Science.gov

Sample records for taraxacum officinale root

  1. Characterisation of antimicrobial extracts from dandelion root (Taraxacum officinale) using LC-SPE-NMR.

    PubMed

    Kenny, O; Brunton, N P; Walsh, D; Hewage, C M; McLoughlin, P; Smyth, T J

    2015-04-01

    Plant extracts have traditionally been used as sources of natural antimicrobial compounds, although in many cases, the compounds responsible for their antimicrobial efficacy have not been identified. In this study, crude and dialysed extracts from dandelion root (Taraxacum officinale) were evaluated for their antimicrobial properties against Gram positive and Gram negative bacterial strains. The methanol hydrophobic crude extract (DRE3) demonstrated the strongest inhibition of microbial growth against Staphylococcus aureus, methicillin-resistant S. aureus and Bacillus cereus strains. Normal phase (NP) fractionation of DRE3 resulted in two fractions (NPF4 and NPF5) with enhanced antimicrobial activity. Further NP fractionation of NPF4 resulted in two fractions (NPF403 and NPF406) with increased antimicrobial activity. Further isolation and characterisation of compounds in NPF406 using liquid chromatography solid phase extraction nuclear magnetic resonance LC-SPE-NMR resulted in the identification of 9-hydroxyoctadecatrienoic acid and 9-hydroxyoctadecadienoic acid, while the phenolic compounds vanillin, coniferaldehyde and p-methoxyphenylglyoxylic acid were also identified respectively. The molecular mass of these compounds was confirmed by LC mass spectroscopy (MS)/MS. In summary, the antimicrobial efficacy of dandelion root extracts demonstrated in this study support the use of dandelion root as a source of natural antimicrobial compounds. PMID:25644491

  2. Response of dandelion (Taraxacum officinale Web) to heavy metals from mine sites: micromorphology of leaves and roots.

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Maleci, Laura; Buffa, Gabriella; Wahsha, Mohammad; Fontana, Silvia

    2013-04-01

    Response of dandelion (Taraxacum officinale Web) to heavy metals from mine sites: micromorphology of leaves and roots. Maleci L.1 , Bini C.2, Buffa G. 2, Fontana S2., Wahsha M.3 1 - Dept of Biology, University of Florence, Italy. 2 - Dept of Environmental Sciences, Informatics and Statistics. Ca'Foscari University, Venice - Italy. 3 - Marine Science Centre - University of Jordan, Aqaba section, Jordan. Heavy metal accumulation is known to produce significant physiological and biochemical responses in vascular plants. Yet, metabolic and physiological responses of plants to heavy metal concentration can be viewed as potentially adaptive changes of the plants during stress. From this point of view, plants growing on abandoned mine sites are of particular interest, since they are genetically tolerant to high metal concentrations, and can be utilized in soil restoration. Among wild plants, the common dandelion (Taraxacum officinale Web) has received attention as bioindicator plant, and has been also suggested in remediation projects. Wild specimens of Taraxacum officinale Web, with their soil clod, were gathered from three sites with different contamination levels by heavy metals (Cd, Cr, Cu, Fe, Pb, Zn) in the abandoned Imperina Valley mine (Northeast Italy). A control plant was also gathered from a not contaminated site nearby. Plants were cultivated in pots for one year at HBF, and appeared macroscopically not affected by toxic signals (reduced growth, leaf necrosis) possibly induced by soil HM concentration. Leaves and roots taken at the same growing season were observed by LM and TEM. Light microscopy observations carried out on the leaf lamina show a clear difference in the cellular organization of not-contaminated and contaminated samples. The unpolluted samples present a well organized palisade tissue and spongy photosynthetic parenchyma. Samples from contaminated sites, instead, present a palisade parenchyma less organized, and a reduction of leaf thickness

  3. Cloning, Developmental, and Tissue-Specific Expression of Sucrose:Sucrose 1-Fructosyl Transferase from Taraxacum officinale. Fructan Localization in Roots1

    PubMed Central

    Van den Ende, Wim; Michiels, An; Van Wonterghem, Dominik; Vergauwen, Rudy; Van Laere, André

    2000-01-01

    Sucrose:sucrose 1-fructosyl transferase (1-SST) is the key enzyme initiating fructan synthesis in Asteraceae. Using reverse transcriptase-PCR, we isolated the cDNA for 1-SST from Taraxacum officinale. The cDNA-derived amino acid sequence showed very high homology to other Asteracean 1-SSTs (Cichorium intybus 86%, Cynara scolymus 82%, Helianthus tuberosus 80%), but homology to 1-SST from Allium cepa (46%) and Aspergillus foetidus (18%) was much lower. Fructan concentrations, 1-SST activities, 1-SST protein, and mRNA concentrations were compared in different organs during vegetative and generative development of T. officinale plants. Expression of 1-SST was abundant in young roots but very low in leaves. 1-SST was also expressed at the flowering stages in roots, stalks, and receptacles. A good correlation was found between northern and western blots showing transcriptional regulation of 1-SST. At the pre-flowering stage, 1-SST mRNA concentrations and 1-SST activities were higher in the root phloem than in the xylem, resulting in the higher fructan concentrations in the phloem. Fructan localization studies indicated that fructan is preferentially stored in phloem parenchyma cells in the vicinity of the secondary sieve tube elements. However, inulin-like crystals occasionally appeared in xylem vessels. PMID:10806226

  4. Further investigations on the resilience capacity of Taraxacum officinale Weber growing on mine soils

    NASA Astrophysics Data System (ADS)

    Maleci, Laura; Bini, Claudio; Spiandorello, Massimo; Wahsha, Mohammad

    2014-05-01

    Heavy metal accumulation produces significant physiological and biochemical responses in vascular plants. Plants growing on abandoned mine sites are of particular interest, since they are genetically tolerant to high metal concentrations. In this work we examined the effect of heavy metals (HM) on the morphology of T. officinale growing on mine soils, with the following objectives: - to determine the fate of HM within the soil-plant system; - to highlight possible damage at anatomical and cytological level; - to assess the resilience capacity of Taraxacum officinale after three years of pot cultivation. Wild specimens of Taraxacum officinale Web, with their soil clod, were gathered from four sites with different contamination levels by heavy metals (Cu, Fe, Pb, Zn) in the abandoned Imperina Valley mine (Northeast Italy). Plants were cultivated in pots at the botanical garden of the University of Florence (HBF), and appeared macroscopically not affected by toxic signals (e.g. reduced growth, leaf necrosis) possibly induced by soil HM concentration. Leaves and roots taken at the same growing season were observed by light microscopy (LM) and transmission electron microscopy (TEM). Light microscopy observations show a clear difference in the cell organization of not-contaminated and contaminated samples. The unpolluted samples present a well organized palisade tissue and spongy photosynthetic parenchyma. Samples from contaminated sites, instead, present a palisade parenchyma less organized, and a reduction of leaf thickness proportional to HM concentration. The poor structural organisations, and the reduced foliar thickness of the contaminated plants, are related to soil contamination. Differences in roots micromorphology concern the cortical parenchyma. Moreover, all the samples examined present mycorrhiza. Ultrastructure observations of the parenchyma cells show mitochondrial structure alteration, with lacking or reduced cristae of the internal membrane at increasing

  5. Genotypic variation within asexual lineages of Taraxacum officinale.

    PubMed Central

    King, L M; Schaal, B A

    1990-01-01

    Restriction site variation in DNA that encodes rRNA (rDNA) was surveyed among 714 offspring within 31 lineages (26 genotypes) of obligate asexually reproducing Taraxacum officinale (dandelions). Although clonal offspring are expected, plants with nonparental rDNA were produced from two parents that were themselves siblings (same genotype). The variation is best characterized by the loss of an EcoRI restriction site that maps to the spacer region in the parental rDNA and is most likely involved in amplification of rare or unique rDNA repeats. In one family, 41 surveyed offspring lacked the EcoRI site. In the other family, only 1 of 26 offspring lost the EcoRI site. Other classes of DNA surveyed, chloroplast DNA and the alcohol dehydrogenase 2 gene (Adh2), showed no variation. However, offspring with nonparental rDNA also had nonparental alcohol dehydrogenase 1 (Adh1) restriction fragments. Because somatic mutations in plants can be incorporated into reproductive tissue, we propose that somatic events affecting at least both multicopy rDNA and DNA homologous to the maize Adh1 gene occurred at different developmental times in the two families. An event early in development would result in all variant offspring; an event late in development would result in a single variant offspring. These results support the view that mutation (in the broad sense) influences the level of genotypic variation in asexual organisms, which may facilitate adaptive evolution of asexual species. Images PMID:2300590

  6. Above- and belowground herbivory jointly impact defense and seed dispersal traits in Taraxacum officinale.

    PubMed

    de la Peña, Eduardo; Bonte, Dries

    2014-08-01

    Plants are able to cope with herbivores by inducing defensive traits or growth responses that allow them to reduce or avoid the impact of herbivores. Since above- and belowground herbivores differ substantially in life-history traits, for example feeding types, and their spatial distribution, it is likely that they induce different responses in plants. Moreover, strong interactive effects on defense and plant growth are expected when above- and belowground herbivores are jointly present. The strengths and directions of these responses have been scarcely addressed in the literature. Using Taraxacum officinale, the root-feeding nematode Meloidogyne hapla and the locust Schistocerca gregaria as a model species, we examined to what degree above- and belowground herbivory affect (1) plant growth responses, (2) the induction of plant defensive traits, that is, leaf trichomes, and (3) changes in dispersal-related seed traits and seed germination. We compared the performance of plants originating from different populations to address whether plant responses are conserved across putative different genotypes. Overall, aboveground herbivory resulted in increased plant biomass. Root herbivory had no effect on plant growth. Plants exposed to the two herbivores showed fewer leaf trichomes than plants challenged only by one herbivore and consequently experienced greater aboveground herbivory. In addition, herbivory had effects that reached beyond the individual plant by modifying seed morphology, producing seeds with longer pappus, and germination success. PMID:25473483

  7. Above- and belowground herbivory jointly impact defense and seed dispersal traits in Taraxacum officinale

    PubMed Central

    de la Peña, Eduardo; Bonte, Dries

    2014-01-01

    Plants are able to cope with herbivores by inducing defensive traits or growth responses that allow them to reduce or avoid the impact of herbivores. Since above- and belowground herbivores differ substantially in life-history traits, for example feeding types, and their spatial distribution, it is likely that they induce different responses in plants. Moreover, strong interactive effects on defense and plant growth are expected when above- and belowground herbivores are jointly present. The strengths and directions of these responses have been scarcely addressed in the literature. Using Taraxacum officinale, the root-feeding nematode Meloidogyne hapla and the locust Schistocerca gregaria as a model species, we examined to what degree above- and belowground herbivory affect (1) plant growth responses, (2) the induction of plant defensive traits, that is, leaf trichomes, and (3) changes in dispersal-related seed traits and seed germination. We compared the performance of plants originating from different populations to address whether plant responses are conserved across putative different genotypes. Overall, aboveground herbivory resulted in increased plant biomass. Root herbivory had no effect on plant growth. Plants exposed to the two herbivores showed fewer leaf trichomes than plants challenged only by one herbivore and consequently experienced greater aboveground herbivory. In addition, herbivory had effects that reached beyond the individual plant by modifying seed morphology, producing seeds with longer pappus, and germination success. PMID:25473483

  8. Quality control of herbs: determination of amino acids in Althaea officinalis, Matricaria chamomilla and Taraxacum officinale.

    PubMed

    Qureshi, Muhammad Nasimullah; Stecher, Guenther; Bonn, Guenther Karl

    2014-05-01

    Analysis of raw materials and final products need reliable methods for the standardization of natural product drugs. Legal guideline also emphasizes on the qualitative and quantitative analyses of the plant constituents in an herbal product. In this study, thin layer chromatography (TLC) and amino acid analyzer was used for the determination of amino acids in plant extracts. Samples for this study were standards and aqueous extracts from Althaea officinalis, Matricaria chamomilla and Taraxacum officinale. Different amino acids in the extracts were detected through TLC. An automatic amino acid analyzer was used for the quantification of amino acids in the plant extracts under study. PMID:24811801

  9. Anti-spermatogenic activities of Taraxacum officinale whole plant and leaves aqueous extracts.

    PubMed

    Tahtamouni, Lubna Hamid; Al-Khateeb, Rema Ahmad; Abdellatif, Reem Nasser; Al-Mazaydeh, Zainab Ali; Yasin, Salem Refaat; Al-Gharabli, Samer; Elkarmi, Ali Zuhair

    2016-01-01

    Taraxacum officinale has been used in Jordan folk medicine to treat male infertility. A recent study has proved a contradictory effect of the whole plant aqueous extract. The aim of the current study was to determine if the leaves of T. officinale have similar anti-fertility activities, and whether this effect is mediated through the regulation of spermatogonial stem cells (SSCs). Fifty adult male rats were divided into five groups. Two groups were gavaged with 1/10 of LD50 of T. officinale whole plant (1.06 g kg(-1) body weight) or leaves (2.30 g kg(-1) body weight) aqueous extract; while two groups were gavaged with 1/20 of LD50 of T. officinale whole plant (2.13 g kg(-1)) or leaves (4.60 g kg(-1)) extract. The control group received distilled water. Oral administration of T. officinale (whole plant and leaves aqueous extract) caused a significant decrease in testis and seminal vesicle weight, a reduction in serum testosterone concentration, impaired sperm parameters, and a decrease in pregnancy parameters. Testicular histology of treated rats showed structural changes such as hypoplasia of germ cells, reduction in the thickness of germinal epithelium, arrest of spermatogenesis at spermatid stage (late maturation arrest) and reduction in the number of Leydig cells. Gene expression levels of two SSCs markers (GFRα1 and CSF1) responsible for self-renewal were relatively counter-balanced. In conclusion, T. officinale whole plant and leaves aqueous extracts changed the gene expression of two SSCs markers leading to the imbalance between spermatogonia self-renewal and differentiation causing late maturation arrest. PMID:27482352

  10. Anti-spermatogenic activities of Taraxacum officinale whole plant and leaves aqueous extracts

    PubMed Central

    Tahtamouni, Lubna Hamid; Al-Khateeb, Rema Ahmad; Abdellatif, Reem Nasser; Al-Mazaydeh, Zainab Ali; Yasin, Salem Refaat; Al-Gharabli, Samer; Elkarmi, Ali Zuhair

    2016-01-01

    Taraxacum officinale has been used in Jordan folk medicine to treat male infertility. A recent study has proved a contradictory effect of the whole plant aqueous extract. The aim of the current study was to determine if the leaves of T. officinale have similar anti-fertility activities, and whether this effect is mediated through the regulation of spermatogonial stem cells (SSCs). Fifty adult male rats were divided into five groups. Two groups were gavaged with 1/10 of LD50 of T. officinale whole plant (1.06 g kg-1 body weight) or leaves (2.30 g kg-1 body weight) aqueous extract; while two groups were gavaged with 1/20 of LD50 of T. officinale whole plant (2.13 g kg-1) or leaves (4.60 g kg-1) extract. The control group received distilled water. Oral administration of T. officinale (whole plant and leaves aqueous extract) caused a significant decrease in testis and seminal vesicle weight, a reduction in serum testosterone concentration, impaired sperm parameters, and a decrease in pregnancy parameters. Testicular histology of treated rats showed structural changes such as hypoplasia of germ cells, reduction in the thickness of germinal epithelium, arrest of spermatogenesis at spermatid stage (late maturation arrest) and reduction in the number of Leydig cells. Gene expression levels of two SSCs markers (GFRα1 and CSF1) responsible for self-renewal were relatively counter-balanced. In conclusion, T. officinale whole plant and leaves aqueous extracts changed the gene expression of two SSCs markers leading to the imbalance between spermatogonia self-renewal and differentiation causing late maturation arrest. PMID:27482352

  11. METAL CONTENT OF DANDELION (TARAXACUM OFFICINALE) LEAVES IN RELATION TO SOIL CONTAMINATION AND AIRBORNE PARTICULATE MATTER. (R826602)

    EPA Science Inventory

    The global distribution of the common dandelion (Taraxacum officinale Weber, sensu lato; Asteraceae), along with its ability to tolerate a wide range of environmental conditions, make this `species' a particularly attractive candidate to evaluate for its ...

  12. Dependence of Dandelion (Taraxacum officinale Wigg.) Seed Reproduction Indices on Intensity of Motor Traffic Pollution.

    PubMed

    Erofeeva, Elena A

    2014-12-01

    Dandelion (Taraxacum officinale Wigg.) seed reproduction indices such as the total number of seeds, the number of normally developed seeds and underdeveloped seeds per anthodium, and seed weight are suggested to assess the level of environmental pollution (bioindication). However, the non-monotonic dose-response dependences (hormesis and paradoxical effects) of these indices are insufficiently explored upon exposure to pollution. We studied the dependence of some T. officinale seed reproduction indices on intensity of motor traffic pollution in wide range of values over 2 years of observation. In 2010, the increase in traffic intensity induced a monotonic increase in the total seed number and the number of normally developed seeds. Besides, motor traffic pollution decreased the number of undeveloped seeds and seed weight in comparison with the control. In 2011, for all studied T. officinale indices except seed weight, complicated non-monotonic dependences on traffic intensity were found that could be attributed to paradoxical effects. It is hypothesised that the significant differences in the studied dependencies in 2010-2011 were caused by changes in weather conditions because traffic intensity did not differ significantly between the two observation years. PMID:25552956

  13. Identification, quantification, spatiotemporal distribution and genetic variation of major latex secondary metabolites in the common dandelion (Taraxacum officinale agg.).

    PubMed

    Huber, Meret; Triebwasser-Freese, Daniella; Reichelt, Michael; Heiling, Sven; Paetz, Christian; Chandran, Jima N; Bartram, Stefan; Schneider, Bernd; Gershenzon, Jonathan; Erb, Matthias

    2015-07-01

    The secondary metabolites in the roots, leaves and flowers of the common dandelion (Taraxacum officinale agg.) have been studied in detail. However, little is known about the specific constituents of the plant's highly specialized laticifer cells. Using a combination of liquid and gas chromatography, mass spectrometry and nuclear magnetic resonance spectrometry, we identified and quantified the major secondary metabolites in the latex of different organs across different growth stages in three genotypes, and tested the activity of the metabolites against the generalist root herbivore Diabrotica balteata. We found that common dandelion latex is dominated by three classes of secondary metabolites: phenolic inositol esters (PIEs), triterpene acetates (TritAc) and the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G). Purification and absolute quantification revealed concentrations in the upper mgg(-1) range for all compound classes with up to 6% PIEs, 5% TritAc and 7% TA-G per gram latex fresh weight. Contrary to typical secondary metabolite patterns, concentrations of all three classes increased with plant age. The highest concentrations were measured in the main root. PIE profiles differed both quantitatively and qualitatively between plant genotypes, whereas TritAc and TA-G differed only quantitatively. Metabolite concentrations were positively correlated within and between the different compound classes, indicating tight biosynthetic co-regulation. Latex metabolite extracts strongly repelled D. balteata larvae, suggesting that the latex constituents are biologically active. PMID:25682510

  14. Metal contamination in urban street sediment in Pisa (Italy) can affect the production of antioxidant metabolites in Taraxacum officinale Weber.

    PubMed

    Bretzel, Francesca; Benvenuti, Stefano; Pistelli, Laura

    2014-02-01

    Taraxacum officinale Weber (dandelion) is a very ubiquitous species, and it can grow in urban environments on metal-polluted sediments deposited in the gutters. This study represents a preliminary step to verify the presence of metals in sediments collected in urban streets in Pisa and to assess the alteration in dandelion metabolites in order to understand its adaptation to polluted environments. The soil and sediments were collected at three urban streets and analyzed for total and extractable Cr, Pb, Cu, Ni, and Zn. The total values of Pb and Zn in street sediments exceeded the limits for residential areas of soils. Zn was the most mobile of the metals analyzed. Floating cultivations trials were set up with dandelion seedlings and street sediments. The metals were analyzed in roots and leaves. Antioxidant power, anthocyanins, polyphenols, non-protein thiols (NP-TH) and chlorophylls were measured in dandelion leaves. The first two parameters (anthocyanins and antioxidant power) were higher in the polluted samples compared to the control; chlorophyll content was lower in the treated samples, whereas NP-TH showed no differences. NP-TH groups determined in roots were associated with the root content of Zn and Pb. These results indicate that dandelion can tolerate plant stress by altering its metabolite content. PMID:24062063

  15. Cellulase-assisted extraction and antibacterial activity of polysaccharides from the dandelion Taraxacum officinale.

    PubMed

    Wang, Hong-Bin

    2014-03-15

    In the present study, we investigated the cellulase-assisted extraction and antibacterial activity of water-soluble polysaccharides from the dandelion Taraxacum officinale. The extraction conditions, optimized for improving yield, were as follows: time, 46.11 min; temperature, 54.87 °C; pH, 4.51 and cellulase enzyme, 4000 U/g. Under these conditions, the yield of polysaccharides from dandelion (PD) reached 20.67% (w/w). The sugar content of PD was 95.6% (w/w), and it displayed high antibacterial activity at a concentration of 100mg/mL against Escherichia coli, Bacillus subtilis and Staphylococcus aureus. These results indicate that PD may be a viable option for use as a food preservative. PMID:24528711

  16. Latitudinal variation in sensitivity of flower bud formation to high temperature in Japanese Taraxacum officinale.

    PubMed

    Yoshie, Fumio

    2014-05-01

    Control of flowering time plays a key role in the successful range expansion of plants. Taraxacum officinale has expanded throughout Japan during the 110 years after it was introduced into a cool temperate region. The present study tested a hypothesis that there is a genetic difference in the bud formation time in relation to temperature along latitudinal gradient of T. officinale populations. In Experiment 1, plants from three populations at different latitudes (26, 36, and 43°N) were grown at three temperatures. Time to flower bud appearance did not significantly differ among the three populations when plants were grown at 14 °C, whereas it increased with increasing latitude when grown at 19 and 24 °C. Rosette diameter was not different among the populations, indicating that the variation in bud formation time reflected a difference in genetic control rather than size variation. The latitudinal variation in bud appearance time was confirmed by Experiment 2 in which plants from 17 population were used. In Experiment 3, the size of plants that exhibited late-flowering was studied to test a hypothesis that the variation in flowering time reflects dormancy of vegetative growth, but the late-flowering plants were found to continue growth, indicating that vegetative dormancy was not the cause of the variation. The results clearly indicate that the degree of suppression of flower bud formation at high temperature decreases with latitude from north to south, which is under genetic control. PMID:24585133

  17. Hepatoprotective effect of Taraxacum officinale leaf extract on sodium dichromate-induced liver injury in rats.

    PubMed

    Hfaiedh, Mbarka; Brahmi, Dalel; Zourgui, Lazhar

    2016-03-01

    Taraxacum officinale (L.) Weber, commonly known as Dandelion, has been widely used as a folkloric medicine for the treatment of liver and kidney disorders and some women diseases such as breast and uterus cancers. The main objective of the present study was to assess the efficiency of T. officinale leaf extract (TOE) in treating sodium dichromate hazards; it is a major environmental pollutant known for its wide toxic manifestations witch induced liver injury. TOE at a dose of 500 mg/kg b.w was orally administered once per day for 30 days consecutively, followed by 10 mg/kg b.w sodium dichromate was injected (intraperitoneal) for 10 days. Our results using Wistar rats showed that sodium dichromate significantly increased serum biochemical parameters. In the liver, it was found to induce an oxidative stress, evidenced from increase in lipid peroxidation and changes in antioxidative activities. In addition, histopathological observation revealed that sodium dichromate causes acute liver damage, necrosis of hepatocytes, as well as DNA fragmentation. Interestingly, animals that were pretreated with TOE, prior to sodium dichromate administration, showed a significant hepatoprotection, revealed by a significant reduction of sodium dichromate-induced oxidative damage for all tested markers. These finding powerfully supports that TOE was effective in the protection against sodium dichromate-induced hepatotoxicity and genotoxicity and, therefore, suggest a potential therapeutic use of this plant as an alternative medicine for patients with acute liver diseases. PMID:25270677

  18. Dandelion (Taraxacum officinale) and Agrimony (Agrimonia eupatoria) as Indicators of Geogenic Contamination of Flysch Soils in Eastern Slovakia.

    PubMed

    Čurlík, Ján; Kolesár, Martin; Ďurža, Ondrej; Hiller, Edgar

    2016-04-01

    Contents of potentially toxic elements Fe, Mn, Cr, Ni, Co, V, Cu, and Mo were determined in common dandelion (Taraxacum officinale) and agrimony (Agrimonia eupatoria) to show their usefulness as bioindicators of geogenic soil pollution. Both plants were collected on geochemically anomalous soils developed on flysch sedimentary rocks (Paleogene) of Eastern Slovakia, which also are composed of weathered detritus of some ultramafic rocks. Generally, contents of the investigated association of potentially toxic elements are highly increased in these "serpentine"-like soils. Elevated concentrations were detected in both shoots and roots of the plants. The highest values, which exceed world average values for plants, were observed for Ni content. They ranged from 1.7 to 16.3 mg kg(-1) in dandelion and from 1.6 to 22.6 mg kg(-1) in agrimony. Essential elements, such as Mo, Cu, and Mn, were the most concentrated in plants, whereas Co, V, and Cr were the least concentrated. Although the bioindication value of the common dandelion for anthropogenic soil pollution is well known, it is not mentioned for agrimony in literature, and no data exist to indicate the geogenic pollution for both plants. Dandelion and agrimony are widely used as herbal drugs; therefore, our intention also was to point out another fact, namely, possible high uptake of potentially toxic elements by herbal plants growing on similar soils. PMID:26254898

  19. Reduction of adipogenesis and lipid accumulation by Taraxacum officinale (Dandelion) extracts in 3T3L1 adipocytes: an in vitro study.

    PubMed

    González-Castejón, Marta; García-Carrasco, Belén; Fernández-Dacosta, Raquel; Dávalos, Alberto; Rodriguez-Casado, Arantxa

    2014-05-01

    In this in vitro study, we have investigated the ability of Taraxacum officinale (dandelion) to inhibit adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes. HPLC analysis of the three plant extracts used in this study-leaf and root extracts and a commercial root powder-identified caffeic and chlorogenic acids as the main phenolic constituents. Oil Red O staining and triglyceride levels analysis showed decreased lipid and triglyceride accumulation, respectively. Cytotoxicity was assessed with the MTT assay showing non-toxic effect among the concentrations tested. DNA microarray analysis showed that the extracts regulated the expression of a number of genes and long non-coding RNAs that play a major role in the control of adipogenesis. Taken together, our results indicate that the dandelion extracts used in this study may play a significant role during adipogenesis and lipid metabolism, and thus, supporting their therapeutic interest as potential candidates for the treatment of obesity. PMID:23956107

  20. Genotypic diversity effects on the performance of Taraxacum officinale populations increase with time and environmental favorability.

    PubMed

    Drummond, Emily B M; Vellend, Mark

    2012-01-01

    Within-population genetic diversity influences many ecological processes, but few studies have examined how environmental conditions may impact these short-term diversity effects. Over four growing seasons, we followed experimental populations of a clonal, ubiquitous weed, Taraxacum officinale, with different numbers of genotypes in relatively favorable fallow field and unfavorable mowed lawn environmental treatments. Population performance (measured as total leaf area, seed production or biomass) clearly and consistently increased with diversity, and this effect became stronger over the course of the experiment. Diversity effects were stronger, and with different underlying mechanisms, in the fallow field versus the mowed lawn. Large genotypes dominated in the fallow field driving overyielding (via positive selection effects), whereas in the mowed lawn, where performance was limited by regular disturbance, there was evidence for complementarity among genotypes (with one compact genotype in particular performing better in mixture than monoculture). Hence, we predict stronger genotypic diversity effects in environments where intense intraspecific competition enhances genotypic differences. Our four-year field experiment plus seedling establishment trials indicate that genotypic diversity effects have far-reaching and context-dependent consequences across generations. PMID:22348004

  1. Comparison of different methodologies for detailed screening of Taraxacum officinale honey volatiles.

    PubMed

    Jerković, Igor; Marijanović, Zvonimir; Kranjac, Marina; Radonić, Ani

    2015-02-01

    Headspace solid-phase microextraction (HS-SPME), ultrasonic solvent extraction (USE) and solid phase extraction (SPE), followed by GC-FID/MS were used for screening of dandelion (Taraxacum officinale Weber) honey headspace, volatiles and semi-volatiles. The obtained results constitute a breakthrough towards screening of dandelion honey since dominant compounds identified in the extracts were not previously reported for this honey type. Nitriles dominated in the headspace, particularly 3-methylpentanenitrile (up to 29.9%) and phenylacetonitrile (up to 20.9%). Lower methyl branched aliphatic acids and norisoprenoids were relevant minor constituents of the headspace. The extracts contained phenylacetic acid (up to 24.0%) and dehydrovomifoliol (up to 19.3%) as predominant compounds, while 3-methylpentanenitrile and phenylacetonitrile were detected in the extracts in minor abundance. Dehydrovomifoliol can be considered more characteristic for dandelion honey in distinction from phenylacetic acid. Low molecular aliphatic acids, benzene derivatives and an array of higher aliphatic compounds were also found in the extracts. The results of SPE/GC-FID/MS were very similar to USE/GC-FID/MS with the solvent dichloromethane. The use of all applied methodologies was relevant for the comprehensive chemical fingerprinting of dandelion honey volatiles. PMID:25920283

  2. Meiotic recombination in sexual diploid and apomictic triploid dandelions (Taraxacum officinale L.).

    PubMed

    van Baarlen, P; van Dijk, P J; Hoekstra, R F; de Jong, J H

    2000-10-01

    Taraxacum officinale L. (dandelion) is a vigorous weed in Europe with diploid sexual populations in the southern regions and partially overlapping populations of diploid sexuals and triploid or tetraploid apomicts in the central and northern regions. Previous studies have demonstrated unexpectedly high levels of genetic variation in the apomictic populations, suggesting the occurrence of genetic segregation in the apomicts and (or) hybridization between sexual and apomictic individuals. In this study we analysed meiosis in both sexual diploid and apomictic triploid plants to find mechanisms that could account for the high levels of genetic variation in the apomicts. Microscopic study of microsporocytes in the triploid apomicts revealed that the levels of chromosome pairing and chiasma formation at meiotic prophase I were lower than in that of the sexual diploids, but still sufficient to assume recombination between the homologues. Nomarski DIC (differential interference contrast) microscopy of optically cleared megasporocytes in the apomicts demonstrated incidental formation of tetrads, which suggests that hybridization can occur in triploid apomicts. PMID:11081973

  3. Effect of leaf extracts of Taraxacum officinale on CCl4 induced hepatotoxicity in rats, in vivo study.

    PubMed

    Gulfraz, Muhammad; Ahamd, Dawood; Ahmad, Muhammad Sheeraz; Qureshi, Rehmatullah; Mahmood, Raja Tahir; Jabeen, Nyla; Abbasi, Kashif Sarfraz

    2014-07-01

    Taraxacum officinale L is a medicinal plant, which has enormous medicinal values against various types of liver disorders and it has traditionally been used for the treatment of liver problems by people from the South East Asia. Previously we have screened the crude methanolic extract of T. officinale against cytotoxicity induced by CCl4. Present study was designed to compare the protective effect of ethanolic and n-hexane extract of leaves in carbon tetrachloride (CCl4) induced liver toxicity in rats. The extract (200 mg/kg and 400mg/kg body weight) along with silymarin (100 mg/kg) a standard drug was administered to experimental animals. It was observed that ethanolic plant extract has significantly reduced the negative effect of CCl4 as compared to n-hexane extract and effect of extract was increased with increasing dose level. Although both leaf extracts decreased the concentration of TBARS, H2O2 and nitrite contents which enhance due to CCl4 toxicity but effect was higher in ethanolic extract. The results clearly indicated that Taraxacum officinale ethanolic leaves extract has better protective effect against CCl4 induced liver tissues toxicity. This claim was also supported by histopathological results obtained during this study and this might be due to presence of various polar phytochemicals that might be more prevent in this extract. PMID:25015447

  4. Novel proline-hydroxyproline glycopeptides from the dandelion (Taraxacum officinale Wigg.) flowers: de novo sequencing and biological activity.

    PubMed

    Astafieva, Alexandra A; Enyenihi, Atim A; Rogozhin, Eugene A; Kozlov, Sergey A; Grishin, Eugene V; Odintsova, Tatyana I; Zubarev, Roman A; Egorov, Tsezi A

    2015-09-01

    Two novel homologous peptides named ToHyp1 and ToHyp2 that show no similarity to any known proteins were isolated from Taraxacum officinale Wigg. flowers by multidimensional liquid chromatography. Amino acid and mass spectrometry analyses demonstrated that the peptides have unusual structure: they are cysteine-free, proline-hydroxyproline-rich and post-translationally glycosylated by pentoses, with 5 carbohydrates in ToHyp2 and 10 in ToHyp1. The ToHyp2 peptide with a monoisotopic molecular mass of 4350.3Da was completely sequenced by a combination of Edman degradation and de novo sequencing via top down multistage collision induced dissociation (CID) and higher energy dissociation (HCD) tandem mass spectrometry (MS(n)). ToHyp2 consists of 35 amino acids, contains eighteen proline residues, of which 8 prolines are hydroxylated. The peptide displays antifungal activity and inhibits growth of Gram-positive and Gram-negative bacteria. We further showed that carbohydrate moieties have no significant impact on the peptide structure, but are important for antifungal activity although not absolutely necessary. The deglycosylated ToHyp2 peptide was less active against the susceptible fungus Bipolaris sorokiniana than the native peptide. Unique structural features of the ToHyp2 peptide place it into a new family of plant defense peptides. The discovery of ToHyp peptides in T. officinale flowers expands the repertoire of molecules of plant origin with practical applications. PMID:26259198

  5. Novel TRAIL sensitizer Taraxacum officinale F.H. Wigg enhances TRAIL-induced apoptosis in Huh7 cells.

    PubMed

    Yoon, Ji-Yong; Cho, Hyun-Soo; Lee, Jeong-Ju; Lee, Hyo-Jung; Jun, Soo Young; Lee, Jae-Hye; Song, Hyuk-Hwan; Choi, SangHo; Saloura, Vassiliki; Park, Choon Gil; Kim, Cheol-Hee; Kim, Nam-Soon

    2016-04-01

    TRAIL (TNF-related apoptosis inducing ligand) is a promising anti-cancer drug target that selectively induces apoptosis in cancer cells. However, many cancer cells are resistant to TRAIL-induced apoptosis. Therefore, reversing TRAIL resistance is an important step for the development of effective TRAIL-based anti-cancer therapies. We previously reported that knockdown of the TOR signaling pathway regulator-like (TIPRL) protein caused TRAIL-induced apoptosis by activation of the MKK7-c-Jun N-terminal Kinase (JNK) pathway through disruption of the MKK7-TIPRL interaction. Here, we identified Taraxacum officinale F.H. Wigg (TO) as a novel TRAIL sensitizer from a set of 500 natural products using an ELISA system and validated its activity by GST pull-down analysis. Furthermore, combination treatment of Huh7 cells with TRAIL and TO resulted in TRAIL-induced apoptosis mediated through inhibition of the MKK7-TIPRL interaction and subsequent activation of MKK7-JNK phosphorylation. Interestingly, HPLC analysis identified chicoric acid as a major component of the TO extract, and combination treatment with chicoric acid and TRAIL induced TRAIL-induced cell apoptosis via JNK activation due to inhibition of the MKK7-TIPRL interaction. Our results suggest that TO plays an important role in TRAIL-induced apoptosis, and further functional studies are warranted to confirm the importance of TO as a novel TRAIL sensitizer for cancer therapy. © 2015 Wiley Periodicals, Inc. PMID:25647515

  6. In vitro and in vivo antimutagenic effects of DIG, a herbal preparation of Berberis vulgaris, Taraxacum officinale and Arctium lappa, against mitomycin C.

    PubMed

    Di Giorgio, C; Boyer, L; De Meo, M; Laurant, C; Elias, R; Ollivier, E

    2015-07-01

    DIG, a liquid herbal preparation made from a mixture of diluted mother tinctures of Berberis vulgaris, Taraxacum officinale and Arctium lappa, was assessed for its antimutagenic properties against mitomycin C. The micronucleus assay on Chinese hamster ovary (CHO)-K1 cells was used to evaluate the in vitro anticlastogenic activity of DIG compared to those of separately diluted mother tinctures. The micronucleus assay was performed on mouse erythrocytes and the comet assay was performed on mouse liver, kidney, lung, brain and testicles to assess the protective effects of DIG (0.2 and 2 % at libitum) against an intraperitoneal injection of mitomycin C (1 mg Kg(-1)) in mice. DIG exerted a powerful anticlastogenic activity, under both pretreatment and simultaneous treatment conditions as assessed by the micronucleus assay in CHO-K1 cells. Its protective activity was greater than that observed for each mother tincture. DIG reduced micronuclei levels in mouse erythrocytes and suppressed >80 % of DNA strand breaks in the liver, kidney, lung, brain and testicles of mice exposed to mitomycin C. PMID:25666712

  7. In vitro inhibitory potential of Cynara scolymus, Silybum marianum, Taraxacum officinale, and Peumus boldus on key enzymes relevant to metabolic syndrome.

    PubMed

    Villiger, Angela; Sala, Filippo; Suter, Andy; Butterweck, Veronika

    2015-01-15

    Boldocynara®, a proprietary dietary supplement product consisting of the plants Cynara scolymus, Silybum marianum, Taraxacum officinale, and Peumus boldus, used to promote functions of the liver and the gallbladder. It was the aim of the present study to look from a different perspective at the product by investigating the in vitro potential of Boldocynara® as a combination product and its individual extracts on key enzymes relevant to metabolic syndrome. Peumus boldus extract exhibited pronounced inhibitory activities on α-glucosidase (80% inhibition at 100 µg/ml, IC50: 17.56 µg/ml). Silybum marianum had moderate pancreatic lipase (PL) inhibitory activities (30% at 100 µg/ml) whereas Cynara scolymus showed moderate ACE inhibitory activity (31% at 100 µg/ml). The combination had moderate to weak effects on the tested enzymes. In conclusion, our results indicate some moderate potential of the dietary supplement Boldocynara® and its single ingredients for the prevention of metabolic disorders. PMID:25636882

  8. TOP 1 and 2, polysaccharides from Taraxacum officinale, inhibit NFκB-mediated inflammation and accelerate Nrf2-induced antioxidative potential through the modulation of PI3K-Akt signaling pathway in RAW 264.7 cells.

    PubMed

    Park, Chung Mu; Cho, Chung Won; Song, Young Sun

    2014-04-01

    Anti-inflammatory and anti-oxidative activities of polysaccharides from Taraxacum officinale (TOP 1 and 2) were analyzed in RAW 264.7 cells. First, lipopolysaccharide (LPS) was applied to identify anti-inflammatory activity of TOPs, which reduced expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α. TOPs treatment inhibited phosphorylation of inflammatory transcription factor, nuclear factor (NF)κB, and its upstream signaling molecule, PI3K/Akt. Second, cytoprotective potential of TOPs against oxidative stress was investigated via heme oxygenase (HO)-1 induction. HO-1, one of phase II enzymes shows antioxidative activity, was potently induced by TOPs treatment, which was in accordance with the nuclear translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). In addition, TOPs treatment phosphorylated PI3K/Akt with slight activation of c-Jun NH2-terminal kinase (JNK). TOPs-mediated HO-1 induction protected macrophage cells from oxidative stress-induced cell death, which was confirmed by SnPP and CoPP (HO-1 inhibitor and inducer, respectively). Consequently, TOPs potently inhibited NFκB-mediated inflammation and accelerated Nrf2-mediated antioxidative potential through the modulation of PI3K/Akt pathway, which would contribute to their promising strategy for novel anti-inflammatory and anti-oxidative agents. PMID:24447978

  9. Evaluation of Houttuynia cordata and Taraxacum officinale on Growth Performance, Nutrient Digestibility, Blood Characteristics, and Fecal Microbial Shedding in Diet for Weaning Pigs.

    PubMed

    Yan, L; Zhang, Z F; Park, J C; Kim, I H

    2012-10-01

    A total of 144 pigs ((Landrace×Yorkshire)×Duroc] with an average initial BW of 8.45±0.57 kg were used in a 5-wk growth trial. Pigs were randomly allocated to 4 treatments with 9 replications per pen in a randomized complex block design. Dietary treatments included: i) CON (basal diet), ii) ANT (CON+tylosin 1 g/kg), iii) H1 (CON+H. cordata 1 g/kg) and iv) T1 (CON+T. officinale 1 g/kg). In this study, pigs fed the ANT and T1 treatment had a higher (p<0.05) average daily gain (ADG) and gain:feed (G:F) ratio than those fed CON and H1 treatment. Dietary ANT and T1 treatment led to a higher energy digestibility than the CON group. No difference (p>0.05) was observed on the growth performance and apparent total tract digestibility with H1 supplementation compared with the CON treatment. The inclusion of ANT treatment led to a higher (p<0.05) lymphocyte concentration compared with the CON treatment. Dietary supplementation of herbs did not affect (p>0.05) the blood characteristics (white blood cell (WBC), red blood cell (RBC), IgG, lymphocyte). No difference was observed on (p<0.05) fecal microbial shedding (E. coli and lactobacillus) between ANT and CON groups. Treatments H1 and T1 reduced the fecal E. coli concentration compared with the CON treatment, whereas the fecal lactobacillus concentration was not affected by the herb supplementation (p>0.05). In conclusion, the inclusion of T. officinale (1 g/kg) increased growth performance, feed efficiency, energy digestibility similarly to the antibiotic treatment. Dietary supplementation of T. officinale and H. cordata (1 g/kg) reduced the fecal E. coli concentration in weaning pigs. PMID:25049500

  10. The pattern of genetic variability in apomictic clones of Taraxacum officinale indicates the alternation of asexual and sexual histories of apomicts.

