV 3.0 and TaqMan RNA assays. Only assays on the cell-free samples were statistically compared. Both a Deming regression slope and a Bland-Altman slope indicated a linear relationship between the two assays. TaqMan quantitations were on average 2.6 times higher than those of HIV 3.0. A linear relationship was observed between serial dilutions of spiked cell-free HIV-1 and both the VERSANT HIV 3.0 and the TaqMan RNA assays. The two methods correlated well although the VERSANT HIV 3.0 research protocol quantified HIV-1 RNA slightly lower than TaqMan.

  18. Comparison of the Abbott RealTime HCV and Roche COBAS Ampliprep/COBAS TaqMan HCV assays for the monitoring of sofosbuvir-based therapy.

    PubMed

    Ogawa, Eiichi; Furusyo, Norihiro; Murata, Masayuki; Shimizu, Motohiro; Toyoda, Kazuhiro; Hotta, Taeko; Uchiumi, Takeshi; Hayashi, Jun

    2017-01-01

    On-treatment HCV kinetics play an invaluable role in evaluating the efficacy of interferon-based therapies. However, the importance of HCV RNA monitoring has not been well discussed concerning treatment with sofosbuvir (SOF)-based regimens, especially for the utility of the Abbott RealTime HCV (ART) assay. This study consisted of 151 patients infected with HCV genotype-1 or -2, including patients with prior treatment-experience or cirrhosis. HCV genotype-1 patients were treated with SOF/ledipasvir and genotype-2 patients with SOF/ribavirin, both for 12 weeks. Serial measurements of HCV RNA were performed with both the ART and COBAS AmpliPrep/COBAS TaqMan v2.0 (CAP/CTM) assays simultaneously at weeks 0, 1, 2, 4, 6, 8, 10 and 12 of treatment. The rates of HCV RNA target not detected (TND) by ART were significantly lower than those by CAP/CTM between weeks 2 and 12 (end of treatment [EOT]), irrespective of prior treatment-experience or cirrhosis. 11 (11.6%) genotype-1 and 8 (14.3%) genotype-2 patients did not achieve HCV RNA TND by ART at EOT, in contrast to all having HCV RNA TND by CAP/CTM; however, all achieved sustained virological response. The time at which HCV RNA became TND or unquantifiable was not associated with treatment outcome by either the ART or CAP/CTM assay. Over 10% of the patients continued to have detectable HCV RNA by ART at EOT, irrespective of HCV genotype, prior treatment-experience and/or cirrhosis. However, prolonged residual HCV RNA was not associated with treatment failure.

  19. Synthesis of O-serogroup specific positive controls and real-time PCR standards for nine clinically relevant non-O157 STECs.

    PubMed

    Conrad, Cheyenne C; Gilroyed, Brandon H; McAllister, Tim A; Reuter, Tim

    2012-10-01

    Non-O157 Shiga toxin producing Escherichia coli (STEC) are gaining recognition as human pathogens, but no standardized method exists to identify them. Sequence analysis revealed that STEC can be classified on the base of variable O antigen regions into different O serotypes. Polymerase chain reaction is a powerful technique for thorough screening and complex diagnosis for these pathogens, but requires a positive control to verify qualitative and/or quantitative DNA-fragment amplification. Due to the pathogenic nature of STEC, controls are not readily available and cell culturing of STEC reference strains requires biosafety conditions of level 2 or higher. In order to bypass this limitation, controls of stacked O-type specific DNA-fragments coding for primer recognition sites were designed to screen for nine STEC serotypes frequently associated with human infection. The synthetic controls were amplified by PCR, cloned into a plasmid vector and transferred into bacteria host cells. Plasmids amplified by bacterial expression were purified, serially diluted and tested as standards for real-time PCR using SYBR Green and TaqMan assays. Utility of synthetic DNA controls was demonstrated in conventional and real-time PCR assays and validated with DNA from natural STEC strains. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Real-time quantitative polymerase chain reaction analysis of patients with refractory chronic periodontitis.

    PubMed

    Marconcini, Simone; Covani, Ugo; Barone, Antonio; Vittorio, Orazio; Curcio, Michele; Barbuti, Serena; Scatena, Fabrizio; Felli, Lamberto; Nicolini, Claudio

    2011-07-01

    Periodontitis is a complex multifactorial disease and is typically polygenic in origin. Genes play a fundamental part in each biologic process forming complex networks of interactions. However, only some genes have a high number of interactions with other genes in the network and may, therefore, be considered to play an important role. In a preliminary bioinformatic analysis, five genes that showed a higher number of interactions were identified and termed leader genes. In the present study, we use real-time quantitative polymerase chain reaction (PCR) technology to evaluate the expression levels of leader genes in the leukocytes of 10 patients with refractory chronic periodontitis and compare the expression levels with those of the same genes in 24 healthy patients. Blood was collected from 24 healthy human subjects and 10 patients with refractory chronic periodontitis and placed into heparinized blood collection tubes by personnel trained in phlebotomy using a sterile technique. Blood leukocyte cells were immediately lysed by using a kit for total RNA purification from human whole blood. Complementary DNA (cDNA) synthesis was obtained from total RNA and then real-time quantitative PCR was performed. PCR efficiencies were calculated with a relative standard curve derived from a five cDNA dilution series in triplicate that gave regression coefficients >0.98 and efficiencies >96%. The standard curves were obtained using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and growth factor receptor binding protein 2 (GRB2), casitas B-lineage lymphoma (CBL), nuclear factor-KB1 (NFKB1), and REL-A (gene for transcription factor p65) gene primers and amplified with 1.6, 8, 40, 200, and 1,000 ng/μL total cDNA. Curves obtained for each sample showed a linear relationship between RNA concentrations and the cycle threshold value of real-time quantitative PCR for all genes. Data were expressed as mean ± SE (SEM). The groups were compared to the analysis of variance. A

  1. Rapid method for controlling the correct labeling of products containing common octopus (Octopus vulgaris) and main substitute species (Eledone cirrhosa and Dosidicus gigas) by fast real-time PCR.

    PubMed

    Espiñeira, Montserrat; Vieites, Juan M

    2012-12-15

    The TaqMan real-time PCR has the highest potential for automation, therefore representing the currently most suitable method for screening, allowing the detection of fraudulent or unintentional mislabeling of species. This work describes the development of a real-time polymerase chain reaction (RT-PCR) system for the detection and identification of common octopus (Octopus vulgaris) and main substitute species (Eledone cirrhosa and Dosidicus gigas). This technique is notable for the combination of simplicity, speed, sensitivity and specificity in an homogeneous assay. The method can be applied to all kinds of products; fresh, frozen and processed, including those undergoing intensive processes of transformation. This methodology was validated to check how the degree of food processing affects the method and the detection of each species. Moreover, it was applied to 34 commercial samples to evaluate the labeling of products made from them. The methodology herein developed is useful to check the fulfillment of labeling regulations for seafood products and to verify traceability in commercial trade and for fisheries control. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. A real-time polymerase chain reaction-based protocol for low/medium-throughput Y-chromosome microdeletions analysis.

    PubMed

    Segat, Ludovica; Padovan, Lara; Doc, Darja; Petix, Vincenzo; Morgutti, Marcello; Crovella, Sergio; Ricci, Giuseppe

    2012-12-01

    We describe a real-time polymerase chain reaction (PCR) protocol based on the fluorescent molecule SYBR Green chemistry, for a low- to medium-throughput analysis of Y-chromosome microdeletions, optimized according to the European guidelines and aimed at making the protocol faster, avoiding post-PCR processing, and simplifying the results interpretation. We screened 156 men from the Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Institute for Maternal and Child Health IRCCS Burlo Garofolo (Trieste, Italy), 150 not presenting Y-chromosome microdeletion, and 6 with microdeletions in different azoospermic factor (AZF) regions. For each sample, the Zinc finger Y-chromosomal protein (ZFY), sex-determining region Y (SRY), sY84, sY86, sY127, sY134, sY254, and sY255 loci were analyzed by performing one reaction for each locus. AZF microdeletions were successfully detected in six individuals, confirming the results obtained with commercial kits. Our real-time PCR protocol proved to be a rapid, safe, and relatively cheap method that was suitable for a low- to medium-throughput diagnosis of Y-chromosome microdeletion, which allows an analysis of approximately 10 samples (with the addition of positive and negative controls) in a 96-well plate format, or approximately 46 samples in a 384-well plate for all markers simultaneously, in less than 2 h without the need of post-PCR manipulation.

  3. A real-time PCR approach to detect predation on anchovy and sardine early life stages

    NASA Astrophysics Data System (ADS)

    Cuende, Elsa; Mendibil, Iñaki; Bachiller, Eneko; Álvarez, Paula; Cotano, Unai; Rodriguez-Ezpeleta, Naiara

    2017-12-01

    Recruitment of sardine (Sardina pilchardus Walbaum, 1792) and anchovy (Engraulis encrasicolus Linnaeus, 1758) is thought to be regulated by predation of their eggs and larvae. Predators of sardine and anchovy can be identified by visual taxonomic identification of stomach contents, but this method is time consuming, tedious and may underestimate predation, especially in small predators such as fish larvae. Alternatively, genetic tools may offer a more cost-effective and accurate alternative. Here, we have developed a multiplex real-time polymerase chain reaction (RT-PCR) assay based on TaqMan probes to simultaneously detect sardine and anchovy remains in gut contents of potential predators. The assay combines previously described and newly generated species-specific primers and probes for anchovy and sardine detection respectively, and allows the detection of 0,001 ng of target DNA (which corresponds to about one hundredth of the total DNA present in a single egg). We applied the method to candidate anchovy and sardine egg predators in the Bay of Biscay, Atlantic Mackerel (Scomber scombrus) larvae. Egg predation observed was limited primarily to those stations where sardine and/or anchovy eggs were present. Our developed assay offers a suitable tool to understand the effects of predation on the survival of anchovy and sardine early life stages.

  4. Detection of the free living amoeba Naegleria fowleri by using conventional and real-time PCR based on a single copy DNA sequence.

    PubMed

    Régoudis, Estelle; Pélandakis, Michel

    2016-02-01

    The amoeba-flagellate Naegleria fowleri is a causative agent of primary amoebic meningoencephalitis (PAM). This thermophilic species occurs worldwide and tends to proliferate in warm aquatic environment. The PAM cases remain rare but this infection is mostly fatal. Here, we describe a single copy region which has been cloned and sequenced, and was used for both conventional and real-time PCR. Targeting a single-copy DNA sequence allows to directly quantify the N. fowleri cells. The real-time PCR results give a detection limit of 1 copy per reaction with high reproducibility without the need of a Taqman probe. This procedure is of interest as compared to other procedures which are mostly based on the detection of multi-copy DNA associated with a Taqman probe. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Recombinase Polymerase Amplification Assay-A Simple, Fast and Cost-Effective Alternative to Real Time PCR for Specific Detection of Feline Herpesvirus-1.

    PubMed

    Wang, Jianchang; Liu, Libing; Wang, Jinfeng; Sun, Xiaoxia; Yuan, Wanzhe

    2017-01-01

    Feline herpesvirus 1 (FHV-1), an enveloped dsDNA virus, is one of the major pathogens of feline upper respiratory tract disease (URTD) and ocular disease. Currently, polymerase chain reaction (PCR) remains the gold standard diagnostic tool for FHV-1 infection but is relatively expensive, requires well-equipped laboratories and is not suitable for field tests. Recombinase polymerase amplification (RPA), an isothermal gene amplification technology, has been explored for the molecular diagnosis of infectious diseases. In this study, an exo-RPA assay for FHV-1 detection was developed and validated. Primers targeting specifically the thymidine kinase (TK) gene of FHV-1 were designed. The RPA reaction was performed successfully at 39°C and the results were obtained within 20 min. Using different copy numbers of recombinant plasmid DNA that contains the TK gene as template, we showed the detection limit of exo-RPA was 102 copies DNA/reaction, the same as that of real time PCR. The exo-RPA assay did not cross-detect feline panleukopenia virus, feline calicivirus, bovine herpesvirus-1, pseudorabies virus or chlamydia psittaci, a panel of pathogens important in feline URTD or other viruses in Alphaherpesvirinae, demonstrating high specificity. The assay was validated by testing 120 nasal and ocular conjunctival swabs of cats, and the results were compared with those obtained with real-time PCR. Both assays provided the same testing results in the clinical samples. Compared with real time PCR, the exo-RPA assay uses less-complex equipment that is portable and the reaction is completed much faster. Additionally, commercial RPA reagents in vacuum-sealed pouches can tolerate temperatures up to room temperature for days without loss of activity, suitable for shipment and storage for field tests. Taken together, the exo-RPA assay is a simple, fast and cost-effective alternative to real time PCR, suitable for use in less advanced laboratories and for field detection of FHV-1

  6. Recombinase Polymerase Amplification Assay—A Simple, Fast and Cost-Effective Alternative to Real Time PCR for Specific Detection of Feline Herpesvirus-1

    PubMed Central

    Wang, Jianchang; Liu, Libing; Wang, Jinfeng; Sun, Xiaoxia; Yuan, Wanzhe

    2017-01-01

    Feline herpesvirus 1 (FHV-1), an enveloped dsDNA virus, is one of the major pathogens of feline upper respiratory tract disease (URTD) and ocular disease. Currently, polymerase chain reaction (PCR) remains the gold standard diagnostic tool for FHV-1 infection but is relatively expensive, requires well-equipped laboratories and is not suitable for field tests. Recombinase polymerase amplification (RPA), an isothermal gene amplification technology, has been explored for the molecular diagnosis of infectious diseases. In this study, an exo-RPA assay for FHV-1 detection was developed and validated. Primers targeting specifically the thymidine kinase (TK) gene of FHV-1 were designed. The RPA reaction was performed successfully at 39°C and the results were obtained within 20 min. Using different copy numbers of recombinant plasmid DNA that contains the TK gene as template, we showed the detection limit of exo-RPA was 102 copies DNA/reaction, the same as that of real time PCR. The exo-RPA assay did not cross-detect feline panleukopenia virus, feline calicivirus, bovine herpesvirus-1, pseudorabies virus or chlamydia psittaci, a panel of pathogens important in feline URTD or other viruses in Alphaherpesvirinae, demonstrating high specificity. The assay was validated by testing 120 nasal and ocular conjunctival swabs of cats, and the results were compared with those obtained with real-time PCR. Both assays provided the same testing results in the clinical samples. Compared with real time PCR, the exo-RPA assay uses less-complex equipment that is portable and the reaction is completed much faster. Additionally, commercial RPA reagents in vacuum-sealed pouches can tolerate temperatures up to room temperature for days without loss of activity, suitable for shipment and storage for field tests. Taken together, the exo-RPA assay is a simple, fast and cost-effective alternative to real time PCR, suitable for use in less advanced laboratories and for field detection of FHV-1

  7. Comparative evaluation of the performance of the Abbott RealTime HIV-1 assay for measurement of HIV-1 plasma viral load on genetically diverse samples from Greece

    PubMed Central

    2011-01-01

    Background HIV-1 is characterized by increased genetic heterogeneity which tends to hinder the reliability of detection and accuracy of HIV-1 RNA quantitation assays. Methods In this study, the Abbott RealTime HIV-1 (Abbott RealTime) assay was compared to the Roche Cobas TaqMan HIV-1 (Cobas TaqMan) and the Siemens Versant HIV-1 RNA 3.0 (bDNA 3.0) assays, using clinical samples of various viral load levels and subtypes from Greece, where the recent epidemiology of HIV-1 infection has been characterized by increasing genetic diversity and a marked increase in subtype A genetic strains among newly diagnosed infections. Results A high correlation was observed between the quantitative results obtained by the Abbott RealTime and the Cobas TaqMan assays. Viral load values quantified by the Abbott RealTime were on average lower than those obtained by the Cobas TaqMan, with a mean (SD) difference of -0.206 (0.298) log10 copies/ml. The mean differences according to HIV-1 subtypes between the two techniques for samples of subtype A, B, and non-A/non-B were 0.089, -0.262, and -0.298 log10 copies/ml, respectively. Overall, differences were less than 0.5 log10 for 85% of the samples, and >1 log10 in only one subtype B sample. Similarly, Abbott RealTime and bDNA 3.0 assays yielded a very good correlation of quantitative results, whereas viral load values assessed by the Abbott RealTime were on average higher (mean (SD) difference: 0.160 (0.287) log10 copies/ml). The mean differences according to HIV-1 subtypes between the two techniques for subtype A, B and non-A/non-B samples were 0.438, 0.105 and 0.191 log10 copies/ml, respectively. Overall, the majority of samples (86%) differed by less than 0.5 log10, while none of the samples showed a deviation of more than 1.0 log10. Conclusions In an area of changing HIV-1 subtype pattern, the Abbott RealTime assay showed a high correlation and good agreement of results when compared both to the Cobas TaqMan and bDNA 3.0 assays, for all

  8. Validation of Geno-Sen's Scrub Typhus Real Time Polymerase Chain Reaction Kit by its Comparison with a Serological ELISA Test.

    PubMed

    Anitharaj, Velmurugan; Stephen, Selvaraj; Pradeep, Jothimani; Pooja, Pratheesh; Preethi, Sridharan

    2017-01-01

    In the recent past, scrub typhus (ST) has been reported from different parts of India, based on Weil-Felix/enzyme-linked immunosorbent assay (ELISA)/indirect immunofluorescence assay (IFA). Molecular tests are applied only by a few researchers. Evaluation of a new commercial real time polymerase chain reaction (PCR) kit for molecular diagnosis of ST by comparing it with the commonly used IgM ELISA is our aim. ST has been reported all over India including Puducherry and surrounding Tamil Nadu and identified as endemic for ST. This study was designed to correlate antibody detection by IgM ELISA and Orientia tsutsugamushi DNA in real time PCR. ST IgM ELISA (InBios Inc., USA) was carried out for 170 consecutive patients who presented with the symptoms of acute ST during 11 months (November, 2015- September, 2016). All 77 of these patients with IgM ELISA positivity and 49 of 93 IgM ELISA negative patients were subjected to real time PCR (Geno-Sen's ST real time PCR, Himachal Pradesh, India). Statistical analysis for clinical and laboratory results was performed using IBM SPSS Statistics 17 for Windows (SPSS Inc., Chicago, USA). Chi-square test with Yates correction (Fisher's test) was employed for a small number of samples. Among 77 suspected cases of acute ST with IgM ELISA positivity and 49 IgM negative patients, 42 and 7 were positive, respectively, for O. tsutsugamushi 56-kDa type-specific gene in real time PCR kit. Until ST IFA, the gold standard diagnostic test, is properly validated in India, diagnosis of acute ST will depend on both ELISA and quantitative PCR.

  9. Internal control for real-time polymerase chain reaction based on MS2 bacteriophage for RNA viruses diagnostics.

    PubMed

    Zambenedetti, Miriam Ribas; Pavoni, Daniela Parada; Dallabona, Andreia Cristine; Dominguez, Alejandro Correa; Poersch, Celina de Oliveira; Fragoso, Stenio Perdigão; Krieger, Marco Aurélio

    2017-05-01

    Real-time reverse transcription polymerase chain reaction (RT-PCR) is routinely used to detect viral infections. In Brazil, it is mandatory the use of nucleic acid tests to detect hepatitis C virus (HCV), hepatitis B virus and human immunodeficiency virus in blood banks because of the immunological window. The use of an internal control (IC) is necessary to differentiate the true negative results from those consequent from a failure in some step of the nucleic acid test. The aim of this study was the construction of virus-modified particles, based on MS2 bacteriophage, to be used as IC for the diagnosis of RNA viruses. The MS2 genome was cloned into the pET47b(+) plasmid, generating pET47b(+)-MS2. MS2-like particles were produced through the synthesis of MS2 RNA genome by T7 RNA polymerase. These particles were used as non-competitive IC in assays for RNA virus diagnostics. In addition, a competitive control for HCV diagnosis was developed by cloning a mutated HCV sequence into the MS2 replicase gene of pET47b(+)-MS2, which produces a non-propagating MS2 particle. The utility of MS2-like particles as IC was evaluated in a one-step format multiplex real-time RT-PCR for HCV detection. We demonstrated that both competitive and non-competitive IC could be successfully used to monitor the HCV amplification performance, including the extraction, reverse transcription, amplification and detection steps, without compromising the detection of samples with low target concentrations. In conclusion, MS2-like particles generated by this strategy proved to be useful IC for RNA virus diagnosis, with advantage that they are produced by a low cost protocol. An attractive feature of this system is that it allows the construction of a multicontrol by the insertion of sequences from more than one pathogen, increasing its applicability for diagnosing different RNA viruses.

  10. Internal control for real-time polymerase chain reaction based on MS2 bacteriophage for RNA viruses diagnostics

    PubMed Central

    Zambenedetti, Miriam Ribas; Pavoni, Daniela Parada; Dallabona, Andreia Cristine; Dominguez, Alejandro Correa; Poersch, Celina de Oliveira; Fragoso, Stenio Perdigão; Krieger, Marco Aurélio

    2017-01-01

    BACKGROUND Real-time reverse transcription polymerase chain reaction (RT-PCR) is routinely used to detect viral infections. In Brazil, it is mandatory the use of nucleic acid tests to detect hepatitis C virus (HCV), hepatitis B virus and human immunodeficiency virus in blood banks because of the immunological window. The use of an internal control (IC) is necessary to differentiate the true negative results from those consequent from a failure in some step of the nucleic acid test. OBJECTIVES The aim of this study was the construction of virus-modified particles, based on MS2 bacteriophage, to be used as IC for the diagnosis of RNA viruses. METHODS The MS2 genome was cloned into the pET47b(+) plasmid, generating pET47b(+)-MS2. MS2-like particles were produced through the synthesis of MS2 RNA genome by T7 RNA polymerase. These particles were used as non-competitive IC in assays for RNA virus diagnostics. In addition, a competitive control for HCV diagnosis was developed by cloning a mutated HCV sequence into the MS2 replicase gene of pET47b(+)-MS2, which produces a non-propagating MS2 particle. The utility of MS2-like particles as IC was evaluated in a one-step format multiplex real-time RT-PCR for HCV detection. FINDINGS We demonstrated that both competitive and non-competitive IC could be successfully used to monitor the HCV amplification performance, including the extraction, reverse transcription, amplification and detection steps, without compromising the detection of samples with low target concentrations. In conclusion, MS2-like particles generated by this strategy proved to be useful IC for RNA virus diagnosis, with advantage that they are produced by a low cost protocol. An attractive feature of this system is that it allows the construction of a multicontrol by the insertion of sequences from more than one pathogen, increasing its applicability for diagnosing different RNA viruses. PMID:28403327

  11. Quantitation of O6-methylguanine-DNA methyltransferase gene messenger RNA in gliomas by means of real-time RT-PCR and clinical response to nitrosoureas.

    PubMed

    Tanaka, Satoshi; Oka, Hidehiro; Fujii, Kiyotaka; Watanabe, Kaoru; Nagao, Kumi; Kakimoto, Atsushi

    2005-09-01

    1. O6-methylguanine-DNA methyltransferase (MGMT) mRNA was measured in 50 malignant gliomas that had received 1-(4-amino-2-methyl-5-pyrimidynyl) methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU) after the resection of the tumor by real-time reverse transcription-polymerase chain reaction (RT-PCR) using TaqMan probe. 2. The mean absolute value of MGMTmRNA normalized to the level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for 50 tumors was 1.29 x 10(4)+/- 1.28 x 10(4) copy/microg RNA (mean +/- SD). The amount of MGMTmRNA less than 6 x 10(3) copy/microg RNA was the most significant factor in predicting the initial effect of treatment with ACNU by multi-variant regression analysis (p = 0.0157). 3. These results suggest that quantitation of MGMTmRNA is the excellent method for predicting for the effect of ACNU in glioma therapy.

  12. Use of a novel virus inactivation method for a multicenter avian influenza real-time reverse transcriptase-polymerase chain reaction proficiency study.

    PubMed

    Spackman, Erica; Suarez, David L

    2005-01-01

    Proficiency assessments are important elements in quality control for diagnostic laboratories. Traditionally, proficiency testing for polymerase chain reaction (PCR)-based assays has involved the use of clinical samples, samples "spiked" with live agents or DNA plasmids. Because of government regulations and biosecurity concerns, distribution of live high-consequence pathogens of livestock and poultry, such as avian influenza, is not possible, and DNA plasmids are not technically suitable for evaluating RNA virus detection. Therefore, a proficiency testing panel using whole avian influenza in a diluent containing a phenolic disinfectant that inactivates the virus while preserving the RNA for at least 8 weeks at -70 C was developed and used in a multicenter proficiency assessment for a type A influenza real-time reverse transcriptase (RT)-PCR test. The test, which was highly standardized, except for variation in the real-time RT-PCR equipment used, was shown to be highly reproducible by proficiency testing in 12 laboratories in the United States, Canada, and Hong Kong. Variation in cycle threshold values among 35 data sets and 490 samples was minimal (CV = 5.19%), and sample identifications were highly accurate (96.7% correct identifications) regardless of real-time PCR instrumentation.

  13. Identification of the five human Plasmodium species including P. knowlesi by real-time polymerase chain reaction.

    PubMed

    Oddoux, O; Debourgogne, A; Kantele, A; Kocken, C H; Jokiranta, T S; Vedy, S; Puyhardy, J M; Machouart, M

    2011-04-01

    Recently, Plasmodium knowlesi has been recognised as the fifth Plasmodium species causing malaria in humans. Hundreds of human cases infected with this originally simian Plasmodium species have been described in Asian countries and increasing numbers are reported in Europe from travellers. The growing impact of tourism and economic development in South and Southeast Asia are expected to subsequently lead to a further increase in cases both among locals and among travellers. P. knowlesi is easily misidentified in microscopy as P. malariae or P. falciparum. We developed new primers for the rapid and specific detection of this species by low-cost real-time polymerase chain reaction (PCR) and added this method to an already existing panel of primers used for the molecular identification of the other four species in one reaction. Reference laboratories should now be able to identify undisputably and rapidly P. knowlesi, as it is a potentially fatal pathogen.

  14. Validation of Geno-Sen's Scrub Typhus Real Time Polymerase Chain Reaction Kit by its Comparison with a Serological ELISA Test

    PubMed Central

    Anitharaj, Velmurugan; Stephen, Selvaraj; Pradeep, Jothimani; Pooja, Pratheesh; Preethi, Sridharan

    2017-01-01

    Background: In the recent past, scrub typhus (ST) has been reported from different parts of India, based on Weil-Felix/enzyme-linked immunosorbent assay (ELISA)/indirect immunofluorescence assay (IFA). Molecular tests are applied only by a few researchers. Aims: Evaluation of a new commercial real time polymerase chain reaction (PCR) kit for molecular diagnosis of ST by comparing it with the commonly used IgM ELISA is our aim. Settings and Design: ST has been reported all over India including Puducherry and surrounding Tamil Nadu and identified as endemic for ST. This study was designed to correlate antibody detection by IgM ELISA and Orientia tsutsugamushi DNA in real time PCR. Materials and Methods: ST IgM ELISA (InBios Inc., USA) was carried out for 170 consecutive patients who presented with the symptoms of acute ST during 11 months (November, 2015– September, 2016). All 77 of these patients with IgM ELISA positivity and 49 of 93 IgM ELISA negative patients were subjected to real time PCR (Geno-Sen's ST real time PCR, Himachal Pradesh, India). Statistical Analysis: Statistical analysis for clinical and laboratory results was performed using IBM SPSS Statistics 17 for Windows (SPSS Inc., Chicago, USA). Chi-square test with Yates correction (Fisher's test) was employed for a small number of samples. Results and Conclusion: Among 77 suspected cases of acute ST with IgM ELISA positivity and 49 IgM negative patients, 42 and 7 were positive, respectively, for O. tsutsugamushi 56-kDa type-specific gene in real time PCR kit. Until ST IFA, the gold standard diagnostic test, is properly validated in India, diagnosis of acute ST will depend on both ELISA and quantitative PCR. PMID:28878522

  15. Evaluation of an Improved U.S. Food and Drug Administration Method for the Detection of Cyclospora cayetanensis in Produce Using Real-Time PCR.

    PubMed

    Murphy, Helen R; Lee, Seulgi; da Silva, Alexandre J

    2017-07-01

    Cyclospora cayetanensis is a protozoan parasite that causes human diarrheal disease associated with the consumption of fresh produce or water contaminated with C. cayetanensis oocysts. In the United States, foodborne outbreaks of cyclosporiasis have been linked to various types of imported fresh produce, including cilantro and raspberries. An improved method was developed for identification of C. cayetanensis in produce at the U.S. Food and Drug Administration. The method relies on a 0.1% Alconox produce wash solution for efficient recovery of oocysts, a commercial kit for DNA template preparation, and an optimized TaqMan real-time PCR assay with an internal amplification control for molecular detection of the parasite. A single laboratory validation study was performed to assess the method's performance and compare the optimized TaqMan real-time PCR assay and a reference nested PCR assay by examining 128 samples. The samples consisted of 25 g of cilantro or 50 g of raspberries seeded with 0, 5, 10, or 200 C. cayetanensis oocysts. Detection rates for cilantro seeded with 5 and 10 oocysts were 50.0 and 87.5%, respectively, with the real-time PCR assay and 43.7 and 94.8%, respectively, with the nested PCR assay. Detection rates for raspberries seeded with 5 and 10 oocysts were 25.0 and 75.0%, respectively, with the real-time PCR assay and 18.8 and 68.8%, respectively, with the nested PCR assay. All unseeded samples were negative, and all samples seeded with 200 oocysts were positive. Detection rates using the two PCR methods were statistically similar, but the real-time PCR assay is less laborious and less prone to amplicon contamination and allows monitoring of amplification and analysis of results, making it more attractive to diagnostic testing laboratories. The improved sample preparation steps and the TaqMan real-time PCR assay provide a robust, streamlined, and rapid analytical procedure for surveillance, outbreak response, and regulatory testing of foods for

  16. The Power of Real-Time PCR

    ERIC Educational Resources Information Center

    Valasek, Mark A.; Repa, Joyce J.

    2005-01-01

    In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene…

  17. Detection of Zaire Ebola virus by real-time reverse transcription-polymerase chain reaction, Sierra Leone, 2014.

    PubMed

    Liu, Licheng; Sun, Yang; Kargbo, Brima; Zhang, Chuntao; Feng, Huahua; Lu, Huijun; Liu, Wenseng; Wang, Chengyu; Hu, Yi; Deng, Yongqiang; Jiang, Jiafu; Kang, Xiaoping; Yang, Honglei; Jiang, Yongqiang; Yang, Yinhui; Kargbo, David; Qian, Jun; Chen, Weijun

    2015-09-15

    During the 2014 Ebola virus disease (EVD) outbreak, a real-time quantitative polymerase chain reaction was established to detect and identify the Zaire Ebola virus. We describe the use of this assay to screen 315 clinical samples from EVD suspected person in Sierra Leone. The detection rate in blood samples was 77.81% (207/266), and there were relatively higher detection rate (79.32% and 81.42%, respectively) during the first two weeks after onset of symptoms. In the two weeks that followed, the detection rate declined to 66.67% and 25.00%, respectively. There was the highest virus load at the first week and then decreased. The detection rate in swab samples was 89.79% (44/49). This may be benefit from the included patients. 46 of 49 swab samples were collected from died patients. Taken together, the results presented here indicate that the assay specifically and sensitively detects Zaire Ebola virus. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Evaluation of a real-time polymerase chain reaction assay of the outer membrane protein P2 gene for the detection of Haemophilus parasuis in clinical samples.

    PubMed

    McDowall, Rebeccah; Slavic, Durda; MacInnes, Janet I; Cai, Hugh Y

    2014-04-01

    A real-time polymerase chain reaction (PCR) assay of the outer membrane protein (OMP) P2 gene was developed and used to test 97 putative Haemophilus parasuis pure cultures and 175 clinical tissue samples. With standard culture isolation as the gold standard, the diagnostic sensitivity and specificity of the PCR assay were determined to be 83% and 80%, respectively.

  19. Real-time microfluidic recombinase polymerase amplification for the toxin B gene of Clostridium difficile on a SlipChip platform.

    PubMed

    Tsaloglou, M-N; Watson, R J; Rushworth, C M; Zhao, Y; Niu, X; Sutton, J M; Morgan, H

    2015-01-07

    Clostridium difficile is one of the key bacterial pathogens that cause infectious diarrhoea both in the developed and developing world. Isothermal nucleic acid amplification methods are increasingly used for identification of toxinogenic infection by clinical labs. For this purpose, we developed a low-cost microfluidic platform based on the SlipChip concept and implemented real-time isothermal recombinase polymerase amplification (RPA). The on-chip RPA assay targets the Clostridium difficile toxin B gene (tcdB) coding for toxin B, one of the proteins responsible for bacterial toxicity. The device was fabricated in clear acrylic using rapid prototyping methods. It has six replicate 500 nL reaction wells as well as two sets of 500 nL control wells. The reaction can be monitored in real-time using exonuclease fluorescent probes with an initial sample volume of as little as 6.4 μL. We demonstrated a limit of detection of 1000 DNA copies, corresponding to 1 fg, at a time-to-result of <20 minutes. This miniaturised platform for pathogen detection has potential for use in resource-limited environments or at the point-of-care because of its ease of use and low cost, particularly if combined with preserved reagents.

  20. The diagnosis of microorganism involved in infective endocarditis (IE) by polymerase chain reaction (PCR) and real-time PCR: A systematic review.

    PubMed

    Faraji, Reza; Behjati-Ardakani, Mostafa; Moshtaghioun, Seyed Mohammad; Kalantar, Seyed Mehdi; Namayandeh, Seyedeh Mahdieh; Soltani, Mohammadhossien; Emami, Mahmood; Zandi, Hengameh; Firoozabadi, Ali Dehghani; Kazeminasab, Mahmood; Ahmadi, Nastaran; Sarebanhassanabadi, Mohammadtaghi

    2018-02-01

    Broad-range bacterial rDNA polymerase chain reaction (PCR) followed by sequencing may be identified as the etiology of infective endocarditis (IE) from surgically removed valve tissue; therefore, we reviewed the value of molecular testing in identifying organisms' DNA in the studies conducted until 2016. We searched Google Scholar, Scopus, ScienceDirect, Cochrane, PubMed, and Medline electronic databases without any time limitations up to December 2016 for English studies reporting microorganisms involved in infective endocarditis microbiology using PCR and real-time PCR. Most studies were prospective. Eleven out of 12 studies used valve tissue samples and blood cultures while only 1 study used whole blood. Also, 10 studies used the molecular method of PCR while 2 studies used real-time PCR. Most studies used 16S rDNA gene as the target gene. The bacteria were identified as the most common microorganisms involved in infective endocarditis. Streptococcus spp. and Staphylococcus spp. were, by far, the most predominant bacteria detected. In all studies, PCR and real-time PCR identified more pathogens than blood and tissue cultures; moreover, the sensitivity and specificity of PCR and real-time PCR were more than cultures in most of the studies. The highest sensitivity and specificity were 96% and 100%, respectively. The gram positive bacteria were the most frequent cause of infective endocarditis. The molecular methods enjoy a greater sensitivity compared to the conventional blood culture methods; yet, they are applicable only to the valve tissue of the patients undergoing cardiac valve surgery. Copyright © 2017. Published by Elsevier Taiwan.

  1. Clinical Usefulness of Real-Time Polymerase Chain Reaction for the Diagnosis of Vibrio vulnificus Infection Using Skin and Soft Tissues.

    PubMed

    Lee, Jun-Young; Kim, Seok Won; Kim, Dong-Min; Yun, Na Ra; Kim, Choon-Mee; Lee, Sang-Hong

    2017-08-01

    Vibrio vulnificus is a halophilic gram-negative bacillus isolated in seawater, fish, and shellfish. Infection by V. vulnificus is the most severe food-borne infection reported in the United States of America. Here, we aimed to examine the clinical usefulness of polymerase chain reaction (PCR) using tissue specimens other than blood samples as a diagnostic tool for V. vulnificus infection. A retrospective study was conducted with patients who underwent real-time PCR of toxR in both blood and skin tissues, including serum, bullae, swab, and operation room specimens, between 2006 and 2009. The median V. vulnificus DNA load of 14 patients in real-time PCR analysis of serum at the time of admission was 638.5 copies/mL blood, which was within the interquartile range (IQR: 37-3,225). In contrast, the median value by real-time PCR using the first tissue specimen at the time of admission was 16,650 copies/mL tissue fluid (IQR: 4,419-832,500). This difference was statistically significant ( P = 0.022). DNA copy numbers in tissues were less affected by short-term antibiotic administration than that in blood samples, and antibiotic administration increased the DNA copy number in some patients. We found, for the first time, that DNA copy numbers in tissues of patients infected by V. vulnificus were higher than those in blood samples. Additionally, skin lesions were more useful than blood samples as specimens for PCR analysis in patients administered antibiotics for V. vulnificus infection before admission.

  2. Optimisation of high-quality total ribonucleic acid isolation from cartilaginous tissues for real-time polymerase chain reaction analysis.

    PubMed

    Peeters, M; Huang, C L; Vonk, L A; Lu, Z F; Bank, R A; Helder, M N; Doulabi, B Zandieh

    2016-11-01

    Studies which consider the molecular mechanisms of degeneration and regeneration of cartilaginous tissues are seriously hampered by problematic ribonucleic acid (RNA) isolations due to low cell density and the dense, proteoglycan-rich extracellular matrix of cartilage. Proteoglycans tend to co-purify with RNA, they can absorb the full spectrum of UV light and they are potent inhibitors of polymerase chain reaction (PCR). Therefore, the objective of the present study is to compare and optimise different homogenisation methods and RNA isolation kits for an array of cartilaginous tissues. Tissue samples such as the nucleus pulposus (NP), annulus fibrosus (AF), articular cartilage (AC) and meniscus, were collected from goats and homogenised by either the MagNA Lyser or Freezer Mill. RNA of duplicate samples was subsequently isolated by either TRIzol (benchmark), or the RNeasy Lipid Tissue, RNeasy Fibrous Tissue, or Aurum Total RNA Fatty and Fibrous Tissue kits. RNA yield, purity, and integrity were determined and gene expression levels of type II collagen and aggrecan were measured by real-time PCR. No differences between the two homogenisation methods were found. RNA isolation using the RNeasy Fibrous and Lipid kits resulted in the purest RNA (A260/A280 ratio), whereas TRIzol isolations resulted in RNA that is not as pure, and show a larger difference in gene expression of duplicate samples compared with both RNeasy kits. The Aurum kit showed low reproducibility. For the extraction of high-quality RNA from cartilaginous structures, we suggest homogenisation of the samples by the MagNA Lyser. For AC, NP and AF we recommend the RNeasy Fibrous kit, whereas for the meniscus the RNeasy Lipid kit is advised.Cite this article: M. Peeters, C. L. Huang, L. A. Vonk, Z. F. Lu, R. A. Bank, M. N. Helder, B. Zandieh Doulabi. Optimisation of high-quality total ribonucleic acid isolation from cartilaginous tissues for real-time polymerase chain reaction analysis. Bone Joint Res 2016

  3. Optimisation of high-quality total ribonucleic acid isolation from cartilaginous tissues for real-time polymerase chain reaction analysis

    PubMed Central

    Peeters, M.; Huang, C. L.; Vonk, L. A.; Lu, Z. F.; Bank, R. A.; Doulabi, B. Zandieh

    2016-01-01

    Objectives Studies which consider the molecular mechanisms of degeneration and regeneration of cartilaginous tissues are seriously hampered by problematic ribonucleic acid (RNA) isolations due to low cell density and the dense, proteoglycan-rich extracellular matrix of cartilage. Proteoglycans tend to co-purify with RNA, they can absorb the full spectrum of UV light and they are potent inhibitors of polymerase chain reaction (PCR). Therefore, the objective of the present study is to compare and optimise different homogenisation methods and RNA isolation kits for an array of cartilaginous tissues. Materials and Methods Tissue samples such as the nucleus pulposus (NP), annulus fibrosus (AF), articular cartilage (AC) and meniscus, were collected from goats and homogenised by either the MagNA Lyser or Freezer Mill. RNA of duplicate samples was subsequently isolated by either TRIzol (benchmark), or the RNeasy Lipid Tissue, RNeasy Fibrous Tissue, or Aurum Total RNA Fatty and Fibrous Tissue kits. RNA yield, purity, and integrity were determined and gene expression levels of type II collagen and aggrecan were measured by real-time PCR. Results No differences between the two homogenisation methods were found. RNA isolation using the RNeasy Fibrous and Lipid kits resulted in the purest RNA (A260/A280 ratio), whereas TRIzol isolations resulted in RNA that is not as pure, and show a larger difference in gene expression of duplicate samples compared with both RNeasy kits. The Aurum kit showed low reproducibility. Conclusion For the extraction of high-quality RNA from cartilaginous structures, we suggest homogenisation of the samples by the MagNA Lyser. For AC, NP and AF we recommend the RNeasy Fibrous kit, whereas for the meniscus the RNeasy Lipid kit is advised. Cite this article: M. Peeters, C. L. Huang, L. A. Vonk, Z. F. Lu, R. A. Bank, M. N. Helder, B. Zandieh Doulabi. Optimisation of high-quality total ribonucleic acid isolation from cartilaginous tissues for real-time

  4. A Sensitive Detection Method for MPLW515L or MPLW515K Mutation in Chronic Myeloproliferative Disorders with Locked Nucleic Acid-Modified Probes and Real-Time Polymerase Chain Reaction

    PubMed Central

    Pancrazzi, Alessandro; Guglielmelli, Paola; Ponziani, Vanessa; Bergamaschi, Gaetano; Bosi, Alberto; Barosi, Giovanni; Vannucchi, Alessandro M.

    2008-01-01

    Acquired mutations in the juxtamembrane region of MPL (W515K or W515L), the receptor for thrombopoietin, have been described in patients with primary myelofibrosis or essential thrombocythemia, which are chronic myeloproliferative disorders. We have developed a real-time polymerase chain reaction assay for the detection and quantification of MPL mutations that is based on locked nucleic acid fluorescent probes. Mutational analysis was performed using DNA from granulocytes. Reference curves were obtained using cloned fragments of MPL containing either the wild-type or mutated sequence; the predicted sensitivity level was at least 0.1% mutant allele in a wild-type background. None of the 60 control subjects presented with a MPLW515L/K mutation. Of 217 patients with myelofibrosis, 19 (8.7%) harbored the MPLW515 mutation, 10 (52.6%) with the W515L allele. In one case, both the W515L and W515K alleles were detected by real-time polymerase chain reaction. By comparing results obtained with conventional sequencing, no erroneous genotype attribution using real-time polymerase chain reaction was found, whereas one patient considered wild type according to sequence analysis actually harbored a low W515L allele burden. This is a simple, sensitive, and cost-effective procedure for large-scale screening of the MPLW515L/K mutation in patients suspected to have a myeloproliferative disorder. It can also provide a quantitative estimate of mutant allele burden that might be useful for both patient prognosis and monitoring response to therapy. PMID:18669880

  5. A sensitive detection method for MPLW515L or MPLW515K mutation in chronic myeloproliferative disorders with locked nucleic acid-modified probes and real-time polymerase chain reaction.

    PubMed

    Pancrazzi, Alessandro; Guglielmelli, Paola; Ponziani, Vanessa; Bergamaschi, Gaetano; Bosi, Alberto; Barosi, Giovanni; Vannucchi, Alessandro M

    2008-09-01

    Acquired mutations in the juxtamembrane region of MPL (W515K or W515L), the receptor for thrombopoietin, have been described in patients with primary myelofibrosis or essential thrombocythemia, which are chronic myeloproliferative disorders. We have developed a real-time polymerase chain reaction assay for the detection and quantification of MPL mutations that is based on locked nucleic acid fluorescent probes. Mutational analysis was performed using DNA from granulocytes. Reference curves were obtained using cloned fragments of MPL containing either the wild-type or mutated sequence; the predicted sensitivity level was at least 0.1% mutant allele in a wild-type background. None of the 60 control subjects presented with a MPLW515L/K mutation. Of 217 patients with myelofibrosis, 19 (8.7%) harbored the MPLW515 mutation, 10 (52.6%) with the W515L allele. In one case, both the W515L and W515K alleles were detected by real-time polymerase chain reaction. By comparing results obtained with conventional sequencing, no erroneous genotype attribution using real-time polymerase chain reaction was found, whereas one patient considered wild type according to sequence analysis actually harbored a low W515L allele burden. This is a simple, sensitive, and cost-effective procedure for large-scale screening of the MPLW515L/K mutation in patients suspected to have a myeloproliferative disorder. It can also provide a quantitative estimate of mutant allele burden that might be useful for both patient prognosis and monitoring response to therapy.

  6. Real-time PCR in virology.

    PubMed

    Mackay, Ian M; Arden, Katherine E; Nitsche, Andreas

    2002-03-15

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.

  7. Evaluation of a real-time polymerase chain reaction assay of the outer membrane protein P2 gene for the detection of Haemophilus parasuis in clinical samples

    PubMed Central

    McDowall, Rebeccah; Slavic, Durda; MacInnes, Janet I.; Cai, Hugh Y.

    2014-01-01

    A real-time polymerase chain reaction (PCR) assay of the outer membrane protein (OMP) P2 gene was developed and used to test 97 putative Haemophilus parasuis pure cultures and 175 clinical tissue samples. With standard culture isolation as the gold standard, the diagnostic sensitivity and specificity of the PCR assay were determined to be 83% and 80%, respectively. PMID:24688178

  8. A broadly reactive one-step real-time RT-PCR assay for rapid and sensitive detection of hepatitis E virus.

    PubMed

    Jothikumar, Narayanan; Cromeans, Theresa L; Robertson, Betty H; Meng, X J; Hill, Vincent R

    2006-01-01

    Hepatitis E virus (HEV) is transmitted by the fecal-oral route and causes sporadic and epidemic forms of acute hepatitis. Large waterborne HEV epidemics have been documented exclusively in developing countries. At least four major genotypes of HEV have been reported worldwide: genotype 1 (found primarily in Asian countries), genotype 2 (isolated from a single outbreak in Mexico), genotype 3 (identified in swine and humans in the United States and many other countries), and genotype 4 (identified in humans, swine and other animals in Asia). To better detect and quantitate different HEV strains that may be present in clinical and environmental samples, we developed a rapid and sensitive real-time RT-PCR assay for the detection of HEV RNA. Primers and probes for the real-time RT-PCR were selected based on the multiple sequence alignments of 27 sequences of the ORF3 region. Thirteen HEV isolates representing genotypes 1-4 were used to standardize the real-time RT-PCR assay. The TaqMan assay detected as few as four genome equivalent (GE) copies of HEV plasmid DNA and detected as low as 0.12 50% pig infectious dose (PID50) of swine HEV. Different concentrations of swine HEV (120-1.2PID50) spiked into a surface water concentrate were detected in the real-time RT-PCR assay. This is the first reporting of a broadly reactive TaqMan RT-PCR assay for the detection of HEV in clinical and environmental samples.

  9. Real-time polymerase chain reaction assay for the rapid detection and characterization of chloroquine-resistant Plasmodium falciparum malaria in returned travelers.

    PubMed

    Farcas, Gabriella A; Soeller, Rainer; Zhong, Kathleen; Zahirieh, Alireza; Kain, Kevin C

    2006-03-01

    Imported drug-resistant malaria is a growing problem in industrialized countries. Rapid and accurate diagnosis is essential to prevent malaria-associated mortality in returned travelers. However, outside of a limited number of specialized centers, the microscopic diagnosis of malaria is slow, unreliable, and provides little information about drug resistance. Molecular diagnostics have the potential to overcome these limitations. We developed and evaluated a rapid, real-time polymerase chain reaction (PCR) assay to detect Plasmodium falciparum malaria and chloroquine (CQ)-resistance determinants in returned travelers who are febrile. A real-time PCR assay based on detection of the K76T mutation in PfCRT (K76T) of P. falciparum was developed on a LightCycler platform (Roche). The performance characteristics of the real-time assay were compared with those of the nested PCR-restriction fragment-length polymorphism (RFLP) and the sequence analyses of samples obtained from 200 febrile returned travelers, who included 125 infected with P. falciparum (48 of whom were infected CQ-susceptible [K76] and 77 of whom were CQ-resistant [T76] P. falciparum), 22 infected with Plasmodium vivax, 10 infected with Plasmodium ovale, 3 infected with Plasmodium malariae malaria, and 40 infected with other febrile syndromes. All patient samples were coded, and all analyses were performed blindly. The real-time PCR assay detected multiple pfcrt haplotypes associated with CQ resistance in geographically diverse malaria isolates acquired by travelers. Compared with nested-PCR RFLP (the reference standard), the real-time assay was 100% sensitive and 96.2% specific for detection of the P. falciparum K76T mutation. This assay is rapid, sensitive, and specific for the detection and characterization of CQ-resistant P. falciparum malaria in returned travelers. This assay is automated, standardized, and suitable for routine use in clinical diagnostic laboratories.

  10. Quantification of Xylella fastidiosa from Citrus Trees by Real-Time Polymerase Chain Reaction Assay.

    PubMed

    Oliveira, Antonio C; Vallim, Marcelo A; Semighini, Camile P; Araújo, Welington L; Goldman, Gustavo H; Machado, Marcos A

    2002-10-01

    ABSTRACT Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC), a destructive disease of sweet orange cultivars in Brazil. Polymerase chain reaction (PCR)-based assays constitute the principal diagnostic method for detection of these bacteria. In this work, we established a real-time quantitative PCR (QPCR) assay to quantify X. fastidiosa in naturally and artificially infected citrus. The X. fastidiosa cell number detected in the leaves increased according to the age of the leaf, and bacteria were not detected in the upper midrib section in young leaves, indicating temporal and spatial distribution patterns of bacteria, respectively. In addition, the X. fastidiosa cell number quantified in leaves of 'Pera' orange and 'Murcott' tangor reflected the susceptible and resistant status of these citrus cultivars. None of the 12 endophytic citrus bacteria or the four strains of X. fastidiosa nonpathogenic to citrus that were tested showed an increase in the fluorescence signal during QPCR. In contrast, all 10 CVC-causing strains exhibited an increase in fluorescence signal, thus indicating the specificity of this QPCR assay. Our QPCR provides a powerful tool for studies of different aspects of the Xylella-citrus interactions, and can be incorporated into breeding programs in order to select CVC-resistant plants more quickly.

  11. Use of armored RNA as a standard to construct a calibration curve for real-time RT-PCR.

    PubMed

    Donia, D; Divizia, M; Pana', A

    2005-06-01

    Armored Enterovirus RNA was used to standardize a real-time reverse transcription (RT)-PCR for environmental testing. Armored technology is a system to produce a robust and stable RNA standard, trapped into phage proteins, to be used as internal control. The Armored Enterovirus RNA protected sequence includes 263 bp of highly conserved sequences in 5' UTR region. During these tests, Armored RNA has been used to produce a calibration curve, comparing three different fluorogenic chemistry: TaqMan system, Syber Green I and Lux-primers. The effective evaluation of three amplifying commercial reagent kits, in use to carry out real-time RT-PCR, and several extraction procedures of protected viral RNA have been carried out. The highest Armored RNA recovery was obtained by heat treatment while chemical extraction may decrease the quantity of RNA. The best sensitivity and specificity was obtained using the Syber Green I technique since it is a reproducible test, easy to use and the cheapest one. TaqMan and Lux-primer assays provide good RT-PCR efficiency in relationship to the several extraction methods used, since labelled probe or primer request in these chemistry strategies, increases the cost of testing.

  12. Detection of different Ikaros isoforms in human leukaemias using real-time quantitative polymerase chain reaction.

    PubMed

    Olivero, S; Maroc, C; Beillard, E; Gabert, J; Nietfeld, W; Chabannon, C; Tonnelle, C

    2000-09-01

    The Ikaros gene is an essential regulator in development and haematopoiesis. Dysregulated Ikaros gene expression participates in leukaemic processes, as evidenced in animal models, and by analyses of blast-cell populations from leukaemic patients. We used real-time quantitative polymerase chain reaction (PCR) to evaluate the relative abundance of several Ikaros transcript isoforms in a variety of leukaemic-cell samples. Total RNA was isolated from bone-marrow or blood-cell samples collected at diagnosis in children or adult patients, 18 of whom had acute myeloblastic leukaemia (AML), 61 of whom had acute lymphoblastic leukaemia (ALL) and 11 of whom had chronic myeloid leukaemia (CML). The ratio (Ik1 + Ik2)/(Ik1 + Ik2 + Ik4 + Ik7 + Ik8) ranged from 13.5% to 85% and was lower (P < 0. 05) in samples from patients with m-bcr-abl ALL. An alternative splicing resulting in the deletion of 30 nucleotides at the end of exon 6 was observed in leukaemic samples, and in normal thymus and bone marrow. Our results are consistent with previous reports and suggest that the pattern of expression of the different human Ikaros isoforms are not homogeneous among different subsets of leukaemias.

  13. Rapid detection of infectious hypodermal and hematopoietic necrosis virus (IHHNV) by real-time, isothermal recombinase polymerase amplification assay.

    PubMed

    Xia, Xiaoming; Yu, Yongxin; Hu, Linghao; Weidmann, Manfred; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2015-04-01

    Infectious hypodermal and hematopoietic necrosis virus (IHHNV) causes mortality or runt deformity syndrome in penaeid shrimps and is responsible for significant economic losses in the shrimp aquaculture industry. Here, we describe a novel real-time isothermal recombinase polymerase amplification (RPA) assay developed for IHHNV detection. Using IHHNV plasmid standards and DNA samples from a variety of organisms, we evaluated the ability of the IHHNV-RPA assay to detect IHHNV based on analysis of its sensitivity, specificity, rapidity, and reproducibility. Probit analysis of eight independent experimental replicates indicated satisfactory performance of the RPA assay, which is sufficiently sensitive to detect as few as 4 copies of the IHHNV genome within 7 min at 39 °C with 95 % reliability. Therefore, this rapid RPA method has great potential for applications, either in field use or as a point of care diagnostic technique.

  14. Genetic traits of avascular necrosis of the femoral head analyzed by array comparative genomic hybridization and real-time polymerase chain reaction.