    PubMed

    Majeský, Luboš; Vašut, Radim J; Kitner, Miloslav; Trávníček, Bohumil

    2012-01-01

    Dandelions (genus Taraxacum) comprise a group of sexual diploids and apomictic polyploids with a complicated reticular evolution. Apomixis (clonal reproduction through seeds) in this genus is considered to be obligate, and therefore represent a good model for studying the role of asexual reproduction in microevolutionary processes of apomictic genera. In our study, a total of 187 apomictic individuals composing a set of nine microspecies (sampled across wide geographic area in Europe) were genotyped for six microsatellite loci and for 162 amplified fragment length polymorphism (AFLP) markers. Our results indicated that significant genetic similarity existed within accessions with low numbers of genotypes. Genotypic variability was high among accessions but low within accessions. Clustering methods discriminated individuals into nine groups corresponding to their phenotypes. Furthermore, two groups of apomictic genotypes were observed, which suggests that they had different asexual histories. A matrix compatibility test suggests that most of the variability within accession groups was mutational in origin. However, the presence of recombination was also detected. The accumulation of mutations in asexual clones leads to the establishment of a network of clone mates. However, this study suggests that the clones primarily originated from the hybridisation between sexual and apomicts. PMID:22870257

  11. The Pattern of Genetic Variability in Apomictic Clones of Taraxacum officinale Indicates the Alternation of Asexual and Sexual Histories of Apomicts

    PubMed Central

    Majeský, Ľuboš; Vašut, Radim J.; Kitner, Miloslav; Trávníček, Bohumil

    2012-01-01

    Dandelions (genus Taraxacum) comprise a group of sexual diploids and apomictic polyploids with a complicated reticular evolution. Apomixis (clonal reproduction through seeds) in this genus is considered to be obligate, and therefore represent a good model for studying the role of asexual reproduction in microevolutionary processes of apomictic genera. In our study, a total of 187 apomictic individuals composing a set of nine microspecies (sampled across wide geographic area in Europe) were genotyped for six microsatellite loci and for 162 amplified fragment length polymorphism (AFLP) markers. Our results indicated that significant genetic similarity existed within accessions with low numbers of genotypes. Genotypic variability was high among accessions but low within accessions. Clustering methods discriminated individuals into nine groups corresponding to their phenotypes. Furthermore, two groups of apomictic genotypes were observed, which suggests that they had different asexual histories. A matrix compatibility test suggests that most of the variability within accession groups was mutational in origin. However, the presence of recombination was also detected. The accumulation of mutations in asexual clones leads to the establishment of a network of clone mates. However, this study suggests that the clones primarily originated from the hybridisation between sexual and apomicts. PMID:22870257

  12. Optimization and Scale-up of Inulin Extraction from Taraxacum kok-saghyz roots.

    PubMed

    Hahn, Thomas; Klemm, Andrea; Ziesse, Patrick; Harms, Karsten; Wach, Wolfgang; Rupp, Steffen; Hirth, Thomas; Zibek, Susanne

    2016-05-01

    The optimization and scale-up of inulin extraction from Taraxacum kok-saghyz Rodin was successfully performed. Evaluating solubility investigations, the extraction temperature was fixed at 85 degrees C. The inulin stability regarding degradation or hydrolysis could be confirmed by extraction in the presence of model inulin. Confirming stability at the given conditions the isolation procedure was transferred from a 1 L- to a 1 m3-reactor. The Reynolds number was selected as the relevant dimensionless number that has to remain constant in both scales. The stirrer speed in the large scale was adjusted to 3.25 rpm regarding a 300 rpm stirrer speed in the 1 L-scale and relevant physical and process engineering parameters. Assumptions were confirmed by approximately homologous extraction kinetics in both scales. Since T. kok-saghyz is in the focus of research due to its rubber content side-product isolation from residual biomass it is of great economic interest. Inulin is one of these additional side-products that can be isolated in high quantity (- 35% of dry mass) and with a high average degree of polymerization (15.5) in large scale with a purity of 77%. PMID:27319152

  13. Micromonospora taraxaci sp. nov., a novel endophytic actinomycete isolated from dandelion root (Taraxacum mongolicum Hand.-Mazz.).

    PubMed

    Zhao, Junwei; Guo, Lifeng; He, Hairong; Liu, Chongxi; Zhang, Yuejing; Li, Chuang; Wang, Xiangjing; Xiang, Wensheng

    2014-10-01

    A novel actinomycete, designated strain NEAU-P5(T), was isolated from dandelion root (Taraxacum mongolicum Hand.-Mazz.). Strain NEAU-P5(T) showed closest 16S rRNA gene sequence similarity to Micromonospora chokoriensis 2-19/6(T) (99.5%), and phylogenetically clustered with Micromonospora violae NEAU-zh8(T) (99.3%), M. saelicesensis Lupac 09(T) (99.0%), M. lupini Lupac 14N(T) (98.8%), M. zeae NEAU-gq9(T) (98.4%), M. jinlongensis NEAU-GRX11(T) (98.3%) and M. zamorensis CR38(T) (97.9%). Phylogenetic analysis based on the gyrB gene sequence also indicated that the isolate clustered with the above type strains except M. violae NEAU-zh8(T). The cell-wall peptidoglycan consisted of meso-diaminopimelic acid and glycine. The major menaquinones were MK-9(H8), MK-9(H6) and MK-10(H2). The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were C(16:0), iso-C(15:0) and C(17:0). Furthermore, some physiological and biochemical properties and low DNA-DNA relatedness values enabled the strain to be differentiated from members of closely related species. Therefore, it is proposed that strain NEAU-P5(T) represents a novel species of the genus Micromonospora, for which the name Micromonospora taraxaci sp. nov. is proposed. The type strain is NEAU-P5(T) (=CGMCC 4.7098(T) = DSM 45885(T)). PMID:25082023

  14. Survival of Salmonella during Drying of Fresh Ginger Root (Zingiber officinale) and Storage of Ground Ginger.

    PubMed

    Gradl, Dana R; Sun, Lingxiang; Larkin, Emily L; Chirtel, Stuart J; Keller, Susanne E

    2015-11-01

    The survival of Salmonella on fresh ginger root (Zingiber officinale) during drying was examined using both a laboratory oven at 51 and 60°C with two different fan settings and a small commercially available food dehydrator. The survival of Salmonella in ground ginger stored at 25 and 37°C at 33% (low) and 97% (high) relative humidity (RH) was also examined. To inoculate ginger, a four-serovar cocktail of Salmonella was collected by harvesting agar lawn cells. For drying experiments, ginger slices (1 ± 0.5 mm thickness) were surface inoculated at a starting level of approximately 9 log CFU/g. Higher temperature (60°C) coupled with a slow fan speed (nonstringent condition) to promote a slower reduction in the water activity (aw) of the ginger resulted in a 3- to 4-log reduction in Salmonella populations in the first 4 to 6 h with an additional 2- to 3-log reduction by 24 h. Higher temperature with a higher fan speed (stringent condition) resulted in significantly less destruction of Salmonella throughout the 24-h period (P < 0.001). Survival appeared related to the rate of reduction in the aw. The aw also influenced Salmonella survival during storage of ground ginger. During storage at 97% RH, the maximum aw values were 0.85 at 25°C and 0.87 at 37°C; Salmonella was no longer detected after 25 and 5 days of storage, respectively, under these conditions. At 33% RH, the aw stabilized to approximately 0.35 at 25°C and 0.31 at 37°C. Salmonella levels remained relatively constant throughout the 365-day and 170-day storage periods for the respective temperatures. These results indicate a relationship between temperature and aw and the survival of Salmonella during both drying and storage of ginger. PMID:26555517

  15. Isolation and Purification of Water Soluble Proteins from Ginger Root (Zingiber officinale) by Two Dimensional Liquid Chromatography

    PubMed Central

    Sandovall, A.O.; Andrews, K.; Wahab, A.; Choudhary, M.I.; Ahmed, A.

    2014-01-01

    The RI-INBRE Centralized Core Facility was established in 2003 and participates annually in Undergraduate Summer Research Program. It provides students hands on research experience in key technologies in biomedical sciences. We present here the isolation and purification of water soluble proteins from ginger, a rhizome of the plant, Zingiber officinale. It is an important ingredient of species used in traditional South Asian cuisines. In Indian, Pakistani and Chinese folk medicine, ginger is used for gastro-intestinal disorders, nausea, vomiting, inflammatory diseases, muscle and joint pain. Limited studies have been reported on the bioactive proteins from ginger extract. The water soluble proteins were extracted from ginger root and successfully purified to homogeneity by using two-dimensional liquid chromatography (FPLC/RP-HPLC) approach. The ginger root was washed with distilled water; skin removed and then emulsified using an electric blender. Sample was stirred for four days at 4°C with and without protease inhibitor. Purification of a 42kDa protein was achieved by employing gel filtration, ion-exchange and reversed phase HPLC. The homogeneity of the protein was confirmed by SDS-PAGE gel electrophoresis and MALDI-TOF mass spectrometry. Future work will be conducted on the protein characterization using mass spectrometry and Edman protein sequencing. Supported by grant 5P20GM103430 from the National Institute of General Medical Sciences, NIH, USA.

  16. Identification of a 3-hydroxy-3-methylglutaryl-CoA reductase gene highly expressed in the root tissue of Taraxacum kok-saghyz

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kazak dandelion (Taraxacum kok-saghyz, Tk) is a rubber-producing plant currently being investigated as a source of natural rubber for industrial applications. Like many other isoprenoids, rubber is a downstream product of the mevalonate pathway. The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) en...

  17. Effect of Zingiber officinale and propolis on microorganisms and endotoxins in root canals

    PubMed Central

    MAEKAWA, Lilian Eiko; VALERA, Marcia Carneiro; de OLIVEIRA, Luciane Dias; CARVALHO, Cláudio Antonio Talge; CAMARGO, Carlos Henrique Ribeiro; JORGE, Antonio Olavo Cardoso

    2013-01-01

    The purpose of this study was to evaluate the effectiveness of glycolic propolis (PRO) and ginger (GIN) extracts, calcium hydroxide (CH), chlorhexidine (CLX) gel and their combinations as ICMs (ICMs) against Candida albicans, Enterococcus faecalis, Escherichia coli and endotoxins in root canals. Material and Methods: After 28 days of contamination with microorganisms, the canals were instrumented and then divided according to the ICM: CH+saline; CLX, CH+CLX, PRO, PRO+CH; GIN; GIN+CH; saline. The antimicrobial activity and quantification of endotoxins by the chromogenic test of Limulus amebocyte lysate were evaluated after contamination and instrumentation at 14 days of ICM application and 7 days after ICM removal. Results and Conclusion: After analysis of results and application of the Kruskal-Wallis and Dunn statistical tests at 5% significance level, it was concluded that all ICMs were able to eliminate the microorganisms in the root canals and reduce their amount of endotoxins; however, CH was more effective in neutralizing endotoxins and less effective against C. albicans and E. faecalis, requiring the use of medication combinations to obtain higher success. PMID:23559108

  18. A below-ground herbivore shapes root defensive chemistry in natural plant populations.

    PubMed

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Théo; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-03-30

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature. PMID:27009228

  19. Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens.

    PubMed

    Velmurugan, Palanivel; Anbalagan, Krishnan; Manosathyadevan, Manoharan; Lee, Kui-Jae; Cho, Min; Lee, Sang-Myeong; Park, Jung-Hee; Oh, Sae-Gang; Bang, Keuk-Soo; Oh, Byung-Taek

    2014-10-01

    In the present study, we synthesized silver and gold nanoparticles with a particle size of 10-20 nm, using Zingiber officinale root extract as a reducing and capping agent. Chloroauric acid (HAuCl4) and silver nitrate (AgNO3) were mixed with Z. officinale root extract for the production of silver (AgNPs) and gold nanoparticles (AuNPs). The surface plasmon absorbance spectra of AgNPs and AuNPs were observed at 436-531 nm, respectively. Optimum nanoparticle production was achieved at pH 8 and 9, 1 mM metal ion, a reaction temperature 50 °C and reaction time of 150-180 min for AgNPs and AuNPs, respectively. An energy-dispersive X-ray spectroscopy (SEM-EDS) study provides proof for the purity of AgNPs and AuNPs. Transmission electron microscopy images show the diameter of well-dispersed AgNPs (10-20 nm) and AuNPs (5-20 nm). The nanocrystalline phase of Ag and Au with FCC crystal structures have been confirmed by X-ray diffraction analysis. Fourier transform infrared spectroscopy analysis shows the respective peaks for the potential biomolecules in the ginger rhizome extract, which are responsible for the reduction in metal ions and synthesized AgNPs and AuNPs. In addition, the synthesized AgNPs showed a moderate antibacterial activity against bacterial food pathogens. PMID:24668029

  20. Biological feedstock development as part of the domestication and commercialization of Taraxacum kok-saghyz, a potential domestic source of natural rubber and inulin: progress and outlook

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild-collected F0 seed was found to contain a mixture Taraxacum species (i.e., highly variable seedling phenotypes), a likely drag on TKS germplasm enhancement. Also, roots of unselected, wild-collected Taraxacum genotypes were found to contain, on average, 1.4 and 56.4 percent rubber and inulin, re...

  1. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    PubMed

    Huber, Meret; Epping, Janina; Schulze Gronover, Christian; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Köllner, Tobias G; Vogel, Heiko; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A M; Verhoeven, Koen; Preite, Veronica; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground. PMID:26731567

  2. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack

    PubMed Central

    Huber, Meret; Epping, Janina; Schulze Gronover, Christian; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Köllner, Tobias G.; Vogel, Heiko; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A. M.; Verhoeven, Koen; Preite, Veronica; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground. PMID:26731567

  3. Polyphenoloxidase Silencing Affects Latex Coagulation in Taraxacum Species1[W

    PubMed Central

    Wahler, Daniela; Gronover, Christian Schulze; Richter, Carolin; Foucu, Florence; Twyman, Richard M.; Moerschbacher, Bruno M.; Fischer, Rainer; Muth, Jost; Prüfer, Dirk

    2009-01-01

    Latex is the milky sap that is found in many different plants. It is produced by specialized cells known as laticifers and can comprise a mixture of proteins, carbohydrates, oils, secondary metabolites, and rubber that may help to prevent herbivory and protect wound sites against infection. The wound-induced browning of latex suggests that it contains one or more phenol-oxidizing enzymes. Here, we present a comprehensive analysis of the major latex proteins from two dandelion species, Taraxacum officinale and Taraxacum kok-saghyz, and enzymatic studies showing that polyphenoloxidase (PPO) is responsible for latex browning. Electrophoretic analysis and amino-terminal sequencing of the most abundant proteins in the aqueous latex fraction revealed the presence of three PPO-related proteins generated by the proteolytic cleavage of a single precursor (pre-PPO). The laticifer-specific pre-PPO protein contains a transit peptide that can target reporter proteins into chloroplasts when constitutively expressed in dandelion protoplasts, perhaps indicating the presence of structures similar to plastids in laticifers, which lack genuine chloroplasts. Silencing the PPO gene by constitutive RNA interference in transgenic plants reduced PPO activity compared with wild-type controls, allowing T. kok-saghyz RNA interference lines to expel four to five times more latex than controls. Latex fluidity analysis in silenced plants showed a strong correlation between residual PPO activity and the coagulation rate, indicating that laticifer-specific PPO plays a major role in latex coagulation and wound sealing in dandelions. In contrast, very little PPO activity is found in the latex of the rubber tree Hevea brasiliensis, suggesting functional divergence of latex proteins during plant evolution. PMID:19605551

  4. Streptosporangium jiaoheense sp. nov. and Streptosporangium taraxaci sp. nov., actinobacteria isolated from soil and dandelion root (Taraxacum mongolicum Hand.-Mazz.).

    PubMed

    Zhao, Junwei; Guo, Lifeng; Li, Zhilei; Piao, Chenyu; Li, Yao; Li, Jiansong; Liu, Chongxi; Wang, Xiangjing; Xiang, Wensheng

    2016-06-01

    Two novel actinobacteria, designated strains NEAU-Jh1-4T and NEAU-Wp2-0T, were isolated from muddy soil collected from a riverbank in Jiaohe and a dandelion root collected from Harbin, respectively. A polyphasic study was carried out to establish the taxonomic positions of these two strains. The phylogenetic analysis based on the 16S rRNA gene sequences of strains NEAU-Jh1-4T and NEAU-Wp2-0T indicated that strain NEAU-Jh1-4T clustered with Streptosporangium nanhuense NEAU-NH11T (99.32 % 16S rRNA gene sequence similarity), Streptosporangium purpuratum CY-15110T (98.30 %) and Streptosporangium yunnanense CY-11007T (97.95 %) and strain NEAU-Wp2-0T clustered with 'Streptosporangium sonchi  ' NEAU-QS7 (99.39 %), 'Streptosporangium kronopolitis' NEAU-ML10 (99.26 %), 'Streptosporangium shengliense' NEAU-GH7 (98.85 %) and Streptosporangium longisporum DSM 43180T (98.69 %). Moreover, morphological and chemotaxonomic properties of the two isolates also confirmed their affiliation to the genus Streptosporangium. However, the low level of DNA-DNA hybridization and some phenotypic characteristics allowed the isolates to be differentiated from the most closely related species. Therefore, it is proposed that strains NEAU-Jh1-4T and NEAU-Wp2-0T represent two novel species of the genus Streptosporangium, for which the name Streptosporangium jiaoheense sp. nov. and Streptosporangium taraxaci sp. nov. are proposed. The type strains are NEAU-Jh1-4T (=CGMCC 4.7213T=JCM 30348T) and NEAU-Wp2-0T (=CGMCC 4.7217T=JCM 30349T), respectively. PMID:27031531

  5. The effect of five Taraxacum species on in vitro and in vivo antioxidant and antiproliferative activity.

    PubMed

    Mingarro, D Muñoz; Plaza, A; Galán, A; Vicente, J A; Martínez, M P; Acero, N

    2015-08-01

    Plants belonging to the genus Taraxacum are considered a nutritious food, being consumed raw or cooked. Additionally, these plants have long been used in folk medicine due to their choleretic, diuretic, antitumor, antioxidant, antiinflammatory, and hepatoprotective properties. This genus, with its complex taxonomy, includes several species that are difficult to distinguish. Its traditional use must be related not only to T. officinale F.H. Wigg., the most studied species, but also to others. The aim of this work is to compare five different common South European species of Taraxacum (T. obovatum (Willd.) DC., T. marginellum H. Lindb., T. hispanicum H. Lindb., T. lambinonii Soest and T. lacistrum Sahlin), in order to find differences between antioxidant and cytotoxic activities among them. Dissimilarities between species in LC/MS patterns, in in vitro and intracellular antioxidant activity and also in the cytotoxicity assay were found. T. marginellum was the most efficient extract reducing intracellular ROS levels although in in vitro assays, T. obovatum was the best free radical scavenger. A relevant cytotoxic effect was found in T. lacistrum extract over HeLa and HepG2 cell lines. PMID:26158347

  6. Effect of a blend of comfrey root extract (Symphytum officinale L.) and tannic acid creams in the treatment of osteoarthritis of the knee: randomized, placebo-controlled, double-blind, multiclinical trials

    PubMed Central

    Smith, Doug B.; Jacobson, Bert H.

    2011-01-01

    Objective The purpose of this study was to determine the effect of 2 concentrations of topical, comfrey-based botanical creams containing a blend of tannic acid and eucalyptus to a eucalyptus reference cream on pain, stiffness, and physical functioning in those with primary osteoarthritis of the knee. Methods Forty-three male and female subjects (45-83 years old) with diagnosed primary osteoarthritis of the knee who met the inclusion criteria were entered into the study. The subjects were randomly assigned to 1 of 3 treatment groups: 10% or 20% comfrey root extract (Symphytum officinale L.) or a placebo cream. Outcomes of pain, stiffness, and functioning were done on the Western Ontario and MacMaster Universities Osteoarthritis Index. Participants applied the cream 3× a day for 6 weeks and were evaluated every 2 weeks during the treatment. Results Repeated-measures analyses of variance yielded significant differences in all of the Western Ontario and MacMaster Universities Osteoarthritis Index categories (pain P < .01, stiffness P < .01, daily function P < .01), confirming that the 10% and 20% comfrey-based creams were superior to the reference cream. The active groups each had 2 participants who had temporary and minor adverse reactions of skin rash and itching, which were rapidly resolved by modifying applications. Conclusion Both active topical comfrey formulations were effective in relieving pain and stiffness and in improving physical functioning and were superior to placebo in those with primary osteoarthritis of the knee without serious adverse effects. PMID:22014903

  7. [Dendrobium officinale stereoscopic cultivation method].

    PubMed

    Si, Jin-Ping; Dong, Hong-Xiu; Liao, Xin-Yan; Zhu, Yu-Qiu; Li, Hui

    2014-12-01

    The study is aimed to make the most of available space of Dendrobium officinale cultivation facility, reveal the yield and functional components variation of stereoscopic cultivated D. officinale, and improve quality, yield and efficiency. The agronomic traits and yield variation of stereoscopic cultivated D. officinale were studied by operating field experiment. The content of polysaccharide and extractum were determined by using phenol-sulfuric acid method and 2010 edition of "Chinese Pharmacopoeia" Appendix X A. The results showed that the land utilization of stereoscopic cultivated D. officinale increased 2.74 times, the stems, leaves and their total fresh or dry weight in unit area of stereoscopic cultivated D. officinale were all heavier than those of the ground cultivated ones. There was no significant difference in polysaccharide content between stereoscopic cultivation and ground cultivation. But the extractum content and total content of polysaccharide and extractum were significantly higher than those of the ground cultivated ones. In additional, the polysaccharide content and total content of polysaccharide and extractum from the top two levels of stereoscopic culture matrix were significantly higher than that of the ones from the other levels and ground cultivation. Steroscopic cultivation can effectively improves the utilization of space and yield, while the total content of polysaccharides and extractum were significantly higher than that of the ground cultivated ones. The significant difference in Dendrobium polysaccharides among the plants from different height of stereo- scopic culture matrix may be associated with light factor. PMID:25911804

  8. Elevated carbon dioxide alters the relative fitness of Taraxacum officinale genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    I tested whether elevated carbon dioxide concentration differentially affected which genotypes of the apomictic species dandelion produced the largest number of viable seeds in two different field experiments, and identified morphological and physiological traits associated with fitness at elevated ...

  9. [Artificial cultivation modes for Dendrobium officinale].

    PubMed

    Si, Jin-Ping; Yu, Qiao-Xian; Song, Xian-Shui; Shao, Wei-Jiang

    2013-02-01

    Since the beginning of the new century, the artificial cultivation of Dendrobium officinale has made a breakthrough progress. This paper systematically expounds key technologies, main features and cautions of the cultivation modes e.g. bionic-facility cultivation, the original ecological cultivation, and potting cultivation for D. officinale, which can provide useful information for the development and improvement of D. officinale industry. PMID:23713268

  10. Larvicidal constituents of Zingiber officinale (ginger) against Anisakis simplex.

    PubMed

    Lin, Rong-Jyh; Chen, Chung-Yi; Lee, June-Der; Lu, Chin-Mei; Chung, Li-Yu; Yen, Chuan-Min

    2010-11-01

    In this study, we investigated the anthelmintic activity of [10]-shogaol, [6]-shogaol, [10]-gingerol and [6]-gingerol, compounds isolated from the roots of Zingiber officinale L., Zingiberaceae (ginger), against Anisakis simplex. The above compounds kill or reduce spontaneous movement in A. simplex larvae. The maximum lethal efficacy of [10]-shogaol and [10]-gingerol was approximately 80% and 100%, respectively. We further examined the time course of compound-induced loss of mobility in A. simplex. The results showed that various concentrations of [10]-shogaol, [6]-shogaol, [10]-gingerol and [6]-gingerol have maximum effects on loss of spontaneous movement from 24 to 72 h. In addition, the time course of mortality and the percentage of loss of spontaneous movements were ascertained to determine the minimum effective doses of [10]-gingerol and [10]-shogaol. [10]-Gingerol exhibited a larger maximum larvicidal effect and greater loss of spontaneous movement than [10]-shogaol and albendazole. In addition, these constituents of Zingiber officinale showed effects against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and peroxyl radicals. These constituents of Zingiber officinale are responsible for its larvicidal activity against A. simplex. PMID:20533167

  11. [Progress and countermeasures of Dendrobium officinale breeding].

    PubMed

    Si, Jin-Ping; He, Bo-wei; Yu, Qiao-xian

    2013-02-01

    The standandized cultivation of Chinese medicinal materials is based on variety. With the rapid development of Dendrobium officinale industry and increasing demand of improved varieties, many studies have concentrated on the variety breeding of D. officinale and subsequently achieved remarkable success. This paper systematically expounds the research progress of D. officinale breeding, e. g. the collection and differentiated evaluation for germplasm, theory and practice for variety breeding, tissue culture and efficient production with low-carbon for germchit, and DNA molecular marker-assisted breeding, and then indicates the main problems of the current breeding of D. officinale. Furthermore, the priorities and keys for the further breeding of D. officinale have been pointed out. PMID:23713267

  12. Population Genetics of the Rubber-Producing Russian Dandelion (Taraxacum kok-saghyz).

    PubMed

    McAssey, Edward V; Gudger, Ethan G; Zuellig, Matthew P; Burke, John M

    2016-01-01

    The Russian dandelion, Taraxacum kok-saghyz (TKS), is a perennial species native to Central Asia that produces high quality, natural rubber. Despite its potential to help maintain a stable worldwide rubber supply, little is known about genetic variation in this species. To facilitate future germplasm improvement efforts, we developed simple-sequence repeat (SSR) markers from available expressed-sequence tag (EST) data and used them to investigate patterns of population genetic diversity in this nascent crop species. We identified numerous SSRs (1,510 total) in 1,248 unigenes from a larger set of 6,960 unigenes (derived from 16,441 ESTs) and designed PCR primers targeting 767 of these loci. Screening of a subset of 192 of these primer pairs resulted in the identification of 48 pairs that appeared to produce single-locus polymorphisms. We then used the most reliable 17 of these primer pairs to genotype 176 individuals from 17 natural TKS populations. We observed an average of 4.8 alleles per locus with population-level expected heterozygosities ranging from 0.28 to 0.50. An average pairwise FST of 0.11 indicated moderate but statistically significant levels of genetic differentiation, though there was no clear geographic patterning to this differentiation. We also tested these 17 primer pairs in the widespread common dandelion, T. officinale, and a majority successfully produced apparently single-locus amplicons. This result demonstrates the potential utility of these markers for genetic analyses in other species in the genus. PMID:26727474

  13. Population Genetics of the Rubber-Producing Russian Dandelion (Taraxacum kok-saghyz)

    PubMed Central

    McAssey, Edward V.; Gudger, Ethan G.; Zuellig, Matthew P.; Burke, John M.

    2016-01-01

    The Russian dandelion, Taraxacum kok-saghyz (TKS), is a perennial species native to Central Asia that produces high quality, natural rubber. Despite its potential to help maintain a stable worldwide rubber supply, little is known about genetic variation in this species. To facilitate future germplasm improvement efforts, we developed simple-sequence repeat (SSR) markers from available expressed-sequence tag (EST) data and used them to investigate patterns of population genetic diversity in this nascent crop species. We identified numerous SSRs (1,510 total) in 1,248 unigenes from a larger set of 6,960 unigenes (derived from 16,441 ESTs) and designed PCR primers targeting 767 of these loci. Screening of a subset of 192 of these primer pairs resulted in the identification of 48 pairs that appeared to produce single-locus polymorphisms. We then used the most reliable 17 of these primer pairs to genotype 176 individuals from 17 natural TKS populations. We observed an average of 4.8 alleles per locus with population-level expected heterozygosities ranging from 0.28 to 0.50. An average pairwise FST of 0.11 indicated moderate but statistically significant levels of genetic differentiation, though there was no clear geographic patterning to this differentiation. We also tested these 17 primer pairs in the widespread common dandelion, T. officinale, and a majority successfully produced apparently single-locus amplicons. This result demonstrates the potential utility of these markers for genetic analyses in other species in the genus. PMID:26727474

  14. Comparison of photosynthesis and fluorescent parameters between Dendrobium officinale and Dendrobium loddigesii

    PubMed Central

    Sun, Zhi-Rong; Zhu, Nan-Nan; Cheng, Li-Li; Yang, Chun-Ning

    2015-01-01

    Objective: To investigate the photosynthesis and fluorescent parameters between Dendrobium officinale and Dendrobium loddigesii, based on which to provide helpful information for the artificial cultivation of these cultivars. Methods: Seeds were placed on the MS medium supplemented with 0.2 mg/L NAA, 2% (w/v) sucrose, 15% (v/v) potato extracts and powered agar (pH 5.8). Two months after germination, seedlings (n = 10) were transferred onto rooting medium containing MS medium supplemented with 0.5 mg/L NAA, 3% (w/v) sucrose, 20% (v/v) potato extracts and 1‰ (w/v) activated carbon (pH 5.8) in a glass bottle (6.5 cm in diameter and 9.5 cm in height) with a white transparent plastic cap. Chlorophyll content was determined using the UV-Vis spectrophotometric method. In addition, rates of oxygen evolution and uptake were measured. The chlorophyll fluorescence was determined at room temperature using PAM 2000 chlorophyll fluorometer (Heinz Walz GmbH, Germany). Results: From month 5 to month 10, the overall contents of both chlorophyll a and chlorophyll b were higher in D. loddigesii compared with those in D. officinale. No statistical differences were observed in the apparent photosynthetic rate (APR) between D. loddigesii and D. officinale. No statistical difference was noticed in the Fo, Fm and Fv between D. loddigesii and D. officinale (P > 0.05). Significant increase was noticed in the oxygen consuming in PSI in month-8 and month-10 compared with that of month-6 in D. loddigesii. Nevertheless, in the D. officinale, the oxygen consuming in PSI in month-6 was remarkably increased with those of month-8 and month-10, respectively. Conclusions: The photosynthesis and fluorescence parameters varied in the seedling of D. loddigesii and D. officinale. Such information could contribute to the artificial cultivation of these cultivars. PMID:26550239

  15. [Some worries about Dendrobium officinale industry].

    PubMed

    Li, Guang; Lu, Juan; Chen, Xi

    2013-02-01

    In recent years, with the continuous development of the industry of Dendrobium officinale, the technological alliance on CEEUSRO has been established. However, many problems also exposed with the rapid expansion of the industry, such as weak basic research, single species of the product, lack of in-depth studies and difficult to guarantee the quality. Industrial foam was gradually formed. To guard against the D. officinale becoming another "Puer Tea" , the authors believe that the key to sustainable development of the industry is enterprises and research institutes should strengthen basic research, speed up development of application of integrated innovations, government should strengthen guidance, regulate the operation of the market, then protect the quality of D. officinale in the market. PMID:23713266

  16. Zingiber officinale (ginger)--an antiemetic for day case surgery.

    PubMed

    Phillips, S; Ruggier, R; Hutchinson, S E

    1993-08-01

    The effect of powdered ginger root was compared with metoclopramide and placebo. In a prospective, randomised, double-blind trial the incidence of postoperative nausea and vomiting was measured in 120 women presenting for elective laparoscopic gynaecological surgery on a day stay basis. The incidence of nausea and vomiting was similar in patients given metoclopramide and ginger (27% and 21%) and less than in those who received placebo (41%). The requirement for postoperative antiemetics was lower in those patients receiving ginger. The requirements for postoperative analgesia, recovery time and time until discharge were the same in all groups. There was no difference in the incidence of possible side effects such as sedation, abnormal movement, itch and visual disturbance between the three groups. Zingiber officinale is an effective and promising prophylactic antiemetic, which may be especially useful for day case surgery. PMID:8214465

  17. Larvicidal activities of ginger (Zingiber officinale) against Angiostrongylus cantonensis.

    PubMed

    Lin, Rong-Jyh; Chen, Chung-Yi; Chung, Li-Yu; Yen, Chuan-Min

    2010-01-01

    In this study, we investigated the anthelmintic activity of [6]-gingerol, [10]-shogaol, [10]-gingerol, [6]-shogaol and hexahydrocurcumin, a constituent isolate from the roots of ginger (Zingiber officinale), for the parasite Angiostrongylus cantonensis. This study found that the above constituents killed A. cantonensis larvae or reduced their spontaneous movements in a time- and dose-dependent manner. The larvicidal effect or ability to halt spontaneous parasite movement of [10]-shogaol, [6]-gingerol, [10]-gingerol, [6]-shogaol and hexahydrocurcumin at various concentrations was reached from 24 to 72 h, respectively. Further investigation to determine minimal effective doses of [10]-gingerol and hexahydrocurcumin revealed [10]-gingerol to have a greater maximum larvicidal effect and loss of spontaneous movements than hexahydrocurcumin, mebendazole and albendazole. These constituents of ginger showed effects against DPPH and peroxyl radical under larvicidal effect. Together, these findings suggest that these constituents of ginger might be used as larvicidal agents against A. cantonensis. PMID:20045669

  18. In vitro microrhizome production in Zingiber officinale Rosc.

    PubMed

    Sharma, T R; Singh, B M

    1995-12-01

    Microrhizomes of Zingiber officinale were successfully produced from tissue culture derived shoots by transferring them to liquid MS medium supplemented with 1 mg/l BAP, 2 mg/l calcium pantothenate, 0.2 mg/l GA3 and 0.05 mg/l NAA for shoot proliferation. After 4 weeks of incubation, the medium was replaced with microrhizome induction medium, consisting of MS salts supplemented with 8 mg/l BAP and 75 g/l sucrose. Microrhizome formation started after 20 d of incubation in stationary cultures at 25+1 ° in the dark. Microrhizomes with 1-4 buds and weighing 73.8 to 459 mg each were harvested after 50-60 d. After storage for 2 months in moist sand at room temperature, 80% of the microrhizomes sprouted producing roots and shoots. PMID:24185791

  19. Structural Diversity in the Dandelion (Taraxacum officinale) Polyphenol Oxidase Family Results in Different Responses to Model Substrates

    PubMed Central

    Dirks-Hofmeister, Mareike E.; Singh, Ratna; Leufken, Christine M.; Inlow, Jennifer K.; Moerschbacher, Bruno M.

    2014-01-01

    Polyphenol oxidases (PPOs) are ubiquitous type-3 copper enzymes that catalyze the oxygen-dependent conversion of o-diphenols to the corresponding quinones. In most plants, PPOs are present as multiple isoenzymes that probably serve distinct functions, although the precise relationship between sequence, structure and function has not been addressed in detail. We therefore compared the characteristics and activities of recombinant dandelion PPOs to gain insight into the structure–function relationships within the plant PPO family. Phylogenetic analysis resolved the 11 isoenzymes of dandelion into two evolutionary groups. More detailed in silico and in vitro analyses of four representative PPOs covering both phylogenetic groups were performed. Molecular modeling and docking predicted differences in enzyme-substrate interactions, providing a structure-based explanation for grouping. One amino acid side chain positioned at the entrance to the active site (position HB2+1) potentially acts as a “selector” for substrate binding. In vitro activity measurements with the recombinant, purified enzymes also revealed group-specific differences in kinetic parameters when the selected PPOs were presented with five model substrates. The combination of our enzyme kinetic measurements and the in silico docking studies therefore indicate that the physiological functions of individual PPOs might be defined by their specific interactions with different natural substrates. PMID:24918587

  20. Molluscicidal and antischistosomal activities of Zingiber officinale.

    PubMed

    Adewunmi, C O; Oguntimein, B O; Furu, P

    1990-08-01

    Experiments were conducted to study the major constituents of Zingiber officinale responsible for its molluscicidal activity and the effect of the active component on different stages of Schistosoma mansoni. Gingerol and shogaol exhibited potent molluscicidal activity on Biomphalaria glabrata. Gingerol (5.0 ppm) completely abolished the infectivity of Schistosoma mansoni miracidia and cercariae in B. glabrata and mice, respectively, indicating that the molluscicide is capable of interrupting schistosome transmission at a concentration lower than its molluscicidal concentrations. PMID:2236291

  1. Two New Isomers of Palmityl-4-hydroxycinnamate from Flowers of Taraxacum Species.

    PubMed

    Dudáš, Matej; Vilková, Mária; Béres, Tibor; Repcák, Miroslav; Mártonfi, Pavol

    2016-06-01

    Two isomers, (Z)- and (E)-palmityl 4-hydroxycinnamate [hexadecyl(2Z)-3-(4-hydroxyphenyl)prop-2-enoate and hexadecyl(2E)-3-(4-hydroxyphenyl)prop-2-enoate] were isolated for the first time from ligulate flowers of Taraxacum linearisquameum Soest (sect. Taraxacum). The highest amount of these compounds was detected in pollen grains; 0.26 mg/100 mg DW of the (E)-isomer and 0.096 mg/100 mg DW of the (Z)-isomer. The structures of these compounds were elucidated by a combination of HPLC-ESI-Qtof-MS and 1D and 2D NMR spectroscopy. Their presence was confirmed in other species of Taraxacum, but they were not found in the male - sterile triploid agamospermous taxon T. parnassicum. PMID:27534130

  2. Anatomy of ovary and ovule in dandelions (Taraxacum, Asteraceae).

    PubMed

    Musiał, K; Płachno, B J; Świątek, P; Marciniuk, J

    2013-06-01

    The genus Taraxacum Wigg. (Asteraceae) forms a polyploid complex within which there are strong links between the ploidy level and the mode of reproduction. Diploids are obligate sexual, whereas polyploids are usually apomictic. The paper reports on a comparative study of the ovary and especially the ovule anatomy in the diploid dandelion T. linearisquameum and the triploid T. gentile. Observations with light and electron microscopy revealed no essential differences in the anatomy of both the ovary and ovule in the examined species. Dandelion ovules are anatropous, unitegmic and tenuinucellate. In both sexual and apomictic species, a zonal differentiation of the integument is characteristic of the ovule. In the integumentary layers situated next to the endothelium, the cell walls are extremely thick and PAS positive. Data obtained from TEM indicate that these special walls have an open spongy structure and their cytoplasm shows evidence of gradual degeneration. Increased deposition of wall material in the integumentary cells surrounding the endothelium takes place especially around the chalazal pole of the embryo sac as well as around the central cell. In contrast, the integumentary cells surrounding the micropylar region have thin walls and exhibit a high metabolic activity. The role of the thick-walled integumentary layers in the dandelion ovule is discussed. We also consider whether this may be a feature of taxonomic importance. PMID:23001751

  3. In Vitro propagation of Jasminum officinale L.: a woody ornamental vine yielding aromatic oil from flowers.

    PubMed

    Bhattacharya, Sabita; Bhattacharyya, Sanghamitra

    2010-01-01

    The growing demand for flower extracts in perfume trade can primarily be met by increasing flower production and multiplying planting material. The major commercial aromatic flower yielding plants including Jasminum officinale L., a member of the Family Oleaceae have drawn the attention of a large section of the concerned sectors leading to a thrust upon developing advanced propagation technologies for these floral crops, in addition to conventional nature-dependent agro-techniques. This chapter describes concisely and critically, a protocol developed for in vitro propagation of Jasminum officinale by shoot regeneration from existing as well as newly developed adventitious axillary buds via proper phytohormonal stimulation. To start with nodal segments as explants, March-April is the most ideal time of the year when planting material suitable for in vitro multiplication is abundantly available. Prior to inoculation of explants in the culture medium, special care is needed to reduce microbial contamination by spraying on selected spots of the donor plant with anti-microbial agents 24 h prior to collection; treatment with antiseptic solution after final cleaning and surface sterilization by treating explants with mercuric chloride. Inoculated explants are free from brown leaching from cut ends by two consecutive subcultures within 48 h in MS basal medium. Multiplication of shoots, average 4-5 at each node, takes place in MS medium containing 4.0 mg/L BAP, 0.1 mg/L NAA, and 40 g/L sucrose over a period of 8 weeks. For elongation of regenerated shoots, cultures are transferred to MS medium, supplemented with a single growth hormone, kinetin at 2.0 mg/L. Emergence and elongation of roots from shoot base is facilitated by placing on the notch of a filter paper bridge. The hardened in vitro propagated plants are able to grow normally in soil like other conventionally propagated Jasminum officinale. PMID:20099096

  4. Growth-promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation

    PubMed Central

    Yang, Suijuan; Zhang, Xinghai; Cao, Zhaoyun; Zhao, Kaipeng; Wang, Sai; Chen, Mingxue; Hu, Xiufang

    2014-01-01

    Growth-promoting Sphingomonas paucimobilis ZJSH1, associated with Dendrobium officinale, a traditional Chinese medicinal plant, was characterized. At 90 days post-inoculation, strain ZJSH1 significantly promoted the growth of D. officinale seedlings, with increases of stems by 8.6% and fresh weight by 7.5%. Interestingly, the polysaccharide content extracted from the inoculated seedlings was 0.6% higher than that of the control. Similar growth promotion was observed with the transplants inoculated with strain ZJSH1. The mechanism of growth promotion was attributed to a combination of phytohormones and nitrogen fixation. Strain ZJSH1 was found using the Kjeldahl method to have a nitrogen fixation activity of 1.15 mg l−1, which was confirmed by sequencing of the nifH gene. Using high-performance liquid chromatography-mass spectrometry, strain ZJSH1 was found to produce various phytohormones, including salicylic acid (SA), indole-3-acetic acid (IAA), Zeatin and abscisic acid (ABA). The growth curve showed that strain ZJSH1 grew well in the seedlings, especially in the roots. Accordingly, much higher contents of SA, ABA, IAA and c-ZR were detected in the inoculated seedlings, which may play roles as both phytohormones and ‘Systemic Acquired Resistance’ drivers. Nitrogen fixation and secretion of plant growth regulators (SA, IAA, Zeatin and ABA) endow S. paucimobilis ZJSH1 with growth-promoting properties, which provides a potential for application in the commercial growth of D. officinale. PMID:25142808

  5. Deposition of callose in young ovules of two Taraxacum species varying in the mode of reproduction.

    PubMed

    Musiał, Krystyna; Kościńska-Pająk, Maria; Antolec, Renata; Joachimiak, Andrzej J

    2015-01-01

    Although callose occurs during megasporogenesis in most flowering plants, the knowledge about its general function and the mechanisms by which the callose layer is formed in particular places is still not sufficient. The results of previous studies suggest a total lack of callose in the ovules of diplosporous plants in which meiosis is omitted or disturbed. This report is the first documentation of callose events in dandelions ovules. We demonstrated the pattern of callose deposition during the formation of megaspores through diplospory of Taraxacum type and during normal meiotic megasporogenesis in apomictic triploid Taraxacum atricapillum and amphimictic diploid Taraxacum linearisquameum. We found the presence of callose in the megasporocyte wall of both diplosporous and sexual dandelions. However, in a diplosporous dandelion, callose predominated at the micropylar pole of megaspore mother cell (MMC) which may be correlated with abnormal asynaptic meiosis and may indicate diplospory of the Taraxacum type. After meiotic division, callose is mainly deposited in the walls between megaspores in tetrads and in diplodyads. In subsequent stages, callose gradually disappears around the chalazal functional megaspore. However, some variations in the pattern of callose deposition within tetrad may reflect variable positioning of the functional megaspore (FM) observed in the ovules of T. linearisquameum. PMID:24938673

  6. Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(VI)-contaminated soils.

    PubMed

    Wu, Song-Lin; Chen, Bao-Dong; Sun, Yu-Qing; Ren, Bai-Hui; Zhang, Xin; Wang, You-Shan

    2014-09-01

    In a greenhouse pot experiment, dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon[Linn.] Pers.), inoculated with and without arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis, were grown in chromium (Cr)-amended soils (0 mg/kg, 5 mg/kg, 10 mg/kg, and 20 mg/kg Cr[VI]) to test whether arbuscular mycorrhizal (AM) symbiosis can improve Cr tolerance in different plant species. The experimental results indicated that the dry weights of both plant species were dramatically increased by AM symbiosis. Mycorrhizal colonization increased plant P concentrations and decreased Cr concentrations and Cr translocation from roots to shoots for dandelion; in contrast, mycorrhizal colonization decreased plant Cr concentrations without improvement of P nutrition in bermudagrass. Chromium speciation analysis revealed that AM symbiosis potentially altered Cr species and bioavailability in the rhizosphere. The study confirmed the protective effects of AMF on host plants under Cr contaminations. PMID:24920536

  7. Absolute configurations of zingiberenols isolated from ginger (Zingiber officinale) rhizomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sesquiterpene alcohol zingiberenol, or 1,10-bisaboladien-3-ol, was isolated some time ago from ginger, Zingiber officinale, rhizomes, but its absolute configuration had not been determined. With three chiral centers present in the molecule, zingiberenol can exist in eight stereoisomeric forms. ...

  8. An In-Situ Root-Imaging System in the Context of Surface Detection of CO2

    NASA Astrophysics Data System (ADS)

    Apple, M. E.; Prince, J. B.; Bradley, A. R.; Zhou, X.; Lakkaraju, V. R.; Male, E. J.; Pickles, W.; Thordsen, J. J.; Dobeck, L.; Cunningham, A.; Spangler, L.

    2009-12-01

    Carbon sequestration is a valuable method of spatially confining CO2 belowground. The Zero Emissions Research Technology, (ZERT), site is an experimental facility in a former agricultural field on the Montana State University campus in Bozeman, Montana, where CO2 was experimentally released at a rate of 200kg/day in 2009 into a 100 meter underground injection well running parallel to the ground surface. This injection well, or pipe, has deliberate leaks at intervals, and CO2 travels from these leaks upward to the surface of the ground. The ZERT site is a model system designed with the purpose of testing methods of surface detection of CO2. One important aspect of surface detection is the determination of the effects of CO2 on the above and belowground portions of plants growing above sequestration fields. At ZERT, these plants consist of a pre-existing mixture of herbaceous species present at the agricultural field. Species growing at the ZERT site include several grasses, Dactylis glomerata (Orchard Grass), Poa pratensis (Kentucky Bluegrass), and Bromus japonicus (Japanese Brome); the nitrogen-fixing legumes Medicago sativa, (Alfalfa), and Lotus corniculatus, (Birdsfoot trefoil); and an abundance of Taraxacum officinale, (Dandelion). Although the aboveground parts of the plants at high CO2 are stressed, as indicated by changes in hyperspectral plant signatures, leaf fluorescence and leaf chlorophyll content, we are interested in determining whether the roots are also stressed. To do so, we are combining measurements of soil conductivity and soil moisture with root imaging. We are using an in-situ root-imaging system manufactured by CID, Inc. (Camas, WA), along with image analysis software (Image-J) to analyze morphometric parameters in the images and to determine what effects, if any, the presence of leaking and subsequently upwelling CO2 has on the phenology of root growth, growth and turnover of individual fine and coarse roots, branching patterns, and root

  9. Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla.

    PubMed Central

    van Dijk, Peter J

    2003-01-01

    The ecological and evolutionary opportunities of apomixis in the short and the long term are considered, based on two closely related apomictic genera: Taraxacum (dandelion) and Chondrilla (skeleton weed). In both genera apomicts have a wider geographical distribution than sexuals, illustrating the short-term ecological success of apomixis. Allozymes and DNA markers indicate that apomictic populations are highly polyclonal. In Taraxacum, clonal diversity can be generated by rare hybridization between sexuals and apomicts, the latter acting as pollen donors. Less extensive clonal diversity is generated by mutations within clonal lineages. Clonal diversity may be maintained by frequency-dependent selection, caused by biological interactions (e.g. competitors and pathogens). Some clones are geographically widespread and probably represent phenotypically plastic 'general-purpose genotypes'. The long-term evolutionary success of apomictic clones may be limited by lack of adaptive potential and the accumulation of deleterious mutations. Although apomictic clones may be considered as 'evolutionary dead ends', the genes controlling apomixis can escape from degeneration and extinction via pollen in crosses between sexuals and apomicts. In this way, apomixis genes are transferred to a new genetic background, potentially adaptive and cleansed from linked deleterious mutations. Consequently, apomixis genes can be much older than the clones they are currently contained in. The close phylogenetic relationship between Taraxacum and Chondrilla and the similarity of their apomixis mechanisms suggest that apomixis in these two genera could be of common ancestry. PMID:12831477

  10. Phenolic profile and antioxidant potential of wild watercress (Nasturtium officinale L.).

    PubMed

    Zeb, Alam

    2015-01-01

    Phenolic profile, antioxidant potential and pigment contents of wild watercress (Nasturtium officinale L.) were studied to assess the potential for future studies and its applications in neutraceuticals and bioactive functional ingredients. Different extracts of watercress (roots, stem and leaves) were analysed for pigment composition, total phenolic contents, and radical scavenging activity. The phenolic profile of the leaves and roots was studied using reversed phase HPLC-DAD. Results showed that total phenolic compounds in all samples were higher in the methanolic extracts than its corresponding aqueous extracts. The RSA of methanolic extracts was higher than aqueous extracts. Fourteen phenolic compounds were identified in the leaves, where coumaric acid and its derivatives, caftaric acid and quercetin derivatives were present in higher amounts. In roots, a total of 20 compounds was tentatively identified, with coumaric acid and its derivatives, sinapic acid, caftaric acid and quercetin derivatives were the major phenolic compounds. In conclusion, watercress has significant antioxidant activity and contains important phenolic compounds, which could be of potential biological interest. PMID:26636002

  11. [Molecular characterization of a HMG-CoA reductase gene from a rare and endangered medicinal plant, Dendrobium officinale].

    PubMed

    Zhang, Lin; Wang, Ji-Tao; Zhang, Da-Wei; Zhang, Gang; Guo, Shun-Xing

    2014-03-01

    The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes the conversion of HMG-CoA to mevalonate in mavalonic acid pathway, which is the first committed step for isoprenoid biosynthesis in plants. However, it still remains unclear whether HGMR gene plays a role in the isoprenoid biosynthesis in Dendrobium officinale, an endangered epiphytic orchid species. In the present study, a HMGR encoding gene, designed as DoHMGR1 (GenBank accession JX272632), was identified from D. officinale using the reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods, for the first time. The full length cDNA of DoHMGR1 was 2 071 bp in length and encoded a 562-aa protein with a molecular weight of 59.73 kD and an isoelectric point (pI) of 6.18. The deduced DoHMGR1 protein, like other HMGR proteins, constituted four conserved domains (63-561, 147-551, 268-383 and 124-541) and two transmembrane motifs (42-64 and 85-107). Multiple sequence alignment and phylogenetic analyses demonstrated that DoHMGR1 had high identity (67%-89%) to a number of HMGR genes from various plants and was closely related to Vanda hybrid cultivar, rice and maize monocots. Real time quantitative PCR (qPCR) analysis revealed that DoHMGR1 was expressed in the three included organs. The transcripts were the most abundant in the roots with 2.13 fold over that in the leaves, followed by that in the stems with 1.98 fold. Molecular characterization of DoHMGR1 will be useful for further functional elucidation of the gene involving in isoprenoid biosynthesis pathway in D. officinale. PMID:24961116

  12. Isolation of antirhinoviral sesquiterpenes from ginger (Zingiber officinale).

    PubMed

    Denyer, C V; Jackson, P; Loakes, D M; Ellis, M R; Young, D A

    1994-05-01

    The dried rhizomes of Indonesian ginger, Zingiber officinale, were investigated for antirhinoviral activity in the plaque reduction test. Fractionation by solvent extraction, solvent partition, and repeated chromatography guided by bioassay, allowed the isolation of several sesquiterpenes with antirhinoviral activity. The most active of these was beta-sesquiphellandrene [2] with an IC50 of 0.44 microM vs. rhinovirus IB in vitro. PMID:8064299

  13. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale)

    PubMed Central

    van Breemen, Richard B.; Tao, Yi; Li, Wenkui

    2010-01-01

    Ginger roots have been used to treat inflammation and have been reported to inhibit cyclooxygenase (COX). Ultrafiltration liquid chromatography mass spectrometry was used to screen a chloroform partition of a methanol extract of ginger roots for COX-2 ligands, and 10-gingerol, 12-gingerol, 8-shogaol, 10-shogaol, 6-gingerdione, 8-gingerdione, 10-gingerdione, 6-dehydro-10-gingerol, 6-paradol, and 8-paradol bound to the enzyme active site. Purified 10-gingerol, 8-shogaol and 10-shogaol inhibited COX-2 with IC50 values of 32 μM, 17.5 μM and 7.5 μM, respectively. No inhibition of COX-1 was detected. Therefore, 10-gingerol, 8-shogaol and 10-shogaol inhibit COX-2 but not COX-1, which can explain, in part, anti-inflammatory properties of ginger. PMID:20837112

  14. Investigation of antioxidant properties of Nasturtium officinale (watercress) leaf extracts.

    PubMed

    Ozen, Tevfik

    2009-01-01

    The objective of this study was to examine the in vitro and in vivo antioxidative properties of aqueous and ethanolic extracts of the leaf of Nasturtium officinale R. Br. (watercress). Extracts were evaluated for total antioxidant activity by ferric thiocyanate method, total reducing power by potassium ferricyanide reduction method, 1,1-diphenyl-2-picrylhydrazyl (DPPH*) radical scavenging activities, superoxide anion radical scavenging activities in vitro and lipid peroxidation in vivo. Those various antioxidant activities were compared to standards such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and alpha-tocopherol. The ethanolic extract was found as the most active in total antioxidant activity, reducing power, DPPH* radicals and superoxide anion radicals scavenging activities. Administration of the ethanol extract to rats decreased lipid peroxidation in liver, brain and kidney. These results lead to the conclusion that N. officinale extracts show relevant antioxidant activity by means of reducing cellular lipid peroxidation and increasing antioxidant activity, reducing power, free radiacal and superoxide anion radical scavenging activities. In addition, total phenolic compounds in the aqueous and ethanolic extract of N. officinale were determined as pyrocatechol. PMID:19719054

  15. Purification, Characterization and Biological Activity of Polysaccharides from Dendrobium officinale.

    PubMed

    Huang, Kaiwei; Li, Yunrong; Tao, Shengchang; Wei, Gang; Huang, Yuechun; Chen, Dongfeng; Wu, Chengfeng

    2016-01-01

    Polysaccharide (DOPA) from the stem of D. officinale, as well as two fractions (DOPA-1 and DOPA-2) of it, were isolated and purified by DEAE cellulose-52 and Sephacryl S-300 chromatography, and their structural characteristics and bioactivities were investigated. The average molecular weights of DOPA-1 and DOPA-2 were 394 kDa and 362 kDa, respectively. They were mainly composed of d-mannose, d-glucose, and had a backbone consisting of 1,4-linked β-d-Manp and 1,4-linked β-d-Glcp with O-acetyl groups. Bioactivity studies indicated that both DOPA and its purified fractions (DOPA-1 and DOPA-2) could activate splenocytes and macrophages. The D. officinale polysaccharides had stimulatory effects on splenocytes, T-lymphocytes and B-lymphocytes, promoting the cell viability and NO production of RAW 264.7 macrophages. Furthermore, DOPA, DOPA-1 and DOPA-2 were found to protect RAW 264.7 macrophages against hydrogen peroxide (H₂O₂)-induced oxidative injury by promoting cell viability, suppressing apoptosis and ameliorating oxidative lesions. These results suggested that D. officinale polysaccharides possessed antioxidant activity and mild immunostimulatory activity. PMID:27248989

  16. A transcriptome-wide, organ-specific regulatory map of Dendrobium officinale, an important traditional Chinese orchid herb.

    PubMed

    Meng, Yijun; Yu, Dongliang; Xue, Jie; Lu, Jiangjie; Feng, Shangguo; Shen, Chenjia; Wang, Huizhong

    2016-01-01

    Dendrobium officinale is an important traditional Chinese herb. Here, we did a transcriptome-wide, organ-specific study on this valuable plant by combining RNA, small RNA (sRNA) and degradome sequencing. RNA sequencing of four organs (flower, root, leaf and stem) of Dendrobium officinale enabled us to obtain 536,558 assembled transcripts, from which 2,645, 256, 42 and 54 were identified to be highly expressed in the four organs respectively. Based on sRNA sequencing, 2,038, 2, 21 and 24 sRNAs were identified to be specifically accumulated in the four organs respectively. A total of 1,047 mature microRNA (miRNA) candidates were detected. Based on secondary structure predictions and sequencing, tens of potential miRNA precursors were identified from the assembled transcripts. Interestingly, phase-distributed sRNAs with degradome-based processing evidences were discovered on the long-stem structures of two precursors. Target identification was performed for the 1,047 miRNA candidates, resulting in the discovery of 1,257 miRNA--target pairs. Finally, some biological meaningful subnetworks involving hormone signaling, development, secondary metabolism and Argonaute 1-related regulation were established. All of the sequencing data sets are available at NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra/). Summarily, our study provides a valuable resource for the in-depth molecular and functional studies on this important Chinese orchid herb. PMID:26732614

  17. A transcriptome-wide, organ-specific regulatory map of Dendrobium officinale, an important traditional Chinese orchid herb

    PubMed Central

    Meng, Yijun; Yu, Dongliang; Xue, Jie; Lu, Jiangjie; Feng, Shangguo; Shen, Chenjia; Wang, Huizhong

    2016-01-01

    Dendrobium officinale is an important traditional Chinese herb. Here, we did a transcriptome-wide, organ-specific study on this valuable plant by combining RNA, small RNA (sRNA) and degradome sequencing. RNA sequencing of four organs (flower, root, leaf and stem) of Dendrobium officinale enabled us to obtain 536,558 assembled transcripts, from which 2,645, 256, 42 and 54 were identified to be highly expressed in the four organs respectively. Based on sRNA sequencing, 2,038, 2, 21 and 24 sRNAs were identified to be specifically accumulated in the four organs respectively. A total of 1,047 mature microRNA (miRNA) candidates were detected. Based on secondary structure predictions and sequencing, tens of potential miRNA precursors were identified from the assembled transcripts. Interestingly, phase-distributed sRNAs with degradome-based processing evidences were discovered on the long-stem structures of two precursors. Target identification was performed for the 1,047 miRNA candidates, resulting in the discovery of 1,257 miRNA--target pairs. Finally, some biological meaningful subnetworks involving hormone signaling, development, secondary metabolism and Argonaute 1-related regulation were established. All of the sequencing data sets are available at NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra/). Summarily, our study provides a valuable resource for the in-depth molecular and functional studies on this important Chinese orchid herb. PMID:26732614

  18. Synergids and filiform apparatus in the sexual and apomictic dandelions from section Palustria (Taraxacum, Asteraceae).

    PubMed

    Płachno, Bartosz J; Musiał, Krystyna; Swiątek, Piotr; Tuleja, Monika; Marciniuk, Jolanta; Grabowska-Joachimiak, Aleksandra

    2014-01-01

    An evolutionary trend to reduce "unnecessary costs" associated with the sexual reproduction of their amphimictic ancestors, which may result in greater reproductive success, has been observed among the obligatory apomicts. However, in the case of the female gametophyte, knowledge about this trend in apomicts is not sufficient because most of the ultrastructural studies of the female gametophyte have dealt with amphimictic angiosperms. In this paper, we tested the hypothesis that, in contrast to amphimictic plants, synergids in apomictic embryo sacs do not form a filiform apparatus. We compared the synergid structure in two dandelions from sect. Palustria: the amphimictic diploid Taraxacum tenuifolium and the apomictic tetraploid, male-sterile Taraxacum brandenburgicum. Synergids in both species possessed a filiform apparatus. In T. brandenburgicum, both synergids persisted for a long time without any degeneration, in spite of the presence of an embryo and endosperm. We propose that the persistent synergids in apomicts may play a role in the transport of nutrients to the embryo. PMID:23974526

  19. The complete chloroplast genome sequence of Dendrobium officinale.

    PubMed

    Yang, Pei; Zhou, Hong; Qian, Jun; Xu, Haibin; Shao, Qingsong; Li, Yonghua; Yao, Hui

    2016-01-01

    The complete chloroplast sequence of Dendrobium officinale, an endangered and economically important traditional Chinese medicine, was reported and characterized. The genome size is 152,018 bp, with 37.5% GC content. A pair of inverted repeats (IRs) of 26,284 bp are separated by a large single-copy region (LSC, 84,944 bp) and a small single-copy region (SSC, 14,506 bp). The complete cp DNA contains 83 protein-coding genes, 39 tRNA genes and 8 rRNA genes. Fourteen genes contained one or two introns. PMID:25103425

  20. Integument cell differentiation in dandelions (Taraxacum, Asteraceae, Lactuceae) with special attention paid to plasmodesmata.

    PubMed

    Płachno, Bartosz J; Kurczyńska, Ewa; Świątek, Piotr

    2016-09-01

    The aim of the paper is to determine what happens with plasmodesmata when mucilage is secreted into the periplasmic space in plant cells. Ultrastructural analysis of the periendothelial zone mucilage cells was performed on examples of the ovule tissues of several sexual and apomictic Taraxacum species. The cytoplasm of the periendothelial zone cells was dense, filled by numerous organelles and profiles of rough endoplasmic reticulum and active Golgi dictyosomes with vesicles that contained fibrillar material. At the beginning of the differentiation process of the periendothelial zone, the cells were connected by primary plasmodesmata. However, during the differentiation and the thickening of the cell walls (mucilage deposition), the plasmodesmata become elongated and associated with cytoplasmic bridges. The cytoplasmic bridges may connect the protoplast to the plasmodesmata through the mucilage layers in order to maintain cell-to-cell communication during the differentiation of the periendothelial zone cells. PMID:26454638

  1. [Effects of tree species on polysaccharides content of epiphytic Dendrobium officinale].

    PubMed

    Guo, Ying-Ying; Zhu, Yan; Si, Jin-Ping; Liu, Jing-Jing; Wu, Cheng-Yong; Li, Hui

    2014-11-01

    To reveals the effects of tree species on polysaccharides content of epiphytic Dendrobium officinale. The polysaccharides content of D. officinale attached to living tress in wild or stumps in bionic-facility was determined by phenol-sulfuric acid method. There were extremely significant differences of polysaccharides content of D. officinale attached to different tree species, but the differences had no relationship with the form and nutrition of barks. The polysaccharides content of D. officinale mainly affected by the light intensity of environment, so reasonable illumination favored the accumulation of polysaccharides. Various polysaccharides content of D. officinal from different attached trees is due to the difference of light regulation, but not the form and nutrition of barks. PMID:25775797

  2. [Variation of polysaccharides and alcohol-soluble extracts content of Dendrobium officinale].

    PubMed

    Yu, Qiao-xian; Guo, Ying-ying; Si, Jin-ping; Wu, Ling-shang; Wang, Lin-hua

    2014-12-01

    To reveal the variation of polysaccharides and alcohol-soluble extract contents of Dendrobium officinale, the polysaccharides and alcohol-soluble extracts contents of three D. officinale strains were determined by phenol-sulfuric acid method and hot-dip method, respectively. The results showed that the contents of polysaccharides and alcohol-soluble extracts and their total content were significantly different among D. officinale samples collected in different periods, and the variations were closely related to the phenology of D. officinale. Additionally, the quality variation of polysaccharides was closely related to the flowering of D. officinale, while the alcohol-soluble extracts was closely associated to the formation and germination of buds. According to the dynamic variation of these two compounds, it is more reasonable to harvest D. officinale at biennials pre-bloom than at specific harvesting month considering polysaccharides content. It is better to harvest before the germination of buds considering alcohol-soluble extracts. While with regards to both polysaccharides and alcohol-soluble extract, it is better to harvest this plant at the period from the sprouting to pre-bloom next year. PMID:25898575

  3. [Effect of strains and parts on amino acids of Dendrobium officinale].

    PubMed

    Liu, Zhen-peng; Guo, Ying-ying; Iu, Jing-jing; Si, Jin-ping; Wu, Ling-shang; Zhang, Xin-feng

    2015-04-01

    The aim of the paper is to reveals the variations of Dendrobium officinale amino acids in different strains and parts for breeding excellent varieties, and providing scientific basis for the expanding of medicinal or edible parts. The contents of 17 amino acids in 11 strains of D. officinale were determined by hydrochloric acid hydrolysis method. The total amino acids content of leaves was from 6.76 to 7.97 g per 100 g, and the stems was from 1.61 to 2.44 g per 100 g. As the content of amino acids in leaves was significantly higher than that of stems, and the composition was close to the ideal protein standard proposed by FAO/WHO. The leaves of D. officinale had the good prospect for the development of functional foods. The 9 x 66 strain which with high yield and polysaccharide content had the highest amino acids content both in stems and leaves, indicated crossbreeding could improve the quality of varieties. Compared the amino acids content of D. officinale in two main harvest periods, the harvest time has a significant impact on amino acids content of D. officinale. This study demonstrates that the harvesting time of D. officinale stems is suitable for leaves as well, which is the period before bolssom. PMID:26281581

  4. Effect of Poloxamer on Zingiber Officinale Extracted Green Synthesis and Antibacterial Studies of Silver Nanoparticles.

    PubMed

    Chitra, K; Manikandan, A; Antony, S Arul

    2016-01-01

    The Zingiber officinale (Z. officinale) plant is one of the well-known medicinal plants. Poloxamer finds excellent clinical and therapeutic uses for curing of various ailments. The poloxamer 188 polymer and the plant extract of Z. officinale have been used to prepare the silver nanoparticles (AgNPs) by a green synthesis route. The Z. officinale plant extract has been used as a reducing agent, while the poloxamer 188 has been used as a stabilizing agent. The formation of face-centered cubic (fcc) structure AgNPs was confirmed by X-ray diffraction pattern. The effect of addition of poloxamer on the controlling the shape, size and morphologies of the AgNPs has been investigated by transmission electron microscopy (TEM) and dynamic light scattering techniques. The elemental composition of AgNPs was confirmed by energy dispersive X-ray (EDX) analysis. The anti-bacterial activity of AgNPs has been investigated using three human pathogens Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus. The poloxamer 188 protected AgNPs inhibit the bacterial growth more effectively than the pure Z. officinale extract and the Z. officinale extract AgNPs. PMID:27398519

  5. Rapid and sensitive identification of the herbal tea ingredient Taraxacum formosanum using loop-mediated isothermal amplification.

    PubMed

    Lai, Guan-Hua; Chao, Jung; Lin, Ming-Kuem; Chang, Wen-Te; Peng, Wen-Huang; Sun, Fang-Chun; Lee, Meng-Shiunn; Lee, Meng-Shiou

    2015-01-01

    Taraxacum formosanum (TF) is a medicinal plant used as an important component of health drinks in Taiwan. In this study, a rapid, sensitive and specific loop-mediated isothermal amplification (LAMP) assay for authenticating TF was established. A set of four specific LAMP primers was designed based on the nucleotide sequence of the internal transcribed spacer 2 (ITS2) nuclear ribosomal DNA (nrDNA) of TF. LAMP amplicons were successfully amplified and detected when purified genomic DNA of TF was added in the LAMP reaction under isothermal condition (65 °C) within 45 min. These specific LAMP primers have high specificity and can accurately discriminate Taraxacum formosanum from other adulterant plants; 1 pg of genomic DNA was determined to be the detection limit of the LAMP assay. In conclusion, using this novel approach, TF and its misused plant samples obtained from herbal tea markets were easily identified and discriminated by LAMP assay for quality control. PMID:25584616

  6. Rapid and Sensitive Identification of the Herbal Tea Ingredient Taraxacum formosanum Using Loop-Mediated Isothermal Amplification

    PubMed Central

    Lai, Guan-Hua; Chao, Jung; Lin, Ming-Kuem; Chang, Wen-Te; Peng, Wen-Huang; Sun, Fang-Chun; Lee, Meng-Shiunn; Lee, Meng-Shiou

    2015-01-01

    Taraxacum formosanum (TF) is a medicinal plant used as an important component of health drinks in Taiwan. In this study, a rapid, sensitive and specific loop-mediated isothermal amplification (LAMP) assay for authenticating TF was established. A set of four specific LAMP primers was designed based on the nucleotide sequence of the internal transcribed spacer 2 (ITS2) nuclear ribosomal DNA (nrDNA) of TF. LAMP amplicons were successfully amplified and detected when purified genomic DNA of TF was added in the LAMP reaction under isothermal condition (65 °C) within 45 min. These specific LAMP primers have high specificity and can accurately discriminate Taraxacum formosanum from other adulterant plants; 1 pg of genomic DNA was determined to be the detection limit of the LAMP assay. In conclusion, using this novel approach, TF and its misused plant samples obtained from herbal tea markets were easily identified and discriminated by LAMP assay for quality control. PMID:25584616

  7. Zingiber officinale: A Potential Plant against Rheumatoid Arthritis

    PubMed Central

    Al-Nahain, Abdullah; Jahan, Rownak

    2014-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease particularly affecting elderly people which leads to massive bone destruction with consequent inflammation, pain, and debility. Allopathic medicine can provide only symptomatic relief. However, Zingiber officinale is a plant belonging to the Zingiberaceae family, which has traditionally been used for treatment of RA in alternative medicines of many countries. Many of the phytochemical constituents of the rhizomes of this plant have therapeutic benefits including amelioration of RA. This review attempts to list those phytochemical constituents with their reported mechanisms of action. It is concluded that these phytochemicals can form the basis of discovery of new drugs, which not only can provide symptomatic relief but also may provide total relief from RA by stopping RA-induced bone destruction. As the development of RA is a complex process, further research should be continued towards elucidating the molecular details leading to RA and drugs that can stop or reverse these processes by phytoconstituents of ginger. PMID:24982806

  8. [Analysis of inorganic elements in hydroponic Taraxacum mongolicum grown under different spectrum combinations by ICP-AES].

    PubMed

    Chen, Xiao-li; Morewane, M B; Xue, Xu-zhang; Guo, Wen-zhong; Wang, Li-chun

    2015-02-01

    Dandelion (Taraxacum mongolicum) was hydroponically cultured in a completely enclosed plant factory, in which fluorescence and LED emitting spectra of different bands were used as the sole light source for plant growth. Effects of spectral component on the growth of dandelion were studied and the contents of ten inorganic elements such as K, P, Ca, Mg, Na, Fe, Mn, Zn, Cu and B in dandelion were analyzed by ICP-AES technology. The results showed that: (1) Under the condition of similar photosynthetic active radiation (PAR), single R or combined spectrums of FLRB were beneficial for biomass accumulation, while single B was the contrary; (2) Macroelements content ratio in Taraxacum mongolicum grown under FLwas K:Ca:P:Mg : Na=79.74:32.39:24.32:10.55:1.00, microelements content ratio was Fe:Mn:B:Zn:Cu = 9.28:9.71:3.82:2.08:1.00; (3) Red light (peak at 660 nm) could promote the absorptions of Ca, Fe, Mn, Zn, while absorption of Cu was not closely related to spectral conditions; (4) Thehighest accumulation of Ca, Na, Mn and Zn were obtained in aerial parts of Taraxacum mongolicum plants grown under pure red spectrum R, while the accumulation of the rest six elements reached the highest level under the mixed spectrum FLRB. PMID:25970924

  9. ABA-stimulated SoDOG1 expression is after-ripening inhibited during early imbibition of germinating Sisymbrium officinale seeds.

    PubMed

    Carrillo-Barral, Néstor; Matilla, Angel J; García-Ramas, Cristina; Rodríguez-Gacio, María Del Carmen

    2015-12-01

    DELAY OF GERMINATION 1 (AtDOG1) was the first gene identified as dormancy-associated, but its physiological role in germination is far from being understood. Here, an orthologue of AtDOG1 in Sisymbrium officinale (SoDOG1; KM009050) is being reported. Phylogenetically, the SoDOG1 gene is included into the dicotyledonous group together with DOG1 from Arabidopsis thaliana (EF028470), Brassica rapa (AC189537), Lepidium papillosum (JX512183, JX512185) and Lepidium sativum (GQ411192). The SoDOG1 expression peaked at the onset of the silique maturation stage and there was presence of SoDOG1-mRNA in the freshly collected viable dry seed (i.e. AR0). The SoDOG1 transcripts were also found in other organs, such as open and closed flowers and to a lesser degree in roots and stems. We have previously reported in S. officinale seeds in which sensu stricto germination is positively affected by nitrate and both testa and micropylar endosperm ruptures are temporally separated. In dry viable seeds, the SoDOG1-mRNA level in three different after-ripening (AR) status was AR0 ≈ AR7 (optimal AR) < AR27 (optimal AR was almost lost). The presence of nitrate in the AR0 seed imbibition medium markedly decreased the SoDOG1 expression during sensu stricto germination. However, the nitrate stimulated the SoDOG1 expression during imbibition of AR7 compared to AR0. At the early AR0 seed imbibition (3-6 h), exogenous ABA provoked a very strong stimulation of the SoDOG1 expression. AR inhibits ABA-induced SoDOG1 expression during early germination and gibberellins (GA) can partially mimic this AR effect. A view on the integration of all found results in the sensu stricto germination of S. officinale was conducted. PMID:26046653

  10. Antibacterial Studies and Effect of Poloxamer on Gold Nanoparticles by Zingiber Officinale Extracted Green Synthesis.

    PubMed

    Chitra, K; Reena, K; Manikandan, A; Antony, S Arul

    2015-07-01

    Poloxamer finds excellent clinical and therapeutic uses for curing of various ailments. The Zin- giber officinale (Z. officinale) is one of the well-known medicinal plants. The poloxamer188 and the rhizome extract of Z. officinale have been used to synthesize the gold nanoparticles (AuNPs) by a green approach. The Z. officinale extract has been used as a reducing agent while the polox- amerl88 has been used as a stabilizing agent. The effect of addition of poloxamer on the controlling the shape and size of the AuNPs has been investigated by transmission electron microscopy (TEM) and dynamic light scattering techniques. The formation of AuNPs has also been confirmed by UV-Visible spectral, energy dispersive X-ray (EDX) and powder X-ray diffraction (XRD) analyses. The anti-bacterial activity of the green synthesized AuNPs has been investigated on the three human pathogens Staphylococcus aureus, Escherichia coli, and Klebsiella pneumonia. The poloxamer188 protected AuNPs inhibit the bacterial growth more effectively than the pure Z. officinale extract and the standard tetracycline (TA). PMID:26373065

  11. Ethanolic extract of dandelion (Taraxacum mongolicum) induces estrogenic activity in MCF-7 cells and immature rats.

    PubMed

    Oh, Seung Min; Kim, Ha Ryong; Park, Yong Joo; Lee, Yong Hwa; Chung, Kyu Hyuck

    2015-11-01

    Plants of the genus Taraxacum, commonly known as dandelions, are used to treat breast cancer in traditional folk medicine. However, their use has mainly been based on empirical findings without sufficient scientific evidence. Therefore, we hypothesized that dandelions would behave as a Selective estrogen receptor modulator (SERM) and be effective as hormone replacement therapy (HRT) in the postmenopausal women. In the present study, in vitro assay systems, including cell proliferation assay, reporter gene assay, and RT-PCR to evaluate the mRNA expression of estrogen-related genes (pS2 and progesterone receptor, PR), were performed in human breast cancer cells. Dandelion ethanol extract (DEE) significantly increased cell proliferation and estrogen response element (ERE)-driven luciferase activity. DEE significantly induced the expression of estrogen related genes such as pS2 and PR, which was inhibited by tamoxifen at 1 μmol·L(-1). These results indicated that DEE could induce estrogenic activities mediated by a classical estrogen receptor pathway. In addition, immature rat uterotrophic assay was carried out to identify estrogenic activity of DEE in vivo. The lowest concentration of DEE slightly increased the uterine wet weight, but there was no significant effect with the highest concentration of DEE. The results demonstrate the potential estrogenic activities of DEE, providing scientific evidence supporting their use in traditional medicine. PMID:26614455

  12. Zingiber officinale acts as a nutraceutical agent against liver fibrosis

    PubMed Central

    2011-01-01

    Background/objective Zingiber officinale Roscoe (ginger) (Zingiberaceae) has been cultivated for thousands of years both as a spice and for medicinal purposes. Ginger rhizomes successive extracts (petroleum ether, chloroform and ethanol) were examined against liver fibrosis induced by carbon tetrachloride in rats. Results The evaluation was done through measuring antioxidant parameters; glutathione (GSH), total superoxide dismutase (SOD) and malondialdehyde (MDA). Liver marker enzymes; succinate and lactate dehydrogenases (SDH and LDH), glucose-6-phosphatase (G-6-Pase), acid phosphatase (AP), 5'- nucleotidase (5'NT) and liver function enzymes; aspartate and alanine aminotransferases (AST and ALT) as well as cholestatic markers; alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), total bilirubin were estimated. Liver histopathological analysis and collagen content were also evaluated. Treatments with the selected extracts significantly increased GSH, SOD, SDH, LDH, G-6-Pase, AP and 5'NT. However, MDA, AST, ALT ALP, GGT and total bilirubin were significantly decreased. Conclusions Extracts of ginger, particularly the ethanol one resulted in an attractive candidate for the treatment of liver fibrosis induced by CCl4. Further studies are required in order to identify the molecules responsible of the pharmacological activity. PMID:21689445

  13. Evaluation of effects of Zingiber officinale on salivation in rats.

    PubMed

    Chamani, Goli; Zarei, Mohammad Reza; Mehrabani, Mitra; Taghiabadi, Yousef

    2011-01-01

    There are some herbal plants in Iranian traditional system of medicine which are believed to be excellent remedies to alleviate the symptoms of xerostomia. The aim of the present study was to evaluate the effect of systemic administration of seven different herbal extracts on the rate of salivation in rats. The extracts of 7 herbs; Zingiber officinale Roscoe (Zingiberaceae), Citrus sinensis (L.) Osbeck (Rutaceae), Artemisia absinthium L. (Asteraceae), Cichorium intybus L. (Asteraceae), Pimpinella anisum L.(Apiaceae), Portulaca oleracea L.(Portulacaceae), Tribulus terrestris L. (Zygophyllaceae) were prepared. Nine groups of animals (including negative and positive control groups) were used and seven rats were tested in each group. After the injection of extracts, saliva volume was measured gravimetrically in four continuous seven-minute intervals. The results showed that after injection of ginger extracts salivation was significantly higher as compared to the negative control group and other herbal extracts in all of the four intervals (P<0.01). The peak action of the ginger was during the first 7-minute interval and following this, salivation decreased to some extent. The present study suggests that the extract of Zingiber offiicianle can increase the rate of salivation significantly in animal model. Further investigations on different constituents of ginger seem to be essential to identify the responsible constituent for stimulation of saliva secretion. PMID:21874635

  14. [Study on suitable harvest time of Dendrobium officinale in Yunnan province].

    PubMed

    Zhang, Shan-bao; Zhou, Ke-jun; Zhang, Zhen; Lu, Rui-rui; Li, Xian; Li, Xiao-hua

    2015-09-01

    In order to determine the suitable harvest time of Dendrobium officinale from different regions in Yunnan province, the drying rate, mannose and glucose peak area ratio, extract, contents of polysaccharide and mannose of D. officinale samples collected from six producing areas in Ynnnan province were determined. The results indicate that drying rate and the contents of polysaccharide and mannose arrived the peak from January to April, extract reached a higher content from September to December, and mannose and glucose peak area ratio from October to February of the coming met the requirment of the Chinese Pharmacopoeia. Hence, the suitable harvesting time of D. officinale in Yunnan province is from December to February of the coming year,according to the experimental results and the request of the Chinese Pharmacopoeia. PMID:26983198

  15. Two new dendrocandins with neurite outgrowth-promoting activity from Dendrobium officinale.

    PubMed

    Yang, Liu; Liu, Shou-Jin; Luo, Huai-Rong; Cui, Juan; Zhou, Jun; Wang, Xuan-Jun; Sheng, Jun; Hu, Jiang-Miao

    2015-01-01

    Two new bibenzyl derivatives, dendrocandin T (1) and dendrocandin U (2), together with eight known bibenzyls, were isolated from the stems of Dendrobium officinale. Those compounds were sent for the first time for central nervous system-related bioassay and the results indicated that compounds 3, 4, and 5 have a certain degree of neurite outgrowth-promoting activity, and compounds 1, 2, 6, and 7 also have weak activity. The results indicated that D. officinale used as health food and traditional Chinese medicine "Tiepi Shihu" has a health function of neurotrophic effects. PMID:25289696

  16. Ginger root--a new antiemetic. The effect of ginger root on postoperative nausea and vomiting after major gynaecological surgery.

    PubMed

    Bone, M E; Wilkinson, D J; Young, J R; McNeil, J; Charlton, S

    1990-08-01

    The effectiveness of ginger (Zingiber officinale) as an antiemetic agent was compared with placebo and metoclopramide in 60 women who had major gynaecological surgery in a double-blind, randomised study. There were statistically significantly fewer recorded incidences of nausea in the group that received ginger root compared with placebo (p less than 0.05). The number of incidences of nausea in the groups that received either ginger root or metoclopramide were similar. The administration of antiemetic after operation was significantly greater in the placebo group compared to the other two groups (p less than 0.05). PMID:2205121

  17. Biodegradation of C.I. Acid Blue 92 by Nasturtium officinale: Study of Some Physiological Responses and Metabolic Fate of Dye.

    PubMed

    Torbati, S; Movafeghi, A; Khataee, A R

    2015-01-01

    The present study was conducted to evaluate the potential of aquatic vascular plant, Nasturtium officinale, for degradation of C.I. Acid Blue 92 (AB92). The effect of operational parameters such as initial dye concentration, plant biomass, pH, and temperature on the efficiency of biological decolorization process was determined. The reusability of the plant in long term repetitive operations confirmed the biological degradation process. The by-products formed during biodegradation process were identified by GC-MS technique. The effects of the dye on several plant physiological responses such as photosynthetic pigments content and antioxidant enzymes activity were investigated. The content of chlorophyll and carotenoids was significantly reduced at 20 mg/L of the dye. The activities of superoxide dismutase and peroxidase were remarkably increased in the plant root verifying their importance in plant tolerance to the dye contamination. PMID:25409244

  18. Additional tests on the efficacy of ginger root oil in enhacing the mating competitiveness of sterile males of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have shown that exposure to the aroma of ginger root oil (Zingiber officinale Roscoe; termed GRO hereafter) increases the mating competitiveness of males of the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann). This result suggests that pre-release exposure of sterile ...

  19. Effects of combining extracts (from propolis or Zingiber officinale) with clarithromycin on Helicobacter pylori.

    PubMed

    Nostro, A; Cellini, L; Di Bartolomeo, S; Cannatelli, M A; Di Campli, E; Procopio, F; Grande, R; Marzio, L; Alonzo, V

    2006-03-01

    Propolis and Zingiber officinale have been shown to be specifically targeted against Helicobacter pylori strains, to possess antiinflammatory, antioxidant and antitumoral activity and to be used in traditional medicine for the treatment of gastrointestinal ailments. Considering that these natural products could potentially serve as novel therapeutic tools also in combination with an antibiotic, the aim of this work was to evaluate their effect when combined with clarithromycin on clinical H. pylori isolates (n = 25), characterized in respect to both clarithromycin susceptibility and the presence of the cagA gene. The results showed that the combinations of propolis extract + clarithromycin and Z. officinale extract + clarithromycin exhibited improved inhibition of H. pylori with synergistic or additive activity. Interestingly, the susceptibility to combinations was significantly independent of the microbial clarithromycin susceptibility status. Only one H. pylori strain showed antagonism towards the Z. officinale extract + clarithromycin combination. The data demonstrate that combinations of propolis extract + clarithromycin and Z. officinale extract + clarithromycin have the potential to help control H. pylori-associated gastroduodenal disease. PMID:16521108

  20. Metabolic Analysis of Medicinal Dendrobium officinale and Dendrobium huoshanense during Different Growth Years

    PubMed Central

    Jin, Qing; Jiao, Chunyan; Sun, Shiwei; Song, Cheng; Cai, Yongping; Lin, Yi; Fan, Honghong; Zhu, Yanfang

    2016-01-01

    Metabolomics technology has enabled an important method for the identification and quality control of Traditional Chinese Medical materials. In this study, we isolated metabolites from cultivated Dendrobium officinale and Dendrobium huoshanense stems of different growth years in the methanol/water phase and identified them using gas chromatography coupled with mass spectrometry (GC-MS). First, a metabolomics technology platform for Dendrobium was constructed. The metabolites in the Dendrobium methanol/water phase were mainly sugars and glycosides, amino acids, organic acids, alcohols. D. officinale and D. huoshanense and their growth years were distinguished by cluster analysis in combination with multivariate statistical analysis, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Eleven metabolites that contributed significantly to this differentiation were subjected to t-tests (P<0.05) to identify biomarkers that discriminate between D. officinale and D. huoshanense, including sucrose, glucose, galactose, succinate, fructose, hexadecanoate, oleanitrile, myo-inositol, and glycerol. Metabolic profiling of the chemical compositions of Dendrobium species revealed that the polysaccharide content of D. huoshanense was higher than that of D. officinale, indicating that the D. huoshanense was of higher quality. Based on the accumulation of Dendrobium metabolites, the optimal harvest time for Dendrobium was in the third year. This initial metabolic profiling platform for Dendrobium provides an important foundation for the further study of secondary metabolites (pharmaceutical active ingredients) and metabolic pathways. PMID:26752292

  1. Species-specific AFLP markers for identification of Zingiber officinale, Z. montanum and Z. zerumbet (Zingiberaceae).

    PubMed

    Ghosh, S; Majumder, P B; Sen Mandi, S

    2011-01-01

    The Zingiber genus, which includes the herbs known as gingers, commonly used in cooking, is well known for its medicinal properties, as described in the Indian pharmacopoeia. Different members of this genus, although somewhat similar in morphology, differ widely in their pharmacological and therapeutic properties. The most important species of this genus, with maximal therapeutic properties, is Zingiber officinale (garden ginger), which is often adulterated with other less-potent Zingiber sp. There is an existing demand in the herbal drug industry for an authentication system for the Zingiber sp in order to facilitate their commercial use as genuine phytoceuticals. To this end, we used amplified fragment length polymorphism (AFLP) to produce DNA fingerprints for three Zingiber species. Sixteen collections (six of Z. officinale, five of Z. montanum, and five of Z. zerumbet) were used in the study. Seven selective primer pairs were found to be useful for all the accessions. A total of 837 fragments were produced by these primer pairs. Species-specific markers were identified for all three Zingiber species (91 for Z. officinale, 82 for Z. montanum, and 55 for Z. zerumbet). The dendogram analysis generated from AFLP patterns showed that Z. montanum and Z. zerumbet are phylogenetically closer to each other than to Z. officinale. The AFLP fingerprints of the Zingiber species could be used to authenticate Zingiber sp-derived drugs and to resolve adulteration-related problems faced by the commercial users of these herbs. PMID:21341214

  2. Beneficial therapeutic effects of Nigella sativa and/or Zingiber officinale in HCV patients in Egypt

    PubMed Central

    Abdel-Moneim, Adel; Morsy, Basant M.; Mahmoud, Ayman M.; Abo-Seif, Mohamed A.; Zanaty, Mohamed I.

    2013-01-01

    Hepatitis C is a major global health burden and Egypt has the highest prevalence of hepatitis C virus (HCV) worldwide. The current study was designed to evaluate the beneficial therapeutic effects of ethanolic extracts of Nigella sativa, Zingiber officinale and their mixture in Egyptian HCV patients. Sixty volunteer patients with proven HCV and fifteen age matched healthy subjects were included in this study. Exclusion criteria included patients on interferon alpha (IFN-α) therapy, infection with hepatitis B virus, drug-induced liver diseases, advanced cirrhosis, hepatocellular carcinoma (HCC) or other malignancies, blood picture abnormalities and major severe illness. Liver function enzymes, albumin, total bilirubin, prothrombin time and concentration, international normalized ratio, alpha fetoprotein and viral load were all assessed at baseline and at the end of the study. Ethanolic extracts of Nigella sativa and Zingiber officinale were prepared and formulated into gelatinous capsules, each containing 500 mg of Nigella sativa and/or Zingiber officinale. Clinical response and incidence of adverse drug reactions were assessed initially, periodically, and at the end of the study. Both extracts as well as their mixture significantly ameliorated the altered viral load, alpha fetoprotein, liver function parameters; with more potent effect for the combined therapy. In conclusion, administration of Nigella sativa and/or Zingiber officinale ethanolic extracts to HCV patients exhibited potential therapeutic benefits via decreasing viral load and alleviating the altered liver function, with more potent effect offered by the mixture. PMID:27298610

  3. Fluorescent in situ hybridization shows DIPLOSPOROUS located on one of the NOR chromosomes in apomictic dandelions (Taraxacum) in the absence of a large hemizygous chromosomal region.