    PubMed

    Hwang, Jung-Taek; Baik, Seung-Ho; Choi, Jin-Soo; Lee, Kweon-Haeng; Rhee, Seung-Koo

    2011-01-03

    In an attempt to observe the genetic traits of avascular necrosis of the femoral head, we analyzed the genomic alterations in blood samples of 18 patients with avascular necrosis of the femoral head (9 idiopathic and 9 alcoholic cases) using the array comparative genomic hybridization method and real-time polymerase chain reaction. Several candidate genes were identified that may induce avascular necrosis of the femoral head, and we investigated their role in the pathomechanism of osteonecrosis of bone. The frequency of each candidate gene over all the categories of avascular necrosis of the femoral head was also calculated by real-time polymerase chain reaction. The highest frequency specific genes in each category were FLJ40296, CYP27C1, and CTDP1. FLJ40296 and CYP27C1 had the highest frequency (55.6%) in the idiopathic category. FLJ40296 had a high frequency (44.4%) in the alcoholic category, but CYP27C1 had a relatively low frequency (33.3%) in the alcoholic category. However, CTDP1 showed a significantly high frequency (55.6%) in the alcoholic category and a low frequency (22.2%) in the idiopathic category. Although we statistically analyzed the frequency of each gene with Fisher's exact test, we could not prove statistical significance due to the small number of samples. Further studies are needed with larger sample numbers. If the causal genes of avascular necrosis of the femoral head are found, they may be used for early detection, prognosis prediction, and genomic treatment of avascular necrosis of the femoral head in the future. Copyright 2011, SLACK Incorporated.

  15. Evaluation of different embryonating bird eggs and cell cultures for isolation efficiency of avian influenza A virus and avian paramyxovirus serotype 1 from real-time reverse transcription polymerase chain reaction--positive

    USDA-ARS?s Scientific Manuscript database

    Two hundred samples collected from Anseriformes, Charadriiformes, Gruiformes, and Galliformes were assayed using real-time reverse transcriptase polymerase chain reaction (RRT-PCR) for presence of avian influenza virus and avian paramyxovirus-1. Virus isolation using embryonating chicken eggs, embr...

  16. Development of field-based real-time reverse transcription-polymerase chain reaction assays for detection of Chikungunya and O'nyong-nyong viruses in mosquitoes.

    PubMed

    Smith, Darci R; Lee, John S; Jahrling, Jordan; Kulesh, David A; Turell, Michael J; Groebner, Jennifer L; O'Guinn, Monica L

    2009-10-01

    Chikungunya (CHIK) and O'nyong-nyong (ONN) are important emerging arthropod-borne diseases. Molecular diagnosis of these two viruses in mosquitoes has not been evaluated, and the effects of extraneous mosquito tissue on assay performance have not been tested. Additionally, no real-time reverse transcription-polymerase chain reaction (RT-PCR) assay exists for detecting ONN virus (ONNV) RNA. We describe the development of sensitive and specific real-time RT-PCR assays for detecting CHIK and ONN viral RNA in mosquitoes, which have application for field use. In addition, we compared three methods for primer/probe design for assay development by evaluating their sensitivity and specificity. This comparison resulted in development of virus-specific assays that could detect less than one plaque-forming unit equivalent of each of the viruses in mosquitoes. The use of these assays will aid in arthropod-borne disease surveillance and in the control of the associated diseases.

  17. Real-time quantitative polymerase chain reaction methods for four genetically modified maize varieties and maize DNA content in food.

    PubMed

    Brodmann, Peter D; Ilg, Evelyn C; Berthoud, Hélène; Herrmann, Andre

    2002-01-01

    Quantitative detection methods are needed for enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients. This labeling threshold, which is set to 1% in the European Union and Switzerland, must be applied to all approved GMOs. Four different varieties of maize are approved in the European Union: the insect-resistant Bt176 maize (Maximizer), Btl 1 maize, Mon810 (YieldGard) maize, and the herbicide-tolerant T25 (Liberty Link) maize. Because the labeling must be considered individually for each ingredient, a quantitation system for the endogenous maize content is needed in addition to the GMO-specific detection systems. Quantitative real-time polymerase chain reaction detection methods were developed for the 4 approved genetically modified maize varieties and for an endogenous maize (invertase) gene system.

  18. High-throughput real-time quantitative reverse transcription PCR.

    PubMed

    Bookout, Angie L; Cummins, Carolyn L; Mangelsdorf, David J; Pesola, Jean M; Kramer, Martha F

    2006-02-01

    Extensive detail on the application of the real-time quantitative polymerase chain reaction (QPCR) for the analysis of gene expression is provided in this unit. The protocols are designed for high-throughput, 384-well-format instruments, such as the Applied Biosystems 7900HT, but may be modified to suit any real-time PCR instrument. QPCR primer and probe design and validation are discussed, and three relative quantitation methods are described: the standard curve method, the efficiency-corrected DeltaCt method, and the comparative cycle time, or DeltaDeltaCt method. In addition, a method is provided for absolute quantification of RNA in unknown samples. RNA standards are subjected to RT-PCR in the same manner as the experimental samples, thus accounting for the reaction efficiencies of both procedures. This protocol describes the production and quantitation of synthetic RNA molecules for real-time and non-real-time RT-PCR applications.

  19. Design and Development of a Quantitative TaqMan Real-Time PCR Assay for Evaluation of HIV-1 (group M) Viral Load in Plasma Using Armored RNA Standard.

    PubMed

    Gholami, Mohammad; Baesi, Kazem; Rouzbahani, Negin H; Mohraz, Minoo

    2018-06-01

    Human immunodeficiency virus-1 (HIV-1) is a viral infectious agent that gradually extinguishes the immune system, resulting in the acquired immune deficiency syndrome (AIDS). The aim of this study was to develop a TaqMan based detection assay to evaluate HIV-1 plasma viral load and to construct a stable internal positive control (IPC) and external positive control (EPC) RNA based on Armored RNA (AR) technology. The MS2 maturase, coat protein gene and HIV-1 pol gene were cloned in pET-32a plasmid. The recently fabricated recombinant plasmid was transformed into Escherichia coli strain BL2 (DE3) and protein expression and Armored RNA was fabricated in presence of isopropyl-L-thio-D-galactopyranoside (IPTG). The Armored RNA was precipitated and purified by polyethylene glycol (PEG) and sephacryl S-200 chromatography. The stability of Armored RNA was evaluated by treatment with DNase I and RNase A and confirmed by transmission electron microscopy (TEM) and gel agarose electrophoresis. The specificity, sensitivity, inter- and intra-day precision, and the dynamic range of the assay were experimentally determined. The AR was stable in presence of ribonuclease, and the assay had a dynamic detection range from 101 to 105 copies of AR. The coefficient of variation (CV) was 4.8% for intra-assay and 5.8% for inter-assay precision. Clinical specificity and sensitivity of the assay were assessed at 100% and 96.66%, respectively. The linear regression analysis confirmed a high correlation between the in-house and the commercial assay, Real Star HIV-1-qRTPCR, respectively (R2 = 0.888). The AR standard is non-infectious and highly resistant in the presence of ribonuclease. The TaqMan assay developed is able to quantify HIV viral load based on a novel conserved region of HIV-1 pol gene which has minimal sequence inconsistency.

  20. Ring test evaluation of the detection of influenza A virus in swine oral fluids by real-time, reverse transcription polymerase chain reaction (rRT-PCR) and virus isolation

    USDA-ARS?s Scientific Manuscript database

    The probability of detecting influenza A virus (IAV) in oral fluid (OF) specimens was calculated for each of 13 real-time, reverse transcription polymerase chain reaction (rRT-PCR) and 7 virus isolation (VI) assays. To conduct the study, OF was inoculated with H1N1 or H3N2 IAV and serially 10-fold d...

  1. Real-Time PCR Analysis of Vibrio vulnificus from Oysters

    PubMed Central

    Campbell, Mark S.; Wright, Anita C.

    2003-01-01

    Vibrio vulnificus is an opportunistic human pathogen commonly found in estuarine environments. Infections are associated with raw oyster consumption and can produce rapidly fatal septicemia in susceptible individuals. Standard enumeration of this organism in shellfish or seawater is laborious and inaccurate; therefore, more efficient assays are needed. An oligonucleotide probe derived from the cytolysin gene, vvhA, was previously used for colony hybridizations to enumerate V. vulnificus. However, this method requires overnight growth, and vibrios may lack culturability under certain conditions. In the present study, we targeted the same locus for development of a TaqMan real-time PCR assay. Probe specificity was confirmed by amplification of 28 V. vulnificus templates and by the lack of a PCR product with 22 non-V. vulnificus strains. Detection of V. vulnificus in pure cultures was observed over a 6-log-unit linear range of concentration (102 to 108 CFU ml−1), with a lower limit of 72 fg of genomic DNA μl of PCR mixture−1 or the equivalent of six cells. Similar sensitivity was observed in DNA extracted from mixtures of V. vulnificus and V. parahaemolyticus cells. Real-time PCR enumeration of artificially inoculated oyster homogenates correlated well with colony hybridization counts (r2 = 0.97). Numbers of indigenous V. vulnificus cells in oysters by real-time PCR showed no significant differences from numbers from plate counts with probe (t test; P = 0.43). Viable but nonculturable cells were also enumerated by real-time PCR and confirmed by the BacLight viability assay. These data indicate that real-time PCR can provide sensitive species-specific detection and enumeration of V. vulnificus in seafood. PMID:14660359

  2. Poly(adenylic acid) complementary DNA real-time polymerase chain reaction in pancreatic ductal juice in patients undergoing pancreaticoduodenectomy.

    PubMed

    Oliveira-Cunha, Melissa; Byers, Richard J; Siriwardena, Ajith K

    2010-03-01

    There is a need to develop methods of early diagnosis for pancreatic cancer. Pancreatic juice is easily collected by endoscopic retrograde cholangiopancreatography and may facilitate diagnosis using molecular markers. The aim of this work was to explore the feasibility of measurement of gene expression in RNA isolated from ductal juice. Intraoperative sampling of pancreatic juice was undertaken in 27 patients undergoing pancreaticoduodenectomy for suspected tumor. Total RNA was extracted and used as template for poly(adenylic acid) (poly[A]) polymerase chain reaction (PCR) to generate a globally amplified complementary DNA pool representative of all expressed messenger RNAs. Real-time PCR was performed for trefoil factor 2 (TFF2), carboxypeptidase B1 (CPB1), and kallikrein-related peptidase 3 (KLK3) in a subset of samples; all samples were normalized for 3 reference genes (glyceraldehyde-3-phosphate dehydrogenase [GAPDH], PSMB6, and beta-2-microglobulin [B2M]). The median volume of the pancreatic juice obtained was 1245 microL (range, 50-5000 microL). The RNA integrity number ranged from 1.9 to 10. Reverse transcriptase PCR was positive for pancreas-specific genes (TFF2 and CPB1) and negative for prostatic-specific antigen in all samples. These results demonstrate that RNA analysis of pancreatic juice is feasible using a combination of poly(A) PCR and real-time PCR. In addition, the poly(A) complementary DNA generated can be probed for multiple genes and is indefinitely renewable, thereby representing a molecular block of importance for future research.

  3. Development of real-time and lateral flow strip reverse transcription recombinase polymerase Amplification assays for rapid detection of peste des petits ruminants virus.

    PubMed

    Yang, Yang; Qin, Xiaodong; Song, Yiming; Zhang, Wei; Hu, Gaowei; Dou, Yongxi; Li, Yanmin; Zhang, Zhidong

    2017-02-07

    Peste des petits ruminants (PPR) is an economically important, Office International des Epizooties (OIE) notifiable, transboundary viral disease of small ruminants such as sheep and goat. PPR virus (PPRV), a negative-sense single-stranded RNA virus, is the causal agent of PPR. Therefore, sensitive, specific and rapid diagnostic assay for the detection of PPRV are necessary to accurately and promptly diagnose suspected case of PPR. In this study, reverse transcription recombinase polymerase amplification assays using real-time fluorescent detection (real-time RT-RPA assay) and lateral flow strip detection (LFS RT-RPA assay) were developed targeting the N gene of PPRV. The sensitivity of the developed real-time RT-RPA assay was as low as 100 copies per reaction within 7 min at 40 °C with 95% reliability; while the sensitivity of the developed LFS RT-RPA assay was as low as 150 copies per reaction at 39 °C in less than 25 min. In both assays, there were no cross-reactions with sheep and goat pox viruses, foot-and-mouth disease virus and Orf virus. These features make RPA assay promising candidates either in field use or as a point of care diagnostic technique.

  4. Automated real-time detection of drug-resistant Mycobacterium tuberculosis on a lab-on-a-disc by Recombinase Polymerase Amplification.

    PubMed

    Law, I L G; Loo, J F C; Kwok, H C; Yeung, H Y; Leung, C C H; Hui, M; Wu, S Y; Chan, H S; Kwan, Y W; Ho, H P; Kong, S K

    2018-03-01

    With the emergence of multi- and extensive-drug (MDR/XDR) resistant Mycobacterium tuberculosis (M. tb), tuberculosis (TB) persists as one of the world's leading causes of death. Recently, isothermal DNA amplification methods received much attention due to their ease of translation onto portable point-of-care (POC) devices for TB diagnosis. In this study, we aimed to devise a simple yet robust detection method for M. tb. Amongst the numerous up-and-coming isothermal techniques, Recombinase Polymerase Amplification (RPA) was chosen for a real-time detection of TB with or without MDR. In our platform, real-time RPA (RT-RPA) was integrated on a lab-on-a-disc (LOAD) with on-board power to maintain temperature for DNA amplification. Sputa collected from healthy volunteers were spiked with respective target M. tb samples for testing. A limit of detection of 10 2  colony-forming unit per millilitre in 15 min was achieved, making early detection and differentiation of M. tb strains highly feasible in extreme POC settings. Our RT-RPA LOAD platform has also been successfully applied in the differentiation of MDR-TB from H37Ra, an attenuated TB strain. In summary, a quantitative RT-RPA on LOAD assay with a high level of sensitivity was developed as a foundation for further developments in medical bedside and POC diagnostics. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria.

    PubMed

    Choi, Goro; Jung, Jae Hwan; Park, Byung Hyun; Oh, Seung Jun; Seo, Ji Hyun; Choi, Jong Seob; Kim, Do Hyun; Seo, Tae Seok

    2016-06-21

    In this study, we developed a centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria contaminated milk samples. The microdevice was designed to contain identical triplicate functional units and each unit has four reaction chambers, thereby making it possible to perform twelve direct-RPA reactions simultaneously. The integrated microdevice consisted of two layers: RPA reagents were injected in the top layer, while spiked milk samples with food poisoning bacteria were loaded into sample reservoirs in the bottom layer. For multiplex bacterial detection, the target gene-specific primers and probes were dried in each reaction chamber. The introduced samples and reagents could be equally aliquoted and dispensed into each reaction chamber by centrifugal force, and then the multiplex direct-RPA reaction was executed. The target genes of bacteria spiked in milk could be amplified at 39 °C without a DNA extraction step by using the direct-RPA cocktails, which were a combination of a direct PCR buffer and RPA enzymes. As the target gene amplification proceeded, the increased fluorescence signals coming from the reaction chambers were recorded in real-time at an interval of 2 min. The entire process, including the sample distribution, the direct-RPA reaction, and the real-time analysis, was accomplished with a custom-made portable genetic analyzer and a miniaturized optical detector. Monoplex, duplex, and triplex food poisoning bacteria (Salmonella enterica, Escherichia coli O157:H7, and Vibrio parahaemolyticus) detection was successfully performed with a detection sensitivity of 4 cells per 3.2 μL of milk samples within 30 min. By implementing the direct-PRA on the miniaturized centrifugal microsystem, the on-site food poisoning bacteria analysis would be feasible with high speed, sensitivity, and multiplicity.

  6. Real-time and label-free ring-resonator monitoring of solid-phase recombinase polymerase amplification.

    PubMed

    Sabaté Del Río, Jonathan; Steylaerts, Tim; Henry, Olivier Y F; Bienstman, Peter; Stakenborg, Tim; Van Roy, Wim; O'Sullivan, Ciara K

    2015-11-15

    In this work we present the use of a silicon-on-insulator (SOI) chip featuring an array of 64 optical ring resonators used as refractive index sensors for real-time and label-free DNA detection. Single ring functionalisation was achieved using a click reaction after precise nanolitre spotting of specific hexynyl-terminated DNA capture probes to link to an azido-silanised chip surface. To demonstrate detectability using the ring resonators and to optimise conditions for solid-phase amplification, hybridisation between short 25-mer single stranded DNA (ssDNA) fragments and a complementary capture probe immobilised on the surface of the ring resonators was carried out and detected through the shift in the resonant wavelength. Using the optimised conditions demonstrated via the solid-phase hybridisation, a 144-bp double stranded DNA (dsDNA) was then detected directly using recombinase and polymerase proteins through on-chip target amplification and solid-phase elongation of immobilised forward primers on specific rings, at a constant temperature of 37°C and in less than 60min, achieving a limit of detection of 7.8·10(-13)M (6·10(5) copies in 50µL). The use of an automatic liquid handler injection instrument connected to an integrated resealable chip interface (RCI) allowed programmable multiple injection protocols. Air plugs between different solutions were introduced to prevent intermixing and a proportional-integral-derivative (PID) temperature controller minimised temperature based drifts. Published by Elsevier B.V.

  7. Standardization of a two-step real-time polymerase chain reaction based method for species-specific detection of medically important Aspergillus species.

    PubMed

    Das, P; Pandey, P; Harishankar, A; Chandy, M; Bhattacharya, S; Chakrabarti, A

    2017-01-01

    Standardization of Aspergillus polymerase chain reaction (PCR) poses two technical challenges (a) standardization of DNA extraction, (b) optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR), the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus), gene and calmodulin gene (for Aspergillus niger). Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.

  8. Analysis of the antibacterial activity and plaque control benefit of colgate total dentifrice via clinical evaluation and real-time polymerase chain reaction.

    PubMed

    Xu, Tao; Deshmukh, Meenal; Barnes, Virginia Monsul; Trivedi, Harsh M; Du-Thumm, Laurence; Richter, Rose; Cummins, Diane

    2005-01-01

    This study analyzed, from a combined clinical and molecular biologic perspective, the antibacterial and antiplaque efficacy of Colgate Total dentifrice (CTD). A single-blind crossover study design utilized 11 healthy human subjects. After a one-week washout period, subjects donated dental plaque, received a dental prophylaxis, and subsequently brushed with a test product. Twenty-four hours postbrushing, dental plaque was collected and a clinical plaque score determined. Dental plaque was submitted for Real-time Polymerase Chain Reaction (Real-time PCR) analysis. The same procedure was repeated in accordance with a crossover design for the use of the second test product. Following a one-week washout, a plaque donation, prophylaxis, and brushing with the test product ensued for each subject. Twenty-four hours post-brushing, the subjects returned for a plaque score and plaque donation. Twenty-four hours after brushing, dental plaque coverage increased 17.88% +/- 8.27% with CTD, compared to 30.42% +/- 9.97% with Colgate Cavity Protection (CCP; p = 0.005). Real-time PCR found plaque collected 24 hours after brushing with CTD exhibited, on average, fewer representative periodontal pathogens (Fusobacterium nucleatum, Actinobacillus actinomycetemcomitans, Tannerella forsythensis, and Porphyromonas gingivalis) and fewer early colonizers (Actinomyces naeslundii) than plaque collected before brushing, whereas CCP showed a moderate effect on oral bacteria. The study provides clinical and molecular biological evidence to substantiate the antibacterial and plaque control benefits of Colgate Total, and suggests the value of combining a molecular biological method with clinical research to corroborate clinical benefits.

  9. Clinical evaluation of β-tubulin real-time PCR for rapid diagnosis of dermatophytosis, a comparison with mycological methods.

    PubMed

    Motamedi, Marjan; Mirhendi, Hossein; Zomorodian, Kamiar; Khodadadi, Hossein; Kharazi, Mahboobeh; Ghasemi, Zeinab; Shidfar, Mohammad Reza; Makimura, Koichi

    2017-10-01

    Following our previous report on evaluation of the beta tubulin real-time PCR for detection of dermatophytosis, this study aimed to compare the real-time PCR assay with conventional methods for the clinical assessment of its diagnostic performance. Samples from a total of 853 patients with suspected dermatophyte lesions were subjected to direct examination (all samples), culture (499 samples) and real-time PCR (all samples). Fungal DNA was extracted directly from clinical samples using a conical steel bullet, followed by purification with a commercial kit and subjected to the Taq-Man probe-based real-time PCR. The study showed that among the 499 specimens for which all three methods were used, 156 (31.2%), 128 (25.6%) and 205 (41.0%) were found to be positive by direct microscopy, culture and real-time PCR respectively. Real-time PCR significantly increased the detection rate of dermatophytes compared with microscopy (288 vs 229) with 87% concordance between the two methods. The sensitivity, specificity, positive predictive value, and negative predictive value of the real-time PCR was 87.5%, 85%, 66.5% and 95.2% respectively. Although real-time PCR performed better on skin than on nail samples, it should not yet fully replace conventional diagnosis. © 2017 Blackwell Verlag GmbH.

  10. Validation of endogenous internal real-time PCR controls in renal tissues.

    PubMed

    Cui, Xiangqin; Zhou, Juling; Qiu, Jing; Johnson, Martin R; Mrug, Michal

    2009-01-01

    Endogenous internal controls ('reference' or 'housekeeping' genes) are widely used in real-time PCR (RT-PCR) analyses. Their use relies on the premise of consistently stable expression across studied experimental conditions. Unfortunately, none of these controls fulfills this premise across a wide range of experimental conditions; consequently, none of them can be recommended for universal use. To determine which endogenous RT-PCR controls are suitable for analyses of renal tissues altered by kidney disease, we studied the expression of 16 commonly used 'reference genes' in 7 mildly and 7 severely affected whole kidney tissues from a well-characterized cystic kidney disease model. Expression levels of these 16 genes, determined by TaqMan RT-PCR analyses and Affymetrix GeneChip arrays, were normalized and tested for overall variance and equivalence of the means. Both statistical approaches and both TaqMan- and GeneChip-based methods converged on 3 out of the 4 top-ranked genes (Ppia, Gapdh and Pgk1) that had the most constant expression levels across the studied phenotypes. A combination of the top-ranked genes will provide a suitable endogenous internal control for similar studies of kidney tissues across a wide range of disease severity. Copyright 2009 S. Karger AG, Basel.

  11. Field evaluation of Abbott Real Time HIV-1 Qualitative test for early infant diagnosis using dried blood spots samples in comparison to Roche COBAS Ampliprep/COBAS TaqMan HIV-1 Qual Test in Kenya

    PubMed Central

    Chang, Joy; Omuomo, Kenneth; Anyango, Emily; Kingwara, Leonard; Basiye, Frank; Morwabe, Alex; Shanmugam, Vedapuri; Nguyen, Shon; Sabatier, Jennifer; Zeh, Clement; Ellenberger, Dennis

    2016-01-01

    Timely diagnosis and treatment of infants infected with HIV are critical for reducing infant mortality. High-throughput automated diagnostic tests like Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Qual Test (Roche CAPCTM Qual) and the Abbott Real Time HIV-1 Qualitative (Abbott Qualitative) can be used to rapidly expand early infant diagnosis testing services. In this study, the performance characteristics of the Abbott Qualitative were evaluated using two hundred dried blood spots (DBS) samples (100 HIV-1 positive and 100 HIV-1 negative) collected from infants attending the antenatal facilities in Kisumu, Kenya. The Abbott Qualitative results were compared to the diagnostic testing completed using the Roche CAPCTM Qual in Kenya. The sensitivity and specificity of the Abbott Qualitative were 99.0% (95% CI: 95.0–100.0) and 100.0% (95% CI: 96.0–100.0), respectively, and the overall reproducibility was 98.0% (95% CI: 86.0–100.0). The limits of detection for the Abbott Qualitative and Roche CAPCTM Qual were 56.5 and 6.9 copies/mL at 95% CIs (p = 0.005), respectively. The study findings demonstrate that the Abbott Qualitative test is a practical option for timely diagnosis of HIV in infants. PMID:24726703

  12. Field evaluation of Abbott Real Time HIV-1 Qualitative test for early infant diagnosis using dried blood spots samples in comparison to Roche COBAS Ampliprep/COBAS TaqMan HIV-1 Qual test in Kenya.

    PubMed

    Chang, Joy; Omuomo, Kenneth; Anyango, Emily; Kingwara, Leonard; Basiye, Frank; Morwabe, Alex; Shanmugam, Vedapuri; Nguyen, Shon; Sabatier, Jennifer; Zeh, Clement; Ellenberger, Dennis

    2014-08-01

    Timely diagnosis and treatment of infants infected with HIV are critical for reducing infant mortality. High-throughput automated diagnostic tests like Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Qual Test (Roche CAPCTM Qual) and the Abbott Real Time HIV-1 Qualitative (Abbott Qualitative) can be used to rapidly expand early infant diagnosis testing services. In this study, the performance characteristics of the Abbott Qualitative were evaluated using two hundred dried blood spots (DBS) samples (100 HIV-1 positive and 100 HIV-1 negative) collected from infants attending the antenatal facilities in Kisumu, Kenya. The Abbott Qualitative results were compared to the diagnostic testing completed using the Roche CAPCTM Qual in Kenya. The sensitivity and specificity of the Abbott Qualitative were 99.0% (95% CI: 95.0-100.0) and 100.0% (95% CI: 96.0-100.0), respectively, and the overall reproducibility was 98.0% (95% CI: 86.0-100.0). The limits of detection for the Abbott Qualitative and Roche CAPCTM Qual were 56.5 and 6.9copies/mL at 95% CIs (p=0.005), respectively. The study findings demonstrate that the Abbott Qualitative test is a practical option for timely diagnosis of HIV in infants. Published by Elsevier B.V.

  13. Avian-specific real-time PCR assay for authenticity control in farm animal feeds and pet foods.

    PubMed

    Pegels, Nicolette; González, Isabel; García, Teresa; Martín, Rosario

    2014-01-01

    A highly sensitive TaqMan real-time PCR assay targeting the mitochondrial 12S rRNA gene was developed for detection of an avian-specific DNA fragment (68bp) in farm animal and pet feeds. The specificity of the assay was verified against a wide representation of animal and plant species. Applicability assessment of the avian real-time PCR was conducted through representative analysis of two types of compound feeds: industrial farm animal feeds (n=60) subjected to extreme temperatures, and commercial dog and cat feeds (n=210). Results obtained demonstrated the suitability of the real-time PCR assay to detect the presence of low percentages of highly processed avian material in the feed samples analysed. Although quantification results were well reproducible under the experimental conditions tested, an accurate estimation of the target content in feeds is impossible in practice. Nevertheless, the method may be useful as an alternative tool for traceability purposes within the framework of feed control. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Real-time quantitative PCR detection of genetically modified Maximizer maize and Roundup Ready soybean in some representative foods.

    PubMed

    Vaïtilingom, M; Pijnenburg, H; Gendre, F; Brignon, P

    1999-12-01

    A fast and quantitative method was developed to detect transgenic "Maximizer" maize "event 176" (Novartis) and "Roundup Ready" soybean (Monsanto) in food by real-time quantitative PCR. The use of the ABI Prism 7700 sequence detection system allowed the determination of the amplified product accumulation through a fluorogenic probe (TaqMan). Fluorescent dyes were chosen in such a way as to coamplify total and transgenic DNA in the same tube. Using real-time quantitative PCR, 2 pg of transgenic or total DNA per gram of starting sample was detected in 3 h after DNA extraction and the relative amounts of "Maximizer" maize and "Roundup Ready" soybean in some representative food products were quantified.

  15. Faster and economical screening for vancomycin-resistant enterococci by sequential use of chromogenic agar and real-time polymerase chain reaction.

    PubMed

    Tan, Thean Yen; Jiang, Boran; Ng, Lily Siew Yong

    2017-08-01

    Screening for vancomycin-resistant enterococci (VRE) by culture takes days to generate results, while polymerase chain reaction (PCR) testing directly from clinical specimens lacks specificity. The aims of this study were to develop a real-time PCR to detect and identify Enterococcus faecium, Enterococcus faecalis, and vanA and vanB genes, and to evaluate the impact of this PCR on test-reporting times when performing it directly from suspect VRE isolates present on screening chromogenic media. The tetraplex PCR primers were designed to amplify E. faecium, E. faecalis, and vanA and vanB genes, with melt-curve analysis of PCR products. Following analytical and clinical validation of the molecular assay, PCR testing was performed for target colonies present on VRE chromogenic media. PCR results were evaluated against conventional phenotypic identification and susceptibility testing, with the time to result being monitored for both modalities. A total of 519 colonies from clinical specimens were tested concurrently by real-time PCR and phenotypic methods. In all, 223 isolates were identified with phenotypic vancomycin resistance (vanA, n = 108; vanB, n = 105; non-vanA/vanB = 10), with complete agreement between PCR and phenotypic testing for vancomycin-resistant E. faecium and E. faecalis. The majority (88.6%) of PCR results were reported, on average, 24.8 hours earlier than those of phenotypic testing, with 68% reduction in total costs. The use of culture on selective media, followed by direct colony PCR confirmation allows faster and economical VRE screening. Copyright © 2015. Published by Elsevier B.V.

  16. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    PubMed

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2018-02-01

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  17. Comparison between culture and a multiplex quantitative real-time polymerase chain reaction assay detecting Ureaplasma urealyticum and U. parvum.

    PubMed

    Frølund, Maria; Björnelius, Eva; Lidbrink, Peter; Ahrens, Peter; Jensen, Jørgen Skov

    2014-01-01

    A novel multiplex quantitative real-time polymerase chain reaction (qPCR) for simultaneous detection of U. urealyticum and U. parvum was developed and compared with quantitative culture in Shepard's 10 C medium for ureaplasmas in urethral swabs from 129 men and 66 women, and cervical swabs from 61 women. Using culture as the gold standard, the sensitivity of the qPCR was 96% and 95% for female urethral and cervical swabs, respectively. In male urethral swabs the sensitivity was 89%. The corresponding specificities were 100%, 87% and 99%. The qPCR showed a linear increasing DNA copy number with increasing colour-changing units. Although slightly less sensitive than culture, this multiplex qPCR assay detecting U. urealyticum and U. parvum constitutes a simple and fast alternative to the traditional methods for identification of ureaplasmas and allows simultaneous species differentiation and quantitation in clinical samples. Furthermore, specimens overgrown by other bacteria using the culture method can be evaluated in the qPCR.

  18. Rapid detection of HLA-B*51 by real-time polymerase chain reaction and high-resolution melting analysis.

    PubMed

    Imperiali, C; Alía-Ramos, P; Padró-Miquel, A

    2015-08-01

    HLA-B*51, a class I human leukocyte antigen (HLA) molecule, is the strongest known genetic risk factor for Behçet disease. However, there are only few articles reporting methods to determine the presence or absence of HLA-B51. For this reason, we designed and developed an easy, fast, and inexpensive real-time high-resolution melting (HRM) assay to detect HLA-B*51. We genotyped 61 samples by our HRM assay and by conventional polymerase chain reaction, and no discrepancies were found between results. Besides, a subgroup of 25 samples was also genotyped in a different laboratory, and another subgroup of 16 samples was obtained from the International Histocompatibility Working Group DNA Bank, and a full concordance of results was observed with those obtained by HRM. Regarding the identifying system evaluated, we obtained 100% of specificity, sensibility, and repeatability, and 0% of false positive and false negative rates. Therefore, this HRM analysis is easily applicable to the rapid detection of HLA-B*51, exhibits a high speed, and requires a very low budget. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Establishment of a multiplex real-time RT-PCR assay for rapid identification of H6 subtype avian influenza viruses.

    PubMed

    Yang, Fan; Wu, Haibo; Liu, Fumin; Lu, Xiangyun; Peng, Xiuming; Wu, Nanping

    2018-06-01

    The H6 subtype avian influenza viruses (AIVs) possess the capacity for zoonotic transmission from avian species to humans. Establishment of a specific, rapid and sensitive method to screen H6 AIVs is necessary. Based on the conserved domain of the matrix and H6 AIV hemagglutinin genes, two TaqMan minor-groove-binder probes and multiplex real-time RT-PCR primers were designed in this study. The multiplex real-time RT-PCR assay developed in this study had high specificity and repeatability and a detection limit of 30 copies per reaction. This rapid diagnostic method will be useful for clinical detection and surveillance of H6 AIVs in China.

  20. Development and validation of a real-time PCR assay for the detection of anguillid herpesvirus 1.

    PubMed

    van Beurden, S J; Voorbergen-Laarman, M A; Roozenburg, I; van Tellingen, J; Haenen, O L M; Engelsma, M Y

    2016-01-01

    Anguillid herpesvirus 1 (AngHV1) causes a haemorrhagic disease with increased mortality in wild and farmed European eel, Anguilla anguilla (L.) and Japanese eel Anguilla japonica, Temminck & Schlegel). Detection of AngHV1 is currently based on virus isolation in cell culture, antibody-based typing assays or conventional PCR. We developed, optimized and concisely validated a diagnostic TaqMan probe based real-time PCR assay for the detection of AngHV1. The primers and probe target AngHV1 open reading frame 57, encoding the capsid protease and scaffold protein. Compared to conventional PCR, the developed real-time PCR is faster, less labour-intensive and has a reduced risk of cross-contamination. The real-time PCR assay was shown to be analytically sensitive and specific and has a high repeatability, efficiency and r(2) -value. The diagnostic performance of the assay was determined by testing 10% w/v organ suspensions and virus cultures from wild and farmed European eels from the Netherlands by conventional and real-time PCR. The developed real-time PCR assay is a useful tool for the rapid and sensitive detection of AngHV1 in 10% w/v organ suspensions from wild and farmed European eels. © 2015 John Wiley & Sons Ltd.

  1. New approaches for the standardization and validation of a real-time qPCR assay using TaqMan probes for quantification of yellow fever virus on clinical samples with high quality parameters.

    PubMed

    Fernandes-Monteiro, Alice G; Trindade, Gisela F; Yamamura, Anna M Y; Moreira, Otacilio C; de Paula, Vanessa S; Duarte, Ana Cláudia M; Britto, Constança; Lima, Sheila Maria B

    2015-01-01

    The development and production of viral vaccines, in general, involve several steps that need the monitoring of viral load throughout the entire process. Applying a 2-step quantitative reverse transcription real time PCR assay (RT-qPCR), viral load can be measured and monitored in a few hours. In this context, the development, standardization and validation of a RT-qPCR test to quickly and efficiently quantify yellow fever virus (YFV) in all stages of vaccine production are extremely important. To serve this purpose we used a plasmid construction containing the NS5 region from 17DD YFV to generate the standard curve and to evaluate parameters such as linearity, precision and specificity against other flavivirus. Furthermore, we defined the limits of detection as 25 copies/reaction, and quantification as 100 copies/reaction for the test. To ensure the quality of the method, reference controls were established in order to avoid false negative results. The qRT-PCR technique based on the use of TaqMan probes herein standardized proved to be effective for determining yellow fever viral load both in vivo and in vitro, thus becoming a very important tool to assure the quality control for vaccine production and evaluation of viremia after vaccination or YF disease.

  2. New approaches for the standardization and validation of a real-time qPCR assay using TaqMan probes for quantification of yellow fever virus on clinical samples with high quality parameters

    PubMed Central

    Fernandes-Monteiro, Alice G; Trindade, Gisela F; Yamamura, Anna MY; Moreira, Otacilio C; de Paula, Vanessa S; Duarte, Ana Cláudia M; Britto, Constança; Lima, Sheila Maria B

    2015-01-01

    The development and production of viral vaccines, in general, involve several steps that need the monitoring of viral load throughout the entire process. Applying a 2-step quantitative reverse transcription real time PCR assay (RT-qPCR), viral load can be measured and monitored in a few hours. In this context, the development, standardization and validation of a RT-qPCR test to quickly and efficiently quantify yellow fever virus (YFV) in all stages of vaccine production are extremely important. To serve this purpose we used a plasmid construction containing the NS5 region from 17DD YFV to generate the standard curve and to evaluate parameters such as linearity, precision and specificity against other flavivirus. Furthermore, we defined the limits of detection as 25 copies/reaction, and quantification as 100 copies/reaction for the test. To ensure the quality of the method, reference controls were established in order to avoid false negative results. The qRT-PCR technique based on the use of TaqMan probes herein standardized proved to be effective for determining yellow fever viral load both in vivo and in vitro, thus becoming a very important tool to assure the quality control for vaccine production and evaluation of viremia after vaccination or YF disease. PMID:26011746

  3. Relationship Between Ebola Virus Real-Time Quantitative Polymerase Chain Reaction-Based Threshold Cycle Value and Virus Isolation From Human Plasma.

    PubMed

    Spengler, Jessica R; McElroy, Anita K; Harmon, Jessica R; Ströher, Ute; Nichol, Stuart T; Spiropoulou, Christina F

    2015-10-01

    We performed a longitudinal analysis of plasma samples obtained from 4 patients with Ebola virus (EBOV) disease (EVD) to determine the relationship between the real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR)-based threshold cycle (Ct) value and the presence of infectious EBOV. EBOV was not isolated from plasma samples with a Ct value of >35.5 or >12 days after onset of symptoms. EBOV was not isolated from plasma samples in which anti-EBOV nucleoprotein immunoglobulin G was detected. These data demonstrate the utility of interpreting qRT-PCR results in the context of the course of EBOV infection and associated serological responses for patient-management decisions. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  4. International ring trial for the validation of an event-specific Golden Rice 2 quantitative real-time polymerase chain reaction method.

    PubMed

    Jacchia, Sara; Nardini, Elena; Bassani, Niccolò; Savini, Christian; Shim, Jung-Hyun; Trijatmiko, Kurniawan; Kreysa, Joachim; Mazzara, Marco

    2015-05-27

    This article describes the international validation of the quantitative real-time polymerase chain reaction (PCR) detection method for Golden Rice 2. The method consists of a taxon-specific assay amplifying a fragment of rice Phospholipase D α2 gene, and an event-specific assay designed on the 3' junction between transgenic insert and plant DNA. We validated the two assays independently, with absolute quantification, and in combination, with relative quantification, on DNA samples prepared in haploid genome equivalents. We assessed trueness, precision, efficiency, and linearity of the two assays, and the results demonstrate that both the assays independently assessed and the entire method fulfill European and international requirements for methods for genetically modified organism (GMO) testing, within the dynamic range tested. The homogeneity of the results of the collaborative trial between Europe and Asia is a good indicator of the robustness of the method.

  5. Micro-droplet Digital Polymerase Chain Reaction and Real-Time Quantitative Polymerase Chain Reaction Technologies Provide Highly Sensitive and Accurate Detection of Zika Virus.

    PubMed

    Hui, Yuan; Wu, Zhiming; Qin, Zhiran; Zhu, Li; Liang, Junhe; Li, Xujuan; Fu, Hanmin; Feng, Shiyu; Yu, Jianhai; He, Xiaoen; Lu, Weizhi; Xiao, Weiwei; Wu, Qinghua; Zhang, Bao; Zhao, Wei

    2018-06-01

    The establishment of highly sensitive diagnostic methods is critical in the early diagnosis and control of Zika virus (ZIKV) and in preventing serious neurological complications of ZIKV infection. In this study, we established micro-droplet digital polymerase chain reaction (ddPCR) and real-time quantitative PCR (RT-qPCR) protocols for the detection of ZIKV based on the amplification of the NS5 gene. For the ZIKV standard plasmid, the RT-qPCR results showed that the cycle threshold (Ct) value was linear from 10 1 to 10 8  copy/μL, with a standard curve R 2 of 0.999 and amplification efficiency of 92.203%; however, a concentration as low as 1 copy/μL could not be detected. In comparison with RT-qPCR, the ddPCR method resulted in a linear range of 10 1 -10 4  copy/μL and was able to detect concentrations as low as 1 copy/μL. Thus, for detecting ZIKV from clinical samples, RT-qPCR is a better choice for high-concentration samples (above 10 1  copy/μL), while ddPCR has excellent accuracy and sensitivity for low-concentration samples. These results indicate that the ddPCR method should be of considerable use in the early diagnosis, laboratory study, and monitoring of ZIKV.

  6. Real-time reverse transcription polymerase chain reaction method for detection of Canine distemper virus modified live vaccine shedding for differentiation from infection with wild-type strains.

    PubMed

    Wilkes, Rebecca P; Sanchez, Elena; Riley, Matthew C; Kennedy, Melissa A

    2014-01-01

    Canine distemper virus (CDV) remains a common cause of infectious disease in dogs, particularly in high-density housing situations such as shelters. Vaccination of all dogs against CDV is recommended at the time of admission to animal shelters and many use a modified live virus (MLV) vaccine. From a diagnostic standpoint for dogs with suspected CDV infection, this is problematic because highly sensitive diagnostic real-time reverse transcription polymerase chain reaction (RT-PCR) tests are able to detect MLV virus in clinical samples. Real-time PCR can be used to quantitate amount of virus shedding and can differentiate vaccine strains from wild-type strains when shedding is high. However, differentiation by quantitation is not possible in vaccinated animals during acute infection, when shedding is low and could be mistaken for low level vaccine virus shedding. While there are gel-based RT-PCR assays for differentiation of vaccine strains from field strains based on sequence differences, the sensitivity of these assays is unable to match that of the real-time RT-PCR assay currently used in the authors' laboratory. Therefore, a real-time RT-PCR assay was developed that detects CDV MLV vaccine strains and distinguishes them from wild-type strains based on nucleotide sequence differences, rather than the amount of viral RNA in the sample. The test is highly sensitive, with detection of as few as 5 virus genomic copies (corresponding to 10(-1) TCID(50)). Sequencing of the DNA real-time products also allows phylogenetic differentiation of the wild-type strains. This test will aid diagnosis during outbreaks of CDV in recently vaccinated animals.

  7. Multiplex real-time RT-PCR assay for bovine viral diarrhea virus type 1, type 2 and HoBi-like pestivirus.

    PubMed

    Mari, Viviana; Losurdo, Michele; Lucente, Maria Stella; Lorusso, Eleonora; Elia, Gabriella; Martella, Vito; Patruno, Giovanni; Buonavoglia, Domenico; Decaro, Nicola

    2016-03-01

    HoBi-like pestiviruses are emerging pestiviruses that infect cattle causing clinical forms overlapping to those induced by bovine viral diarrhea virus (BVDV) 1 and 2. As a consequence of their widespread distribution reported in recent years, molecular tools for rapid discrimination among pestiviruses infecting cattle are needed. The aim of the present study was to develop a multiplex real-time RT-PCR assay, based on the TaqMan technology, for the rapid and unambiguous characterisation of all bovine pestiviruses, including the emerging HoBi-like strains. The assay was found to be sensitive, specific and repeatable, ensuring detection of as few as 10(0)-10(1) viral RNA copies. No cross-reactions between different pestiviral species were observed even in samples artificially contaminated with more than one pestivirus. Analysis of field samples tested positive for BVDV-1, BVDV-2 or HoBi-like virus by a nested PCR protocol revealed that the developed TaqMan assay had equal or higher sensitivity and was able to discriminate correctly the viral species in all tested samples, whereas a real-time RT-PCR assay previously developed for HoBi-like pestivirus detection showed cross-reactivity with few high-titre BVDV-2 samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Oligonucleotide microarray analysis of gene expression profiles followed by real-time reverse-transcriptase polymerase chain reaction assay in chronic active Epstein-Barr virus infection.

    PubMed

    Ito, Yoshinori; Shibata-Watanabe, Yukiko; Ushijima, Yoko; Kawada, Jun-Ichi; Nishiyama, Yukihiro; Kojima, Seiji; Kimura, Hiroshi

    2008-03-01

    Chronic active Epstein-Barr virus infection (CAEBV) is characterized by recurrent infectious mononucleosis-like symptoms and has high mortality and morbidity. To clarify the mechanisms of CAEBV, the gene-expression profiles of peripheral blood obtained from patients with CAEBV were investigated. Twenty genes were differentially expressed in 4 patients with CAEBV. This microarray result was verified using a real-time reverse-transcriptase polymerase chain reaction assay in a larger group of patients with CAEBV. Eventually, 3 genes were found to be significantly upregulated: guanylate binding protein 1, tumor necrosis factor-induced protein 6, and guanylate binding protein 5. These genes may be associated with the inflammatory reaction or with cell proliferation.

  9. Real-Time PCR for the Detection of Precise Transgene Copy Number in Wheat.

    PubMed

    Giancaspro, Angelica; Gadaleta, Agata; Blanco, Antonio

    2017-01-01

    Despite the unceasing advances in genetic transformation techniques, the success of common delivery methods still lies on the behavior of the integrated transgenes in the host genome. Stability and expression of the introduced genes are influenced by several factors such as chromosomal location, transgene copy number and interaction with the host genotype. Such factors are traditionally characterized by Southern blot analysis, which can be time-consuming, laborious, and often unable to detect the exact copy number of rearranged transgenes. Recent research in crop field suggests real-time PCR as an effective and reliable tool for the precise quantification and characterization of transgene loci. This technique overcomes most problems linked to phenotypic segregation analysis and can analyze hundreds of samples in a day, making it an efficient method for estimating a gene copy number integrated in a transgenic line. This protocol describes the use of real-time PCR for the detection of transgene copy number in durum wheat transgenic lines by means of two different chemistries (SYBR ® Green I dye and TaqMan ® probes).

  10. Development of hydrolysis probe-based real-time PCR for identification of virulent gene targets of Burkholderia pseudomallei and B. mallei--a retrospective study on archival cases of service members with melioidosis and glanders.

    PubMed

    Zhang, Binxue; Wear, Douglas J; Kim, H S; Weina, Peter; Stojadinovic, Alexander; Izadjoo, Mina

    2012-02-01

    Burkholderia pseudomallei and B. mallei are two highly pathogenic bacteria responsible for melioidosis and glanders, respectively. Our laboratory developed hydrolysis probe-based real-time polymerase chain reaction assays targeting type three secretion system (TTS) and transposase family protein (TFP) of B. pseudomallei and B. malli, respectively. The assays were validated for target specificity, amplification sensitivity, and reproducibility. A bacterial DNA panel, composed of B. pseudomallei (13 strains), B. mallei (11 strains), Burkholderia species close neighbors (5 strains), and other bacterial species (17 strains), was prepared for specificity testing. Reference DNAs from B. pseudomallei and B. mallei bacterial cultures were used as controls for amplification, limit of detection, and reproducibility testing. The two TaqMan assays, Bp-TTS 1 and Bm-TFP, were optimized and applied in a retrospective study of archived cases from the Armed Forces Institute of Pathology. We tested 10 formalin-fixed paraffin-embedded blocks originally from autopsy specimens of patients who died of melioidosis or glanders during or after overseas tours in 1960s. Polymerase chain reaction results confirmed that DNA samples from formalin-fixed paraffin-embedded blocks of eight patients with melioidosis were positive for Bp-TTS 1 target and two patients with glanders were positive for Bm-TFP target.

  11. Detection of Rickettsia rickettsii, Rickettsia parkeri, and Rickettsia akari in Skin Biopsy Specimens Using a Multiplex Real-time Polymerase Chain Reaction Assay

    PubMed Central

    Denison, Amy M.; Amin, Bijal D.; Nicholson, William L.; Paddock, Christopher D.

    2015-01-01

    Background Rickettsia rickettsii, Rickettsia parkeri, and Rickettsia akari are the most common causes of spotted fever group rickettsioses indigenous to the United States. Infected patients characteristically present with a maculopapular rash, often accompanied by an inoculation eschar. Skin biopsy specimens are often obtained from these lesions for diagnostic evaluation. However, a species-specific diagnosis is achieved infrequently from pathologic specimens because immunohistochemical stains do not differentiate among the causative agents of spotted fever group rickettsiae, and existing polymerase chain reaction (PCR) assays generally target large gene segments that may be difficult or impossible to obtain from formalin-fixed tissues. Methods This work describes the development and evaluation of a multiplex real-time PCR assay for the detection of these 3 Rickettsia species from formalin-fixed, paraffin-embedded (FFPE) skin biopsy specimens. Results The multiplex PCR assay was specific at discriminating each species from FFPE controls of unrelated bacterial, viral, protozoan, and fungal pathogens that cause skin lesions, as well as other closely related spotted fever group Rickettsia species. Conclusions This multiplex real-time PCR demonstrates greater sensitivity than nested PCR assays in FFPE tissues and provides an effective method to specifically identify cases of Rocky Mountain spotted fever, rickettsialpox, and R. parkeri rickettsiosis by using skin biopsy specimens. PMID:24829214

  12. A novel method of multiple nucleic acid detection: Real-time RT-PCR coupled with probe-melting curve analysis.

    PubMed

    Han, Yang; Hou, Shao-Yang; Ji, Shang-Zhi; Cheng, Juan; Zhang, Meng-Yue; He, Li-Juan; Ye, Xiang-Zhong; Li, Yi-Min; Zhang, Yi-Xuan

    2017-11-15

    A novel method, real-time reverse transcription PCR (real-time RT-PCR) coupled with probe-melting curve analysis, has been established to detect two kinds of samples within one fluorescence channel. Besides a conventional TaqMan probe, this method employs another specially designed melting-probe with a 5' terminus modification which meets the same label with the same fluorescent group. By using an asymmetric PCR method, the melting-probe is able to detect an extra sample in the melting stage effectively while it almost has little influence on the amplification detection. Thus, this method allows the availability of united employment of both amplification stage and melting stage for detecting samples in one reaction. The further demonstration by simultaneous detection of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in one channel as a model system is presented in this essay. The sensitivity of detection by real-time RT-PCR coupled with probe-melting analysis was proved to be equal to that detected by conventional real-time RT-PCR. Because real-time RT-PCR coupled with probe-melting analysis can double the detection throughputs within one fluorescence channel, it is expected to be a good solution for the problem of low-throughput in current real-time PCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Use of internally controlled real-time genome amplification for detection of variola virus and other orthopoxviruses infecting humans.

    PubMed

    Fedele, C G; Negredo, A; Molero, F; Sánchez-Seco, M P; Tenorio, A

    2006-12-01

    Smallpox, once a devastating disease caused by Variola virus, a member of the Orthopoxvirus genus, was eradicated in 1980. However, the importance of variola virus infections has been stressed widely in the last few years, particularly following recent social events in the world. Today, variola virus is considered to be one of the most significant agents with potential use as a biological weapon. In this study we developed an internally controlled real-time PCR assay for rapid detection and simultaneous differentiation of variola virus from other orthopoxviruses. The assay is based on TaqMan 3'-minor groove binder (MGB) chemistry and uses generic primers, designed in highly conserved genomic regions of the crmB gene, and three TaqMan MGB probes designed to identify orthopoxviruses, variola virus, and an internal control. The results obtained suggest that the assay is rapid, sensitive, specific, and suitable for the generic detection of orthopoxviruses and the identification of variola virus and avoids false-negative results in a single reaction tube.

  14. [A quantitative real time polymerase chain reaction for detection of HBV covalently closed circular DNA in livers of the HBV infected patients].

    PubMed

    Wang, Mei-Rong; Qiu, Ning; Lu, Shi-Chun; Xiu, Dian-Rong; Yu, Jian-Guo; Li, Tong; Liu, Xue-En; Zhuang, Hui

    2011-05-01

    To establish and optimize a sensitive and specific quantitative real-time polymerase chain reaction (PCR) method for detection of hepatitis B virus covalently closed circular DNA (HBV cccDNA) in liver tissue. Specific primers and probes were designed to detect HBV DNA (tDNA) and cccDNA. A series of plasmids (3.44 × 10(0) - 3.44 × 10(9) copies/µl) containing a full double-stranded copies of HBV genome (genotype C) were used to establish the standard curve of real-time PCR. Liver samples of 33 patients with HBV related hepatocellular carcinoma (HCC), 13 Chronic hepatitis B patients (CHB) and 10 non-HBV patients were collected to verify the sensitivity and specificity of the assay. A fraction of extracted DNA was digested with a Plasmid-Safe ATP-dependent Dnase (PSAD) for HBV cccDNA detection and the remaining was used for tDNA and β-globin detection. The amount (copies/cell) of HBV cccDNA and tDNA were measured by a real-time PCR, using β-globin housekeeping gene as a quantitation standard. The standard curves of real-time PCR with a linear range of 3.44 × 10(0) to 3.44 × 10(9) copies/µl were established for detecting HBV cccDNA and tDNA, and both of the lowest detection limits of HBV cccDNA and tDNA were 3.44 × 10(0) copies/µl. The lowest quantitation levels of HBV cccDNA in liver tissues tested in 33 HBV related HCC patients and 13 CHB patients were 0.003 copies/cell and 0.031 copies/cell, respectively. HBV cccDNA and tDNA in liver tissue of 10 non-HBV patient appeared to be negative. The true positive rate was increasing through the digestion of HBV DNA by PSAD, and the analytic specificity of cccDNA detection improved by 7.24 × 10(2) times. Liver tissues of 2 patients were retested 5 times in the PCR for detecting cccDNA and the coefficient of variations on cycle threshold (Ct) were between 0.224% - 0.609%. A highly sensitive and specific quantitative real time PCR method for the detection of HBV cccDNA in liver tissue was established and could be used

  15. Simultaneous detection of hemagglutinin and neuraminidase genes of novel influenza A (H7N9) by duplex real-time reverse transcription polymerase chain reaction.

    PubMed

    Li, Yan; Wu, Tao; Qi, Xian; Ge, Yiyue; Guo, Xiling; Wu, Bin; Yu, Huiyan; Zhu, Yefei; Shi, Zhiyang; Wang, Hua; Cui, Lunbiao; Zhou, Minghao

    2013-12-01

    A novel reassortant influenza A (H7N9) virus emerged recently in China. In this study, a duplex real-time reverse transcription polymerase chain reaction (rRT-PCR) assay was developed for the simultaneous detection of hemagglutinin (HA) and neuraminidase (NA) genes of H7N9 influenza viruses. The sensitivity of the assay was determined to be 10 RNA copies per reaction for both HA and NA genes. No cross-reactivity was observed with other influenza virus subtypes or respiratory tract viruses. One hundred and forty-six clinical and environmental specimens were tested and compared with reference methods and were found to be consistent. The assay is suitable for large-scale screening due to short turnaround times and high specificity, sensitivity, and reproducibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Development of a diagnostic real-time polymerase chain reaction assay for the detection of invasive Haemophilus influenzae in clinical samples.