    PubMed

    Vašut, Radim J; Vijverberg, Kitty; van Dijk, Peter J; de Jong, Hans

    2014-11-01

    Apomixis in dandelions (Taraxacum: Asteraceae) is encoded by two unlinked dominant loci and a third yet undefined genetic factor: diplosporous omission of meiosis (DIPLOSPOROUS, DIP), parthenogenetic embryo development (PARTHENOGENESIS, PAR), and autonomous endosperm formation, respectively. In this study, we determined the chromosomal position of the DIP locus in Taraxacum by using fluorescent in situ hybridization (FISH) with bacterial artificial chromosomes (BACs) that genetically map within 1.2-0.2 cM of DIP. The BACs showed dispersed fluorescent signals, except for S4-BAC 83 that displayed strong unique signals as well. Under stringent blocking of repeats by C0t-DNA fragments, only a few fluorescent foci restricted to defined chromosome regions remained, including one on the nucleolus organizer region (NOR) chromosomes that contains the 45S rDNAs. FISH with S4-BAC 83 alone and optimal blocking showed discrete foci in the middle of the long arm of one of the NOR chromosomes only in triploid and tetraploid diplosporous dandelions, while signals in sexual diploids were lacking. This agrees with the genetic model of a single dose, dominant DIP allele, absent in sexuals. The length of the DIP region is estimated to cover a region of 1-10 Mb. FISH in various accessions of Taraxacum and the apomictic sister species Chondrilla juncea, confirmed the chromosomal position of DIP within Taraxacum but not outside the genus. Our results endorse that, compared to other model apomictic species, expressing either diplospory or apospory, the genome of Taraxacum shows a more similar and less diverged chromosome structure at the DIP locus. The different levels of allele sequence divergence at apomeiosis loci may reflect different terms of asexual reproduction. The association of apomeiosis loci with repetitiveness, dispersed repeats, and retrotransposons commonly observed in apomictic species may imply a functional role of these shared features in apomictic reproduction, as is

  4. ESTs Analysis Reveals Putative Genes Involved in Symbiotic Seed Germination in Dendrobium officinale

    PubMed Central

    Zhao, Ming-Ming; Zhang, Gang; Zhang, Da-Wei; Hsiao, Yu-Yun; Guo, Shun-Xing

    2013-01-01

    Dendrobiumofficinale (Orchidaceae) is one of the world’s most endangered plants with great medicinal value. In nature, D. officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH) cDNA library of symbiotically germinated D. officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs) were clustered to 1074 Unigenes (including 902 singletons and 172 contigs), which were searched against the NCBI non-redundant (NR) protein database (E-value cutoff, e-5). Based on sequence similarity with known proteins, 579 differentially expressed genes in D. officinale were identified and classified into different functional categories by Gene Ontology (GO), Clusters of orthologous Groups of proteins (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS). The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs), which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS), were cloned from D. officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D. officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids. PMID:23967335

  5. Roots Revisited.

    ERIC Educational Resources Information Center

    Hughes, Barnabas

    1998-01-01

    Offers historical information about square roots. Presents three different methods--Hero's method, visual method, and remainder method--which can be used to teach the finding of square roots and one method for determining cube roots. (ASK)

  6. Different extracts of Zingiber officinale decrease Enterococcus faecalis infection in Galleria mellonella.

    PubMed

    Maekawa, Lilian Eiko; Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos; Valera, Marcia Carneiro

    2015-01-01

    Dried, fresh and glycolic extracts of Zingiber officinale were obtained to evaluate the action against G. mellonella survival assay against Enterococcus faecalis infection. Eighty larvae were divided into: 1) E. faecalis suspension (control); 2) E. faecalis + fresh extract of Z. officinale (FEO); 3) E. faecalis + dried extract of Z. officinale (DEO); 4) E. faecalis + glycolic extract of Z. officinale (GEO); 5) Phosphate buffered saline (PBS). For control group, a 5 μL inoculum of standardized suspension (107 cells/mL) of E. faecalis (ATCC 29212) was injected into the last left proleg of each larva. For the treatment groups, after E. faecalis inoculation, the extracts were also injected, but into the last right proleg. The larvae were stored at 37 °C and the number of dead larvae was recorded daily for 168 h (7 days) to analyze the survival curve. The larvae were considered dead when they did not show any movement after touching. E. faecalis infection led to the death of 85% of the larvae after 168 h. Notwithstanding, in treatment groups with association of extracts, there was an increase in the survival rates of 50% (GEO), 61% (FEO) and 66% (DEO) of the larvae. In all treatment groups, the larvae exhibited a survival increase with statistically significant difference in relation to control group (p=0.0029). There were no statistically significant differences among treatment groups with different extracts (p=0.3859). It may be concluded that the tested extracts showed antimicrobial activity against E. faecalis infection by increasing the survival of Galleria mellonella larvae. PMID:25831098

  7. Anti-emetic principles of Magnolia obovata bark and Zingiber officinale rhizome.

    PubMed

    Kawai, T; Kinoshita, K; Koyama, K; Takahashi, K

    1994-02-01

    Magnolol and honokiol, biphenyl compounds, were isolated as anti-emetic principles from the methanolic extract of Magnolia obovata bark. [6]-, [8]-, and [10]-shogaols and [6]-, [8]-, and [10]-gingerols were isolated from the methanolic extract of Zingiber officinale rhizome as anti-emetic principles. Some phenyl-propanoids with allyl side-chains were found to show the same activity. They inhibited the emetic action induced by the oral administration of copper sulfate pentahydrate to leopard and ranid frogs. PMID:8134409

  8. Laticifer-Specific cis-Prenyltransferase Silencing Affects the Rubber, Triterpene, and Inulin Content of Taraxacum brevicorniculatum12[C][W

    PubMed Central

    Post, Janina; van Deenen, Nicole; Fricke, Julia; Kowalski, Natalie; Wurbs, David; Schaller, Hubert; Eisenreich, Wolfgang; Huber, Claudia; Twyman, Richard M.; Prüfer, Dirk; Gronover, Christian Schulze

    2012-01-01

    Certain Taraxacum species, such as Taraxacum koksaghyz and Taraxacum brevicorniculatum, produce large amounts of high-quality natural rubber in their latex, the milky cytoplasm of specialized cells known as laticifers. This high-molecular mass biopolymer consists mainly of poly(cis-1,4-isoprene) and is deposited in rubber particles by particle-bound enzymes that carry out the stereospecific condensation of isopentenyl diphosphate units. The polymer configuration suggests that the chain-elongating enzyme (rubber transferase; EC 2.5.1.20) is a cis-prenyltransferase (CPT). Here, we present a comprehensive analysis of transgenic T. brevicorniculatum plants in which the expression of three recently isolated CPTs known to be associated with rubber particles (TbCPT1 to -3) was heavily depleted by laticifer-specific RNA interference (RNAi). Analysis of the CPT-RNAi plants by nuclear magnetic resonance, size-exclusion chromatography, and gas chromatography-mass spectrometry indicated a significant reduction in rubber biosynthesis and a corresponding 50% increase in the levels of triterpenes and the main storage carbohydrate, inulin. Transmission electron microscopy revealed that the laticifers in CPT-RNAi plants contained fewer and smaller rubber particles than wild-type laticifers. We also observed lower activity of hydroxymethylglutaryl-coenzyme A reductase, the key enzyme in the mevalonate pathway, reflecting homeostatic control of the isopentenyl diphosphate pool. To our knowledge, this is the first in planta demonstration of latex-specific CPT activity in rubber biosynthesis. PMID:22238421

  9. Comfrey root: from tradition to modern clinical trials.

    PubMed

    Staiger, Christiane

    2013-02-01

    Comfrey (Symphytum officinale L.) has been used over many centuries as a medicinal plant. In particular, the use of the root has a longstanding tradition. Today, several randomised controlled trials have demonstrated the efficacy and safety. Comfrey root extract has been used for the topical treatment of painful muscle and joint complaints. It is clinically proven to relieve pain, inflammation and swelling of muscles and joints in the case of degenerative arthritis, acute myalgia in the back, sprains, contusions and strains after sports injuries and accidents, also in children aged 3 years and older. This paper provides information on clinical trials, non-interventional studies and further literature published on comfrey root till date. PMID:23224633

  10. Antioxidant and inhibitory effect of red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe) on Fe(2+) induced lipid peroxidation in rat brain in vitro.

    PubMed

    Oboh, Ganiyu; Akinyemi, Ayodele J; Ademiluyi, Adedayo O

    2012-01-01

    Neurodegerative diseases have been linked to oxidative stress arising from peroxidation of membrane biomolecules and high levels of Fe have been reported to play an important role in neurodegenerative diseases and other brain disorder. Malondialdehyde (MDA) is the end-product of lipid peroxidation and the production of this aldehyde is used as a biomarker to measure the level of oxidative stress in an organism. The present study compares the protective properties of two varieties of ginger [red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe)] on Fe(2+) induced lipid peroxidation in rat brain in vitro. Incubation of the brain tissue homogenate in the presence of Fe caused a significant increase in the malondialdehyde (MDA) contents of the brain. However, the aqueous extract from both varieties of ginger caused a significant decrease in the MDA contents of the brain in a dose-dependent manner. However, the aqueous extract of red ginger had a significantly higher inhibitory effect on both Fe(2+)-induced lipid peroxidation in the rat brain homogenates than that of white ginger. This higher inhibitory effect of red ginger could be attributed to its significantly higher phytochemical content, Fe(2+) chelating ability, OH scavenging ability and reducing power. However, part of the mechanisms through which the extractable phytochemicals in ginger (red and white) protect the brain may be through their antioxidant activity, Fe(2+) chelating and OH scavenging ability. Therefore, oxidative stress in the brain could be potentially managed/prevented by dietary intake of ginger varieties (red ginger and white ginger rhizomes). PMID:20598871

  11. Element-tracing of mineral matters in Dendrobium officinale using ICP-MS and multivariate analysis.

    PubMed

    Zhu, Nannan; Han, Shen; Yang, Chunning; Qu, Jixu; Sun, Zhirong; Liu, Wenjie; Zhang, Xiaomin

    2016-01-01

    Rare studies have been performed to trace the mineral elements in Dendrobium officinale. In this study, we aim to trace the mineral elements in D. officinale collected from ten geographical locations in China. ICP-MS system was used for simultaneous determination of mineral elements. Principal component analysis was performed using the obtained data in the quantification of mineral contents. Cluster analysis was performed using the Ward's method. Several of essential microelments were detected in D. officinale, including ferrum (Fe), manganese (Mn), zinc (Zn), chromium (Cr), nickel (Ni) and vanadium (V). Among these elements, three elements (i.e. Fe, Mn and Zn) were highly and simultaneously detected in the D. officinale collected from the ten locations. The level of Ni was positively associated with that of Zn (r = 0.986, P < 0.01). The level of titanium (Ti) was positively associated with that of V (r = 0.669, P < 0.05), and negatively associated with Cr (r = -0.710, P < 0.05). In addition, the level of Mn was positively associated with that of barium (r = 0.749, P < 0.05). Further, the level of Fe was positively associated with that of Ni (r = 0.664, P < 0.05), Zn (r = 0.742, P < 0.05), and rare earth elements (r = 0.847, P < 0.01), respectively. Three eigenvalues explained about 86.60 % of the total variance, which contributed significantly to the explanation of cumulative variance. Cluster analysis indicated the cultivars were categorized into 3 clusters. Ni, Zn, Fe, Cr, Ti and rare earth elements were designated as the characteristic elements. Cultivars collected from Yulin, Menghai, and Shaoguan ranked the top 3 in the comprehensive scores, indicating the content of the mineral elements was comparatively higher in these locations. PMID:27429889

  12. Square Root +

    ERIC Educational Resources Information Center

    Frederiksen, John G.

    1969-01-01

    A rational presentation of the so-called long division method for extracting the square root of a number. Diagrams are used to show relationship of this technique to the binomial theorem. Presentation exposes student to many facets of mathematics in addition to the mechanics of funding square root and cube root. Geometry, algebraic statements,…

  13. First genetic linkage map of Taraxacum koksaghyz Rodin based on AFLP, SSR, COS and EST-SSR markers.

    PubMed

    Arias, Marina; Hernandez, Monica; Remondegui, Naroa; Huvenaars, Koen; van Dijk, Peter; Ritter, Enrique

    2016-01-01

    Taraxacum koksaghyz Rodin (TKS) has been studied in many occasions as a possible alternative source for natural rubber production of good quality and for inulin production. Some tire companies are already testing TKS tire prototypes. There are also many investigations on the production of bio-fuels from inulin and inulin applications for health improvement and in the food industry. A limited amount of genomic resources exist for TKS and particularly no genetic linkage map is available in this species. We have constructed the first TKS genetic linkage map based on AFLP, COS, SSR and EST-SSR markers. The integrated linkage map with eight linkage groups (LG), representing the eight chromosomes of Russian dandelion, has 185 individual AFLP markers from parent 1, 188 individual AFLP markers from parent 2, 75 common AFLP markers and 6 COS, 1 SSR and 63 EST-SSR loci. Blasting the EST-SSR sequences against known sequences from lettuce allowed a partial alignment of our TKS map with a lettuce map. Blast searches against plant gene databases revealed some homologies with useful genes for downstream applications in the future. PMID:27488242

  14. Identification of a Taraxacum brevicorniculatum rubber elongation factor protein that is localized on rubber particles and promotes rubber biosynthesis.

    PubMed

    Laibach, Natalie; Hillebrand, Andrea; Twyman, Richard M; Prüfer, Dirk; Schulze Gronover, Christian

    2015-05-01

    Two protein families required for rubber biosynthesis in Taraxacum brevicorniculatum have recently been characterized, namely the cis-prenyltransferases (TbCPTs) and the small rubber particle proteins (TbSRPPs). The latter were shown to be the most abundant proteins on rubber particles, where rubber biosynthesis takes place. Here we identified a protein designated T. brevicorniculatum rubber elongation factor (TbREF) by using mass spectrometry to analyze rubber particle proteins. TbREF is homologous to the TbSRPPs but has a molecular mass that is atypical for the family. The promoter was shown to be active in laticifers, and the protein itself was localized on the rubber particle surface. In TbREF-silenced plants generated by RNA interference, the rubber content was significantly reduced, correlating with lower TbCPT protein levels and less TbCPT activity in the latex. However, the molecular mass of the rubber was not affected by TbREF silencing. The colloidal stability of rubber particles isolated from TbREF-silenced plants was also unchanged. This was not surprising because TbREF depletion did not affect the abundance of TbSRPPs, which are required for rubber particle stability. Our findings suggest that TbREF is an important component of the rubber biosynthesis machinery in T. brevicorniculatum, and may play a role in rubber particle biogenesis and influence rubber production. PMID:25809497

  15. First genetic linkage map of Taraxacum koksaghyz Rodin based on AFLP, SSR, COS and EST-SSR markers

    PubMed Central

    Arias, Marina; Hernandez, Monica; Remondegui, Naroa; Huvenaars, Koen; van Dijk, Peter; Ritter, Enrique

    2016-01-01

    Taraxacum koksaghyz Rodin (TKS) has been studied in many occasions as a possible alternative source for natural rubber production of good quality and for inulin production. Some tire companies are already testing TKS tire prototypes. There are also many investigations on the production of bio-fuels from inulin and inulin applications for health improvement and in the food industry. A limited amount of genomic resources exist for TKS and particularly no genetic linkage map is available in this species. We have constructed the first TKS genetic linkage map based on AFLP, COS, SSR and EST-SSR markers. The integrated linkage map with eight linkage groups (LG), representing the eight chromosomes of Russian dandelion, has 185 individual AFLP markers from parent 1, 188 individual AFLP markers from parent 2, 75 common AFLP markers and 6 COS, 1 SSR and 63 EST-SSR loci. Blasting the EST-SSR sequences against known sequences from lettuce allowed a partial alignment of our TKS map with a lettuce map. Blast searches against plant gene databases revealed some homologies with useful genes for downstream applications in the future. PMID:27488242

  16. Root Hairs

    PubMed Central

    Grierson, Claire; Nielsen, Erik; Ketelaarc, Tijs; Schiefelbein, John

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. PMID:24982600

  17. Anthelmintic constituents from ginger (Zingiber officinale) against Hymenolepis nana.

    PubMed

    Lin, Rong-Jyh; Chen, Chung-Yi; Lu, Chin-Mei; Ma, Yi-Hsuan; Chung, Li-Yu; Wang, Jiun-Jye; Lee, June-Der; Yen, Chuan-Min

    2014-12-01

    This study investigated the anthelmintic activity of gingerenone A, [6]-dehydrogingerdione, [4]-shogaol, 5-hydroxy-[6]-gingerol, [6]-shogaol, [6]-gingerol, [10]-shogaol, [10]-gingerol, hexahydrocurcumin, 3R,5S-[6]-gingerdiol and 3S,5S-[6]-gingerdiol, a constituent isolate from the roots of ginger, for the parasite Hymenolepis nana. The cestocidal activity or ability to halt spontaneous parasite movement (oscillation/peristalsis) in H. nana of above constituents was reached from 24 to 72h in a time- and dose-dependent manner, respectively. The [10]-shogaol and [10]-gingero1 have maximum lethal efficacy and loss of spontaneous movement than the others at 24-72h. In addition, worms treated with 1 and 10μM [10]-gingero1, more than 30% had spontaneous movement of oscillation at 72h but [10]-shogaol at 72h only about 15-20% of oscillation. This showing that [10]-gingero1 had less loss of spontaneous movement efficacy than [10]-shogaol. After exposure to 200μM [10]-shogaol, 100% of H. nana had died at 12h rather than died at 24h for [10]-gingerol, showing that [10]-gingero1 had less lethal efficacy than [10]-shogaol. In addition, these constituents of ginger showed effects against peroxyl radical under cestocidal activity. In order to evaluate the cestocidal activity and cytokine production caused by ginger's extract R0 in the H. nana infected mice, we carried out in vivo examination about H. nana infected mice BALB/c mice were inoculated orally with 500 eggs. After post-inoculation, R0 (1g/kg/day) was administered orally for 10 days. The R0 exhibited cestocidal activity in vivo of significantly reduced worms number and cytokines production by in vitro Con A-stimulated spleen cells showed that INF-γ and IL-2 were significantly increases by R0. IL-4, IL-5, IL-6, IL-10 and IL-13 were significantly decreases and Murine KC and IL-12 were not significantly changes by R0. Together, these findings first suggest that these constituents of ginger might be used as cestocidal

  18. In Vitro Effect of Zingiber officinale Extract on Growth of Streptococcus mutans and Streptococcus sanguinis

    PubMed Central

    Azizi, Arash; Aghayan, Shabnam; Zaker, Saeed; Shakeri, Mahdieh; Entezari, Navid; Lawaf, Shirin

    2015-01-01

    Background and Objectives. Tooth decay is an infectious disease of microbial origin. Considering the increasing prevalence of antibiotic resistance due to their overuse and also their side effects, medicinal plants are now considered for use against bacterial infections. This study aimed to assess the effects of different concentrations of Zingiber officinale extract on proliferation of Streptococcus mutans and Streptococcus sanguinis in vitro. Materials and Methods. In this experimental study, serial dilutions of the extract were prepared in two sets of 10 test tubes for each bacterium (total of 20). Standard amounts of bacterial suspension were added; 100ƛ of each tube was cultured on prepared solid agar plates and incubated at 37°C for 24 hours. Serial dilutions of the extract were prepared in another 20 tubes and 100ƛ of each tube was added to blood agar culture medium while being prepared. The mixture was transferred to the plates. The bacteria were inoculated on plates and incubated as described. Results. The minimum inhibitory concentration (MIC) was 0.02 mg/mL for S. mutans and 0.3 mg/mL for S. sanguinis. The minimum bactericidal concentration (MBC) was 0.04 mg for S. mutans and 0.6 mg for S. sanguinis. Conclusion. Zingiber officinale extract has significant antibacterial activity against S. mutans and S. sanguinis cariogenic microorganisms. PMID:26347778

  19. Discrimination of the rare medicinal plant Dendrobium officinale based on naringenin, bibenzyl, and polysaccharides.

    PubMed

    Chen, Xiaomei; Wang, Fangfei; Wang, Yunqiang; Li, Xuelan; Wang, Airong; Wang, Chunlan; Guo, Shunxing

    2012-12-01

    The aim of this study was to establish a method for discriminating Dendrobium officinale from four of its close relatives Dendrobium chrysanthum, Dendrobium crystallinum, Dendrobium aphyllum and Dendrobium devonianum based on chemical composition analysis. We analyzed 62 samples of 24 Dendrobium species. High performance liquid chromatography analysis confirmed that the four low molecular weight compounds 4',5,7-trihydroxyflavanone (naringenin), 3,4-dihydroxy-4',5-dime-thoxybibenzyl (DDB-2), 3',4-dihydroxy-3,5'-dimethoxybibenzyl (gigantol), and 4,4'-dihydroxy-3,3',5-trimethoxybibenzy (moscatilin), were common in the genus. The phenol-sulfuric acid method was used to quantify polysaccharides, and the monosaccharide composition of the polysaccharides was determined by gas chromatography. Stepwise discriminant analysis was used to differentiate among the five closely related species based on the chemical composition analysis. This proved to be a simple and accurate approach for discriminating among these species. The results also showed that the polysaccharide content, the amounts of the four low molecular weight compounds, and the mannose to glucose ratio, were important factors for species discriminant. Therefore, we propose that a chemical analysis based on quantification of naringenin, bibenzyl, and polysaccharides is effective for identifying D. officinale. PMID:23233224

  20. Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale.

    PubMed

    Luo, Qiu-Lian; Tang, Zhuan-Hui; Zhang, Xue-Feng; Zhong, Yong-Hong; Yao, Su-Zhi; Wang, Li-Sheng; Lin, Cui-Wu; Luo, Xuan

    2016-08-01

    In this report, a water-soluble polysaccharide was obtained from the dried stems of Dendrobium officinale Kimura et Migo by hot-water (70-75°C) extraction and 85% ethanol precipitation, and successively purification by DEAE-cellulose anion-exchange chromatography and gel-permeation chromatography. The D. officinale polysaccharide (DOP) has a molecular weight of 8500Da. Monosaccharide composition analysis reveals that DOP is composed of mannose, glucose, and arabinose with a trace of galacturonic acid in a molar ratio of 6.2:2.3:2.1:0.1. Periodate oxidation-smith degradation and 1D and 2D NMR spectroscopy analysis suggest the predominance of mannose and glucose, and it contains a 2-O-acetylglucomannan and (1→4)-linked-β-d-mannopyranosyl and (1→4)-linked-β-d-glucopyranosyl residues. Atomic force microscope shows that DOP mainly exists as rod-shaped chains, supporting high degrees of polymerization. The antioxidant activities of the polysaccharide in vitro assay indicate that DOP has good scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, higher scavenging activity of hydroxyl radical, and metal chelating activities. PMID:27131730

  1. [Quantitive variation of polysaccharides and alcohol-soluble extracts in F1 generation of Dendrobium officinale].

    PubMed

    Zhang, Xiao-Ling; Liu, Jing-Jing; Wu, Ling-Shang; Si, Jin-Ping; Guo, Ying-Ying; Yu, Jie; Wang, Lin-Hua

    2013-11-01

    Using phenol-sulfuric acid method and hot-dip method of alcohol-soluble extracts, the contents of polysaccharides and alcohol-soluble extracts in 11 F1 generations of Dendrobium officinale were determined. The results showed that the polysaccharides contents in samples collected in May and February were 32.89%-43.07% and 25.77%-35.25%, respectively, while the extracts contents were 2.81%-4.85% and 7.90%-17.40%, respectively. They were significantly different among families. The content of polysaccharides in offspring could be significantly improved by hybridization between parents with low and high polysaccharides contents, and the hybrid vigor was obvious. Cross breeding was an effective way for breeding new varieties with higher polysaccharides contents. Harvest time would significantly affect the contents of polysaccharides and alcohol-soluble extracts. The contents of polysaccharides in families collected in May were higher than those of polysaccharides in families collected in February, but the extracts content had the opposite variation. The extents of quantitative variation of polysaccharides and alcohol-soluble extracts were different among families, and each family had its own rules. It would be significant in giving full play to their role as the excellent varieties and increasing effectiveness by studying on the quantitative accumulation regularity of polysaccharides and alcohol-soluble extracts in superior families (varieties) of D. officinale to determine the best harvesting time. PMID:24494555

  2. In Vitro Effect of Zingiber officinale Extract on Growth of Streptococcus mutans and Streptococcus sanguinis.

    PubMed

    Azizi, Arash; Aghayan, Shabnam; Zaker, Saeed; Shakeri, Mahdieh; Entezari, Navid; Lawaf, Shirin

    2015-01-01

    Background and Objectives. Tooth decay is an infectious disease of microbial origin. Considering the increasing prevalence of antibiotic resistance due to their overuse and also their side effects, medicinal plants are now considered for use against bacterial infections. This study aimed to assess the effects of different concentrations of Zingiber officinale extract on proliferation of Streptococcus mutans and Streptococcus sanguinis in vitro. Materials and Methods. In this experimental study, serial dilutions of the extract were prepared in two sets of 10 test tubes for each bacterium (total of 20). Standard amounts of bacterial suspension were added; 100ƛ of each tube was cultured on prepared solid agar plates and incubated at 37°C for 24 hours. Serial dilutions of the extract were prepared in another 20 tubes and 100ƛ of each tube was added to blood agar culture medium while being prepared. The mixture was transferred to the plates. The bacteria were inoculated on plates and incubated as described. Results. The minimum inhibitory concentration (MIC) was 0.02 mg/mL for S. mutans and 0.3 mg/mL for S. sanguinis. The minimum bactericidal concentration (MBC) was 0.04 mg for S. mutans and 0.6 mg for S. sanguinis. Conclusion. Zingiber officinale extract has significant antibacterial activity against S. mutans and S. sanguinis cariogenic microorganisms. PMID:26347778

  3. Potential Alleviation of Chlorella vulgaris and Zingiber officinale on Lead-Induced Testicular Toxicity: an Ultrastructural Study.

    PubMed

    Mustafa, Hesham Noaman

    2015-01-01

    Natural, products were studied to combat reproductive alterations of lead. The current work aimed to disclose the efficacy of Chlorella vulgaris and Zingiber officinale to alleviate lead acetate induced toxicity. Sixty adult male Wistar rats were distributed into four groups. Group 1 was considered control, group 2 received 200 mg/l PbAc water, group 3 received 50 mg/kg/rat of C. vulgaris extract and 200 mg/l PbAc water, and group 4 received 100 mg/kg/rat of Z. officinale and 200 mg/l PbAc water for 90 days. Testis samples were subjected to ultrastructural examination. It was observed that PbAc caused degenerative alterations in the spermatogenic series in many tubules, with a loss of germ cells and vacuoles inside the cytoplasm and between the germ cells. Mitochondria exhibited ballooning, with lost cristae and widening of the interstitial tissue, while nuclear envelopes of primary spermatocytes were broken up, and axonemes of the mid-pieces of the sperms were distorted. With the treatment with C. vulgaris or Z. officinale, there were noticeable improvements in these modifications. It was concluded that both C. vulgaris and Z. officinale represent convincing medicinal components that may be used to ameliorate testicular toxicity in those exposed to lead in daily life with superior potentials revealed by C. vulgaris due to its chelating action. PMID:26975142

  4. Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of chitosan and oligochitosan to enhance the resistance of ginger (Zingiber officinale) to rhizome rot, caused by Fusarium oxysporum, in storage was investigated. Both chitosan and oligochitosan at 1 and 5 g/L significantly inhibited rhizome rot, relative to the untreated control, with...

  5. Protective effect of the extracts from Cnidium officinale against oxidative damage induced by hydrogen peroxide via antioxidant effect.

    PubMed

    Jeong, Jin Boo; Park, Jae Ho; Lee, Hee Kyeong; Ju, So Yeong; Hong, Se Chul; Lee, Jeong Rak; Chung, Gyu Young; Lim, Jae Hwan; Jeong, Hyung Jin

    2009-03-01

    The dried rhizomes of Cnidium officinale are used as herbal drugs in the treatment of pain, inflammation, menstrual disturbance and antivitamin deficiency disease, and also act as a blood pressure depressant. In addition, there are several reports suggesting that they have pharmacological properties to tumor metastasis and angiogenesis, and that they act as an inhibitor of high glucose-induced proliferation of glomerular mesangial cells. However, little has been known about the functional role of the extracts from C. officinale on oxidative DNA damage and apoptosis caused by ROS. In this work, we have investigated the DPPH radical, hydroxyl radical and intracellular ROS scavenging capacity, and Fe(2+) chelating activity of the extracts from C. officinale. In addition, we evaluated whether the extracts are capable of reducing H(2)O(2)-induced DNA and cell damage in the human skin fibroblast cell. These extracts showed a dose-dependent free-radical scavenging capacity and a protective effect on DNA damage and the lipid peroxidation causing the cell damage by ROS. These antioxidant activities and inhibitory effects of the extracts on DNA and cell damage may further explain that C. officinale is useful as a herbal medicine for cancer chemoprevention. PMID:19101603

  6. Structure analysis of a heteropolysaccharide from Taraxacum mongolicum Hand.-Mazz. and anticomplementary activity of its sulfated derivatives.

    PubMed

    Chen, MiaoMiao; Wu, Jianjun; Shi, Songshan; Chen, Yonglin; Wang, Huijun; Fan, Hongwei; Wang, Shunchun

    2016-11-01

    A homogenous water-soluble polysaccharide, DPSW-A, with a deduced chemical structure was extracted from the herb Taraxacum mongolicum Hand.-Mazz. Moreover, 80.813-kDa DPSW-A is composed of three types of monosaccharide, namely rhamnose, arabinose, and galactose, at a molar ratio of 1.0:10.7:11.9. The main chain of DPSW-A contains Terminal-Galp, 1,3-Galp, 1,6-Galp, 1,3,6-Galp, and 1,2,4-Rhap; the branched chain contains Terminal-Araf, 1,5-Araf, and 1,3,5-Araf. The sulfated derivatives prepared from DPSW-A showed inhibitory effects on complement activation through the classical pathway (CH50: Sul-DPSW-A, 3.94±0.43μg/mL; heparin, 104.40±3.82μg/mL) and alternative pathway (AP50: Sul-DPSW-A, 42.76±0.46μg/mL; heparin, 43.42±0.22μg/mL). Mechanism studies indicated that Sul-DPSW-A inhibited complement activation by blocking C1q, C1r, C1s, and C9, but not C2, C3, C4, and C5. In addition, Sul-DPSW-A displayed limited anticoagulant effects. These results suggest that Sul-DPSW-A prepared from DPSW-A is valuable for treating diseases caused by excessive complement system activation. PMID:27516270

  7. The comparative toxicity of a reduced, crude comfrey (Symphytum officinale) alkaloid extract and the pure, comfrey-derived pyrrolizidine alkaloids, lycopsamine and intermedine in chicks (Gallus gallus domesticus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comfrey (Symphytum officinale), a commonly used herb, contains dehydropyrrolizidine alkaloids (DHPAs) that, as a group of bioactive metabolites, are potentially hepatotoxic, pneumotoxic, genotoxic and carcinogenic. Consequently, regulatory agencies and international health organizations have recomm...

  8. Roots and Root Function: Introduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of current issues related to water management, ecohydrology, and climate change are giving impetus to new research aimed at understanding roots and their functioning. Current areas of research include: use of advanced imaging technologies such as Magnetic Resonance Imaging to observe roots...

  9. Reversal of cisplatin-induced delay in gastric emptying in rats by ginger (Zingiber officinale).

    PubMed

    Sharma, S S; Gupta, Y K

    1998-08-01

    Cisplatin causes nausea, vomiting and inhibition of gastric emptying. We have demonstrated the antiemetic effect of the acetone and ethanolic extract of ginger (Zingiber officinale, Roscoe, Zingiberacae) against cisplatin-induced emesis in dogs. In the present study, the acetone and 50% ethanolic extract of ginger in the doses of 100, 200 and 500 mg/kg (p.o.) and ginger juice, in the doses of 2 and 4 ml/kg, were investigated against cisplatin effect on gastric emptying in rats. All three ginger preparations significantly reversed cisplatin-induced delay in gastric emptying. The ginger juice and acetone extract were more effective than the 50% ethanolic extract. The reversal produced by the ginger acetone extract was similar to that caused by the 5-HT3 receptor antagonist ondansetron; however, ginger juice produced better reversal than ondansetron. Therefore, ginger, an antiemetic for cancer chemotherapy, may also be useful in improving the gastrointestinal side effects of cancer chemotherapy. PMID:9720611

  10. Genetic diversity analysis of Zingiber Officinale Roscoe by RAPD collected from subcontinent of India

    PubMed Central

    Ashraf, Kamran; Ahmad, Altaf; Chaudhary, Anis; Mujeeb, Mohd.; Ahmad, Sayeed; Amir, Mohd.; Mallick, N.

    2013-01-01

    The present investigation was undertaken for the assessment of 12 accessions of Zingiber officinale Rosc. collected from subcontinent of India by RAPD markers. DNA was isolated using CTAB method. Thirteen out of twenty primers screened were informative and produced 275 amplification products, among which 261 products (94.90%) were found to be polymorphic. The percentage polymorphism of all 12 accessions ranged from 88.23% to 100%. Most of the RAPD markers studied showed different levels of genetic polymorphism. The data of 275 RAPD bands were used to generate Jaccard’s similarity coefficients and to construct a dendrogram by means of UPGMA. Results showed that ginger undergoes genetic variation due to a wide range of ecological conditions. This investigation was an understanding of genetic variation within the accessions. It will also provide an important input into determining resourceful management strategies and help to breeders for ginger improvement program. PMID:24600309

  11. Evaluation of in vitro and in vivo depigmenting activity of raspberry ketone from Rheum officinale.

    PubMed

    Lin, Chia-Hsiang Victor; Ding, Hsiou-Yu; Kuo, Shiou-Yi; Chin, Ling-Wei; Wu, Jiumn-Yih; Chang, Te-Sheng

    2011-01-01

    Melanogenesis inhibition by raspberry ketone (RK) from Rheum officinale was investigated both in vitro in cultivated murine B16 melanoma cells and in vivo in zebrafish and mice. In B16 cells, RK inhibited melanogenesis through a post-transcriptional regulation of tyrosinase gene expression, which resulted in down regulation of both cellular tyrosinase activity and the amount of tyrosinase protein, while the level of tyrosinase mRNA transcription was not affected. In zebrafish, RK also inhibited melanogenesis by reduction of tyrosinase activity. In mice, application of a 0.2% or 2% gel preparation of RK applied to mouse skin significantly increased the degree of skin whitening within one week of treatment. In contrast to the widely used flavoring properties of RK in perfumery and cosmetics, the skin-whitening potency of RK has been demonstrated in the present study. Based on our findings reported here, RK would appear to have high potential for use in the cosmetics industry. PMID:21954327

  12. De Novo transcriptome assembly of Zingiber officinale cv. Suruchi of Odisha.

    PubMed

    Gaur, Mahendra; Das, Aradhana; Sahoo, Rajesh Kumar; Kar, Basudeba; Nayak, Sanghamitra; Subudhi, Enketeswara

    2016-09-01

    Zingiber officinale Rosc., known as ginger, is an Asian crop, popularly used in every household kitchen and commercially used in bakery, beverage, food and pharmaceutical industries. The present study deals with de novo transcriptome assembly of an elite ginger cultivar Suruchi by next generation sequencing methodology. From the analysis 10.9 GB raw data was obtained which can be available in NCBI accession number SAMN03761185. We identified 41,969 transcripts using Trinity RNA-Seq from ginger rhizome of Suruchi variety from Odisha. The transcript length varied from 300 bp to 8404 bp with a total length of 3,96,40,526 bp and N50 of 1251 bp. To the best of our knowledge, this is the first transcriptome data of an elite ginger cultivar Suruchi released for Odisha state of India which will help molecular biologists to develop genetic markers for identification of cultivars. PMID:27408817

  13. 10-Shogaol, an Antioxidant from Zingiber officinale for Skin Cell Proliferation and Migration Enhancer

    PubMed Central

    Chen, Chung-Yi; Cheng, Kuo-Chen; Chang, Andy Y; Lin, Ying-Ting; Hseu, You-Cheng; Wang, Hui-Min

    2012-01-01

    In this work, one of Zingiber officinale components, 10-shogaol, was tested with 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, metal chelating ability, and reducing power to show antioxidant activity. 10-Shogaol promoted human normal epidermal keratinocytes and dermal fibroblasts cell growths. 10-Shogaol enhanced growth factor production in transforming growth factor-β (TGF-β), platelet derived growth factor-αβ (PDGF-αβ) and vascular endothelial growth factors (VEGF) of both cells. In the in vitro wound healing assay for 12 or 24 h, with 10-shogaol, the fibroblasts and keratinocytes migrated more rapidly than the vehicle control group. Thus, this study substantiates the target compound, 10-shogaol, as an antioxidant for human skin cell growth and a migration enhancer with potential to be a novel wound repair agent. PMID:22408422

  14. Cytotoxicity Evaluation of Essential Oil and its Component from Zingiber officinale Roscoe

    PubMed Central

    Lee, Yongkyu

    2016-01-01

    Zingiber officinale Roscoe has been widely used as a folk medicine to treat various diseases, including cancer. This study aims to re-examine the therapeutic potential of co-administration of natural products and cancer chemotherapeutics. Candidate material for this project, α-zingiberene, was extracted from Zingiber officinale Roscoe, and α-zingiberene makes up 35.02 ± 0.30% of its total essential oil. α-Zingiberene showed low IC50 values, 60.6 ± 3.6, 46.2 ± 0.6, 172.0 ± 6.6, 80.3 ± 6.6 (μg/mL) in HeLa, SiHa, MCF-7 and HL-60 cells each. These values are a little bit higher than IC50 values of general essential oil in those cells. The treatment of α-zingiberene produced nucleosomal DNA fragmentation in SiHa cells, and the percentage of sub-diploid cells increased in a concentration-dependent manner in SiHa cells, hallmark features of apoptosis. Mitochondrial cytochrome c activation and an in vitro caspase-3 activity assay demonstrated that the activation of caspases accompanies the apoptotic effect of α-zingiberene, which mediates cell death. These results suggest that the apoptotic effect of α-zingiberene on SiHa cells may converge caspase-3 activation through the release of mitochondrial cytochrome c into cytoplasm. It is considered that anti-proliferative effect of α-zingiberene is a result of apoptotic effects, and α-zingiberene is worth furthermore study to develop it as cancer chemotherapeutics. PMID:27437089

  15. Cytotoxicity Evaluation of Essential Oil and its Component from Zingiber officinale Roscoe.

    PubMed

    Lee, Yongkyu

    2016-07-01

    Zingiber officinale Roscoe has been widely used as a folk medicine to treat various diseases, including cancer. This study aims to re-examine the therapeutic potential of co-administration of natural products and cancer chemotherapeutics. Candidate material for this project, α-zingiberene, was extracted from Zingiber officinale Roscoe, and α-zingiberene makes up 35.02 ± 0.30% of its total essential oil. α-Zingiberene showed low IC50 values, 60.6 ± 3.6, 46.2 ± 0.6, 172.0 ± 6.6, 80.3 ± 6.6 (μg/mL) in HeLa, SiHa, MCF-7 and HL-60 cells each. These values are a little bit higher than IC50 values of general essential oil in those cells. The treatment of α-zingiberene produced nucleosomal DNA fragmentation in SiHa cells, and the percentage of sub-diploid cells increased in a concentration-dependent manner in SiHa cells, hallmark features of apoptosis. Mitochondrial cytochrome c activation and an in vitro caspase-3 activity assay demonstrated that the activation of caspases accompanies the apoptotic effect of α-zingiberene, which mediates cell death. These results suggest that the apoptotic effect of α-zingiberene on SiHa cells may converge caspase-3 activation through the release of mitochondrial cytochrome c into cytoplasm. It is considered that anti-proliferative effect of α-zingiberene is a result of apoptotic effects, and α-zingiberene is worth furthermore study to develop it as cancer chemotherapeutics. PMID:27437089

  16. Food Value of Two Varieties of Ginger (Zingiber officinale) Commonly Consumed in Nigeria

    PubMed Central

    Ajayi, Olubunmi B.; Akomolafe, Seun F.; Akinyemi, Funmilayo T.

    2013-01-01

    Ginger (Zingiber officinale) is a well-known and widely used herb, which contains several interesting bioactive constituents and possesses health-promoting properties. The proximate, mineral, antinutrient, amino acid, and phytochemical components of two varieties of ginger (Zingiber officinale) were investigated. Amino acid composition was determined using standard analytical techniques. The results obtained in percentages in the two varieties of ginger (white and yellow types) were crude fibre (21.90, 8.30), fat (17.11, 9.89), carbohydrate (39.70, 58.21), crude protein (12.05, 11.65), ash (4.95, 7.45) and moisture (3.95, 4.63) contents respectively. Elemental analysis revealed that potassium (0.98 ppm and 1.38 ppm) is the most abundant, while copper (0.01 ppm) is the least. Phytochemical screening indicated that they are both rich in saponins, anthraquinones, phlobatannin and glycosides. Also, the antinutrient constituents of white ginger were lower than yellow ginger, although the levels of the antinutrient constituents in the two varieties are saved for consumption. The essential amino acids in the two varieties were almost the same, with Leu being the most abundant in both. The two ginger varieties were adequate only in Leu, Phe + Try, and valine based on FAO/WHO provisional pattern. Overall, the findings indicate that the two varieties of ginger are good sources of nutrients, mineral elements, amino acid, and phytochemicals which could be exploited as great potentials for drugs and/or nutritional supplements. PMID:24967255

  17. Ovicidal effect of the methanolic extract of ginger (Zingiber officinale) on Fasciola hepatica eggs: an in vitro study.

    PubMed

    Moazeni, Mohammad; Khademolhoseini, Ali Asghar

    2016-09-01

    Fasciolosis is of considerable economic and public health importance worldwide. Little information is available on the ovicidal effects of anthelminthic drugs. The use of ovicidal anthelmintics can be effective in disease control. In this study, the effectiveness of the methanolic extract of ginger (Zingiber officinale) on the eggs of Fasciola hepatica is investigated. Fasciola hepatica eggs were obtained from the gall bladders of naturally infected sheep and kept at 4 °C until use. The eggs were exposed to varying concentrations of ginger extract (1, 5, 10, 25 and 50 mg/mL) for 24, 48 and 72 h. To investigate the effect of the ginger extracts on the miracidial formation, the treated eggs were incubated at 28 °C for 14 days. The results indicated that F. hepatica eggs are susceptible to the methanolic extract of Z. officinale. The ovicidal effect of ginger extract at a concentration of 1 mg/mL with 24, 48 and 72 h treatment time was 46.08, 51.53 and 69.09 % respectively (compared with 22.70 % for control group). The ovicidal effect of ginger extract at a concentration of 5 mg/mL after 24 h was 98.84 %. One hundred percent ovicidal efficacy was obtained through application of ginger extract at concentrations of 5 and 10 mg/mL with a 48 and 24 h treatment time respectively. The in vitro ovicidal effect of the methanolic extract of Z. officinale was satisfactory in this study, however, in vivo efficacy of this extract, remains for further investigation. To the best of our knowledge, this is the first report on the ovicidal effect of Z. officinale against F. hepatica eggs. PMID:27605763

  18. Transcriptome Analysis of Dendrobium officinale and its Application to the Identification of Genes Associated with Polysaccharide Synthesis

    PubMed Central

    Zhang, Jianxia; He, Chunmei; Wu, Kunlin; Teixeira da Silva, Jaime A.; Zeng, Songjun; Zhang, Xinhua; Yu, Zhenming; Xia, Haoqiang; Duan, Jun

    2016-01-01

    Dendrobium officinale is one of the most important Chinese medicinal herbs. Polysaccharides are one of the main active ingredients of D. officinale. To identify the genes that maybe related to polysaccharides synthesis, two cDNA libraries were prepared from juvenile and adult D. officinale, and were named Dendrobium-1 and Dendrobium-2, respectively. Illumina sequencing for Dendrobium-1 generated 102 million high quality reads that were assembled into 93,881 unigenes with an average sequence length of 790 base pairs. The sequencing for Dendrobium-2 generated 86 million reads that were assembled into 114,098 unigenes with an average sequence length of 695 base pairs. Two transcriptome databases were integrated and assembled into a total of 145,791 unigenes. Among them, 17,281 unigenes were assigned to 126 KEGG pathways while 135 unigenes were involved in fructose and mannose metabolism. Gene Ontology analysis revealed that the majority of genes were associated with metabolic and cellular processes. Furthermore, 430 glycosyltransferase and 89 cellulose synthase genes were identified. Comparative analysis of both transcriptome databases revealed a total of 32,794 differential expression genes (DEGs), including 22,051 up-regulated and 10,743 down-regulated genes in Dendrobium-2 compared to Dendrobium-1. Furthermore, a total of 1142 and 7918 unigenes showed unique expression in Dendrobium-1 and Dendrobium-2, respectively. These DEGs were mainly correlated with metabolic pathways and the biosynthesis of secondary metabolites. In addition, 170 DEGs belonged to glycosyltransferase genes, 37 DEGs were related to cellulose synthase genes and 627 DEGs encoded transcription factors. This study substantially expands the transcriptome information for D. officinale and provides valuable clues for identifying candidate genes involved in polysaccharide biosynthesis and elucidating the mechanism of polysaccharide biosynthesis. PMID:26904032

  19. Composition and immunotoxicity activity of essential oils from leaves of Zingiber officinale Roscoe against Aedes aegypti L.

    PubMed

    Moon, Hyung-In; Cho, Sang-Buem; Kim, Soo-Ki

    2011-03-01

    The leaves of Zingiber officinale Roscoe were extracted and the major essential oil composition and immunotoxicity effects were studied. The analyses were conducted by gas chromatography and mass spectroscopy (GC-MS) revealed that the essential oils of Z. officinale leaves. The Z. officinale essential oil yield was 0.26%, and GC/MS analysis revealed that its major constituents were Camphene (5.26%), Phellandrene (6.58%), Zingiberene (36.48%), Geranial (4.32%), β-gurjunene (2.74%), and Citronellol β-sesguiphellandrene (12.31%). The essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L with an LC(50) value of 46.38 ppm and an LC(90) value of 84.32 ppm. Also, Camphene (≥95.0%), Phellandrene (≥95.0%), Zingiberene (≥95.0%), Geranial (≥95.0%), β-gurjunene (≥97.0%), and Citronellol (≥95.0%) were tested against the F21 laboratory strain of A. aegypti. Zingiberene (≥95.0%) and Citronellol (≥95.0%) have medium activity with an LC(50) value of 99.55 ppm and 141.45 ppm. This indicates that other major compounds may play a more important role in the toxicity of essential oil. PMID:20568951

  20. Characterization of the alkaline/neutral invertase gene in Dendrobium officinale and its relationship with polysaccharide accumulation.

    PubMed

    Gao, F; Cao, X F; Si, J P; Chen, Z Y; Duan, C L

    2016-01-01

    Dendrobium officinale is one of the most well-known traditional Chinese medicines, and polysaccharide is its main active ingredient. Many studies have investigated the synthesis and accumulation mechanisms of polysaccharide, but until recently, little was known about the molecular mechanism of how polysaccharide is synthesized because no related genes have been cloned. In this study, we cloned an alkaline/neutral invertase gene from D. officinale (DoNI) by the rapid amplification of cDNA ends (RACE) method. DoNI was 2231 bp long and contained an open reading frame that predicted a 62.8-kDa polypeptide with 554-amino acid residues. An alkaline/neutral invertase conserved domain was predicted from this deduced amino acid sequence, and DoNI had a similar deduced amino acid sequence to Setaria italica and Oryza brachyantha. We also found that DoNI expression in different tissues was closely related to DoNI activity, and more importantly, polysaccharide level. Our results indicate that DoNI is associated with polysaccharide accumulation in D. officinale. PMID:27173310

  1. Use of Peroxyacetic Acid as Green Chemical on Yield and Sensorial Quality in Watercress (Nasturtium officinale R. Br.) Under Soilless Culture

    PubMed Central

    Carrasco, Gilda; Moggia, Claudia; Osses, Ingrid Jennifer; Álvaro, Juan Eugenio; Urrestarazu, Miguel

    2011-01-01

    The goal of this research was to evaluate the effect of different doses of peroxyacetic acid on the productivity of watercress (Nasturtium officinale R. Br.) cultivated hydroponically using a constant nutritive solution. Green chemistry in protected horticulture seeks compatibility with the environment through the creation of biodegradable byproducts. In hydroponics, appropriate doses of peroxyacetic mixtures deliver these byproducts while also oxygenating the roots. Watercress producers who recirculate the nutritive solution can use these mixtures in order to increase oxygenation in the hydroponic system. The experiment took place between August and December 2009, beginning with the planting of the watercress seeds and concluding with the completion of the sensory panels. A completely random design was used, including three treatments and four repetitions, with applications of 0, 20 and 40 mg L−1 of the peroxyacetic mixture. Measured variables were growth (plant height, leaf length and stem diameter), yield (weight per plant and dry matter) and organoleptic quality (color and sensory panel). The application of 40 mg L−1 of the peroxyacetic mixture had a greater effect on the growth and development of the plants, which reached an average height of 29.3 cm, stem diameter of 3.3 mm and leaf length of 7.6 cm, whereas the control group reached an average height of only 20.2 cm, stem diameter of 1.9 mm and leaf length of 5.7 cm. The application of the peroxyacetic mixtures resulted in an improvement in growth parameters as well as in yield. Individual weights achieved using the 40 mg L−1 dose were 1.3 g plant−1 in the control group and 3.4 g plant−1 in the experimental group (62% yield increase). Sensory analysis revealed no differences in organoleptic quality. PMID:22272143

  2. Use of peroxyacetic acid as green chemical on yield and sensorial quality in Watercress (Nasturtium officinale R. Br.) under soilless culture.

    PubMed

    Carrasco, Gilda; Moggia, Claudia; Osses, Ingrid Jennifer; Alvaro, Juan Eugenio; Urrestarazu, Miguel

    2011-01-01

    The goal of this research was to evaluate the effect of different doses of peroxyacetic acid on the productivity of watercress (Nasturtium officinale R. Br.) cultivated hydroponically using a constant nutritive solution. Green chemistry in protected horticulture seeks compatibility with the environment through the creation of biodegradable byproducts. In hydroponics, appropriate doses of peroxyacetic mixtures deliver these byproducts while also oxygenating the roots. Watercress producers who recirculate the nutritive solution can use these mixtures in order to increase oxygenation in the hydroponic system. The experiment took place between August and December 2009, beginning with the planting of the watercress seeds and concluding with the completion of the sensory panels. A completely random design was used, including three treatments and four repetitions, with applications of 0, 20 and 40 mg L(-1) of the peroxyacetic mixture. Measured variables were growth (plant height, leaf length and stem diameter), yield (weight per plant and dry matter) and organoleptic quality (color and sensory panel). The application of 40 mg L(-1) of the peroxyacetic mixture had a greater effect on the growth and development of the plants, which reached an average height of 29.3 cm, stem diameter of 3.3 mm and leaf length of 7.6 cm, whereas the control group reached an average height of only 20.2 cm, stem diameter of 1.9 mm and leaf length of 5.7 cm. The application of the peroxyacetic mixtures resulted in an improvement in growth parameters as well as in yield. Individual weights achieved using the 40 mg L(-1) dose were 1.3 g plant(-1) in the control group and 3.4 g plant(-1) in the experimental group (62% yield increase). Sensory analysis revealed no differences in organoleptic quality. PMID:22272143

  3. Nitrate-induced early transcriptional changes during imbibition in non-after-ripened Sisymbrium officinale seeds.

    PubMed

    Carrillo-Barral, Nestor; Matilla, Angel J; Iglesias-Fernández, Raquel; Del Carmen Rodríguez-Gacio, María

    2013-08-01

    We have here demonstrated for the first time that nitrate not only accelerates testa rupture of non- AR seeds but also modifies expression pattern of the cell-wall remodeling proteins (mannanases; SoMAN6 and SoMAN7) and key genes belonging to metabolism and signaling of ABA (SoNCED6, SoNCED9, SoCYP707A2 and SoABI5) and GAs (SoGA3ox, SoGA20ox, SoGA2ox and SoRGL2). These results were obtained during Sisymbrium officinale seed imbibition in the absence of endosperm rupture. Exogenous ABA induced a notable inhibition of testa rupture in both absence and presence of nitrate being this effect sharply reversed by GA(4+7). However, nitrate was capable to provoke testa rupture in absence of ABA synthesis. The expression of SoMAN6 and SoMAN7 were positively altered by nitrate. Although ABA synthesis seems apparent at the start of non-AR seed imbibition, taken together the results of SoNCED6, SoNCED9 and SoCYP707A2 expression seem to suggest that nitrate leads to a strong net ABA decrease. Likewise, nitrate positively affected the SoABI5 expression when the SoNCED9 expression was also stimulated. By contrast, at the early and final of imbibition, nitrate clearly inhibited the SoABI5 expression. The expression of SoGA2ox6 and SoGA3ox2 are strongly inhibited by nitrate whereas of SoGA20ox6 was stimulated. On the other hand, SoRGL2 transcript level decreased in the presence of nitrate. Taken together, the results presented here suggest that the nitrate signaling is already operative during the non-AR S. officinale seeds imbibition. The nitrate, in cross-talk with the AR network likely increases the favorable molecular conditions that trigger germination. PMID:23106241

  4. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  5. Root gravitropism

    NASA Technical Reports Server (NTRS)

    Masson, P. H.

    1995-01-01

    When a plant root is reoriented within the gravity field, it responds by initiating a curvature which eventually results in vertical growth. Gravity sensing occurs primarily in the root tip. It may involve amyloplast sedimentation in the columella cells of the root cap, or the detection of forces exerted by the mass of the protoplast on opposite sides of its cell wall. Gravisensing activates a signal transduction cascade which results in the asymmetric redistribution of auxin and apoplastic Ca2+ across the root tip, with accumulation at the bottom side. The resulting lateral asymmetry in Ca2+ and auxin concentration is probably transmitted to the elongation zone where differential cellular elongation occurs until the tip resumes vertical growth. The Cholodny-Went theory proposes that gravity-induced auxin redistribution across a gravistimulated plant organ is responsible for the gravitropic response. However, recent data indicate that the gravity-induced reorientation is more complex, involving both auxin gradient-dependent and auxin gradient-independent events.

  6. Root canal

    MedlinePlus

    Endodontic therapy ... the root of a tooth. Generally, there is pain and swelling in the area. The infection can ... You may have some pain or soreness after the procedure. An over-the-counter anti-inflammatory drug, such as ibuprofen or naproxen, can help relieve ...

  7. Inhibitory effect of ginger (Zingiber officinale) on rat ileal motility in vitro.

    PubMed

    Borrelli, Francesca; Capasso, Raffaele; Pinto, Aldo; Izzo, Angelo A

    2004-04-23

    Ginger (Zingiber officinale rhizome) is a widespread herbal medicine mainly used for the treatment of gastrointestinal diseases, including dyspepsia, nausea and diarrhoea. In the present study we evaluated the effect of this herbal remedy on the contractions induced by electrical stimulation (EFS) or acetylcholine in the isolated rat ileum. Ginger (0.01-1000 microg/ml) inhibited both EFS- and acetylcholine-evoked contractions, being more potent in inhibiting the contractions induced by EFS. The depressant effect of ginger on EFS-induced contractions was reduced by the vanilloid receptor antagonist capsazepine (10(-5) M), but unaffected by the alpha(2)-adrenergic antagonist yohimbine (10(-7) M), the CB(1) receptor antagonist SR141716A (10(-6) M), the opioid antagonist naloxone (10(-6) M) or by the NO synthase inhibitor L-NAME (3 x 10(-4) M). Zingerone (up to 3 x 10(-4) M), one of the active ingredients of ginger, did not possess inhibitory effects. It is concluded that ginger possesses both prejunctional and postjunctional inhibitory effects on ileal contractility; the prejunctional inhibitory effect of ginger on enteric excitatory transmission could involve a capsazepine-sensible site (possibly vanilloid receptors). PMID:15050426

  8. Zingiber officinale Roscoe (ginger) as an adjuvant in cancer treatment: a review.

    PubMed

    Pereira, M M; Haniadka, R; Chacko, P P; Palatty, P L; Baliga, M S

    2011-01-01

    Despite acquiring a strong understanding of the molecular basis and advances in treatment, cancer is the second major cause of death in the world. In clinics, the stagedependent treatment strategies may include surgery, radiotherapy and systemic treatments like hormonotherapy and chemotherapy, which are associated with side effects. The use of traditional herbal medicine in cancer patients is on a rise, as it is believed that these medications are non toxic and alleviate the symptoms of cancer, boost the immune system, or may tackle the cancer itself. Since antiquity the rhizome of Zingiber officinale Roscoe commonly known as ginger (family Zingiberaceae) have widely been used as a spice and condiment in different societies. Additionally, ginger also has a long history of medicinal use in various cultures for treating common colds, fever, to aid digestion, treat stomach upset, diarrhoea, nausea, rheumatic disorders, gastrointestinal complications and dizziness. Preclinical studies have also shown that ginger possesses chemopreventive and antineoplastic properties. It is also reported to be effective in ameliorating the side effects of γ-radiation and of doxorubicin and cisplatin; to inhibit the efflux of anticancer drugs by P-glycoprotein (P-gp) and to possess chemosensitizing effects in certain neoplastic cells in vitro and in vivo. The objective of this review is to address observations on the role of ginger as adjuvant to treatment modalities of cancer. Emphasis is also placed on the drawbacks and on future directions for research that will have a consequential effect on cancer treatment and cure. PMID:22006742

  9. Ginger (Zingiber officinale) and chemotherapy-induced nausea and vomiting: a systematic literature review.

    PubMed

    Marx, Wolfgang M; Teleni, Laisa; McCarthy, Alexandra L; Vitetta, Luis; McKavanagh, Dan; Thomson, Damien; Isenring, Elisabeth

    2013-04-01

    Chemotherapy-induced nausea and vomiting (CINV) is a common side-effect of cytotoxic treatment. It continues to affect a significant proportion of patients despite the widespread use of antiemetic medication. In traditional medicine, ginger (Zingiber officinale) has been used to prevent and treat nausea in many cultures for thousands of years. However, its use has not been confirmed in the chemotherapy context. To determine the potential use of ginger as a prophylactic or treatment for CINV, a systematic literature review was conducted. Reviewed studies comprised randomized controlled trials or crossover trials that investigated the anti-CINV effect of ginger as the sole independent variable in chemotherapy patients. Seven studies met the inclusion criteria. All studies were assessed on methodological quality and their limitations were identified. Studies were mixed in their support of ginger as an anti-CINV treatment in patients receiving chemotherapy, with three demonstrating a positive effect, two in favor but with caveats, and two showing no effect on measures of CINV. Future studies are required to address the limitations identified before clinical use can be recommended. PMID:23550785

  10. Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale.

    PubMed

    Singh, Gurdip; Kapoor, I P S; Singh, Pratibha; de Heluani, Carola S; de Lampasona, Marina P; Catalan, Cesar A N

    2008-10-01

    The essential oil and oleoresins (ethanol, methanol, CCl(4) and isooctane) of Zingiber officinale were extracted respectively by hydrodistillation and Soxhlet methods and subjected to GC-MS analysis. Geranial (25.9%) was the major component in essential oil; eugenol (49.8%) in ethanol oleoresin, while in the other three oleoresins, zingerone was the major component (33.6%, 33.3% and 30.5% for, methanol, CCl(4) and isooctane oleoresins, respectively). The antioxidant activity of essential oil and oleoresins were evaluated against mustard oil by peroxide, anisidine, thiobarbituric acid (TBA), ferric thiocyanate (FTC) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging methods. They were found to be better antioxidants than butylated hydroxyanisole (BHA). The antimicrobial properties were also studied using various food-borne pathogenic fungal and bacterial species. The essential oil and CCl(4) oleoresin showed 100% zone inhibition against Fusarium moniliforme. For other tested fungi and bacteriae, the essential oil and all oleoresins showed good to moderate inhibitory effects. Though, both essential oil and oleoresins were found to be effective, essential oil was found to be better than the oleoresins. PMID:18706468

  11. Effect of Zingiber officinale essential oil on Fusarium verticillioides and fumonisin production.

    PubMed

    Yamamoto-Ribeiro, Milene Mayumi Garcia; Grespan, Renata; Kohiyama, Cássia Yumie; Ferreira, Flavio Dias; Mossini, Simone Aparecida Galerani; Silva, Expedito Leite; Filho, Benicio Alves de Abreu; Mikcha, Jane Martha Graton; Machinski, Miguel

    2013-12-01

    The antifungal activity of ginger essential oil (GEO; Zingiber officinale Roscoe) was evaluated against Fusarium verticillioides (Saccardo) Nirenberg. The minimum inhibitory concentration (MIC) of GEO was determined by micro-broth dilution. The effects of GEO on fumonisin and ergosterol production were evaluated at concentrations of 500-5000 μg/mL in liquid medium with a 5mm diameter mycelial disc of F. verticillioides. Gas chromatography-mass spectrometry showed that the predominant components of GEO were α-zingiberene (23.9%) and citral (21.7%). GEO exhibited inhibitory activity, with a MIC of 2500 μg/mL, and 4000 and 5000 μg/mL reduced ergosterol biosynthesis by 57% and 100%, respectively. The inhibitory effect on fumonisin B1 (FB1) and fumonisin B2 (FB2) production was significant at GEO concentrations of 4000 and 2000 μg/mL, respectively. Thus, the inhibition of fungal biomass and fumonisin production was dependent on the concentration of GEO. These results suggest that GEO was able to control the growth of F. verticillioides and subsequent fumonisin production. PMID:23871071

  12. Dendrobium officinale Prevents Early Complications in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Hou, Shao-Zhen; Liang, Chu-Yan; Liu, Hua-Zhen; Zhu, Dong-Mei; Wu, Ya-Yun; Liang, Jian; Zhao, Ya; Guo, Jian-Ru; Huang, Song; Lai, Xiao-Ping

    2016-01-01

    Background. Dendrobium officinale (DO) Kimura et Migo is a precious Chinese herb that is considered beneficial for health due to its antioxidant and antidiabetes properties, and so on. In this research, we try to determine the preventive effect of DO on the early complications of STZ-induced diabetic rats. Methods. Type 1 diabetic rats were produced with a single intraperitoneal injection of STZ (50 mg/kg). DO (1 g/kg/day) was then orally administered for 5 weeks. Blood glucose, TC, TG, BUN, CREA, and GSH-PX levels were determined, and electroretinographic activity and hypoalgesia were investigated. Pathological sections of the eyes, hearts, aortas, kidneys, and livers were analyzed. Results. Treatment with DO significantly attenuated the serum levels of TC, TG, BUN, and CREA, markedly increased the amplitudes of ERG a- and b-waves and Ops, and reduced the hypoalgesia and histopathological changes of vital organs induced by hyperglycemia. The protective effect of DO in diabetic rats may be associated with its antioxidant activity, as evidenced by the marked increase in the serum level of glutathione peroxidase. However, DO had no significant effect on blood glucose levels and bodyweight of diabetic rats. Conclusions. DO supplementation is an effective treatment to prevent STZ-induced diabetic complications. PMID:27034693

  13. Structural Elements and Cough Suppressing Activity of Polysaccharides from Zingiber officinale Rhizome.

    PubMed

    Bera, K; Nosalova, G; Sivova, V; Ray, B

    2016-01-01

    Zingiber officinale is used for the management of fever, bronchial asthma and cough for thousands of years. While the link to a particular indication has been established in human, the active principle of the formulation remains unknown. Herein, we have investigated a water extracted polysaccharides (WEP) containing fraction from its rhizome. Utilizing a traditional aqueous extraction protocol and using chemical, chromatographic and spectroscopic methods a fraction containing a branched glucan and polygalaturonan in a ratio of 59:1 was characterized. This glucan, which has a molecular mass of 36 kDa, is made up of terminal-, (1,4)- and (1,4,6)-linked α-Glcp residues. Oral administration of WEP in doses of 25 and 50 mg/kg body weight significantly inhibited the number of citric acid-induced cough efforts in guinea pigs. It does not alter the specific airway smooth muscle reactivity significantly. Thus, traditional aqueous extraction method provides molecular entities, which induces antitussive activity without addiction. PMID:26522239

  14. Intestinal immunomodulating activity and structural characterization of a new polysaccharide from stems of Dendrobium officinale.

    PubMed

    Xie, Song-Zi; Liu, Bing; Zhang, Dan-Dan; Zha, Xue-Qiang; Pan, Li-Hua; Luo, Jian-Ping

    2016-06-15

    A homogeneous polysaccharide fraction (DOP-W3-b) with a high intestinal immunomodulating activity was obtained from the stems of Dendrobium officinale through a bioactivity-guided sequential isolation procedure based on the screening of Peyer's patch-mediated immunomodulating activity. Oral administration experiments of mice showed that DOP-W3-b could effectively regulate intestinal mucosal immune activity by changing intestinal mucosal structures, promoting the secretions of cytokines from Peyer's patches (PPs) and mesenteric lymph nodes (MLNs), and increasing the production of secretory immunoglobulin A (sIgA) in the lamina propria. Structure analysis indicated that DOP-W3-b was composed of mannose and glucose in a molar ratio of 4.5 with a relatively low molecular weight of 1.543 × 10(4) Da, and its repeat unit contained a backbone consisting of β-(1→4)-d-Manp, β-(1→4)-d-Glcp and β-(1→3,6)-d-Manp residues, a branch consisting of β-(1→4)-d-Manp, β-(1→4)-d-Glcp and terminal β-d-Glcp, and O-acetyl groups attached to O-2 of β-(1→4)-d-Manp. These results suggested that DOP-W3-b was a new polysaccharide with an essential potential for modulating body's immune functions. PMID:27225227

  15. In vivo antigenotoxic activity of watercress juice (Nasturtium officinale) against induced DNA damage.

    PubMed

    Casanova, Natalia A; Ariagno, Julia I; López Nigro, Marcela M; Mendeluk, Gabriela R; de los A Gette, María; Petenatti, Elisa; Palaoro, Luis A; Carballo, Marta A

    2013-09-01

    The present study was carried out to investigate the genotoxicity as well as possible protective activity against damage induced by cyclophosphamide (CP) of the aqueous juice of watercress (Nasturtium officinale, W.T. Aiton) in vivo. Male and female Swiss mice 7-8 weeks old (N = 48) were treated by gavage with 1 g kg(-1) body weight and 0.5 g kg(-1) body weight of watercress juice during 15 consecutive days. Genotoxicity and its possible protective effect were tested by the comet assay in peripheral blood cells and the micronucleus test in bone marrow. In addition, biopsies of the bladder, epididymis and testicles of mice were performed to extend the experimental design. Watercress juice per se did not induce genetic damage according to the comet assay and micronucleus study, exhibiting a protective activity against CP (P < 0.05 and P < 0.001, respectively). The comparative analysis of bladder histological changes obtained in the watercress plus CP group against those treated with CP alone suggests a probable protective effect. Further studies are needed in order to establish the protective role of watercress juice against DNA damage. PMID:22488040

  16. A review of the gastroprotective effects of ginger (Zingiber officinale Roscoe).

    PubMed

    Haniadka, Raghavendra; Saldanha, Elroy; Sunita, Venkatesh; Palatty, Princy L; Fayad, Raja; Baliga, Manjeshwar Shrinath

    2013-06-01

    The rhizomes of Zingiber officinale Roscoe (Zingiberaceae), commonly known as ginger is an important kitchen spice and also possess a myriad health benefits. The rhizomes have been used since antiquity in the various traditional systems of medicine to treat arthritis, rheumatism, sprains, muscular aches, pains, sore throats, cramps, hypertension, dementia, fever, infectious diseases, catarrh, nervous diseases, gingivitis, toothache, asthma, stroke and diabetes. Ginger is also used as home remedy and is of immense value in treating various gastric ailments like constipation, dyspepsia, belching, bloating, gastritis, epigastric discomfort, gastric ulcerations, indigestion, nausea and vomiting and scientific studies have validated the ethnomedicinal uses. Ginger is also shown to be effective in preventing gastric ulcers induced by nonsteroidal anti-inflammatory drugs [NSAIDs like indomethacin, aspirin], reserpine, ethanol, stress (hypothermic and swimming), acetic acid and Helicobacter pylori-induced gastric ulcerations in laboratory animals. Various preclinical and clinical studies have also shown ginger to possess anti-emetic effects against different emetogenic stimuli. However, conflicting reports especially in the prevention of chemotherapy-induced nausea and vomiting and motion sickness prevent us from drawing any firm conclusion on its effectiveness as a broad spectrum anti-emetic. Ginger has been shown to possess free radical scavenging, antioxidant; inhibition of lipid peroxidation and that these properties might have contributed to the observed gastroprotective effects. This review summarizes the various gastroprotective effects of ginger and also emphasizes on aspects that warranty future research to establish its activity and utility as a gastroprotective agent in humans. PMID:23612703

  17. [Field experiment of F1 generation and superior families selection of Dendrobium officinale].

    PubMed

    Zhang, Xiao-Ling; Si, Jin-Ping; Wu, Ling-Shang; Guo, Ying-Ying; Yu, Jie; Wang, Lin-Hua

    2013-11-01

    Based on randomized block design of experiment, agronomic traits and yields of 14 F1 generations of Dendrobium officinale were determined. The results showed that the differences in agronomic traits and yields among families were significant, and the hybrid vigor was obvious. Families of 6b x 2a, 9 x 66 and 78 x 69 were selected with the remarkable superiority of yields, agronomic traits and product customization. Correlation analysis between agronomic traits and yields showed that plant height, stem diameter, leaf number, blade length and blade width were all significantly correlated with biological yields and economic yields. Among which, stem diameter, leaf number and blade length were the most significant, and an optimal linear regression model could be established. When the number of shoots was fewer than 4.5, both biological yields and economic yields increased with the increasing number of shoots, but it could not much affect yields when the number of shoots was larger than 4.5. Shoots number, stem diameter and leaf index were basic stability when compared biennial traits to annual, which could be used for early selection. PMID:24558865

  18. Dendrobium officinale Prevents Early Complications in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Hou, Shao-zhen; Liang, Chu-yan; Liu, Hua-zhen; Zhu, Dong-mei; Wu, Ya-yun; Liang, Jian; Zhao, Ya; Guo, Jian-ru; Huang, Song; Lai, Xiao-Ping

    2016-01-01

    Background. Dendrobium officinale (DO) Kimura et Migo is a precious Chinese herb that is considered beneficial for health due to its antioxidant and antidiabetes properties, and so on. In this research, we try to determine the preventive effect of DO on the early complications of STZ-induced diabetic rats. Methods. Type 1 diabetic rats were produced with a single intraperitoneal injection of STZ (50 mg/kg). DO (1 g/kg/day) was then orally administered for 5 weeks. Blood glucose, TC, TG, BUN, CREA, and GSH-PX levels were determined, and electroretinographic activity and hypoalgesia were investigated. Pathological sections of the eyes, hearts, aortas, kidneys, and livers were analyzed. Results. Treatment with DO significantly attenuated the serum levels of TC, TG, BUN, and CREA, markedly increased the amplitudes of ERG a- and b-waves and Ops, and reduced the hypoalgesia and histopathological changes of vital organs induced by hyperglycemia. The protective effect of DO in diabetic rats may be associated with its antioxidant activity, as evidenced by the marked increase in the serum level of glutathione peroxidase. However, DO had no significant effect on blood glucose levels and bodyweight of diabetic rats. Conclusions. DO supplementation is an effective treatment to prevent STZ-induced diabetic complications. PMID:27034693

  19. In vivo wound healing effects of Symphytum officinale L. leaves extract in different topical formulations.

    PubMed

    Araújo, L U; Reis, P G; Barbosa, L C O; Saúde-Guimarães, D A; Grabe-Guimarães, A; Mosqueira, V C F; Carneiro, C M; Silva-Barcellos, N M

    2012-04-01

    The present work evaluates wound healing activity of leaves extracts of Symphytum officinale L. (comfrey) incorporated in three pharmaceutical formulations. Wound healing activity of comfrey was determined by qualitative and quantitative histological analysis of open wound in rat model, using allantoin as positive control. Three topical formulations, carbomer gel, glycero-alcoholic solution and O/W emulsion (soft lotion) were compared. The histological analysis of the healing process shows significant differences in treatment, particularly on its intensity and rate. The results indicate that emulsion containing both extracts, commercial and prepared, induced the largest and furthest repair of damaged tissue. This could be evidenced from day 3 to 28 by increase in collagen deposition from 40% to 240% and reduction on cellular inflammatory infiltrate from 3% to 46%. However, 8% prepared extract in emulsion presented the best efficacy. This work clearly demonstrates that comfrey leaves have a wound healing activity. The O/W emulsion showed to be the vehicle most effective to induce healing activity, particularly with extracts obtained from comfrey leaves collected in Minas Gerais state in Brazil. It shows the best efficacy to control the inflammatory process and to induce collagen deposition at 8% concentration. PMID:22570943

  20. An approach towards optimization of the extraction of polyphenolic antioxidants from ginger (Zingiber officinale).

    PubMed

    Mukherjee, Suprabhat; Mandal, Nilrudra; Dey, Apurba; Mondal, Biswanath

    2014-11-01

    The present study aims to maximize the extraction of polyphenols from ginger (Zingiber officinale) through the statistical optimization of three influential process parameters ethanol (EtOH) proportion (%), temperature (°C) and extraction time (min). Response Surface Methodology (RSM) was employed to design experiments and study the interaction effects of these parameters on the extraction process. Analysis of Variance (ANOVA) was used for the analysis of regression coefficient, prediction of equation and case statistics. The optimum conditions for the maximum yield of polyphenols from each gram of ginger were found to be 75 % aqueous EtOH, 40 °C temperature and extraction time of 60 min respectively. The order of relative importance of these three parameters was: EtOH > time > temperature. Antioxidant activity of the extracted polyphenols using optimized parameters was also determined by DPPH assay. DPPH radical scavenging activity of ginger extract was compared with Vitamin C and butyl hydroxy toluene (BHT). Finally, this study revealed a cost effective analytical model to maximize the extraction of polyphenols from ginger with higher antioxidant activity. It was also concluded that at lower concentration ethanolic extract of ginger possess high antioxidant activity in comparison with synthetic antioxidants like vitamin C or BHT and thus it can be applicable as potent natural antioxidant in food and pharmaceutical industries for the preparation of functional food. PMID:26396324

  1. Ginger root against seasickness. A controlled trial on the open sea.

    PubMed

    Grøntved, A; Brask, T; Kambskard, J; Hentzer, E

    1988-01-01

    In a double-blind randomized placebo trial, the effect of the powdered rhizome of ginger (Zingiber officinale) was tested on seasickness. Eighty naval cadets, unaccustomed to sailing in heavy seas reported during voyages on the high seas, symptoms of seasickness every hour for 4 consecutive hours after ingestion of 1 g of the drug or placebo. Ginger root reduced the tendency to vomiting and cold sweating significantly better than placebo did (p less than 0.05). With regard to vomiting, a modified Protection Index (PI) = 72% was calculated. Remarkably fewer symptoms of nausea and vertigo were reported after ginger root ingestion, but the difference was not statistically significant. For all symptom categories, PI = 38% was calculated. PMID:3277342

  2. Pythium Root Rot (and Feeder Root Necrosis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pythium species cause a number of diseases on corn. Among the Pythium diseases, root rot presents the least conspicuous aboveground symptoms. Broadly defined, root rot also includes feeder root necrosis. At least 16 species of Pythium are known to cause root rot of corn. These include P. acanthicu...

  3. Zingiber officinale (ginger) as an anti-emetic in cancer chemotherapy: a review.

    PubMed

    Haniadka, Raghavendra; Rajeev, Antappa Govindaraju; Palatty, Princy L; Arora, Rajesh; Baliga, Manjeshwar S

    2012-05-01

    Despite significant advances and development of novel anti-emetics, nausea and vomiting (emesis) is a major side-effect of cancer chemotherapy. At times, severe nausea and vomiting may also lead to reduction in adherence to the treatment regimen, and this will concomitantly affect the patient's survival. The rhizome of Zingiber officinale, commonly known as ginger, is globally an important spice. It has been used for centuries in the Indian, Chinese, Arabic, Tibetan, Unani, and Siddha systems of traditional medicine to treat nausea and vomiting induced by different stimuli. Preclinical studies with experimental animals (dogs and rats) have shown that the various extracts of ginger and the ginger juice possess anti-emetic effects against chemotherapy-induced nausea and vomiting. Gingerol, the active principle, is also shown to possess anti-emetic effects in minks. However, with regard to humans, while most studies have been supportive of the preclinical observations, a few have been contradictory. The exact mechanism responsible for the anti-emetic effects of ginger is unknown; however, the ginger phytochemicals, especially 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol, may function as a 5-hydroxytryptamine (5-HT3) antagonist, NK1 antagonist, antihistaminic, and possess prokinetic effects. The present review for the first time attempts to address the anti-emetic observations and the variability in response of the anti-emetic effects of ginger in cancer chemotherapy. An attempt is also made to address the lacunae in the published studies and emphasize aspects that need further investigations for ginger to be of use in clinics as an anti-emetic agent in the future. PMID:22540971

  4. Three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes.

    PubMed

    Gagaoua, Mohammed; Hoggas, Naouel; Hafid, Kahina

    2015-02-01

    The present work describes for the first time an elegant non-chromatographic method, the three phase partitioning for the purification and recovery of zingibain, a milk-clotting enzyme, from Zingiber officinale rhizomes. Factors affecting partitioning efficiency such as (NH4)2SO4 saturation, crude extract to t-butanol ratio and pH on zingibain partitioning were investigated. Optimal purification parameters were 50% (NH4)2SO4 saturation with 1.0:1.0 ratio of crude extract:t-butanol at pH 7.0, which gave 14.91 purification fold with 215% recovery of zingibain. The enzyme was found to be exclusively partitioned in the aqueous phase. The enzyme showed a prominent single band on SDS-PAGE. It is a monomeric protein of 33.8 kDa and its isoelectric point is 4.38. The enzyme exhibited maximal proteolytic activity at a temperature of 60 °C and pH 7.0. It was found to be stable at 40-65 °C during 2 h. The enzyme was found to be highly stable against numerous metal ions and its activity was enhanced by Ca(2+), K(+) and Na(+). It was completely inhibited by heavy metal ions such as Cu(2+) and Hg(2+) and partially by Cd(+). Zingibain milk-clotting activity (MCA) was found to be highly stable when stored under freezing (-20 °C) for 30 days compared at 4 °C. PMID:25475843

  5. Zingiber officinale attenuates retinal microvascular changes in diabetic rats via anti-inflammatory and antiangiogenic mechanisms

    PubMed Central

    Dongare, Shirish; Mathur, Rajani; Saxena, Rohit; Mathur, Sandeep; Agarwal, Renu; Nag, Tapas C.; Srivastava, Sushma; Kumar, Pankaj

    2016-01-01

    Purpose Diabetic retinopathy is a common microvascular complication of long-standing diabetes. Several complex interconnecting biochemical pathways are activated in response to hyperglycemia. These pathways culminate into proinflammatory and angiogenic effects that bring about structural and functional damage to the retinal vasculature. Since Zingiber officinale (ginger) is known for its anti-inflammatory and antiangiogenic properties, we investigated the effects of its extract standardized to 5% 6-gingerol, the major active constituent of ginger, in attenuating retinal microvascular changes in rats with streptozotocin-induced diabetes. Methods Diabetic rats were treated orally with the vehicle or the ginger extract (75 mg/kg/day) over a period of 24 weeks along with regular monitoring of bodyweight and blood glucose and weekly fundus photography. At the end of the 24-week treatment, the retinas were isolated for histopathological examination under a light microscope, transmission electron microscopy, and determination of the retinal tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and vascular endothelial growth factor (VEGF) levels. Results Oral administration of the ginger extract resulted in significant reduction of hyperglycemia, the diameter of the retinal vessels, and vascular basement membrane thickness. Improvement in the architecture of the retinal vasculature was associated with significantly reduced expression of NF-κB and reduced activity of TNF-α and VEGF in the retinal tissue in the ginger extract–treated group compared to the vehicle-treated group. Conclusions The current study showed that ginger extract containing 5% of 6-gingerol attenuates the retinal microvascular changes in rats with streptozotocin-induced diabetes through anti-inflammatory and antiangiogenic actions. Although precise molecular targets remain to be determined, 6-gingerol seems to be a potential candidate for further investigation. PMID:27293376

  6. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds.

    PubMed

    Williams, David J; Critchley, Christa; Pun, Sharon; Chaliha, Mridusmita; O'Hare, Timothy J

    2009-01-01

    Glucosinolates are sulphur-containing glycosides found in brassicaceous plants that can be hydrolysed enzymatically by plant myrosinase or non-enzymatically to form primarily isothiocyanates and/or simple nitriles. From a human health perspective, isothiocyanates are quite important because they are major inducers of carcinogen-detoxifying enzymes. Two of the most potent inducers are benzyl isothiocyanate (BITC) present in garden cress (Lepidium sativum), and phenylethyl isothiocyanate (PEITC) present in watercress (Nasturtium officinale). Previous studies on these salad crops have indicated that significant amounts of simple nitriles are produced at the expense of the isothiocyanates. These studies also suggested that nitrile formation may occur by different pathways: (1) under the control of specifier protein in garden cress and (2) by an unspecified, non-enzymatic path in watercress. In an effort to understand more about the mechanisms involved in simple nitrile formation in these species, we analysed their seeds for specifier protein and myrosinase activities, endogenous iron content and glucosinolate degradation products after addition of different iron species, specific chelators and various heat treatments. We confirmed that simple nitrile formation was predominantly under specifier protein control (thiocyanate-forming protein) in garden cress seeds. Limited thermal degradation of the major glucosinolate, glucotropaeolin (benzyl glucosinolate), occurred when seed material was heated to >120 degrees C. In the watercress seeds, however, we show for the first time that gluconasturtiin (phenylethyl glucosinolate) undergoes a non-enzymatic, iron-dependent degradation to a simple nitrile. On heating the seeds to 120 degrees C or greater, thermal degradation of this heat-labile glucosinolate increased simple nitrile levels many fold. PMID:19747700

  7. Comfrey (Symphytum Officinale. l.) and Experimental Hepatic Carcinogenesis: A Short-term Carcinogenesis Model Study

    PubMed Central

    Gomes, Maria Fernanda Pereira Lavieri; de Oliveira Massoco, Cristina; Xavier, José Guilherme

    2010-01-01

    Comfrey or Symphytum officinale (L.) (Boraginaceae) is a very popular plant used for therapeutic purposes. Since the 1980s, its effects have been studied in long-term carcinogenesis studies, in which Comfrey extract is administered at high doses during several months and the neoplastic hepatic lesions are evaluated. However, the literature on this topic is very poor considering the studies performed under short-term carcinogenesis protocols, such as the ‘resistant hepatocyte model’ (RHM). In these studies, it is possible to observe easily the phenomena related to the early phases of tumor development, since pre-neoplastic lesions (PNLs) rise in about 1–2 months of chemical induction. Herein, the effects of chronic oral treatment of rats with 10% Comfrey ethanolic extract were evaluated in a RHM. Wistar rats were sequentially treated with N-nitrosodiethylamine (ip) and 2-acetilaminofluorene (po), and submitted to hepatectomy to induce carcinogenesis promotion. Macroscopic/microscopic quantitative analysis of PNL was performed. Non-parametric statistical tests (Mann–Whitney and χ2) were used, and the level of significance was set at P ≤ 0.05. Comfrey treatment reduced the number of pre-neoplastic macroscopic lesions up to 1 mm (P ≤ 0.05), the percentage of oval cells (P = 0.0001) and mitotic figures (P = 0.007), as well as the number of Proliferating Cell Nuclear Antigen (PCNA) positive cells (P = 0.0001) and acidophilic pre-neoplastic nodules (P = 0.05). On the other hand, the percentage of cells presenting megalocytosis (P = 0.0001) and vacuolar degeneration (P = 0.0001) was increased. Scores of fibrosis, glycogen stores and the number of nucleolus organizing regions were not altered. The study indicated that oral treatment of rats with 10% Comfrey alcoholic extract reduced cell proliferation in this model. PMID:18955295

  8. Survey of the Antibiofilm and Antimicrobial Effects of Zingiber officinale (in Vitro Study)

    PubMed Central

    Aghazadeh, Marzieh; Zahedi Bialvaei, Abed; Aghazadeh, Mohammad; Kabiri, Fahimeh; Saliani, Negar; Yousefi, Mehdi; Eslami, Hosein; Samadi Kafil, Hossein

    2016-01-01

    Background: Candidiasis is one of the most prevalent and important opportunistic fungal infections of the oral cavity caused by Candida yeast species like Candida albicans, C. glabrata, and C. krusei. In addition, several bacteria can cause oral infections. The inhibition of microbial biofilm is the best way to prevent oral infections. Objectives: The aim of the present study is to evaluate the antifungal, antimicrobial, and anti-biofilm properties of ginger (Zingiber officinale) extract against Candida species and some bacterial pathogens and the extract’s effects on biofilm formation. Materials and Methods: Ginger ethanolic extract as a potential mouthwash was used to evaluate its effect against fungi and bacteria using the microdilution method, and biofilm was evaluated using the crystal violet staining method and dead/alive staining. MTT assay was used to evaluate the possible cytotoxicity effects of the extract. Results: The minimum inhibitory concentrations (MICs) of ginger extract for evaluated strains were 40, 40, 20, 20, 20, 20, 10, and 5 mg/mL for Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Bacillus cereus, Acinetobacter baumannii, C. albicans, and C. krusei, respectively. Ginger extract successfully inhibited biofilm formation by A. baumannii, B. cereus, C. krusei, and C. albicans. MTT assay revealed no significant reduction in cell viability after 24 hours. The minimum inhibitory biofilm concentrations (MIBCs) of ginger extract for fungi strains (C. krusei and C. albicans) were greater than those of fluconazole and nystatin (P = 0.000). Conclusions: The findings of the present study indicate that ginger extract has good antifungal and antibiofilm formation by fungi against C. albicans and C. Krusei. Concentrations between 0.625 mg/mL and 5 mg/mL had the highest antibiofilm and antifungal effects. Perhaps, the use of herbal extracts such as ginger represents a new era for antimicrobial therapy after

  9. Dandelion

    MedlinePlus

    ... nih.gov Key References Dandelion. Natural Medicines Comprehensive Database Web site. Accessed at www.naturaldatabase.com on June 9, 2009. Dandelion ( Taraxacum officinale ). Natural Standard Database Web site. Accessed at www.naturalstandard.com on June ...

  10. Amelioration of pancreatic and renal derangements in streptozotocin-induced diabetic rats by polyphenol extracts of Ginger (Zingiber officinale) rhizome.