    PubMed

    Meyler, Kenneth L; Meehan, Mary; Bennett, Desiree; Cunney, Robert; Cafferkey, Mary

    2012-12-01

    Since the introduction of the Haemophilus influenzae serotype b vaccine, invasive H. influenzae disease has become dominated by nontypeable (NT) strains. Several widely used molecular diagnostic methods have been shown to lack sensitivity or specificity in the detection of some of these strains. Novel real-time assays targeting the fucK, licA, and ompP2 genes were developed and evaluated. The fucK assay detected all strains of H. influenzae tested (n = 116) and had an analytical sensitivity of 10 genome copies/polymerase chain reaction (PCR). This assay detected both serotype b and NT H. influenzae in 12 previously positive specimens (culture and/or bexA PCR) and also detected H. influenzae in a further 5 of 883 culture-negative blood and cerebrospinal fluid (CSF) samples. The fucK assay has excellent potential as a diagnostic test for detection of typeable and nontypeable strains of invasive H. influenzae in clinical samples of blood and CSF. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. REAL TIME PCR ANALYSIS OF INDOOR MOLDS: PRINCIPLES, PROCEDURES AND APPLICATIONS

    EPA Science Inventory

    This presentation will endeavor to present an overview of the real time polymerase chain reaction method developed for indoor mold detection and quantification by the EPA. It will begin with a brief discussion of the PCR technology that provides the basis for this method and how ...

  18. Duplex real-time polymerase chain reaction reveals competition between Erwinia amylovora and E. pyrifoliae on pear blossoms.

    PubMed

    Lehman, Susan M; Kim, Won-Sik; Castle, Alan J; Svircev, Antonet M

    2008-06-01

    Erwinia amylovora and E. pyrifoliae are the causative agents of fire blight and Asian pear blight, respectively. The pathogens are closely related, with overlapping host ranges. Data are unavailable on the current distribution of E. pyrifoliae and on the interaction between the two species when they are present together on the same host. In this study, a duplex real-time polymerase chain reaction (PCR) protocol was developed to monitor the population dynamics of E. amylovora and E. pyrifoliae on the surface of Bartlett pear blossoms. Bacterial cells washed from blossoms were used directly as the PCR template without DNA extraction. Primers and a probe based on the E. amylovora levansucrase gene detected all E. amylovora strains. All E. pyrifoliae strains, including the Japanese Erwinia strains previously described as E. amylovora, were detected with a primer and probe combination based on the E. pyrifoliae hrpW gene. Disease development and severity were not significantly different in blossoms inoculated with individual Erwinia species or with a mixture of the two species. However, E. amylovora grew to greater population sizes than did E. pyrifoliae in both single species inoculations and in mixtures, suggesting that E. amylovora has a greater competitive fitness on Bartlett pear blossoms than E. pyrifoliae.

  19. Assessment of Legionella pneumophila in recreational spring water with quantitative PCR (Taqman) assay.

    PubMed

    Shen, Shu-Min; Chou, Ming-Yuan; Hsu, Bing-Mu; Ji, Wen-Tsai; Hsu, Tsui-Kang; Tsai, Hsiu-Feng; Huang, Yu-Li; Chiu, Yi-Chou; Kao, Erl-Shyh; Kao, Po-Min; Fan, Cheng-Wei

    2015-07-01

    Legionella spp. are common in various natural and man-made aquatic environments. Recreational hot spring is frequently reported as an infection hotspot because of various factors such as temperature and humidity. Although polymerase chain reaction (PCR) had been used for detecting Legionella, several inhibitors such as humic substances, calcium, and melanin in the recreational spring water may interfere with the reaction thus resulting in risk underestimation. The purpose of this study was to compare the efficiencies of conventional and Taqman quantitative PCR (qPCR) on detecting Legionella pneumophila in spring facilities and in receiving water. In the results, Taqman PCR had much better efficiency on specifying the pathogen in both river and spring samples. L. pneumophila was detected in all of the 27 river water samples and 45 of the 48 hot spring water samples. The estimated L. pneumophela concentrations ranged between 1.0 × 10(2) and 3.3 × 10(5) cells/l in river water and 72.1-5.7 × 10(6) cells/l in hot spring water. Total coliforms and turbidity were significantly correlated with concentrations of L. pneumophila in positive water samples. Significant difference was also found in water temperature between the presence/absence of L. pneumophila. Our results suggest that conventional PCR may be not enough for detecting L. pneumophila particularly in the aquatic environments full of reaction inhibitors.

  20. Development and use of a real-time polymerase chain reaction assay for the detection of Ophidiomyces ophiodiicola in snakes.

    PubMed

    Allender, Matthew C; Bunick, David; Dzhaman, Elena; Burrus, Lucienne; Maddox, Carol

    2015-03-01

    Fungal pathogens threatening the conservation of wildlife are becoming increasingly common. Since 2008, free-ranging snakes across North America have been experiencing a marked increase in the prevalence of snake fungal disease associated with Ophidiomyces ophiodiicola. Diagnosis has historically relied on histology, microbiology, and conventional polymerase chain reaction (PCR). More sensitive methods are needed to adequately characterize the epidemiology. The current study describes the development of a real-time PCR (qPCR) assay for detecting a segment of the internal transcribed spacer 1 region between the 18S and 5.8S ribosomal RNA gene. The assay was able to detect as few as 1.05 × 10(1) gene copies per reaction. An additional 4 positive cases were detected when comparing a conventional PCR (n = 3) and the qPCR (n = 7) when used on swab samples from 47 eastern massasauga rattlesnakes. The newly developed assay is a sensitive and specific tool for surveillance and monitoring in the conservation of free-ranging snakes. © 2015 The Author(s).

  1. BK virus DNA detection by real-time polymerase chain reaction in clinical specimens.

    PubMed

    Marchetti, Simona; Graffeo, Rosalia; Siddu, Alessia; Santangelo, Rosaria; Ciotti, Marco; Picardi, Alessandra; Favalli, Cartesio; Fadda, Giovanni; Cattani, Paola

    2007-04-01

    The BK polyomavirus (BKV) is widespread in the general population. In transplant recipients, the patients' weakened immune response may encourage reactivation of latent infection, leading to BKV-related diseases. Rapid and quantitative detection might help to delineate viral reactivation patterns and could thus play an important role in their clinical management. In our study we developed an "in-house" quantitative real-time PCR to detect BKV DNA. The effectiveness of this assay was evaluated by a retrospective analysis of 118 plasma specimens from 22 bone marrow transplant (BMT) recipients and 107 samples from immunocompetent subjects. Eight (36.3%) of the 22 bone marrow transplant recipients tested positive for BKV. The viral load varied from specimen to specimen (10 to 10(5) copies/ml). BKV related disease like hemorrhagic cystitis (HC) was diagnosed in three patients. Specimens from the control group all tested negative. Our results showed the high sensitivity of the real-time PCR, allowing accurate and reproducible measuring of the viral load in order to identify patients at risk for BKV-related diseases. With due caution in interpreting threshold values, the real-time PCR could provide a rapid, sensitive and specific tool for detecting BKV and distinguishing latent and active infection.

  2. Quantitative detection method for Roundup Ready soybean in food using duplex real-time PCR MGB chemistry.

    PubMed

    Samson, Maria Cristina; Gullì, Mariolina; Marmiroli, Nelson

    2010-07-01

    Methodologies that enable the detection of genetically modified organisms (GMOs) (authorized and non-authorized) in food and feed strongly influence the potential for adequate updating and implementation of legislation together with labeling requirements. Quantitative polymerase chain reaction (qPCR) systems were designed to boost the sensitivity and specificity on the identification of GMOs in highly degraded DNA samples; however, such testing will become economically difficult to cope with due to increasing numbers of approved genetically modified (GM) lines. Multiplexing approaches are therefore in development to provide cost-efficient solution. Construct-specific primers and probe were developed for quantitative analysis of Roundup Ready soybean (RRS) event glyphosate-tolerant soybean (GTS) 40-3-2. The lectin gene (Le1) was used as a reference gene, and its specificity was verified. RRS- and Le1-specific quantitative real-time PCR (qRTPCR) were optimized in a duplex platform that has been validated with respect to limit of detection (LOD) and limit of quantification (LOQ), as well as accuracy. The analysis of model processed food samples showed that the degradation of DNA has no adverse or little effects on the performance of quantification assay. In this study, a duplex qRTPCR using TaqMan minor groove binder-non-fluorescent quencher (MGB-NFQ) chemistry was developed for specific detection and quantification of RRS event GTS 40-3-2 that can be used for practical monitoring in processed food products.

  3. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    ERIC Educational Resources Information Center

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  4. Detection of Legionella by cultivation and quantitative real-time polymerase chain reaction in biological waste water treatment plants in Norway.

    PubMed

    Lund, Vidar; Fonahn, Wenche; Pettersen, Jens Erik; Caugant, Dominique A; Ask, Eirik; Nysaeter, Ase

    2014-09-01

    Cases of Legionnaires' disease associated with biological treatment plants (BTPs) have been reported in six countries between 1997 and 2010. However, knowledge about the occurrence of Legionella in BTPs is scarce. Hence, we undertook a qualitative and quantitative screening for Legionella in BTPs treating waste water from municipalities and industries in Norway, to assess the transmission potential of Legionella from these installations. Thirty-three plants from different industries were sampled four times within 1 year. By cultivation, 21 (16%) of 130 analyses were positive for Legionella species and 12 (9%) of 130 analyses were positive for Legionella pneumophila. By quantitative real-time polymerase chain reaction (PCR), 433 (99%) of 437 analyses were positive for Legionella species and 218 (46%) of 470 analyses were positive for L. pneumophila. This survey indicates that PCR could be the preferable method for detection of Legionella in samples from BTPs. Sequence types of L. pneumophila associated with outbreaks in Norway were not identified from the BTPs. We showed that a waste water treatment plant with an aeration basin can produce high concentrations of Legionella. Therefore, these plants should be considered as a possible source of community-acquired Legionella infections.

  5. Rapid Quantitative Detection of Lactobacillus sakei in Meat and Fermented Sausages by Real-Time PCR

    PubMed Central

    Martín, Belén; Jofré, Anna; Garriga, Margarita; Pla, Maria; Aymerich, Teresa

    2006-01-01

    A quick and simple method for quantitative detection of Lactobacillus sakei in fermented sausages was successfully developed. It is based on Chelex-100-based DNA purification and real-time PCR enumeration using a TaqMan fluorescence probe. Primers and probes were designed in the L. sakei 16S-23S rRNA intergenic transcribed spacer region, and the assay was evaluated using L. sakei genomic DNA and an artificially inoculated sausage model. The detection limit of this technique was approximately 3 cells per reaction mixture using both purified DNA and the inoculated sausage model. The quantification limit was established at 30 cells per reaction mixture in both models. The assay was then applied to enumerate L. sakei in real samples, and the results were compared to the MRS agar count method followed by confirmation of the percentage of L. sakei colonies. The results obtained by real-time PCR were not statistically significantly different than those obtained by plate count on MRS agar (P > 0.05), showing a satisfactory agreement between both methods. Therefore, the real-time PCR assay developed can be considered a promising rapid alternative method for the quantification of L. sakei and evaluation of the implantation of starter strains of L. sakei in fermented sausages. PMID:16957227

  6. Rapid quantitative detection of Lactobacillus sakei in meat and fermented sausages by real-time PCR.

    PubMed

    Martín, Belén; Jofré, Anna; Garriga, Margarita; Pla, Maria; Aymerich, Teresa

    2006-09-01

    A quick and simple method for quantitative detection of Lactobacillus sakei in fermented sausages was successfully developed. It is based on Chelex-100-based DNA purification and real-time PCR enumeration using a TaqMan fluorescence probe. Primers and probes were designed in the L. sakei 16S-23S rRNA intergenic transcribed spacer region, and the assay was evaluated using L. sakei genomic DNA and an artificially inoculated sausage model. The detection limit of this technique was approximately 3 cells per reaction mixture using both purified DNA and the inoculated sausage model. The quantification limit was established at 30 cells per reaction mixture in both models. The assay was then applied to enumerate L. sakei in real samples, and the results were compared to the MRS agar count method followed by confirmation of the percentage of L. sakei colonies. The results obtained by real-time PCR were not statistically significantly different than those obtained by plate count on MRS agar (P > 0.05), showing a satisfactory agreement between both methods. Therefore, the real-time PCR assay developed can be considered a promising rapid alternative method for the quantification of L. sakei and evaluation of the implantation of starter strains of L. sakei in fermented sausages.

  7. Molecular Detection of the Carriage Rate of Four Intestinal Protozoa with Real-Time Polymerase Chain Reaction: Possible Overdiagnosis of Entamoeba histolytica in Nigeria

    PubMed Central

    Efunshile, Michael A.; Ngwu, Bethrand A. F.; Kurtzhals, Jørgen A. L.; Sahar, Sumrin; König, Brigitte; Stensvold, Christen R.

    2015-01-01

    Diarrhea remains the second largest killer of children worldwide, and Nigeria ranks number two on the list of global deaths attributable to diarrhea. Meanwhile, prevalence studies on potentially diarrheagenic protozoa in asymptomatic carriers using molecular detection methods remain scarce in sub-Saharan countries. To overcome sensitivity issues related to microscopic detection and identification of cysts in stool concentrates, real-time polymerase chain reaction (PCR) was used to analyze genomic DNAs extracted from stool samples from 199 healthy school children for Entamoeba histolytica, E. dispar, Giardia intestinalis, and Cryptosporidium. Questionnaires were administered for epidemiological data collection. E. histolytica was not detected in any of the samples, whereas Giardia (37.2%), E. dispar (18.6%), and Cryptosporidium (1%) were found. Most of the children sourced their drinking water from community wells (91%), while the majority disposed of feces in the bush (81.9%). Our study is the first to use real-time PCR to evaluate the epidemiology of E. histolytica, Giardia, and Cryptosporidium in Nigeria where previous studies using traditional diagnostic techniques have suggested higher and lower carriage rates of E. histolytica and Giardia, respectively. It is also the first study to accurately identify the prevalence of common potentially diarrheagenic protozoa in asymptomatic carriers in sub-Saharan Africa. PMID:26101274

  8. Molecular Detection of the Carriage Rate of Four Intestinal Protozoa with Real-Time Polymerase Chain Reaction: Possible Overdiagnosis of Entamoeba histolytica in Nigeria.

    PubMed

    Efunshile, Michael A; Ngwu, Bethrand A F; Kurtzhals, Jørgen A L; Sahar, Sumrin; König, Brigitte; Stensvold, Christen R

    2015-08-01

    Diarrhea remains the second largest killer of children worldwide, and Nigeria ranks number two on the list of global deaths attributable to diarrhea. Meanwhile, prevalence studies on potentially diarrheagenic protozoa in asymptomatic carriers using molecular detection methods remain scarce in sub-Saharan countries. To overcome sensitivity issues related to microscopic detection and identification of cysts in stool concentrates, real-time polymerase chain reaction (PCR) was used to analyze genomic DNAs extracted from stool samples from 199 healthy school children for Entamoeba histolytica, E. dispar, Giardia intestinalis, and Cryptosporidium. Questionnaires were administered for epidemiological data collection. E. histolytica was not detected in any of the samples, whereas Giardia (37.2%), E. dispar (18.6%), and Cryptosporidium (1%) were found. Most of the children sourced their drinking water from community wells (91%), while the majority disposed of feces in the bush (81.9%). Our study is the first to use real-time PCR to evaluate the epidemiology of E. histolytica, Giardia, and Cryptosporidium in Nigeria where previous studies using traditional diagnostic techniques have suggested higher and lower carriage rates of E. histolytica and Giardia, respectively. It is also the first study to accurately identify the prevalence of common potentially diarrheagenic protozoa in asymptomatic carriers in sub-Saharan Africa. © The American Society of Tropical Medicine and Hygiene.

  9. Detection of adulterated murine components in meat products by TaqMan© real-time PCR.

    PubMed

    Fang, Xin; Zhang, Chi

    2016-02-01

    Using murine meat to substitute mutton has been identified as a new type of meat fraud in China, yet no detection method for murine species has been reported. Here, three kinds of rodent were used as target species to establish a murine-specific real-time PCR method of detection. The mitochondrial cytochrome b gene (cytb) of each target was sequenced and a TaqMan probe was designed based on the cytb. Simultaneously, an internal positive control (IPC) plasmid along with its respective probe were designed to monitor the PCR reaction. As a result, the duplex real-time PCR system was verified to be specific. The limit of detection (LOD) was lower than 1 pg of DNA per reaction and 0.1% murine contamination in meat mixtures. Standard curves were generated for a quantitative analysis. Thus, this study provided a new tool to control the quality of meat products for official and third-party laboratories. Copyright © 2015. Published by Elsevier Ltd.

  10. Multiplex Real-Time PCR Assay for Rapid Detection of Methicillin-Resistant Staphylococci Directly from Positive Blood Cultures

    PubMed Central

    Wang, Hye-young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok

    2014-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 103 CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene. PMID:24648566

  11. Real-time PCR machine system modeling and a systematic approach for the robust design of a real-time PCR-on-a-chip system.

    PubMed

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design.

  12. Real-time PCR Machine System Modeling and a Systematic Approach for the Robust Design of a Real-time PCR-on-a-Chip System

    PubMed Central

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design. PMID:22315563

  13. A handheld real time thermal cycler for bacterial pathogen detection.

    PubMed

    Higgins, James A; Nasarabadi, Shanavaz; Karns, Jeffrey S; Shelton, Daniel R; Cooper, Mary; Gbakima, Aiah; Koopman, Ronald P

    2003-08-15

    The handheld advanced nucleic acid analyzer (HANAA) is a portable real time thermal cycler unit that weighs under 1 kg and uses silicon and platinum-based thermalcycler units to conduct rapid heating and cooling of plastic reaction tubes. Two light emitting diodes (LED) provide greater than 1 mW of electrical power at wavelengths of 490 nm (blue) and 525 nm (green), allowing detection of the dyes FAM and JOE/TAMRA. Results are displayed in real time as bar graphs, and up to three, 4-sample assays can be run on the charge of the 12 V portable battery pack. The HANAA was evaluated for detection of defined Escherichia coli strains, and wild-type colonies isolated from stream water, using PCR for the lac Z and Tir genes. PCR reactions using SYBR Green dye allowed detection of E. coli ATCC 11775 and E. coli O157:H7 cells in under 30 min of assay time; however, background fluorescence associated with dye binding to nonspecific PCR products was present. DNA extracted from three isolates of Bacillus anthracis Ames, linked to a bioterrorism incident in Washington DC in October 2001, were also successfully tested on the HANAA using primers for the vrrA and capA genes. Positive results were observed at 32 and 22 min of assay time, respectively. A TaqMan probe specific to the aroQ gene of Erwinia herbicola was tested on the HANAA and when 500 cells were used as template, positive results were observed after only 7 min of assay time. Background fluorescence associated with the use of the probe was negligible. The HANAA is unique in offering real time PCR in a handheld format suitable for field use; a commercial version of the instrument, offering six reaction chambers, is available as of Fall 2002.

  14. Development of duplex real-time RT-PCR based on Taqman technology for detecting simultaneously the genome of pan-enterovirus and enterovirus 71.

    PubMed

    Hwang, Seoyeon; Kang, Byunghak; Hong, Jiyoung; Kim, Ahyoun; Kim, Hyejin; Kim, Kisang; Cheon, Doo-Sung

    2013-07-01

    Human enterovirus (EV) 71 is the main etiological agent of hand, foot, and mouth disease (HFMD). It is associated with neurological complications, and caused fatalities during recent outbreaks in the Asia-Pacific region. Infections caused by EV71 could lead to many complications, ranging from brainstem encephalitis to pulmonary oedema, resulting in high mortality. In this study, a duplex real-time RT-PCR assay was developed in order to simultaneously detect pan-EV and EV71. EV71-specific primers and probes were designed based on the highly conserved VP1 region of EV71. Five EV71 strains were detected as positive, and no positive fluorescence signal was observed in the duplex real-time RT-PCR for other viral RNA, which showed 100% specificity for the selected panel, and no cross-reactions were observed in this duplex real-time RT-PCR. The EV71-specific duplex real-time RT-PCR was more sensitive than conventional RT-PCR, and detected viral titers that were 10-fold lower than those measured by the latter. Of the 381 HFMD clinical specimens, 196 (51.4%) cases were pan-EV-positive, of which 170 (86.7%) were EV71-positive when tested by pan-EV and EV71-specific duplex real-time RT-PCR. EV71-specific duplex real-time RT-PCR offers a rapid and sensitive method to detect EV71 from clinical specimens, and will allow quarantine measures to be taken more effectively during outbreaks. Copyright © 2013 Wiley Periodicals, Inc.

  15. Detection of Echinoderm Microtubule Associated Protein Like 4-Anaplastic Lymphoma Kinase Fusion Genes in Non-small Cell Lung Cancer Clinical Samples by a Real-time Quantitative Reverse Transcription Polymerase Chain Reaction Method.

    PubMed

    Zhao, Jing; Zhao, Jin-Yin; Chen, Zhi-Xia; Zhong, Wei; Li, Long-Yun; Liu, Li-Cheng; Hu, Xiao-Xu; Chen, Wei-Jun; Wang, Meng-Zhao

    2016-12-20

    Objective To establish a real-time quantitative reverse transcription polymerase chain reaction assay (qRT-PCR) for the rapid, sensitive, and specific detection of echinoderm microtubule associated protein like 4-anaplastic lymphoma kinase (EML4-ALK) fusion genes in non-small cell lung cancer. Methods The specific primers for the four variants of EML4-ALK fusion genes (V1, V2, V3a, and V3b) and Taqman fluorescence probes for the detection of the target sequences were carefully designed by the Primer Premier 5.0 software. Then, using pseudovirus containing EML4-ALK fusion genes variants (V1, V2, V3a, and V3b) as the study objects, we further analyzed the lower limit, sensitivity, and specificity of this method. Finally, 50 clinical samples, including 3 ALK-fluorescence in situ hybridization (FISH) positive specimens, were collected and used to detect EML4-ALK fusion genes using this method. Results The lower limit of this method for the detection of EML4-ALK fusion genes was 10 copies/μl if no interference of background RNA existed. Regarding the method's sensitivity, the detection resolution was as high as 1% and 0.5% in the background of 500 and 5000 copies/μl wild-type ALK gene, respectively. Regarding the method's specificity, no non-specific amplification was found when it was used to detect EML4-ALK fusion genes in leukocyte and plasma RNA samples from healthy volunteers. Among the 50 clinical samples, 47 ALK-FISH negative samples were also negative. Among 3 ALK-FISH positive samples, 2 cases were detected positive using this method, but another was not detected because of the failure of RNA extraction. Conclusion The proposed qRT-PCR assay for the detection of EML4-ALK fusion genes is rapid, simple, sensitive, and specific, which is deserved to be validated and widely used in clinical settings.

  16. [Quantitative fluorogenic real-time PCR assay for respiratory syncytial virus detection].

    PubMed

    Zhang, Qi-wei; You, Shang-you; Sun, Ji-min; Wu, Qi; Yu, Chun-hua; Zhang, Chu-yu

    2005-07-01

    To Establish a rapid and objective quantitative fluorogenic real-time PCR assay for early detection of human respiratory syncytial virus (hRSV). Two pairs of primers and one TaqMan Fluorogenic probe that are specific for the recognition of the most conservative N gene of hRSV for virus detection with LighCycler PCR in 93 nasopharyngeal secretion specimens collected from infants and young children. The assay was compared with virus isolation, routine PCR, nested PCR, and enzyme-linked immunosorbent assay (ELISA). This TaqMan assay had a sensitivity of 1 x 10(2) cDNA copies/microl with a dynamic range between 1 x 10(2) and 1 x 10(7) cDNA copies/microl, which was the same as that of nested PCR, but 10 times more sensitive than routine PCR. The specificity of the assay was evaluated by comparing hRSV with polivirus type 1, coxsackie virus type 2, influenza A, influenza B and adenovirus type 7. A PCR product of the expected size (195 bp) was produced and fluorescence signal detected for hRSV, but not for any of the other viruses. The results in LightCycler and Rotor-Gene instrument were consistent. Forty-four specimens (43.9%) were hRSV-positive with this assay and 4 (4/93,4.3%) were hRSV-positive with ELISA, showing rather low correlation between the two methods. No visible relation was found between the concentration of hRSV RNA and severity of the disease. This assay is rapid, sensitive, specific and quantitative, and has the potential of wide application for early diagnosis of hRSV infection and evaluation of the therapeutic effect.

  17. A two-step lyssavirus real-time polymerase chain reaction using degenerate primers with superior sensitivity to the fluorescent antigen test.

    PubMed

    Suin, Vanessa; Nazé, Florence; Francart, Aurélie; Lamoral, Sophie; De Craeye, Stéphane; Kalai, Michael; Van Gucht, Steven

    2014-01-01

    A generic two-step lyssavirus real-time reverse transcriptase polymerase chain reaction (qRT-PCR), based on a nested PCR strategy, was validated for the detection of different lyssavirus species. Primers with 17 to 30% of degenerate bases were used in both consecutive steps. The assay could accurately detect RABV, LBV, MOKV, DUVV, EBLV-1, EBLV-2, and ABLV. In silico sequence alignment showed a functional match with the remaining lyssavirus species. The diagnostic specificity was 100% and the sensitivity proved to be superior to that of the fluorescent antigen test. The limit of detection was ≤ 1 50% tissue culture infectious dose. The related vesicular stomatitis virus was not recognized, confirming the selectivity for lyssaviruses. The assay was applied to follow the evolution of rabies virus infection in the brain of mice from 0 to 10 days after intranasal inoculation. The obtained RNA curve corresponded well with the curves obtained by a one-step monospecific RABV-qRT-PCR, the fluorescent antigen test, and virus titration. Despite the presence of degenerate bases, the assay proved to be highly sensitive, specific, and reproducible.

  18. Real-time PCR detection of Vibrio vulnificus in oysters: comparison of oligonucleotide primers and probes targeting vvhA.

    PubMed

    Panicker, Gitika; Bej, Asim K

    2005-10-01

    We compared three sets of oligonucleotide primers and two probes designed for Vibrio vulnificus hemolysin A gene (vvhA) for TaqMan-based real-time PCR method enabling specific detection of Vibrio vulnificus in oysters. Two of three sets of primers with a probe were specific for the detection of all 81 V. vulnificus isolates by TaqMan PCR. The 25 nonvibrio and 12 other vibrio isolates tested were negative. However, the third set of primers, F-vvh1059 and R-vvh1159, with the P-vvh1109 probe, although positive for all V. vulnificus isolates, also exhibited positive cycle threshold (C(T)) values for other Vibrio spp. Optimization of the TaqMan PCR assay using F-vvh785/R-vvh990 or F-vvh731/R-vvh1113 primers and the P-vvh874 probe detected 1 pg of purified DNA and 10(3) V. vulnificus CFU/ml in pure cultures. The enriched oyster tissue homogenate did not exhibit detectable inhibition to the TaqMan PCR amplification of vvhA. Detection of 3 x 10(3) CFU V. vulnificus, resulting from a 5-h enrichment of an initial inoculum of 1 CFU/g of oyster tissue homogenate, was achieved with F-vvh785/R-vvh990 or F-vvh731/R-vvh1113 primers and P-vvh875 probe. The application of the TaqMan PCR using these primers and probe, exhibited detection of V. vulnificus on 5-h-enriched natural oysters harvested from the Gulf of Mexico. Selection of appropriate primers and a probe on vvhA for TaqMan-PCR-based detection of V. vulnificus in post-harvest-treated oysters would help avoid false-positive results, thus ensuring a steady supply of safe oysters to consumers and reducing V. vulnificus-related illnesses and deaths.

  19. Dembo polymerase chain reaction technique for detection of bovine abortion, diarrhea, and respiratory disease complex infectious agents in potential vectors and reservoirs.

    PubMed

    Rahpaya, Sayed Samim; Tsuchiaka, Shinobu; Kishimoto, Mai; Oba, Mami; Katayama, Yukie; Nunomura, Yuka; Kokawa, Saki; Kimura, Takashi; Kobayashi, Atsushi; Kirino, Yumi; Okabayashi, Tamaki; Nonaka, Nariaki; Mekata, Hirohisa; Aoki, Hiroshi; Shiokawa, Mai; Umetsu, Moeko; Morita, Tatsushi; Hasebe, Ayako; Otsu, Keiko; Asai, Tetsuo; Yamaguchi, Tomohiro; Makino, Shinji; Murata, Yoshiteru; Abi, Ahmad Jan; Omatsu, Tsutomu; Mizutani, Tetsuya

    2018-05-31

    Bovine abortion, diarrhea, and respiratory disease complexes, caused by infectious agents, result in high and significant economic losses for the cattle industry. These pathogens are likely transmitted by various vectors and reservoirs including insects, birds, and rodents. However, experimental data supporting this possibility are scarce. We collected 117 samples and screened them for 44 bovine abortive, diarrheal, and respiratory disease complex pathogens by using Dembo polymerase chain reaction (PCR), which is based on TaqMan real-time PCR. Fifty-seven samples were positive for at least one pathogen, including bovine viral diarrhea virus, bovine enterovirus, Salmonella enterica ser. Dublin, Salmonella enterica ser. Typhimurium, and Neospora caninum ; some samples were positive for multiple pathogens. Bovine viral diarrhea virus and bovine enterovirus were the most frequently detected pathogens, especially in flies, suggesting an important role of flies in the transmission of these viruses. Additionally, we detected the N. caninum genome from a cockroach sample for the first time. Our data suggest that insects (particularly flies), birds, and rodents are potential vectors and reservoirs of abortion, diarrhea, and respiratory infectious agents, and that they may transmit more than one pathogen at the same time.

  20. Use of Internally Controlled Real-Time Genome Amplification for Detection of Variola Virus and Other Orthopoxviruses Infecting Humans▿

    PubMed Central

    Fedele, C. G.; Negredo, A.; Molero, F.; Sánchez-Seco, M. P.; Tenorio, A.

    2006-01-01

    Smallpox, once a devastating disease caused by Variola virus, a member of the Orthopoxvirus genus, was eradicated in 1980. However, the importance of variola virus infections has been stressed widely in the last few years, particularly following recent social events in the world. Today, variola virus is considered to be one of the most significant agents with potential use as a biological weapon. In this study we developed an internally controlled real-time PCR assay for rapid detection and simultaneous differentiation of variola virus from other orthopoxviruses. The assay is based on TaqMan 3′-minor groove binder (MGB) chemistry and uses generic primers, designed in highly conserved genomic regions of the crmB gene, and three TaqMan MGB probes designed to identify orthopoxviruses, variola virus, and an internal control. The results obtained suggest that the assay is rapid, sensitive, specific, and suitable for the generic detection of orthopoxviruses and the identification of variola virus and avoids false-negative results in a single reaction tube. PMID:17065259

  1. A novel rapid genotyping technique for Collie eye anomaly: SYBR Green-based real-time polymerase chain reaction method applicable to blood and saliva specimens on Flinders Technology Associates filter paper.

    PubMed

    Chang, Hye-Sook; Mizukami, Keijiro; Yabuki, Akira; Hossain, Mohammad A; Rahman, Mohammad M; Uddin, Mohammad M; Arai, Toshiro; Yamato, Osamu

    2010-09-01

    Collie eye anomaly (CEA) is a canine inherited ocular disease that shows a wide variety of manifestations and severity of clinical lesions. Recently, a CEA-associated mutation was reported, and a DNA test that uses conventional polymerase chain reaction (PCR) has now become available. The objective of the current study was to develop a novel rapid genotyping technique by using SYBR Green-based real-time PCR for future large-scale surveys as a key part in the strategy to eradicate CEA by selective breeding. First, a SYBR Green-based real-time PCR assay for genotyping of CEA was developed and evaluated by using purified DNA samples from normal, carrier, and affected Border Collies in which genotypes had previously been determined by conventional PCR. This real-time PCR assay demonstrated appropriate amplifications in all genotypes, and the results were consistent with those of conventional PCR. Second, the availability of Flinders Technology Associates filter paper (FTA card) as DNA templates for the real-time PCR assay was evaluated by using blood and saliva specimens to determine suitability for CEA screening. DNA-containing solution prepared from a disc of blood- or saliva-spotted FTA cards was available directly as templates for the real-time PCR assay when the volume of solution was 2.5% of the PCR mixture. In conclusion, SYBR Green-based real-time PCR combined with FTA cards is a rapid genotyping technique for CEA that can markedly shorten the overall time required for genotyping as well as simplify the sample preparation. Therefore, this newly developed technique suits large-scale screening in breeding populations of Collie-related breeds.

  2. Detection of Rickettsia rickettsii, Rickettsia parkeri, and Rickettsia akari in skin biopsy specimens using a multiplex real-time polymerase chain reaction assay.

    PubMed

    Denison, Amy M; Amin, Bijal D; Nicholson, William L; Paddock, Christopher D

    2014-09-01

    Rickettsia rickettsii, Rickettsia parkeri, and Rickettsia akari are the most common causes of spotted fever group rickettsioses indigenous to the United States. Infected patients characteristically present with a maculopapular rash, often accompanied by an inoculation eschar. Skin biopsy specimens are often obtained from these lesions for diagnostic evaluation. However, a species-specific diagnosis is achieved infrequently from pathologic specimens because immunohistochemical stains do not differentiate among the causative agents of spotted fever group rickettsiae, and existing polymerase chain reaction (PCR) assays generally target large gene segments that may be difficult or impossible to obtain from formalin-fixed tissues. This work describes the development and evaluation of a multiplex real-time PCR assay for the detection of these 3 Rickettsia species from formalin-fixed, paraffin-embedded (FFPE) skin biopsy specimens. The multiplex PCR assay was specific at discriminating each species from FFPE controls of unrelated bacterial, viral, protozoan, and fungal pathogens that cause skin lesions, as well as other closely related spotted fever group Rickettsia species. This multiplex real-time PCR demonstrates greater sensitivity than nested PCR assays in FFPE tissues and provides an effective method to specifically identify cases of Rocky Mountain spotted fever, rickettsialpox, and R. parkeri rickettsiosis by using skin biopsy specimens. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. Potential testing of reprocessing procedures by real-time polymerase chain reaction: A multicenter study of colonoscopy devices.

    PubMed

    Valeriani, Federica; Agodi, Antonella; Casini, Beatrice; Cristina, Maria Luisa; D'Errico, Marcello Mario; Gianfranceschi, Gianluca; Liguori, Giorgio; Liguori, Renato; Mucci, Nicolina; Mura, Ida; Pasquarella, Cesira; Piana, Andrea; Sotgiu, Giovanni; Privitera, Gaetano; Protano, Carmela; Quattrocchi, Annalisa; Ripabelli, Giancarlo; Rossini, Angelo; Spagnolo, Anna Maria; Tamburro, Manuela; Tardivo, Stefano; Veronesi, Licia; Vitali, Matteo; Romano Spica, Vincenzo

    2018-02-01

    Reprocessing of endoscopes is key to preventing cross-infection after colonoscopy. Culture-based methods are recommended for monitoring, but alternative and rapid approaches are needed to improve surveillance and reduce turnover times. A molecular strategy based on detection of residual traces from gut microbiota was developed and tested using a multicenter survey. A simplified sampling and DNA extraction protocol using nylon-tipped flocked swabs was optimized. A multiplex real-time polymerase chain reaction (PCR) test was developed that targeted 6 bacteria genes that were amplified in 3 mixes. The method was validated by interlaboratory tests involving 5 reference laboratories. Colonoscopy devices (n = 111) were sampled in 10 Italian hospitals. Culture-based microbiology and metagenomic tests were performed to verify PCR data. The sampling method was easily applied in all 10 endoscopy units and the optimized DNA extraction and amplification protocol was successfully performed by all of the involved laboratories. This PCR-based method allowed identification of both contaminated (n = 59) and fully reprocessed endoscopes (n = 52) with high sensibility (98%) and specificity (98%), within 3-4 hours, in contrast to the 24-72 hours needed for a classic microbiology test. Results were confirmed by next-generation sequencing and classic microbiology. A novel approach for monitoring reprocessing of colonoscopy devices was developed and successfully applied in a multicenter survey. The general principle of tracing biological fluids through microflora DNA amplification was successfully applied and may represent a promising approach for hospital hygiene. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  4. Detection of Diarrhea Etiology Among U.S. Military Personnel During Exercise Balikatan 2014, Philippines, Using TaqMan Array Cards.

    PubMed

    Lertsethtakarn, Paphavee; Nakjarung, Kaewkanya; Silapong, Sasikorn; Neesanant, Pimmnapar; Sakpaisal, Pimmada; Bodhidatta, Ladaporn; Liu, Jie; Houpt, Eric; Velasco, John Mark; Macareo, Louis R; Swierczewski, Brett E; Mason, Carl J

    2016-11-01

    Military personnel are vulnerable to diarrhea. Diarrheal disease is common when deployed for operations or exercise in developing countries. Although diarrheal disease is transient, cumulative time lost and medical asset can have a significant impact on military operations. Currently, diagnostics of diarrheal etiology typically relies on a mixture of conventional bacteriology, enzyme-linked immunosorbent assay, and polymerase chain reaction (PCR)-based methods including real-time PCR. These methods, however, can be time and labor intensive, although the identification of diarrheal etiology needs to be informative and rapid for treatment and prevention. Real-time PCR has been increasingly used to identify pathogens. Real-time PCR panels of common diarrheal pathogens have been developed, but several diarrheal pathogens are not included in the panel. An expanded and customizable panel to detect diarrhea etiology has been developed employing TaqMan Array Card (TAC) technology. TAC performs 384 real-time PCR reactions simultaneously. As currently configured for diarrheal disease by the University of Virginia, a maximum of 8 samples can be tested simultaneously with approximately 48 target pathogens per sample including bacteria, fungi, helminths, protozoan parasites, and viruses. TAC diarrheal disease panels have been successfully applied to detect pathogens in acute diarrheal stool samples from young children in several international multicenter diarrhea studies. In this study, TAC was applied to stool samples collected under an approved human use protocol from military personnel with acute diarrhea participating in the annual joint military exercise, Balikatan, between the Republic of the Philippines and the United States in 2014. Several established pathogen-specific real-time PCR detection assays were also performed in parallel for comparative purposes. TAC was applied to 7 stool samples. Campylobacter spp. was the most common diarrheal disease pathogen detected

  5. Real-time reverse transcription-polymerase chain reaction assays for identification of wild poliovirus 1 & 3.

    PubMed

    Sharma, Deepa K; Nalavade, Uma P; Deshpande, Jagadish M

    2015-10-01

    The poliovirus serotype identification and intratypic differentiation by real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay is suitable for serotype mixtures but not for intratypic mixtures of wild and vaccine poliovirus strains. This study was undertaken to develop wild poliovirus 1 and 3 (WPV1 and WPV3) specific rRT-PCR assays for use. Specific primers and probes for rRT-PCR were designed based on VP1 sequences of WPV1 and WPV3 isolated in India since 2000. The specificity of the rRT-PCR assays was evaluated using WPV1 and WPV3 of different genetic lineages, non-polio enteroviruses (NPEVs) and mixtures of wild/wild and wild/Sabin vaccine strains. The sensitivity of the assays was determined by testing serial 10-fold dilutions of wild poliovirus 1 and 3 stock suspensions of known titre. No cross-reactivity with Sabin strains, intertypic wild poliovirus isolates or 27 types of NPEVs across all the four Enterovirus species was found for both the wild poliovirus 1 and 3 rRT-PCR assays. All WPV1 and WPV3 strains isolated since 2000 were successfully amplified. The rRT-PCR assays detected 10 4.40 CCID 50 /ml of WPV1 and 10 4.00 CCID 50 /ml of WPV3, respectively either as single isolate or mixture with Sabin vaccine strains or intertypic wild poliovirus. rRT-PCR assays for WPV1 and WPV3 have been validated to detect all the genetic variations of the WPV1 and WPV3 isolated in India for the last decade. When used in combination with the current rRT-PCR assay testing was complete for confirmation of the presence of wild poliovirus in intratypic mixtures.

  6. Development of melting temperature-based SYBR Green I polymerase chain reaction methods for multiplex genetically modified organism detection.

    PubMed

    Hernández, Marta; Rodríguez-Lázaro, David; Esteve, Teresa; Prat, Salomé; Pla, Maria

    2003-12-15

    Commercialization of several genetically modified crops has been approved worldwide to date. Uniplex polymerase chain reaction (PCR)-based methods to identify these different insertion events have been developed, but their use in the analysis of all commercially available genetically modified organisms (GMOs) is becoming progressively insufficient. These methods require a large number of assays to detect all possible GMOs present in the sample and thereby the development of multiplex PCR systems using combined probes and primers targeted to sequences specific to various GMOs is needed for detection of this increasing number of GMOs. Here we report on the development of a multiplex real-time PCR suitable for multiple GMO identification, based on the intercalating dye SYBR Green I and the analysis of the melting curves of the amplified products. Using this method, different amplification products specific for Maximizer 176, Bt11, MON810, and GA21 maize and for GTS 40-3-2 soybean were obtained and identified by their specific Tm. We have combined amplification of these products in a number of multiplex reactions and show the suitability of the methods for identification of GMOs with a sensitivity of 0.1% in duplex reactions. The described methods offer an economic and simple alternative to real-time PCR systems based on sequence-specific probes (i.e., TaqMan chemistry). These methods can be used as selection tests and further optimized for uniplex GMO quantification.

  7. Real-time PCR for simultaneous detection and genotyping of bovine viral diarrhea virus.

    PubMed

    Letellier, C; Kerkhofs, P

    2003-12-01

    Since two genotypes of bovine viral diarrhea viruses (BVDV) occur in Belgian herds, their differentiation is important for disease surveillance. A quantitative real-time PCR assay was developed to detect and classify bovine viral diarrhea viruses in genotype I and II. A pair of primers specific for highly conserved regions of the 5'UTR and two TaqMan probes were designed. The FAM and VIC-labeled probe sequences differed by three nucleotides, allowing the differentiation between genotype I and II. The assay detectability of genotype I and II real-time PCR assay was 1000 and 100 copies, respectively. Highly reproducible data were obtained as the coefficients of variation of threshold cycle values in inter-runs were less than 2.2%. The correct classification of genotype I and II viruses was assessed by using reference strains and characterized field isolates of both genotypes. The application to clinical diagnosis was evaluated on pooled blood samples by post run measurement of the FAM- and VIC-associated fluorescence. The 100% agreement with the conventional RT-PCR method confirmed that this new technique could be used for routine detection of persistently infected immunotolerant animals.

  8. Development and evaluation of a real-time polymerase chain reaction assay for the rapid detection of Talaromyces marneffei MP1 gene in human plasma.

    PubMed

    Hien, Ha Thuc Ai; Thanh, Tran Tan; Thu, Nguyen Thi Mai; Nguyen, Ashley; Thanh, Nguyen Tat; Lan, Nguyen Phu Huong; Simmons, Cameron; Shikuma, Cecilia; Chau, Nguyen Van Vinh; Thwaites, Guy; Le, Thuy

    2016-12-01

    Penicilliosis caused by Talaromyces marneffei is a common AIDS-defining illness in South and Southeast Asia. Diagnosis is based on culture which can take up to 14 days for identification, leading to treatment delay and increased mortality. We developed a TaqMan real-time PCR assay targeting the MP1 gene encoding an abundant cell wall protein specific to T. marneffei. The assay's performance was evaluated in MP1-containing plasmids, clinical isolates, and plasma from HIV-infected patients with and without penicilliosis. The assay consistently detected 10 copies of MP1-containing plasmids per reaction and 100 T. marneffei yeast cells per millilitre plasma. There were no amplification with seven other Penicillium species and six other HIV-associated fungal pathogens tested. The assay was evaluated in 70 patients with AIDS: 50 patients with culture-confirmed penicilliosis and 20 patients with opportunistic infections other than penicilliosis. The diagnostic sensitivity was 70.4% (19/27, 95% CI: 51.5-84.1%) and 52.2% (12/23, 95% CI: 33.0-70.8%) in plasma samples collected prior to and within 48 h of antifungal therapy respectively. The diagnostic specificity was 100% (20/20, 95% CI: 83.9-100%). This assay provides a useful tool for the rapid diagnosis of T. marneffei infection and has the potential to improve the management of patients with penicilliosis. © 2016 The Authors. Mycoses Published by Blackwell Verlag GmbH.

  9. Detection of sesame seed DNA in foods using real-time PCR.

    PubMed

    Brzezinski, Jennifer L

    2007-04-01

    The detection of potentially allergenic foods, such as sesame seeds, in food products is a major concern for the food-processing industry. A real-time PCR method was designed to determine if sesame seed DNA is present in food products. The PCR reaction amplifies a 66-bp fragment of the sesame seed 2S albumin gene, which is detected with a sesame-specific, dual-labeled TaqMan probe. This reaction will not amplify DNA derived from other seeds present in baked goods, such as pumpkin, poppy, and sunflower seeds. Additionally, this assay will not cross-react with DNA from several tree nut species, such as almond, Brazil nut, cashew, hazelnut, and walnut, as well as four varieties of peanut. This assay is sensitive enough to detect 5 pg of purified sesame seed DNA, as well as sesame seed DNA in a spiked wheat cracker sample.

  10. High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction.

    PubMed

    Peng, Cheng; Wang, Hua; Xu, Xiaoli; Wang, Xiaofu; Chen, Xiaoyun; Wei, Wei; Lai, Yongmin; Liu, Guoquan; Godwin, Ian Douglas; Li, Jieqin; Zhang, Ling; Xu, Junfeng

    2018-05-15

    Gene editing techniques are becoming powerful tools for modifying target genes in organisms. Although several methods have been developed to detect gene-edited organisms, these techniques are time and labour intensive. Meanwhile, few studies have investigated high-throughput detection and screening strategies for plants modified by gene editing. In this study, we developed a simple, sensitive and high-throughput quantitative real-time (qPCR)-based method. The qPCR-based method exploits two differently labelled probes that are placed within one amplicon at the gene editing target site to simultaneously detect the wild-type and a gene-edited mutant. We showed that the qPCR-based method can accurately distinguish CRISPR/Cas9-induced mutants from the wild-type in several different plant species, such as Oryza sativa, Arabidopsis thaliana, Sorghum bicolor, and Zea mays. Moreover, the method can subsequently determine the mutation type by direct sequencing of the qPCR products of mutations due to gene editing. The qPCR-based method is also sufficiently sensitive to distinguish between heterozygous and homozygous mutations in T 0 transgenic plants. In a 384-well plate format, the method enabled the simultaneous analysis of up to 128 samples in three replicates without handling the post-polymerase chain reaction (PCR) products. Thus, we propose that our method is an ideal choice for screening plants modified by gene editing from many candidates in T 0 transgenic plants, which will be widely used in the area of plant gene editing. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  11. The use of Taqman genotyping assays for rapid confirmation of β-thalassaemia mutations in the Malays: accurate diagnosis with low DNA concentrations.

    PubMed

    Teh, L-K; Lee, T-Y; Tan, J A M A; Lai, M-I; George, E

    2015-02-01

    In Malaysia, β-thalassaemia is a common inherited blood disorder in haemoglobin synthesis with a carrier rate of 4.5%. Currently, PCR-incorporating techniques such as amplification refractory mutation system (ARMS) or reverse dot blot hybridization (RDBH) are used in β-thalassaemia mutation detection. ARMS allows single-mutation identification using two reactions, one for wild type and another for mutant alleles. RDBH requires probe immobilization and optimization of hybridization and washing temperatures which is time consuming. The aim of our study was to investigate whether β-thalassaemia mutations can be identified in samples with low DNA concentrations. Genotype identification of common β-thalassaemia mutations in Malays was carried out using Taqman genotyping assays. Results show that the Taqman assays allow mutation detection with DNA template concentrations as low as 2-100 ng. In addition, consistent reproducibility was observed in the Taqman assays when repeated eight times and at different time intervals. The developed sensitive Taqman assays allow molecular characterization of β-thalassaemia mutations in samples with low DNA concentrations. The Taqman genotyping assays have potential as a diagnostic tool for foetal blood, chorionic villi or pre-implantation genetic diagnosis where DNA is limited and precious. © 2014 John Wiley & Sons Ltd.

  12. Determination of real-time polymerase chain reaction uncertainty of measurement using replicate analysis and a graphical user interface with Fieller's theorem.

    PubMed

    Stuart, James Ian; Delport, Johan; Lannigan, Robert; Zahariadis, George

    2014-07-01

    Disease monitoring of viruses using real-time polymerase chain reaction (PCR) requires knowledge of the precision of the test to determine what constitutes a significant change. Calculation of quantitative PCR confidence limits requires bivariate statistical methods. To develop a simple-to-use graphical user interface to determine the uncertainty of measurement (UOM) of BK virus, cytomegalovirus (CMV) and Epstein-Barr virus (EBV) real-time PCR assays. Thirty positive clinical samples for each of the three viral assays were repeated once. A graphical user interface was developed using a spreadsheet (Excel, Microsoft Corporation, USA) to enable data entry and calculation of the UOM (according to Fieller's theorem) and PCR efficiency. The confidence limits for the BK virus, CMV and EBV tests were ∼0.5 log, 0.5 log to 1.0 log, and 0.5 log to 1.0 log, respectively. The efficiencies of these assays, in the same order were 105%, 119% and 90%. The confidence limits remained stable over the linear range of all three tests. A >5 fold (0.7 log) and a >3-fold (0.5 log) change in viral load were significant for CMV and EBV when the results were ≤1000 copies/mL and >1000 copies/mL, respectively. A >3-fold (0.5 log) change in viral load was significant for BK virus over its entire linear range. PCR efficiency was ideal for BK virus and EBV but not CMV. Standardized international reference materials and shared reporting of UOM among laboratories are required for the development of treatment guidelines for BK virus, CMV and EBV in the context of changes in viral load.

  13. Four-hour quantitative real-time polymerase chain reaction-based comprehensive chromosome screening and accumulating evidence of accuracy, safety, predictive value, and clinical efficacy.

    PubMed

    Treff, Nathan R; Scott, Richard T

    2013-03-15

    Embryonic comprehensive chromosomal euploidy may represent a powerful biomarker to improve the success of IVF. However, there are a number of aneuploidy screening strategies to consider, including different technologic platforms with which to interrogate the embryonic DNA, and different embryonic developmental stages from which DNA can be analyzed. Although there are advantages and disadvantages associated with each strategy, a series of experiments producing evidence of accuracy, safety, clinical predictive value, and clinical efficacy indicate that trophectoderm biopsy and quantitative real-time polymerase chain reaction (qPCR)-based comprehensive chromosome screening (CCS) may represent a useful strategy to improve the success of IVF. This Biomarkers in Reproductive Medicine special issue review summarizes the accumulated experience with the development and clinical application of a 4-hour blastocyst qPCR-based CCS technology. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Development of real-time PCR methods to quantify patulin-producing molds in food products.

    PubMed

    Rodríguez, Alicia; Luque, M Isabel; Andrade, María J; Rodríguez, Mar; Asensio, Miguel A; Córdoba, Juan J

    2011-09-01

    Patulin is a mycotoxin produced by different Penicillium and Aspergillus strains isolated from food products. To improve food safety, the presence of patulin-producing molds in foods should be quantified. In the present work, two real-time (RTi) PCR protocols based on SYBR Green and TaqMan were developed. Thirty four patulin producers and 28 non-producers strains belonging to different species usually reported in food products were used. The patulin production was tested by mycellar electrokinetic capillary electrophoresis (MECE) and high-pressure liquid chromatography-mass spectrometry (HPLC-MS). A primer pair F-idhtrb/R-idhtrb and the probe IDHprobe were designed from the isoepoxydon dehydrogenase (idh) gene, involved in patulin biosynthesis. The functionality of the developed method was demonstrated by the high linear relationship of the standard curves constructed with the idh gene copy number and Ct values for the different patulin producers tested. The ability to quantify patulin producers of the developed SYBR Green and TaqMan assays in artificially inoculated food samples was successful, with a minimum threshold of 10 conidia g(-1) per reaction. The developed methods quantified with high efficiency fungal load in foods. These RTi-PCR protocols, are proposed to be used to quantify patulin-producing molds in food products and to prevent patulin from entering the food chain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. A novel mechanism for direct real-time polymerase chain reaction that does not require DNA isolation from prokaryotic cells.

    PubMed

    Soejima, Takashi; Xiao, Jin-Zhong; Abe, Fumiaki

    2016-06-23

    Typically, polymerase chain reaction (PCR) is performed after DNA isolation. Real-time PCR (qPCR), also known as direct qPCR in mammalian cells with weak membranes, is a common technique using crude samples subjected to preliminary boiling to elute DNA. However, applying this methodology to prokaryotic cells, which have solid cell walls, in contrast to mammalian cells which immediately burst in water, can result in poor detection. We successfully achieved PCR elongation with the addition of 1.3 cfu of Cronobacter muytjensii to a newly developed direct qPCR master mix without performing any crude DNA extraction (detection limit of 1.6 × 10(0) cfu/ml for the test sample compared with a detection limit of 1.6 × 10(3) cfu/ml primarily for crude (boiling) or classical DNA isolation). We revealed that the chromosomal DNA retained in prokaryotic cells can function as a PCR template, similarly to the mechanism in in situ PCR. Elucidating this reaction mechanism may contribute to the development of an innovative master mix for direct qPCR to detect genes in a single bacterium with solid cell walls and might lead to numerous novel findings in prokaryotic genomics research.

  16. A Two-Step Lyssavirus Real-Time Polymerase Chain Reaction Using Degenerate Primers with Superior Sensitivity to the Fluorescent Antigen Test

    PubMed Central

    Nazé, Florence; Francart, Aurélie; Lamoral, Sophie; De Craeye, Stéphane; Kalai, Michael

    2014-01-01

    A generic two-step lyssavirus real-time reverse transcriptase polymerase chain reaction (qRT-PCR), based on a nested PCR strategy, was validated for the detection of different lyssavirus species. Primers with 17 to 30% of degenerate bases were used in both consecutive steps. The assay could accurately detect RABV, LBV, MOKV, DUVV, EBLV-1, EBLV-2, and ABLV. In silico sequence alignment showed a functional match with the remaining lyssavirus species. The diagnostic specificity was 100% and the sensitivity proved to be superior to that of the fluorescent antigen test. The limit of detection was ≤1 50% tissue culture infectious dose. The related vesicular stomatitis virus was not recognized, confirming the selectivity for lyssaviruses. The assay was applied to follow the evolution of rabies virus infection in the brain of mice from 0 to 10 days after intranasal inoculation. The obtained RNA curve corresponded well with the curves obtained by a one-step monospecific RABV-qRT-PCR, the fluorescent antigen test, and virus titration. Despite the presence of degenerate bases, the assay proved to be highly sensitive, specific, and reproducible. PMID:24822188

  17. Development of two real-time polymerase chain reaction assays to detect Actinobacillus pleuropneumoniae serovars 1-9-11 and serovar 2.

    PubMed

    Marois-Créhan, Corinne; Lacouture, Sonia; Jacques, Mario; Fittipaldi, Nahuel; Kobisch, Marylène; Gottschalk, Marcelo

    2014-01-01

    Two real-time, or quantitative, polymerase chain reaction (qPCR) assays were developed to detect Actinobacillus pleuropneumoniae serovars 1-9-11 (highly related serovars with similar virulence potential) and serovar 2, respectively. The specificity of these assays was verified on a collection of 294 strains, which included all 16 reference A. pleuropneumoniae strains (including serovars 5a and 5b), 263 A. pleuropneumoniae field strains isolated between 1992 and 2009 in different countries, and 15 bacterial strains other than A. pleuropneumoniae. The detection levels of both qPCR tests were evaluated using 10-fold dilutions of chromosomal DNA from reference strains of A. pleuropneumoniae serovars 1 and 2, and the detection limit for both assays was 50 fg per assay. The analytical sensitivities of the qPCR tests were also estimated by using pure cultures and tonsils experimentally spiked with A. pleuropneumoniae. The detection threshold was 2.5 × 10(4) colony forming units (CFU)/ml and 2.9 × 10(5) CFU/0.1 g of tonsil, respectively, for both assays. These specific and sensitive tests can be used for the serotyping of A. pleuropneumoniae in diagnostic laboratories to control porcine pleuropneumonia.

  18. Development and clinical validation of a multiplex real-time PCR assay for herpes simplex and varicella zoster virus.

    PubMed

    Tan, Thean Yen; Zou, Hao; Ong, Danny Chee Tiong; Ker, Khor Jia; Chio, Martin Tze Wei; Teo, Rachael Yu Lin; Koh, Mark Jean Aan

    2013-12-01

    Herpes simplex virus (HSV) and varicella zoster virus (VZV) are related members of the Herpesviridae family and are well-documented human pathogens causing a spectrum of diseases, from mucocutaneous disease to infections of the central nervous system. This study was carried out to evaluate and validate the performance of a multiplex real-time polymerase chain reaction (PCR) assay in detecting and differentiating HSV1, HSV2, and VZV from clinical samples. Consensus PCR primers for HSV were designed from the UL30 component of the DNA polymerase gene of HSV, with 2 separate hydrolysis probes designed to differentiate HSV1 and HSV2. Separate primers and a probe were also designed against the DNA polymerase gene of VZV. A total of 104 clinical samples were available for testing by real-time PCR, conventional PCR, and viral culture. The sensitivity and specificity of the real-time assay was calculated by comparing the multiplex PCR result with that of a combined standard of virus culture and conventional PCR. The sensitivity of the real-time assay was 100%, with specificity ranging from 98% to 100% depending on the target gene. Both PCR methods detected more positive samples for HSV or VZV, compared with conventional virus culture. This multiplex PCR assay provides accurate and rapid diagnostic capabilities for the diagnosis and differentiation of HSV1, HSV2, and VZV infections, with the presence of an internal control to monitor for inhibition of the PCR reaction.

  19. The Cobas AmpliPrep/Cobas TaqMan HCV test, version 2.0, real-time PCR assay accurately quantifies hepatitis C virus genotype 4 RNA.

    PubMed

    Chevaliez, Stéphane; Bouvier-Alias, Magali; Rodriguez, Christophe; Soulier, Alexandre; Poveda, Jean-Dominique; Pawlotsky, Jean-Michel

    2013-04-01

    Accurate hepatitis C virus (HCV) RNA quantification is mandatory for the management of chronic hepatitis C therapy. The first-generation Cobas AmpliPrep/Cobas TaqMan HCV test (CAP/CTM HCV) underestimated HCV RNA levels by >1-log10 international units/ml in a number of patients infected with HCV genotype 4 and occasionally failed to detect it. The aim of this study was to evaluate the ability of the Cobas AmpliPrep/Cobas TaqMan HCV test, version 2.0 (CAP/CTM HCV v2.0), to accurately quantify HCV RNA in a large series of patients infected with different subtypes of HCV genotype 4. Group A comprised 122 patients with chronic HCV genotype 4 infection, and group B comprised 4 patients with HCV genotype 4 in whom HCV RNA was undetectable using the CAP/CTM HCV. Each specimen was tested with the third-generation branched DNA (bDNA) assay, CAP/CTM HCV, and CAP/CTM HCV v2.0. The HCV RNA level was lower in CAP/CTM HCV than in bDNA in 76.2% of cases, regardless of the HCV genotype 4 subtype. In contrast, the correlation between bDNA and CAP/CTM HCV v2.0 values was excellent. CAP/CTM HCV v2.0 accurately quantified HCV RNA levels in the presence of an A-to-T substitution at position 165 alone or combined with a G-to-A substitution at position 145 of the 5' untranslated region of HCV genome. In conclusion, CAP/CTM HCV v2.0 accurately quantifies HCV RNA in genotype 4 clinical specimens, regardless of the subtype, and can be confidently used in clinical trials and clinical practice with this genotype.

  20. Rapid detection of the Vibrio cholerae ctx gene in food enrichments using real-time polymerase chain reaction.

    PubMed

    Fedio, Willis; Blackstone, George M; Kikuta-Oshima, Lynne; Wendakoon, Chitra; McGrath, Timothy H; DePaola, Angelo

    2007-01-01

    A real-time polymerase chain reaction (qPCR) assay for the detection of the ctxA gene of toxigenic Vibrio cholerae (Vc) was validated against standard culture techniques. The first experimental phase determined optimal enrichment conditions for detection by culture and qPCR of Vc in shrimp, bottled water, milk, and potato salad. The conditions tested included temperature (35 and 42 degrees C), time (6 and 18 h), and effect of shaking (0 and 100 rpm). No definitive trends were found with enrichment temperature or shaking on Vc isolation frequency or detection by qPCR. Generally, Vc was detected by qPCR more frequently than Vc was isolated, but this difference was significant only in the 35 degrees C 6 h enrichment without shaking. In the second phase of experiments, shrimp, bottled water, milk, potato salad, and oysters were inoculated with each of 3 toxigenic Vc strains (Latin American O1 strain, an O139 strain, and an O1 strain from the U.S. Gulf Coast) and enriched under static conditions at 42OC for 6 and 18 h. Overall, detection frequency of ctx by qPCR was 98% (88/90) and 100% (90/90) after 6 and 18 h enrichments, respectively, while Vc isolation frequency was 87% (78/90) and 83% (75/90) after 6 and 18 h, respectively. Toxigenic Vc can be detected by qPCR within an 8 h work day using the 6 h enrichment procedure, assuming an initial level of at least 1-2 colony-forming units/g; however, overnight enrichment may be necessary to detect lower levels. These data indicate that the qPCR assay for ctx is a more reliable, sensitive, and rapid alternative to standard Vc culture methods and is applicable to diverse food products.

  1. Real-Time Systems

    DTIC Science & Technology

    1992-02-01

    Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real - time operating system , real-time programming language, real-time system, soft real-time system.

  2. Comparison of the Diagnostic Value Between Real-Time Reverse Transcription-Polymerase Chain Reaction Assay and Histopathologic Examination in Sentinel Lymph Nodes for Patients With Gastric Carcinoma.

    PubMed

    Kwak, Yoonjin; Nam, Soo Kyung; Shin, Eun; Ahn, Sang-Hoon; Lee, Hee Eun; Park, Do Joong; Kim, Woo Ho; Kim, Hyung-Ho; Lee, Hye Seung

    2016-05-01

    Sentinel lymph node (SLN)-based diagnosis in gastric cancers has shown varied sensitivities and false-negative rates in several studies. Application of the reverse transcription-polymerase chain reaction (RT-PCR) in SLN diagnosis has recently been proposed. A total of 155 SLNs from 65 patients with cT1-2, N0 gastric cancer were examined. The histopathologic results were compared with results obtained by real-time RT-PCR for detecting molecular RNA (mRNA) of cytokeratin (CK)19, carcinoembryonic antigen (CEA), and CK20. The sensitivity and specificity of the multiple marker RT-PCR assay standardized against the results of the postoperative histological examination were 0.778 (95% confidence interval [CI], 0.577-0.914) and 0.781 (95% CI, 0.700-0.850), respectively. In comparison, the sensitivity and specificity of intraoperative diagnosis were 0.819 (95% CI, 0.619-0.937) and 1.000 (95% CI, 0.972-1.000), respectively. The positive predictive value of the multiple-marker RT-PCR assay was 0.355 (95% CI, 0.192-0.546) for predicting non-SLN metastasis, which was lower than that of intraoperative diagnosis (0.813, 95% CI, 0.544-0.960). The real-time RT-PCR assay could detect SLN metastasis in gastric cancer. However, the predictive value of the real-time RT-PCR assay was lower than that of precise histopathologic examination and did not outweigh that of our intraoperative SLN diagnosis. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Species-specific differentiation of variola, monkeypox, and varicella-zoster viruses by multiplex real-time PCR assay.

    PubMed

    Maksyutov, Rinat A; Gavrilova, Elena V; Shchelkunov, Sergei N

    2016-10-01

    A method of one-stage rapid detection and differentiation of epidemiologically important variola virus (VARV), monkeypox virus (MPXV), and varicella-zoster virus (VZV) utilizing multiplex real-time TaqMan PCR assay was developed. Four hybridization probes with various fluorescent dyes and the corresponding fluorescence quenchers were simultaneously used for the assay. The hybridization probes specific for the VARV sequence contained FAM/BHQ1 as a dye/quencher pair; MPXV-specific, JOE/BHQ1; VZV-specific, TAMRA/BHQ2; and internal control-specific, Cy5/BHQ3. The specificity and sensitivity of the developed method were assessed by analyzing DNA of 32 strains belonging to orthopoxvirus and herpesvirus species. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Methods for Real-Time PCR-Based Diagnosis of Chlamydia pneumoniae, Chlamydia psittaci, and Chlamydia abortus Infections in an Opened Molecular Diagnostic Platform.

    PubMed

    Opota, Onya; Brouillet, René; Greub, Gilbert; Jaton, Katia

    2017-01-01

    The advances in molecular biology of the last decades have dramatically improved the field of diagnostic bacteriology. In particular, PCR-based technologies have impacted the diagnosis of infections caused by obligate intracellular bacteria such as pathogens from the Chlamydiacae family. Here, we describe a real-time PCR-based method using the Taqman technology for the diagnosis of Chlamydia pneumoniae, Chlamydia psittaci, and Chlamydia abortus infection. The method presented here can be applied to various clinical samples and can be adapted on opened molecular diagnostic platforms.

  5. Sensitivity and specificity of real-time reverse transcription polymerase chain reaction, histopathology, and immunohistochemical labeling for the detection of Rift Valley fever virus in naturally infected cattle and sheep.

    PubMed

    Odendaal, Lieza; Fosgate, Geoffrey T; Romito, Marco; Coetzer, Jacobus A W; Clift, Sarah J

    2014-01-01

    Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), histopathology, and immunohistochemical labeling (IHC) were performed on liver specimens from 380 naturally infected cattle and sheep necropsied during the 2010 Rift Valley fever (RVF) epidemic in South Africa. Sensitivity (Se) and specificity (Sp) of real-time RT-PCR, histopathology, and IHC were estimated in a latent-class model using a Bayesian framework. The Se and Sp of real-time RT-PCR were estimated as 97.4% (95% confidence interval [CI] = 95.2-98.8%) and 71.7% (95% CI = 65-77.9%) respectively. The Se and Sp of histopathology were estimated as 94.6% (95% CI = 91-97.2%) and 92.3% (95% CI = 87.6-95.8%), respectively. The Se and Sp of IHC were estimated as 97.6% (95% CI = 93.9-99.8%) and 99.4% (95% CI = 96.9-100%), respectively. Decreased Sp of real-time RT-PCR was ascribed to cross-contamination of samples. Stratified analysis of the data suggested variations in test accuracy with fetuses and severely autolyzed specimens. The Sp of histopathology in fetuses (83%) was 9.3% lower than the sample population (92.3%). The Se of IHC decreased from 97.6% to 81.5% in the presence of severe autolysis. The diagnostic Se and Sp of histopathology was higher than expected, confirming the value of routine postmortem examinations and histopathology of liver specimens. Aborted fetuses, however, should be screened using a variety of tests in areas endemic for RVF, and results from severely autolyzed specimens should be interpreted with caution. The most feasible testing option for countries lacking suitably equipped laboratories seems to be routine histology in combination with IHC.

  6. [The implementation of polymerase chain reaction technique: the real time to reveal and differentiate the viruses of human papilloma of high carcinogenic risk].

    PubMed

    Andosova, L D; Kontorshchikova, K N; Blatova, O L; Kudel'kina, S Iu; Kuznetsova, I A; Belov, A V; Baĭkova, R A

    2011-07-01

    The polymerase chain reaction technique was applied in "real time" format to evaluate the occurrence rate and infection ratio of various genotypes of human papilloma of high carcinogenic risk in virus-positive women and contact persons. The examination sampling consisted of 738 women aged of 17-50 years. The examination results permitted to establish high percentage of infection of 546 patients (74%) by carcinogenic papilloma viruses. The analysis of detection rate of various genotypes of human papilloma of high carcinogenic risk established that the 56th and 16th types of high carcinogenic risk are revealed more often than others--in 33% and 15.4% correspondingly. In males, first place in occurrence rate is for those types of virus of human papilloma: the 56th n = 10 (33.3%), 16th n = 3 (10%), 45th n = 3 (10%), 51th n = 3 (10%). The rest of genotypes are detected in 3-7% cases.

  7. Development and validation of a Pneumocystis jirovecii real-time polymerase chain reaction assay for diagnosis of Pneumocystis pneumonia

    PubMed Central

    Church, Deirdre L; Ambasta, Anshula; Wilmer, Amanda; Williscroft, Holly; Ritchie, Gordon; Pillai, Dylan R; Champagne, Sylvie; Gregson, Daniel G

    2015-01-01

    BACKGROUND: Pneumocystis jirovecii (PJ), a pathogenic fungus, causes severe interstitial Pneumocystis pneumonia (PCP) among immunocompromised patients. A laboratory-developed real-time polyermase chain reaction (PCR) assay was validated for PJ detection to improve diagnosis of PCP. METHODS: Forty stored bronchoalveolar lavage (BAL) samples (20 known PJ positive [PJ+] and 20 known PJ negative [PJ−]) were initially tested using the molecular assay. Ninety-two sequentially collected BAL samples were then analyzed using an immunofluorescence assay (IFA) and secondarily tested using the PJ real-time PCR assay. Discrepant results were resolved by retesting BAL samples using another real-time PCR assay with a different target. PJ real-time PCR assay performance was compared with the existing gold standard (ie, IFA) and a modified gold standard, in which a true positive was defined as a sample that tested positive in two of three methods in a patient suspected to have PCP. RESULTS: Ninety of 132 (68%) BAL fluid samples were collected from immunocompromised patients. Thirteen of 92 (14%) BALs collected were PJ+ when tested using IFA. A total of 40 BAL samples were PJ+ in the present study including: all IFA positive samples (n=13); all referred PJ+ BAL samples (n=20); and seven additional BAL samples that were IFA negative, but positive using the modified gold standard. Compared with IFA, the PJ real-time PCR had sensitivity, specificity, and positive and negative predictive values of 100%, 91%, 65% and 100%, respectively. Compared with the modified gold standard, PJ real-time PCR had a sensitivity, specificity, and positive and negative predictive values of 100%. CONCLUSION: PJ real-time PCR improved detection of PJ in immunocompromised patients. PMID:26600815

  8. Real-time polymerase chain reaction and culture in the diagnosis of invasive group B streptococcal disease in infants: a retrospective study.

    PubMed

    Meehan, M; Cafferkey, M; Corcoran, S; Foran, A; Hapnes, N; LeBlanc, D; McGuinness, C; Nusgen, U; O'Sullivan, N; Cunney, R; Drew, R

    2015-12-01

    Group B streptococcus (GBS) is a leading cause of invasive disease in infants. Accurate and rapid diagnosis is crucial to reduce morbidity and mortality. Real-time polymerase chain reaction (PCR) targeting the dltR gene was utilised for the direct detection of GBS DNA in blood and cerebrospinal fluid (CSF) from infants at an Irish maternity hospital. A retrospective review of laboratory and patient records during the period 2011-2013 was performed in order to evaluate PCR and culture for the diagnosis of invasive GBS disease. A total of 3570 blood and 189 CSF samples from 3510 infants had corresponding culture and PCR results. Culture and PCR exhibited concordance in 3526 GBS-negative samples and 13 (25%) GBS-positive samples (n = 53). Six (11%) and 34 (64%) GBS-positive samples were positive only in culture or PCR, respectively. Culture and PCR identified more GBS-positive infants (n = 47) than PCR (n = 43) or culture (n = 16) alone. Using culture as the reference standard, the sensitivity, specificity, and positive and negative predictive values for PCR on blood samples were 71.4%, 99.2%, 25% and 99.9%, and for CSF samples, they were 60%, 97.8%, 42.9% and 98.9%, respectively. The sensitivity and positive predictive values were improved (blood: 84.6% and 55%; CSF: 77.8% and 100%, respectively) when maternal risk factors and other laboratory test results were considered. The findings in this study recommend the use of direct GBS real-time PCR for the diagnosis of GBS infection in infants with a clinical suspicion of invasive disease and as a complement to culture, but should be interpreted in the light of other laboratory and clinical findings.

  9. Inter-laboratory quality control for hormone-dependent gene expression in human breast tumors using real-time reverse transcription-polymerase chain reaction.

    PubMed

    de Cremoux, P; Bieche, I; Tran-Perennou, C; Vignaud, S; Boudou, E; Asselain, B; Lidereau, R; Magdelénat, H; Becette, V; Sigal-Zafrani, B; Spyratos, F

    2004-09-01

    Quantitative reverse transcription-polymerase chain reaction (RT-PCR) used to detect minor changes in specific mRNA concentrations may be associated with poor reproducibility. Stringent quality control is therefore essential at each step of the protocol, including the PCR procedure. We performed inter-laboratory quality control of quantitative PCR between two independent laboratories, using in-house RT-PCR assays on a series of hormone-related target genes in a retrospective consecutive series of 79 breast tumors. Total RNA was reverse transcribed in a single center. Calibration curves were performed for five target genes (estrogen receptor (ER)alpha, ERbeta, progesterone receptor (PR), CYP19 (aromatase) and Ki 67) and for two reference genes (human acidic ribosomal phosphoprotein PO (RPLPO) and TATA box-binding protein (TBP)). Amplification efficiencies of the calibrator were determined for each run and used to calculate mRNA expression. Correlation coefficients were evaluated for each target and each reference gene. A good correlation was observed for all target and reference genes in both centers using their own protocols and kits (P < 0.0001). The correlation coefficients ranged from 0.90 to 0.98 for the various target genes in the two centers. A good correlation was observed between the level of expression of the ERalpha and the PR transcripts (P < 0.001). A weak inverse correlation was observed in both centers between ERalpha and ERbeta levels, but only when TBP was the reference gene. No other correlation was observed with other parameters. Real-time PCR assays allow convenient quantification of target mRNA transcripts and quantification of target-derived nucleic acids in clinical specimens. This study addresses the importance of inter-laboratory quality controls for the use of a panel of real-time PCR assays devoted to clinical samples and protocols and to ensure their appropriate accuracy. This can also facilitate exchanges and multicenter comparison of

  10. Detection of nucleophosmin 1 mutations by quantitative real-time polymerase chain reaction versus capillary electrophoresis: a comparative study.

    PubMed

    Barakat, Fareed H; Luthra, Rajyalakshmi; Yin, C Cameron; Barkoh, Bedia A; Hai, Seema; Jamil, Waqar; Bhakta, Yaminiben I; Chen, Su; Medeiros, L Jeffrey; Zuo, Zhuang

    2011-08-01

    Nucleophosmin 1 (NPM1) is the most commonly mutated gene in acute myeloid leukemia. Detection of NPM1 mutations is useful for stratifying patients for therapy, predicting prognosis, and assessing for minimal residual disease. Several methods have been developed to rapidly detect NPM1 mutations in genomic DNA and/or messenger RNA specimens. To directly compare a quantitative real-time polymerase chain reaction (qPCR) assay with a widely used capillary electrophoresis assay for detecting NPM1 mutations. We adopted and modified a qPCR assay designed to detect the 6 most common NPM1 mutations and performed the assay in parallel with capillary electrophoresis assay in 207 bone marrow aspirate or peripheral blood samples from patients with a range of hematolymphoid neoplasms. The qPCR assay demonstrated a higher analytical sensitivity than the capillary electrophoresis 1/1000 versus 1/40, respectively. The capillary electrophoresis assay generated 10 equivocal results that needed to be repeated, whereas the qPCR assay generated only 1 equivocal result. After test conditions were optimized, the qPCR and capillary electrophoresis methods produced 100% concordant results, 85 positive and 122 negative. Given the higher analytical sensitivity and specificity of the qPCR assay, that assay is less likely to generate equivocal results than the capillary electrophoresis assay. Moreover, the qPCR assay is quantitative, faster, cheaper, less prone to contamination, and well suited for monitoring minimal residual disease.

  11. Real Time Polymerase Chain Reaction (rt-PCR): A New Patent to Diagnostic Purposes for Paracoccidioidomycosis.

    PubMed

    Rocha-Silva, Fabiana; Gomes, Luciana I; Gracielle-Melo, Cidiane; Goes, Alfredo M; Caligiorne, Rachel B

    2017-01-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis caused by dimorphic fungi Paracoccidioides brasiliensis and Paracoccidioides lutzii. It is prevalent in Latin American, mainly in Brazil. Therefore, PCM has fundamental impact on the Brazilian global economy, especially in public health system, since it is affecting economical active population in different country regions. The present study aimed to standardize the Real Time-Polymerase Chain Reaction (rt-PCR) for an efficient and safe PCM diagnosis amplifying the recombinant protein PB27 gene, only expressed by specimens of Paracoccidioides genus. To standardize a methodology of rt-PCR using species-specific primers and probe designed for annealing in this specific region of the fungi´s genome, amplifying the recombinant protein PB27 gene, only expressed by specimens of Paracoccidioides genus. Followed by design in silico, experiments were performed in vitro to determine rt-PCR specificity, efficiency and genome detection limit. The primers and probe sequences were deposited in Brazilian Coordination of Technological Innovation and Transfer (CTIT), under patent reference number BR1020160078830. The present study demonstrated the rt-PCR applicability for support on diagnosis of paracoccidioidomycosis, presenting low cost, which makes it affordable for public health services in developing countries as Brazil. It is noteworthy that it is necessary to validate this methodology using clinical samples before to use as a safe method of diagnosis. A review of all patents related to this topic was performed and it was shown that, to date, there are no records of patent on kits for paracoccidioidomycosis´s diagnostic. Indeed, there is still a lot to go to reach this goal. The reaction developed was standardized and patented, opening perspectives to molecular diagnosis development for paracoccidioidomycosis, since rt-PCR can be applied to a broad spectrum of infectious diseases. It would need to be tested in biological

  12. Comparison of histopathology and real-time polymerase chain reaction (RT-PCR) for detection of Mycobacterium tuberculosis in fistula-in-ano.

    PubMed

    Garg, Pankaj

    2017-07-01

    Histopathology is commonly used to diagnose tuberculosis in fistula-in-ano. The aim was to compare the sensitivity of polymerase chain reaction and histopathology in detecting tuberculosis in fistula-in-ano. The histopathology and polymerase chain-reaction of tissue (fistula tract) was done in all the consecutive operated cases. When pus sample was also available, polymerase chain reaction-pus was also done RESULTS: Three hundred forty seven samples (179 patients) were tested over 2 years (median 6.5 months). The mean age was 38.8 ± 10.7 years, and male/female was 170/9. Histopathology and polymerase chain reaction of tissue (fistula tract) was done in 152 and 165 patients, respectively. Polymerase chain reaction (pus) could be done in 30 patients. Overall, tuberculosis was detected in 20/179 (11.2%) patients. Of these, tuberculosis was detected by histopathology (tissue) in 1/152 (0.7%) and by polymerase chain reaction (tissue) in 14/165 (8.5%) patients. In pus, polymerase chain reaction detected tuberculosis in 6/30 (20%) patients. Both polymerase chain reaction of tissue and pus were positive in one patient. Polymerase chain reaction (tissue) and polymerase chain reaction (pus) were significantly more sensitive than histopathology (tissue) for detecting tuberculosis [histopathology 1/152 vs. polymerase chain reaction (tissue) 14/165, p = 0.0009] [histopathology 1/152 vs. polymerase chain reaction (pus) 6/30, p < 0.0001]. In 20 patients detected to have tuberculosis, four drug anti-tubercular therapy was recommended for 6 months. The therapy was completed in 13 patients and 12/13 (92.3%) were cured. The therapy is continuing in 3/20 patients. Four patients did not take the therapy. None of them was cured. Polymerase chain reaction was significantly more sensitive than histopathology in detecting tuberculosis in fistula-in-ano. Histopathology might be missing out tuberculosis in many patients leading to recurrence of the fistula.

  13. Determination of real-time polymerase chain reaction uncertainty of measurement using replicate analysis and a graphical user interface with Fieller’s theorem

    PubMed Central

    Stuart, James Ian; Delport, Johan; Lannigan, Robert; Zahariadis, George

    2014-01-01

    BACKGROUND: Disease monitoring of viruses using real-time polymerase chain reaction (PCR) requires knowledge of the precision of the test to determine what constitutes a significant change. Calculation of quantitative PCR confidence limits requires bivariate statistical methods. OBJECTIVE: To develop a simple-to-use graphical user interface to determine the uncertainty of measurement (UOM) of BK virus, cytomegalovirus (CMV) and Epstein-Barr virus (EBV) real-time PCR assays. METHODS: Thirty positive clinical samples for each of the three viral assays were repeated once. A graphical user interface was developed using a spreadsheet (Excel, Microsoft Corporation, USA) to enable data entry and calculation of the UOM (according to Fieller’s theorem) and PCR efficiency. RESULTS: The confidence limits for the BK virus, CMV and EBV tests were ∼0.5 log, 0.5 log to 1.0 log, and 0.5 log to 1.0 log, respectively. The efficiencies of these assays, in the same order were 105%, 119% and 90%. The confidence limits remained stable over the linear range of all three tests. DISCUSSION: A >5 fold (0.7 log) and a >3-fold (0.5 log) change in viral load were significant for CMV and EBV when the results were ≤1000 copies/mL and >1000 copies/mL, respectively. A >3-fold (0.5 log) change in viral load was significant for BK virus over its entire linear range. PCR efficiency was ideal for BK virus and EBV but not CMV. Standardized international reference materials and shared reporting of UOM among laboratories are required for the development of treatment guidelines for BK virus, CMV and EBV in the context of changes in viral load. PMID:25285125

  14. Accuracy of a rapid real-time polymerase chain reaction assay for diagnosis of group B Streptococcus colonization in a cohort of HIV-infected pregnant women.

    PubMed

    Gouvea, Maria Isabel S; Joao, Esau C; Teixeira, Maria de Lourdes B; Read, Jennifer S; Fracalanzza, Sergio E L; Souza, Claudia T V; Souza, Maria José de; Torres Filho, Helio M; Leite, Cassiana C F; do Brasil, Pedro E A A

    2017-05-01

    There are limited data regarding Xpert performance to detect Group B Streptococcus (GBS) in HIV-infected pregnant women. We evaluated the accuracy of a rapid real-time polymerase chain reaction (PCR) test in a cohort of HIV-infected women. At 35-37 weeks of pregnancy, a pair of combined rectovaginal swabs were collected for two GBS assays in a cohort of sequentially included HIV-infected women in Rio de Janeiro: (1) culture; and (2) real-time PCR assay [GeneXpert GBS (Cepheid, Sunnyvale, CA)]. Using culture as the reference, sensitivity, specificity, positive and negative-likelihood ratios were estimated. From June 2012 to February 2015, 337 pregnant women met inclusion criteria. One woman was later excluded, due to failure to obtain a result in the index test; 336 were included in the analyses. The GBS colonization rate was 19.04%. Sensitivity and specificity of the GeneXpert GBS assay were 85.94% (95% CI: 75.38-92.42) and 94.85% (95% CI: 91.55-96.91), respectively. Positive and negative predictive values were 79.71% (95% CI: 68.78-87.51) and 96.63% (95% CI: 93.72-98.22), respectively. GeneXpert GBS is an acceptable test for the identification of GBS colonization in HIV-infected pregnant women and represents a reasonable option to detect GBS colonization in settings where culture is not feasible.

  15. Improvement in the detection rate of diarrhoeagenic bacteria in human stool specimens by a rapid real-time PCR assay.

    PubMed

    Iijima, Yoshio; Asako, Nahoko T; Aihara, Masanori; Hayashi, Kozaburo

    2004-07-01

    A rapid laboratory system has been developed and evaluated that can simultaneously identify major diarrhoeagenic bacteria, including Salmonella enterica, Vibrio parahaemolyticus, Campylobacter jejuni and Shiga toxin-producing Escherichia coli, in stool specimens by real-time PCR. Specific identification was achieved by using selective TaqMan probes, detecting two targets in each pathogen. A positive result was scored only when both targets of a pathogen were amplified and the difference between threshold cycles for detection was less than five. Diagnosis of enteric bacterial infections using this highly sensitive method, including DNA extraction and real-time PCR, requires only 3 h. Forty stool specimens related to suspected food poisoning outbreaks were analysed: 16 (40%) of these samples were found to be positive for diarrhoeagenic bacteria using a conventional culture method; 28 (70%) were positive using the real-time PCR assay. Of the 12 PCR-positive but culture-negative cases, 11 patients had consumed pathogen-contaminated or high-risk food. Analysis of faecal samples from 105 outpatients who complained of diarrhoea and/or abdominal pain identified 19 (18%) patients as being positive for diarrhoeagenic bacteria using the culture method. An additional six (6%) patients were found to be positive by PCR analysis.

  16. Real-time isothermal detection of Shiga toxin-producing Escherichia coli using recombinase polymerase amplification

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin (Stx) producing E. coli (STEC) are a major family of foodborne pathogens of immense public health, zoonotic and economic significance in the US and worldwide. To date, there are no published reports on use of recombinase polymerase amplification (RPA) for STEC detection. The primary goal...

  17. Use of real-time qPCR to quantify members of the unculturable heterotrophic bacterial community in a deep sea marine sponge, Vetulina sp.

    PubMed

    Cassler, M; Peterson, C L; Ledger, A; Pomponi, S A; Wright, A E; Winegar, R; McCarthy, P J; Lopez, J V

    2008-04-01

    In this report, real-time quantitative PCR (TaqMan qPCR) of the small subunit (SSU) 16S-like rRNA molecule, a universal phylogenetic marker, was used to quantify the relative abundance of individual bacterial members of a diverse, yet mostly unculturable, microbial community from a marine sponge. Molecular phylogenetic analyses of bacterial communities derived from Caribbean Lithistid sponges have shown a wide diversity of microbes that included at least six major subdivisions; however, very little overlap was observed between the culturable and unculturable microbial communities. Based on sequence data of three culture-independent Lithistid-derived representative bacteria, we designed probe/primer sets for TaqMan qPCR to quantitatively characterize selected microbial residents in a Lithistid sponge, Vetulina, metagenome. TaqMan assays included specificity testing, DNA limit of detection analysis, and quantification of specific microbial rRNA sequences such as Nitrospira-like microbes and Actinobacteria up to 172 million copies per microgram per Lithistid sponge metagenome. By contrast, qPCR amplification with probes designed for common previously cultured sponge-associated bacteria in the genera Rheinheimera and Marinomonas and a representative of the CFB group resulted in only minimal detection of the Rheiheimera in total DNA extracted from the sponge. These data verify that a large portion of the microbial community within Lithistid sponges may consist of currently unculturable microorganisms.

  18. Characterization of Phytophthora nicotianae isolates in southeast Spain and their detection and quantification through a real-time TaqMan PCR.

    PubMed

    Blaya, Josefa; Lacasa, Carmen; Lacasa, Alfredo; Martínez, Victoriano; Santísima-Trinidad, Ana B; Pascual, Jose A; Ros, Margarita

    2015-04-01

    The soil-borne pathogens Phytophthora nicotianae and P. capsici are the causal agents of root and stem rot of many plant species. Although P. capsici was considered the causal agent in one of the main pepper production areas of Spain to date, evidence of the presence of P. nicotianae was found. We aimed to survey the presence of P. nicotianae and study the variability in its populations in this area in order to improve the management of Tristeza disease. A new specific primer and a TaqMan probe were designed based on the internal transcribed spacer regions of ribosomal DNA to detect and quantify P. nicotianae. Both morphological and molecular analysis showed its presence and confirmed it to be the causal agent of the Phytophthora disease symptoms in the studied area. The genetic characterization among P. nicotianae populations showed a low variability of genetic diversity among the isolates. Only isolates of the A2 mating type were detected. Not only is a specific and early detection of P. nicotianae essential but also the study of genetic variability among isolates for the appropriate management of the disease, above all, in producing areas with favorable conditions for the advance of the disease. © 2014 Society of Chemical Industry.

  19. Development of a TaqMan Array Card for Acute-Febrile-Illness Outbreak Investigation and Surveillance of Emerging Pathogens, Including Ebola Virus.

    PubMed

    Liu, Jie; Ochieng, Caroline; Wiersma, Steve; Ströher, Ute; Towner, Jonathan S; Whitmer, Shannon; Nichol, Stuart T; Moore, Christopher C; Kersh, Gilbert J; Kato, Cecilia; Sexton, Christopher; Petersen, Jeannine; Massung, Robert; Hercik, Christine; Crump, John A; Kibiki, Gibson; Maro, Athanasia; Mujaga, Buliga; Gratz, Jean; Jacob, Shevin T; Banura, Patrick; Scheld, W Michael; Juma, Bonventure; Onyango, Clayton O; Montgomery, Joel M; Houpt, Eric; Fields, Barry

    2016-01-01

    Acute febrile illness (AFI) is associated with substantial morbidity and mortality worldwide, yet an etiologic agent is often not identified. Convalescent-phase serology is impractical, blood culture is slow, and many pathogens are fastidious or impossible to cultivate. We developed a real-time PCR-based TaqMan array card (TAC) that can test six to eight samples within 2.5 h from sample to results and can simultaneously detect 26 AFI-associated organisms, including 15 viruses (chikungunya, Crimean-Congo hemorrhagic fever [CCHF] virus, dengue, Ebola virus, Bundibugyo virus, Sudan virus, hantaviruses [Hantaan and Seoul], hepatitis E, Marburg, Nipah virus, o'nyong-nyong virus, Rift Valley fever virus, West Nile virus, and yellow fever virus), 8 bacteria (Bartonella spp., Brucella spp., Coxiella burnetii, Leptospira spp., Rickettsia spp., Salmonella enterica and Salmonella enterica serovar Typhi, and Yersinia pestis), and 3 protozoa (Leishmania spp., Plasmodium spp., and Trypanosoma brucei). Two extrinsic controls (phocine herpesvirus 1 and bacteriophage MS2) were included to ensure extraction and amplification efficiency. Analytical validation was performed on spiked specimens for linearity, intra-assay precision, interassay precision, limit of detection, and specificity. The performance of the card on clinical specimens was evaluated with 1,050 blood samples by comparison to the individual real-time PCR assays, and the TAC exhibited an overall 88% (278/315; 95% confidence interval [CI], 84% to 92%) sensitivity and a 99% (5,261/5,326, 98% to 99%) specificity. This TaqMan array card can be used in field settings as a rapid screen for outbreak investigation or for the surveillance of pathogens, including Ebola virus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Detection and quantification of periodontal pathogens in smokers and never-smokers with chronic periodontitis by real-time polymerase chain reaction.

    PubMed

    Guglielmetti, Mariana R; Rosa, Ecinele F; Lourenção, Daniele S; Inoue, Gislene; Gomes, Elaine F; De Micheli, Giorgio; Mendes, Fausto Medeiros; Hirata, Rosário D C; Hirata, Mario H; Pannuti, Claudio M

    2014-10-01

    The purpose of the present investigation is to compare the presence and number of periodontal pathogens in the subgingival microbiota of smokers versus never-smokers with chronic periodontitis and matched probing depths (PDs) using real-time polymerase chain reaction (RT-PCR). Forty current smokers and 40 never-smokers, matched for age, sex, and mean PD of sampling site, were included in this investigation. A full-mouth periodontal examination was performed, and a pooled subgingival plaque sample was collected from the deepest site in each quadrant of each participant. To confirm smoking status, expired carbon monoxide (CO) concentrations were measured with a CO monitor. The presence and quantification of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola were determined using RT-PCR. Smokers had greater overall mean PD (P = 0.001) and attachment loss (P = 0.006) and fewer bleeding on probing sites (P = 0.001). An association was observed between smoking status and the presence of A. actinomycetemcomitans (P <0.001). The counts of A. actinomycetemcomitans (P <0.001), P. gingivalis (P = 0.042), and T. forsythia (P <0.001) were significantly higher in smokers. Smokers showed significantly greater amounts of P. gingivalis, A. actinomycetemcomitans, and T. forsythia than never-smokers. There was a significant association between smoking and the presence of A. actinomycetemcomitans.

  1. Comparison of Two Commercial Automated Nucleic Acid Extraction and Integrated Quantitation Real-Time PCR Platforms for the Detection of Cytomegalovirus in Plasma

    PubMed Central

    Tsai, Huey-Pin; Tsai, You-Yuan; Lin, I-Ting; Kuo, Pin-Hwa; Chen, Tsai-Yun; Chang, Kung-Chao; Wang, Jen-Ren

    2016-01-01

    Quantitation of cytomegalovirus (CMV) viral load in the transplant patients has become a standard practice for monitoring the response to antiviral therapy. The cut-off values of CMV viral load assays for preemptive therapy are different due to the various assay designs employed. To establish a sensitive and reliable diagnostic assay for preemptive therapy of CMV infection, two commercial automated platforms including m2000sp extraction system integrated the Abbott RealTime (m2000rt) and the Roche COBAS AmpliPrep for extraction integrated COBAS Taqman (CAP/CTM) were evaluated using WHO international CMV standards and 110 plasma specimens from transplant patients. The performance characteristics, correlation, and workflow of the two platforms were investigated. The Abbott RealTime assay correlated well with the Roche CAP/CTM assay (R2 = 0.9379, P<0.01). The Abbott RealTime assay exhibited higher sensitivity for the detection of CMV viral load, and viral load values measured with Abbott RealTime assay were on average 0.76 log10 IU/mL higher than those measured with the Roche CAP/CTM assay (P<0.0001). Workflow analysis on a small batch size at one time, using the Roche CAP/CTM platform had a shorter hands-on time than the Abbott RealTime platform. In conclusion, these two assays can provide reliable data for different purpose in a clinical virology laboratory setting. PMID:27494707

  2. Real-time PCR in detection and quantitation of Leishmania donovani for the diagnosis of Visceral Leishmaniasis patients and the monitoring of their response to treatment

    PubMed Central

    Ghosh, Prakash; Khan, Md. Anik Ashfaq; Duthie, Malcolm S.; Vallur, Aarthy C.; Picone, Alessandro; Howard, Randall F.; Reed, Steven G.

    2017-01-01

    Sustained elimination of Visceral Leishmaniasis (VL) requires the reduction and control of parasite reservoirs to minimize the transmission of Leishmania donovani infection. A simple, reproducible and definitive diagnostic procedure is therefore indispensable for the early and accurate detection of parasites in VL, Relapsed VL (RVL) and Post Kala-azar Dermal Leishmaniasis (PKDL) patients, all of whom are potential reservoirs of Leishmania parasites. To overcome the limitations of current diagnostic approaches, a novel quantitative real-time polymerase chain reaction (qPCR) method based on Taqman chemistry was devised for the detection and quantification of L. donovani in blood and skin. The diagnostic efficacy was evaluated using archived peripheral blood buffy coat DNA from 40 VL, 40 PKDL, 10 RVL, 20 cured VL, and 40 cured PKDL along with 10 tuberculosis (TB) cases and 80 healthy endemic controls. Results were compared to those obtained using a Leishmania-specific nested PCR (Ln-PCR). The real time PCR assay was 100% (95% CI, 91.19–100%) sensitive in detecting parasite genomes in VL and RVL samples and 85.0% (95% CI, 70.16–94.29%) sensitive for PKDL samples. In contrast, the sensitivity of Ln-PCR was 77.5% (95% CI, 61.55–89.16%) for VL samples, 100% (95%CI, 69.15–100%) for RVL samples, and 52.5% (95% CI, 36.13–68.49%) for PKDL samples. There was significant discordance between the two methods with the overall sensitivity of the qPCR assay being considerably higher than Ln-PCR. None of the assay detected L. donovani DNA in buffy coats from cured VL cases, and reduced infectious burdens were demonstrated in cured PKDL cases who remained positive in 7.5% (3/40) and 2.5% (1/40) cases by real-time PCR and Ln-PCR, respectively. Both assays were 100% (95% CI, 95.98–100) specific with no positive signals in either endemic healthy control or TB samples. The real time PCR assay we developed offers a molecular tool for accurate detection of circulating L

  3. Comparison of the COBAS TAQMAN HIV-1 HPS with VERSANT HIV-1 RNA 3.0 assay (bDNA) for plasma RNA quantitation in different HIV-1 subtypes.

    PubMed

    Gomes, Perpétua; Palma, Ana Carolina; Cabanas, Joaquim; Abecasis, Ana; Carvalho, Ana Patrícia; Ziermann, Rainer; Diogo, Isabel; Gonçalves, Fátima; Lobo, Céu Sousa; Camacho, Ricardo

    2006-08-01

    Quantitation of HIV-1 RNA levels in plasma has an undisputed prognostic value and is extremely important for evaluating response to antiretroviral therapy. The purpose of this study was to evaluate the performance of the real-time PCR COBAS TaqMan 48 analyser, comparing it to the existing VERSANT 3.0 (bDNA) for HIV-1 RNA quantitation in plasma of individuals infected with different HIV-1 subtypes (104 blood samples). A positive linear correlation between the two tests (r2 = 0.88) was found. Quantitation by the COBAS TaqMan assay was approximately 0.32log10 higher than by bDNA. The relationship between the two assays was similar within all subtypes with a Deming regression of <1 and <0 for the Bland-Altman plots. Overall, no significant differences were found in plasma viral load quantitation in different HIV-1 subtypes between both assays; therefore these assays are suitable for viral load quantitation of highly genetically diverse HIV-1 plasma samples.

  4. Real-Time PCR Identification of Six Malassezia Species.

    PubMed

    Ilahi, Amin; Hadrich, Inès; Neji, Sourour; Trabelsi, Houaida; Makni, Fattouma; Ayadi, Ali

    2017-06-01

    Lipophilic yeast Malassezia species is widely found on the skin surface of humans and other animals. This fungus can cause pityriasis versicolor, Malassezia folliculitis, and seborrheic dermatitis. Still now, there is a problem with species identification of Malassezia with conventional methods. We developed a real-time polymerase chain reaction (PCR) assay with multiple hybridization probes for detecting M. globosa, M. furfur, M. restricta, M. sympodialis, M. slooffiae, and M. pachydermatis. The amplification curves and specific melting peaks of the probes hybridized with real-time PCR product were used for species identifications. The assay was further evaluated on 120 samples which were performed by swabbing from 60 domestic animals (23 goats, 10 dogs, 15 cows, 3 cats, 8 rabbits, and 1 donkey) and in 70 human samples (28 patients with pityriasis versicolor, 17 breeders, and 25 control group). Fifteen M. pachydermatis were identified from animals. From human, 61 isolates were identified as M. globosa (28), M. furfur (15), M. restricta (6), M. sympodialis (8), M. slooffiae (2), and M. pachydermatis (2). Eight cases of co-detection from 6 patients and 2 breeders were revealed. Our findings show that the assay was highly effective in identifying Malassezia species. The application of multiplex real-time PCR provides a sensitive and rapid identification system for Malassezia species, which may be applied in further epidemiological surveys from clinical samples.

  5. Real-Time CORBA

    DTIC Science & Technology

    2000-10-01

    control systems and prototyped the approach by porting the ILU ORB from Xerox to the Lynx real - time operating system . They then provided a distributed...compliant real - time operating system , a real-time ORB, and an ODMG-compliant real-time ODBMS [12]. The MITRE system is an infrastructure for...the server’s local operating system can handle. For instance, on a node controlled by the VXWorks real - time operating system with 256 local

  6. Quantification of M13 and T7 bacteriophages by TaqMan and SYBR green qPCR.

    PubMed

    Peng, Xiujuan; Nguyen, Alex; Ghosh, Debadyuti

    2018-02-01

    TaqMan and SYBR Green quantitative PCR (qPCR) methods were developed as DNA-based approaches to reproducibly enumerate M13 and T7 phages from phage display selection experiments individually and simultaneously. The genome copies of M13 and T7 phages were quantified by TaqMan or SYBR Green qPCR referenced against M13 and T7 DNA standard curves of known concentrations. TaqMan qPCR was capable of quantifying M13 and T7 phage DNA simultaneously with a detection range of 2.75*10 1 -2.75*10 8 genome copies(gc)/μL and 2.66*10 1 -2.66*10 8 genome copies(gc)/μL respectively. TaqMan qPCR demonstrated an efficient amplification efficiency (E s ) of 0.97 and 0.90 for M13 and T7 phage DNA, respectively. SYBR Green qPCR was ten-fold more sensitive than TaqMan qPCR, able to quantify 2.75-2.75*10 7 gc/μL and 2.66*10 1 -2.66*10 7 gc/μL of M13 and T7 phage DNA, with an amplification efficiency E s of 1.06 and 0.78, respectively. Due to its superior sensitivity, SYBR Green qPCR was used to enumerate M13 and T7 phage display clones selected against a cell line, and quantified titers demonstrated accuracy comparable to titers from traditional double-layer plaque assay. Compared to enzyme linked immunosorbent assay, both qPCR methods exhibited increased detection sensitivity and reproducibility. These qPCR methods are reproducible, sensitive, and time-saving to determine their titers and to quantify a large number of phage samples individually or simultaneously, thus avoiding the need for time-intensive double-layer plaque assay. These findings highlight the attractiveness of qPCR for phage enumeration for applications ranging from selection to next-generation sequencing (NGS). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. TaqMan DNA technology confirms likely overestimation of cod (Gadus morhua L.) egg abundance in the Irish Sea: implications for the assessment of the cod stock and mapping of spawning areas using egg-based methods.

    PubMed

    Fox, C J; Taylor, M I; Pereyra, R; Villasana, M I; Rico, C

    2005-03-01

    Recent substantial declines in northeastern Atlantic cod stocks necessitate improved biological knowledge and the development of techniques to complement standard stock assessment methods (which largely depend on accurate commercial catch data). In 2003, an ichthyoplankton survey was undertaken in the Irish Sea and subsamples of 'cod-like' eggs were analysed using a TaqMan multiplex, PCR (polymerase chain reaction) assay (with specific probes for cod, haddock and whiting). The TaqMan method was readily applied to the large number of samples (n = 2770) generated during the survey and when combined with a manual DNA extraction protocol had a low failure rate of 6%. Of the early stage 'cod-like' eggs (1.2-1.75 mm diameter) positively identified: 34% were cod, 8% haddock and 58% whiting. As previous stock estimates based on egg surveys for Irish Sea cod assumed that the majority of 'cod-like' eggs were from cod, the TaqMan results confirm that there was probably substantial contamination by eggs of whiting and haddock that would have inflated estimates of the stock biomass.

  8. Detection of Toxoplasma gondii and Epstein-Barr virus in HIV patients with clinical symptoms of suspected central nervous system infection using duplex real-time polymerase chain reaction

    NASA Astrophysics Data System (ADS)

    Rahmawati, E.; Ibrahim, F.; Imran, D.; Sudarmono, P.

    2017-08-01

    Focal brain lesion is a neurological complication in HIV, which is marked as a space occupying lesion (SOL) and needs rapid and effective treatment. This lesion is mainly caused by encephalitis toxoplasma and primary central nervous system lymphoma related to the Epstein-Barr virus (EBV) infection, which is difficult to distinguish using CT scan or magnetic resonance imaging (MRI). The gold standard of diagnosing focal brain lesion has been brain biopsy, but this examination is an invasive procedure that causes complications. The objective of this study is to obtain the rapid laboratory diagnosis of Toxoplasma gondii (T. gondii) and EBV infection. In this experimental study, blood and cerebrospinal fluid were obtained from HIV patients who were admitted to the Neurology Department of Cipto Mangunkusumo Hospital. The samples were examined using duplex real-time polymerase chain reaction (PCR) to detect T. gondii and EBV. The first step was the optimization of duplex real-time PCR, including the annealing temperature, primer and probe concentration, elution volume, and template volume. Minimal DNA detection was used to measure minimal T. gondii and EBV. Cross reactions were determined for technical specificity using the bacteria and viruses Staphylococcus aureus, Klebsiella pneumonia, Pseudomonas aeruginosa, Mycobacterium tuberculosis H37Rv, Candida spp, cytomegalovirus, herpes zoster virus, and varicella zoster virus. Duplex real-time PCR was applied optimally to patients. In the optimization of duplex real-time PCR, the annealing temperature of T. gondii and EBV were 58 °C, the concentration of primer forward and reverse for T. gondii and EBV were 0.2 μM, the concentration of probe for T. gondii and EBV were 0.4μM and 0.2 μM, respectively. Minimal DNA detection of T. gondii and EBV were 5.68 copy/ml and 1.31 copy/ml, respectively. There was no cross reaction between another bacteria and virus that were used as the primer and probe for T. gondii and EBV. The

  9. Recombinase Polymerase Amplification Compared to Real-Time Polymerase Chain Reaction Test for the Detection of Fasciola hepatica in Human Stool

    PubMed Central

    Cabada, Miguel M.; Malaga, Jose L.; Castellanos-Gonzalez, Alejandro; Bagwell, Kelli A.; Naeger, Patrick A.; Rogers, Hayley K.; Maharsi, Safa; Mbaka, Maryann; White, A. Clinton

    2017-01-01

    Fasciola hepatica is the most widely distributed trematode infection in the world. Control efforts may be hindered by the lack of diagnostic capacity especially in remote endemic areas. Polymerase chain reaction (PCR)–based methods offer high sensitivity and specificity but require expensive technology. However, the recombinase polymerase amplification (RPA) is an efficient isothermal method that eliminates the need for a thermal cycler and has a high deployment potential to resource-limited settings. We report on the characterization of RPA and PCR tests to detect Fasciola infection in clinical stool samples with low egg burdens. The sensitivity of the RPA and PCR were 87% and 66%, respectively. Both tests were 100% specific showing no cross-reactivity with trematode, cestode, or nematode parasites. In addition, RPA and PCR were able to detect 47% and 26% of infections not detected by microscopy, respectively. The RPA adapted to a lateral flow platform was more sensitive than gel-based detection of the reaction products. In conclusion, the Fasciola RPA is a highly sensitive and specific test to diagnose chronic infection using stool samples. The Fasciola RPA lateral flow has the potential for deployment to endemic areas after further characterization. PMID:27821691

  10. Evaluation of p16 hypermethylation in oral submucous fibrosis: A quantitative and comparative analysis in buccal cells and saliva using real-time methylation-specific polymerase chain reaction.

    PubMed

    Kaliyaperumal, Subadra; Sankarapandian, Sathasivasubramanian

    2016-01-01

    The aim of this study was to quantitatively investigate the hypermethylation of p16 gene in buccal cells and saliva of oral submucous fibrosis (OSMF) patients using real-time quantitative methylation-specific polymerase chain reaction (PCR) and to compare the values of two methods. A total of 120 samples were taken from 60 subjects selected for this study, of which 30 were controls and 30 patients were clinically and histopathologically diagnosed with OSMF. In both groups, two sets of samples were collected, one directly from the buccal cells through cytobrush technique and the other through salivary rinse. We analyzed the samples for the presence of p16 hypermethylation using quantitative real-time PCR. In OSMF, the hypermethylation status of p16 in buccal cells was very high (93.3%) and in salivary samples, it was partially methylated (50%). However, no hypermethylation was found in controls suggesting that significant quantity of p16 hypermethylation was present in buccal cells and saliva in OSMF. This study indicates that buccal cell sampling may be a better method for evaluation than the salivary samples. It signifies that hypermethylation of p16 is an important factor to be considered in epigenetic alterations of normal cells to oral precancer, i.e. OSMF.

  11. Real-Time PCR Detection of Dogwood Anthracnose Fungus in Historical Herbarium Specimens from Asia.

    PubMed

    Miller, Stephen; Masuya, Hayato; Zhang, Jian; Walsh, Emily; Zhang, Ning

    2016-01-01

    Cornus species (dogwoods) are popular ornamental trees and important understory plants in natural forests of northern hemisphere. Dogwood anthracnose, one of the major diseases affecting the native North American Cornus species, such as C. florida, is caused by the fungal pathogen Discula destructiva. The origin of this fungus is not known, but it is hypothesized that it was imported to North America with its host plants from Asia. In this study, a TaqMan real-time PCR assay was used to detect D. destructiva in dried herbarium and fresh Cornus samples. Several herbarium specimens from Japan and China were detected positive for D. destructiva, some of which were collected before the first report of the dogwood anthracnose in North America. Our findings further support that D. destructiva was introduced to North America from Asia where the fungus likely does not cause severe disease.

  12. Use of Multiplex Real-Time PCR To Diagnose Scrub Typhus.

    PubMed

    Tantibhedhyangkul, Wiwit; Wongsawat, Ekkarat; Silpasakorn, Saowaluk; Waywa, Duangdao; Saenyasiri, Nuttawut; Suesuay, Jintapa; Thipmontree, Wilawan; Suputtamongkol, Yupin

    2017-05-01

    Scrub typhus, caused by Orientia tsutsugamushi , is a common cause of acute undifferentiated febrile illness in the Asia-Pacific region. However, its nonspecific clinical manifestation often prevents early diagnosis. We propose the use of PCR and serologic tests as diagnostic tools. Here, we developed a multiplex real-time PCR assay using hydrolysis (TaqMan) probes targeting O. tsutsugamushi 47-kDa, groEL , and human interferon beta (IFN-β gene) genes to improve early diagnosis of scrub typhus. The amplification efficiency was higher than 94%, and the lower detection limit was 10 copies per reaction. We used a human gene as an internal DNA quality and quantity control. To determine the sensitivity of this PCR assay, we selected patients with confirmed scrub typhus who exhibited a clear 4-fold increase in the level of IgG and/or IgM. The PCR assay result was positive in 45 of 52 patients, indicating a sensitivity of 86.5% (95% confidence interval [CI]: 74.2 to 94.4). The PCR assessment was negative for all 136 non-scrub typhus patients, indicating a specificity of 100% (95% CI: 97.3 to 100). In addition, this test helped diagnose patients with inconclusive immunofluorescence assay (IFA) results and using single blood samples. In conclusion, the real-time PCR assay proposed here is sensitive and specific in diagnosing scrub typhus. Combining PCR and serologic tests will improve the diagnosis of scrub typhus among patients presenting with acute febrile illness. Copyright © 2017 American Society for Microbiology.