    PubMed

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin

    2015-12-01

    Free and bound polyphenol extracts of Zingiber officinale rhizome were investigated for their antidiabetic potential in the pancreatic and renal tissues of diabetic rats at a dose of 500mg/kg body weight. Forty Wistar rats were completely randomized into five groups: A-E consisting of eight animals each. Group A (control) comprises normal healthy animals and were orally administered 1.0mL distilled water on a daily basis for 42 days while group B-E were made up of 50mg/kg streptozotocin (STZ)-induced diabetic rats. Group C and D received 1.0mL 500mg/kg body weight free and bound polyphenol extracts respectively while group E received 1.0mL 0.6mg/kg of glibenclamide. Administration of the extracts to the diabetic rats significantly reduced (p<0.05) serum glucose and urea concentrations, increased (p<0.05) serum insulin and Homeostatic Model Assessment for β-cell dysfunction (HOMA-β) while the level of creatinine and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were not affected. Histological examination of the pancreas and kidney revealed restoration of the structural derangements caused by streptozotocin in the polyphenol extracts treated diabetic rats compared to the control groups. Therefore, polyphenols from Zingiber officinale could ameliorate diabetes-induced pancreatic and renal derangements in rats. PMID:26349770

  11. Gliotoxin-producing endophytic Acremonium sp. from Zingiber officinale found antagonistic to soft rot pathogen Pythium myriotylum.

    PubMed

    Anisha, C; Radhakrishnan, E K

    2015-04-01

    Soft rot caused by Pythium sp. is a major cause of economic loss in ginger cultivation. Endophytic fungi isolated from Zingiber officinale were screened for its activity against the soft rot pathogen Pythium myriotylum. Among the isolates screened, an endophytic fungus which was identified as Acremonium sp. showed promising activity against the phytopathogen in dual culture. The selected fungus was cultured in large scale on solid rice media and was extracted with ethyl acetate. The crude extract was subjected to column chromatography and preparative HPLC to obtain the fraction with the antifungal activity. LC-QTOF-MS/MS analysis of this fraction done using water-acetonitrile gradient identified a mass of m/z 327 (M + H) corresponding to gliotoxin with specific fragments m/z 263, 245, 227, and 111. The result was reconfirmed in negative mode ionization. Gliotoxin is the major antagonistic peptide produced by the commercially used biocontrol agent, Trichoderma sp., which shows high antagonism against Pythium sp. The gliotoxin production by the isolated endophytic Acremonium sp. of Z. officinale shows the possible natural biocontrol potential of this endophytic fungus. PMID:25820297

  12. Densitometric HPTLC analysis of 8-gingerol in Zingiber officinale extract and ginger-containing dietary supplements, teas and commercial creams

    PubMed Central

    Alam, Prawez

    2013-01-01

    Objective To develop and validate a simple, accurate HPTLC method for the analysis of 8-gingerol and to determine the quantity of 8-gingerol in Zingiber officinale extract and ginger-containing dietary supplements, teas and commercial creams. Methods The analysis was performed on 10×20 cm aluminium-backed plates coated with 0.2 mm layers of silica gel 60 F254 (E-Merck, Germany) with n-hexane: ethyl acetate 60: 40 (v/v) as mobile phase. Camag TLC Scanner III was used for the UV densitometric scanning at 569. Results This system was found to give a compact spot of 8-gingerol at retention factor (Rf) value of (0.39±0.04) and linearity was found in the ranges 50-500 ng/spot (r2=0.9987). Limit of detection (12.76 ng/spot), limit of quantification (26.32 ng/spot), accuracy (less than 2 %) and recovery (ranging from 98.22-99.20) were found satisfactory. Conclusions The HPTLC method developed for quantification of 8-gingerol was found to be simple, accurate, reproducible, sensitive and is applicable to the analysis of 8-gingerol in Zingiber officinale extract and ginger-containing dietary supplements, teas and commercial creams. PMID:23905021

  13. [Comparison on polysaccharide content and PMP-HPLC fingerprints of polysaccharide in stems and leaves of Dendrobium officinale].

    PubMed

    Zhou, Gui-Fen; Pang, Min-Xia; Chen, Su-Hong; Lv, Gui-Yuan; Yan, Mei-Qiu

    2014-03-01

    In order to provide scientific basics for exploitation and sufficient application of Dendrobium officinale leaves resources, the phenol-sulfuric acid method was applied to determine the polysaccharide content. The monosaccharides were derivated by PMP and the derivatives were identified by HPLC-DAD-ESI-MS(n) and the contents of mannose and glucose were determined simultaneously. Similarity evaluation system for chromatographic fingerprint of traditional Chinese medicine (2004A) was employed to generate the mean chromatogram and similarity analysis of the samples was carried out. The results demonstrated that polysaccharide content, monosaccharide compositions and composition ratio had an obvious difference between stems and leaves. The polysaccharide content of stems was higher than that of leaves. Monosaccharide composition in leaf was significantly different from that in stem. The polysaccharide from stems was composed of mannose and glucose, however the polysaccharide of leaves was acid heteropolysaccharide and was mainly composed of five monosaccharides, including mannose, galacturonic acid, glucose, galactose and arabinose. The similarity value of the 14 batches was above 0.9, indicating that similarity of fingerprints among different samples was high. The study can provide evidence for expanding the medicinal parts of D. officinale. PMID:25204167

  14. In Vivo Evaluation of Ethanolic Extract of Zingiber officinale Rhizomes for Its Protective Effect against Liver Cirrhosis

    PubMed Central

    Abdulaziz Bardi, Daleya; Halabi, Mohammed Farouq; Abdullah, Nor Azizan; Rouhollahi, Elham

    2013-01-01

    Zingiber officinale is a traditional medicine against various disorders including liver diseases.The aim of this study was to assess the hepatoprotective activity of the ethanolic extract of rhizomes of Z. officinale (ERZO) against thioacetamide-induced hepatotoxicity in rats. Five groups of male Sprague Dawley have been used. In group 1 rats received intraperitoneal (i.p.) injection of normal saline while groups 2–5 received thioacetamide (TAA, 200 mg/kg; i.p.) for induction of liver cirrhosis, thrice weekly for eight weeks. Group 3 received 50 mg/kg of silymarin. The rats in groups 4 and 5 received 250 and 500 mg/kg of ERZO (dissolved in 10% Tween), respectively. Hepatic damage was assessed grossly and microscopically for all of the groups. Results confirmed the induction of liver cirrhosis in group 2 whilst administration of silymarin or ERZO significantly reduced the impact of thioacetamide toxicity. These groups decreased fibrosis of the liver tissues. Immunohistochemistry assessment against proliferating cell nuclear antigen did not show remarkable proliferation in the ERZO-treated rats when compared with group 2. Moreover, factions of the ERZO extract were tested on Hep-G2 cells and showed antiproliferative activity (IC50 38–60 μg/mL). This study showed hepatoprotective effect of ERZO. PMID:24396831

  15. In vivo evaluation of ethanolic extract of Zingiber officinale rhizomes for its protective effect against liver cirrhosis.

    PubMed

    Abdulaziz Bardi, Daleya; Halabi, Mohammed Farouq; Abdullah, Nor Azizan; Rouhollahi, Elham; Hajrezaie, Maryam; Abdulla, Mahmood Ameen

    2013-01-01

    Zingiber officinale is a traditional medicine against various disorders including liver diseases.The aim of this study was to assess the hepatoprotective activity of the ethanolic extract of rhizomes of Z. officinale (ERZO) against thioacetamide-induced hepatotoxicity in rats. Five groups of male Sprague Dawley have been used. In group 1 rats received intraperitoneal (i.p.) injection of normal saline while groups 2-5 received thioacetamide (TAA, 200 mg/kg; i.p.) for induction of liver cirrhosis, thrice weekly for eight weeks. Group 3 received 50 mg/kg of silymarin. The rats in groups 4 and 5 received 250 and 500 mg/kg of ERZO (dissolved in 10% Tween), respectively. Hepatic damage was assessed grossly and microscopically for all of the groups. Results confirmed the induction of liver cirrhosis in group 2 whilst administration of silymarin or ERZO significantly reduced the impact of thioacetamide toxicity. These groups decreased fibrosis of the liver tissues. Immunohistochemistry assessment against proliferating cell nuclear antigen did not show remarkable proliferation in the ERZO-treated rats when compared with group 2. Moreover, factions of the ERZO extract were tested on Hep-G2 cells and showed antiproliferative activity (IC50 38-60 μ g/mL). This study showed hepatoprotective effect of ERZO. PMID:24396831

  16. Protective Effect of Free and Bound Polyphenol Extracts from Ginger (Zingiber officinale Roscoe) on the Hepatic Antioxidant and Some Carbohydrate Metabolizing Enzymes of Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin; Ashafa, Anofi Omotayo Tom

    2013-01-01

    This study investigated the hepatoprotective effects of polyphenols from Zingiber officinale on streptozotocin-induced diabetic rats by assessing liver antioxidant enzymes, carbohydrate-metabolizing enzymes and liver function indices. Initial oral glucose tolerance test was conducted using 125 mg/kg, 250 mg/kg, and 500 mg/kg body weight of both free and bound polyphenols from Z. officinale. 28 day daily oral administration of 500 mg/kg body weight of free and bound polyphenols from Z. officinale to streptozotocin-induced (50 mg/kg) diabetic rats significantly reduced (P < 0.05) the fasting blood glucose compared to control groups. There was significant increase (P < 0.05) in the antioxidant enzymes activities in the animals treated with both polyphenols. Similarly, the polyphenols normalised the activities of some carbohydrate metabolic enzymes (hexokinase and phosphofructokinase) in the liver of the rats treated with it and significantly reduced (P < 0.05) the activities of liver function enzymes. The results from the present study have shown that both free and bound polyphenols from Z. officinale especially the free polyphenol could ameliorate liver disorders caused by diabetes mellitus in rats. This further validates the use of this species as medicinal herb and spice by the larger population of Nigerians. PMID:24367390

  17. Taraxacum mongolicum extract exhibits a protective effect on hepatocytes and an antiviral effect against hepatitis B virus in animal and human cells.

    PubMed

    Jia, Yuan-Yuan; Guan, Rong-Fa; Wu, Yi-Hang; Yu, Xiao-Ping; Lin, Wen-Yan; Zhang, Yong-Yong; Liu, Tao; Zhao, Jun; Shi, Shu-Yun; Zhao, Yu

    2014-04-01

    In order to validate the antiviral effect against hepatitis B virus (HBV) of Taraxacum mongolicum (T. mongolicum), the protective effect on hepatocytes, and antiviral properties against duck hepatitis B virus (DHBV) and HBV of T. mongolicum extract (TME) were evaluated in chemically-injured neonatal rat hepatocytes, DHBV-infected duck fetal hepatocytes and HBV-transfected HepG2.2.15 cells, respectively. The results demonstrated that TME at 50-100 µg/ml improved D-galactosamine (D-GalN), thioacetamide (TAA) and tert-butyl hydroperoxide (t-BHP)-injured rat hepatocytes, and produced protection rates of 42.2, 34.6 and 43.8% at 100 µg/ml, respectively. Furthermore, TME at 1-100 µg/ml markedly inhibited DHBV DNA replication. Additionally, TME at 25-100 µg/ml reduced HBsAg and HBeAg levels and produced inhibition rates of 91.39 and 91.72% at 100 µg/ml, respectively. TME markedly inhibited HBV DNA replication at 25-100 µg/ml. The results demonstrate the potent antiviral effect of T. mongolicum against HBV effect. The protective of TME effect on hepatocytes may be achieved by its ability to ameliorate oxidative stress. The antiviral properties of TME may contribute to blocking protein synthesis steps and DNA replication. Furthermore, major components of TME were quantificationally analyzed. These data provide scientific evidence supporting the traditional use of TME in the treatment of hepatitis. PMID:24481875

  18. Synthesis of Phenolics and Flavonoids in Ginger (Zingiber officinale Roscoe) and Their Effects on Photosynthesis Rate

    PubMed Central

    Ghasemzadeh, Ali; Jaafar, Hawa Z. E.; Rahmat, Asmah

    2010-01-01

    The relationship between phenolics and flavonoids synthesis/accumulation and photosynthesis rate was investigated for two Malaysian ginger (Zingiber officinale) varieties grown under four levels of glasshouse light intensity, namely 310, 460, 630 and 790 μmol m−2s−1. High performance liquid chromatography (HPLC) was employed to identify and quantify the polyphenolic components. The results of HPLC analysis indicated that synthesis and partitioning of quercetin, rutin, catechin, epicatechin and naringenin were high in plants grown under 310 μmol m−2s−1. The average value of flavonoids synthesis in leaves for both varieties increased (Halia Bentong 26.1%; Halia Bara 19.5%) when light intensity decreased. Photosynthetic rate and plant biomass increased in both varieties with increasing light intensity. More specifically, a high photosynthesis rate (12.25 μmol CO2 m−2s−1 in Halia Bara) and plant biomass (79.47 g in Halia Bentong) were observed at 790 μmol m−2s−1. Furthermore, plants with the lowest rate of photosynthesis had highest flavonoids content. Previous studies have shown that quercetin inhibits and salicylic acid induces the electron transport rate in photosynthesis photosystems. In the current study, quercetin was an abundant flavonoid in both ginger varieties. Moreover, higher concentration of quercetin (1.12 mg/g dry weight) was found in Halia Bara leaves grown under 310 μmol m−2s−1 with a low photosynthesis rate. Furthermore, a high content of salicylic acid (0.673 mg/g dry weight) was detected in Halia Bara leaves exposed under 790 μmol m−2s−1 with a high photosynthesis rate. No salicylic acid was detected in gingers grown under 310 μmol m−2s−1. Ginger is a semi-shade loving plant that does not require high light intensity for photosynthesis. Different photosynthesis rates at different light intensities may be related to the absence or presence of some flavonoid and phenolic compounds. PMID:21151455

  19. Protective Effect of Zingiber Officinale against CCl4-Induced Liver Fibrosis Is Mediated through Downregulating the TGF-β1/Smad3 and NF-ĸB/IĸB Pathways.

    PubMed

    Hasan, Iman H; El-Desouky, M A; Hozayen, Walaa G; Abd el Aziz, Ghada M

    2016-01-01

    No ideal hepatoprotective agents are available in modern medicine to effectively prevent liver disorders. In this study, we aimed at evaluating the potential of Zingiber officinale in the regression of liver fibrosis and its underlining mechanism of action. To induce liver fibrosis, male Wistar rats received CCl4 (2 ml/kg/2 times/week; i.p.), with and without 300 or 600 mg/kg Z. officinale extract daily through oral gavage. To assess the protective effect of Z. officinale, liver function parameters, histopathology, inflammatory markers and gene expression of transforming growth factor-beta 1 (TGF-β1)/Smad3 and nuclear factor-kappa B (NF-ĸB)/IĸB pathways were analyzed. Results demonstrate that Z. officinale extract markedly prevented liver injury as evident by the decreased liver marker enzymes. Concurrent administration of Z. officinale significantly protected against the CCl4-induced inflammation as showed by the decreased pro-inflammatory cytokine levels as well as the downregulation of the NF-ĸB)/IĸB and TGF-β1/Smad3 pathways in CCl4-administered rats. In conclusion, our study provides evidence that the protective effect of Z. officinale against rat liver fibrosis could be explained through its ability to modulate the TGF-β1/Smad3 and NF-ĸB)/IĸB signaling pathways. PMID:26551763

  20. Data in support of three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes

    PubMed Central

    Gagaoua, Mohammed; Hafid, Kahina; Hoggas, Naouel

    2016-01-01

    This paper describes data related to a research article titled “Three Phase Partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes” (Gagaoua et al., 2015) [1]. Zingibain (EC 3.4.22.67), is a coagulant cysteine protease and a meat tenderizer agent that have been reported to produce satisfactory final products in dairy and meat technology, respectively. Zingibains were exclusively purified using chromatographic techniques with very low yield purification. This paper includes data of the effect of temperature, usual salts and organic solvents on the efficiency of the three phase partitioning (TPP) system. Also it includes data of the kinetic activity characterization of the purified zingibain using TPP purification approach. PMID:26909379

  1. Anti-giardial therapeutic potential of dichloromethane extracts of Zingiber officinale and Curcuma longa in vitro and in vivo.

    PubMed

    Dyab, Ahmad K; Yones, Doaa A; Ibraheim, Zedan Z; Hassan, Tasneem M

    2016-07-01

    Giardiosis is one of the common parasitic diarrhoea in humans, especially in children, worldwide. Many drugs are used for its treatment, but there is evidence of drug resistance, insufficient efficacy and unpleasant side effects. Natural products are good candidates for discovering more effective anti-giardial compounds. This study evaluated the activity of extracts of Zingiber officinale (ginger) and Curcuma longa (curcumin) against Giardia lamblia in vitro and in vivo. Giardia cyst suspension was prepared from children faecal specimens. For the in vitro experiment, 1, 10 and 50 mg⁄mL dichloromethane extracts of ginger and curcumin separately were incubated with Giardia cysts for 5, 10, 30 and 60 min. The viability was distinguished by 0.1 % eosin and a haemocytometer. For the in vivo experiments, Balb/c mice were infected with Giardia cyst suspension containing 10,000 cysts/mL. Infected mice were administered 10 and 20 mg kg(-1) day(-1) ginger and curcumin extracts separately for 7 days post-infection. The effectiveness of the extracts was evaluated by faecal cyst and intestinal trophozoite counts and histopathological examination of the small intestine. In vitro ginger extract had a higher significant effect on cyst viability than curcumin, in a dose- and time-dependent manner. In vivo ginger (more effective) and curcumin extracts significantly treated infected mice, and this was evidenced by the faecal cyst and intestinal trophozoite counts reduction, in addition to evident improvement of intestinal mucosal damages induced by Giardia infection. Z. officinale and C. longa extracts may represent effective and natural therapeutic alternatives with low side effects and without drug resistance in the treatment of giardiosis. PMID:26984104

  2. Temperature and geographic attribution of change in the Taraxacum mongolicum growing season from 1990 to 2009 in eastern China's temperate zone

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoqiu; Tian, Youhua; Xu, Lin

    2015-10-01

    Using leaf unfolding and leaf coloration data of a widely distributed herbaceous species, Taraxacum mongolicum, we detected linear trend and temperature response of the growing season at 52 stations from 1990 to 2009. Across the research region, the mean growing season beginning date marginal significantly advanced at a rate of -2.1 days per decade, while the mean growing season end date was significantly delayed at a rate of 3.1 days per decade. The mean growing season length was significantly prolonged at a rate of 5.1 days per decade. Over the 52 stations, linear trends of the beginning date correlate negatively with linear trends of spring temperature, whereas linear trends of the end date and length correlate positively with linear trends of autumn temperature and annual mean temperature. Moreover, the growing season linear trends are also closely related to the growing season responses to temperature and geographic coordinates plus elevation. Regarding growing season responses to temperature, a 1 °C increase in regional mean spring temperature results in an advancement of 2.1 days in regional mean growing season beginning date, and a 1 °C increase in regional mean autumn temperature causes a delay of 2.3 days in regional mean growing season end date. A 1 °C increase in regional annual mean temperature induces an extension of 8.7 days in regional mean growing season length. Over the 52 stations, response of the beginning date to spring temperature depends mainly on local annual mean temperature and geographic coordinates plus elevation. Namely, a 1 °C increase in spring temperature induces a larger advancement of the beginning date at warmer locations with lower latitudes and further west longitudes than at colder locations with higher latitudes and further east longitudes, while a 1 °C increase in spring temperature causes a larger advancement of the beginning date at higher than at lower elevations.

  3. Determination of phenolic acids and flavonoids in Taraxacum formosanum Kitam by liquid chromatography-tandem mass spectrometry coupled with a post-column derivatization technique.

    PubMed

    Chen, Hung-Ju; Inbaraj, Baskaran Stephen; Chen, Bing-Huei

    2012-01-01

    A liquid chromatography-tandem mass spectrometry method (LC-MS/MS) was developed for the determination of phenolic acids and flavonoids in a medicinal Chinese herb Taraxacum formosanum Kitam. Initially, both phenolic acids and flavonoids were extracted with 50% ethanol in a water-bath at 60 °C for 3 h and eventually separated into acidic fraction and neutral fraction by using a C(18) cartridge. A total of 29 compounds were separated within 68 min by employing a Gemini C(18) column and a gradient solvent system of 0.1% formic acid and acetonitrile at a flow rate of 1.0 mL/min. Based on the retention behavior as well as absorption and mass spectra, 19 phenolic acids and 10 flavonoids were identified and quantified in T. formosanum, with the former ranging from 14.1 μg/g to 10,870.4 μg/g, and the latter from 9.9 μg/g to 325.8 μg/g. For further identification of flavonoids, a post-column derivatization method involving shift reagents such as sodium acetate or aluminum chloride was used and the absorption spectral characteristics without or with shift reagents were compared. An internal standard syringic acid was used for quantitation of phenolic acids, whereas (±) naringenin was found suitable for quantitation of flavonoids. The developed LC-MS/MS method showed high reproducibility, as evident from the relative standard deviation (RSD) values for intra-day and inter-day variability being 1.0-6.8% and 2.0-7.7% for phenolic acids and 3.7-7.4% and 1.5-8.1% for flavonoids, respectively, and thus may be applied for simultaneous determination of phenolic acids and flavonoids in Chinese herb and nutraceuticals. PMID:22312251

  4. Determination of chlorophylls in Taraxacum formosanum by high-performance liquid chromatography-diode array detection-mass spectrometry and preparation by column chromatography.

    PubMed

    Loh, Chin Hoe; Inbaraj, Baskaran Stephen; Liu, Man Hai; Chen, Bing Huei

    2012-06-20

    Taraxacum formosanum, a well-known Chinese herb shown to be protective against hepatic cancer as well as liver and lung damage, may be attributed to the presence of abundant carotenoids and chlorophylls. However, the variety and content of chlorophylls remain uncertain. The objectives of this study were to develop an high-performance liquid chromatography-diode array detection-mass spectrometry method for determination of chlorophylls in T. formosanum and preparation by column chromatography. An HyPURITY C18 column and a gradient mobile phase of water (A), methanol (B), acetonitrile (C), and acetone (D) could resolve 10 chlorophylls and an internal standard Fast Green FCF within 30 min with a flow rate at 1 mL/min and detection at 660 nm. Both chlorophylls a and a' were present in the largest amount (1389.6 μg/g), followed by chlorophylls b and b' (561.2 μg/g), pheophytins a and a' (31.7 μg/g), hydroxychlorophyll b (26.5 μg/g), hydroxychlorophylls a and a' (9.8 μg/g), and chlorophyllides a and a' (0.35 μg/g). A glass column containing 52 g of magnesium oxide-diatomaceous earth (1:3, w/w) could elute chlorophylls with 800 mL of acetone containing 50% ethanol at a flow rate of 10 mL/min. Some new chlorophyll derivatives including chlorophyllide b, pyropheophorbide b, hydroxypheophytin a, and hydroxypheophytin a' were generated during column chromatography but accompanied by a 63% loss in total chlorophylls. Thus, the possibility of chlorophyll fraction prepared from T. formosanum as a raw material for future production of functional food needs further investigation. PMID:22656126

  5. Temperature and geographic attribution of change in the Taraxacum mongolicum growing season from 1990 to 2009 in eastern China's temperate zone.

    PubMed

    Chen, Xiaoqiu; Tian, Youhua; Xu, Lin

    2015-10-01

    Using leaf unfolding and leaf coloration data of a widely distributed herbaceous species, Taraxacum mongolicum, we detected linear trend and temperature response of the growing season at 52 stations from 1990 to 2009. Across the research region, the mean growing season beginning date marginal significantly advanced at a rate of -2.1 days per decade, while the mean growing season end date was significantly delayed at a rate of 3.1 days per decade. The mean growing season length was significantly prolonged at a rate of 5.1 days per decade. Over the 52 stations, linear trends of the beginning date correlate negatively with linear trends of spring temperature, whereas linear trends of the end date and length correlate positively with linear trends of autumn temperature and annual mean temperature. Moreover, the growing season linear trends are also closely related to the growing season responses to temperature and geographic coordinates plus elevation. Regarding growing season responses to temperature, a 1 °C increase in regional mean spring temperature results in an advancement of 2.1 days in regional mean growing season beginning date, and a 1 °C increase in regional mean autumn temperature causes a delay of 2.3 days in regional mean growing season end date. A 1 °C increase in regional annual mean temperature induces an extension of 8.7 days in regional mean growing season length. Over the 52 stations, response of the beginning date to spring temperature depends mainly on local annual mean temperature and geographic coordinates plus elevation. Namely, a 1 °C increase in spring temperature induces a larger advancement of the beginning date at warmer locations with lower latitudes and further west longitudes than at colder locations with higher latitudes and further east longitudes, while a 1 °C increase in spring temperature causes a larger advancement of the beginning date at higher than at lower elevations. PMID:25627826

  6. Determination of Phenolic Acids and Flavonoids in Taraxacum formosanum Kitam by Liquid Chromatography-Tandem Mass Spectrometry Coupled with a Post-Column Derivatization Technique

    PubMed Central

    Chen, Hung-Ju; Inbaraj, Baskaran Stephen; Chen, Bing-Huei

    2012-01-01

    A liquid chromatography-tandem mass spectrometry method (LC-MS/MS) was developed for the determination of phenolic acids and flavonoids in a medicinal Chinese herb Taraxacum formosanum Kitam. Initially, both phenolic acids and flavonoids were extracted with 50% ethanol in a water-bath at 60 °C for 3 h and eventually separated into acidic fraction and neutral fraction by using a C18 cartridge. A total of 29 compounds were separated within 68 min by employing a Gemini C18 column and a gradient solvent system of 0.1% formic acid and acetonitrile at a flow rate of 1.0 mL/min. Based on the retention behavior as well as absorption and mass spectra, 19 phenolic acids and 10 flavonoids were identified and quantified in T. formosanum, with the former ranging from 14.1 μg/g to 10,870.4 μg/g, and the latter from 9.9 μg/g to 325.8 μg/g. For further identification of flavonoids, a post-column derivatization method involving shift reagents such as sodium acetate or aluminum chloride was used and the absorption spectral characteristics without or with shift reagents were compared. An internal standard syringic acid was used for quantitation of phenolic acids, whereas (±) naringenin was found suitable for quantitation of flavonoids. The developed LC-MS/MS method showed high reproducibility, as evident from the relative standard deviation (RSD) values for intra-day and inter-day variability being 1.0–6.8% and 2.0–7.7% for phenolic acids and 3.7–7.4% and 1.5–8.1% for flavonoids, respectively, and thus may be applied for simultaneous determination of phenolic acids and flavonoids in Chinese herb and nutraceuticals. PMID:22312251

  7. Weeds ability to phytoremediate cadmium-contaminated soil.

    PubMed

    Hammami, Hossein; Parsa, Mehdi; Mohassel, Mohammad Hassan Rashed; Rahimi, Salman; Mijani, Sajad

    2016-01-01

    An alternative method to other technologies to clean up the soil, air and water pollution by heavy metals is phytoremediation. Therefore, a pot culture experiment was conducted at the College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran, in 2014 to determine the potential absorption of cadmium by Portulaca oleracea (Common purslane), Solanum nigrum (Black nightshade), Abutilon theophrasti (Velvetleaf) and Taraxacum officinale (Dandelion). The type of experiment was completely randomized design with factorial arrangement and four replications. The soil in pot was treated with different rates of CdCl2.H2O (0 (control), 10, 20, 40, 60, and 80 mg Cd/kg soil) and the plants were sown. With increasing concentration levels, fresh weight and dry weight of shoots and roots of all plant species were reduced. The reduction severity was ranked according the following order, P. oleracea > A. theophrasti > S. nigrum > T. officinale. Bioconcentration factor (BCF), Translocation factor (TF) and Translocation efficiency (TE%) was ranked according the following order, T. officinale > S. nigrum > A. theophrasti > P. oleracea. The results of this study revealed that T. officinale and S. nigrum are effective species to phytoremediate Cd-contaminated soil. PMID:26125671

  8. Using Square Roots

    ERIC Educational Resources Information Center

    Wilson, William Wynne

    1976-01-01

    This article describes techniques which enable the user of a comparatively simple calculator to perform calculations of cube roots, nth roots, trigonometric, and inverse trigonometric functions, logarithms, and exponentials. (DT)

  9. The Root Pressure Phenomenon

    ERIC Educational Resources Information Center

    Marsh, A. R.

    1972-01-01

    Describes experiments demonstrating that root pressure in plants is probably controlled by a circadian rhythm (biological clock). Root pressure phenomenon plays significant part in water transport in contradiction with prevalent belief. (PS)

  10. Corky root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corky root rot (corchosis) was first reported in Argentina in 1985, but the disease was presumably present long before that. The disease occurs in most alfalfa-growing areas of Argentina but is more common in older stands. In space-planted alfalfa trials scored for root problems, corky root rot was ...

  11. WHY ROOTING FAILS.

    SciTech Connect

    CREUTZ,M.

    2007-07-30

    I explore the origins of the unphysical predictions from rooted staggered fermion algorithms. Before rooting, the exact chiral symmetry of staggered fermions is a flavored symmetry among the four 'tastes.' The rooting procedure averages over tastes of different chiralities. This averaging forbids the appearance of the correct 't Hooft vertex for the target theory.

  12. Armillaria root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    First described on grapevines in California in the 1880s, Armillaria root rot occurs in all major grape-growing regions of the state. The causal fungus, Armillaria mellea, infects woody grapevine roots and the base of the trunk (the root collar), resulting in a slow decline and eventual death of the...

  13. BLACK ROOT ROT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black Root Rot Prepared by G. S. Abawi, Revised by L.E. Hanson Black root rot is caused by Thielaviopsis basicola (syn. Chalara elegans). The pathogen is widely distributed, can infect more than 130 plant species in 15 families, and causes severe black root rot diseases in ornamentals and crops suc...

  14. Inhibition of gastric H+, K+-ATPase and Helicobacter pylori growth by phenolic antioxidants of Zingiber officinale.

    PubMed

    Siddaraju, Mugur N; Dharmesh, Shylaja M

    2007-03-01

    Ulcer is a common global problem characterized by acute gastric irritability, bleeding, etc. due to either increased gastric cell proton potassium ATPase activity (PPA) or perturbation of mucosal defence. Helicobacter pylori has been identified as a major ulcerogen in addition to oxidative stress and nonsteroidal anti-inflammatory drugs. In this paper, we report ginger-free phenolic (GRFP) and ginger hydrolysed phenolic (GRHP) fractions of ginger (Zingiber officinale) as potent inhibitors of PPA and H. pylori growth. GRFP and GRHP inhibited PPA at an IC(50) of 2.9 +/- 0.18 and 1.5 +/- 0.12 microg/mL, exhibiting six- to eight-fold better potency over lansoprazole. GRFP is constituted by syringic (38%), gallic (18%) and cinnamic (14%) acids and GRHP by cinnamic (48%), p-coumaric (34%) and caffeic (6%) acids as major phenolic acids. GRFP and GRHP further exhibited free radical scavenging (IC(50) 1.7 +/- 0.07 and 2.5 +/- 0.16), inhibition of lipid peroxidation (IC(50) 3.6 +/- 0.21 and 5.2 +/- 0.46), DNA protection (80% at 4 microg) and reducing power abilities (80-338 U/g) indicating strong antioxidative properties. GRFP and GRHP may thus be potential in-expensive multistep blockers against ulcer. PMID:17295419

  15. Zingiber officinale (ginger) compounds have tetracycline-resistance modifying effects against clinical extensively drug-resistant Acinetobacter baumannii.

    PubMed

    Wang, Hui-Min; Chen, Chung-Yi; Chen, Hsi-An; Huang, Wan-Chun; Lin, Wei-Ru; Chen, Tun-Chieh; Lin, Chun-Yu; Chien, Hsin-Ju; Lu, Po-Liang; Lin, Chiu-Mei; Chen, Yen-Hsu

    2010-12-01

    Extensively drug-resistant Acinetobacter baumannii (XDRAB) is a growing and serious nosocomial infection worldwide, such that developing new agents against it is critical. The antimicrobial activities of the rhizomes from Zingiber officinale, known as ginger, have not been proven in clinical bacterial isolates with extensive drug-resistance. This study aimed to investigate the effects of four known components of ginger, [6]-dehydrogingerdione, [10]-gingerol, [6]-shogaol and [6]-gingerol, against clinical XDRAB. All these compounds showed antibacterial effects against XDRAB. Combined with tetracycline, they showed good resistance modifying effects to modulate tetracycline resistance. Using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method, these four ginger compounds demonstrated antioxidant properties, which were inhibited by MnO₂, an oxidant without antibacterial effects. After the antioxidant property was blocked, their antimicrobial effects were abolished significantly. These results indicate that ginger compounds have antioxidant effects that partially contribute to their antimicrobial activity and are candidates for use in the treatment of infections with XDRAB. PMID:20564496

  16. Inhibitory effects of Zingiber officinale Roscoe derived components on aldose reductase activity in vitro and in vivo.

    PubMed

    Kato, Atsushi; Higuchi, Yasuko; Goto, Hirozo; Kizu, Haruhisa; Okamoto, Tadashi; Asano, Naoki; Hollinshead, Jackie; Nash, Robert J; Adachi, Isao

    2006-09-01

    Ginger (Zingiber officinale Roscoe) continues to be used as an important cooking spice and herbal medicine around the world. Scientific research has gradually verified the antidiabetic effects of ginger. Especially gingerols, which are the major components of ginger, are known to improve diabetes including the effect of enhancement against insulin-sensitivity. Aldose reductase inhibitors have considerable potential for the treatment of diabetes, without increased risk of hypoglycemia. The assay for aldose reductase inhibitors in ginger led to the isolation of five active compounds including 2-(4-hydroxy-3-methoxyphenyl)ethanol (2) and 2-(4-hydroxy-3-methoxyphenyl)ethanoic acid (3). Compounds 2 and 3 were good inhibitors of recombinant human aldose reductase, with IC50 values of 19.2 +/- 1.9 and 18.5 +/- 1.1 microM, respectively. Furthermore, these compounds significantly suppressed not only sorbitol accumulation in human erythrocytes but also lens galactitol accumulation in 30% of galactose-fed cataract rat model. A structure-activity relationship study revealed that the applicable side alkyl chain length and the presence of a C3 OCH3 group in the aromatic ring are essential features for enzyme recognition and binding. These results suggested that it would contribute to the protection against or improvement of diabetic complications for a dietary supplement of ginger or its extract containing aldose reductase inhibitors. PMID:16939321

  17. Muco-bioadhesive containing ginger officinale extract in the management of recurrent aphthous stomatitis: A randomized clinical study

    PubMed Central

    Haghpanah, Parya; Moghadamnia, Ali Akbar; Zarghami, Amin; Motallebnejad, Mina

    2015-01-01

    Background: Recurrent aphthous stomatitis (RAS) is the most common oral mucosal lesions in the general population. Various treatment modalities have been used; but no specific therapy proved to be definitive. Ginger Officinale (ginger) indicated to have anti-inflammatory properties in herbal medicine. Thus, this study aimed to evaluate the efficacy of ginger containing bioadhesive in the treatment of aphthous ulcers. Methods: In this randomized double-blind placebo-controlled trial, 15 patients were enrolled. The clinical efficacy of the mucoadhessive on pain, inflammatory zone and ulcer's diameter in the test period was compared with that of the base treatment and no treatment periods during 10 days of study. Results: Significant reduction in pain was observed on day 5 between placebo (using base bioadhesives) and without treatment periods at the first phase of the study (4.53 vs. 3.27; P=0.038. ( Reduction in inflamed halo diameters was significant on day 1 between without treatment and ginger containing bioadhesives )46.73 vs 28.67; P=0.044). Other variables such as the diameter of ulcers did not indicate any significant differences in both periods. Conclusion: This study indicated that ginger bioadhesive is capable to relieve pain of RAS. However, its efficacy on ulcer diameter, inflamed halo and healing time was not significantly different compared to the results of the placebo received period. PMID:26221489

  18. Selection of endophytic fungi from comfrey (Symphytum officinale L.) for in vitro biological control of the phytopathogen Sclerotinia sclerotiorum (Lib.).

    PubMed

    Rocha, Rafaeli; da Luz, Daniela Eleutério; Engels, Cibelle; Pileggi, Sônia Alvim Veiga; de Souza Jaccoud Filho, David; Matiello, Rodrigo Rodrigues; Pileggi, Marcos

    2009-01-01

    Biological control consists of using one organism to attack another that may cause economic damage to crops. Integrated Pest Management (IPM) is a very common strategy. The white mold produced by Sclerotinia sclerotiorum (Lib.) causes considerable damage to bean crops. This fungus is a soil inhabitant, the symptoms of which are characterized by water-soaked lesions covered by a white cottony fungal growth on the soil surface and/or the host plant. Possible biological control agents taken from plants are being investigated as phytopathogen inhibitors. These are endophytic microorganisms that inhabit the intercellular spaces of vegetal tissues and are often responsible for antimicrobial production. The objective of the present study was to select endophytic fungi isolated from comfrey (Symphytum officinale L.) leaves with in vitro antagonist potential against the phytopathogenic fungus S. sclerotiorum. Twelve isolates of endophytic fungi and a pathogenic strain of S. sclerotiorum were used in the challenge method. With the aid of this method, four endophytes with the best antagonistic activity against S. sclerotiorum were selected. Pathogen growth inhibition zones were considered indicative of antibiosis. The percentages of pathogenic mycelia growth were measured both with and without the antagonist, resulting in growth reductions of 46.7% to 50.0% for S. sclerotiorum. These analyses were performed by evaluating the endophytic/pathogenic mycelia growth in mm/day over an eight-day period of antagonistic tests. PMID:24031320

  19. Diversity in global gene expression and morphology across a watercress (Nasturtium officinale R. Br.) germplasm collection: first steps to breeding.

    PubMed

    Payne, Adrienne C; Clarkson, Graham J J; Rothwell, Steve; Taylor, Gail

    2015-01-01

    Watercress (Nasturtium officinale R. Br.) is a nutrient intense, leafy crop that is consumed raw or in soups across the globe, but for which, currently no genomic resources or breeding programme exists. Promising morphological, biochemical and functional genomic variation was identified for the first time in a newly established watercress germplasm collection, consisting of 48 watercress accessions sourced from contrasting global locations. Stem length, stem diameter and anti-oxidant (AO) potential varied across the accessions. This variation was used to identify three extreme contrasting accessions for further analysis. Variation in global gene expression was investigated using an Affymetrix Arabidopsis ATH1 microarray gene chip, using the commercial control (C), an accession selected for dwarf phenotype with a high AO potential (dwarfAO, called 'Boldrewood') and one with high AO potential alone. A set of transcripts significantly differentially expressed between these three accessions, were identified, including transcripts involved in the regulation of growth and development and those involved in secondary metabolism. In particular, when differential gene expression was compared between C and dwarfAO, the dwarfAO was characterised by increased expression of genes encoding glucosinolates, which are known precursors of phenethyl isothiocyanate, linked to the anti-carcinogenic effects well-documented in watercress. This study provides the first analysis of natural variation across the watercress genome and has identified important underpinning information for future breeding for enhanced anti-carcinogenic properties and morphology traits in this nutrient-intense crop. PMID:26504575

  20. Diversity in global gene expression and morphology across a watercress (Nasturtium officinale R. Br.) germplasm collection: first steps to breeding

    PubMed Central

    Payne, Adrienne C.; Clarkson, Graham J.J.; Rothwell, Steve; Taylor, Gail

    2015-01-01

    Watercress (Nasturtium officinale R. Br.) is a nutrient intense, leafy crop that is consumed raw or in soups across the globe, but for which, currently no genomic resources or breeding programme exists. Promising morphological, biochemical and functional genomic variation was identified for the first time in a newly established watercress germplasm collection, consisting of 48 watercress accessions sourced from contrasting global locations. Stem length, stem diameter and anti-oxidant (AO) potential varied across the accessions. This variation was used to identify three extreme contrasting accessions for further analysis. Variation in global gene expression was investigated using an Affymetrix Arabidopsis ATH1 microarray gene chip, using the commercial control (C), an accession selected for dwarf phenotype with a high AO potential (dwarfAO, called ‘Boldrewood’) and one with high AO potential alone. A set of transcripts significantly differentially expressed between these three accessions, were identified, including transcripts involved in the regulation of growth and development and those involved in secondary metabolism. In particular, when differential gene expression was compared between C and dwarfAO, the dwarfAO was characterised by increased expression of genes encoding glucosinolates, which are known precursors of phenethyl isothiocyanate, linked to the anti-carcinogenic effects well-documented in watercress. This study provides the first analysis of natural variation across the watercress genome and has identified important underpinning information for future breeding for enhanced anti-carcinogenic properties and morphology traits in this nutrient-intense crop. PMID:26504575

  1. Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens

    PubMed Central

    Karuppiah, Ponmurugan; Rajaram, Shyamkumar

    2012-01-01

    Objective To evaluate the antibacterial properties of Allium sativum (garlic) cloves and Zingiber officinale (ginger) rhizomes against multi-drug resistant clinical pathogens causing nosocomial infection. Methods The cloves of garlic and rhizomes of ginger were extracted with 95% (v/v) ethanol. The ethanolic extracts were subjected to antibacterial sensitivity test against clinical pathogens. Results Anti-bacterial potentials of the extracts of two crude garlic cloves and ginger rhizomes were tested against five gram negative and two gram positive multi-drug resistant bacteria isolates. All the bacterial isolates were susceptible to crude extracts of both plants extracts. Except Enterobacter sp. and Klebsiella sp., all other isolates were susceptible when subjected to ethanolic extracts of garlic and ginger. The highest inhibition zone was observed with garlic (19.45 mm) against Pseudomonas aeruginosa (P. aeruginosa). The minimal inhibitory concentration was as low as 67.00 µg/mL against P. aeruginosa. Conclusions Natural spices of garlic and ginger possess effective anti-bacterial activity against multi-drug clinical pathogens and can be used for prevention of drug resistant microbial diseases and further evaluation is necessary. PMID:23569978

  2. Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage.

    PubMed

    Liu, Yiqing; Wisniewski, Michael; Kennedy, John F; Jiang, Yusong; Tang, Jianmin; Liu, Jia

    2016-10-20

    The ability of chitosan and oligochitosan to enhance ginger (Zingiber officinale) resistance to rhizome rot caused by Fusarium oxysporum in storage was investigated. Both chitosan and oligochitosan at 1 and 5g/L significantly inhibited rhizome rot, with the best control at 5g/L. Chitosan and oligochitosan applied at 5g/L also reduced weight loss, measured as a decrease in fresh weight, but did not affect soluble solids content or titratable acidity of rhizomes. The two compounds applied at 5g/L induced β-1,3-glucanase and phenylalanine ammonia-lyase enzyme activity and the transcript levels of their coding genes, as well as the total phenolic compounds in rhizome tissues. Therefore, the ability of chitosan and oligochitosan to reduce rot in stored rhizomes may be associated with their ability to induce defense responses in ginger. These results have practical implications for the application of chitosan and oligochitosan to harvested ginger rhizomes to reduce postharvest losses. PMID:27474591

  3. Enhanced extraction of oleoresin from ginger (Zingiber officinale) rhizome powder using enzyme-assisted three phase partitioning.

    PubMed

    Varakumar, Sadineni; Umesh, Kannamangalam Vijayan; Singhal, Rekha S

    2017-02-01

    Ginger (Zingiber officinale R.) is a popular spice used worldwide. The oleoresin consists of gingerols, shogaols and other non-volatiles as chief bioactive constituents. Three phase partitioning (TPP), a bioseparation technique, based on partitioning of polar constituents, proteins, and hydrophobic constituents in three phases comprising of water, ammonium sulphate and t-butanol, was explored for extraction of oleoresin and gingerols from dry powder. Parameters optimized for maximum recovery of gingerols and [6]-shogaol were ammonium sulphate concentration, ratio of t-butanol to slurry, solid loading and pH. Ultrasound and enzymatic pretreatments increased the yield of oleoresin and its phytoconstituents. Ultrasound pretreatment showed separation of starch in the bottom aqueous phase but is an additional step in extraction. Enzymatic pretreatment using accellerase increased the yield of [6]-, [8]-, [10]-gingerols and [6]-shogaol by 64.10, 87.8, 62.78 and 32.0% within 4h and is recommended. The efficacy of the enzymatic pretreatment was confirmed by SEM and FTIR. PMID:27596388

  4. Insect growth inhibition, antifeedant and antifungal activity of compounds isolated/derived from Zingiber officinale Roscoe (ginger) rhizomes.