  13. Real-time polymerase chain reaction detection of Lichtheimia species in bandages associated with cutaneous mucormycosis in burn patients.

    PubMed

    Fréalle, E; Rocchi, S; Bacus, M; Bachelet, H; Pasquesoone, L; Tavernier, B; Mathieu, D; Millon, L; Jeanne, M

    2018-05-01

    Cutaneous mucormycoses, mainly due to Lichtheimia (Absidia), have occurred on several occasions in the Burn Unit of the University Hospital of Lille, France. To investigate the potential vector role of non-sterile bandages used to hold in place sterile gauze used for wound dressing. Mycological analysis by conventional culture, Mucorales real-time polymerase chain reaction (qPCR), and Lichtheimia species-specific qPCR were performed on eight crepe and six elasticized bandages that were sampled on two independent occasions in March 2014 and July 2016. Characteristics of the seven Lichtheimia mucormycoses which occurred in burn patients between November 2013 and July 2016 were also collected to assess the epidemiological relationship between potentially contaminated bandages and clinical infections. One Lichtheimia corymbifera strain was isolated from a crepe bandage by culture, and Lichtheimia spp. qPCR was positive in six out of eight crepe and four out of six elasticized bandages. Using species-specific qPCR, Lichtheimia ramosa, Lichtheimia ornata, and L. corymbifera were identified in six out of ten, five out of ten, and four out of ten bandages, respectively. In patients with mucormycosis, L. ramosa and L. ornata were present in five and two cases, respectively. Our data support the utility of Mucorales qPCR for epidemiological investigations, the potential role of these bandages in cutaneous mucormycoses in burn patients in our centre, and, consequently, the need for sterile bandages for the dressing of extensive wounds. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Event-specific plasmid standards and real-time PCR methods for transgenic Bt11, Bt176, and GA21 maize and transgenic GT73 canola.

    PubMed

    Taverniers, Isabel; Windels, Pieter; Vaïtilingom, Marc; Milcamps, Anne; Van Bockstaele, Erik; Van den Eede, Guy; De Loose, Marc

    2005-04-20

    Since the 18th of April 2004, two new regulations, EC/1829/2003 on genetically modified food and feed products and EC/1830/2003 on traceability and labeling of GMOs, are in force in the EU. This new, comprehensive regulatory framework emphasizes the need of an adequate tracing system. Unique identifiers, such as the transgene genome junction region or a specific rearrangement within the transgene DNA, should form the basis of such a tracing system. In this study, we describe the development of event-specific tracing systems for transgenic maize lines Bt11, Bt176, and GA21 and for canola event GT73. Molecular characterization of the transgene loci enabled us to clone an event-specific sequence into a plasmid vector, to be used as a marker, and to develop line-specific primers. Primer specificity was tested through qualitative PCRs and dissociation curve analysis in SYBR Green I real-time PCRs. The primers were then combined with event-specific TaqMan probes in quantitative real-time PCRs. Calibration curves were set up both with genomic DNA samples and the newly synthesized plasmid DNA markers. It is shown that cloned plasmid GMO target sequences are perfectly suitable as unique identifiers and quantitative calibrators. Together with an event-specific primer pair and a highly specific TaqMan probe, the plasmid markers form crucial components of a unique and straighforward tracing system for Bt11, Bt176, and GA21 maize and GT73 canola events.

  15. Real-time PCR quantification of six periodontal pathogens in saliva samples from healthy young adults.

    PubMed

    Zhou, Xiaodong; Liu, Xiaoli; Li, Jing; Aprecio, Raydolfo M; Zhang, Wu; Li, Yiming

    2015-05-01

    The use of saliva as a diagnostic fluid for the evaluation of periodontal health has gained attention recently. Most published real-time PCR assays focused on quantification of bacteria in subgingival plaque, not in saliva. The aims of this study were to develop a real-time PCR assay for quantification of six periodontal pathogens in saliva and to establish a relationship between the amount of DNA (fg) and colony-forming unit (CFU). TaqMan primers/probe sets were used for the detection of Aggregatibacter actinomycetemcomitans (Aa), Eikenella corrodens (Ec), Fusobacterium nucleatum (Fn), Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Tannerella forsythia (Tf), and total bacteria. Six periodontal pathogens and total bacteria in saliva from 24 periodontally healthy individuals were determined. The relationship between the amount of DNA (fg) and CFU was established by measuring the concentrations of extracted bacterial DNA and CFU per milliliter of bacteria on agar plates. Fn, Ec, and Pi were detected in all saliva samples, while 58.5, 45.8, and 33.3% were detected for Tf, Pg, and Aa, respectively. Numbers of Ec and Fn in saliva were highly correlated (R(2) = 0.93, P < 0.01). The values of DNA (fg) per CFU ranged from 64 for Ec to 121 for Pg. The real-time PCR assay in combination with the relationship between DNA (fg) and CFU can be used to quantitate periodontal pathogens in saliva and estimate the number of live bacteria (CFU). This real-time PCR assay in combination with the relationship between DNA (fg) and CFU has the potential to be an adjunct in evaluation of periodontal health status.

  16. Development of a highly sensitive one-tube nested real-time PCR for detecting Mycobacterium tuberculosis.

    PubMed

    Choi, Yeonim; Jeon, Bo-Young; Shim, Tae Sun; Jin, Hyunwoo; Cho, Sang-Nae; Lee, Hyeyoung

    2014-12-01

    Rapid, accurate detection of Mycobacterium tuberculosis is crucial in the diagnosis of tuberculosis (TB), but conventional diagnostic methods have limited sensitivity and specificity or are time consuming. A new highly sensitive nucleic acid amplification test, combined nested and real-time polymerase chain reaction (PCR) in a single tube (one-tube nested real-time PCR), was developed for detecting M. tuberculosis, which takes advantage of two PCR techniques, i.e., nested PCR and real-time PCR. One-tube nested real-time PCR was designed to have two sequential reactions with two sets of primers and dual probes for the insertion sequence (IS) 6110 sequence of M. tuberculosis in a single closed tube. The minimum limits of detection of IS6110 real-time PCR and IS6110 one-tube nested real-time PCR were 100 fg/μL and 1 fg/μL of M. tuberculosis DNA, respectively. AdvanSure TB/non-tuberculous mycobacteria (NTM) real-time PCR, IS6110 real-time PCR, and two-tube nested real-time PCR showed 100% sensitivity and 100% specificity for clinical M. tuberculosis isolates and NTM isolates. In comparison, the sensitivities of AdvanSure TB/NTM real-time PCR, single IS6110 real-time PCR, and one-tube nested real-time PCR were 91% (152/167), 94.6% (158/167), and 100% (167/167) for sputum specimens, respectively. In conclusion, IS6110 one-tube nested real-time PCR is useful for detecting M. tuberculosis due to its high sensitivity and simple manipulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Evaluation of RealStar Reverse Transcription–Polymerase Chain Reaction Kits for Filovirus Detection in the Laboratory and Field

    PubMed Central

    Rieger, Toni; Kerber, Romy; El Halas, Hussein; Pallasch, Elisa; Duraffour, Sophie; Günther, Stephan; Ölschläger, Stephan

    2016-01-01

    Background. Diagnosis of Ebola virus (EBOV) disease (EVD) requires laboratory testing. Methods. The RealStar Filovirus Screen reverse transcription–polymerase chain reaction (RT-PCR) kit and the derived RealStar Zaire Ebolavirus RT-PCR kit were validated using in vitro transcripts, supernatant of infected cell cultures, and clinical specimens from patients with EVD. Results. The Filovirus Screen kit detected EBOV, Sudan virus, Taï Forest virus, Bundibugyo virus, Reston virus, and Marburg virus and differentiated between the genera Ebolavirus and Marburgvirus. The amount of filovirus RNA that could be detected with a probability of 95% ranged from 11 to 67 RNA copies/reaction on a LightCycler 480 II. The Zaire Ebolavirus kit is based on the Filovirus Screen kit but was optimized for detection of EBOV. It has an improved signal-to-noise ratio at low EBOV RNA concentrations and is somewhat more sensitive than the Filovirus kit. Both kits show significantly lower analytical sensitivity on a SmartCycler II. Clinical evaluation revealed that the SmartCycler II, compared with other real-time PCR platforms, decreases the clinical sensitivity of the Filovirus Screen kit to diagnose EVD at an early stage. Conclusions. The Filovirus Screen kit detects all human-pathogenic filoviruses with good analytical sensitivity if performed on an appropriate real-time PCR platform. High analytical sensitivity is important for early diagnosis of EVD. PMID:27549586

  18. Selection of suitable reference genes for normalization of genes of interest in canine soft tissue sarcomas using quantitative real-time polymerase chain reaction.

    PubMed

    Zornhagen, K W; Kristensen, A T; Hansen, A E; Oxboel, J; Kjaer, A

    2015-12-01

    Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is a sensitive technique for quantifying gene expression. Stably expressed reference genes are necessary for normalization of RT-qPCR data. Only a few articles have been published on reference genes in canine tumours. The objective of this study was to demonstrate how to identify suitable reference genes for normalization of genes of interest in canine soft tissue sarcomas using RT-qPCR. Primer pairs for 17 potential reference genes were designed and tested in archival tumour biopsies from six dogs. The geNorm algorithm was used to analyse the most suitable reference genes. Eight potential reference genes were excluded from this final analysis because of their dissociation curves. β-Glucuronidase (GUSB) and proteasome subunit, beta type, 6 (PSMB6) were most stably expressed with an M value of 0.154 and a CV of 0.053 describing their average stability. We suggest that choice of reference genes should be based on specific testing in every new experimental set-up. © 2014 John Wiley & Sons Ltd.

  19. Real Time Revisited

    NASA Astrophysics Data System (ADS)

    Allen, Phillip G.

    1985-12-01

    The call for abolishing photo reconnaissance in favor of real time is once more being heard. Ten years ago the same cries were being heard with the introduction of the Charge Coupled Device (CCD). The real time system problems that existed then and stopped real time proliferation have not been solved. The lack of an organized program by either DoD or industry has hampered any efforts to solve the problems, and as such, very little has happened in real time in the last ten years. Real time is not a replacement for photo, just as photo is not a replacement for infra-red or radar. Operational real time sensors can be designed only after their role has been defined and improvements made to the weak links in the system. Plodding ahead on a real time reconnaissance suite without benefit of evaluation of utility will allow this same paper to be used ten years from now.

  20. On-Site Molecular Detection of Soil-Borne Phytopathogens Using a Portable Real-Time PCR System

    PubMed Central

    DeShields, Joseph B.; Bomberger, Rachel A.; Woodhall, James W.; Wheeler, David L.; Moroz, Natalia; Johnson, Dennis A.; Tanaka, Kiwamu

    2018-01-01

    On-site diagnosis of plant diseases can be a useful tool for growers for timely decisions enabling the earlier implementation of disease management strategies that reduce the impact of the disease. Presently in many diagnostic laboratories, the polymerase chain reaction (PCR), particularly real-time PCR, is considered the most sensitive and accurate method for plant pathogen detection. However, laboratory-based PCRs typically require expensive laboratory equipment and skilled personnel. In this study, soil-borne pathogens of potato are used to demonstrate the potential for on-site molecular detection. This was achieved using a rapid and simple protocol comprising of magnetic bead-based nucleic acid extraction, portable real-time PCR (fluorogenic probe-based assay). The portable real-time PCR approach compared favorably with a laboratory-based system, detecting as few as 100 copies of DNA from Spongospora subterranea. The portable real-time PCR method developed here can serve as an alternative to laboratory-based approaches and a useful on-site tool for pathogen diagnosis. PMID:29553557

  1. Novel and highly sensitive sybr® green real-time pcr for poxvirus detection in odontocete cetaceans.

    PubMed

    Sacristán, Carlos; Luiz Catão-Dias, José; Ewbank, Ana Carolina; Machado, Eduardo Ferreira; Neves, Elena; Santos-Neto, Elitieri Batista; Azevedo, Alexandre; Laison-Brito, José; De Castilho, Pedro Volkmer; Daura-Jorge, Fábio Gonçalves; Simões-Lopes, Paulo César; Carballo, Matilde; García-Párraga, Daniel; Manuel Sánchez-Vizcaíno, José; Esperón, Fernando

    2018-06-08

    Poxviruses are emerging pathogens in cetaceans, temporarily named 'Cetaceanpoxvirus' (CePV, family Poxviridae), classified into two main lineages: CePV-1 in odontocetes and CePV-2 in mysticetes. Only a few studies performed the molecular detection of CePVs, based on DNA-polymerase gene and/or DNA-topoisomerase I gene amplification. Herein we describe a new real-time PCR assay based on SYBR ® Green and a new primer set to detect a 150 bp fragment of CePV DNA-polymerase gene, also effective for conventional PCR detection. The novel real-time PCR was able to detect 5 up to 5 × 10 6 copies per reaction of a cloned positive control. Both novel PCR methods were 1000 to 100,000-fold more sensitive than those previously described in the literature. Samples of characteristic poxvirus skin lesions ('tattoo') from one Risso's dolphin (Grampus griseus), two striped dolphins (Stenella coeruleoalba) and two Guiana dolphins (Sotalia guianensis) were all positive to both our novel real time- and conventional PCR methods, even though three of these animals (a Risso's dolphin, a striped dolphin, and a Guiana dolphin) were previously negative to the conventional PCRs previously available. To our knowledge, this is the first real-time PCR detection method for Cetaceanpoxvirus, a much more sensitive tool for the detection of CePV-1 infections. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Fluorescence resonance energy transfer-based real-time polymerase chain reaction method without DNA extraction for the genotyping of F5, F2, F12, MTHFR, and HFE.

    PubMed

    Martinez-Serra, Jordi; Robles, Juan; Nicolàs, Antoni; Gutierrez, Antonio; Ros, Teresa; Amat, Juan Carlos; Alemany, Regina; Vögler, Oliver; Abelló, Aina; Noguera, Aina; Besalduch, Joan

    2014-01-01

    Blood samples are extensively used for the molecular diagnosis of many hematological diseases. The daily practice in a clinical laboratory of molecular diagnosis in hematology involves using a variety of techniques, based on the amplification of nucleic acids. Current methods for polymerase chain reaction (PCR) use purified genomic DNA, mostly isolated from total peripheral blood cells or white blood cells (WBC). In this paper we describe a real-time fluorescence resonance energy transfer-based method for genotyping directly from blood cells. Our strategy is based on an initial isolation of the WBCs, allowing the removal of PCR inhibitors, such as the heme group, present in the erythrocytes. Once the erythrocytes have been lysed, in the LightCycler(®) 2.0 Instrument, we perform a real-time PCR followed by a melting curve analysis for different genes (Factors 2, 5, 12, MTHFR, and HFE). After testing 34 samples comparing the real-time crossing point (CP) values between WBC (5×10(6) WBC/mL) and purified DNA (20 ng/μL), the results for F5 Leiden were as follows: CP mean value for WBC was 29.26±0.566 versus purified DNA 24.79±0.56. Thus, when PCR was performed from WBC (5×10(6) WBC/mL) instead of DNA (20 ng/μL), we observed a delay of about 4 cycles. These small differences in CP values were similar for all genes tested and did not significantly affect the subsequent analysis by melting curves. In both cases the fluorescence values were high enough, allowing a robust genotyping of all these genes without a previous DNA purification/extraction.

  3. Utility of a stressed-SNP real-time PCR assay for the rapid identification of measles vaccine strain in patient samples.

    PubMed

    Tran, Thomas; Kostecki, Renata; Catton, Michael; Druce, Julian

    2018-05-09

    Rapid differentiation of wild-type measles virus from measles vaccine strains is crucial during a measles outbreak and in a measles elimination setting. A real-time RT-PCR for the rapid detection of measles vaccine strains was developed with high specificity and greater sensitivity than when compared to traditional measles genotyping methods. The "stressed" minor grove binder TaqMan probe design approach achieves specificity to vaccine strains only, without compromising sensitivity. This assay has proven to be extremely useful in outbreak settings, without requiring sequence genotyping, for over 4 years at the Regional Measles Reference Laboratory for the Western Pacific Region. Copyright © 2018 Tran et al.

  4. Quantitative real-time polymerase chain reaction for the verification of genomic imbalances detected by microarray-based comparative genomic hybridization.

    PubMed

    Yu, Shihui; Kielt, Matthew; Stegner, Andrew L; Kibiryeva, Nataliya; Bittel, Douglas C; Cooley, Linda D

    2009-12-01

    The American College of Medical Genetics guidelines for microarray analysis for constitutional cytogenetic abnormalities require abnormal or ambiguous results from microarray-based comparative genomic hybridization (aCGH) analysis be confirmed by an alternative method. We employed quantitative real-time polymerase chain reaction (qPCR) technology using SYBR Green I reagents for confirmation of 93 abnormal aCGH results (50 deletions and 43 duplications) and 54 parental samples. A novel qPCR protocol using DNA sequences coding for X-linked lethal diseases in males for designing reference primers was established. Of the 81 sets of test primers used for confirmation of 93 abnormal copy number variants (CNVs) in 80 patients, 71 sets worked after the initial primer design (88%), 9 sets were redesigned once, and 1 set twice because of poor amplification. Fifty-four parental samples were tested using 33 sets of test primers to follow up 34 CNVs in 30 patients. Nineteen CNVs were confirmed as inherited, 13 were negative in both parents, and 2 were inconclusive due to a negative result in a single parent. The qPCR assessment clarified aCGH results in two cases and corrected a fluorescence in situ hybridization result in one case. Our data illustrate that qPCR methodology using SYBR Green I reagents is accurate, highly sensitive, specific, rapid, and cost-effective for verification of chromosomal imbalances detected by aCGH in the clinical setting.

  5. Development of real-time PCR assay for genetic identification of the mottled skate, Beringraja pulchra.

    PubMed

    Hwang, In Kwan; Lee, Hae Young; Kim, Min-Hee; Jo, Hyun-Su; Choi, Dong-Ho; Kang, Pil-Won; Lee, Yang-Han; Cho, Nam-Soo; Park, Ki-Won; Chae, Ho Zoon

    2015-10-01

    The mottled skate, Beringraja pulchra is one of the commercially important fishes in the market today. However, B. pulchra identification methods have not been well developed. The current study reports a novel real-time PCR method based on TaqMan technology developed for the genetic identification of B. pulchra. The mitochondrial cytochrome oxidase subunit 1 (COI) nucleotide sequences of 29 B. pulchra, 157 skates and rays reported in GenBank DNA database were comparatively analyzed and the COI sequences specific to B. pulchra was identified. Based on this information, a system of specific primers and Minor Groove Binding (MGB) TaqMan probe were designed. The assay successfully discriminated in 29 specimens of B. pulchra and 27 commercial samples with unknown species identity. For B. pulchra DNA, an average Threshold Cycle (Ct) value of 19.1±0.1 was obtained. Among 27 commercial samples, two samples showed average Ct values 19.1±0.0 and 26.7±0.1, respectively and were confirmed to be B. pulchra based on sequencing. The other samples tested showed undetectable or extremely weak signals for the target fragment, which was also consistent with the sequencing results. These results reveal that the method developed is a rapid and efficient tool to identify B. pulchra and might prevent fraud or mislabeling during the distribution of B. pulchra products. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Development of a highly sensitive real-time nested RT-PCR assay in a single closed tube for detection of enterovirus 71 in hand, foot, and mouth disease.

    PubMed

    Niu, Peihua; Qi, Shunxiang; Yu, Benzhang; Zhang, Chen; Wang, Ji; Li, Qi; Ma, Xuejun

    2016-11-01

    Enterovirus 71 (EV71) is one of the major causative agents of outbreaks of hand, foot, and mouth disease (HFMD). A commercial TaqMan probe-based real-time PCR assay has been widely used for the differential detection of EV71 despite its relatively high cost and failure to detect samples with a low viral load (Ct value > 35). In this study, a highly sensitive real-time nested RT-PCR (RTN RT-PCR) assay in a single closed tube for detection of EV71 in HFMD was developed. The sensitivity and specificity of this assay were evaluated using a reference EV71 stock and a panel of controls consisting of coxsackievirus A16 (CVA16) and common respiratory viruses, respectively. The clinical performance of this assay was evaluated and compared with those of a commercial TaqMan probe-based real-time PCR (qRT-PCR) assay and a traditional two-step nested RT-PCR assay. The limit of detection for the RTN RT-PCR assay was 0.01 TCID50/ml, with a Ct value of 38.3, which was the same as that of the traditional two-step nested RT-PCR assay and approximately tenfold lower than that of the qRT-PCR assay. When testing the reference strain EV71, this assay showed favorable detection reproducibility and no obvious cross-reactivity. The testing results of 100 clinical throat swabs from HFMD-suspected patients revealed that 41 samples were positive for EV71 by both RTN RT-PCR and traditional two-step nested RT-PCR assays, whereas only 29 were EV71 positive by qRT-PCR assay.

  7. Comparison of quantitative real-time polymerase chain reaction with NanoString® methodology using adipose and liver tissues from rats fed seaweed.

    PubMed

    Bentley-Hewitt, Kerry L; Hedderley, Duncan I; Monro, John; Martell, Sheridan; Smith, Hannah; Mishra, Suman

    2016-05-25

    Experimental methods are constantly being improved by new technology. Recently a new technology, NanoString®, has been introduced to the market for the analysis of gene expression. Our experiments used adipose and liver samples collected from a rat feeding trial to explore gene expression changes resulting from a diet of 7.5% seaweed. Both quantitative real-time polymerase chain reaction (qPCR) and NanoString methods were employed to look at expression of genes related to fat and glucose metabolism and this paper compares results from both methods. We conclude that NanoString offers a valuable alternative to qPCR and our data suggest that results are more accurate because of the reduced sample handling and direct quantification of gene copy number without the need for enzymatic amplification. However, we have highlighted a potential challenge for both methods, which needs to be addressed when designing primers or probes. We suggest a literature search for known splice variants of a particular gene to be completed so that primers or probes can be designed that do not span exons which may be affected by alternative gene sequences. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Quantitative assessment of Azumiobodo hoyamushi distribution in the tunic of soft tunic syndrome-affected ascidian Halocynthia roretzi using real-time polymerase chain reaction.

    PubMed

    Shin, Yun-Kyung; Nam, Ki-Woong; Park, Kwan Ha; Yoon, Jong-Man; Park, Kyung-Il

    2014-11-26

    The kinetoplastid parasite, Azumiobodo hoyamushi, is the causative agent of soft tunic syndrome (STS) in ascidians and leads to their mass mortality in Korean waters. This study was conducted to quantify A. hoyamushi density during the development of STS in the tunics of ascidians (Halocynthia roretzi) using real-time polymerase chain reaction (qPCR). The infection intensity of A. hoyamushi, as measured by qPCR, varied depending on the part of the tunic analyzed, as well as the stage of STS development. The highest infection intensity was recorded in the tunics of the siphons. The infection intensity of A. hoyamushi in the siphons was only 2.9 cell/tunic (area, 0.25 cm(2)) or 106.0 cell/gram tunic (GT) in the early phase of STS, but this value increased dramatically to 16,066 cells/tunic (0.25 cm(2)) or 617,004 cell/GT at the time of death. The number of A. hoyamushi parasites increased gradually and their distribution spread from the siphons to the other parts of the tunics. qPCR enabled the quantitation of A. hoyamushi and the results revealed that parasite density increased as STS progressed. In addition, our results suggested that the siphons might function as the portal of entry for A. hoyamushi during infection.

  9. Real-Time Polymerase Chain Reaction for Detection of Schistosoma DNA in Small-Volume Urine Samples Reflects Focal Distribution of Urogenital Schistosomiasis in Primary School Girls in KwaZulu Natal, South Africa

    PubMed Central

    Pillay, Pavitra; Taylor, Myra; Zulu, Siphosenkosi G.; Gundersen, Svein G.; Verweij, Jaco J.; Hoekstra, Pytsje; Brienen, Eric A. T.; Kleppa, Elisabeth; Kjetland, Eyrun F.; van Lieshout, Lisette

    2014-01-01

    Schistosoma haematobium eggs and Schistosoma DNA levels were measured in urine samples from 708 girls recruited from 18 randomly sampled primary schools in South Africa. Microscopic analysis of two 10-mL urine subsamples collected on three consecutive days confirmed high day-to-day variation; 103 (14.5%) girls had positive results at all six examinations, and at least one positive sample was seen in 225 (31.8%) girls. Schistosoma-specific DNA, which was measured in a 200-μL urine subsample by using real-time polymerase chain reaction, was detected in 180 (25.4%) cases, and levels of DNA corresponded significantly with average urine egg excretion. In concordance with microscopic results, polymerase chain reaction results were significantly associated with history of gynecologic symptoms and confirmed highly focal distribution of urogenital schistosomiasis. Parasite-specific DNA detection has a sensitivity comparable to single urine microscopy and could be used as a standardized high-throughput procedure to assess distribution of urogenital schistosomiasis in relatively large study populations by using small sample volumes. PMID:24470560

  10. Real-time polymerase chain reaction analysis of MDM2 and CDK4 expression using total RNA from core-needle biopsies is useful for diagnosing adipocytic tumors

    PubMed Central

    2014-01-01

    Background Diagnosing adipocytic tumors can be challenging because it is often difficult to morphologically distinguish between benign, intermediate and malignant adipocytic tumors, and other sarcomas that are histologically similar. Recently, a number of tumor-specific chromosome translocations and associated fusion genes have been identified in adipocytic tumors and atypical lipomatous tumors/well-differentiated liposarcomas (ALT/WDL), which have a supernumerary ring and/or giant chromosome marker with amplified sequences of the MDM2 and CDK4 genes. The purpose of this study was to investigate whether quantitative real-time polymerase chain reaction (PCR) could be used to amplify MDM2 and CDK4 from total RNA samples obtained from core-needle biopsy sections for the diagnosis of ALT/WDL. Methods A series of lipoma (n = 124) and ALT/WDL (n = 44) cases were analyzed for cytogenetic analysis and lipoma fusion genes, as well as for MDM2 and CDK4 expression by real-time PCR. Moreover, the expression of MDM2 and CDK4 in whole tissue sections was compared with that in core-needle biopsy sections of the same tumor in order to determine whether real-time PCR could be used to distinguish ALT/WDL from lipoma at the preoperative stage. Results In whole tissue sections, the medians for MDM2 and CDK4 expression in ALT/WDL were higher than those in the lipomas (P < 0.05). Moreover, karyotype subdivisions with rings and/or giant chromosomes had higher MDM2 and CDK4 expression levels compared to karyotypes with 12q13-15 rearrangements, other abnormal karyotypes, and normal karyotypes (P < 0.05). On the other hand, MDM2 and CDK4 expression levels in core-needle biopsy sections were similar to those in whole-tissue sections (MDM2: P = 0.6, CDK4: P = 0.8, Wilcoxon signed-rank test). Conclusion Quantitative real-time PCR of total RNA can be used to evaluate the MDM2 and CDK4 expression levels in core-needle biopsies and may be useful for distinguishing ALT

  11. [Real-time PCR kits for the detection of the African Swine Fever virus].

    PubMed

    Latyshev, O E; Eliseeva, O V; Grebennikova, T V; Verkhovskiĭ, O A; Tsibezov, V V; Chernykh, O Iu; Dzhailidi, G A; Aliper, T I

    2014-01-01

    The results obtained using the diagnostic kit based on real-time polymerase chain reaction to detect the DNA of the African Swine Fever in the pathological material, as well as in the culture fluid, are presented. A high sensitivity and specificity for detection of the DNA in the organs and tissues of animals was shown to be useful for detection in the European Union referentiality reagent kits for DNA detection by real time PCR of ASFV. More rapid and effective method of DNA extraction using columns mini spin Quick gDNA(TM) MiniPrep was suggested and compared to the method of DNA isolation on the inorganic sorbent. High correlation of the results of the DNA detection of ASFV by real-time PCR and antigen detection results ASFV by competitive ELISA obtained with the ELISA SEROTEST/INGEZIM COMRAC PPA was demonstrated. The kit can be used in the veterinary services for effective monitoring of ASFV to contain, eliminate and prevent further spread of the disease.

  12. "Fast" Is Not "Real-Time": Designing Effective Real-Time AI Systems

    NASA Astrophysics Data System (ADS)

    O'Reilly, Cindy A.; Cromarty, Andrew S.

    1985-04-01

    Realistic practical problem domains (such as robotics, process control, and certain kinds of signal processing) stand to benefit greatly from the application of artificial intelligence techniques. These problem domains are of special interest because they are typified by complex dynamic environments in which the ability to select and initiate a proper response to environmental events in real time is a strict prerequisite to effective environmental interaction. Artificial intelligence systems developed to date have been sheltered from this real-time requirement, however, largely by virtue of their use of simplified problem domains or problem representations. The plethora of colloquial and (in general) mutually inconsistent interpretations of the term "real-time" employed by workers in each of these domains further exacerbates the difficul-ties in effectively applying state-of-the-art problem solving tech-niques to time-critical problems. Indeed, the intellectual waters are by now sufficiently muddied that the pursuit of a rigorous treatment of intelligent real-time performance mandates the redevelopment of proper problem perspective on what "real-time" means, starting from first principles. We present a simple but nonetheless formal definition of real-time performance. We then undertake an analysis of both conventional techniques and AI technology with respect to their ability to meet substantive real-time performance criteria. This analysis provides a basis for specification of problem-independent design requirements for systems that would claim real-time performance. Finally, we discuss the application of these design principles to a pragmatic problem in real-time signal understanding.

  13. Improving clinical laboratory efficiency: a time-motion evaluation of the Abbott m2000 RealTime and Roche COBAS AmpliPrep/COBAS TaqMan PCR systems for the simultaneous quantitation of HIV-1 RNA and HCV RNA.

    PubMed

    Amendola, Alessandra; Coen, Sabrina; Belladonna, Stefano; Pulvirenti, F Renato; Clemens, John M; Capobianchi, M Rosaria

    2011-08-01

    Diagnostic laboratories need automation that facilitates efficient processing and workflow management to meet today's challenges for expanding services and reducing cost, yet maintaining the highest levels of quality. Processing efficiency of two commercially available automated systems for quantifying HIV-1 and HCV RNA, Abbott m2000 system and Roche COBAS Ampliprep/COBAS TaqMan 96 (docked) systems (CAP/CTM), was evaluated in a mid/high throughput workflow laboratory using a representative daily workload of 24 HCV and 72 HIV samples. Three test scenarios were evaluated: A) one run with four batches on the CAP/CTM system, B) two runs on the Abbott m2000 and C) one run using the Abbott m2000 maxCycle feature (maxCycle) for co-processing these assays. Cycle times for processing, throughput and hands-on time were evaluated. Overall processing cycle time was 10.3, 9.1 and 7.6 h for Scenarios A), B) and C), respectively. Total hands-on time for each scenario was, in order, 100.0 (A), 90.3 (B) and 61.4 min (C). The interface of an automated analyzer to the laboratory workflow, notably system set up for samples and reagents and clean up functions, are as important as the automation capability of the analyzer for the overall impact to processing efficiency and operator hands-on time.

  14. EVALUATION OF QUANTITATIVE REAL TIME PCR FOR THE MEASUREMENT OF HELICOBATER PYLORI AT LOW CONCENTRATIONS IN DRINKING WATER

    EPA Science Inventory

    Aims: To determine the performance of a rapid, real time polymerase chain reaction (PCR) method for the detection and quantitative analysis Helicobacter pylori at low concentrations in drinking water.

    Methods and Results: A rapid DNA extraction and quantitative PCR (QPCR)...

  15. Real-time PCR method applied to seafood products for authentication of European sole (Solea solea) and differentiation of common substitute species.

    PubMed

    Herrero, Beatriz; Lago, Fátima C; Vieites, Juan M; Espiñeira, Montserrat

    2012-01-01

    Judged by quality and taste, the European sole (Solea solea) is considered one of the finest flatfish and is, thus, of considerable commercial value. In the present work, a specific fast real-time PCR was developed for the authentication of S. solea, i.e. to distinguish it from other related species and avoid substitution of this species, either deliberately or unintentionally. The method is based on a species-specific set of primers and MGB Taqman probe which amplifies a 116-bp fragment of the internal transcribed spacer 1 (ITS 1) ribosomal DNA region. This assay combines the high specificity and sensitivity of real-time PCR with the rapidity of the fast mode, allowing the detection of S. solea in a short period of time. The present methodology was validated for application to all types of manufactured products for the presence of S. solea, with successful results. Subsequently, the method was applied to 40 commercial samples to determine whether correct labeling had been employed in the market. It was demonstrated that the assay is a useful tool in monitoring and verifying food labeling regulations.

  16. Quantitative Real-time Polymerase Chain Reaction for Enteropathogenic Escherichia coli: A Tool for Investigation of Asymptomatic Versus Symptomatic Infections

    PubMed Central

    Barletta, Francesca; Mercado, Erik; Ruiz, Joaquim; Ecker, Lucie; Lopez, Giovanni; Mispireta, Monica; Gil, Ana I.; Lanata, Claudio F.; Cleary, Thomas G.

    2011-01-01

    Background. Enteropathogenic Escherichia coli (EPEC) strains are pediatric pathogens commonly isolated from both healthy and sick children with diarrhea in areas of endemicity. The aim of this study was to compare the bacterial load of EPEC isolated from stool samples from children with and without diarrhea to determine whether bacterial load might be a useful tool for further study of this phenomenon. Methods. EPEC was detected by polymerase chain reaction (PCR) of colonies isolated on MacConkey plates from 53 diarrheal and 90 healthy children aged <2 years. DNA was isolated from stool samples by cetyltrimethylammonium bromide extraction. To standardize quantification by quantitative real-time PCR (qRT-PCR), the correlation between fluorescence threshold cycle and copy number of the intimin gene of EPEC E2348/69 was determined. Results. The detection limit of qRT-PCR was 5 bacteria/mg stool. The geometric mean load in diarrhea was 299 bacteria/mg (95% confidence interval [CI], 77–1164 bacteria/mg), compared with 29 bacteria/mg (95% CI, 10–87 bacteria/mg) in control subjects (P = .016). Bacterial load was significantly higher in children with diarrhea than in control subjects among children <12 months of age (178 vs 5 bacteria/mg; P = .006) and among children with EPEC as the sole pathogen (463 vs 24 bacteria/mg; P = .006). Conclusions. EPEC load measured by qRT-PCR is higher in diarrheal than in healthy children. qRT-PCR may be useful to study the relationship between disease and colonization in settings of endemicity. PMID:22028433

  17. Real-time quantification of antibody-short interfering RNA conjugate in serum by antigen capture reverse transcription-polymerase chain reaction.

    PubMed

    Tan, Martha; Vernes, Jean-Michel; Chan, Joyce; Cuellar, Trinna L; Asundi, Aarati; Nelson, Christopher; Yip, Victor; Shen, Ben; Vandlen, Richard; Siebel, Christian; Meng, Y Gloria

    2012-11-15

    Short interfering RNA (siRNA) has therapeutic potential. However, efficient delivery is a formidable task. To facilitate delivery of siRNA into cells, we covalently conjugated siRNA to antibodies that bind to cell surface proteins and internalize. Understanding how these antibody-siRNA conjugates function in vivo requires pharmacokinetic analysis. Thus, we developed a simple real-time antigen capture reverse transcription-polymerase chain reaction (RT-PCR) assay to detect intact antibody-siRNA conjugates. Biotinylated antigen bound to streptavidin-coated PCR tubes was used to capture antibody-siRNA conjugate. The captured antibody-siRNA conjugate was then reverse-transcribed in the same tube, avoiding a sample transfer step. This reproducible assay had a wide standard curve range of 0.029 to 480ng/ml and could detect as low as 0.58ng/ml antibody-siRNA conjugates in mouse serum. The presence of unconjugated antibody that could be generated from siRNA degradation in vivo did not affect the assay as long as the total antibody concentration in the antigen capture step did not exceed 480ng/ml. Using this assay, we observed a more rapid decrease in serum antibody-siRNA conjugate concentrations than the total antibody concentrations in mice dosed with antibody-siRNA conjugates, suggesting loss of siRNA from the antibody. This assay is useful for optimizing antibody-siRNA and likely aptamer-siRNA conjugates to improve pharmacokinetics and aid siRNA delivery. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Real-time PCR for detection and quantification of the biocontrol agent Trichoderma atroviride strain SC1 in soil.

    PubMed

    Savazzini, Federica; Longa, Claudia Maria Oliveira; Pertot, Ilaria; Gessler, Cesare

    2008-05-01

    Trichoderma (Hypocreales, Ascomycota) is a widespread genus in nature and several Trichoderma species are used in industrial processes and as biocontrol agents against crop diseases. It is very important that the persistence and spread of microorganisms released on purpose into the environment are accurately monitored. Real-time PCR methods for genus/species/strain identification of microorganisms are currently being developed to overcome the difficulties of classical microbiological and enzymatic methods for monitoring these populations. The aim of the present study was to develop and validate a specific real-time PCR-based method for detecting Trichoderma atroviride SC1 in soil. We developed a primer and TaqMan probe set constructed on base mutations in an endochitinase gene. This tool is highly specific for the detection and quantification of the SC1 strain. The limits of detection and quantification calculated from the relative standard deviation were 6000 and 20,000 haploid genome copies per gram of soil. Together with the low throughput time associated with this procedure, which allows the evaluation of many soil samples within a short time period, these results suggest that this method could be successfully used to trace the fate of T. atroviride SC1 applied as an open-field biocontrol agent.

  19. Continuous flow real-time PCR device using multi-channel fluorescence excitation and detection.

    PubMed

    Hatch, Andrew C; Ray, Tathagata; Lintecum, Kelly; Youngbull, Cody

    2014-02-07

    High throughput automation is greatly enhanced using techniques that employ conveyor belt strategies with un-interrupted streams of flow. We have developed a 'conveyor belt' analog for high throughput real-time quantitative Polymerase Chain Reaction (qPCR) using droplet emulsion technology. We developed a low power, portable device that employs LED and fiber optic fluorescence excitation in conjunction with a continuous flow thermal cycler to achieve multi-channel fluorescence detection for real-time fluorescence measurements. Continuously streaming fluid plugs or droplets pass through tubing wrapped around a two-temperature zone thermal block with each wrap of tubing fluorescently coupled to a 64-channel multi-anode PMT. This work demonstrates real-time qPCR of 0.1-10 μL droplets or fluid plugs over a range of 7 orders of magnitude concentration from 1 × 10(1) to 1 × 10(7). The real-time qPCR analysis allows dynamic range quantification as high as 1 × 10(7) copies per 10 μL reaction, with PCR efficiencies within the range of 90-110% based on serial dilution assays and a limit of detection of 10 copies per rxn. The combined functionality of continuous flow, low power thermal cycling, high throughput sample processing, and real-time qPCR improves the rates at which biological or environmental samples can be continuously sampled and analyzed.

  20. Development of a taqman-based real-time PCR assay for the rapid and specific detection of novel duck- origin goose parvovirus.

    PubMed

    Wang, Jianchang; Wang, Jinfeng; Cui, Yuan; Nan, Huizhu; Yuan, Wanzhe

    2017-08-01

    A real-time PCR assay was developed for specific detection of novel duck-origin goose parvovirus (N-GPV), the etiological agent of duck beak atrophy and dwarfism syndrome (BADS). The detection limit of the assay was 10 2 copies. The assay was useful in the prevention and control of BADS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Real-Time Polymerase Chain Reaction-Based Detection of Bordetella pertussis in Mexican Infants and Their Contacts: A 3-Year Multicenter Study.

    PubMed

    Aquino-Andrade, Alejandra; Martínez-Leyva, Gabriel; Mérida-Vieyra, Jocelin; Saltigeral, Patricia; Lara, Antonino; Domínguez, Wendy; García de la Puente, Silvestre; De Colsa, Agustín

    2017-09-01

    To evaluate the usefulness of real-time polymerase chain reaction (RT-PCR) as a diagnostic method for the detection of Bordetella pertussis in hospitalized patients aged <1 year with a clinical diagnosis of whooping cough, as well as to identify the role of household contacts as a source of infection. This was a prospective, multicenter study of infants aged <1 year who were hospitalized with symptoms suggestive of whooping cough. Nasopharyngeal samples were obtained for culture and RT-PCR testing. The clinical and epidemiologic characteristics and outcomes were analyzed. B pertussis detection and symptoms in household contacts of patients diagnosed with pertussis were studied. A total of 286 patients were included; of these, 67.1% had B pertussis and 4.5% had Bordetella spp. Complications occurred in 20% of patients, and the mortality rate was 6.7%. Of 434 contacts studied, 111 were mothers of study infants, representing the most frequently B pertussis-infected group and the main symptomatic contact. The use of RT-PCR permits improved detection and diagnosis of pertussis and a better understanding of the epidemiology of sources of infection. The complications and mortality rate of pertussis continue to be high. Household contacts are confirmed as a frequent source of infection of B pertussis in young children. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Detection of Onchocerca volvulus in Skin Snips by Microscopy and Real-Time Polymerase Chain Reaction: Implications for Monitoring and Evaluation Activities.

    PubMed

    Thiele, Elizabeth A; Cama, Vitaliano A; Lakwo, Thomson; Mekasha, Sindeaw; Abanyie, Francisca; Sleshi, Markos; Kebede, Amha; Cantey, Paul T

    2016-04-01

    Microscopic evaluation of skin biopsies is the monitoring and evaluation (M and E) method currently used by multiple onchocerciasis elimination programs in Africa. However, as repeated mass drug administration suppresses microfilarial loads, the sensitivity and programmatic utility of skin snip microscopy is expected to decrease. Using a pan-filarial real-time polymerase chain reaction with melt curve analysis (qPCR-MCA), we evaluated 1) the use of a single-step molecular assay for detecting and identifying Onchocerca volvulus microfilariae in residual skin snips and 2) the sensitivity of skin snip microscopy relative to qPCR-MCA. Skin snips were collected and examined with routine microscopy in hyperendemic regions of Uganda and Ethiopia (N= 500 each) and "residual" skin snips (tissue remaining after induced microfilarial emergence) were tested with qPCR-MCA. qPCR-MCA detected Onchocerca DNA in 223 residual snips: 139 of 147 microscopy(+) and 84 among microscopy(-) snips, suggesting overall sensitivity of microscopy was 62.3% (139/223) relative to qPCR-MCA (75.6% in Uganda and 28.6% in Ethiopia). These findings demonstrate the insufficient sensitivity of skin snip microscopy for reliable programmatic monitoring. Molecular tools such as qPCR-MCA can augment sensitivity and provide diagnostic confirmation of skin biopsies and will be useful for evaluation or validation of new onchocerciasis M and E tools. © The American Society of Tropical Medicine and Hygiene.

  3. Evaluation of the PrimerDesign™ genesig real-time reverse transcription-polymerase chain reaction assay and the INFINITI® Respiratory Viral Panel Plus assay for the detection of human metapneumovirus in Kuwait.

    PubMed

    Al-Turab, Mariam; Chehadeh, Wassim; Al-Mulla, Fahd; Al-Nakib, Widad

    2012-04-01

    Human metapneumovirus (hMPV) is a respiratory pathogen that was discovered in 2001 and is considered a major cause of both upper and lower respiratory tract infections. A sensitive, fast, and high-throughput diagnostic test is needed for the detection of hMPV that may assist in the clinical management as well as in the reduction of inappropriate therapy. Therefore, a comparison assessment was performed in this study between the PrimerDesign™ genesig real-time reverse transcription-polymerase chain reaction (RT-PCR) Assay and the INFINITI(®) Respiratory Viral Panel Plus Assay (RVP-Plus) for the detection of hMPV infection in patients with respiratory tract infections. A total of 200 respiratory samples were collected from 185 hospitalized patients, during the winter season in Kuwait. Of 185 patients, 10 (5.4%) were positive for hMPV RNA by the in-house RT-PCR assay, while 7 (4%) were positive for hMPV RNA by the real-time RT-PCR assay and 9 (5%) were positive for hMPV RNA by the INFINITI(®) RVP-Plus assay. The high incidence rate (60%) of hMPV infection was in January 2011. The sensitivity of the real-time RT-PCR and INFINITI(®) RVP-Plus assays was 70% and 90%, respectively, with specificity of 100% for both assays. hMPV types A and B could be identified in this study; however, discordant genotyping results were found between the direct sequencing method and the INFINITI(®) RVP-Plus assay in 33% of hMPV-positive patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Miltenberger blood group typing by real-time polymerase chain reaction (qPCR) melting curve analysis in Thai population.

    PubMed

    Vongsakulyanon, A; Kitpoka, P; Kunakorn, M; Srikhirin, T

    2015-12-01

    To develop reliable and convenient methods for Miltenberger (Mi(a) ) blood group typing. To apply real-time polymerase chain reaction (qPCR) melting curve analysis to Mi(a) blood group typing. The Mi(a) blood group is the collective set of glycophorin hybrids in the MNS blood group system. Mi(a+) blood is common among East Asians and is also found in the Thai population. Incompatible Mi(a) blood transfusions pose the risk of life-threatening haemolysis; therefore, Mi(a) blood group typing is necessary in ethnicities where the Mi(a) blood group is prevalent. One hundred and forty-three blood samples from Thai blood donors were used in the study. The samples included 50 Mi(a+) samples and 93 Mi(a-) samples, which were defined by serology. The samples were typed by Mi(a) typing qPCR, and 50 Mi(a+) samples were sequenced to identify the Mi(a) subtypes. Mi(a) subtyping qPCR was performed to define GP.Mur. Both Mi(a) typing and Mi(a) subtyping were tested on a conventional PCR platform. The results of Mi(a) typing qPCR were all concordant with serology. Sequencing of the 50 Mi(a+) samples revealed 47 GP.Mur samples and 3 GP.Hop or Bun samples. Mi(a) subtyping qPCR was the supplementary test used to further define GP.Mur from other Mi(a) subtypes. Both Mi(a) typing and Mi(a) subtyping performed well using a conventional PCR platform. Mi(a) typing qPCR correctly identified Mi(a) blood groups in a Thai population with the feasibility of Mi(a) subtype discrimination, and Mi(a) subtyping qPCR was able to further define GP.Mur from other Mi(a) subtypes. © 2015 British Blood Transfusion Society.

  5. Real-time PCR assays for detection and quantification of aflatoxin-producing molds in foods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Luque, M Isabel; Martín, Alberto; Córdoba, Juan J

    2012-08-01

    Aflatoxins are among the most toxic mycotoxins. Early detection and quantification of aflatoxin-producing species is crucial to improve food safety. In the present work, two protocols of real-time PCR (qPCR) based on SYBR Green and TaqMan were developed, and their sensitivity and specificity were evaluated. Primers and probes were designed from the o-methyltransferase gene (omt-1) involved in aflatoxin biosynthesis. Fifty-three mold strains representing aflatoxin producers and non-producers of different species, usually reported in food products, were used as references. All strains were tested for aflatoxins production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the proposed qPCR method was demonstrated by the strong linear relationship of the standard curves constructed with the omt-1 gene copy number and Ct values for the different aflatoxin producers tested. The ability of the qPCR protocols to quantify aflatoxin-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 4 to 1 log cfu/g per reaction for all qPCR assays in the different food matrices (peanuts, spices and dry-fermented sausages). The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g for SYBR Green and TaqMan assays. No significant effect was observed due to the different equipment, operator, and qPCR methodology used in the tests of repeatability and reproducibility for different foods. The proposed methods quantified with high efficiency the fungal load in foods. These qPCR protocols are proposed for use to quantify aflatoxin-producing molds in food products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Multicenter evaluation of the new Abbott RealTime assays for quantitative detection of human immunodeficiency virus type 1 and hepatitis C virus RNA.

    PubMed

    Schutten, M; Peters, D; Back, N K T; Beld, M; Beuselinck, K; Foulongne, V; Geretti, A-M; Pandiani, L; Tiemann, C; Niesters, H G M

    2007-06-01

    The analytical performances of the new Abbott RealTime hepatitis C virus (HCV) and human immunodeficiency virus type 1 viral load assays were compared at nine laboratories with different competitor assays. These included the Abbott LcX, Bayer Versant bDNA, Roche COBAS Amplicor, and Roche COBAS TaqMan assays. Two different protocols used during the testing period with and without a pre-m1000 RNA isolation spin were compared. The difference proved to be nonsignificant. A uracil-N-glycosylase (UNG) contamination control option in the HCV test for previous Roche COBAS Amplicor users was evaluated. It proved to decrease amplicon carryover by 100-fold independent of the amplicon input concentration. The protocol including UNG proved to overcome problems with false-positive negative controls. Comparison with other assays revealed only minor differences. The largest difference was observed between the Abbott HCV RealTime assay and the Roche COBAS Amplicor HCV Monitor version 2.0 assay.

  7. Clinical validation of 3 commercial real-time reverse transcriptase polymerase chain reaction assays for the detection of Middle East respiratory syndrome coronavirus from upper respiratory tract specimens.

    PubMed

    Mohamed, Deqa H; AlHetheel, AbdulKarim F; Mohamud, Hanat S; Aldosari, Kamel; Alzamil, Fahad A; Somily, Ali M

    2017-04-01

    Since discovery of Middle East respiratory syndrome coronavirus (MERS-CoV), a novel betacoronavirus first isolated and characterized in 2012, MERS-CoV real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assays represent one of the most rapidly expanding commercial tests. However, in the absence of extensive evaluations of these assays on positive clinical material of different sources, evaluating their diagnostic effectiveness remains challenging. We describe the diagnostic performance evaluation of 3 common commercial MERS-CoV rRT-PCR assays on a large panel (n = 234) of upper respiratory tract specimens collected during an outbreak episode in Saudi Arabia. Assays were compared to the RealStar® MERS-CoV RT-PCR (Alton Diagnostics, Hamburg, Germany) assay as the gold standard. Results showed i) the TIB MolBiol® LightMix UpE and Orf1a assays (TIB MolBiol, Berlin, Germany) to be the most sensitive, followed by ii) the Anyplex™ Seegene MERS-CoV assay (Seegene, Seoul, Korea), and finally iii) the PrimerDesign™ Genesig® HCoV_2012 assay (PrimerDesign, England, United Kingdom). We also evaluate a modified protocol for the PrimerDesign™ Genesig® HCoV_2012 assay. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A multiplex real-time polymerase chain reaction assay with two internal controls for the detection of Brucella species in tissues, blood, and feces from marine mammals.

    PubMed

    Sidor, Inga F; Dunn, J Lawrence; Tsongalis, Gregory J; Carlson, Jolene; Frasca, Salvatore

    2013-01-01

    Brucellosis has emerged as a disease of concern in marine mammals in the last 2 decades. Molecular detection techniques have the potential to address limitations of other methods for detecting infection with Brucella in these species. Presented herein is a real-time polymerase chain reaction (PCR) method targeting the Brucella genus-specific bcsp31 gene. The method also includes a target to a conserved region of the eukaryotic mitochondrial 16S ribosomal RNA gene to assess suitability of extracted DNA and a plasmid-based internal control to detect failure of PCR due to inhibition. This method was optimized and validated to detect Brucella spp. in multiple sample matrices, including fresh or frozen tissue, blood, and feces. The analytical limit of detection was low, with 95% amplification at 24 fg, or an estimated 7 bacterial genomic copies. When Brucella spp. were experimentally added to tissue or fecal homogenates, the assay detected an estimated 1-5 bacteria/µl. An experiment simulating tissue autolysis showed relative persistence of bacterial DNA compared to host mitochondrial DNA. When used to screen 1,658 field-collected marine mammal tissues in comparison to microbial culture, diagnostic sensitivity and specificity were 70.4% and 98.3%, respectively. In addition to amplification in fresh and frozen tissues, Brucella spp. were detected in feces and formalin-fixed, paraffin-embedded tissues from culture-positive animals. Results indicate the utility of this real-time PCR for the detection of Brucella spp. in marine species, which may have applications in surveillance or epidemiologic investigations.

  9. Wheat-specific gene, ribosomal protein l21, used as the endogenous reference gene for qualitative and real-time quantitative polymerase chain reaction detection of transgenes.

    PubMed

    Liu, Yi-Ke; Li, He-Ping; Huang, Tao; Cheng, Wei; Gao, Chun-Sheng; Zuo, Dong-Yun; Zhao, Zheng-Xi; Liao, Yu-Cai

    2014-10-29

    Wheat-specific ribosomal protein L21 (RPL21) is an endogenous reference gene suitable for genetically modified (GM) wheat identification. This taxon-specific RPL21 sequence displayed high homogeneity in different wheat varieties. Southern blots revealed 1 or 3 copies, and sequence analyses showed one amplicon in common wheat. Combined analyses with sequences from common wheat (AABBDD) and three diploid ancestral species, Triticum urartu (AA), Aegilops speltoides (BB), and Aegilops tauschii (DD), demonstrated the presence of this amplicon in the AA genome. Using conventional qualitative polymerase chain reaction (PCR), the limit of detection was 2 copies of wheat haploid genome per reaction. In the quantitative real-time PCR assay, limits of detection and quantification were about 2 and 8 haploid genome copies, respectively, the latter of which is 2.5-4-fold lower than other reported wheat endogenous reference genes. Construct-specific PCR assays were developed using RPL21 as an endogenous reference gene, and as little as 0.5% of GM wheat contents containing Arabidopsis NPR1 were properly quantified.

  10. Monitoring of Epstein-Barr viral load in pediatric heart and lung transplant recipients by real-time polymerase chain reaction.

    PubMed

    Benden, Christian; Aurora, Paul; Burch, Michael; Cubitt, David; Lloyd, Cathryn; Whitmore, Pauline; Neligan, Sophie L; Elliott, Martin J

    2005-12-01

    Elevation in Epstein-Barr virus (EBV) load measured in peripheral blood has been proposed as a marker for development of post-transplant lymphoproliferative disease (PTLD), but there are few published data examining this relationship. We report the longitudinal surveillance of EBV for all recipients of heart (HTx), heart-lung (HLTx) and lung (LTx) transplants at our institution. The study population included all patients transplanted between January 2003 and July 2004. EBV load was serially measured in peripheral blood by real-time polymerase chain reaction (PCR). Results were correlated with recipient pre-transplant EBV status and development of PTLD. Forty-four transplant operations were performed, including 33 HTx, 6 HLTx and 5 LTx. Thirty-two (73%) of the patients were EBV seropositive pre-transplant. Nineteen (44%) pediatric recipients developed EB viremia, including 17 HTx, 1 HLTx and 1 LTx. Eleven (58%) of these patients were EBV seropositive pre-transplant. EBV was first detected at a median of 30.5 days (range 2 to 81) post-transplant. The median peak EBV load in that group was 10,099 copies/ml (range 5,935 to 255,466) whole blood. One patient with cystic fibrosis post-LTx developed PTLD localized in the colon. This patient was EBV seronegative pre-transplant; peak EBV load was 14,513 copies/ml. Acute infectious mononucleosis was seen in 1 case. Positive pre-transplant EBV status did not predict post-transplant EB viremia (positive predictive value 0.03). Contrary to earlier reports, our data demonstrate that a high EBV load does not lead to PTLD early post-transplant. These results do not support the practice of pre-emptively reducing immunosuppression in patients with raised EBV load.

  11. Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces

    NASA Astrophysics Data System (ADS)

    Langer, Andreas; Schräml, Michael; Strasser, Ralf; Daub, Herwin; Myers, Thomas; Heindl, Dieter; Rant, Ulrich

    2015-07-01

    The engineering of high-performance enzymes for future sequencing and PCR technologies as well as the development of many anticancer drugs requires a detailed analysis of DNA/RNA synthesis processes. However, due to the complex molecular interplay involved, real-time methodologies have not been available to obtain comprehensive information on both binding parameters and enzymatic activities. Here we introduce a chip-based method to investigate polymerases and their interactions with nucleic acids, which employs an electrical actuation of DNA templates on microelectrodes. Two measurement modes track both the dynamics of the induced switching process and the DNA extension simultaneously to quantitate binding kinetics, dissociation constants and thermodynamic energies. The high sensitivity of the method reveals previously unidentified tight binding states for Taq and Pol I (KF) DNA polymerases. Furthermore, the incorporation of label-free nucleotides can be followed in real-time and changes in the DNA polymerase conformation (finger closing) during enzymatic activity are observable.

  12. Presence of infectious agents and co-infections in diarrheic dogs determined with a real-time polymerase chain reaction-based panel.

    PubMed

    Gizzi, Aline Baumann da Rocha; Oliveira, Simone Tostes; Leutenegger, Christian M; Estrada, Marko; Kozemjakin, Denise Adamczyk; Stedile, Rafael; Marcondes, Mary; Biondo, Alexander Welker

    2014-01-16

    Infectious diarrhea can be caused by bacteria, viruses, or protozoan organisms, or a combination of these. The identification of co-infections in dogs is important to determine the prognosis and to plan strategies for their treatment and prophylaxis. Although many pathogens have been individually detected with real-time polymerase chain reaction (PCR), a comprehensive panel of agents that cause diarrhea in privately owned dogs has not yet been established. The objective of this study was to use a real-time PCR diarrhea panel to survey the frequencies of pathogens and co-infections in owned dogs attended in a veterinary hospital with and without diarrhea, as well the frequency in different countries. Feces samples were tested for canine distemper virus, canine coronavirus, canine parvovirus type 2 (CPV-2), Clostridium perfringens alpha toxin (CPA), Cryptosporidium spp., Giardia spp., and Salmonella spp. using molecular techniques. In total, 104 diarrheic and 43 control dogs that were presented consecutively at a major private veterinary hospital were included in the study. Overall, 71/104 (68.3%) dogs with diarrhea were positive for at least one pathogen: a single infection in 39/71 dogs (54.9%) and co-infections in 32/71 dogs (45.1%), including 21/32 dogs (65.6%) with dual, 5/32 (15.6%) with triple, and 6/32 (18.8%) with quadruple infections. In the control group, 13/43 (30.2%) dogs were positive, all with single infections only. The most prevalent pathogens in the diarrheic dogs were CPA (40/104 dogs, 38.5%), CPV-2 (36/104 dogs, 34.6%), and Giardia spp. (14/104 dogs, 13.5%). CPV-2 was the most prevalent pathogen in the dual co-infections, associated with CPA, Cryptosporidium spp., or Giardia spp. No statistical difference (P = 0.8374) was observed in the duration of diarrhea or the number of deaths (P = 0.5722) in the presence or absence of single or co-infections. Diarrheic dogs showed a higher prevalence of pathogen infections than the controls. Whereas the

  13. Presence of infectious agents and co-infections in diarrheic dogs determined with a real-time polymerase chain reaction-based panel

    PubMed Central

    2014-01-01

    Background Infectious diarrhea can be caused by bacteria, viruses, or protozoan organisms, or a combination of these. The identification of co-infections in dogs is important to determine the prognosis and to plan strategies for their treatment and prophylaxis. Although many pathogens have been individually detected with real-time polymerase chain reaction (PCR), a comprehensive panel of agents that cause diarrhea in privately owned dogs has not yet been established. The objective of this study was to use a real-time PCR diarrhea panel to survey the frequencies of pathogens and co-infections in owned dogs attended in a veterinary hospital with and without diarrhea, as well the frequency in different countries. Feces samples were tested for canine distemper virus, canine coronavirus, canine parvovirus type 2 (CPV-2), Clostridium perfringens alpha toxin (CPA), Cryptosporidium spp., Giardia spp., and Salmonella spp. using molecular techniques. Results In total, 104 diarrheic and 43 control dogs that were presented consecutively at a major private veterinary hospital were included in the study. Overall, 71/104 (68.3%) dogs with diarrhea were positive for at least one pathogen: a single infection in 39/71 dogs (54.9%) and co-infections in 32/71 dogs (45.1%), including 21/32 dogs (65.6%) with dual, 5/32 (15.6%) with triple, and 6/32 (18.8%) with quadruple infections. In the control group, 13/43 (30.2%) dogs were positive, all with single infections only. The most prevalent pathogens in the diarrheic dogs were CPA (40/104 dogs, 38.5%), CPV-2 (36/104 dogs, 34.6%), and Giardia spp. (14/104 dogs, 13.5%). CPV-2 was the most prevalent pathogen in the dual co-infections, associated with CPA, Cryptosporidium spp., or Giardia spp. No statistical difference (P = 0.8374) was observed in the duration of diarrhea or the number of deaths (P = 0.5722) in the presence or absence of single or co-infections. Conclusions Diarrheic dogs showed a higher prevalence of pathogen infections than

  14. A real-time polymerase chain reaction assay for the detection of Mycoplasma agalactiae.

    PubMed

    Fitzmaurice, J; Sewell, M; King, C M; McDougall, S; McDonald, W L; O'Keefe, J S

    2008-10-01

    To develop a real-time PCR for the detection of Mycoplasma agalactiae, using PCR primers targeting the ma-mp81 gene. A group of 15 M. agalactiae isolates, 21 other Mycoplasma spp. isolates and 21 other bacterial isolates was used in evaluation of the assay. All M. agalactiae isolates were detected by the assay and none of the non-target isolates was amplified. The analytical detection limit of the assay was 10 fg of purified genomic DNA and 104 cfu/ml milk inoculated with M. agalactiae. When applied to goat-milk samples collected from three herds free of M. agalactiae infection, the assay had a specificity of 100%. The assay would be useful in a diagnostic laboratory, providing specific, sensitive and rapid detection of M. agalactiae.

  15. Real-time RT-PCR, a necessary tool to support the diagnosis and surveillance of rotavirus in Mexico.

    PubMed

    De La Cruz Hernández, Sergio Isaac; Anaya Molina, Yazmin; Gómez Santiago, Fabián; Terán Vega, Heidi Lizbeth; Monroy Leyva, Elda; Méndez Pérez, Héctor; García Lozano, Herlinda

    2018-04-01

    Rotavirus produces diarrhea in children under 5 years old. Most of those conventional methods such as polyacrylamide gel electrophoresis (PAGE) and reverse transcription-polymerase chain reaction (RT-PCR) have been used for rotavirus detection. However, these techniques need a multi-step process to get the results. In comparison with conventional methods, the real-time RT-PCR is a highly sensitive method, which allows getting the results in only one day. In this study a real-time RT-PCR assay was tested using a panel of 440 samples from patients with acute gastroenteritis, and characterized by PAGE and RT-PCR. The results show that the real-time RT-PCR detected rotavirus from 73% of rotavirus-negative samples analyzed by PAGE and RT-PCR; thus, the percentage of rotavirus-positive samples increased to 81%. The results indicate that this real-time RT-PCR should be part of a routine analysis, and as a support of the diagnosis of rotavirus in Mexico. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Viewing Human DNA Polymerase β Faithfully and Unfaithfully Bypass an Oxidative Lesion by Time-Dependent Crystallography

    PubMed Central

    Vyas, Rajan; Reed, Andrew J.; Tokarsky, E. John; Suo, Zucai

    2015-01-01

    One common oxidative DNA lesion, 8-oxo-7,8-dihydro-2′-deoxyguanine (8-oxoG), is highly mutagenic in vivo due to its anti-conformation forming a Watson–Crick base pair with correct deoxycytidine 5′-triphosphate (dCTP) and its syn-conformation forming a Hoogsteen base pair with incorrect deoxyadenosine 5′-triphosphate (dATP). Here, we utilized time-resolved X-ray crystallography to follow 8-oxoG bypass by human DNA polymerase β (hPolβ). In the 12 solved structures, both Watson–Crick (anti-8-oxoG:anti-dCTP) and Hoogsteen (syn-8-oxoG:anti-dATP) base pairing were clearly visible and were maintained throughout the chemical reaction. Additionally, a third Mg2+ appeared during the process of phosphodiester bond formation and was located between the reacting α- and β-phosphates of the dNTP, suggesting its role in stabilizing reaction intermediates. After phosphodiester bond formation, hPolβ reopened its conformation, pyrophosphate was released, and the newly incorporated primer 3′-terminal nucleotide stacked, rather than base paired, with 8-oxoG. These structures provide the first real-time pictures, to our knowledge, of how a polymerase correctly and incorrectly bypasses a DNA lesion. PMID:25825995

  17. Viewing Human DNA Polymerase β Faithfully and Unfaithfully Bypass an Oxidative Lesion by Time-Dependent Crystallography

    DOE PAGES

    Vyas, Rajan; Reed, Andrew J.; Tokarsky, E. John; ...

    2015-03-31

    One common oxidative DNA lesion, 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxoG), is highly mutagenic in vivo due to its anti-conformation forming a Watson–Crick base pair with correct deoxycytidine 5'-triphosphate (dCTP) and its syn-conformation forming a Hoogsteen base pair with incorrect deoxyadenosine 5'-triphosphate (dATP). Here in this article, we utilized time-resolved X-ray crystallography to follow 8-oxoG bypass by human DNA polymerase β (hPolβ). In the 12 solved structures, both Watson–Crick (anti-8-oxoG:anti-dCTP) and Hoogsteen (syn-8-oxoG:anti-dATP) base pairing were clearly visible and were maintained throughout the chemical reaction. Additionally, a third Mg 2+ appeared during the process of phosphodiester bond formation and was located between the reactingmore » α- and β-phosphates of the dNTP, suggesting its role in stabilizing reaction intermediates. After phosphodiester bond formation, hPolβ reopened its conformation, pyrophosphate was released, and the newly incorporated primer 3'-terminal nucleotide stacked, rather than base paired, with 8-oxoG. These structures provide the first real-time pictures, to our knowledge, of how a polymerase correctly and incorrectly bypasses a DNA lesion.« less

  18. A simple real-time polymerase chain reaction (PCR)-based assay for authentication of the Chinese Panax ginseng cultivar Damaya from a local ginseng population.

    PubMed

    Wang, H; Wang, J; Li, G

    2016-06-27

    Panax ginseng is one of the most important medicinal plants in the Orient. Owing to its increasing demand in the world market, cultivated ginseng has become the main source of medicinal material. Among the Chinese ginseng cultivars, Damaya commands higher prices and is grown in significant proportions among the local ginseng population. Due to the lack of rapid and accurate authentication methods, Damaya is distributed among different cultivars in the local ginseng population in China. Here, we identified a unique, Damaya-specific single nucleotide polymorphism (SNP) site present in the second intron of mitochondrial cytochrome c oxidase subunit 2 (cox2). Based on this SNP, a Damaya cultivar-specific primer was designed and an allele-specific polymerase chain reaction (PCR) was optimized for the effective molecular authentication of Damaya. We designed a method by combining a simple DNA isolation method with real-time allele-specific PCR using SYBR Green I fluorescent dye, and proved its efficacy in clearly discriminated Damaya cultivar from other Chinese ginseng cultivars according to the allelic discrimination analysis. Hence, this study provides a simple and rapid assay for the differentiation and conservation of Damaya from the local Chinese ginseng population.

  19. Evaluation of a Campylobacter fetus subspecies venerealis real-time quantitative polymerase chain reaction for direct analysis of bovine preputial samples

    PubMed Central

    Chaban, Bonnie; Chu, Shirley; Hendrick, Steven; Waldner, Cheryl; Hill, Janet E.

    2012-01-01

    The detection and subspeciation of Campylobacter fetus subsp. venerealis (CFV) from veterinary samples is important for both clinical and economic reasons. Campylobacter fetus subsp. venerealis is the causative agent of bovine genital campylobacteriosis, a venereal disease that can lead to serious reproductive problems in cattle, and strict international regulations require animals and animal products to be CFV-free for trade. This study evaluated methods reported in the literature for CFV detection and reports the translation of an extensively tested CFV-specific polymerase chain reaction (PCR) primer set; including the VenSF/VenSR primers and a real-time, quantitative PCR (qPCR) platform using SYBR Green chemistry. Three methods of preputial sample preparation for direct qPCR were evaluated and a heat lysis DNA extraction method was shown to allow for CFV detection at the level of approximately one cell equivalent per reaction (or 1.0 × 103 CFU/mL) from prepuce. The optimized sample preparation and qPCR protocols were then used to evaluate 3 western Canadian bull cohorts, which included 377 bulls, for CFV. The qPCR assay detected 11 positive bulls for the CFV-specific parA gene target. DNA sequence data confirmed the identity of the amplified product and revealed that positive samples were comprised of 2 sequence types; one identical to previously reported CFV parA gene sequences and one with a 9% sequence divergence. These results add valuable information towards our understanding of an important CFV subspeciation target and offer a significantly improved format for an internationally recognized PCR test. PMID:23277694

  20. Performance of 2 commercial real-time polymerase chain reaction assays for the detection of Aspergillus and Pneumocystis DNA in bronchoalveolar lavage fluid samples from critical care patients.

    PubMed

    Orsi, Carlotta Francesca; Gennari, William; Venturelli, Claudia; La Regina, Annunziata; Pecorari, Monica; Righi, Elena; Machetti, Marco; Blasi, Elisabetta

    2012-06-01

    This article investigates the performance of 2 commercial real-time polymerase chain reaction (PCR) assays, MycAssay™ Aspergillus (Myc(Asp)Assay) and MycAssay™ Pneumocystis (Myc(PCP)Assay), on the ABI 7300 platform for the detection of Aspergillus (Asp) or Pneumocystis jirovecii (Pj) DNA in bronchoalveolar lavage (BAL) samples from 20 patients. Operationally, patients enrolled were clustered into 3 groups: invasive aspergillosis group (IA, 7 patients), Pj pneumonia group (PCP, 8 patients), and negative control group (5 patients). All the IA patients were Myc(Asp)Assay positive, whereas 12 non-IA patients returned negative PCR results. Furthermore, 7 of 8 PCP patients were Myc(PCP)Assay positive, while 9 non-PCP patients were PCR negative. In conclusion, these data provide an early indication of the effectiveness of both the Myc(Asp)Assay and Myc(PCP)Assay on the ABI 7300 platform for the detection of either Asp or Pj DNA in BAL from patients with deep fungal infections. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Comprehensive Panel of Real-Time TaqMan™ Polymerase Chain Reaction Assays for Detection and Absolute Quantification of Filoviruses, Arenaviruses, and New World Hantaviruses

    PubMed Central

    Trombley, Adrienne R.; Wachter, Leslie; Garrison, Jeffrey; Buckley-Beason, Valerie A.; Jahrling, Jordan; Hensley, Lisa E.; Schoepp, Randal J.; Norwood, David A.; Goba, Augustine; Fair, Joseph N.; Kulesh, David A.

    2010-01-01

    Viral hemorrhagic fever is caused by a diverse group of single-stranded, negative-sense or positive-sense RNA viruses belonging to the families Filoviridae (Ebola and Marburg), Arenaviridae (Lassa, Junin, Machupo, Sabia, and Guanarito), and Bunyaviridae (hantavirus). Disease characteristics in these families mark each with the potential to be used as a biological threat agent. Because other diseases have similar clinical symptoms, specific laboratory diagnostic tests are necessary to provide the differential diagnosis during outbreaks and for instituting acceptable quarantine procedures. We designed 48 TaqMan™-based polymerase chain reaction (PCR) assays for specific and absolute quantitative detection of multiple hemorrhagic fever viruses. Forty-six assays were determined to be virus-specific, and two were designated as pan assays for Marburg virus. The limit of detection for the assays ranged from 10 to 0.001 plaque-forming units (PFU)/PCR. Although these real-time hemorrhagic fever virus assays are qualitative (presence of target), they are also quantitative (measure a single DNA/RNA target sequence in an unknown sample and express the final results as an absolute value (e.g., viral load, PFUs, or copies/mL) on the basis of concentration of standard samples and can be used in viral load, vaccine, and antiviral drug studies. PMID:20439981

  2. Multipurpose assessment for the quantification of Vibrio spp. and total bacteria in fish and seawater using multiplex real-time polymerase chain reaction.

    PubMed

    Kim, Ji Yeun; Lee, Jung-Lim

    2014-10-01

    This study describes the first multiplex real-time polymerase chain reaction assay developed, as a multipurpose assessment, for the simultaneous quantification of total bacteria and three Vibrio spp. (V. parahaemolyticus, V. vulnificus and V. anguillarum) in fish and seawater. The consumption of raw finfish as sushi or sashimi has been increasing the chance of Vibrio outbreaks in consumers. Freshness and quality of fishery products also depend on the total bacterial populations present. The detection sensitivity of the specific targets for the multiplex assay was 1 CFU mL⁻¹ in pure culture and seawater, and 10 CFU g⁻¹ in fish. While total bacterial counts by the multiplex assay were similar to those obtained by cultural methods, the levels of Vibrio detected by the multiplex assay were generally higher than by cultural methods of the same populations. Among the natural samples without Vibrio spp. inoculation, eight out of 10 seawater and three out of 20 fish samples were determined to contain Vibrio spp. Our data demonstrate that this multiplex assay could be useful for the rapid detection and quantification of Vibrio spp. and total bacteria as a multipurpose tool for surveillance of fish and water quality as well as diagnostic method. © 2014 The Authors. Journal of the Science of Food and Agriculture published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry.

  3. Multipurpose assessment for the quantification of Vibrio spp. and total bacteria in fish and seawater using multiplex real-time polymerase chain reaction

    PubMed Central

    Kim, Ji Yeun; Lee, Jung-Lim

    2014-01-01

    Background This study describes the first multiplex real-time polymerase chain reaction assay developed, as a multipurpose assessment, for the simultaneous quantification of total bacteria and three Vibrio spp. (V. parahaemolyticus, V. vulnificus and V. anguillarum) in fish and seawater. The consumption of raw finfish as sushi or sashimi has been increasing the chance of Vibrio outbreaks in consumers. Freshness and quality of fishery products also depend on the total bacterial populations present. Results The detection sensitivity of the specific targets for the multiplex assay was 1 CFU mL−1 in pure culture and seawater, and 10 CFU g−1 in fish. While total bacterial counts by the multiplex assay were similar to those obtained by cultural methods, the levels of Vibrio detected by the multiplex assay were generally higher than by cultural methods of the same populations. Among the natural samples without Vibrio spp. inoculation, eight out of 10 seawater and three out of 20 fish samples were determined to contain Vibrio spp. Conclusion Our data demonstrate that this multiplex assay could be useful for the rapid detection and quantification of Vibrio spp. and total bacteria as a multipurpose tool for surveillance of fish and water quality as well as diagnostic method. © 2014 The Authors. Journal of the Science of Food and Agriculture published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:24752974

  4. Evaluation of sensitivity of TaqMan RT-PCR for rubella virus detection in clinical specimens.

    PubMed

    Okamoto, Kiyoko; Mori, Yoshio; Komagome, Rika; Nagano, Hideki; Miyoshi, Masahiro; Okano, Motohiko; Aoki, Yoko; Ogura, Atsushi; Hotta, Chiemi; Ogawa, Tomoko; Saikusa, Miwako; Kodama, Hiroe; Yasui, Yoshihiro; Minagawa, Hiroko; Kurata, Takako; Kanbayashi, Daiki; Kase, Tetsuo; Murata, Sachiko; Shirabe, Komei; Hamasaki, Mitsuhiro; Kato, Takashi; Otsuki, Noriyuki; Sakata, Masafumi; Komase, Katsuhiro; Takeda, Makoto

    2016-07-01

    An easy and reliable assay for detection of the rubella virus is required to strengthen rubella surveillance. Although a TaqMan RT-PCR assay for detection of the rubella virus has been established in Japan, its utility for diagnostic purposes has not been tested. To allow introduction of the TaqMan RT-PCR into the rubella surveillance system in Japan, the sensitivity of the assay was determined using representative strains for all genotypes and clinical specimens. The detection limits of the method for individual genotypes were examined using viral RNA extracted from 13 representative strains. The assay was also tested at 10 prefectural laboratories in Japan, designated as local reference laboratories for measles and rubella, to allow nationwide application of the assay. The detection limits and amplification efficiencies of the assay were similar among all the representative strains of the 13 genotypes. The TaqMan RT-PCR could detect approximately 90% of throat swab and urine samples taken up to 5days of illness. These samples were determined positive by a highly sensitive nested RT-PCR. The TaqMan RT-PCR could detect at least 10 pfu of rubella virus. Although the sensitivity was somewhat lower than that of the conventional nested RT-PCR, the TaqMan RT-PCR could be more practical to routine tests for rubella laboratory diagnosis and detection in view of the rapid response and reducing risks of contamination. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Dependable Real-Time Systems

    DTIC Science & Technology

    1991-09-30

    0196 or 413 545-0720 PI E-mail Address: krithi@nirvan.cs.umass.edu, stankovic(ocs.umass.edu Grant or Contract Title: Dependable Real - Time Systems Grant...Dependable Real - Time Systems " Grant or Contract Number: N00014-85-k-0398 L " Reporting Period: 1 Oct 87 - 30 Sep 91 , 2. Summary of Accomplishments ’ 2.1 Our...in developing a sound approach to scheduling tasks in complex real - time systems , (2) developed a real-time operating system kernel, a preliminary

  6. Development and comparative evaluation of SYBR Green I-based one-step real-time RT-PCR assay for detection and quantification of West Nile virus in human patients.

    PubMed

    Kumar, Jyoti S; Saxena, Divyasha; Parida, Manmohan

    2014-01-01

    The recent outbreaks of West Nile Virus (WNV) in the Northeastern American continents and other regions of the world have made it essential to develop an efficient protocol for surveillance of WN virus. Nucleic acid based techniques like, RT-PCR have the advantage of sensitivity, specificity and rapidity. A one step single tube Env gene specific real-time RT-PCR was developed for early and reliable clinical diagnosis of WNV infection in clinical samples. The applicability of this assay for clinical diagnosis was validated with 105 suspected acute-phase serum and plasma samples from the recent epidemic of mysterious fever in Tamil Nadu, India in 2009-10. The comparative evaluation revealed the higher sensitivity of real-time RT-PCR assay by picking up 4 additional samples with low copy number of template in comparison to conventional RT-PCR. All the real-time positive samples further confirmed by CDC reported TaqMan real-time RT-PCR and quantitative real-time RT-PCR assays for the simultaneous detection of WNV lineage 1 and 2 strains. The quantitation of the viral load samples was done using a standard curve. These findings demonstrated that the assay has the potential usefulness for clinical diagnosis due to detection and quantification of WNV in acute-phase patient serum samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Rapid real-time PCR methods to distinguish Salmonella Enteritidis wildtype field isolates from vaccine strains Salmovac SE/Gallivac SE and AviPro SALMONELLA VAC E.

    PubMed

    Maurischat, Sven; Szabo, Istvan; Baumann, Beatrice; Malorny, Burkhard

    2015-05-01

    Salmonella enterica serovar Enteritidis is a major non-typhoid Salmonella serovar causing human salmonellosis mainly associated with the consumption of poultry and products thereof. To reduce infections in poultry, S. Enteritidis live vaccine strains AviPro SALMONELLA VAC E and Salmovac SE/Gallivac SE have been licensed and used in several countries worldwide. To definitively diagnose a S. Enteritidis contamination in vaccinated herds a reliable and fast method for the differentiation between vaccine and wildtype field isolates is required. In this study, we developed and validated real-time PCR (qPCR) assays to distinguish those variants genetically. Suitable target sequences were identified by whole genome sequencing (WGS) using the Illumina MiSeq system. SNP regions in kdpA and nhaA proved to be most useful for differentiation of AviPro SALMONELLA VAC E and Salmovac SE/Gallivac SE, respectively, from wildtype strains. For each vaccine strain one TaqMan-qPCR assay and one alternative approach using High Resolution Melting (HRM) analysis was designed. All 30 Salmovac SE and 7 AviPro SALMONELLA VAC E vaccine strain reisolates tested were correctly identified by both approaches (100% inclusivity). Furthermore, all 137 (TaqMan) and 97 (HRM) Salmonella non-vaccine and related Enterobacteriaceae strains tested were excluded (100% exclusivity). The analytical detection limits were determined to be approx. 10(2) genome copies/reaction for the TaqMan and 10(4) genome copies/reaction for the HRM approach. The real-time PCR assays proved to be a reliable and fast alternative to the cultural vaccine strain identification tests helping decision makers in control measurements to take action within a shorter period of time. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A recombinase polymerase amplification-based assay for rapid detection of African swine fever virus.

    PubMed

    Wang, Jianchang; Wang, Jinfeng; Geng, Yunyun; Yuan, Wanzhe

    2017-10-01

    A recombinase polymerase amplification (RPA)-based method was developed for rapid and specific detection of African swine fever virus (ASFV), the etiologic agent of African swine fever, a devastating disease of swine. Primers and the exo probe targeting the conserved region of the P72 gene of ASFV were designed and the reaction was run on the Genie III scanner device. Using recombinant plasmid DNA containing the P72 gene as template, we showed that the amplified product could be detected in less than 10 min and that the detection limit was 10 2 copies DNA/reaction [same detection limit as real-time polymerase chain reaction (PCR)]. The RPA assay did not cross-detect CSFV, PCV-2, PRV, PRRSV, or FMDV, common viruses seen in pigs. Tests of recombinant plasmid-spiked serum samples revealed that RPA and real-time PCR had the same diagnostic rate. The RPA assay, which is simple, cost-effective, and fast, is a promising alternative to real-time PCR for ASFV detection.

  9. A recombinase polymerase amplification-based assay for rapid detection of African swine fever virus

    PubMed Central

    Wang, Jianchang; Wang, Jinfeng; Geng, Yunyun; Yuan, Wanzhe

    2017-01-01

    A recombinase polymerase amplification (RPA)-based method was developed for rapid and specific detection of African swine fever virus (ASFV), the etiologic agent of African swine fever, a devastating disease of swine. Primers and the exo probe targeting the conserved region of the P72 gene of ASFV were designed and the reaction was run on the Genie III scanner device. Using recombinant plasmid DNA containing the P72 gene as template, we showed that the amplified product could be detected in less than 10 min and that the detection limit was 102 copies DNA/reaction [same detection limit as real-time polymerase chain reaction (PCR)]. The RPA assay did not cross-detect CSFV, PCV-2, PRV, PRRSV, or FMDV, common viruses seen in pigs. Tests of recombinant plasmid-spiked serum samples revealed that RPA and real-time PCR had the same diagnostic rate. The RPA assay, which is simple, cost-effective, and fast, is a promising alternative to real-time PCR for ASFV detection. PMID:29081590

  10. Single tube multiplex real-time PCR for the rapid detection of herpesvirus infections of the central nervous system.

    PubMed

    Sankuntaw, Nipaporn; Sukprasert, Saovaluk; Engchanil, Chulapan; Kaewkes, Wanlop; Chantratita, Wasun; Pairoj, Vantanit; Lulitanond, Viraphong

    2011-01-01

    Human herpesvirus infection of immunocompromised hosts may lead to central nervous system (CNS) infection and diseases. In this study, a single tube multiplex real-time PCR was developed for the detection of five herpesviruses (HSV-1, HSV-2, VZV, EBV and CMV) in clinical cerebrospinal fluid (CSF) specimens. Two primer pairs specific for the herpesvirus polymerase gene and five hybridization probe pairs for the specific identification of the herpesvirus types were used in a LightCycler multiplex real-time PCR. A singleplex real-time PCR was first optimized and then applied to the multiplex real-time PCR. The singleplex and multiplex real-time PCRs showed no cross-reactivity. The sensitivity of the singleplex real-time PCR was 1 copy per reaction for each herpesvirus, while that of the multiplex real-time PCR was 1 copy per reaction for HSV-1 and VZV and 10 copies per reaction for HSV-2, EBV and CMV. Intra and inter-assay variations of the single tube multiplex assay were in the range of 0.02%-3.67% and 0.79%-4.35%, respectively. The assay was evaluated by testing 62 clinical CSF samples and was found to have equivalent sensitivity, specificity and agreement as the routine real-time PCR, but reducing time, cost and amount of used sample. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Evaluation of cytoreductive efficacy of vincristine, cyclophosphamide, and Doxorubicin in dogs with lymphoma by measuring the number of neoplastic lymphoid cells with real-time polymerase chain reaction.

    PubMed

    Sato, M; Yamazaki, J; Goto-Koshino, Y; Takahashi, M; Fujino, Y; Ohno, K; Tsujimoto, H

    2011-01-01

    The cytoreductive efficacy of the individual components of multidrug chemotherapy for canine lymphoma is difficult to evaluate after complete remission. To compare the cytoreductive efficacy of vincristine (VCR), cyclophosphamide (CPA), and doxorubicin (DXR) in dogs that received a 6-month modified version of the University of Wisconsin-Madison chemotherapy protocol (UW-25). Twenty-nine dogs with high-grade B-cell multicentric lymphoma. Rearranged immunoglobulin heavy chain gene fragments from lymphoma cells were amplified by polymerase chain reaction (PCR) and sequenced to prepare clone-specific primers and probes for real-time PCR. The number of lymphoma cells in peripheral blood was measured from diagnosis to week 11 of UW-25. The number of lymphoma cells after the 1st administration of VCR, CPA, and DXR in weeks 1-4 was decreased in 29/29 (100%), 15/29 (51.7%), and 26/27 (96.3%) dogs, respectively. The cytoreductive efficacy of CPA was less than that of VCR and DXR. VCR, CPA, and DXR administered in weeks 6-9 were effective in 5/26 (19.2%), 5/20 (25.0%), and 14/19 (73.7%) dogs, respectively, indicating the sustained cytoreductive efficacy of DXR. CPA nonresponders were heavier and exhibited a shorter 1st remission than CPA responders. When using UW-25 for treatment of canine lymphoma, CPA was found to have less cytoreductive efficacy than VCR and DXR. Real-time PCR-based quantification of tumor cells is an objective marker of the efficacy of chemotherapeutic agents. Copyright © 2011 by the American College of Veterinary Internal Medicine.

  12. The detection of T-Nos, a genetic element present in GMOs, by cross-priming isothermal amplification with real-time fluorescence.

    PubMed

    Zhang, Fang; Wang, Liu; Fan, Kai; Wu, Jian; Ying, Yibin

    2014-05-01

    An isothermal cross-priming amplification (CPA) assay for Agrobacterium tumefaciens nopaline synthase terminator (T-Nos) was established and investigated in this work. A set of six specific primers, recognizing eight distinct regions on the T-Nos sequence, was designed. The CPA assay was performed at a constant temperature, 63 °C, and detected by real-time fluorescence. The results indicated that real-time fluorescent CPA had high specificity, and the limit of detection was 1.06 × 10(3) copies of rice genomic DNA, which could be detected in 40 min. Comparison of real-time fluorescent CPA and conventional polymerase chain reaction (PCR) was also performed. Results revealed that real-time fluorescent CPA had a comparable sensitivity to conventional real-time PCR and had taken a shorter time. In addition, different contents of genetically modified (GM)-contaminated rice seed powder samples were detected for practical application. The result showed real-time fluorescent CPA could detect 0.5 % GM-contaminated samples at least, and the whole reaction could be finished in 35 min. Real-time fluorescent CPA is sensitive enough to monitor labeling systems and provides an attractive method for the detection of GMO.

  13. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)

    USDA-ARS?s Scientific Manuscript database

    Quantitative real-time polymerase chain reaction (qRT-PCR) is a commonly used technique for measuring gene expression levels due to its simplicity, specificity, and sensitivity. Reliable reference selection for the accurate quantification of gene expression under various experimental conditions is a...

  14. Rapid Detection of Ceratocystis platani Inoculum by Quantitative Real-Time PCR Assay

    PubMed Central

    Ghelardini, Luisa; Belbahri, Lassaâd; Quartier, Marion; Santini, Alberto

    2013-01-01

    Ceratocystis platani is the causal agent of canker stain of plane trees, a lethal disease able to kill mature trees in one or two successive growing seasons. The pathogen is a quarantine organism and has a negative impact on anthropogenic and natural populations of plane trees. Contaminated sawdust produced during pruning and sanitation fellings can contribute to disease spread. The goal of this study was to design a rapid, real-time quantitative PCR assay to detect a C. platani airborne inoculum. Airborne inoculum traps (AITs) were placed in an urban setting in the city of Florence, Italy, where the disease was present. Primers and TaqMan minor groove binder (MGB) probes were designed to target cerato-platanin (CP) and internal transcribed spacer 2 (ITS2) genes. The detection limits of the assay were 0.05 pg/μl and 2 fg/μl of fungal DNA for CP and ITS, respectively. Pathogen detection directly from AITs demonstrated specificity and high sensitivity for C. platani, detecting DNA concentrations as low as 1.2 × 10−2 to 1.4 × 10−2 pg/μl, corresponding to ∼10 conidia per ml. Airborne inoculum traps were able to detect the C. platani inoculum within 200 m of the closest symptomatic infected plane tree. The combination of airborne trapping and real-time quantitative PCR assay provides a rapid and sensitive method for the specific detection of a C. platani inoculum. This technique may be used to identify the period of highest risk of pathogen spread in a site, thus helping disease management. PMID:23811499

  15. Real-time PCR (qPCR) primer design using free online software.

    PubMed

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most commonly used fluorescent chemistries are SYBR® Green dyes and TaqMan®, Molecular Beacon or Scorpion probes. SYBR® Green is very simple to use and cost efficient. As SYBR® Green dye binds to any double-stranded DNA product, its success depends greatly on proper primer design. Many types of online primer design software are available, which can be used free of charge to design desirable SYBR® Green-based qPCR primers. This laboratory exercise is intended for those who have a fundamental background in PCR. It addresses the basic fluorescent chemistries of real-time PCR, the basic rules and pitfalls of primer design, and provides a step-by-step protocol for designing SYBR® Green-based primers with free, online software. Copyright © 2010 Wiley Periodicals, Inc.

  16. Calibration-free assays on standard real-time PCR devices

    PubMed Central

    Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr

    2017-01-01

    Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration. PMID:28327545

  17. Calibration-free assays on standard real-time PCR devices

    NASA Astrophysics Data System (ADS)

    Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr

    2017-03-01

    Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration.

  18. Detection of Mycobacterium tuberculosis Complex in Paraffin-Embedded Tissues by the New Automated Abbott RealTime MTB Assay.

    PubMed

    Fu, Yung-Chieh; Liao, I-Chuang; Chen, Hung-Mo; Yan, Jing-Jou

    2016-07-01

    The Abbott RealTime MTB assay, launched in June 2014, has been shown to have a competitive performance in the detection of the Mycobacterium tuberculosis (MTB) complex in respiratory specimens. The present study was conducted to investigate the usefulness of the Abbott MTB Realtime assay in the detection of MTB in formalin-fixed paraffin-embedded (FFPE) tissues. A total of 96 FFPE specimens obtained from microbiologically proven MTB cases (N=60) and nontuberculous Mycobacterium cases (N=36) were analyzed. The performance of the Abbott MTB Realtime assay was compared with that of the Roche Cobas TaqMan MTB assay. The overall sensitivity and specificity of the Abbott assay were 63.3% and 97.2%, respectively, compared with 11.7% and 100% for the Cobas assay. The detection rate of the Abbott assay was much higher among 37 acid-fast-positive specimens than among 23 acid-fast-negative specimens (89.3% versus 21.7%, respectively). The detection rate of the assay was higher among 29 resection specimens than among 31 small biopsy specimens (86.2% versus 41.9%, respectively). Our results suggest that the Abbott RealTime MTB assay can be used to differentiate MTB from nontuberculous mycobacterial infections in acid-fast-positive FFPE tissues. © 2016 by the Association of Clinical Scientists, Inc.

  19. Development of a Quantitative Recombinase Polymerase Amplification Assay with an Internal Positive Control

    PubMed Central

    Richards-Kortum, Rebecca

    2015-01-01

    It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest. PMID:25867513

  20. Development of a quantitative recombinase polymerase amplification assay with an internal positive control.

    PubMed

    Crannell, Zachary A; Rohrman, Brittany; Richards-Kortum, Rebecca

    2015-03-30

    It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest.

  1. Real-time Kp predictions from ACE real time solar wind

    NASA Astrophysics Data System (ADS)

    Detman, Thomas; Joselyn, Joann

    1999-06-01

    The Advanced Composition Explorer (ACE) spacecraft provides nearly continuous monitoring of solar wind plasma, magnetic fields, and energetic particles from the Sun-Earth L1 Lagrange point upstream of Earth in the solar wind. The Space Environment Center (SEC) in Boulder receives ACE telemetry from a group of international network of tracking stations. One-minute, and 1-hour averages of solar wind speed, density, temperature, and magnetic field components are posted on SEC's World Wide Web page within 3 to 5 minutes after they are measured. The ACE Real Time Solar Wind (RTSW) can be used to provide real-time warnings and short term forecasts of geomagnetic storms based on the (traditional) Kp index. Here, we use historical data to evaluate the performance of the first real-time Kp prediction algorithm to become operational.

  2. Validation of Endogenous Internal Real-Time PCR Controls in Renal Tissues

    PubMed Central

    Cui, Xiangqin; Zhou, Juling; Qiu, Jing; Johnson, Martin R.; Mrug, Michal

    2009-01-01

    Background Endogenous internal controls (‘reference’ or ‘housekeeping’ genes) are widely used in real-time PCR (RT-PCR) analyses. Their use relies on the premise of consistently stable expression across studied experimental conditions. Unfortunately, none of these controls fulfills this premise across a wide range of experimental conditions; consequently, none of them can be recommended for universal use. Methods To determine which endogenous RT-PCR controls are suitable for analyses of renal tissues altered by kidney disease, we studied the expression of 16 commonly used ‘reference genes’ in 7 mildly and 7 severely affected whole kidney tissues from a well-characterized cystic kidney disease model. Expression levels of these 16 genes, determined by TaqMan® RT-PCR analyses and Affymetrix GeneChip® arrays, were normalized and tested for overall variance and equivalence of the means. Results Both statistical approaches and both TaqMan- and GeneChip-based methods converged on 3 out of the 4 top-ranked genes (Ppia, Gapdh and Pgk1) that had the most constant expression levels across the studied phenotypes. Conclusion A combination of the top-ranked genes will provide a suitable endogenous internal control for similar studies of kidney tissues across a wide range of disease severity. PMID:19729889

  3. Identification and validation of biomarkers of IgV(H) mutation status in chronic lymphocytic leukemia using microfluidics quantitative real-time polymerase chain reaction technology.

    PubMed

    Abruzzo, Lynne V; Barron, Lynn L; Anderson, Keith; Newman, Rachel J; Wierda, William G; O'brien, Susan; Ferrajoli, Alessandra; Luthra, Madan; Talwalkar, Sameer; Luthra, Rajyalakshmi; Jones, Dan; Keating, Michael J; Coombes, Kevin R

    2007-09-01

    To develop a model incorporating relevant prognostic biomarkers for untreated chronic lymphocytic leukemia patients, we re-analyzed the raw data from four published gene expression profiling studies. We selected 88 candidate biomarkers linked to immunoglobulin heavy-chain variable region gene (IgV(H)) mutation status and produced a reliable and reproducible microfluidics quantitative real-time polymerase chain reaction array. We applied this array to a training set of 29 purified samples from previously untreated patients. In an unsupervised analysis, the samples clustered into two groups. Using a cutoff point of 2% homology to the germline IgV(H) sequence, one group contained all 14 IgV(H)-unmutated samples; the other contained all 15 mutated samples. We confirmed the differential expression of 37 of the candidate biomarkers using two-sample t-tests. Next, we constructed 16 different models to predict IgV(H) mutation status and evaluated their performance on an independent test set of 20 new samples. Nine models correctly classified 11 of 11 IgV(H)-mutated cases and eight of nine IgV(H)-unmutated cases, with some models using three to seven genes. Thus, we can classify cases with 95% accuracy based on the expression of as few as three genes.

  4. High-risk human papillomavirus infection involving multiple anatomic sites of the female lower genital tract: a multiplex real-time polymerase chain reaction-based study.

    PubMed

    Hui, Yiang; Manna, Pradip; Ou, Joyce J; Kerley, Spencer; Zhang, Cunxian; Sung, C James; Lawrence, W Dwayne; Quddus, M Ruhul

    2015-09-01

    High-risk human papillomavirus infection usually is seen at one anatomic site in an individual. Rarely, infection at multiple anatomic sites of the female lower genital tract in the same individual is encountered either simultaneously and/or at a later date. The current study identifies the various subtypes of high-risk human papillomavirus infection in these scenarios and analyzes the potential significance of these findings. High-risk human papillomavirus infection involving 22 anatomic sites from 7 individuals was identified after institutional review board approval. Residual paraffin-embedded tissue samples were retrieved, and all 15 high-risk human papillomavirus were identified and viral load quantified using multiplex real-time polymerase chain reaction-based method. Multiple high-risk human papillomavirus subtypes were identified in 32% of the samples and as many as 5 different subtypes of high-risk human papillomavirus infection in a single anatomic site. In general, each anatomic site has unique combination of viral subtypes, although one individual showed overlapping subtypes in the vagina, cervix, and vulvar samples. Higher viral load and rare subtypes are more frequent in younger patients and in dysplasia compared with carcinoma. Follow-up ranging from 3 to 84 months revealed persistent high-risk human papillomavirus infection in 60% of cases. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Real-time RPA assay for rapid detection and differentiation of wild-type pseudorabies and gE-deleted vaccine viruses.

    PubMed

    Wang, Jianchang; Liu, Libing; Wang, Jinfeng; Pang, Xiaoyu; Yuan, Wanzhe

    2018-02-15

    The objective of this study was to develop a dual real-time recombinase polymerase amplification (RPA) assay using exo probes for the detection and differentiation of pseudorabies virus (PRV). Specific RPA primers and probes were designed for gB and gE genes of PRV within the conserved region of viral genome. The reaction process can be completed in 20 min at 39 °C. The dual real-time RPA assay performed in the single tube was capable of specific detecting and differentiating of the wild-type PRV and gE-deleted vaccine strains, without cross-reactions with other non-targeted pig viruses. The analytical sensitivity of the assay was 10 2 copies for gB and gE genes. The dual real-time RPA demonstrated a 100% diagnostic agreement with the real-time PCR on 4 PRV strains and 37 clinical samples. Through the linear regression analysis, the R 2 value of the real-time RPA and the real-time PCR for gB and gE was 0.983 and 0.992, respectively. The dual real-time RPA assay provides an alternative useful tool for rapid, simple, and reliable detection and differentiation of PRV, especially in remote and rural areas. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Real-Time Reverse Transcription-PCR Assay for Detection of Mumps Virus RNA in Clinical Specimens▿

    PubMed Central

    Boddicker, Jennifer D.; Rota, Paul A.; Kreman, Trisha; Wangeman, Andrea; Lowe, Louis; Hummel, Kimberly B.; Thompson, Robert; Bellini, William J.; Pentella, Michael; DesJardin, Lucy E.

    2007-01-01

    The mumps virus is a negative-strand RNA virus in the family Paramyxoviridae. Mumps infection results in an acute illness with symptoms including fever, headache, and myalgia, followed by swelling of the salivary glands. Complications of mumps can include meningitis, deafness, pancreatitis, orchitis, and first-trimester abortion. Laboratory confirmation of mumps infection can be made by the detection of immunoglobulin M-specific antibodies to mumps virus in acute-phase serum samples, the isolation of mumps virus in cell culture, or by detection of the RNA of the mumps virus by reverse transcription (RT)-PCR. We developed and validated a multiplex real-time RT-PCR assay for rapid mumps diagnosis in a clinical setting. This assay used oligonucleotide primers and a TaqMan probe targeting the mumps SH gene, as well as primers and a probe that targeted the human RNase P gene to assess the presence of PCR inhibitors and as a measure of specimen quality. The test was specific, since it did not amplify a product from near-neighbor viruses, as well as sensitive and accurate. Real-time RT-PCR results showed 100% correlation with results from viral culture, the gold standard for mumps diagnostic testing. Assay efficiency was over 90% and displayed good precision after performing inter- and intraassay replicates. Thus, we have developed and validated a molecular method for rapidly diagnosing mumps infection that may be used to complement existing techniques. PMID:17652480

  7. Selection and Validation of Reference Genes for Quantitative Real-Time Polymerase Chain Reaction Studies in Mossy Maze Polypore, Cerrena unicolor (Higher Basidiomycetes).

    PubMed

    Yang, Jie; Lin, Qi; Lin, Juan; Ye, Xiuyun

    2016-01-01

    With its ability to produce ligninolytic enzymes such as laccases, white-rot basidiomycete Cerrena unicolor, a medicinal mushroom, has great potential in biotechnology. Elucidation of the expression profiles of genes encoding ligninolytic enzymes are important for increasing their production. Quantitative real-time polymerase chain reaction (qPCR) is a powerful tool to study transcriptional regulation of genes of interest. To ensure accuracy and reliability of qPCR analysis of C. unicolor, expression levels of seven candidate reference genes were studied at different growth phases, under various induction conditions, and with a range of carbon/nitrogen ratios and carbon and nitrogen sources. The stability of the genes were analyzed with five statistical approaches, namely geNorm, NormFinder, BestKeeper, the ΔCt method, and RefFinder. Our results indicated that the selection of reference genes varied with sample sets. A combination of four reference genes (Cyt-c, ATP6, TEF1, and β-tubulin) were recommended for normalizing gene expression at different growth phases. GAPDH and Cyt-c were the appropriate reference genes under different induction conditions. ATP6 and TEF1 were most stable in fermentation media with various carbon/nitrogen ratios. In the fermentation media with various carbon or nitrogen sources, 18S rRNA and GAPDH were the references of choice. The present study represents the first validation analysis of reference genes in C. unicolor and serves as a foundation for its qPCR analysis.

  8. Analytical validation of a real-time reverse transcription polymerase chain reaction test for Pan-American lineage H7 subtype Avian influenza viruses

    USGS Publications Warehouse

    Spackman, Erica; Ip, Hon S.; Suarez, D.L.; Slemons, R.D.; Stallknecht, D.E.

    2008-01-01

    A real-time reverse transcription polymerase chain reaction test for the identification of the H7 subtype in North American Avian influenza viruses (AIVs) was first reported in 2002; however, recent AIV surveillance efforts in wild birds and H7 outbreaks in poultry demonstrated that the 2002 test did not detect all H7 AIVs present in North and South America. Therefore, a new test, the 2008 Pan-American H7 test, was developed by using recently available H7 nucleotide sequences. The analytical specificity of the new assay was characterized with an RNA panel composed of 19 H7 viruses from around the world and RNA from all hemagglutinin subtypes except H16. Specificity for North and South American lineage H7 viruses was observed. Assay limits of detection were determined to be between 103 and 104 gene copies per reaction with in vitro transcribed RNA, and 100.0 and 10 0.8 50% egg infectious doses per reaction. The 2008 Pan-American H7 test also was shown to perform similarly to the 2002 test with specimens from chickens experimentally exposed to A/Chicken/BritishColumbia/314514-2/04 H7N3 highly pathogenic AIV. Furthermore, the 2008 test was able to detect 100% (n = 27) of the H7 AIV isolates recovered from North American wild birds in a 2006-2007 sample set (none of which were detected by the 2002 H7 test).

  9. Rapid and reliable diagnostic method to detect Zika virus by real-time fluorescence reverse transcription loop-mediated isothermal amplification.

    PubMed

    Guo, Xu-Guang; Zhou, Yong-Zhuo; Li, Qin; Wang, Wei; Wen, Jin-Zhou; Zheng, Lei; Wang, Qian

    2018-04-18

    To detect Zika virus more rapidly and accurately, we developed a novel method that utilized a real-time fluorescence reverse transcription loop-mediated isothermal amplification (LAMP) technique. The NS5 gene was amplified by a set of six specific primers that recognized six distinct sequences. The amplification process, including 60 min of thermostatic reaction with Bst DNA polymerase following real-time fluorescence reverse transcriptase using genomic Zika virus standard strain (MR766), was conducted through fluorescent signaling. Among the six pairs of primers that we designate here, NS5 was the most efficient with a high sensitivity of up to 3.3 ng/μl and reproducible specificity on eight pathogen samples that were used as negative controls. The real-time fluorescence reverse transcription LAMP detection process can be completed within 35 min. Our study demonstrated that real-time fluorescence reverse transcription LAMP could be highly beneficial and convenient clinical application to detect Zika virus due to its high specificity and stability.

  10. A real-time, quantitative PCR protocol for assessing the relative parasitemia of Leucocytozoon in waterfowl

    USGS Publications Warehouse

    Smith, Matthew M.; Schmutz, Joel A.; Apelgren, Chloe; Ramey, Andy M.

    2015-01-01

    Microscopic examination of blood smears can be effective at diagnosing and quantifying hematozoa infections. However, this method requires highly trained observers, is time consuming, and may be inaccurate for detection of infections at low levels of parasitemia. To develop a molecular methodology for identifying and quantifying Leucocytozoon parasite infection in wild waterfowl (Anseriformes), we designed a real-time, quantitative PCR protocol to amplify Leucocytozoon mitochondrial DNA using TaqMan fluorogenic probes and validated our methodology using blood samples collected from waterfowl in interior Alaska during late summer and autumn (n = 105). By comparing our qPCR results to those derived from a widely used nested PCR protocol, we determined that our assay showed high levels of sensitivity (91%) and specificity (100%) in detecting Leucocytozoon DNA from host blood samples. Additionally, results of a linear regression revealed significant correlation between the raw measure of parasitemia produced by our qPCR assay (Ct values) and numbers of parasites observed on blood smears (R2 = 0.694, P = 0.003), indicating that our assay can reliably determine the relative parasitemia levels among samples. This methodology provides a powerful new tool for studies assessing effects of haemosporidian infection in wild avian species.

  11. Real-time PCR for rapidly detecting aniline-degrading bacteria in activated sludge.

    PubMed

    Kayashima, Takakazu; Suzuki, Hisako; Maeda, Toshinari; Ogawa, Hiroaki I

    2013-05-01

    We developed a detection method that uses quantitative real-time PCR (qPCR) and the TaqMan system to easily and rapidly assess the population of aniline-degrading bacteria in activated sludge prior to conducting a biodegradability test on a chemical compound. A primer and probe set for qPCR was designed by a multiple alignment of conserved amino acid sequences encoding the large (α) subunit of aniline dioxygenase. PCR amplification tests showed that the designed primer and probe set targeted aniline-degrading strains such as Acidovorax sp., Gordonia sp., Rhodococcus sp., and Pseudomonas putida, thereby suggesting that the developed method can detect a wide variety of aniline-degrading bacteria. There was a strong correlation between the relative copy number of the α-aniline dioxygenase gene in activated sludge obtained with the developed qPCR method and the number of aniline-degrading bacteria measured by the Most Probable Number method, which is the conventional method, and a good correlation with the lag time of the BOD curve for aniline degradation produced by the biodegradability test in activated sludge samples collected from eight different wastewater treatment plants in Japan. The developed method will be valuable for the rapid and accurate evaluation of the activity of inocula prior to conducting a ready biodegradability test. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Utility of Real-Time PCR for Detection of Exserohilum rostratum in Body and Tissue Fluids during the Multistate Outbreak of Fungal Meningitis and Other Infections

    PubMed Central

    Gade, Lalitha; Grgurich, Dale E.; Kerkering, Thomas M.; Brandt, Mary E.