    PubMed

    Agarwal, M; Walia, S; Dhingra, S; Khambay, B P

    2001-03-01

    Fresh rhizomes of Zingiber officinale (ginger), when subjected to steam distillation, yielded ginger oil in which curcumene was found to be the major constituent. The thermally labile zingiberene-rich fraction was obtained from its diethyl ether extract. Column chromatography of ginger oleoresin furnished a fraction from which [6]-gingerol was obtained by preparative TLC. Naturally occurring [6]-dehydroshogaol was synthesised following condensation of dehydrozingerone with hexanal, whereas zingerone and 3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)butane were obtained by hydrogenation of dehydrozingerone with 10% Pd/C. The structures of the compounds were established by 1H NMR, 13C NMR and mass (EI-MS and ES-MS) spectral analysis. The test compounds exhibited moderate insect growth regulatory (IGR) and antifeedant activity against Spilosoma obliqua, and significant antifungal activity against Rhizoctonia solani. Among the various compounds, [6]-dehydroshogaol exhibited maximum IGR activity (EC50 3.55 mg ml-1), while dehydrozingerone imparted maximum antifungal activity (EC50 86.49 mg litre-1). PMID:11455660

  5. Evaluation of Chloropicrin as a Soil Fumigant against Ralstonia solanacarum in Ginger (Zingiber officinale Rosc.) Production in China

    PubMed Central

    Ma, Taotao; Liu, Pengfei; Shen, Jin; Li, Yuan; Ouyang, Canbin; Guo, Meixia; Cao, Aocheng

    2014-01-01

    Background Chloropicrin (Pic) offers a potential alternative to methyl bromide (MB) against Ralstonia solanacarum in ginger (Zingiber officinale Rosc.) production. MB is scheduled to be withdrawn from routine use by 2015 in developing countries. Methods Pic treatments were evaluated in a laboratory study and in three commercial ginger fields. Results Laboratory studies showed that the EC50 value and EC80 value of Pic were 2.7 and 3.7 mg a.i. kg−1 soil, respectively. Field trials in highly infested soil revealed that treatments of Pic at the dose of 50 g m−2 covered with totally impermeable film (TIF) or polyethylene film (PE) sharply reduced Ralstonia solanacarum and maintained high ginger yields. Both of the Pic treatments provided results similar to, or in some cases slightly lower than, MB with respect to Ralstonia solanacarum control, plant survival, plant growth and yield. All of the fumigant treatments were significantly better than the non-treated control. Conclusions The present study confirms that the Pic is a promising alternative with good efficacy against Ralstonia solanacarum for ginger production and could be used in integrated pest management programs in China. PMID:24618853

  6. Selection of endophytic fungi from comfrey (Symphytum officinale L.) for in vitro biological control of the phytopathogen Sclerotinia sclerotiorum (Lib.)

    PubMed Central

    Rocha, Rafaeli; da Luz, Daniela Eleutério; Engels, Cibelle; Pileggi, Sônia Alvim Veiga; de Souza Jaccoud Filho, David; Matiello, Rodrigo Rodrigues; Pileggi, Marcos

    2009-01-01

    Biological control consists of using one organism to attack another that may cause economic damage to crops. Integrated Pest Management (IPM) is a very common strategy. The white mold produced by Sclerotinia sclerotiorum (Lib.) causes considerable damage to bean crops. This fungus is a soil inhabitant, the symptoms of which are characterized by water-soaked lesions covered by a white cottony fungal growth on the soil surface and/or the host plant. Possible biological control agents taken from plants are being investigated as phytopathogen inhibitors. These are endophytic microorganisms that inhabit the intercellular spaces of vegetal tissues and are often responsible for antimicrobial production. The objective of the present study was to select endophytic fungi isolated from comfrey (Symphytum officinale L.) leaves with in vitro antagonist potential against the phytopathogenic fungus S. sclerotiorum. Twelve isolates of endophytic fungi and a pathogenic strain of S. sclerotiorum were used in the challenge method. With the aid of this method, four endophytes with the best antagonistic activity against S. sclerotiorum were selected. Pathogen growth inhibition zones were considered indicative of antibiosis. The percentages of pathogenic mycelia growth were measured both with and without the antagonist, resulting in growth reductions of 46.7% to 50.0% for S. sclerotiorum. These analyses were performed by evaluating the endophytic/pathogenic mycelia growth in mm/day over an eight-day period of antagonistic tests. PMID:24031320

  7. Dose-Response Analysis of Factors Involved in Germination and Secondary Dormancy of Seeds of Sisymbrium officinale

    PubMed Central

    Hilhorst, Henk W. M.

    1990-01-01

    The germination of seeds of Sisymbrium officinale is light- and nitrate dependent. A close interaction between the effects of light and nitrate on germination has been reported previously (HWM Hilhorst, CM Karssen [1988] Plant Physiol 86: 591-597). In this study, a detailed dose-response analysis of the light-induced germination during induction of secondary dormancy is presented. Germination in water dropped from 90 to 0% after a dark incubation of 15°C of approximately 160 hours. In the presence of 25 millimolar KNO3, the decrease in germination level was delayed. At 24-hour intervals fluence-response curves were obtained in the presence of 25 millimolar KNO3. With increasing length of the preincubation period, fluence-response curves shifted along the abscissa to the right. After 120 hours the maximal germination level started to decline. The fluence-response curves were simulated by using formulations from receptor occupancy theory for a simple bimolecular reaction in which the reaction partners were Pfr and its tentative receptor X. A good simulation was obtained when cooperativity of the binding of Pfr to X was assumed. The experimental curve parameters could then be interpreted as binding parameters. PMID:16667801

  8. Comparative Study of the Biological Activity of Allantoin and Aqueous Extract of the Comfrey Root.

    PubMed

    Savić, Vesna Lj; Nikolić, Vesna D; Arsić, Ivana A; Stanojević, Ljiljana P; Najman, Stevo J; Stojanović, Sanja; Mladenović-Ranisavljević, Ivana I

    2015-08-01

    This study investigates the biological activity of pure allantoin (PA) and aqueous extract of the comfrey (Symphytum officinale L.) root (AECR) standardized to the allantoin content. Cell viability and proliferation of epithelial (MDCK) and fibroblastic (L929) cell line were studied by using MTT test. Anti-irritant potential was determined by measuring electrical capacitance, erythema index (EI) and transepidermal water loss of artificially irritated skin of young healthy volunteers, 3 and 7 days after application of creams and gels with PA or AECR. Pure allantoin showed mild inhibitory effect on proliferation of both cell lines at concentrations 40 and 100 µg/ml, but more pronounced on MDCK cells. Aqueous extract of the comfrey root effect on cell proliferation in concentrations higher than 40 µg/ml was significantly stimulatory for L929 but inhibitory for MDCK cells. Pharmaceutical preparations that contained AECR showed better anti-irritant potential compared with PA. Creams showed better effect on hydration and EI compared with the gels that contained the same components. Our results indicate that the biological activity of the comfrey root extract cannot be attributed only to allantoin but is also likely the result of the interaction of different compounds present in AECR. Topical preparations that contain comfrey extract may have a great application in the treatment of skin irritation. PMID:25880800

  9. Is there a missing link? Effects of root herbivory on plant-pollinator interactions and reproductive output in a monocarpic species.

    PubMed

    Ghyselen, C; Bonte, D; Brys, R

    2016-01-01

    Herbivores can have a major influence on plant fitness. The direct impact of herbivory on plant reproductive output has long been studied, and recently also indirect effects of herbivory on plant traits and pollinator attraction have received increasing attention. However, the link between these direct and indirect effects has seldom been studied. In this study, we investigated effects of root herbivory on plant and floral traits, pollination success and reproductive outcome in the monocarpic perennial Cynoglossum officinale. We exposed 119 C. officinale plants to a range of root herbivore damage by its specialist herbivore Mogulones cruciger. We assessed the effect of herbivory on several plant traits, pollinator foraging behaviour and reproductive output, and to elucidate the link between these last two we also quantified pollen deposition and pollen tube growth and applied a pollination experiment to test whether seed set was pollen-limited. Larval root herbivory induced significant changes in plant traits and had a negative impact on pollinator visitation. Infested plants were reduced in size, had fewer flowers and received fewer pollinator visits at plant and flower level than non-infested plants. Also, seed set was negatively affected by root herbivory, but this could not be attributed to pollen limitation since neither stigmatic pollen loads and pollen tube growth nor the results of the hand-pollination experiment differed between infested and non-infested plants. Our observations demonstrate that although herbivory may induce significant changes in flowering behaviour and resulting plant-pollinator interactions, it does not necessarily translate into higher rates of pollen limitation. The observed reductions in reproductive output following infection can mainly be attributed to higher resource limitation compared to non-infested plants. PMID:25731922

  10. Root canal irrigants

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955

  11. Effect of Different Light Intensities on Total Phenolics and Flavonoids Synthesis and Anti-oxidant Activities in Young Ginger Varieties (Zingiber officinale Roscoe)

    PubMed Central

    Ghasemzadeh, Ali; Jaafar, Hawa Z. E.; Rahmat, Asmah; Wahab, Puteri Edaroyati Megat; Halim, Mohd Ridzwan Abd

    2010-01-01

    Nowadays, phytochemicals and antioxidants in plants are raising interest in consumers for their roles in the maintenance of human health. Phenolics and flavonoids are known for their health-promoting properties due to protective effects against cardiovascular disease, cancers and other disease. Ginger (Zingiber officinale) is one of the traditional folk medicinal plants and it is widely used in cooking in Malaysia. In this study, four levels of glasshouse light intensities (310, 460, 630 and 790 μmol m−2s−1) were used in order to consider the effect of light intensity on the production, accumulation and partitioning of total phenolics (TP), total flavonoids (TF) and antioxidant activities in two varieties of Malaysian young ginger (Zingiber officinale). TF biosynthesis was highest in the Halia Bara variety under 310 μmol m−2s−1 and TP was high in this variety under a light intensity of 790 μmol m−2s−1. The highest amount of these components accumulated in the leaves and after that in the rhizomes. Also, antioxidant activities determined by the 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) assay in both of varieties, increased significantly (p ≤ 0.01) with increasing TF concentration, and high antioxidant activity was observed in the leaves of Halia Bara grown under 310 μmol m−2s−1. The ferric reducing (FRAP) activity of the rhizomes was higher than that of the leaves in 310 μmol m−2s−1 of sun light. This study indicates the ability of different light intensities to enhance the medicinal components and antioxidant activities of the leaves and young rhizomes of Zingiber officinale varieties. Additionally, this study also validated their medicinal potential based on TF and TP contents. PMID:21152306

  12. Synthesis of Analogues of Gingerol and Shogaol, the Active Pungent Principles from the Rhizomes of Zingiber officinale and Evaluation of Their Anti-Platelet Aggregation Effects

    PubMed Central

    Shih, Hung-Cheng; Chern, Ching-Yuh; Kuo, Ping-Chung; Wu, You-Cheng; Chan, Yu-Yi; Liao, Yu-Ren; Teng, Che-Ming; Wu, Tian-Shung

    2014-01-01

    The present study was aimed at discovering novel biologically active compounds based on the skeletons of gingerol and shogaol, the pungent principles from the rhizomes of Zingiber officinale. Therefore, eight groups of analogues were synthesized and examined for their inhibitory activities of platelet aggregation induced by arachidonic acid, collagen, platelet activating factor, and thrombin. Among the tested compounds, [6]-paradol (5b) exhibited the most significant anti-platelet aggregation activity. It was the most potent candidate, which could be used in further investigation to explore new drug leads. PMID:24599082

  13. Exposure to ginger root oil enhances mating success of irradiated, mass-reared males of Mediterranean fruit fly (Diptera: Tephritidae).

    PubMed

    Shelly, T E; McInnis, D O

    2001-12-01

    Previous research revealed that exposure to ginger root oil, Zingiber officinale Roscoe, containing the known male attractant (a-copaene) increased the mating success of male Mediterranean fruit flies, Ceratitis capitata (Wiedemann), from a newly established laboratory colony. The goal of the current study was to determine whether exposure to ginger root oil likewise enhanced the mating competitiveness of irradiated C. capitata males from a 5-yr-old mass-reared strain. Mating tests were conducted in field cages containing guava trees (Psidium guajava L.) to monitor the mating frequency of irradiated, mass-reared and wild males competing for wild females. In the absence of chemical exposure, wild males outcompeted the mass-reared males and obtained 74% of all matings. However, following exposure to ginger root oil (20 microl for 6 h), the mating frequencies were reversed. Whether exposed as mature (3-d-old) or immature (1-d-old) adults, mass-reared males achieved approximately 75% of all matings in tests conducted 2 or 4 d following exposure, respectively. Irradiated, mass-reared males prevented from contacting the oil directly (i.e., exposed to the odor only for 6 h) still exhibited a mating advantage over wild males. In an additional study, signaling levels and female arrivals were compared between males exposed to ginger root oil and nonexposed males, but no significant differences were detected. The implications of these findings for the sterile insect technique are discussed. PMID:11777043

  14. The Roots of Literacy.

    ERIC Educational Resources Information Center

    Goodman, Yetta M.

    This review of research with children aged two to six on their reading, writing, and oral language development speaks of five roots of a tree of literate life that require nourishment in the soil of a written language environment. The roots discussed are the development of print awareness in situational contexts, the development of print awareness…

  15. Cylindrocarpon root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cylindrocarpon root rot of alfalfa has been found sporadically in Canada and the northern United States. The etiology of this disease is not fully understood, but the priority for research has not been high because of its infrequent occurrence. The infected area of the root initially has a water-soa...

  16. Irrational Square Roots

    ERIC Educational Resources Information Center

    Misiurewicz, Michal

    2013-01-01

    If students are presented the standard proof of irrationality of [square root]2, can they generalize it to a proof of the irrationality of "[square root]p", "p" a prime if, instead of considering divisibility by "p", they cling to the notions of even and odd used in the standard proof?

  17. Pythium Root Rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pythium root rot is a disease that is found in agricultural and nursery soils throughout the United States and Canada. It is caused by several Pythium species, and the symptoms are typified by leaf or needle chlorosis, stunting, root rot, and plant death. The disease is favored by wet soils, overc...

  18. Root-knot nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although root-knot nematodes (Meloidogyne species) can reduce crop yields worldwide, methods for their identification are often difficult to implement. This review summarizes the diagnostic morphological and molecular features for distinguishing the ten major previously described root-knot nematode ...

  19. Trees and Roots.

    ERIC Educational Resources Information Center

    Jones, Lethonee A.

    Constructing a family history can be significant in helping persons understand and appreciate the root system that supports and sustains them. Oral history can be a valuable resource in family research as Alex Haley demonstrated in writing "Roots." The major difficulty of using oral tradition in tracing a family history is that family members with…

  20. Sugarbeet root aphid on postharvest root storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarbeet root aphid (SBRA), Pemphigus betae Doane, is a serious insect pest of sugarbeet in several North American sugarbeet production areas; however, it is rarely an economic pest in the Red River Valley (RRV). In 2012 and 2013, all RRV factory districts were impacted by SBRA outbreaks, and ...

  1. Root Nutrient Foraging1

    PubMed Central

    Giehl, Ricardo F.H.; von Wirén, Nicolaus

    2014-01-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status. PMID:25082891

  2. The comparative toxicity of a reduced, crude comfrey (Symphytum officinale) alkaloid extract and the pure, comfrey-derived pyrrolizidine alkaloids, lycopsamine and intermedine in chicks (Gallus gallus domesticus).

    PubMed

    Brown, Ammon W; Stegelmeier, Bryan L; Colegate, Steven M; Gardner, Dale R; Panter, Kip E; Knoppel, Edward L; Hall, Jeffery O

    2016-05-01

    Comfrey (Symphytum officinale), a commonly used herb, contains dehydropyrrolizidine alkaloids that, as a group of bioactive metabolites, are potentially hepatotoxic, pneumotoxic, genotoxic and carcinogenic. Consequently, regulatory agencies and international health organizations have recommended comfrey be used for external use only. However, in many locations comfrey continues to be ingested as a tisane or as a leafy vegetable. The objective of this work was to compare the toxicity of a crude, reduced comfrey alkaloid extract to purified lycopsamine and intermedine that are major constituents of S. officinale. Male, California White chicks were orally exposed to daily doses of 0.04, 0.13, 0.26, 0.52 and 1.04 mmol lycopsamine, intermedine or reduced comfrey extract per kg bodyweight (BW) for 10 days. After another 7 days chicks were euthanized. Based on clinical signs of poisoning, serum biochemistry, and histopathological analysis the reduced comfrey extract was more toxic than lycopsamine and intermedine. This work suggests a greater than additive effect of the individual alkaloids and/or a more potent toxicity of the acetylated derivatives in the reduced comfrey extract. It also suggests that safety recommendations based on purified compounds may underestimate the potential toxicity of comfrey. PMID:26177929

  3. Effects of crude extracts from medicinal herbs Rhazya stricta and Zingiber officinale on growth and proliferation of human brain cancer cell line in vitro.

    PubMed

    Elkady, Ayman I; Hussein, Rania Abd El Hamid; Abu-Zinadah, Osama A

    2014-01-01

    Hitherto, limited clinical impact has been achieved in the treatment of glioblastoma (GBMs). Although phytochemicals found in medicinal herbs can provide mankind with new therapeutic remedies, single agent intervention has failed to bring the expected outcome in clinical trials. Therefore, combinations of several agents at once are gaining increasing attractiveness. In the present study, we investigated the effects of crude alkaloid (CAERS) and flavonoid (CFEZO) extracts prepared from medicinal herbs, Rhazya stricta and Zingiber officinale, respectively, on the growth of human GBM cell line, U251. R. stricta and Z. officinale are traditionally used in folkloric medicine and have antioxidant, anticarcinogenic, and free radical scavenging properties. Combination of CAERS and CFEZO treatments synergistically suppressed proliferation and colony formation and effectively induced morphological and biochemical features of apoptosis in U251 cells. Apoptosis induction was mediated by release of mitochondrial cytochrome c, increased Bax : Bcl-2 ratio, enhanced activities of caspase-3 and -9, and PARP-1 cleavage. CAERS and CFEZO treatments decreased expression levels of nuclear NF-κBp65, survivin, XIAP, and cyclin D1 and increased expression level of p53, p21, and Noxa. These results suggest that combination of CAERS and CFEZO provides a useful foundation for studying and developing novel chemotherapeutic agents for the treatment of GBM. PMID:25136570

  4. Economic strategies of plant absorptive roots vary with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D. L.; Wang, J. J.; Kardol, P.; Wu, H. F.; Zeng, H.; Deng, X. B.; Deng, Y.

    2016-01-01

    Plant roots typically vary along a dominant ecological axis, the root economics spectrum, depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root economic strategies differ with increasing root diameter. To test this hypothesis, we used seven plant species (a fern, a conifer, and five angiosperms from south China) for which we separated absorptive roots into two categories: thin roots (thickness of root cortex plus epidermis < 247 µm) and thick roots. For each category, we analyzed a range of root traits related to resource acquisition and conservation, including root tissue density, different carbon (C), and nitrogen (N) fractions (i.e., extractive, acid-soluble, and acid-insoluble fractions) as well as root anatomical traits. The results showed significant relationships among root traits indicating an acquisition-conservation tradeoff for thin absorptive roots while no such trait relationships were found for thick absorptive roots. Similar results were found when reanalyzing data of a previous study including 96 plant species. The contrasting economic strategies between thin and thick absorptive roots, as revealed here, may provide a new perspective on our understanding of the root economics spectrum.

  5. Quantitative measurements of root water uptake and root hydraulic conductivities

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, Mohsen; Javaux, Mathieu; Meunier, Felicien; Couvreur, Valentin; Carminati, Andrea

    2016-04-01

    How is root water uptake distributed along the root system and what root properties control this distribution? Here we present a method to: 1) measure root water uptake and 2) inversely estimate the root hydraulic conductivities. The experimental method consists in using neutron radiography to trace deuterated water (D2O) in soil and roots. The method was applied to lupines grown aluminium containers filled with a sandy soil. When the lupines were 4 weeks old, D2O was locally injected in a selected soil regions and its transport was monitored in soil and roots using time-series neutron radiography. By image processing, we quantified the concentration of D2O in soil and roots. We simulated the transport of D2O into roots using a diffusion-convection numerical model. The diffusivity of the roots tissue was inversely estimated by simulating the transport of D2O into the roots during night. The convective fluxes (i.e. root water uptake) were inversely estimating by fitting the experiments during day, when plants were transpiring, and assuming that root diffusivity did not change. The results showed that root water uptake was not uniform along the roots. Water uptake was higher at the proximal parts of the lateral roots and it decreased by a factor of 10 towards the distal parts. We used the data of water fluxes to inversely estimate the profile of hydraulic conductivities along the roots of transpiring plants growing in soil. The water fluxes in the lupine roots were simulated using the Hydraulic Tree Model by Doussan et al. (1998). The fitting parameters to be adjusted were the radial and axial hydraulic conductivities of the roots. The results showed that by using the root architectural model of Doussan et al. (1998) and detailed information of water fluxes into different root segments we could estimate the profile of hydraulic conductivities along the roots. We also found that: 1) in a tap-rooted plant like lupine water is mostly taken up by lateral roots; (2) water

  6. Regulation of low-density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase expression by Zingiber officinale in the liver of high-fat diet-fed rats.

    PubMed

    Nammi, Srinivas; Kim, Moon S; Gavande, Navnath S; Li, George Q; Roufogalis, Basil D

    2010-05-01

    Zingiber officinale has been used to control lipid disorders and reported to possess remarkable cholesterol-lowering activity in experimental hyperlipidaemia. In the present study, the effect of a characterized and standardized extract of Zingiber officinale on the hepatic lipid levels as well as on the hepatic mRNA and protein expression of low-density lipoprotein (LDL) receptor and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was investigated in a high-fat diet-fed rat model. Rats were treated with an ethanol extract of Zingiber officinale (400 mg/kg) extract along with a high-fat diet for 6 weeks. The extract of Zingiber officinale significantly decreased hepatic triglyceride and tended to decrease hepatic cholesterol levels when administered over 6 weeks to the rats fed a high-fat diet. We found that in parallel, the extract up-regulated both LDL receptor mRNA and protein level and down-regulated HMG-CoA reductase protein expression in the liver of these rats. The metabolic control of body lipid homeostasis is in part due to enhanced cholesterol biosynthesis and reduced expression of LDL receptor sites following long-term consumption of high-fat diets. The present results show restoration of transcriptional and post-transcriptional changes in low-density lipoprotein and HMG CoA reductase by Zingiber officinale administration with a high-fat diet and provide a rational explanation for the effect of ginger in the treatment of hyperlipidaemia. PMID:20002065

  7. Novel Set-Up for Low-Disturbance Sampling of Volatile and Non-volatile Compounds from Plant Roots.

    PubMed

    Eilers, Elisabeth J; Pauls, Gerhard; Rillig, Matthias C; Hansson, Bill S; Hilker, Monika; Reinecke, Andreas

    2015-03-01

    Most studies on rhizosphere chemicals are carried out in substrate-free set-ups or in artificial substrates using sampling methods that require an air flow and may thus cause disturbance to the rhizosphere. Our study aimed to develop a simplified and inexpensive system that allows analysis of rhizosphere chemicals at experimentally less disturbed conditions. We designed a mesocosm in which volatile rhizosphere chemicals were sampled passively (by diffusion) without air- and water flow on polydimethylsiloxane-(PDMS) tubes. Dandelion (Taraxacum sect. ruderalia) was used as model plant; roots were left undamaged. Fifteen volatiles were retrieved from the sorptive material by thermal desorption for analysis by gas chromatography/mass spectrometry (GC/MS). Furthermore, three sugars were collected from the rhizosphere substrate by aqueous extraction and derivatized prior to GC/MS analysis. In order to study how the quantity of detected rhizosphere compounds depends on the type of soil or substrate, we determined the matrix-dependent recovery of synthetic rhizosphere chemicals. Furthermore, we compared sorption of volatiles on PDMS tubes with and without direct contact to the substrate. The results show that the newly designed mesocosm is suitable for low-invasive extraction of volatile and non-volatile compounds from rhizospheres. We further highlight how strongly the type of substrate and contact of PDMS tubes to the substrate affect the detectability of compounds from rhizospheres. PMID:25795090

  8. Roots in plant ecology.

    PubMed

    Cody, M L

    1986-09-01

    In 1727 the pioneer vegetation scientist Stephen Hales realized that I much that was of importance to his subject material took place below on ground. A good deal of descriptive work on plant roots and root systems was done in the subsequent two centuries; in crop plants especially, the gross morphology of root systems was well known by the early 20th century. These descriptive studies were extended to natural grasslands by Weaver and his associates and to deserts by Cannon by the second decade of this century, but since that time the study of subterranean growth form appears to have lapsed, as a recent review by Kummerow indicates. Nevertheless, growth form is an important aspect of plant ecology, and subterranean growth form is especially relevant to the study of vegetation in and areas (which is the main subject of this commentary). Moreover, there is a real need for more research to be directed towards understanding plant root systems in general. PMID:21227785

  9. Grass Rooting the System

    ERIC Educational Resources Information Center

    Perlman, Janice E.

    1976-01-01

    Suggests a taxonomy of the grass roots movement and gives a general descriptive over view of the 60 groups studied with respect to origin, constituency, size, funding, issues, and ideology. (Author/AM)

  10. Reading with Roots

    ERIC Educational Resources Information Center

    Gibson, Margaret I.

    1986-01-01

    Recommends a method of teaching Russian vocabulary that focuses on new words in context and on their structure: root, prefix, suffix, sound changes, and borrowings. Sources for teachers are given in the bibliography. (LMO)

  11. The phenomenology of rooting.

    PubMed

    Kerievsky, Bruce Stephen

    2010-09-01

    This paper examines the attractions of passionate involvement in wanting particular outcomes, which is popularly known as rooting. The author's lifelong personal experience is the source of his analysis, along with the insights provided by spiritual literature and especially the work of Dr. Thomas Hora, with whom the author studied for 30 years. The phrase "choiceless awareness," utilized by J. Krishnamurti, and attained via meditation, is seen as the means of transcending a rooting mode of being in the world. PMID:20165983

  12. Effect of CO2 Enrichment on Synthesis of Some Primary and Secondary Metabolites in Ginger (Zingiber officinale Roscoe)

    PubMed Central

    Ghasemzadeh, Ali; Jaafar, Hawa Z. E.

    2011-01-01

    The effect of two different CO2 concentrations (400 and 800 μmol mol−1) on the photosynthesis rate, primary and secondary metabolite syntheses and the antioxidant activities of the leaves, stems and rhizomes of two Zingiber officinale varieties (Halia Bentong and Halia Bara) were assessed in an effort to compare and validate the medicinal potential of the subterranean part of the young ginger. High photosynthesis rate (10.05 μmol CO2 m−2s−1 in Halia Bara) and plant biomass (83.4 g in Halia Bentong) were observed at 800 μmol mol−1 CO2. Stomatal conductance decreased and water use efficiency increased with elevated CO2 concentration. Total flavonoids (TF), total phenolics (TP), total soluble carbohydrates (TSC), starch and plant biomass increased significantly (P ≤ 0.05) in all parts of the ginger varieties under elevated CO2 (800 μmol mol−1). The order of the TF and TP increment in the parts of the plant was rhizomes > stems > leaves. More specifically, Halia Bara had a greater increase of TF (2.05 mg/g dry weight) and TP (14.31 mg/g dry weight) compared to Halia Bentong (TF: 1.42 mg/g dry weight; TP: 9.11 mg/g dry weight) in average over the whole plant. Furthermore, plants with the highest rate of photosynthesis had the highest TSC and phenolics content. Significant differences between treatments and species were observed for TF and TP production. Correlation coefficient showed that TSC and TP content are positively correlated in both varieties. The antioxidant activity, as determined by the ferric reducing/antioxidant potential (FRAP) activity, increased in young ginger grown under elevated CO2. The FRAP values for the leaves, rhizomes and stems extracts of both varieties grown under two different CO2 concentrations (400 and 800 μmol mol−1) were significantly lower than those of vitamin C (3107.28 μmol Fe (II)/g) and α-tocopherol (953 μmol Fe (II)/g), but higher than that of BHT (74.31 μmol Fe (II)/g). These results indicate that the plant

  13. Modeling root reinforcement using root-failure Weibull survival function

    NASA Astrophysics Data System (ADS)

    Schwarz, M.; Giadrossich, F.; Cohen, D.

    2013-03-01

    Root networks contribute to slope stability through complicated interactions that include mechanical compression and tension. Due to the spatial heterogeneity of root distribution and the dynamic of root turnover, the quantification of root reinforcement on steep slope is challenging and consequently the calculation of slope stability as well. Although the considerable advances in root reinforcement modeling, some important aspect remain neglected. In this study we address in particular to the role of root strength variability on the mechanical behaviors of a root bundle. Many factors may contribute to the variability of root mechanical properties even considering a single class of diameter. This work presents a new approach for quantifying root reinforcement that considers the variability of mechanical properties of each root diameter class. Using the data of laboratory tensile tests and field pullout tests, we calibrate the parameters of the Weibull survival function to implement the variability of root strength in a numerical model for the calculation of root reinforcement (RBMw). The results show that, for both laboratory and field datasets, the parameters of the Weibull distribution may be considered constant with the exponent equal to 2 and the normalized failure displacement equal to 1. Moreover, the results show that the variability of root strength in each root diameter class has a major influence on the behavior of a root bundle with important implications when considering different approaches in slope stability calculation. Sensitivity analysis shows that the calibration of the tensile force and the elasticity of the roots are the most important equations, as well as the root distribution. The new model allows the characterization of root reinforcement in terms of maximum pullout force, stiffness, and energy. Moreover, it simplifies the implementation of root reinforcement in slope stability models. The realistic quantification of root reinforcement for

  14. Differential control of growth, apoptotic activity and gene expression in human colon cancer cells by extracts derived from medicinal herbs, Rhazya stricta and Zingiber officinale and their combination

    PubMed Central

    Elkady, Ayman I; Hussein, Rania Abd El Hamid; Abu-Zinadah, Osama A

    2014-01-01

    AIM: To investigate the effects of extracts from Rhazya stricta (R. stricta) and Zingiber officinale (Z. officinale) on human colorectal cancer cells. METHODS: Human colorectal cancer cells (HCT116) were subjected to increasing doses of crude alkaloid extracts from R. stricta (CAERS) and crude flavonoid extracts from Z. officinale (CFEZO). Cells were then harvested after 24, 48 or 72 h and cell viability was examined by trypan blue exclusion dye test; clonogenicity and soft agar colony-forming assays were also carried out. Nuclear stain (Hoechst 33342), acridine orange/ethidium bromide double staining, agarose gel electrophoresis and comet assays were performed to assess pro-apoptotic potentiality of the extracts. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR), using gene-specific primers and Western blot analyses were performed to assess the impact of CAERS and CFEZO on the expression levels of key regulatory proteins in HCT116 cells. RESULTS: Treatment with a combination of CAERS and CFEZO synergistically suppressed the proliferation, colony formation and anchorage-independent growth of HCT116 cells. Calculated IC50, after 24, 48 and 72 h, were 70, 90 and 130 μg/mL for CAERS, 65, 85 and 120 μg/mL for CFEZO and 20, 25 and 45 μg/mL for both agents, respectively. CAERS- and CFEZO-treated cells exhibited morphologic and biochemical features of apoptotic cell death. The induction of apoptosis was associated with the release of mitochondrial cytochrome c, an increase in the Bax/Bcl-2 ratio, activation of caspases 3 and 9 and cleavage of poly ADP-ribose polymerase. CAERS and CFEZO treatments downregulated expression levels of anti-apoptotic proteins including Bcl-2, Bcl-X, Mcl-1, survivin and XIAP, and upregulated expression levels of proapoptotic proteins such as Bad and Noxa. CAERS and CFEZO treatments elevated expression levels of the oncosuppressor proteins, p53, p21 and p27, and reduced levels of the oncoproteins, cyclin D1, cyclin

  15. The "Green" Root Beer Laboratory

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2010-01-01

    No, your students will not be drinking green root beer for St. Patrick's Day--this "green" root beer laboratory promotes environmental awareness in the science classroom, and provides a venue for some very sound science content! While many science classrooms incorporate root beer-brewing activities, the root beer lab presented in this article has…

  16. The root economics spectrum: divergence of absorptive root strategies with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D.; Wang, J.; Kardol, P.; Wu, H.; Zeng, H.; Deng, X.; Deng, Y.

    2015-08-01

    Plant roots usually vary along a dominant ecological axis, the root economics spectrum (RES), depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root strategies as predicted from the RES shift with increasing root diameter. To test this hypothesis, we used seven contrasting plant species for which we separated absorptive roots into two categories: thin roots (< 247 μm diameter) and thick roots. For each category, we analyzed a~range of root traits closely related to resource acquisition and conservation, including root tissue density, carbon (C) and nitrogen (N) fractions as well as root anatomical traits. The results showed that trait relationships for thin absorptive roots followed the expectations from the RES while no clear trait relationships were found in support of the RES for thick absorptive roots. Our results suggest divergence of absorptive root strategies in relation to root diameter, which runs against a single economics spectrum for absorptive roots.

  17. Root architecture and root and tuber crop productivity.

    PubMed

    Villordon, Arthur Q; Ginzberg, Idit; Firon, Nurit

    2014-07-01

    It is becoming increasingly evident that optimization of root architecture for resource capture is vital for enabling the next green revolution. Although cereals provide half of the calories consumed by humans, root and tuber crops are the second major source of carbohydrates globally. Yet, knowledge of root architecture in root and tuber species is limited. In this opinion article, we highlight what is known about the root system in root and tuber crops, and mark new research directions towards a better understanding of the relation between root architecture and yield. We believe that unraveling the role of root architecture in root and tuber crop productivity will improve global food security, especially in regions with marginal soil fertility and low-input agricultural systems. PMID:24630073

  18. Effects of diet, ginger root oil, and elevation on the mating competitiveness of male Mediterranean fruit flies (Diptera: Tephritidae) from a mass-reared, genetic sexing strain in Guatemala.

    PubMed

    Shelly, Todd E; Rendon, Pedro; Hernandez, Emilio; Salgado, Sergio; McInnis, Donald; Villalobos, Ethel; Liedo, Pablo

    2003-08-01

    The release of sterile males is a key component of an areawide program to eradicate the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), from Guatemala and southern Mexico. The objective of our study was to assess the effects of adult diet, exposure to ginger root oil (Zingiber officinale Roscoe), and elevation on the mating competitiveness of the sterile males used in an areawide program. Sterile males were maintained on a protein-sugar (protein-fed) or a sugar-only (protein-deprived) diet and were exposed (for 4 h 1 d before testing) or not exposed to ginger root oil. In field-cage trials conducted at a high (1,500 m) and low (700 m) site, we monitored the influence of these treatments on the mating success of sterile males in competition with wild males (reared exclusively on the protein-sugar diet and without ginger root oil exposure) for wild females. Elevation and ginger root oil exposure had significant effects, with sterile males having higher mating success at the low-elevation site and ginger root oil-exposed males having greater success than ginger root oil-deprived males at both sites. Diet did not have a significant overall effect, and its influence varied with elevation (dietary protein seemed to provide an advantage at the high-elevation site but not at the low-elevation site). Possible implications of these findings for eradication programs against the Mediterranean fruit fly are discussed. PMID:14503584

  19. Identification and concentration of some flavonoid components in Malaysian young ginger (Zingiber officinale Roscoe) varieties by a high performance liquid chromatography method.

    PubMed

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah

    2010-09-01

    Flavonoids make up one of the most pervasive groups of plant phenolics. Due to their importance in plants and human health, it would be useful to have a better understanding of flavonoid concentration and biological activities that could indicate their potentials as therapeutic agents, and also for predicting and controlling the quality of medicinal herbs. Ginger (Zingiber officinale Roscoe) is a famous and widely used herb, especially in Asia, that contains several interesting bioactive constituents and possesses health promoting properties. In this study, total flavonoids and some flavonoid components including quercetin, rutin, catechin, epicatechin, kaempferol and naringenin were extracted from the leaves and rhizomes of two varieties of Zingiber officinale (Halia Bentong and Halia Bara) at three different growth points (8, 12 and 16 weeks after planting), and analyzed by a high performance liquid chromatography (HPLC) method in order to determine the potential of the subterranean part of the young ginger. The results showed that Halia Bara had a higher content of flavonoids in the leaves and rhizomes as compared to Halia Bentong. In both varieties, the concentration of flavonoids in the leaves decreased (Halia Bentong, 42.3%; Halia Bara 36.7%), and in the rhizomes it increased (Halia Bentong 59.6%; Halia Bara 60.1%) as the growth period increased. Quercetin was abundant in both varieties. The antioxidant activity determined by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay showed high activities (65.7%) in the leaves of Halia Bara at 8 weeks after planting. Results suggested a good flavonoid content and antioxidant activity potential in ginger leaves at 8 weeks after planting. The leaves of these ginger varieties could be useful for both food flavourings and in traditional medicine. PMID:20877219

  20. Comparison of the Transcriptomes of Ginger (Zingiber officinale Rosc.) and Mango Ginger (Curcuma amada Roxb.) in Response to the Bacterial Wilt Infection

    PubMed Central

    Prasath, Duraisamy; Karthika, Raveendran; Habeeba, Naduva Thadath; Suraby, Erinjery Jose; Rosana, Ottakandathil Babu; Shaji, Avaroth; Eapen, Santhosh Joseph; Deshpande, Uday; Anandaraj, Muthuswamy

    2014-01-01

    Bacterial wilt in ginger (Zingiber officinale Rosc.) caused by Ralstonia solanacearum is one of the most important production constraints in tropical, sub-tropical and warm temperature regions of the world. Lack of resistant genotype adds constraints to the crop management. However, mango ginger (Curcuma amada Roxb.), which is resistant to R. solanacearum, is a potential donor, if the exact mechanism of resistance is understood. To identify genes involved in resistance to R. solanacearum, we have sequenced the transcriptome from wilt-sensitive ginger and wilt-resistant mango ginger using Illumina sequencing technology. A total of 26387032 and 22268804 paired-end reads were obtained after quality filtering for C. amada and Z. officinale, respectively. A total of 36359 and 32312 assembled transcript sequences were obtained from both the species. The functions of the unigenes cover a diverse set of molecular functions and biological processes, among which we identified a large number of genes associated with resistance to stresses and response to biotic stimuli. Large scale expression profiling showed that many of the disease resistance related genes were expressed more in C. amada. Comparative analysis also identified genes belonging to different pathways of plant defense against biotic stresses that are differentially expressed in either ginger or mango ginger. The identification of many defense related genes differentially expressed provides many insights to the resistance mechanism to R. solanacearum and for studying potential pathways involved in responses to pathogen. Also, several candidate genes that may underline the difference in resistance to R. solanacearum between ginger and mango ginger were identified. Finally, we have developed a web resource, ginger transcriptome database, which provides public access to the data. Our study is among the first to demonstrate the use of Illumina short read sequencing for de novo transcriptome assembly and comparison in

  1. The seasonal dynamics of yeast communities in the rhizosphere of soddy-podzolic soils

    NASA Astrophysics Data System (ADS)

    Golubtsova, Yu. V.; Glushakova, A. M.; Chernov, I. Yu.

    2007-08-01

    The annual dynamics of the number and taxonomic composition of yeast was studied in the rhizosphere of two plant species (Ajuga reptans L. and Taraxacum officinale Wigg.) in a forb-birch forest on soddy-podzolic soil. Eurybiont phyllobasidial cryptococci and red-pigmented phytobionts Rhodotorula glutinis were found to predominate in the phyllosphere of these plants, whereas the typical pedobionts Cryptococcus terricola and Cr. podzolicus occurred on the surface of roots and in the rhizosphere. The seasonal changes in the number and species composition of the yeast communities in the rhizosphere were more smooth as compared to those in the phyllosphere. In the period of active vegetation of the plants, the phytobiont yeasts develop over their whole surface, including the rhizoplane. Their number on the aboveground parts of the plants was significantly lower than that of the pedobiont forms. Thus, the above-and underground parts of the plants significantly differed in the composition of the dominant species of epiphytic yeasts.

  2. Stachbotrys Root Rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stachybotrys root rot is caused by Stachybotrys chartarum, a cellulytic saprophytic hyphomycete fungus. The pathogen produces mycotoxins including a host of immunosupressant compounds for human and is one of the causes of the "sick building syndrome." Although S. chartarum is rarely known as a plan...

  3. Violet root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus causing violet root rot, Helicobasidium brebissonii (anamorph Rhizoctonia crocorum), is widely distributed in Europe and North America but is rarely of much economic importance on alfalfa. The disease has also been reported in Australia, Argentina, and Iran. The disease is characterized b...

  4. "Roots": Medium and Message.

    ERIC Educational Resources Information Center

    Kinnamon, Keneth

    A national telephone survey indicated that audiences rated the television production of "Roots" positively in terms of the following: realistic portrayal of the people and the times; relevance for contemporary race relations; perceived emotional effect; and increased understanding of the psychology of black people. However, a comparison of the…

  5. Great Plains Roots.

    ERIC Educational Resources Information Center

    Frey, Jennifer

    2001-01-01

    Sandy White Hawk, Sicangu Lakota, was adopted by white missionaries as an infant and suffered child abuse. After 33 years, she found her birth family and formed First Nations Orphans Association, which uses songs and ceremonies to help adoptees return to their roots. Until the 1970s, federal agencies and welfare organizations facilitated removal…

  6. The Roots of Reading.

    ERIC Educational Resources Information Center

    Montoya, Colleen, Ed.

    2002-01-01

    This newsletter covers educational issues affecting schools in the Western Regional Educational Laboratory's 4-state region (Arizona, California, Nevada, and Utah) and nationwide. The following articles appear in the Volume 4, Number 1 issue: (1) "The Roots of Reading"; (2) "Breaking the Code: Reading Literacy in K-3"; (3) "Improving Secondary…

  7. Fine root turnover: a story of root production and root phenology

    NASA Astrophysics Data System (ADS)

    McCormack, M. L.; Adams, T. S.; Smithwick, E. A.; Eissenstat, D. M.