    2014-01-01

    Exserohilum rostratum was the major cause of the multistate outbreak of fungal meningitis linked to contaminated injections of methylprednisolone acetate produced by the New England Compounding Center. Previously, we developed a fungal DNA extraction procedure and broad-range and E. rostratum-specific PCR assays and confirmed the presence of fungal DNA in 28% of the case patients. Here, we report the development and validation of a TaqMan real-time PCR assay for the detection of E. rostratum in body fluids, which we used to confirm infections in 57 additional case patients, bringing the total number of case patients with PCR results positive for E. rostratum to 171 (37% of the 461 case patients with available specimens). Compared to fungal culture and the previous PCR assays, this real-time PCR assay was more sensitive. Of the 139 identical specimens from case patients tested by all three methods, 19 (14%) were positive by culture, 41 (29%) were positive by the conventional PCR assay, and 65 (47%) were positive by the real-time PCR assay. We also compared the utility of the real-time PCR assay with that of the previously described beta-d-glucan (BDG) detection assay for monitoring response to treatment in case patients with serially collected CSF. Only the incident CSF specimens from most of the case patients were positive by real-time PCR, while most of the subsequently collected specimens were negative, confirming our previous observations that the BDG assay was more appropriate than the real-time PCR assay for monitoring the response to treatment. Our results also demonstrate that the real-time PCR assay is extremely susceptible to contamination and its results should be used only in conjunction with clinical and epidemiological data. PMID:25520443

  13. Quantitative real-time RT-PCR assay for research studies on enterovirus infections in the central nervous system.

    PubMed

    Volle, Romain; Nourrisson, Céline; Mirand, Audrey; Regagnon, Christel; Chambon, Martine; Henquell, Cécile; Bailly, Jean-Luc; Peigue-Lafeuille, Hélène; Archimbaud, Christine

    2012-10-01

    Human enteroviruses are the most frequent cause of aseptic meningitis and are involved in other neurological infections. Qualitative detection of enterovirus genomes in cerebrospinal fluid is a prerequisite in diagnosing neurological diseases. The pathogenesis of these infections is not well understood and research in this domain would benefit from the availability of a quantitative technique to determine viral load in clinical specimens. This study describes the development of a real-time RT-qPCR assay using hydrolysis TaqMan probe and a competitive RNA internal control. The assay has high specificity and can be used for a large sample of distinct enterovirus strains and serotypes. The reproducible limit of detection was estimated at 1875 copies/ml of quantitative standards composed of RNA transcripts obtained from a cloned echovirus 30 genome. Technical performance was unaffected by the introduction of a competitive RNA internal control before RNA extraction. The mean enterovirus RNA concentration in an evaluation series of 15 archived cerebrospinal fluid specimens was determined at 4.78 log(10)copies/ml for the overall sample. The sensitivity and reproducibility of the real time RT-qPCR assay used in combination with the internal control to monitor the overall specimen process make it a valuable tool with applied research into enterovirus infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Rapid detection of health-care-associated bloodstream infection in critical care using multipathogen real-time polymerase chain reaction technology: a diagnostic accuracy study and systematic review.

    PubMed

    Warhurst, Geoffrey; Dunn, Graham; Chadwick, Paul; Blackwood, Bronagh; McAuley, Daniel; Perkins, Gavin D; McMullan, Ronan; Gates, Simon; Bentley, Andrew; Young, Duncan; Carlson, Gordon L; Dark, Paul

    2015-05-01

    There is growing interest in the potential utility of real-time polymerase chain reaction (PCR) in diagnosing bloodstream infection by detecting pathogen deoxyribonucleic acid (DNA) in blood samples within a few hours. SeptiFast (Roche Diagnostics GmBH, Mannheim, Germany) is a multipathogen probe-based system targeting ribosomal DNA sequences of bacteria and fungi. It detects and identifies the commonest pathogens causing bloodstream infection. As background to this study, we report a systematic review of Phase III diagnostic accuracy studies of SeptiFast, which reveals uncertainty about its likely clinical utility based on widespread evidence of deficiencies in study design and reporting with a high risk of bias. Determine the accuracy of SeptiFast real-time PCR for the detection of health-care-associated bloodstream infection, against standard microbiological culture. Prospective multicentre Phase III clinical diagnostic accuracy study using the standards for the reporting of diagnostic accuracy studies criteria. Critical care departments within NHS hospitals in the north-west of England. Adult patients requiring blood culture (BC) when developing new signs of systemic inflammation. SeptiFast real-time PCR results at species/genus level compared with microbiological culture in association with independent adjudication of infection. Metrics of diagnostic accuracy were derived including sensitivity, specificity, likelihood ratios and predictive values, with their 95% confidence intervals (CIs). Latent class analysis was used to explore the diagnostic performance of culture as a reference standard. Of 1006 new patient episodes of systemic inflammation in 853 patients, 922 (92%) met the inclusion criteria and provided sufficient information for analysis. Index test assay failure occurred on 69 (7%) occasions. Adult patients had been exposed to a median of 8 days (interquartile range 4-16 days) of hospital care, had high levels of organ support activities and recent

  15. Development of a real-time microchip PCR system for portable plant disease diagnosis.

    PubMed

    Koo, Chiwan; Malapi-Wight, Martha; Kim, Hyun Soo; Cifci, Osman S; Vaughn-Diaz, Vanessa L; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3) in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.

  16. Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis

    PubMed Central

    Kim, Hyun Soo; Cifci, Osman S.; Vaughn-Diaz, Vanessa L.; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C.; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25×16×8 cm3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample. PMID:24349341

  17. SOFTWARE DESIGN FOR REAL-TIME SYSTEMS.

    DTIC Science & Technology

    Real-time computer systems and real-time computations are defined for the purposes of this report. The design of software for real - time systems is...discussed, employing the concept that all real - time systems belong to one of two types. The types are classified according to the type of control...program used; namely: Pre-assigned Iterative Cycle and Real-time Queueing. The two types of real - time systems are described in general, with supplemental

  18. An Undergraduate Laboratory Experiment for Upper-Level Forensic Science, Biochemistry, or Molecular Biology Courses: Human DNA Amplification Using STR Single Locus Primers by Real-Time PCR with SYBR Green Detection

    ERIC Educational Resources Information Center

    Elkins, Kelly M.; Kadunc, Raelynn E.

    2012-01-01

    In this laboratory experiment, real-time polymerase chain reaction (real-time PCR) was conducted using published human TPOX single-locus DNA primers for validation and various student-designed short tandem repeat (STR) primers for Combined DNA Index System (CODIS) loci. SYBR Green was used to detect the amplification of the expected amplicons. The…

  19. A TaqMan-based real-time PCR assay for porcine parvovirus 4 detection and quantification in reproductive tissues of sows

    USDA-ARS?s Scientific Manuscript database

    Porcine parvovirus 4 (PPV4) is a DNA virus, and a member of the Parvoviridae family within the Bocavirus genera. It was recently detected in swine, but its epidemiology and pathology remain unclear. A TaqMan-based real-time polymerase chain reaction (qPCR) assay targeting a conserved region of the O...

  20. Detection, quantitation and identification of enteroviruses from surface waters and sponge tissue from the Florida Keys using real-time RT-PCR

    USGS Publications Warehouse

    Donaldson, K.A.; Griffin, Dale W.; Paul, J.H.

    2002-01-01

    A method was developed for the quantitative detection of pathogenic human enteroviruses from surface waters in the Florida Keys using Taqman (R) one-step Reverse transcription (RT)-PCR with the Model 7700 ABI Prism (R) Sequence Detection System. Viruses were directly extracted from unconcentrated grab samples of seawater, from seawater concentrated by vortex flow filtration using a 100kD filter and from sponge tissue. Total RNA was extracted from the samples, purified and concentrated using spin-column chromatography. A 192-196 base pair portion of the 5??? untranscribed region was amplified from these extracts. Enterovirus concentrations were estimated using real-time RT-PCR technology. Nine of 15 sample sites or 60% were positive for the presence of pathogenic human enteroviruses. Considering only near-shore sites, 69% were positive with viral concentrations ranging from 9.3viruses/ml to 83viruses/g of sponge tissue (uncorrected for extraction efficiency). Certain amplicons were selected for cloning and sequencing for identification. Three strains of waterborne enteroviruses were identified as Coxsackievirus A9, Coxsackievirus A16, and Poliovirus Sabin type 1. Time and cost efficiency of this one-step real-time RT-PCR methodology makes this an ideal technique to detect, quantitate and identify pathogenic enteroviruses in recreational waters. Copyright ?? 2002 Elsevier Science Ltd.

  1. Performance of the new automated Abbott RealTime MTB assay for rapid detection of Mycobacterium tuberculosis complex in respiratory specimens.

    PubMed

    Chen, J H K; She, K K K; Kwong, T-C; Wong, O-Y; Siu, G K H; Leung, C-C; Chang, K-C; Tam, C-M; Ho, P-L; Cheng, V C C; Yuen, K-Y; Yam, W-C

    2015-09-01

    The automated high-throughput Abbott RealTime MTB real-time PCR assay has been recently launched for Mycobacterium tuberculosis complex (MTBC) clinical diagnosis. This study would like to evaluate its performance. We first compared its diagnostic performance with the Roche Cobas TaqMan MTB assay on 214 clinical respiratory specimens. Prospective analysis of a total 520 specimens was then performed to further evaluate the Abbott assay. The Abbott assay showed a lower limit of detection at 22.5 AFB/ml, which was more sensitive than the Cobas assay (167.5 AFB/ml). The two assays demonstrated a significant difference in diagnostic performance (McNemar's test; P = 0.0034), in which the Abbott assay presented significantly higher area under curve (AUC) than the Cobas assay (1.000 vs 0.880; P = 0.0002). The Abbott assay demonstrated extremely low PCR inhibition on clinical respiratory specimens. The automated Abbott assay required only very short manual handling time (0.5 h), which could help to improve the laboratory management. In the prospective analysis, the overall estimates for sensitivity and specificity of the Abbott assay were both 100 % among smear-positive specimens, whereas the smear-negative specimens were 96.7 and 96.1 %, respectively. No cross-reactivity with non-tuberculosis mycobacterial species was observed. The superiority in sensitivity of the Abbott assay for detecting MTBC in smear-negative specimens could further minimize the risk in MTBC false-negative detection. The new Abbott RealTime MTB assay has good diagnostic performance which can be a useful diagnostic tool for rapid MTBC detection in clinical laboratories.

  2. SYBR green-based one step quantitative real-time polymerase chain reaction assay for the detection of Zika virus in field-caught mosquitoes.

    PubMed

    Tien, Wei-Ping; Lim, Gareth; Yeo, Gladys; Chiang, Suzanna Nicole; Chong, Chee-Seng; Ng, Lee-Ching; Hapuarachchi, Hapuarachchige Chanditha

    2017-09-19

    The monitoring of vectors is one of the key surveillance measures to assess the risk of arbovirus transmission and the success of control strategies in endemic regions. The recent re-emergence of Zika virus (ZIKV) in the tropics, including Singapore, emphasizes the need to develop cost-effective, rapid and accurate assays to monitor the virus spread by mosquitoes. As ZIKV infections largely remain asymptomatic, early detection of ZIKV in the field-caught mosquitoes enables timely implementation of appropriate mosquito control measures. We developed a rapid, sensitive and specific real-time reverse transcription polymerase chain reaction (rRT-PCR) assay for the detection of ZIKV in field-caught mosquitoes. The primers and PCR cycling conditions were optimized to minimize non-specific amplification due to cross-reactivity with the genomic material of Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, Culex tritaeniorhynchus, Culex sitiens and Anopheles sinensis, as well as accompanying microbiota. The performance of the assay was further evaluated with a panel of flaviviruses and alphaviruses as well as in field-caught Ae. aegypti mosquitoes confirmed to be positive for ZIKV. As compared to a probe-based assay, the newly developed assay demonstrated 100% specificity and comparable detection sensitivity for ZIKV in mosquitoes. Being a SYBR Green-based method, the newly-developed assay is cost-effective and easy to adapt, thus is applicable to large-scale vector surveillance activities in endemic countries, including those with limited resources and expertise. The amplicon size (119 bp) also allows sequencing to confirm the virus type. The primers flank relatively conserved regions of ZIKV genome, so that, the assay is able to detect genetically diverse ZIKV strains. Our findings, therefore, testify the potential use of the newly-developed assay in vector surveillance programmes for ZIKV in endemic regions.

  3. Quantitative real-time PCR method with internal amplification control to quantify cyclopiazonic acid producing molds in foods.

    PubMed

    Rodríguez, Alicia; Werning, María L; Rodríguez, Mar; Bermúdez, Elena; Córdoba, Juan J

    2012-12-01

    A quantitative TaqMan real-time PCR (qPCR) method that includes an internal amplification control (IAC) to quantify cyclopiazonic acid (CPA)-producing molds in foods has been developed. A specific primer pair (dmaTF/dmaTR) and a TaqMan probe (dmaTp) were designed on the basis of dmaT gene which encodes the enzyme dimethylallyl tryptophan synthase involved in the biosynthesis of CPA. The IAC consisted of a 105 bp chimeric DNA fragment containing a region of the hly gene of Listeria monocytogenes. Thirty-two mold reference strains representing CPA producers and non-producers of different mold species were used in this study. All strains were tested for CPA production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the designed qPCR method was demonstrated by the high linear relationship of the standard curves relating to the dmaT gene copy numbers and the Ct values obtained from the different CPA producers tested. The ability of the qPCR protocol to quantify CPA-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 1-4 log cfu/g in the different food matrices. The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g. This qPCR protocol including an IAC showed good efficiency to quantify CPA-producing molds in naturally contaminated foods avoiding false negative results. This method could be used to monitor the CPA producers in the HACCP programs to prevent the risk of CPA formation throughout the food chain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Time-lapse crystallography snapshots of a double-strand break repair polymerase in action.

    PubMed

    Jamsen, Joonas A; Beard, William A; Pedersen, Lars C; Shock, David D; Moon, Andrea F; Krahn, Juno M; Bebenek, Katarzyna; Kunkel, Thomas A; Wilson, Samuel H

    2017-08-15

    DNA polymerase (pol) μ is a DNA-dependent polymerase that incorporates nucleotides during gap-filling synthesis in the non-homologous end-joining pathway of double-strand break repair. Here we report time-lapse X-ray crystallography snapshots of catalytic events during gap-filling DNA synthesis by pol μ. Unique catalytic intermediates and active site conformational changes that underlie catalysis are uncovered, and a transient third (product) metal ion is observed in the product state. The product manganese coordinates phosphate oxygens of the inserted nucleotide and PP i . The product metal is not observed during DNA synthesis in the presence of magnesium. Kinetic analyses indicate that manganese increases the rate constant for deoxynucleoside 5'-triphosphate insertion compared to magnesium. The likely product stabilization role of the manganese product metal in pol μ is discussed. These observations provide insight on structural attributes of this X-family double-strand break repair polymerase that impact its biological function in genome maintenance.DNA polymerase (pol) μ functions in DNA double-strand break repair. Here the authors use time-lapse X-ray crystallography to capture the states of pol µ during the conversion from pre-catalytic to product complex and observe a third transiently bound metal ion in the product state.

  5. Fault Tolerant Real-Time Systems

    DTIC Science & Technology

    1993-09-30

    The ART (Advanced Real-Time Technology) Project of Carnegie Mellon University is engaged in wide ranging research on hard real - time systems . The...including hardware and software fault tolerance using temporal redundancy and analytic redundancy to permit the construction of real - time systems whose

  6. Real-time PCR probe optimization using design of experiments approach.

    PubMed

    Wadle, S; Lehnert, M; Rubenwolf, S; Zengerle, R; von Stetten, F

    2016-03-01

    Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3-14 target copies/10 μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7-11 copies/10 μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.

  7. Diagnosis of EML4-ALK Translocation With FISH, Immunohistochemistry, and Real-time Polymerase Chain Reaction in Patients With Non-Small Cell Lung Cancer.

    PubMed

    Cruz-Rico, Graciela; Avilés-Salas, Alejandro; Segura-González, Manuel; Espinosa-García, Ana María; Ramírez-Tirado, Laura Alejandra; Morales-Oyarvide, Vicente; Rojas-Marín, Carlos; Cardona, Andrés-Felipe; Arrieta, Oscar

    2017-12-01

    To assess anaplastic lymphoma kinase (ALK) rearrangement detection with immunohistochemistry (IHC) and real-time polymerase chain reaction (RT-qPCR) in comparison with fluorescence in situ hybridization (FISH). Tumor tissue samples from 230 patients with advanced non-small cell lung cancer (NSCLC) were analyzed by FISH to detect ALK rearrangements. Additional IHC tests using 5A4 clone and RT-qPCR (variants 1 to 5) were performed in 63 and 48 patients, respectively. Thirteen percent of FISH tests were not evaluable. From the remaining tests (n=200), 18 (9.0%) were ALK positive (ALK). ALK patients were significantly younger at the time of diagnosis (below 55 y, 14.3% vs. 5.5%, P=0.035), were light smokers (tobacco index <10, 12.6% vs. 4.1%, P=0.049), and presented adenocarcinoma with a mucinous component (30.8 vs. 8.0%, P=0.007). When comparing FISH with IHC using a cutoff of 1+ or 2+, and only 2+ staining intensity, the sensitivity, specificity, negative predictive value, and positive predictive value were as follows: 83.3%, 100.0%, 93.75%, and 100.0%; and 55.6%, 100.0%, 84.9%, and 100.0%, respectively. For RT-qPCR, these results were 55.6, 100, 90.7, and 100.0%, respectively. Our results suggest that RT-qPCR is an inadequate initial test for detecting ALK-positive lung cancer. IHC is highly useful as an initial screening test for ALK rearrangement detection in NSCLC. These results contribute to the medical literature on the establishment of IHC as a standard diagnostic test for ALK rearrangements in NSCLC.

  8. Development and evaluation of a real-time fluorescent polymerase chain reaction assay for the detection of bovine contaminates in cattle feed.

    PubMed

    Rensen, Gabriel; Smith, Wayne; Ruzante, Juliana; Sawyer, Mary; Osburn, Bennie; Cullor, James

    2005-01-01

    A real-time fluorescent polymerase chain reaction assay for detecting prohibited ruminant materials such as bovine meat and bone meal (BMBM) in cattle feed using primers and FRET probes targeting the ruminant specific mitochondrial cytochrome b gene was developed and evaluated on two different types of cattle feed. Common problems involved with PCR based testing of cattle feed include the presence of high levels of PCR inhibitors and the need for certain pre-sample processing techniques in order to perform DNA extractions. We have developed a pre-sample processing technique for extracting DNA from cattle feed which does not require the feed sample to be ground to a fine powder and utilizes materials that are disposed of between samples, thus, reducing the potential of cross contamination. The DNA extraction method utilizes Whatman FTA card technology, is adaptable to high sample throughput analysis and allows for room temperature storage with established archiving of samples of up to 14 years. The Whatman FTA cards are subsequently treated with RNAse and undergo a Chelex-100 extraction (BioRad, Hercules, CA), thus removing potential PCR inhibitors and eluting the DNA from the FTA card for downstream PCR analysis. The detection limit was evaluated over a period of 30 trials on calf starter mix and heifer starter ration feed samples spiked with known concentrations of BMBM. The PCR detection assay detected 0.05% wt/wt BMBM contamination with 100% sensitivity, 100% specificity, and 100% confidence. Concentrations of 0.005% and 0.001% wt/wt BMBM contamination were also detected in both feed types but with varying levels of confidence.

  9. Application of a new real-time polymerase chain reaction assay for surveillance studies of lymphocystis disease virus in farmed gilthead seabream.

    PubMed

    Valverde, Estefania J; Cano, Irene; Labella, Alejandro; Borrego, Juan J; Castro, Dolores

    2016-04-06

    Lymphocystis disease (LCD) is the main viral infection reported to affect cultured gilthead seabream (Sparus aurata) in Europe. The existence of subclinical Lymphocystis disease virus (LCDV) infection in this fish species has been recognised by using polymerase chain reaction (PCR)-based methods. Nevertheless, these methods do not provide quantitative results that can be useful in epidemiological and pathological studies. Moreover, carrier fish have been involved in viral transmission, therefore the use of specific and sensitive diagnostic methods to detect LCDV will be relevant for LCD prevention. We have developed a real-time PCR (qPCR) assay to detect and quantify LCDV. The assay was evaluated for viral diagnosis in surveillance studies in gilthead seabream farms, and also to identify viral reservoirs in a hatchery. The prevalence of LCDV infection in the asymptomatic gilthead seabream populations tested varied from 30 to 100 %, including data from one farm without previous records of LCD. Estimated viral load in caudal fin of subclinically infected fish was two to five orders of magnitude lower than in diseased fish. The qPCR assay allowed the detection of carrier fish in broodstock from a farm with a history of clinical LCD in juvenile fish. In addition, the quantitative detection of LCDV was achieved in all samples collected in the hatchery, including fertilized eggs, larvae and fingerlings, and also rotifer cultures and artemia metanauplii and cysts used for larval rearing. The qPCR assay developed in this study has proved to be a rapid, sensitive, and reliable method for LCDV diagnosis, which could be valuable to identify LCDV reservoirs or to study viral replication in gilthead seabream.

  10. An immunomagnetic separation-real-time PCR system for the detection of Alicyclobacillus acidoterrestris in fruit products.

    PubMed

    Wang, Zhouli; Cai, Rui; Yuan, Yahong; Niu, Chen; Hu, Zhongqiu; Yue, Tianli

    2014-04-03

    Alicyclobacillus acidoterrestris is the most important spoilage species within the Alicyclobacillus genus and has become a major issue in the pasteurized fruit juice industry. The aim of this study was to develop a method combining immunomagnetic separation (IMS) with real-time PCR system (IMS-PCR) for rapid and specific detection of A. acidoterrestris in fruit products. A real-time PCR with the TaqMan system was designed to target the 16S rDNA genes with specific primer and probe set. The specificity of the assay was confirmed using 9 A. acidoterrestris strains and 21 non-A. acidoterrestris strains. The results indicated that no combination of the designed primers and probe was found in any Alicyclobacillus genus except A. acidoterrestris. The detection limit of the established IMS-PCR was less than 10CFU/mL and the testing process was accomplished in 2-3h. For the three types of samples (sterile water, apple juice and kiwi juice), the correlation coefficient of standard curves was greater than 0.991, and the calculated PCR efficiencies were from 108% to 109%. As compared with the standard culture method performed concurrently on the same set of samples, the sensitivity, specificity and accuracy of IMS-PCR for 196 naturally contaminated fruit products were 90.0%, 98.3% and 97.5%, respectively. The results exhibited that the proposed IMS-PCR method was effective for the rapid detection of A. acidoterrestris in fruit products. Copyright © 2014. Published by Elsevier B.V.

  11. A noninvasive, direct real-time PCR method for sex determination in multiple avian species

    USGS Publications Warehouse

    Brubaker, Jessica L.; Karouna-Renier, Natalie K.; Chen, Yu; Jenko, Kathryn; Sprague, Daniel T.; Henry, Paula F.P.

    2011-01-01

    Polymerase chain reaction (PCR)-based methods to determine the sex of birds are well established and have seen few modifications since they were first introduced in the 1990s. Although these methods allowed for sex determination in species that were previously difficult to analyse, they were not conducive to high-throughput analysis because of the laboriousness of DNA extraction and gel electrophoresis. We developed a high-throughput real-time PCR-based method for analysis of sex in birds, which uses noninvasive sample collection and avoids DNA extraction and gel electrophoresis.

  12. Adhesion of mutans streptococci to self-ligating ceramic brackets: in vivo quantitative analysis with real-time polymerase chain reaction.

    PubMed

    Jung, Woo-Sun; Yang, Il-Hyung; Lim, Won Hee; Baek, Seung-Hak; Kim, Tae-Woo; Ahn, Sug-Joon

    2015-12-01

    To analyze in vivo mutans streptococci (MS) adhesion to self-ligating ceramic brackets [Clarity-SL (CSL) and Clippy-C (CC)] and the relationships between bacterial adhesion and oral hygiene indices. Four central incisor brackets from the maxilla and mandible were collected from 40 patients (20 patients per each bracket type) at debonding immediately after plaque and gingival indices were measured. Adhesions of Streptococcus mutans, S. sobrinus, and total bacteria were quantitatively determined using real-time polymerase chain reaction after genomic DNA was extracted. Factorial analysis of variance was used to analyze bacterial adhesion to the brackets with respect to the bracket type and jaw position. Correlation coefficients were calculated to determine the relationships of bacterial adhesion to oral hygiene indices. Adhesion of total bacteria and S. mutans to CSL was higher than that to CC (P < 0.001). Adhesion of total bacteria to the mandibular brackets was higher than that to the maxillary ones (P < 0.001), while adhesion of S. mutans to the maxillary brackets were higher than that in the mandibular ones (P < 0.001). In particular, the proportion of S. mutans to total bacteria in CSL was higher than CC (P < 0.05) in the maxillary anterior teeth (P < 0.001). There were no significant differences in adhesion of S. sobrinus between the brackets and jaw positions. Interestingly, no significant relationships were found between bacterial adhesions and oral hygiene indices. Complex bracket configurations may significantly influence bacterial adhesion to orthodontic brackets. Further in vivo study using bracket raw materials will help to define the relationships between bacteria adhesion and enamel demineralization. Because oral hygiene indices were not significantly correlated with adhesions of MS to self-ligating ceramic brackets, careful examinations around the brackets should be needed to prevent enamel demineralization, regardless of oral hygiene status. © The

  13. The value of molecular expression of KIT and KIT ligand analysed using real-time polymerase chain reaction and immunohistochemistry as a prognostic indicator for canine cutaneous mast cell tumours.

    PubMed

    Costa Casagrande, T A; de Oliveira Barros, L M; Fukumasu, H; Cogliati, B; Chaible, L M; Dagli, M L Z; Matera, J M

    2015-03-01

    This study investigated the correlation between KIT gene expression determined by immunohistochemistry and real-time polymerase chain reaction (RT-PCR) and the rate of tumour recurrence and tumour-related deaths in dogs affected with mast cell tumour (MCT). Kaplan-Meier curves were constructed to compare tumour recurrence and tumour-related death between patients. The log-rank test was used to check for significant differences between curves. KIT-I, KIT-II and KIT-III staining patterns were observed in 9 (11.11%), 50 (61.73%) and 22 (27.16%) tumours, respectively. Tumour recurrence rates and tumour-related deaths were not associated with KIT staining patterns (P = 0278, P > 0.05), KIT (P = 0.289, P > 0.05) or KIT ligand (P = 0.106, P > 0.05) gene expression. Despite the lack of association between KIT staining pattern and patient survival time, the results suggest a correlation between aberrant KIT localization and increased proliferative activity of MCTs. RT-PCR seems to be a sensible method for quantitative detection of KIT gene expression in canine MCT, although expressions levels are not correlated with prognosis. © 2013 Blackwell Publishing Ltd.

  14. A novel photoinduced electron transfer (PET) primer technique for rapid real-time PCR detection of Cryptosporidium spp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jothikumar, N., E-mail: jin2@cdc.gov; Hill, Vincent R.

    Highlights: •Uses a single-labeled fluorescent primer for real-time PCR. •The detection sensitivity of PET PCR was comparable to TaqMan PCR. •Melt curve analysis can be performed to confirm target amplicon production. •Conventional PCR primers can be converted to PET PCR primers. -- Abstract: We report the development of a fluorescently labeled oligonucleotide primer that can be used to monitor real-time PCR. The primer has two parts, the 3′-end of the primer is complimentary to the target and a universal 17-mer stem loop at the 5′-end forms a hairpin structure. A fluorescent dye is attached to 5′-end of either the forwardmore » or reverse primer. The presence of guanosine residues at the first and second position of the 3′ dangling end effectively quenches the fluorescence due to the photo electron transfer (PET) mechanism. During the synthesis of nucleic acid, the hairpin structure is linearized and the fluorescence of the incorporated primer increases several-fold due to release of the fluorescently labeled tail and the absence of guanosine quenching. As amplicons are synthesized during nucleic acid amplification, the fluorescence increase in the reaction mixture can be measured with commercially available real-time PCR instruments. In addition, a melting procedure can be performed to denature the double-stranded amplicons, thereby generating fluorescence peaks that can differentiate primer dimers and other non-specific amplicons if formed during the reaction. We demonstrated the application of PET-PCR for the rapid detection and quantification of Cryptosporidium parvum DNA. Comparison with a previously published TaqMan® assay demonstrated that the two real-time PCR assays exhibited similar sensitivity for a dynamic range of detection of 6000–0.6 oocysts per reaction. PET PCR primers are simple to design and less-expensive than dual-labeled probe PCR methods, and should be of interest for use by laboratories operating in resource

  15. Recombinase polymerase amplification as a promising tool in hepatitis C virus diagnosis.

    PubMed

    Zaghloul, Hosam; El-Shahat, Mahmoud

    2014-12-27

    Hepatitis C virus (HCV) infection represents a significant health problem and represents a heavy load on some countries like Egypt in which about 20% of the total population are infected. Initial infection is usually asymptomatic and result in chronic hepatitis that give rise to complications including cirrhosis and hepatocellular carcinoma. The management of HCV infection should not only be focus on therapy, but also to screen carrier individuals in order to prevent transmission. In the present, molecular detection and quantification of HCV genome by real time polymerase chain reaction (PCR) represent the gold standard in HCV diagnosis and plays a crucial role in the management of therapeutic regimens. However, real time PCR is a complicated approach and of limited distribution. On the other hand, isothermal DNA amplification techniques have been developed and offer molecular diagnosis of infectious dieses at point-of-care. In this review we discuss recombinase polymerase amplification technique and illustrate its diagnostic value over both PCR and other isothermal amplification techniques.

  16. VERSE - Virtual Equivalent Real-time Simulation

    NASA Technical Reports Server (NTRS)

    Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel

    2005-01-01

    Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.

  17. An evaluation of a rapid real time polymerase chain reaction assay for detection of group B streptococcus as part of a neonatal group B streptococcus prevention strategy.

    PubMed

    Money, Deborah; Dobson, Simon; Cole, Lesley; Karacabeyli, Eda; Blondel-Hill, Edith; Milner, Ruth; Thomas, Eva

    2008-09-01

    To evaluate the sensitivity, specificity, and feasibility of a rapid real-time polymerase chain reaction (PCR) test for group B streptococcus (GBS) completed during labour, compared with the standard culture test performed at 35 to 37 weeks' gestation. Women presenting to the maternity unit for term vaginal delivery had two vaginal/rectal samples collected. One swab was tested using a rapid PCR method (IDI-Strep B, Infectio Diagnostic [IDI] Inc., Sainte-Foy QC ), and the other was cultured after enrichment (intrapartum culture). Comparisons were made between these results and those of a culture-based screen at 35 to 37 weeks' gestation. Of the 190 women enrolled, 85% had results of the standard screen at 35 to 37 weeks available for comparison. The sensitivity and specificity of the standard 35- to 37-week screen were 84.3% (95% confidence interval [CI], 71.4-93.0) and 93.2% (95% CI 86.5-97.2) respectively, whereas the sensitivity and specificity of the rapid PCR were 90.7% (95% CI 79.7-96.9) and 97.6% (95% CI 93.1-99.5), respectively. The median reporting time for the rapid PCR test was 99 minutes (range 50-255). Results were available more than four hours before delivery in 81% of cases. In this Canadian centre, a rapid PCR test done at the time of labour (IDI-Strep B) demonstrated high sensitivity and specificity, comparable to the 35- to 37-week screen. The time to reporting results was acceptably short, allowing for timely administration of intrapartum prophylactic antibiotics.

  18. Sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction detecting feline coronavirus mutations in effusion and serum/plasma of cats to diagnose feline infectious peritonitis.

    PubMed

    Felten, Sandra; Leutenegger, Christian M; Balzer, Hans-Joerg; Pantchev, Nikola; Matiasek, Kaspar; Wess, Gerhard; Egberink, Herman; Hartmann, Katrin

    2017-08-02

    Feline coronavirus (FCoV) exists as two pathotypes, and FCoV spike gene mutations are considered responsible for the pathotypic switch in feline infectious peritonitis (FIP) pathogenesis. The aim of this study was to evaluate sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction (RT-PCR) specifically designed to detect FCoV spike gene mutations at two nucleotide positions. It was hypothesized that this test would correctly discriminate feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV). The study included 63 cats with signs consistent with FIP. FIP was confirmed in 38 cats. Twenty-five control cats were definitively diagnosed with a disease other than FIP. Effusion and/or serum/plasma samples were examined by real-time RT-PCR targeting the two FCoV spike gene fusion peptide mutations M1058 L and S1060A using an allelic discrimination approach. Sensitivity, specificity, negative and positive predictive values including 95% confidence intervals (95% CI) were calculated. FIPV was detected in the effusion of 25/59 cats, one of them being a control cat with chronic kidney disease. A mixed population of FIPV/FECV was detected in the effusion of 2/59 cats; all of them had FIP. RT-PCR was negative or the pathotype could not be determined in 34/59 effusion samples. In effusion, sensitivity was 68.6% (95% CI 50.7-83.2), specificity was 95.8% (95% CI 78.9-99.9). No serum/plasma samples were positive for FIPV. Although specificity of the test in effusions was high, one false positive result occurred. The use of serum/plasma cannot be recommended due to a low viral load in blood.

  19. NanoString nCounter® Approach in Breast Cancer: A Comparative Analysis with Quantitative Real-Time Polymerase Chain Reaction, In Situ Hybridization, and Immunohistochemistry.

    PubMed

    Hyeon, Jiyeon; Cho, Soo Youn; Hong, Min Eui; Kang, So Young; Do, Ingu; Im, Young Hyuck; Cho, Eun Yoon

    2017-09-01

    Accurate testing for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) is essential for breast cancer treatment. At present, immunohistochemistry (IHC)/florescence in situ hybridization (FISH) are widely accepted as the standard testing methods. To investigate the value of NanoString nCounter®, we performed its comparative analysis with IHC/FISH and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) for the assessment of ER, PR, and HER2. Data on IHC/FISH results for ER, PR, and HER2 in 240 patients from a single tertiary hospital in Korea were collected and compared with NanoString nCounter® and qRT-PCR results at a single institution. Expression levels for each gene using NanoString nCounter® showed good correlation with the corresponding data for protein expression by IHC ( p <0.001) and gene amplification status for HER2 ( p <0.001). Comparisons between gene expression and IHC data showed good overall agreement with a high area under the curve (AUC) for ESR1 /ER (AUC=0.939), PgR /PR (AUC=0.796), and HER2 /HER2 (AUC=0.989) ( p <0.001). The quantification of ER , PgR , and HER2 mRNA expression with NanoString nCounter® may be a viable alternative to conventional IHC/FISH methods.

  20. Real-time PCR assays for detection and quactification of Edwardsiella tarda, Edwardsiella piscicida, Edwardsiella piscicida-like sp. in catfish tissues and pond water

    USDA-ARS?s Scientific Manuscript database

    Researchers have proposed the adoption of 3 distinct genetic taxa among bacteria previously classified as Edwardsiella tarda; namely E. tarda, E. piscicida, and a taxon presently termed E. piscicida–like. Individual real-time polymerase chain reaction (qPCR) assays were developed, based on published...

  1. Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: a global approach to the enteric flora.

    PubMed

    Ott, Stephan J; Musfeldt, Meike; Ullmann, Uwe; Hampe, Jochen; Schreiber, Stefan

    2004-06-01

    The composition of the human intestinal flora is important for the health status of the host. The global composition and the presence of specific pathogens are relevant to the effects of the flora. Therefore, accurate quantification of all major bacterial populations of the enteric flora is needed. A TaqMan real-time PCR-based method for the quantification of 20 dominant bacterial species and groups of the intestinal flora has been established on the basis of 16S ribosomal DNA taxonomy. A PCR with conserved primers was used for all reactions. In each real-time PCR, a universal probe for quantification of total bacteria and a specific probe for the species in question were included. PCR with conserved primers and the universal probe for total bacteria allowed relative and absolute quantification. Minor groove binder probes increased the sensitivity of the assays 10- to 100-fold. The method was evaluated by cross-reaction experiments and quantification of bacteria in complex clinical samples from healthy patients. A sensitivity of 10(1) to 10(3) bacterial cells per sample was achieved. No significant cross-reaction was observed. The real-time PCR assays presented may facilitate understanding of the intestinal bacterial flora through a normalized global estimation of the major contributing species.

  2. Quantitative real-time polymerase chain reaction for Streptococcus mutans and Streptococcus sobrinus in dental plaque samples and its association with early childhood caries.

    PubMed

    Choi, Eun-Jung; Lee, Sung-Hoon; Kim, Young-Jae

    2009-03-01

    Streptococcus mutans and Streptococcus sobrinus are closely associated with the development of early childhood caries (ECC). Recently, quantitative real-time polymerase chain reaction (qRT-PCR) has been used for rapid and accurate quantification of these bacterial species. This study aims to detect quantitatively the levels of S. mutans and S. sobrinus in plaque samples by qRT-PCR, and to assess their association with the prevalence of ECC in Korean preschool children. One hundred and five children (71 months old or younger) were examined and classified into three groups (caries-free, ECC, severe ECC). Dental plaque samples were collected and qRT-PCR was conducted using oligonucleotide primers specific for glucosyltransferase gene (S. mutans-gtfB, S. sobrinus-gtfU) and universal primer. Pearson's correlation test was conducted to evaluate the relationship between the dmfs (decayed, missing, or filled surfaces primary teeth) scores and the microbiological findings. There was a significant difference between the levels of S. mutans and S. sobrinus in the plaque samples of the three groups (P < 0.05). The proportion of S. sobrinus to S. mutans showed strong correlation to the dmfs scores (r = 0.748, P < 0.05). The qRT-PCR results of this study showed that children with ECC had higher level of S. mutans and S. sobrinus in their dental plaque samples. The children with higher ratio of S. sobrinus to S. mutans in their dental plaque showed higher incidence of ECC.

  3. Identification of human intestinal parasites affecting an asymptomatic peri-urban Argentinian population using multi-parallel quantitative real-time polymerase chain reaction.

    PubMed

    Cimino, Rubén O; Jeun, Rebecca; Juarez, Marisa; Cajal, Pamela S; Vargas, Paola; Echazú, Adriana; Bryan, Patricia E; Nasser, Julio; Krolewiecki, Alejandro; Mejia, Rojelio

    2015-07-17

    In resource-limited countries, stool microscopy is the diagnostic test of choice for intestinal parasites (soil-transmitted helminths and/or intestinal protozoa). However, sensitivity and specificity is low. Improved diagnosis of intestinal parasites is especially important for accurate measurements of prevalence and intensity of infections in endemic areas. The study was carried out in Orán, Argentina. A total of 99 stool samples from a local surveillance campaign were analyzed by concentration microscopy and McMaster egg counting technique compared to the analysis by multi-parallel quantitative real-time polymerase chain reaction (qPCR). This study compared the performance of qPCR assay and stool microscopy for 8 common intestinal parasites that infect humans including the helminths Ascaris lumbricoides, Ancylostoma duodenale, Necator americanus, Strongyloides stercoralis, Trichuris trichiura, and the protozoa Giardia lamblia, Cryptosporidium parvum/hominis, and Entamoeba histolytica, and investigated the prevalence of polyparasitism in an endemic area. qPCR showed higher detection rates for all parasites as compared to stool microscopy except T. trichiura. Species-specific primers and probes were able to distinguish between A. duodenale (19.1%) and N. americanus (36.4%) infections. There were 48.6% of subjects co-infected with both hookworms, and a significant increase in hookworm DNA for A. duodenale versus N. americanus (119.6 fg/μL: 0.63 fg/μL, P < 0.001) respectively. qPCR outperformed microscopy by the largest margin in G. lamblia infections (63.6% versus 8.1%, P < 0.05). Polyparasitism was detected more often by qPCR compared to microscopy (64.7% versus 24.2%, P < 0.05). Multi-parallel qPCR is a quantitative molecular diagnostic method for common intestinal parasites in an endemic area that has improved diagnostic accuracy compared to stool microscopy. This first time use of multi-parallel qPCR in Argentina has demonstrated the high

  4. Comparison of Simplexa HSV 1 & 2 PCR with culture, immunofluorescence, and laboratory-developed TaqMan PCR for detection of herpes simplex virus in swab specimens.

    PubMed

    Gitman, Melissa R; Ferguson, David; Landry, Marie L

    2013-11-01

    The Simplexa HSV 1 & 2 direct PCR assay was compared with conventional cell culture, cytospin-enhanced direct fluorescent antibody (DFA), and a laboratory-developed real-time TaqMan PCR (LDT HSV PCR) using extracted nucleic acid for the detection of herpes simplex virus (HSV) in dermal, genital, mouth, ocular, and other swab samples. One hundred seventy-one swabs were tested prospectively, and 58 were positive for HSV (34 HSV-1 and 24 HSV-2). Cytospin-DFA detected 50 (86.2%), conventional cell culture 51 (87.9%), Simplexa direct 55 (94.8%), and LDT HSV PCR 57 (98.3%) of 58 true positives. Simplexa direct detected more positives than DFA and culture, but the differences were not significant (P = 0.0736 and P = 0.3711, respectively, by the McNemar test). Samples that were positive by all methods (n = 48) were strong positives (LDT cycle threshold [CT] value, 14.4 to 26.1). One strongly positive sample was falsely negative by LDT HSV PCR due to a failure of TaqMan probe binding. Three samples falsely negative by Simplexa direct had high CT values by LDT HSV PCR (LDT CT, 35.8 to 38.2). Omission of the DNA extraction step by Simplexa direct led to a drop in sensitivity compared to the sensitivity of LDT HSV PCR using extracted samples (94.8% versus 98.3%, respectively), but the difference was not significant (P = 0.6171). Simplexa HSV 1 & 2 direct PCR was the most expensive but required the least training of the assays used, had the lowest hands-on time and fastest assay time (75 min, versus 3 h by LDT HSV PCR), and provided the HSV type.

  5. Use of Nested and Real-Time PCR for the Detection of Ceratocystis fagacearum in the Sapwood of Diseased Oak Species in Minnesota

    Treesearch

    A. Yang; J. Juzwik

    2017-01-01

    Oak wilt caused by Ceratocystis fagacearum is a significant disease of Quercus spp. in the eastern United States. Early and accurate detection of the pathogen is particularly important when disease control is planned. Nested and real-time polymerase chain reaction (PCR) methods utilizing fungal DNA extracted from sapwood drill...

  6. NDBC - NDBC Real-Time Data

    Science.gov Websites

    Subtropical Storm Alberto. NDBC Real-Time Data NDBC moored buoy, C-MAN, and drifting buoy data are available in real-time through selecting either: NDBC Station locator map: a series of regional maps which show : a tabular list of station identifiers. Real-time data are available for the last 45 days (at least

  7. Evaluation and utilization of preassembled frozen commercial fast real-time qPCR master mixes for detection of cytomegalovirus and BK virus.

    PubMed

    Glover, William A; Atienza, Ederlyn E; Nesbitt, Shannon; Kim, Woo J; Castor, Jared; Cook, Linda; Jerome, Keith R

    2016-01-01

    Quantitative DNA detection of cytomegalovirus (CMV) and BK virus (BKV) is critical in the management of transplant patients. Quantitative laboratory-developed procedures for CMV and BKV have been described in which much of the processing is automated, resulting in rapid, reproducible, and high-throughput testing of transplant patients. To increase the efficiency of such assays, the performance and stability of four commercial preassembled frozen fast qPCR master mixes (Roche FastStart Universal Probe Master Mix with Rox, Bio-Rad SsoFast Probes Supermix with Rox, Life Technologies TaqMan FastAdvanced Master Mix, and Life Technologies Fast Universal PCR Master Mix), in combination with in-house designed primers and probes, was evaluated using controls and standards from standard CMV and BK assays. A subsequent parallel evaluation using patient samples was performed comparing the performance of freshly prepared assay mixes versus aliquoted frozen master mixes made with two of the fast qPCR mixes (Life Technologies TaqMan FastAdvanced Master Mix, and Bio-Rad SsoFast Probes Supermix with Rox), chosen based on their performance and compatibility with existing PCR cycling conditions. The data demonstrate that the frozen master mixes retain excellent performance over a period of at least 10 weeks. During the parallel testing using clinical specimens, no difference in quantitative results was observed between the preassembled frozen master mixes and freshly prepared master mixes. Preassembled fast real-time qPCR frozen master mixes perform well and represent an additional strategy laboratories can implement to reduce assay preparation times, and to minimize technical errors and effort necessary to perform clinical PCR. © 2015 Wiley Periodicals, Inc.

  8. Development of an isothermal recombinase polymerase amplification assay for rapid detection of pseudorabies virus.

    PubMed

    Yang, Yang; Qin, Xiaodong; Zhang, Wei; Li, Zhiyong; Zhang, Shuaijun; Li, Yanmin; Zhang, Zhidong

    2017-06-01

    Recombinase polymerase amplification assays using real-time fluorescent detection (real-time RPA assay) and lateral flow dipstick (RPA LFD assay) were developed targeting the gD gene of pseudorabies virus (PRV). Both assays were performed at 39 °C within 20 min. The sensitivity of the real-time RPA assay and the RPA LFD assay was 100 copies per reaction and 160 copies per reaction, respectively. Both assays did not detect DNAs from other virus or PRV negative samples. Therefore, the developed RPA assays provide a rapid, simple, sensitive and specific alternative tool for detection of PRV. Copyright © 2017. Published by Elsevier Ltd.

  9. Detection of Mycobacterium avium subsp. paratuberculosis in bovine manure using Whatman FTA card technology and Lightcycler real-time PCR.

    PubMed

    Jaravata, Carmela V; Smith, Wayne L; Rensen, Gabriel J; Ruzante, Juliana M; Cullor, James S

    2006-01-01

    A modified forensic DNA extraction and real-time fluorescent polymerase chain reaction assay has been evaluated for the detection of Mycobacterium avium subsp. paratuberculosis (MAP) in bovine fecal samples using primers and fluorescent resonance energy transfer (FRET) probes targeting the IS900 gene sequence of MAP. DNA was successfully extracted from manure samples by utilizing the Whatman FTA card technology, which allows for simple processing and storage of samples at room temperature. The FTA cards were washed and subjected to a Chelex-100 incubation to remove any remaining polymerase chain reaction (PCR) inhibitors and to elute the DNA from the FTA card. This isolated DNA was then subjected to direct real time fluorescent PCR analysis. Detection of MAP DNA from bovine fecal samples spiked with known concentrations of viable MAP cells was obtained. The detection limits of the assay was consistently found to be between 10(2) and 10(4) colony forming units [CFU]/g, with some samples containing as low as 10 CFU/g, yielding positive assay results. This cost-efficient assay allows reporting of results as early as 4 h after fecal collection, which can be particularly useful in highthroughput herd screening.

  10. A screening method for the detection of the 35S promoter and the nopaline synthase terminator in genetically modified organisms in a real-time multiplex polymerase chain reaction using high-resolution melting-curve analysis.

    PubMed

    Akiyama, Hiroshi; Nakamura, Fumi; Yamada, Chihiro; Nakamura, Kosuke; Nakajima, Osamu; Kawakami, Hiroshi; Harikai, Naoki; Furui, Satoshi; Kitta, Kazumi; Teshima, Reiko

    2009-11-01

    To screen for unauthorized genetically modified organisms (GMO) in the various crops, we developed a multiplex real-time polymerase chain reaction high-resolution melting-curve analysis method for the simultaneous qualitative detection of 35S promoter sequence of cauliflower mosaic virus (35SP) and the nopaline synthase terminator (NOST) in several crops. We selected suitable primer sets for the simultaneous detection of 35SP and NOST and designed the primer set for the detection of spiked ColE1 plasmid to evaluate the validity of the polymerase chain reaction (PCR) analyses. In addition, we optimized the multiplex PCR conditions using the designed primer sets and EvaGreen as an intercalating dye. The contamination of unauthorized GMO with single copy similar to NK603 maize can be detected as low as 0.1% in a maize sample. Furthermore, we showed that the present method would be applicable in identifying GMO in various crops and foods like authorized GM soybean, authorized GM potato, the biscuit which is contaminated with GM soybeans and the rice which is contaminated with unauthorized GM rice. We consider this method to be a simple and reliable assay for screening for unauthorized GMO in crops and the processing food products.

  11. Comparison of Versant HBV DNA 3.0 and COBAS AmpliPrep-COBAS TaqMan assays for hepatitis B DNA quantitation: Possible clinical implications.

    PubMed

    Garbuglia, A R; Angeletti, C; Lauria, F N; Zaccaro, P; Cocca, A M; Pisciotta, M; Solmone, M; Capobianchi, M R

    2007-12-01

    We compared two commercial assays for HBV DNA quantitation, Versant HBV 3.0, System 340 (bDNA; Bayer Diagnostics) and COBAS AmpliPrep-COBAS TaqMan HBV Test (TaqMan; Roche Diagnostics). Analytical sensitivity, calculated on WHO International Standard, predicted 95% detection rate at 11.4 and 520.2IU/ml for TaqMan and bDNA, respectively. Specificity, established on 50 blood donor samples, was 100% and 84% for TaqMan and bDNA, respectively. When using clinical samples, HBV DNA was detected by TaqMan in 21/55 samples negative to bDNA. Mean values of HBV DNA obtained with bDNA were higher than those obtained with TaqMan (4.09log(10)+/-1.90 versus 3.39log(10)+/-2.41, p<0.001), and 24.4% of samples showed differences in viral load values >0.5log(10), without association with HBV genotype. There was a good correlation for HBV DNA concentrations measured by the two assays (r=0.94; p<0.001) within the overlapping range, and the distribution of results with respect to relevant clinical threshold recently confirmed (20,000 and 2000IU/ml) was similar. Approximately 50% of samples with low HBV DNA, appreciated by TaqMan but not by bDNA, were successfully sequenced in pol region, where drug resistance mutations are located.

  12. Real-Time Simulation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Coryphaeus Software, founded in 1989 by former NASA electronic engineer Steve Lakowske, creates real-time 3D software. Designer's Workbench, the company flagship product, is a modeling and simulation tool for the development of both static and dynamic 3D databases. Other products soon followed. Activation, specifically designed for game developers, allows developers to play and test the 3D games before they commit to a target platform. Game publishers can shorten development time and prove the "playability" of the title, maximizing their chances of introducing a smash hit. Another product, EasyT, lets users create massive, realistic representation of Earth terrains that can be viewed and traversed in real time. Finally, EasyScene software control the actions among interactive objects within a virtual world. Coryphaeus products are used on Silican Graphics workstation and supercomputers to simulate real-world performance in synthetic environments. Customers include aerospace, aviation, architectural and engineering firms, game developers, and the entertainment industry.

  13. Characterization of real-time computers

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Krishna, C. M.

    1984-01-01

    A real-time system consists of a computer controller and controlled processes. Despite the synergistic relationship between these two components, they have been traditionally designed and analyzed independently of and separately from each other; namely, computer controllers by computer scientists/engineers and controlled processes by control scientists. As a remedy for this problem, in this report real-time computers are characterized by performance measures based on computer controller response time that are: (1) congruent to the real-time applications, (2) able to offer an objective comparison of rival computer systems, and (3) experimentally measurable/determinable. These measures, unlike others, provide the real-time computer controller with a natural link to controlled processes. In order to demonstrate their utility and power, these measures are first determined for example controlled processes on the basis of control performance functionals. They are then used for two important real-time multiprocessor design applications - the number-power tradeoff and fault-masking and synchronization.

  14. The use of newly developed real-time PCR for the rapid identification of bacteria in culture-negative osteomyelitis.

    PubMed

    Kobayashi, Naomi; Bauer, Thomas W; Sakai, Hiroshige; Togawa, Daisuke; Lieberman, Isador H; Fujishiro, Takaaki; Procop, Gary W

    2006-12-01

    We report a case of a culture-negative osteomyelitis in which our newly developed real-time polymerase chain reaction (PCR) could differentiate Staphylococcus aureus from Staphylococcus epidermidis. This is the first report that described the application of this novel assay to an orthopedics clinical sample. This assay may be useful for other clinical culture-negative cases in a combination with a broad-spectrum assay as a rapid microorganism identification method.

  15. Exploiting 16S rRNA gene for the detection and quantification of fish as a potential allergenic food: A comparison of two real-time PCR approaches.

    PubMed

    Fernandes, Telmo J R; Costa, Joana; Oliveira, M Beatriz P P; Mafra, Isabel

    2018-04-15

    Fish is one of the most common allergenic foods that should be accurately labelled to protect the health of allergic consumers. In this work, two real-time PCR systems based on the EvaGreen dye and a TaqMan probe are proposed and compared. New primers were designed to target the 16S rRNA gene, as a universal maker for fish detection, with fully demonstrated specificity for a wide range of fish species. Both systems showed similar absolute sensitivities, down to 0.01 pg of fish DNA, and adequate real-time PCR performance parameters. The probe system showed higher relative sensitivity and dynamic range (0.0001-50%) than the EvaGreen (0.05-50%). They were both precise, but trueness was compromised at the highest tested level with the EvaGreen assay. Therefore, both systems were successful, although the probe one exhibited the best performance. Its application to verify labelling compliance of foodstuffs suggested a high level of mislabelling and/or fraudulent practices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. [Real-time PCR detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae DNA in clinical specimens].

    PubMed

    Vacková, Z; Lžičařová, D; Stock, N K; Kozáková, J

    2015-10-01

    The study aim was to implement a molecular real-time polymerase chain reaction (PCR) assay recommended by the CDC (Centers for Disease Control and Prevention) for the detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in clinical (culture negative) specimens from patients with suspected invasive bacterial disease. Clinical specimens are referred to the National Reference Laboratory (NRL) for Meningococcal Infections, Unit for Airborne Bacterial Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health from various regions of the Czech Republic. Clinical specimens are, in particular, cerebrospinal fluid, anti-coagulated blood or serum and, exceptionally, post-mortem specimens. The NRL has implemented molecular diagnosis of these bacterial pathogens involved in meningitis and sepsis from clinical specimens since 1999. The first diagnostic method was semi-nested PCR followed by electrophoretic analysis. In 2014, a molecular qualitative real-time PCR assay was implemented.

  17. Development of polymerase chain reaction-based diagnostic tests for detection of Malsoor virus & adenovirus isolated from Rousettus species of bats in Maharashtra, India.

    PubMed

    Shete, Anita M; Yadav, Pragya; Kumar, Vimal; Nikam, Tushar; Mehershahi, Kurosh; Kokate, Prasad; Patil, Deepak; Mourya, Devendra T

    2017-01-01

    Bats are recognized as important reservoirs for emerging infectious disease and some unknown viral diseases. Two novel viruses, Malsoor virus (family Bunyaviridae, genus, Phlebovirus) and a novel adenovirus (AdV) (family, Adenoviridae genus, Mastadenovirus), were identified from Rousettus bats in the Maharashtra State of India. This study was done to develop and optimize real time reverse transcription - polymerase chain reaction (RT-PCR) assays for Malsoor virus and real time and nested PCR for adenovirus from Rousettus bats. For rapid and accurate screening of Malsoor virus and adenovirus a nested polymerase chain reaction and TaqMan-based real-time PCR were developed. Highly conserved region of nucleoprotein gene of phleboviruses and polymerase gene sequence from the Indian bat AdV isolate polyprotein gene were selected respectively for diagnostic assay development of Malsoor virus and AdV. Sensitivity and specificity of assays were calculated and optimized assays were used to screen bat samples. Molecular diagnostic assays were developed for screening of Malsoor virus and AdV and those were found to be specific. Based on the experiments performed with different parameters, nested PCR was found to be more sensitive than real-time PCR; however, for rapid screening, real-time PCR can be used and further nested PCR can be used for final confirmation or in those laboratories where real-time facility/expertise is not existing. This study reports the development and optimization of nested RT-PCR and a TaqMan-based real-time PCR for Malsoor virus and AdV. The diagnostic assays can be used for rapid detection of these novel viruses to understand their prevalence among bat population.

  18. Acting to gain information: Real-time reasoning meets real-time perception

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stan

    1994-01-01

    Recent advances in intelligent reactive systems suggest new approaches to the problem of deriving task-relevant information from perceptual systems in real time. The author will describe work in progress aimed at coupling intelligent control mechanisms to real-time perception systems, with special emphasis on frame rate visual measurement systems. A model for integrated reasoning and perception will be discussed, and recent progress in applying these ideas to problems of sensor utilization for efficient recognition and tracking will be described.

  19. A real-time, quantitative PCR protocol for assessing the relative parasitemia of Leucocytozoon in waterfowl.

    PubMed

    Smith, Matthew M; Schmutz, Joel; Apelgren, Chloe; Ramey, Andrew M

    2015-04-01

    Microscopic examination of blood smears can be effective at diagnosing and quantifying hematozoa infections. However, this method requires highly trained observers, is time consuming, and may be inaccurate for detection of infections at low levels of parasitemia. To develop a molecular methodology for identifying and quantifying Leucocytozoon parasite infection in wild waterfowl (Anseriformes), we designed a real-time, quantitative PCR protocol to amplify Leucocytozoon mitochondrial DNA using TaqMan fluorogenic probes and validated our methodology using blood samples collected from waterfowl in interior Alaska during late summer and autumn (n=105). By comparing our qPCR results to those derived from a widely used nested PCR protocol, we determined that our assay showed high levels of sensitivity (91%) and specificity (100%) in detecting Leucocytozoon DNA from host blood samples. Additionally, results of a linear regression revealed significant correlation between the raw measure of parasitemia produced by our qPCR assay (Ct values) and numbers of parasites observed on blood smears (R(2)=0.694, P=0.003), indicating that our assay can reliably determine the relative parasitemia levels among samples. This methodology provides a powerful new tool for studies assessing effects of haemosporidian infection in wild avian species. Published by Elsevier B.V.

  20. Detection of exogenous gene doping of IGF-I by a real-time quantitative PCR assay.

    PubMed

    Zhang, Jin-Ju; Xu, Jing-Feng; Shen, Yong-Wei; Ma, Shi-Jiao; Zhang, Ting-Ting; Meng, Qing-Lin; Lan, Wen-Jun; Zhang, Chun; Liu, Xiao-Mei

    2017-07-01

    Gene doping can be easily concealed since its product is similar to endogenous protein, making its effective detection very challenging. In this study, we selected insulin-like growth factor I (IGF-I) exogenous gene for gene doping detection. First, the synthetic IGF-I gene was subcloned to recombinant adeno-associated virus (rAAV) plasmid to produce recombinant rAAV2/IGF-I-GFP vectors. Second, in an animal model, rAAV2/IGF-I-GFP vectors were injected into the thigh muscle tissue of mice, and then muscle and blood specimens were sampled at different time points for total DNA isolation. Finally, real-time quantitative PCR was employed to detect the exogenous gene doping of IGF-I. In view of the characteristics of endogenous IGF-I gene sequences, a TaqMan probe was designed at the junction of exons 2 and 3 of IGF-I gene to distinguish it from the exogenous IGF-I gene. In addition, an internal reference control plasmid and its probe were used in PCR to rule out false-positive results through comparison of their threshold cycle (Ct) values. Thus, an accurate exogenous IGF-I gene detection approach was developed in this study. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  1. An OPTIMIZE study retrospective analysis for management of telaprevir-treated hepatitis C virus (HCV)-infected patients by use of the Abbott RealTime HCV RNA assay.

    PubMed

    Sarrazin, Christoph; Dierynck, Inge; Cloherty, Gavin; Ghys, Anne; Janssen, Katrien; Luo, Donghan; Witek, James; Buti, Maria; Picchio, Gaston; De Meyer, Sandra

    2015-04-01

    Protease inhibitor (PI)-based response-guided triple therapies for hepatitis C virus (HCV) infection are still widely used. Noncirrhotic treatment-naive and prior relapser patients receiving telaprevir-based treatment are eligible for shorter, 24-week total therapy if HCV RNA is undetectable at both weeks 4 and 12. In this study, the concordance in HCV RNA assessments between the Roche High Pure System/Cobas TaqMan and Abbott RealTime HCV RNA assays and the impacts of different HCV RNA cutoffs on treatment outcome were evaluated. A total of 2,629 samples from 663 HCV genotype 1 patients receiving telaprevir/pegylated interferon/ribavirin in OPTIMIZE were analyzed using the High Pure System and reanalyzed using Abbott RealTime (limits of detection, 15.1 IU/ml versus 8.3 IU/ml; limits of quantification, 25 IU/ml versus 12 IU/ml, respectively). Overall, good concordance was observed between the assays. Using undetectable HCV RNA at week 4, 34% of the patients would be eligible for shorter treatment duration with Abbott RealTime versus 72% with the High Pure System. However, using <12 IU/ml for Abbott RealTime, a similar proportion (74%) would be eligible. Of the patients receiving 24-week total therapy, 87% achieved a sustained virologic response with undetectable HCV RNA by the High Pure System or <12 IU/ml by Abbott RealTime; however, 92% of the patients with undetectable HCV RNA by Abbott RealTime achieved a sustained virologic response. Using undetectable HCV RNA as the cutoff, the more sensitive Abbott RealTime assay would identify fewer patients eligible for shorter treatment than the High Pure System. Our data confirm the <12-IU/ml cutoff, as previously established in other studies of the Abbott RealTime assay, to determine eligibility for shortened PI-based HCV treatment. (The study was registered with ClinicalTrials.gov under registration no. NCT01241760.). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Validation of a high-throughput real-time polymerase chain reaction assay for the detection of capripoxviral DNA.

    PubMed

    Stubbs, Samuel; Oura, Chris A L; Henstock, Mark; Bowden, Timothy R; King, Donald P; Tuppurainen, Eeva S M

    2012-02-01

    Capripoxviruses, which are endemic in much of Africa and Asia, are the aetiological agents of economically devastating poxviral diseases in cattle, sheep and goats. The aim of this study was to validate a high-throughput real-time PCR assay for routine diagnostic use in a capripoxvirus reference laboratory. The performance of two previously published real-time PCR methods were compared using commercially available reagents including the amplification kits recommended in the original publication. Furthermore, both manual and robotic extraction methods used to prepare template nucleic acid were evaluated using samples collected from experimentally infected animals. The optimised assay had an analytical sensitivity of at least 63 target DNA copies per reaction, displayed a greater diagnostic sensitivity compared to conventional gel-based PCR, detected capripoxviruses isolated from outbreaks around the world and did not amplify DNA from related viruses in the genera Orthopoxvirus or Parapoxvirus. The high-throughput robotic DNA extraction procedure did not adversely affect the sensitivity of the assay compared to manual preparation of PCR templates. This laboratory-based assay provides a rapid and robust method to detect capripoxviruses following suspicion of disease in endemic or disease-free countries. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  3. Evaluation of TaqMan qPCR System Integrating Two Identically Labelled Hydrolysis Probes in Single Assay

    PubMed Central

    Nagy, Alexander; Vitásková, Eliška; Černíková, Lenka; Křivda, Vlastimil; Jiřincová, Helena; Sedlák, Kamil; Horníčková, Jitka; Havlíčková, Martina

    2017-01-01

    Ongoing evolution of viral pathogens is a significant issue in diagnostic virology employing TaqMan qPCR/RT-qPCR. Specific concerns are related to false negativity due to probe binding failure. One option for compensating for such deficiency is to integrate a second identically labelled probe in the assay. However, how this alteration influences the reaction parameters has not been comprehensively demonstrated. In the present study, we evaluate a TaqMan protocol using two identically labelled hydrolysis probes (simple, LNA (locked-nucleic-acid)) and MGB (minor-groove-binder) modified probes and combinations thereof in a single assay. Our results based on a synthetic amplicon suggest that the second probe does not compromise the TaqMan qPCR/RT-qPCR parameters, which repeatedly and reproducibly remained comparable to those of the corresponding single-probe assays, irrespective of the relative probe orientation, whether opposite or tandem, and probe modifications or combinations thereof. On the other hand, the second probe additively contributed to the overall fluorescence signal. The utility of the dual-probe approach was demonstrated on practical examples by using field specimens. We hope that the present study might serve as a theoretical basis for the development or improvement of TaqMan qPCR/RT-qPCR assays for the detection of highly variable nucleic acid templates. PMID:28120891

  4. Real-Time PCR Detection of Paenibacillus spp. in Raw Milk To Predict Shelf Life Performance of Pasteurized Fluid Milk Products

    PubMed Central

    Ranieri, Matthew L.; Ivy, Reid A.; Mitchell, W. Robert; Call, Emma; Masiello, Stephanie N.; Wiedmann, Martin

    2012-01-01

    Psychrotolerant sporeformers, specifically Paenibacillus spp., are important spoilage bacteria for pasteurized, refrigerated foods such as fluid milk. While Paenibacillus spp. have been isolated from farm environments, raw milk, processing plant environments, and pasteurized fluid milk, no information on the number of Paenibacillus spp. that need to be present in raw milk to cause pasteurized milk spoilage was available. A real-time PCR assay targeting the 16S rRNA gene was designed to detect Paenibacillus spp. in fluid milk and to discriminate between Paenibacillus and other closely related spore-forming bacteria. Specificity was confirmed using 16 Paenibacillus and 17 Bacillus isolates. All 16 Paenibacillus isolates were detected with a mean cycle threshold (CT) of 19.14 ± 0.54. While 14/17 Bacillus isolates showed no signal (CT > 40), 3 Bacillus isolates showed very weak positive signals (CT = 38.66 ± 0.65). The assay provided a detection limit of approximately 3.25 × 101 CFU/ml using total genomic DNA extracted from raw milk samples inoculated with Paenibacillus. Application of the TaqMan PCR to colony lysates obtained from heat-treated and enriched raw milk provided fast and accurate detection of Paenibacillus. Heat-treated milk samples where Paenibacillus (≥1 CFU/ml) was detected by this colony TaqMan PCR showed high bacterial counts (>4.30 log CFU/ml) after refrigerated storage (6°C) for 21 days. We thus developed a tool for rapid detection of Paenibacillus that has the potential to identify raw milk with microbial spoilage potential as a pasteurized product. PMID:22685148

  5. Diagnosis of bacteremia in pediatric oncologic patients by in-house real-time PCR.

    PubMed

    Quiles, Milene Gonçalves; Menezes, Liana Carballo; Bauab, Karen de Castro; Gumpl, Elke Kreuscher; Rocchetti, Talita Trevizani; Palomo, Flavia Silva; Carlesse, Fabianne; Pignatari, Antonio Carlos Campos

    2015-07-23

    Infections are the major cause of morbidity and mortality in children with cancer. Gaining a favorable prognosis for these patients depends on selecting the appropriate therapy, which in turn depends on rapid and accurate microbiological diagnosis. This study employed real-time PCR (qPCR) to identify the main pathogens causing bloodstream infection (BSI) in patients treated at the Pediatric Oncology Institute IOP-GRAACC-UNIFESP-Brazil. Antimicrobial resistance genes were also investigated using this methodology. A total of 248 samples from BACTEC® blood culture bottles and 99 whole-blood samples collected in tubes containing EDTA K2 Gel were isolated from 137 patients. All samples were screened by specific Gram probes for multiplex qPCR. Seventeen sequences were evaluated using gender-specific TaqMan probes and the resistance genes bla SHV, bla TEM, bla CTX, bla KPC, bla IMP, bla SPM, bla VIM, vanA, vanB and mecA were detected using the SYBR Green method. Positive qPCR results were obtained in 112 of the blood culture bottles (112/124), and 90 % agreement was observed between phenotypic and molecular microbial detection methods. For bacterial and fungal identification, the performance test showed: sensitivity 87 %; specificity 91 %; NPV 90 %; PPV 89 % and accuracy of 89 % when compared with the phenotypic method. The mecA gene was detected in 37 samples, extended-spectrum β-lactamases were detected in six samples and metallo-β-lactamase coding genes in four samples, with 60 % concordance between the two methods. The qPCR on whole blood detected eight samples possessing the mecA gene and one sample harboring the vanB gene. The bla KPC, bla VIM, bla IMP and bla SHV genes were not detected in this study. Real-time PCR is a useful tool in the early identification of pathogens and antimicrobial resistance genes from bloodstream infections of pediatric oncologic patients.

  6. Discordance between MTB/RIF and Real-Time Tuberculosis-Specific Polymerase Chain Reaction Assay in Bronchial Washing Specimen and Its Clinical Implications.

    PubMed

    Jo, Yong Suk; Park, Ju-Hee; Lee, Jung Kyu; Heo, Eun Young; Chung, Hee Soon; Kim, Deog Kyeom

    2016-01-01

    The prevalence and clinical implications of discordance between Xpert MTB/RIF assays and the AdvanSure TB/NTM real-time polymerase chain reaction (PCR) for bronchial washing specimens have not been studied in pulmonary TB (PTB) patients. The discordant proportion and its clinical impact were evaluated in 320 patients from the bronchoscopy registry whose bronchial washing specimens were tested simultaneously with Xpert MTB/RIF and the TB/NTM PCR assay for three years, and the accuracy of the assays, including the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), were studied. The clinical risk factors for discordance and false positivity of assays were also studied. Among 130 patients who were clinically diagnosed with PTB, 64 patients showed positive acid-fast bacilli culture results, 56 patients showed positive results in molecular methods and clinician diagnosed PTB without results of microbiology in 10 patients. The sensitivity, specificity, PPV, and NPV were 80.0%, 98.95%, 98.1%, and 87.9%, respectively, for Xpert MTB/RIF and 81.5%, 92.6%, 88.3%, and 88.0%, respectively, for TB/NTM PCR. The discordant proportion was 16.9% and was higher in culture-negative PTB compared to culture-confirmed PTB (24.3% vs. 9.4%, p = 0.024). However, there were no significant differences in the clinical characteristics, regardless of the discordance. The diagnostic yield increased with an additional assay (7.7% for Xpert MTB/RIF and 9.2% for TB/NTM PCR). False positivity was less common in patients tested with Xpert MTB/RIF (1.05% vs. 7.37%, p = 0.0035). No host-related risk factor for false positivity was identified. The Xpert MTB/RIF and TB/NTM PCR assay in bronchial washing specimens can improve the diagnostic yields for PTB, although there were considerable discordant results without any patient-related risk factors.

  7. Improved Method for the Detection and Quantification of Naegleria fowleri in Water and Sediment Using Immunomagnetic Separation and Real-Time PCR

    PubMed Central

    Mull, Bonnie J.; Narayanan, Jothikumar; Hill, Vincent R.

    2013-01-01

    Primary amebic meningoencephalitis (PAM) is a rare and typically fatal infection caused by the thermophilic free-living ameba, Naegleria fowleri. In 2010, the first confirmed case of PAM acquired in Minnesota highlighted the need for improved detection and quantification methods in order to study the changing ecology of N. fowleri and to evaluate potential risk factors for increased exposure. An immunomagnetic separation (IMS) procedure and real-time PCR TaqMan assay were developed to recover and quantify N. fowleri in water and sediment samples. When one liter of lake water was seeded with N. fowleri strain CDC:V212, the method had an average recovery of 46% and detection limit of 14 amebas per liter of water. The method was then applied to sediment and water samples with unknown N. fowleri concentrations, resulting in positive direct detections by real-time PCR in 3 out of 16 samples and confirmation of N. fowleri culture in 6 of 16 samples. This study has resulted in a new method for detection and quantification of N. fowleri in water and sediment that should be a useful tool to facilitate studies of the physical, chemical, and biological factors associated with the presence and dynamics of N. fowleri in environmental systems. PMID:24228172

  8. A real-time architecture for time-aware agents.

    PubMed

    Prouskas, Konstantinos-Vassileios; Pitt, Jeremy V

    2004-06-01

    This paper describes the specification and implementation of a new three-layer time-aware agent architecture. This architecture is designed for applications and environments where societies of humans and agents play equally active roles, but interact and operate in completely different time frames. The architecture consists of three layers: the April real-time run-time (ART) layer, the time aware layer (TAL), and the application agents layer (AAL). The ART layer forms the underlying real-time agent platform. An original online, real-time, dynamic priority-based scheduling algorithm is described for scheduling the computation time of agent processes, and it is shown that the algorithm's O(n) complexity and scalable performance are sufficient for application in real-time domains. The TAL layer forms an abstraction layer through which human and agent interactions are temporally unified, that is, handled in a common way irrespective of their temporal representation and scale. A novel O(n2) interaction scheduling algorithm is described for predicting and guaranteeing interactions' initiation and completion times. The time-aware predicting component of a workflow management system is also presented as an instance of the AAL layer. The described time-aware architecture addresses two key challenges in enabling agents to be effectively configured and applied in environments where humans and agents play equally active roles. It provides flexibility and adaptability in its real-time mechanisms while placing them under direct agent control, and it temporally unifies human and agent interactions.

  9. Real-time PCR assay for the diagnosis of pleural tuberculosis

    PubMed Central

    Cárdenas Bernal, Ana María; Giraldo-Cadavid, Luis Fernando; Prieto Diago, Enrique; Santander, Sandra Paola

    2017-01-01

    Abstract Introduction: The diagnosis of pleural tuberculosis requires an invasive and time-consuming reference method. Polymerase chain reaction (PCR) is rapid, but validation in pleural tuberculosis is still weak. Objective: To establish the operating characteristics of real-time polymerase chain reaction (RT-PCR) hybridization probes for the diagnosis of pleural tuberculosis. Methods: The validity of the RT-PCR hybridization probes was evaluated compared to a composite reference method by a cross-sectional study at the Hospital Universitario de la Samaritana. 40 adults with lymphocytic pleural effusion were included. Pleural tuberculosis was confirmed (in 9 patients) if the patient had at least one of three tests using the positive reference method: Ziehl-Neelsen or Mycobacterium tuberculosis culture in fluid or pleural tissue, or pleural biopsy with granulomas. Pleural tuberculosis was ruled out (in 31 patients) if all three tests were negative. The operating characteristics of the RT-PCR, using the Mid-P Exact Test, were determined using the OpenEpi 2.3 Software (2009). Results: The RT-PCR hybridization probes showed a sensitivity of 66.7% (95% CI: 33.2%-90.7%) and a specificity of 93.5% (95% CI: 80.3%-98.9%). The PPV was 75.0% (95% CI: 38.8%-95.6%) and a NPV of 90.6% (95% CI: 76.6%-97.6%). Two false positives were found for the test, one with pleural mesothelioma and the other with chronic pleuritis with mesothelial hyperplasia. Conclusions: The RT-PCR hybridization probes had good specificity and acceptable sensitivity, but a negative value cannot rule out pleural tuberculosis. PMID:29021638

  10. Evaluation of six nucleic acid amplification tests used for diagnosis of Neisseria gonorrhoeae in Russia compared with an international strictly validated real-time porA pseudogene polymerase chain reaction.

    PubMed

    Shipitsyna, E; Zolotoverkhaya, E; Hjelmevoll, S O; Maximova, A; Savicheva, A; Sokolovsky, E; Skogen, V; Domeika, M; Unemo, M

    2009-11-01

    In Russia, laboratory diagnosis of gonorrhoea has been mainly based on microscopy only and, in some settings, relatively rare suboptimal culturing. In recent years, Russian developed and manufactured nucleic acid amplification tests (NAAT) have been implemented for routine diagnosis of Neisseria gonorrhoeae. However, these NAATs have never been validated to any international well-recognized diagnostic NAAT. This study aims to evaluate the performance characteristics of six Russian NAATs for N. gonorrhoeae diagnostics. In total, 496 symptomatic patients were included. Five polymerase chain reaction (PCR) assays and one real-time nucleic acid sequence based amplification (NASBA) assay, developed by three Russian companies, were evaluated on urogenital samples, i.e. cervical and first voided urine (FVU) samples from females (n = 319), urethral and FVU samples from males (n = 127), and extragenital samples, i.e. rectal and pharyngeal samples, from 50 additional female patients with suspicion of gonorrhoea. As reference method, an international strictly validated real-time porA pseudogene PCR was applied. The prevalence of N. gonorrhoeae was 2.7% and 16% among the patients providing urogenital and extragenital samples, respectively. The Russian NAATs and the reference method displayed high level of concordance (99.4-100%). The sensitivities, specificities, positive predictive values and negative predictive values of the Russian tests in different specimens were 66.7-100%, 100%, 100%, and 99.4-100%, respectively. Russian N. gonorrhoeae diagnostic NAATs comprise relatively good performance characteristics. However, larger studies are crucial and, beneficially, the Russian assays should also be evaluated to other international highly sensitive and specific, and ideally Food and Drug Administration approved, NAATs such as Aptima Combo 2 (Gen-Probe).

  11. Real Time Conference 2014 Overview

    NASA Astrophysics Data System (ADS)

    Nomachi, Masaharu

    2015-06-01

    This article presents an overview of the 19th Real Time Conference held last May 26-30, 2014, at the Nara Prefectural New Public Hall, Nara, Japan, organized by the Research Center for Nuclear Physics of the Osaka University. The program included many invited talks and oral sessions offering an extensive overview on the following topics: real-time system architectures, intelligent signal processing, fast data transfer links and networks, trigger systems, data acquisition, processing-farms, control, monitoring and test systems, emerging real-time technologies, new standards, real-time safety and security, and some feedback on experiences. In parallel to the oral and poster presentations, industrial exhibits by companies, workshops and short courses also ran through the week.

  12. Real-time flutter identification

    NASA Technical Reports Server (NTRS)

    Roy, R.; Walker, R.

    1985-01-01

    The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.

  13. HEVC real-time decoding

    NASA Astrophysics Data System (ADS)

    Bross, Benjamin; Alvarez-Mesa, Mauricio; George, Valeri; Chi, Chi Ching; Mayer, Tobias; Juurlink, Ben; Schierl, Thomas

    2013-09-01

    The new High Efficiency Video Coding Standard (HEVC) was finalized in January 2013. Compared to its predecessor H.264 / MPEG4-AVC, this new international standard is able to reduce the bitrate by 50% for the same subjective video quality. This paper investigates decoder optimizations that are needed to achieve HEVC real-time software decoding on a mobile processor. It is shown that HEVC real-time decoding up to high definition video is feasible using instruction extensions of the processor while decoding 4K ultra high definition video in real-time requires additional parallel processing. For parallel processing, a picture-level parallel approach has been chosen because it is generic and does not require bitstreams with special indication.

  14. Base modifications affecting RNA polymerase and reverse transcriptase fidelity.

    PubMed

    Potapov, Vladimir; Fu, Xiaoqing; Dai, Nan; Corrêa, Ivan R; Tanner, Nathan A; Ong, Jennifer L

    2018-06-20

    Ribonucleic acid (RNA) is capable of hosting a variety of chemically diverse modifications, in both naturally-occurring post-transcriptional modifications and artificial chemical modifications used to expand the functionality of RNA. However, few studies have addressed how base modifications affect RNA polymerase and reverse transcriptase activity and fidelity. Here, we describe the fidelity of RNA synthesis and reverse transcription of modified ribonucleotides using an assay based on Pacific Biosciences Single Molecule Real-Time sequencing. Several modified bases, including methylated (m6A, m5C and m5U), hydroxymethylated (hm5U) and isomeric bases (pseudouridine), were examined. By comparing each modified base to the equivalent unmodified RNA base, we can determine how the modification affected cumulative RNA polymerase and reverse transcriptase fidelity. 5-hydroxymethyluridine and N6-methyladenosine both increased the combined error rate of T7 RNA polymerase and reverse transcriptases, while pseudouridine specifically increased the error rate of RNA synthesis by T7 RNA polymerase. In addition, we examined the frequency, mutational spectrum and sequence context of reverse transcription errors on DNA templates from an analysis of second strand DNA synthesis.

  15. Quantification of Wilms' tumor 1 mRNA by digital polymerase chain reaction.

    PubMed

    Koizumi, Yuki; Furuya, Daisuke; Endo, Teruo; Asanuma, Kouichi; Yanagihara, Nozomi; Takahashi, Satoshi

    2018-02-01

    Wilms' tumor 1 (WT1) is overexpressed in various hematopoietic tumors and widely used as a marker of minimal residual disease. WT1 mRNA has been analyzed using quantitative real-time polymerase chain reaction (real-time PCR). In the present study, we analyzed 40 peripheral blood and bone marrow samples obtained from cases of acute myeloid leukemia, acute lymphoblastic leukemia, and myelodysplastic syndrome at Sapporo Medical University Hospital from April 2012 to January 2015. We performed quantification of WT1 was performed using QuantStudio 3D Digital PCR System (Thermo Fisher Scientific‎) and compared the results between digital PCR and real-time PCR technology. The correlation between digital PCR and real-time PCR was very strong (R = 0.99), and the detection limits of the two methods were equivalent. Digital PCR was able to accurately detect lower WT levels compared with real-time PCR. Digital PCR technology can thus be utilized to predict WT1/ABL1 expression level accurately and should thus be useful for diagnosis or the evaluation of drug efficiency in patients with leukemia.

  16. The use of real-time polymerase chain reaction with high resolution melting (real-time PCR-HRM) analysis for the detection and discrimination of nematodes Bursaphelenchus xylophilus and Bursaphelenchus mucronatus.

    PubMed

    Filipiak, Anna; Hasiów-Jaroszewska, Beata

    2016-04-01

    The real-time PCR-HRM analysis was developed for the detection and discrimination of the quarantine nematode Bursaphelenchus xylophilus and Bursaphelenchus mucronatus. A set of primers was designed to target the ITS region of rDNA. The results have demonstrated that this analysis is a valuable tool for differentiation of these both species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array

    PubMed Central

    Fuller, Carl W.; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P. Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T.; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J.; Kasianowicz, John J.; Davis, Randy; Roever, Stefan; Church, George M.; Ju, Jingyue

    2016-01-01

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5′-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods. PMID:27091962

  18. Development and accuracy of quantitative real-time polymerase chain reaction assays for detection and quantification of enterotoxigenic Escherichia coli (ETEC) heat labile and heat stable toxin genes in travelers' diarrhea samples.

    PubMed

    Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC), the leading bacterial pathogen of travelers' diarrhea, is routinely detected by an established DNA hybridization protocol that is neither sensitive nor quantitative. Quantitative real-time polymerase chain reaction (qPCR) assays that detect the ETEC toxin genes eltA, sta1, and sta2 in clinical stool samples were developed and tested using donor stool inoculated with known quantities of ETEC bacteria. The sensitivity of the qPCR assays is 89%, compared with 22% for the DNA hybridization assay, and the limits of detection are 10,000-fold lower than the DNA hybridization assays performed in parallel. Ninety-three clinical stool samples, previously characterized by DNA hybridization, were tested using the new ETEC qPCR assays. Discordant toxin profiles were observed for 22 samples, notably, four samples originally typed as ETEC negative were ETEC positive. The qPCR assays are unique in their sensitivity and ability to quantify the three toxin genes in clinical stool samples.

  19. Detection of hepatitis C virus subtypes 6a, 6n, 6w and mixed infections using a modified multiplex real-time polymerase chain reaction protocol.

    PubMed

    Lee, Yuan-Ming; Chen, Yen-Ju; Lee, Cheng-Ming; Kuo, Lou-Hui; Wong, Wing-Wai; Chen, Yi-Ming Arthur

    2011-12-01

    In the past few years, many new subtypes in hepatitis C virus (HCV) genotype 6 have been identified. The aim of this study was to modify the multiplex real-time polymerase chain reaction (RT-PCR) protocol and use it to determine the HCV subtypes of a group of Taiwanese injection drug users (IDUs). We used 76 serum specimens collected in northern Taiwan in 2008. Multiplex RT-PCR was used for HCV subtyping among those serum samples having anti-HCV antibodies. Twenty cases were randomly selected for comparison with subtyping results from Inno-LiPa II tests and phylogenetic tree analysis using NS5B sequences. Multiplex RT-PCR assays showed that 60.5% (46/76) of IDUs had single HCV infection. Three out of 76 (3.9%) had double HCV infection (1b/6a, 2a/2b and 2b/6a). Besides this, 27.6% (21/76) had no HCV signal. One IDU had subtype 6n and two had subtype 6w infection. Inno-LiPa II tests misclassified all 6n and 6w cases as 1b subtype. Our modified multiplex RT-PCR protocol can be used to support molecular epidemiological studies and laboratory diagnoses of different HCV subtypes including genotype 6. Copyright © 2011. Published by Elsevier B.V.

  20. MARTe: A Multiplatform Real-Time Framework

    NASA Astrophysics Data System (ADS)

    Neto, André C.; Sartori, Filippo; Piccolo, Fabio; Vitelli, Riccardo; De Tommasi, Gianmaria; Zabeo, Luca; Barbalace, Antonio; Fernandes, Horacio; Valcarcel, Daniel F.; Batista, Antonio J. N.

    2010-04-01

    Development of real-time applications is usually associated with nonportable code targeted at specific real-time operating systems. The boundary between hardware drivers, system services, and user code is commonly not well defined, making the development in the target host significantly difficult. The Multithreaded Application Real-Time executor (MARTe) is a framework built over a multiplatform library that allows the execution of the same code in different operating systems. The framework provides the high-level interfaces with hardware, external configuration programs, and user interfaces, assuring at the same time hard real-time performances. End-users of the framework are required to define and implement algorithms inside a well-defined block of software, named Generic Application Module (GAM), that is executed by the real-time scheduler. Each GAM is reconfigurable with a set of predefined configuration meta-parameters and interchanges information using a set of data pipes that are provided as inputs and required as output. Using these connections, different GAMs can be chained either in series or parallel. GAMs can be developed and debugged in a non-real-time system and, only once the robustness of the code and correctness of the algorithm are verified, deployed to the real-time system. The software also supplies a large set of utilities that greatly ease the interaction and debugging of a running system. Among the most useful are a highly efficient real-time logger, HTTP introspection of real-time objects, and HTTP remote configuration. MARTe is currently being used to successfully drive the plasma vertical stabilization controller on the largest magnetic confinement fusion device in the world, with a control loop cycle of 50 ?s and a jitter under 1 ?s. In this particular project, MARTe is used with the Real-Time Application Interface (RTAI)/Linux operating system exploiting the new ?86 multicore processors technology.

  1. Dual-probe real-time PCR assay for detection of variola or other orthopoxviruses with dried reagents.

    PubMed

    Aitichou, Mohamed; Saleh, Sharron; Kyusung, Park; Huggins, John; O'Guinn, Monica; Jahrling, Peter; Ibrahim, Sofi

    2008-11-01

    A real-time, multiplexed polymerase chain reaction (PCR) assay based on dried PCR reagents was developed. Only variola virus could be specifically detected by a FAM (6-carboxyfluorescein)-labeled probe while camelpox, cowpox, monkeypox and vaccinia viruses could be detected by a TET (6-carboxytetramethylrhodamine)-labeled probe in a single PCR reaction. Approximately 25 copies of cloned variola virus DNA and 50 copies of genomic orthopoxviruses DNA could be detected with high reproducibility. The assay exhibited a dynamic range of seven orders of magnitude with a correlation coefficient value greater than 0.97. The sensitivity and specificity of the assay, as determined from 100 samples that contained nucleic acids from a multitude of bacterial and viral species were 96% and 98%, respectively. The limit of detection, sensitivity and specificity of the assay were comparable to standard real-time PCR assays with wet reagents. Employing a multiplexed format in this assay allows simultaneous discrimination of the variola virus from other closely related orthopoxviruses. Furthermore, the implementation of dried reagents in real-time PCR assays is an important step towards simplifying such assays and allowing their use in areas where cold storage is not easily accessible.

  2. Role of disulfide bridges in archaeal family-B DNA polymerases.

    PubMed

    Killelea, Tom; Connolly, Bernard A

    2011-06-14

    The family-B DNA polymerases obtained from the order Thermococcales, for example, Pyrococcus furiosus (Pfu-Pol) are commonly used in the polymerase chain reaction (PCR) because of their high thermostability and low error rates. Most of these polymerases contain four cysteines, arranged as two disulfide bridges. With Pfu-Pol C429-C443 forms one of the disulfides (DB1) and C507-C510 (DB2) the other. Although the disulfides are well conserved in the enzymes from the hyperthermophilic Thermococcales, they are less prevalent in euryarchaeal polymerases from other orders, and tend to be only found in other hyperthermophiles. Here, we report on the effects of deleting the disulfide bridges by mutating the relevant cysteines to serines. A variety of techniques, including differential scanning calorimetry and differential scanning fluorimetry, have shown that both disulfides make a contribution to thermostability, with DB1 being more important than DB2. However, even when both disulfides are removed, sufficient thermostability remains for normal (identical to the wild type) performance in PCR and quantitative (real-time) PCR. Therefore, polymerases totally lacking cysteine are fully compatible with most PCR-based applications. This observation opens the way to further engineering of polymerases by introduction of a single cysteine followed by appropriate chemical modification. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Zhao, Qile; Hu, Zhigang; Jiang, Xinyuan; Geng, Changjiang; Ge, Maorong; Shi, Chuang

    2018-01-01

    Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm

  4. Determining miRNA Expression Levels in Degraded RNA Samples Using Real-Time RT-qPCR and Microarray Technologies

    PubMed Central

    Tighe, S.; Holbrook, J.; Nadella, V.; Carmical, R.; Sol-Church, K.; Yueng, A.T.; Chittur, S.

    2011-01-01

    The Nucleic Acid Research Group (NARG) has previously conducted studies evaluating the impact of RNA integrity and priming strategies on cDNA synthesis and real-time RT-qPCR. The results of last year's field study as it relates to degraded RNA will be presented. In continuation of the RNA integrity theme, this year's study was designed to evaluate the impact of RNA integrity on the analysis of miRNA expression using real-time RT-qPCR. Target section was based on data obtained by the Microarray Research Group (MARG) and other published data from next gen sequencing. These 9 miRNAs represent three groups of miRNA that are expressed at low, medium or high levels in the First Choice human brain reference RNA sample. Two popular RT priming strategies tested in this study include the Megaplex miRNA TaqMan assay (ABI) and the RT2 miRNA qPCR assay (Qiagen/SA Biosciences). The basis for the ABI assay design is a target-specific stem-loop structure and reverse-transcription primer, while the Qiagen design combines poly(A) tailing and a universal reverse transcription in one cDNA synthesis reaction. For this study, the human brain reference RNA was subject to controlled degradation using RNase A to RIN (RNA Integrity Number) values of 7 (good), 4 (moderately degraded), and 2 (severely degraded).These templates were then used to assess both RT methods. In addition to this real-time RT-qPCR data, the same RNA templates were further analyzed using universal poly(A) tailing and hybridization to Affymetrix miRNA GeneChips. This talk will provide insights into RT priming strategies for miRNA and contrast the qPCR results obtained using different technologies.

  5. Comparison of Simplexa HSV 1 & 2 PCR with Culture, Immunofluorescence, and Laboratory-Developed TaqMan PCR for Detection of Herpes Simplex Virus in Swab Specimens

    PubMed Central

    Gitman, Melissa R.; Ferguson, David

    2013-01-01

    The Simplexa HSV 1 & 2 direct PCR assay was compared with conventional cell culture, cytospin-enhanced direct fluorescent antibody (DFA), and a laboratory-developed real-time TaqMan PCR (LDT HSV PCR) using extracted nucleic acid for the detection of herpes simplex virus (HSV) in dermal, genital, mouth, ocular, and other swab samples. One hundred seventy-one swabs were tested prospectively, and 58 were positive for HSV (34 HSV-1 and 24 HSV-2). Cytospin-DFA detected 50 (86.2%), conventional cell culture 51 (87.9%), Simplexa direct 55 (94.8%), and LDT HSV PCR 57 (98.3%) of 58 true positives. Simplexa direct detected more positives than DFA and culture, but the differences were not significant (P = 0.0736 and P = 0.3711, respectively, by the McNemar test). Samples that were positive by all methods (n = 48) were strong positives (LDT cycle threshold [CT] value, 14.4 to 26.1). One strongly positive sample was falsely negative by LDT HSV PCR due to a failure of TaqMan probe binding. Three samples falsely negative by Simplexa direct had high CT values by LDT HSV PCR (LDT CT, 35.8 to 38.2). Omission of the DNA extraction step by Simplexa direct led to a drop in sensitivity compared to the sensitivity of LDT HSV PCR using extracted samples (94.8% versus 98.3%, respectively), but the difference was not significant (P = 0.6171). Simplexa HSV 1 & 2 direct PCR was the most expensive but required the least training of the assays used, had the lowest hands-on time and fastest assay time (75 min, versus 3 h by LDT HSV PCR), and provided the HSV type. PMID:24006008

  6. A FRET-Based Real-Time PCR Assay to Identify the Main Causal Agents of New World Tegumentary Leishmaniasis

    PubMed Central

    De Los Santos, Maxy; Soberón, Valeria; Lucas, Carmen M.; Matlashewski, Greg; Llanos-Cuentas, Alejandro; Ore, Marianela; Baldeviano, G. Christian; Edgel, Kimberly A.; Lescano, Andres G.; Graf, Paul C. F.; Bacon, David J.

    2013-01-01

    In South America, various species of Leishmania are endemic and cause New World tegumentary leishmaniasis (NWTL). The correct identification of these species is critical for adequate clinical management and surveillance activities. We developed a real-time polymerase chain reaction (PCR) assay and evaluated its diagnostic performance using 64 archived parasite isolates and 192 prospectively identified samples collected from individuals with suspected leishmaniasis enrolled at two reference clinics in Lima, Peru. The real-time PCR assay was able to detect a single parasite and provided unambiguous melting peaks for five Leishmania species of the Viannia subgenus that are highly prevalent in South America: L. (V.) braziliensis, L. (V.) panamensis, L. (V.) guyanensis, L. (V.) peruviana and L. (V.) lainsoni. Using kinetoplastid DNA-based PCR as a gold standard, the real-time PCR had sensitivity and specificity values of 92% and 77%, respectively, which were significantly higher than those of conventional tests such as microscopy, culture and the leishmanin skin test (LST). In addition, the real-time PCR identified 147 different clinical samples at the species level, providing an overall agreement of 100% when compared to multilocus sequence typing (MLST) data performed on a subset of these samples. Furthermore, the real-time PCR was three times faster and five times less expensive when compared to PCR - MLST for species identification from clinical specimens. In summary, this new assay represents a cost-effective and reliable alternative for the identification of the main species causing NWTL in South America. PMID:23301111

  7. Scheduling Dependent Real-Time Activities

    DTIC Science & Technology

    1990-08-01

    dependency relationships in a way that is suitable for all real - time systems . This thesis provides an algorithm, called DASA, that is effective for...scheduling the class of real - time systems known as supervisory control systems. Simulation experiments that account for the time required to make scheduling

  8. Real-Time Nonlinear Optical Information Processing.

    DTIC Science & Technology

    1979-06-01

    operations aree presented. One approach realizes the halftone method of nonlinear optical processing in real time by replacing the conventional...photographic recording medium with a real-time image transducer. In the second approach halftoning is eliminated and the real-time device is used directly

  9. Using Real-Time PCR as a tool for monitoring the authenticity of commercial coffees.

    PubMed

    Ferreira, Thiago; Farah, Adriana; Oliveira, Tatiane C; Lima, Ivanilda S; Vitório, Felipe; Oliveira, Edna M M

    2016-05-15

    Coffee is one of the main food products commercialized in the world. Its considerable market value among food products makes it susceptible to adulteration, especially with cereals. Therefore, the objective of this study was to develop a method based on Real-Time Polymerase Chain Reaction (PCR) for detection of cereals in commercial ground roast and soluble coffees. After comparison with standard curves obtained by serial dilution of DNA extracted from barley, corn and rice, the method was sensitive and specific to quantify down to 0.6 pg, 14 pg and 16 pg of barley, corn and rice DNA, respectively. To verify the applicability of the method, 30 commercial samples obtained in different countries were evaluated and those classified as gourmets or superior did not present the tested cereals DNA. However, barley was detected in various traditional (cheaper) samples from South America. In addition, corn and rice were also detected in different samples. Real-Time PCR showed to be suitable for detection of food adulterants in commercial ground roast and soluble coffees. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Real-Time and Near Real-Time Data for Space Weather Applications and Services

    NASA Astrophysics Data System (ADS)

    Singer, H. J.; Balch, C. C.; Biesecker, D. A.; Matsuo, T.; Onsager, T. G.

    2015-12-01

    Space weather can be defined as conditions in the vicinity of Earth and in the interplanetary environment that are caused primarily by solar processes and influenced by conditions on Earth and its atmosphere. Examples of space weather are the conditions that result from geomagnetic storms, solar particle events, and bursts of intense solar flare radiation. These conditions can have impacts on modern-day technologies such as GPS or electric power grids and on human activities such as astronauts living on the International Space Station or explorers traveling to the moon or Mars. While the ultimate space weather goal is accurate prediction of future space weather conditions, for many applications and services, we rely on real-time and near-real time observations and model results for the specification of current conditions. In this presentation, we will describe the space weather system and the need for real-time and near-real time data that drive the system, characterize conditions in the space environment, and are used by models for assimilation and validation. Currently available data will be assessed and a vision for future needs will be given. The challenges for establishing real-time data requirements, as well as acquiring, processing, and disseminating the data will be described, including national and international collaborations. In addition to describing how the data are used for official government products, we will also give examples of how these data are used by both the public and private sector for new applications that serve the public.

  11. One-step multiplex quantitative RT-PCR for the simultaneous detection of viroids and phytoplasmas of pome fruit trees.

    PubMed

    Malandraki, Ioanna; Varveri, Christina; Olmos, Antonio; Vassilakos, Nikon

    2015-03-01

    A one-step multiplex real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) based on TaqMan chemistry was developed for the simultaneous detection of Pear blister canker viroid and Apple scar skin viroid along with universal detection of phytoplasmas, in pome trees. Total nucleic acids (TNAs) extraction was performed according to a modified CTAB protocol. Primers and TaqMan MGB probes for specific detection of the two viroids were designed in this study, whereas for phytoplasma detection published universal primers and probe were used, with the difference that the later was modified to carry a MGB quencher. The pathogens were detected simultaneously in 10-fold serial dilutions of TNAs from infected plant material into TNAs of healthy plant up to dilutions 10(-5) for viroids and 10(-4) for phytoplasmas. The multiplex real-time assay was at least 10 times more sensitive than conventional protocols for viroid and phytoplasma detection. Simultaneous detection of the three targets was achieved in composite samples at least up to a ratio of 1:100 triple-infected to healthy tissue, demonstrating that the developed assay has the potential to be used for rapid and massive screening of viroids and phytoplasmas of pome fruit trees in the frame of certification schemes and surveys. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Development of a Rickettsia bellii-Specific TaqMan Assay Targeting the Citrate Synthase Gene.

    PubMed

    Hecht, Joy A; Allerdice, Michelle E J; Krawczak, Felipe S; Labruna, Marcelo B; Paddock, Christopher D; Karpathy, Sandor E

    2016-11-01

    Rickettsia bellii is a rickettsial species of unknown pathogenicity that infects argasid and ixodid ticks throughout the Americas. Many molecular assays used to detect spotted fever group (SFG) Rickettsia species do not detect R. bellii, so that infection with this bacterium may be concealed in tick populations when assays are used that screen specifically for SFG rickettsiae. We describe the development and validation of a R. bellii-specific, quantitative, real-time PCR TaqMan assay that targets a segment of the citrate synthase (gltA) gene. The specificity of this assay was validated against a panel of DNA samples that included 26 species of Rickettsia, Orientia, Ehrlichia, Anaplasma, and Bartonella, five samples of tick and human DNA, and DNA from 20 isolates of R. bellii, including 11 from North America and nine from South America. A R. bellii control plasmid was constructed, and serial dilutions of the plasmid were used to determine the limit of detection of the assay to be one copy per 4 µl of template DNA. This assay can be used to better determine the role of R. bellii in the epidemiology of tick-borne rickettsioses in the Western Hemisphere. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  13. Software Design Methods for Real-Time Systems

    DTIC Science & Technology

    1989-12-01

    This module describes the concepts and methods used in the software design of real time systems . It outlines the characteristics of real time systems , describes...the role of software design in real time system development, surveys and compares some software design methods for real - time systems , and

  14. T.I.M.S: TaqMan Information Management System, tools to organize data flow in a genotyping laboratory

    PubMed Central

    Monnier, Stéphanie; Cox, David G; Albion, Tim; Canzian, Federico

    2005-01-01

    Background Single Nucleotide Polymorphism (SNP) genotyping is a major activity in biomedical research. The Taqman technology is one of the most commonly used approaches. It produces large amounts of data that are difficult to process by hand. Laboratories not equipped with a Laboratory Information Management System (LIMS) need tools to organize the data flow. Results We propose a package of Visual Basic programs focused on sample management and on the parsing of input and output TaqMan files. The code is written in Visual Basic, embedded in the Microsoft Office package, and it allows anyone to have access to those tools, without any programming skills and with basic computer requirements. Conclusion We have created useful tools focused on management of TaqMan genotyping data, a critical issue in genotyping laboratories whithout a more sophisticated and expensive system, such as a LIMS. PMID:16221298

  15. Comparative analytical evaluation of the respiratory TaqMan Array Card with real-time PCR and commercial multi-pathogen assays.

    PubMed

    Harvey, John J; Chester, Stephanie; Burke, Stephen A; Ansbro, Marisela; Aden, Tricia; Gose, Remedios; Sciulli, Rebecca; Bai, Jing; DesJardin, Lucy; Benfer, Jeffrey L; Hall, Joshua; Smole, Sandra; Doan, Kimberly; Popowich, Michael D; St George, Kirsten; Quinlan, Tammy; Halse, Tanya A; Li, Zhen; Pérez-Osorio, Ailyn C; Glover, William A; Russell, Denny; Reisdorf, Erik; Whyte, Thomas; Whitaker, Brett; Hatcher, Cynthia; Srinivasan, Velusamy; Tatti, Kathleen; Tondella, Maria Lucia; Wang, Xin; Winchell, Jonas M; Mayer, Leonard W; Jernigan, Daniel; Mawle, Alison C

    2016-02-01

    In this study, a multicenter evaluation of the Life Technologies TaqMan(®) Array Card (TAC) with 21 custom viral and bacterial respiratory assays was performed on the Applied Biosystems ViiA™ 7 Real-Time PCR System. The goal of the study was to demonstrate the analytical performance of this platform when compared to identical individual pathogen specific laboratory developed tests (LDTs) designed at the Centers for Disease Control and Prevention (CDC), equivalent LDTs provided by state public health laboratories, or to three different commercial multi-respiratory panels. CDC and Association of Public Health Laboratories (APHL) LDTs had similar analytical sensitivities for viral pathogens, while several of the bacterial pathogen APHL LDTs demonstrated sensitivities one log higher than the corresponding CDC LDT. When compared to CDC LDTs, TAC assays were generally one to two logs less sensitive depending on the site performing the analysis. Finally, TAC assays were generally more sensitive than their counterparts in three different commercial multi-respiratory panels. TAC technology allows users to spot customized assays and design TAC layout, simplify assay setup, conserve specimen, dramatically reduce contamination potential, and as demonstrated in this study, analyze multiple samples in parallel with good reproducibility between instruments and operators. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Research of real-time communication software

    NASA Astrophysics Data System (ADS)

    Li, Maotang; Guo, Jingbo; Liu, Yuzhong; Li, Jiahong

    2003-11-01

    Real-time communication has been playing an increasingly important role in our work, life and ocean monitor. With the rapid progress of computer and communication technique as well as the miniaturization of communication system, it is needed to develop the adaptable and reliable real-time communication software in the ocean monitor system. This paper involves the real-time communication software research based on the point-to-point satellite intercommunication system. The object-oriented design method is adopted, which can transmit and receive video data and audio data as well as engineering data by satellite channel. In the real-time communication software, some software modules are developed, which can realize the point-to-point satellite intercommunication in the ocean monitor system. There are three advantages for the real-time communication software. One is that the real-time communication software increases the reliability of the point-to-point satellite intercommunication system working. Second is that some optional parameters are intercalated, which greatly increases the flexibility of the system working. Third is that some hardware is substituted by the real-time communication software, which not only decrease the expense of the system and promotes the miniaturization of communication system, but also aggrandizes the agility of the system.

  17. Development and comparison of a real-time PCR assay for detection of Dichelobacter nodosus with culturing and conventional PCR: harmonisation between three laboratories

    PubMed Central

    2012-01-01

    Background Ovine footrot is a contagious disease with worldwide occurrence in sheep. The main causative agent is the fastidious bacterium Dichelobacter nodosus. In Scandinavia, footrot was first diagnosed in Sweden in 2004 and later also in Norway and Denmark. Clinical examination of sheep feet is fundamental to diagnosis of footrot, but D. nodosus should also be detected to confirm the diagnosis. PCR-based detection using conventional PCR has been used at our institutes, but the method was laborious and there was a need for a faster, easier-to-interpret method. The aim of this study was to develop a TaqMan-based real-time PCR assay for detection of D. nodosus and to compare its performance with culturing and conventional PCR. Methods A D. nodosus-specific TaqMan based real-time PCR assay targeting the 16S rRNA gene was designed. The inclusivity and exclusivity (specificity) of the assay was tested using 55 bacterial and two fungal strains. To evaluate the sensitivity and harmonisation of results between different laboratories, aliquots of a single DNA preparation were analysed at three Scandinavian laboratories. The developed real-time PCR assay was compared to culturing by analysing 126 samples, and to a conventional PCR method by analysing 224 samples. A selection of PCR-products was cloned and sequenced in order to verify that they had been identified correctly. Results The developed assay had a detection limit of 3.9 fg of D. nodosus genomic DNA. This result was obtained at all three laboratories and corresponds to approximately three copies of the D. nodosus genome per reaction. The assay showed 100% inclusivity and 100% exclusivity for the strains tested. The real-time PCR assay found 54.8% more positive samples than by culturing and 8% more than conventional PCR. Conclusions The developed real-time PCR assay has good specificity and sensitivity for detection of D. nodosus, and the results are easy to interpret. The method is less time-consuming than either

  18. Development and evaluation of the quantitative real-time PCR assay in detection and typing of herpes simplex virus in swab specimens from patients with genital herpes.

    PubMed

    Liu, Junlian; Yi, Yong; Chen, Wei; Si, Shaoyan; Yin, Mengmeng; Jin, Hua; Liu, Jianjun; Zhou, Jinlian; Zhang, Jianzhong

    2015-01-01

    Genital herpes (GH), which is caused mainly by herpes simplex virus (HSV)-2 and HSV-1, remains a worldwide problem. Laboratory confirmation of GH is important, particularly as there are other conditions which present similarly to GH, while atypical presentations of GH also occur. Currently, virus culture is the classical method for diagnosis of GH, but it is time consuming and with low sensitivity. A major advance for diagnosis of GH is to use Real-time polymerase chain reaction (PCR). In this study, to evaluate the significance of the real-time PCR method in diagnosis and typing of genital HSV, the primers and probes targeted at HSV-1 DNA polymerase gene and HSV-2 glycoprotein D gene fraction were designed and applied to amplify DNA from HSV-1 or HSV-2 by employing the real-time PCR technique. Then the PCR reaction system was optimized and evaluated. HSV in swab specimens from patients with genital herpes was detected by real-time PCR. The real-time PCR assay showed good specificity for detection and typing of HSV, with good linear range (5×10(2)~5×10(8) copies/ml, r=0.997), a sensitivity of 5×10(2) copies/ml, and good reproducibility (intra-assay coefficients of variation 2.29% and inter-assay coefficients of variation 4.76%). 186 swab specimens were tested for HSV by real-time PCR, and the positive rate was 23.7% (44/186). Among the 44 positive specimens, 8 (18.2%) were positive for HSV-1 with a viral load of 8.5546×10(6) copies/ml and 36 (81.2%) were positive for HSV-2 with a viral load of 1.9861×10(6) copies/ml. It is concluded that the real-time PCR is a specific, sensitive and rapid method for the detection and typing of HSV, which can be widely used in clinical diagnosis of GH.

  19. Lyme Borreliosis--the Utility of Improved Real-Time PCR Assay in the Detection of Borrelia burgdorferi Infections.

    PubMed

    Bil-Lula, Iwona; Matuszek, Patryk; Pfeiffer, Thomas; Woźniak, Mieczysław

    2015-01-01

    Infections of Borrelia burgdorferi sensu lato reveal clinical manifestations affecting numerous organs and tissues. The standard diagnostic procedure of these infections is quite simple if a positive history of tick exposure or typical erythema migrans appears. Lack of unequivocal clinical symptoms creates the necessity for further evaluation with laboratory tests. This study discusses the utility of a novel, improved, well-optimized, sensitive and highly specific quantitative real-time PCR assay for the diagnostics of infections caused by Borrelia burgdorferi sensu lato. We designed an improved, specific, highly sensitive real-time quantitative polymerase chain reaction (RQ-PCR) assay for the detection and quantification of all Borrelia burgdorferi genotypes. A wide validation effort was undertaken to ensure confidence in the highly sensitive and specific detection of B. burgdorferi. Due to high sensitivity and great specificity, as low as 1.6×10² copies of Borrelia per mL of whole blood could be detected. As much as 12 (3%) negative ELISA IgM results, 14 (2.8%) negative results of Line blot IgM, 11 (3.1%) and 7 (2.7%) of negative ELISA IgG and Line blot IgG results, respectively, were positive in real-time PCR. The data in this study confirms the high positive predictive value of real-time PCR test in the detection of Borrelia infections.

  20. Hard real-time closed-loop electrophysiology with the Real-Time eXperiment Interface (RTXI)

    PubMed Central

    George, Ansel; Dorval, Alan D.; Christini, David J.

    2017-01-01

    The ability to experimentally perturb biological systems has traditionally been limited to static pre-programmed or operator-controlled protocols. In contrast, real-time control allows dynamic probing of biological systems with perturbations that are computed on-the-fly during experimentation. Real-time control applications for biological research are available; however, these systems are costly and often restrict the flexibility and customization of experimental protocols. The Real-Time eXperiment Interface (RTXI) is an open source software platform for achieving hard real-time data acquisition and closed-loop control in biological experiments while retaining the flexibility needed for experimental settings. RTXI has enabled users to implement complex custom closed-loop protocols in single cell, cell network, animal, and human electrophysiology studies. RTXI is also used as a free and open source, customizable electrophysiology platform in open-loop studies requiring online data acquisition, processing, and visualization. RTXI is easy to install, can be used with an extensive range of external experimentation and data acquisition hardware, and includes standard modules for implementing common electrophysiology protocols. PMID:28557998