    2012-12-01

    Fine root turnover in terrestrial ecosystems partially controls carbon flow from plants into soils as well the amount of roots available for nutrient and water uptake. However, we have poor understanding of basic patterns and variability in fine root turnover. We address this shortfall through the use of a heuristic model and analysis of a multi-year minirhizotron dataset exploring the impacts of fine root phenology and production on fine root turnover rates across 12 temperate tree species in a common garden experiment. The heuristic model allowed us to calculate fine root turnover given different patterns of root production and different fine root lifespans. Using the model we found that patterns of phenology characterized by a single, concentrated peak resulted in slower calculated root turnover rates while broader and bi-modal production patterns resulted in faster turnover rates. For example, for roots with median lifespans of 91 days, estimates of root turnover increased from 1.5 yr-1 to 4.0 yr-1 between the pattern of concentrated root production and the pattern with root production spread equally throughout the year. Turnover rates observed in the common garden ranged from 0.75 yr-1 to 1.33 yr-1 and 0.93 yr-1 to 2.14 yr-1 when calculated as annual production divided by maximum standing root crop or average standing root crop, respectively. Turnover varied significantly across species and interannual variability in root production and turnover was high. Patterns of root phenology observed at the common garden included concentrated root production in late spring as well as several examples of bi-modal and broader patterns of root production with roots produced across spring, summer and fall. Overall, both phenology and total root production impacted estimates of root turnover, particularly for short-lived fine roots with median lifespans of less than one year. Our results suggest that better understanding fine root phenology and production will improve our

  8. The Physiology of Adventitious Roots.

    PubMed

    Steffens, Bianka; Rasmussen, Amanda

    2016-02-01

    Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3). PMID:26697895

  9. Hairy roots are more sensitive to auxin than normal roots

    PubMed Central

    Shen, Wen Hui; Petit, Annik; Guern, Jean; Tempé, Jacques

    1988-01-01

    Responses to auxin of Lotus corniculatus root tips or protoplasts transformed by Agrobacterium rhizogenes strains 15834 and 8196 were compared to those of their normal counterparts. Three different types of experiments were performed, involving long-term, medium-term, or short-term responses to a synthetic auxin, 1-naphthaleneacetic acid. Root tip elongation, proton excretion by root tips, and transmembrane electrical potential difference of root protoplasts were measured as a function of exogenous auxin concentration. The sensitivity of hairy root tips or protoplasts to exogenous auxin was found to be 100-1000 times higher than that of untransformed material. PMID:16593928

  10. Hairy roots are more sensitive to auxin than normal roots.

    PubMed

    Shen, W H; Petit, A; Guern, J; Tempé, J

    1988-05-01

    Responses to auxin of Lotus corniculatus root tips or protoplasts transformed by Agrobacterium rhizogenes strains 15834 and 8196 were compared to those of their normal counterparts. Three different types of experiments were performed, involving long-term, medium-term, or short-term responses to a synthetic auxin, 1-naphthaleneacetic acid. Root tip elongation, proton excretion by root tips, and transmembrane electrical potential difference of root protoplasts were measured as a function of exogenous auxin concentration. The sensitivity of hairy root tips or protoplasts to exogenous auxin was found to be 100-1000 times higher than that of untransformed material. PMID:16593928

  11. Root canal retained restorations: 3. Root-face attachments.

    PubMed

    Dummer, P M; Edmunds, D H; Gidden, J R

    1990-10-01

    It has been common practice for many years to use retained roots to provide support and stability for partial or full dentures. The retention of such overdentures is greatly enhanced if the remaining roots are modified and restored with posts and root-face attachments. The final article in this series on root canal retained restorations classifies and describes some of the root-face attachments currently available, and also describes a number of prefabricated post systems with integral overdenture attachments. Guidelines for clinical and laboratory procedures are given. PMID:2097234

  12. Strigolactones Effects on Root Growth

    NASA Astrophysics Data System (ADS)

    Koltai, Hinanit

    2012-07-01

    Strigolactones (SLs) were defined as a new group of plant hormones that suppress lateral shoot branching. Our previous studies suggested SLs to be regulators of root development. SLs were shown to alter root architecture by regulating lateral root formation and to affect root hair elongation in Arabidopsis. Another important effect of SLs on root growth was shown to be associated with root directional growth. Supplementation of SLs to roots led to alterations in root directional growth, whereas associated mutants showed asymmetrical root growth, which was influenced by environmental factors. The regulation by SLs of root development was shown to be conducted via a cross talk of SLs with other plant hormones, including auxin. SLs were shown to regulate auxin transport, and to interfere with the activity of auxin-efflux carriers. Therefore, it might be that SLs are regulators of root directional growth as a result of their ability to regulated auxin transport. However, other evidences suggest a localized effect of SLs on cell division, which may not necessarily be associated with auxin efflux. These and other, recent hypothesis as to the SLs mode of action and the associated root perception and response to environmental factors will be discussed.

  13. Aquaporins and root water relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  14. Springback in root gravitropism

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Wettlaufer, S. H.

    1989-01-01

    Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalamic [correction of naphthylphthalmaic] acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a memory' effect carried over from a prior gravistimulation.

  15. Springback in root gravitropism.

    PubMed

    Leopold, A C; Wettlaufer, S H

    1989-01-01

    Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalamic [correction of naphthylphthalmaic] acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a memory' effect carried over from a prior gravistimulation. PMID:11537456

  16. Diagravitropism in corn roots

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Wettlaufer, S. H.

    1988-01-01

    The diagravitropic behavior of Merit corn (Zea mays L.) roots grown in darkness provides an opportunity for comparison of two qualitatively different gravitropic systems. As with positive gravitropism, diagravitropism is shown to require the presence of the root cap, have a similar time course for the onset of curvature, and a similar presentation time. In contrast with positive gravitropism, diagravitropism appears to have a more limited requirement for calcium, for it is insensitive to the elution of calcium by EGTA and insensitive to the subsequent addition of a calcium/EGTA complex. These results are interpreted as indicating that whereas the same sensing system is shared by the two types of gravitropism, separate transductive systems are involved, one for diagravitropism, which is relatively independent of calcium, and one for positive gravitropism, which is markedly dependent on calcium.

  17. Organic parasite control for poultry and rabbits in British Columbia, Canada.

    PubMed

    Lans, Cheryl; Turner, Nancy

    2011-01-01

    Plants used for treating endo- and ectoparasites of rabbits and poultry in British Columbia included Arctium lappa (burdock), Artemisia sp. (wormwood), Chenopodium album (lambsquarters) and C. ambrosioides (epazote), Cirsium arvense (Canada thistle), Juniperus spp. (juniper), Mentha piperita (peppermint), Nicotiana sp. (tobacco), Papaver somniferum (opium poppy), Rubus spp. (blackberry and raspberry relatives), Symphytum officinale (comfrey), Taraxacum officinale (common dandelion), Thuja plicata (western redcedar) and Urtica dioica (stinging nettle). PMID:21756341

  18. Organic parasite control for poultry and rabbits in British Columbia, Canada

    PubMed Central

    2011-01-01

    Plants used for treating endo- and ectoparasites of rabbits and poultry in British Columbia included Arctium lappa (burdock), Artemisia sp. (wormwood), Chenopodium album (lambsquarters) and C. ambrosioides (epazote), Cirsium arvense (Canada thistle), Juniperus spp. (juniper), Mentha piperita (peppermint), Nicotiana sp. (tobacco), Papaver somniferum (opium poppy), Rubus spp. (blackberry and raspberry relatives), Symphytum officinale (comfrey), Taraxacum officinale (common dandelion), Thuja plicata (western redcedar) and Urtica dioica (stinging nettle). PMID:21756341

  19. Control of Arabidopsis Root Development

    PubMed Central

    Petricka, Jalean J.; Winter, Cara M.; Benfey, Philip N.

    2013-01-01

    The Arabidopsis root has been the subject of intense research over the past decades. This research has led to significantly improved understanding of the molecular mechanisms underlying root development. Key insights into the specification of individual cell types, cell patterning, growth and differentiation, branching of the primary root, and responses of the root to the environment have been achieved. Transcription factors and plant hormones play key regulatory roles. Recently, mechanisms involving protein movement and the oscillation of gene expression have also been uncovered. Root gene regulatory networks controlling root development have been reconstructed from genome-wide profiling experiments, revealing novel molecular connections and models. Future refinement of these models will lead to a more complete description of the complex molecular interactions that give rise to a simple growing root. PMID:22404466

  20. The Roots of Beowulf

    NASA Technical Reports Server (NTRS)

    Fischer, James R.

    2014-01-01

    The first Beowulf Linux commodity cluster was constructed at NASA's Goddard Space Flight Center in 1994 and its origins are a part of the folklore of high-end computing. In fact, the conditions within Goddard that brought the idea into being were shaped by rich historical roots, strategic pressures brought on by the ramp up of the Federal High-Performance Computing and Communications Program, growth of the open software movement, microprocessor performance trends, and the vision of key technologists. This multifaceted story is told here for the first time from the point of view of NASA project management.

  1. Philosophical Roots of Cosmology

    NASA Astrophysics Data System (ADS)

    Ivanovic, M.

    2008-10-01

    We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.

  2. Matching roots to their environment

    PubMed Central

    White, Philip J.; George, Timothy S.; Gregory, Peter J.; Bengough, A. Glyn; Hallett, Paul D.; McKenzie, Blair M.

    2013-01-01

    Background Plants form the base of the terrestrial food chain and provide medicines, fuel, fibre and industrial materials to humans. Vascular land plants rely on their roots to acquire the water and mineral elements necessary for their survival in nature or their yield and nutritional quality in agriculture. Major biogeochemical fluxes of all elements occur through plant roots, and the roots of agricultural crops have a significant role to play in soil sustainability, carbon sequestration, reducing emissions of greenhouse gasses, and in preventing the eutrophication of water bodies associated with the application of mineral fertilizers. Scope This article provides the context for a Special Issue of Annals of Botany on ‘Matching Roots to Their Environment’. It first examines how land plants and their roots evolved, describes how the ecology of roots and their rhizospheres contributes to the acquisition of soil resources, and discusses the influence of plant roots on biogeochemical cycles. It then describes the role of roots in overcoming the constraints to crop production imposed by hostile or infertile soils, illustrates root phenotypes that improve the acquisition of mineral elements and water, and discusses high-throughput methods to screen for these traits in the laboratory, glasshouse and field. Finally, it considers whether knowledge of adaptations improving the acquisition of resources in natural environments can be used to develop root systems for sustainable agriculture in the future. PMID:23821619

  3. Geophysical Imaging of Root Architecture and Root-soil Interaction

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Dafflon, B.; Hubbard, S. S.

    2015-12-01

    Roots play a critical role in controlling water and nutrient uptake, soil biogeochemical processes, as well as the physical anchorage for plants. While important processes, such as root hydraulic redistribution for optimal growth and survival have been recognized, representation of roots in climate models, e.g. its carbon storage, carbon resilience, root biomass, and role in regulating water and carbon fluxes across the rhizosphere and atmosphere interface is still challenging. Such a challenge is exacerbated because of the large variations of root architecture and function across species and locations due to both genetic and environmental controls and the lack of methods for quantifying root mass, distribution, dynamics and interaction with soils at field scales. The scale, complexity and the dynamic nature of plant roots call for minimally invasive methods capable of providing quantitative estimation of root architecture, dynamics over time and interactions with the soils. We present a study on root architecture and root-soil interactions using geophysical methods. Parameters and processes of interests include (1) moisture dynamics around root zone and its interaction with plant transpiration and environmental controls and (2) estimation of root structure and properties based on geophysical signals. Both pot and field scale studies were conducted. The pot scale experiments were conducted under controlled conditions and were monitored with cross-well electrical resistivity tomography (ERT), TDR moisture sensors and temperature probes. Pots with and without a tree were compared and the moisture conditions were controlled via a self regulated pumping system. Geophysical monitoring revealed interactions between roots and soils under dynamic soil moisture conditions and the role of roots in regulating the response of the soil system to changes of environmental conditions, e.g. drought and precipitation events. Field scale studies were conducted on natural trees using

  4. Perennial roots to immortality.

    PubMed

    Munné-Bosch, Sergi

    2014-10-01

    Maximum lifespan greatly varies among species, and it is not strictly determined; it can change with species evolution. Clonal growth is a major factor governing maximum lifespan. In the plant kingdom, the maximum lifespans described for clonal and nonclonal plants vary by an order of magnitude, with 43,600 and 5,062 years for Lomatia tasmanica and Pinus longaeva, respectively. Nonclonal perennial plants (those plants exclusively using sexual reproduction) also present a huge diversity in maximum lifespans (from a few to thousands of years) and even more interestingly, contrasting differences in aging patterns. Some plants show a clear physiological deterioration with aging, whereas others do not. Indeed, some plants can even improve their physiological performance as they age (a phenomenon called negative senescence). This diversity in aging patterns responds to species-specific life history traits and mechanisms evolved by each species to adapt to its habitat. Particularities of roots in perennial plants, such as meristem indeterminacy, modular growth, stress resistance, and patterns of senescence, are crucial in establishing perenniality and understanding adaptation of perennial plants to their habitats. Here, the key role of roots for perennial plant longevity will be discussed, taking into account current knowledge and highlighting additional aspects that still require investigation. PMID:24563283

  5. [Changes of root biomass, root surface area, and root length density in a Populus cathayana plantation].

    PubMed

    Yan, Hui; Liu, Guang-quan; Li, Hong-sheng

    2010-11-01

    By using soil core method, the biomass, surface area, and length density of roots < or =2 mm and 2-5 mm in diameter in a 50-year-old Populus cathayana plantation on the northern slope of Qinling Mountains were determined during growth season. Among the roots <5 mm in diameter, those < or =2 mm and 2-5 mm in diameter accounted for 77.8% and 22.2% of the total root biomass, respectively. The surface area and length density of the roots < or =2 mm in diameter accounted for more than 97% of the total, and those of the roots 2-5 mm in diameter only occupied less than 3%. The biomass, surface area, and root length density of roots < or =2 mm in diameter decreased with soil depth, while those of the roots 2-5 mm in diameter were the least in 20-30 cm soil layer. The biomass, surface area, and length density of roots < or =2 mm in diameter were significantly correlated with soil organic matter and available nitrogen, but no significant correlations were found for the roots 2-5 mm in diameter. PMID:21360997

  6. Influence of ginger rhizome (Zingiber officinale Rosc) on survival, glutathione and lipid peroxidation in mice after whole-body exposure to gamma radiation.

    PubMed

    Jagetia, Ganesh Chandra; Baliga, Manjeshwar Shrinath; Venkatesh, Ponemone; Ulloor, Jagadish N

    2003-11-01

    The radioprotective effect of the hydroalcoholic extract of ginger rhizome, Zingiber officinale (ZOE), was studied. Mice were given 10 mg/kg ZOE intraperitoneally once daily for five consecutive days before exposure to 6-12 Gy of gamma radiation and were monitored daily up to 30 days postirradiation for the development of symptoms of radiation sickness and mortality. Pretreatment of mice with ZOE reduced the severity of radiation sickness and the mortality at all doses. The ZOE treatment protected mice from GI syndrome as well as bone marrow syndrome. The dose reduction factor for ZOE was found to be 1.15. The optimum protective dose of 10 mg/kg ZOE was 1/50 of the LD50 (500 mg/kg). Irradiation of the animals resulted in a dose-dependent elevation in the lipid peroxidation and depletion of GSH on day 31 postirradiation; both effects were lessened by pretreatment with ZOE. ZOE also had a dose-dependent antimicrobial activity against Pseudomonas aeruginosa, Salmonella typhimurium, Escherichia coli and Candida albicans. PMID:14565823

  7. Ultrafiltration coupled with high-performance liquid chromatography and quadrupole-time-of-flight mass spectrometry for screening lipase binders from different extracts of Dendrobium officinale.

    PubMed

    Tao, Yi; Cai, Hao; Li, Weidong; Cai, Baochang

    2015-08-01

    Pancreatic lipase plays essential roles in the digestion, transport, and processing of dietary lipids in humans. Inhibition of pancreatic lipase leading to the decrease of lipid absorption may be used for treating obesity. In the present study, a new approach of ultrafiltration coupled with high-performance liquid chromatography and quadrupole-time-of-flight mass spectrometry was established for rapidly detecting lipase binders from different extracts of medicinal plants. Rutin, a model inhibitor of lipase, was selected to optimize the screening conditions, including ion strength, temperature, pH, and incubation time. Meanwhile, the specificity of the approach was investigated by using denatured lipase and inactive compound emodin. The optimal screening conditions were as follows: ion strength 75 mM, temperature 37 °C, pH 7.4, and incubation time 10 min. Furthermore, linearity, accuracy, precision, and matrix effect of the approach were well validated. Finally, lipase binders were screened from different extracts of Dendrobium officinale by applying the established approach and were subsequently subjected to traditional lipase inhibitory assay. Eleven lipase inhibitors were identified, eight of which, namely naringenine, vicenin II, schaftoside, isoschaftoside, isoquercetrin, kaempferol 3-O-β-D-glucopyranoside, vitexin 2″-O-glucoside, and vitexin 2″-O-rhamnoside, were reported for the first time. In addition, docking experiments were performed to determine the preferred binding sites of these new lipase inhibitors. PMID:26018630

  8. Sisymbrium Officinale (L.) Scop. and its Polyphenolic Fractions Inhibit the Mutagenicity of Tert-Butylhydroperoxide in Escherichia Coli WP2uvrAR Strain.

    PubMed

    Di Sotto, Antonella; Di Giacomo, Silvia; Toniolo, Chiara; Nicoletti, Marcello; Mazzanti, Gabriela

    2016-05-01

    One Sisymbrium officinale (L.) Scop. aqueous dry extract (SOE) and its polyphenolic fractions (Fb, Fc, Fd and Fe) were evaluated for their ability to inhibit the oxidative mutagenicity of tert-butylhydroperoxide in the Ames test. The possible involvement of desmutagenic and/or bioantimutagenic mechanisms was evaluated by applying a three-time based protocol (pre-treatment, co-treatment and post-treatment). Furthermore, some protective antioxidant mechanisms were investigated. The total polyphenol and flavonol amount was also determined, and the fingerprint was outlined by high-performance thin-layer chromatography and densitometry. SOE, Fb and Fe exhibited strong antimutagenicity against tert-butylhydroperoxide in all treatment protocols, this suggesting the involvement of both desmutagenic and bioantimutagenic mechanisms. These samples also showed antioxidant properties, including neutralization of the superoxide anion, lipid peroxidation inhibition and chelation and reduction of iron. Fb and Fe were rich in polyphenols and flavonols, so suggesting a possible role of these compounds in the antimutagenicity. Taking into account that oxidative stress is responsible for the damage of various environmental toxicants, particularly tobacco smoke, present results can support the traditional use of hedge mustard by smokers to restore the vocal cord function affected by the oxidative damage and suggest a possible application of SOE and its fractions as food supplements. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26890612

  9. Effect of Unripe Plantain (Musa paradisiaca) and Ginger (Zingiber officinale) on Blood Glucose, Body Weight and Feed Intake of Streptozotocin-induced Diabetic Rats

    PubMed Central

    M, Iroaganachi; C.O, Eleazu; P.N, Okafor; N, Nwaohu

    2015-01-01

    Objective: To determine the effect of unripe plantain (Musa paradisiaca) and ginger (Zingiber officinale) on blood glucose (BG), feed intake (FI) and weight of streptozotocin (STZ) induced diabetic rats. Methods: Twenty four male albino rats were used and were divided into 4 groups of 6 rats each. Group 1 (non-diabetic) and Group 2 (diabetic) received standard rat feed; Group 3 received unripe plantain incorporated feed (810 /kg body weight) and Group 4 received unripe plantain+ginger incorporated feed (710:100 g/kg body weight). The weights and FI of the rats were measured daily throughout the experimentation. Results: Groups 3 and 4 rats had 159.52% and 71.83% decreases in BG but 24.91% and 35.32% decreases in weights compared with groups 1 and 2 rats that had 2.09% and 22.94% increases in BG with 13.42% increase and 45.36% decrease in weights respectively. The FI of the experimental rats did not differ significantly from each other (P>0.05) at the end of experimentation. The standard rat feed contained higher amounts of Ca but lower amounts of Mg and Fe compared with the unripe plantain and unripe plantain+ginger incorporated feeds. Conclusion: Combination of unripe plantain and ginger at the dose used in the management of diabetes was not very effective compared with unripe plantain alone. PMID:25674161

  10. Effect of Zingiber officinale Supplementation on Obesity Management with Respect to the Uncoupling Protein 1 -3826A>G and ß3-adrenergic Receptor Trp64Arg Polymorphism.

    PubMed

    Ebrahimzadeh Attari, Vahideh; Asghari Jafarabadi, Mohammad; Zemestani, Maryam; Ostadrahimi, Alireza

    2015-07-01

    The present study aimed to investigate the effect of ginger (Zingiber officinale) supplementation on some obesity-associated parameters, with nutrigenetics approach. Accordingly, 80 eligible obese women (aged 18-45 years) were randomly assigned to receive either ginger (2-g ginger rhizomes powder as two 1-g tablets per day) or placebo supplements (corn starch with the same amount) for 12 weeks. Subjects were tested for changes in body weight, body mass index, waist and hip circumferences, body composition, appetite score, and dietary intake. Moreover, participants were genotyped for the -3826A>G and Trp64Arg polymorphisms of uncoupling protein 1 and ß3-adrenergic receptor genes, respectively. Over 12 weeks, ginger supplementation resulted in a slight but statistically significant decrease in all anthropometric measurements and total appetite score as compared with placebo group, which were more pronounced in subjects with the AA genotype for uncoupling protein 1 and Trp64Trp genotype for ß3-adrenergic receptor gene. However, there was no significant difference in changes of body composition and total energy and macronutrients intake between groups. In conclusion, our findings suggest that ginger consumption has potential in managing obesity, accompanying with an intervention-genotype interaction effect. However, further clinical trials need to explore ginger's efficacy as an anti-obesity agent in the form of powder, extract, or its active components. PMID:25899896

  11. Transgene expression in regenerated roots.

    PubMed

    Malamy, Jocelyn

    2007-01-01

    INTRODUCTIONThis procedure, which uses a root transformation protocol, provides a rapid method for assessing gene expression in Arabidopsis roots. It is useful for testing promoter:reporter gene constructs, for expressing genes, the overexpression of which is lethal in whole plants, and for transforming the roots of plants that are recalcitrant to conventional transformation techniques. The protocol has been used successfully with Ws, No-0, and RLD ecotypes. PMID:21357026

  12. A Split-Root Technique for Measuring Root Water Potential

    PubMed Central

    Adeoye, Kingsley B.; Rawlins, Stephen L.

    1981-01-01

    Water encounters various resistances in moving along a path of decreasing potential energy from the soil through the plant to the atmosphere. The reported relative magnitudes of these pathway resistances vary widely and often these results are conflicting. One reason for such inconsistency is the difficulty in measuring the potential drop across various segments of the soil-plant-atmosphere continuum. The measurement of water potentials at the soil-root interface and in the root xylem of a transpiring plant remains a challenging problem. In the divided root experiment reported here, the measured water potential of an enclosed, nonabsorbing branch of the root system of young corn (Bonanza) plants to infer the water potential of the remaining roots growing in soil was used. The selected root branch of the seedling was grown in a specially constructed Teflon test tube into which a screen-enclosed thermocouple psychrometer was inserted and sealed to monitor the root's water potential. The root and its surrounding atmosphere were assumed to be in vapor equilibrium. Images PMID:16661886

  13. [A case of appendicular supplementary root with external root resorption].

    PubMed

    González Bahillo, J; Martínez Insua, A; Varela Patiño, P; Rivas Lombardero, P; Paz Pumpido, F

    1991-01-01

    The case of a lateral maxillary incisor with a supplementary root fractured by external root resorption, is presented. The role played for the periodontal disease is shown in the clinical and radiographic achievements, and their implications in the pulpal disease. Endodontic therapy was performed and the diagnosis confirmed in the specimen histological research. PMID:1858059

  14. The roots of predictivism.

    PubMed

    Barnes, Eric Christian

    2014-03-01

    In The Paradox of Predictivism (2008, Cambridge University Press) I tried to demonstrate that there is an intimate relationship between predictivism (the thesis that novel predictions sometimes carry more weight than accommodations) and epistemic pluralism (the thesis that one important form of evidence in science is the judgments of other scientists). Here I respond to various published criticisms of some of the key points from Paradox from David Harker, Jarret Leplin, and Clark Glymour. Foci include my account of predictive novelty (endorsement novelty), the claim that predictivism has two roots, the prediction per se and predictive success, and my account of why Mendeleev's predictions carried special weight in confirming the Periodic Law of the Elements. PMID:24984449

  15. New roots for agriculture: exploiting the root phenome

    PubMed Central

    Lynch, Jonathan P.; Brown, Kathleen M.

    2012-01-01

    Recent advances in root biology are making it possible to genetically design root systems with enhanced soil exploration and resource capture. These cultivars would have substantial value for improving food security in developing nations, where yields are limited by drought and low soil fertility, and would enhance the sustainability of intensive agriculture. Many of the phenes controlling soil resource capture are related to root architecture. We propose that a better understanding of the root phenome is needed to effectively translate genetic advances into improved crop cultivars. Elementary, unique root phenes need to be identified. We need to understand the ‘fitness landscape’ for these phenes: how they affect crop performance in an array of environments and phenotypes. Finally, we need to develop methods to measure phene expression rapidly and economically without artefacts. These challenges, especially mapping the fitness landscape, are non-trivial, and may warrant new research and training modalities. PMID:22527403

  16. Compensatory Root Water Uptake of Overlapping Root Systems

    NASA Astrophysics Data System (ADS)

    Agee, E.; Ivanov, V. Y.; He, L.; Bisht, G.; Shahbaz, P.; Fatichi, S.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.

    2015-12-01

    Land-surface models use simplified representations of root water uptake based on biomass distributions and empirical functions that constrain water uptake during unfavorable soil moisture conditions. These models fail to capture the observed hydraulic plasticity that allows plants to regulate root hydraulic conductivity and zones of active uptake based on local gradients. Recent developments in root water uptake modeling have sought to increase its mechanistic representation by bridging the gap between physically based microscopic models and computationally feasible macroscopic approaches. It remains to be demonstrated whether bulk parameterization of microscale characteristics (e.g., root system morphology and root conductivity) can improve process representation at the ecosystem scale. We employ the Couvreur method of microscopic uptake to yield macroscopic representation in a coupled soil-root model. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model a one-hectare temperate forest stand under natural and synthetic climatic forcing. Our results show that as shallow soil layers dry, uptake at the tree and stand level shift to deeper soil layers, allowing the transpiration stream demanded by the atmosphere. We assess the potential capacity of the model to capture compensatory root water uptake. Further, the hydraulic plasticity of the root system is demonstrated by the quick response of uptake to rainfall pulses. These initial results indicate a promising direction for land surface models in which significant three-dimensional information from large root systems can be feasibly integrated into the forest scale simulations of root water uptake.

  17. Organic acid component from Taraxacum mongolicum Hand.-Mazz alleviates inflammatory injury in lipopolysaccharide-induced acute tracheobronchitis of ICR mice through TLR4/NF-κB signaling pathway.

    PubMed

    Yang, Nan; Li, Chao; Tian, Gang; Zhu, Maomao; Bu, Weiquan; Chen, Juan; Hou, Xuefeng; Di, Liuqing; Jia, Xiaobin; Dong, Zibo; Feng, Liang

    2016-05-01

    Inflammation plays an important role in the pathogenesis of acute tracheobronchitis. Taraxacum mongolicum Hand.-Mazz (TMHM) is a dietic herb for heat-clearing and detoxifying functions as well as swell-reducing and mass-resolving effect in Traditional Chinese Medicine. Studies have shown that its major ingredient organic acid component (OAC) possesses favorable anti-inflammatory activity. However, the protective effect of OAC from TMHM (TMHM-OAC) on inflammatory injury of acute tracheobronchitis and its possible mechanism remains poorly understood. In this study, HPLC-DAD was used to analyze the components of TMHM-OAC. Lipopolysaccharide of 1mg/ml was used to induce respiratory inflammation in ICR mice at the dose of 5mg/kg by intratracheally aerosol administration. Enzyme-linked immunosorbent assay (ELISA) was employed to detect the levels of inflammation factors such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide in serum and supernatant of trachea tissue. Western blotting (WB) and Immunohistochemistry analysis (IHC) were conducted in parallel to determine TNF-α, IL-6, inducible nitric oxide synthase (iNOS), Toll-like receptors 4(TLR4) protein expressions and nuclear factor-kappa B p65 (NF-κB p65) phosphorylation. Hematoxylin-Eosin staining (HE) was applied to evaluate pathological lesions of trachea tissue. Experimental results showed that TMHM-OAC significantly reduced the levels of the TNF-α, IL-6 and NO in serum and supernatant of tracheal of LPS-induced ICR mice. The protein expression levels of TNF-α, IL-6 and iNOS in tracheal tissue were also down-regulated significantly by the treatment of TMHM-OAC. Moreover, TMHM-OAC downregulated phosphorylation of NF-κB p65 and protein expression of TLR4. Our results indicated that TMHM-OAC could improve LPS-induced histopathological damage of tracheal tissues through the regulation of TLR4/NF-κB signaling pathway and could be beneficial for the treatment of acute tracheobronchitis

  18. Determinants and Polynomial Root Structure

    ERIC Educational Resources Information Center

    De Pillis, L. G.

    2005-01-01

    A little known property of determinants is developed in a manner accessible to beginning undergraduates in linear algebra. Using the language of matrix theory, a classical result by Sylvester that describes when two polynomials have a common root is recaptured. Among results concerning the structure of polynomial roots, polynomials with pairs of…

  19. Cassava root membrane proteome reveals activities during storage root maturation.

    PubMed

    Naconsie, Maliwan; Lertpanyasampatha, Manassawe; Viboonjun, Unchera; Netrphan, Supatcharee; Kuwano, Masayoshi; Ogasawara, Naotake; Narangajavana, Jarunya

    2016-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava. PMID:26547558

  20. Assessment of heavy metal pollution in Republic of Macedonia using a plant assay.

    PubMed

    Gjorgieva, Darinka; Kadifkova-Panovska, Tatjana; Bačeva, Katerina; Stafilov, Trajče

    2011-02-01

    Different plant organs (leaves, flowers, stems, or roots) from four plant species-Urtica dioica L. (Urticaceae), Robinia pseudoacacia L. (Fabaceae), Taraxacum officinale (Asteraceae), and Matricaria recutita (Asteraceae)-were evaluated as possible bioindicators of heavy-metal pollution in Republic of Macedonia. Concentrations of Pb, Cu, Cd, Mn, Ni, and Zn were determined in unwashed plant parts collected from areas with different degrees of metal pollution by ICP-AES. All these elements were found to be at high levels in samples collected from an industrial area. Maximum Pb concentration was 174.52 ± 1.04 mg kg⁻¹ in R. pseudoacacia flowers sampled from the Veles area, where lead and zinc metallurgical activities were present. In all control samples, the Cd concentrations were found to be under the limit of detection (LOD <0.1 mg kg⁻¹) except for R. pseudoacacia flowers and T. officinale roots. The maximum Cd concentration was 7.97 ± 0.15 mg kg⁻¹ in R. pseudoacacia flowers from the Veles area. Nickel concentrations were in the range from 1.90 ± 0.04 to 5.74 ± 0.03 mg kg⁻¹. For U. dioica leaves and R. pseudoacacia flowers sampled near a lead-smelting plant, concentrations of 465.0 ± 0.55 and 403.56 ± 0.34 mg kg⁻¹ Zn were detected, respectively. In all control samples, results for Zn were low, ranging from 10.2 ± 0.05 to 38.70 ± 0.18 mg kg⁻¹. In this study, it was found that the flower of R. pseudoacacia was a better bioindicator of heavy-metal pollution than other plant parts. Summarizing the results, it can be concluded that T. officinale, U. dioica, and R. pseudoacacia were better metal accumulators and M. recutita was a metal avoider. PMID:20508923

  1. Impact of spiked concentrations of Cd, Pb, As and Zn in growth medium on elemental uptake of Nasturtium officinale (Watercress).

    PubMed

    Gounden, Denisha; Kisten, Kimona; Moodley, Roshila; Shaik, Shakira; Jonnalagadda, Sreekantha B

    2016-01-01

    This study is aimed at investigating the impact of water quality on the uptake and distribution of three non-essential and toxic elements, namely, As, Cd and Pb in the watercress plant to assess for metal toxicity. The plant was hydroponically cultivated under greenhouse conditions, with the growth medium being spiked with varying concentrations of As, Cd and Pb. Plants that were harvested weekly for elemental analysis showed physiological and morphological symptoms of toxicity on exposure to high concentrations of Cd and Pb. Plants exposed to high concentrations of As did not survive and the threshold for As uptake in watercress was established at 5 ppm. Translocation factors were low in all cases as the toxic elements accumulated more in the roots of the plant than the edible leaves. The impact of Zn on the uptake of toxic elements was also evaluated and Zn was found to have an antagonistic effect on uptake of both Cd and Pb with no notable effect on uptake of As. The findings indicate that phytotoxicity or death of the watercress plant would prevent it from being a route of human exposure to high concentrations of As, Cd and Pb in the environment. PMID:26479037

  2. Gravisensing in roots

    NASA Astrophysics Data System (ADS)

    Perbal, G.

    1999-01-01

    The mode of gravisensing in higher plants is not yet elucidated. Although, it is generally accepted that the amyloplasts (statoliths) in the root cap cells (statocytes) are responsible for susception of gravity. However, the hypothesis that the whole protoplast acts as gravisusceptor cannot be dismissed. The nature of the sensor that is able to transduce and amplify the mechanical energy into a biochemical factor is even more controversial. Several cell structures could potentially serve as gravireceptors: the endoplasmic reticulum, the actin network, the plasma membrane, or the cytoskeleton associated with this membrane. The nature of the gravisusceptors and gravisensors is discussed by taking into account the characteristics of the gravitropic reaction with respect to the presentation time, the threshold acceleration, the reciprocity rule, the deviation from the sine rule, the movement of the amyloplasts, the pre-inversion effect, the response of starch free and intermediate mutants and the effects of cytochalasin treatment. From this analysis, it can be concluded that both the amyloplasts and the protoplast could be the gravisusceptors, the former being more efficient than the latter since they can focus pressure on limited areas. The receptor should be located in the plasma membrane and could be a stretch-activated ion channel.

  3. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    NASA Astrophysics Data System (ADS)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  4. Random root movements in weightlessness.

    PubMed

    Johnsson, A; Karlsson, C; Iversen, T H; Chapman, D K

    1996-02-01

    The dynamics of root growth was studied in weightlessness. In the absence of the gravitropic reference direction during weightlessness, root movements could be controlled by spontaneous growth processes, without any corrective growth induced by the gravitropic system. If truly random of nature, the bending behavior should follow so-called 'random walk' mathematics during weightlessness. Predictions from this hypothesis were critically tested. In a Spacelab ESA-experiment, denoted RANDOM and carried out during the IML-2 Shuttle flight in July 1994, the growth of garden cress (Lepidium sativum) roots was followed by time lapse photography at 1-h intervals. The growth pattern was recorded for about 20 h. Root growth was significantly smaller in weightlessness as compared to gravity (control) conditions. It was found that the roots performed spontaneous movements in weightlessness. The average direction of deviation of the plants consistently stayed equal to zero, despite these spontaneous movements. The average squared deviation increased linearly with time as predicted theoretically (but only for 8-10 h). Autocorrelation calculations showed that bendings of the roots, as determined from the 1-h photographs, were uncorrelated after about a 2-h interval. It is concluded that random processes play an important role in root growth. Predictions from a random walk hypothesis as to the growth dynamics could explain parts of the growth patterns recorded. This test of the hypothesis required microgravity conditions as provided for in a space experiment. PMID:11541141

  5. Nutritional regulation of root development.

    PubMed

    Ruiz Herrera, León Francisco; Shane, Michael W; López-Bucio, José

    2015-01-01

    Mineral nutrients such as nitrogen (N), phosphorus (P), and iron (Fe) are essential for plant growth, development, and reproduction. Adequate provision of nutrients via the root system impacts greatly on shoot biomass and plant productivity and is therefore of crucial importance for agriculture. Nutrients are taken up at the root surface in ionic form, which is mediated by specific transport proteins. Noteworthy, root tips are able to sense the local and internal concentrations of nutrients to adjust growth and developmental processes, and ultimately, to increase or decrease the exploratory capacity of the root system. Recently, important progress has been achieved in identifying the mechanisms of nutrient sensing in wild- and cultivated species, including Arabidopsis, bean, maize, rice, lupin as well as in members of the Proteaceae and Cyperaceae families, which develop highly sophisticated root clusters as adaptations to survive in soils with very low fertility. Major findings include identification of transporter proteins and transcription factors regulating nutrient sensing, miRNAs as mobile signals and peptides as repressors of lateral root development under heterogeneous nutrient supply. Understanding the roles played by N, P, and Fe in gene expression and biochemical characterization of proteins involved in root developmental responses to homogeneous or heterogeneous N and P sources has gained additional interest due to its potential for improving fertilizer acquisition efficiency in crops. PMID:25760021

  6. 6-Gingerol-Rich Fraction from Zingiber officinale Prevents Hematotoxicity and Oxidative Damage in Kidney and Liver of Rats Exposed to Carbendazim.

    PubMed

    Salihu, Mariama; Ajayi, Babajide O; Adedara, Isaac A; Farombi, Ebenezer O

    2016-07-01

    Ginger (Zingiber officinale) is a globally marketed flavoring agent and cooking spice with a long history of human health benefits. The fungicide carbendazim (CBZ) is often detected in fruits and vegetables for human nutrition and has been reported to elicit toxic effects in different experimental animal models. The present study investigated the protective effects of 6-Gingerol-rich fraction (6-GRF) from ginger on hematotoxicity and hepatorenal damage in rats exposed to CBZ. CBZ was administered at a dose of 50 mg/kg alone or simultaneously administered with 6-GRF at 50, 100, and 200 mg/kg, whereas control rats received corn oil alone at 2 mL/kg for 14 days. Hematological examination showed that CBZ-mediated toxicity to the total white blood cell (WBC), neutrophils, lymphocytes, and platelets counts were normalized to the control values in rats cotreated with 6-GRF. Moreover, administration of CBZ significantly decreased the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase as well as glutathione level in the livers and kidneys of rats compared with control. However, the levels of hydrogen peroxide (H2O2) and malondialdehyde were markedly elevated in kidneys and livers of CBZ-treated rats compared with control. The significant elevation in the plasma indices of renal and hepatic dysfunction in CBZ-treated rats was confirmed by light microscopy. Coadministration of 6-GRF exhibited chemoprotection against CBZ-mediated hematotoxicity, augmented antioxidant status, and prevented oxidative damage in the kidney and liver of rats. PMID:26673969

  7. Hypocotyl adventitious root organogenesis differs from lateral root development

    PubMed Central

    Verstraeten, Inge; Schotte, Sébastien; Geelen, Danny

    2014-01-01

    Wound-induced adventitious root (AR) formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR) and the initiated AR share histological and developmental characteristics with lateral roots (LRs). In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid, and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in A. thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are distinct from LR

  8. IAA transport in corn roots includes the root cap

    SciTech Connect

    Hasenstein, K.H. )

    1989-04-01

    In earlier reports we concluded that auxin is the growth regulator that controls gravicurvature in roots and that the redistribution of auxin occurs within the root cap. Since other reports did not detect auxin in the root cap, we attempted to confirm the IAA does move through the cap. Agar blocks containing {sup 3}H-IAA were applied to the cut surface of 5 mm long apical segments of primary roots of corn (mo17xB73). After 30 to 120 min radioactivity (RA) of the cap and root tissue was determined. While segments suspended in water-saturated air accumulated very little RA in the cap, application of 0.5 {mu}1 of dist. water to the cap (=controls) increased RA of the cap dramatically. Application to the cap of 0.5 {mu}1 of sorbitol or the Ca{sup 2+} chelator EGTA reduced cap RA to 46% and 70% respectively compared to water, without affecting uptake. Control root segments gravireacted faster than non-treated or osmoticum or EGTA treated segments. The data indicate that both the degree of hydration and calcium control the amount of auxin moving through the cap.

  9. Towards a multidimensional root trait framework: a tree root review.

    PubMed

    Weemstra, Monique; Mommer, Liesje; Visser, Eric J W; van Ruijven, Jasper; Kuyper, Thomas W; Mohren, Godefridus M J; Sterck, Frank J

    2016-09-01

    Contents 1159 I. 1159 II. 1161 III. 1164 IV. 1166 1167 References 1167 SUMMARY: The search for a root economics spectrum (RES) has been sparked by recent interest in trait-based plant ecology. By analogy with the one-dimensional leaf economics spectrum (LES), fine-root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta-level analysis reveal no consistent evidence of an RES mirroring an LES. Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above- and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES. Understanding and explaining the belowground mechanisms and trade-offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms - particularly the mycorrhizal pathway - in a multidimensional root trait framework. PMID:27174359

  10. Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength.

    PubMed

    Haling, Rebecca E; Brown, Lawrie K; Bengough, A Glyn; Young, Iain M; Hallett, Paul D; White, Philip J; George, Timothy S

    2013-09-01

    Root hairs are a key trait for improving the acquisition of phosphorus (P) by plants. However, it is not known whether root hairs provide significant advantage for plant growth under combined soil stresses, particularly under conditions that are known to restrict root hair initiation or elongation (e.g. compacted or high-strength soils). To investigate this, the root growth and P uptake of root hair genotypes of barley, Hordeum vulgare L. (i.e. genotypes with and without root hairs), were assessed under combinations of P deficiency and high soil strength. Genotypes with root hairs were found to have an advantage for root penetration into high-strength layers relative to root hairless genotypes. In P-deficient soils, despite a 20% reduction in root hair length under high-strength conditions, genotypes with root hairs were also found to have an advantage for P uptake. However, in fertilized soils, root hairs conferred an advantage for P uptake in low-strength soil but not in high-strength soil. Improved root-soil contact, coupled with an increased supply of P to the root, may decrease the value of root hairs for P acquisition in high-strength, high-P soils. Nevertheless, this work demonstrates that root hairs are a valuable trait for plant growth and nutrient acquisition under combined soil stresses. Selecting plants with superior root hair traits is important for improving P uptake efficiency and hence the sustainability of agricultural systems. PMID:23861547

  11. Power and Roots by Recursion.

    ERIC Educational Resources Information Center

    Aieta, Joseph F.

    1987-01-01

    This article illustrates how questions from elementary finance can serve as motivation for studying high order powers, roots, and exponential functions using Logo procedures. A second discussion addresses a relatively unknown algorithm for the trigonometric exponential and hyperbolic functions. (PK)

  12. Ultrasonic cleaning of root canals

    NASA Astrophysics Data System (ADS)

    Verhaagen, Bram; Boutsioukis, Christos; Jiang, Lei-Meng; Macedo, Ricardo; van der Sluis, Luc; Versluis, Michel

    2011-11-01

    A crucial step during a dental root canal treatment is irrigation, where an antimicrobial fluid is injected into the root canal system to eradicate all bacteria. Agitation of the fluid using an ultrasonically vibrating miniature file has shown significant improvement in cleaning efficacy over conventional syringe irrigation. However, the physical mechanisms underlying the cleaning process, being acoustic streaming, cavitation or chemical activity, and combinations thereof, are not fully understood. High-speed imaging allows us to visualize the flow pattern and cavitation in a root canal model at microscopic scales, at timescales relevant to the cleaning processes (microseconds). MicroPIV measurements of the induced acoustic streaming are coupled to the oscillation characteristics of the file as simulated numerically and measured with a laser vibrometer. The results give new insight into the role of acoustic streaming and the importance of the confinement for the cleaning of root canals.

  13. Root Patterns in Heterogeneous Soils

    NASA Astrophysics Data System (ADS)

    Dara, A.; Moradi, A. B.; Carminati, A.; Oswald, S. E.

    2010-12-01

    Heterogeneous water availability is a typical characteristic of soils in which plant roots grow. Despite the intrinsic heterogeneity of soil-plant water relations, we know little about the ways how plants respond to local environmental quality. Furthermore, increasing use of soil amendments as partial water reservoirs in agriculture calls for a better understanding of plant response to soil heterogeneity. Neutron radiography is a non-invasive imaging that is highly sensitive to water and root distribution and that has high capability for monitoring spatial and temporal soil-plant water relations in heterogeneous systems. Maize plants were grown in 25 x 30 x 1 cm aluminum slabs filled with sandy soil. On the right side of the compartments a commercial water absorbent (Geohumus) was mixed with the soil. Geohumus was distributed with two patterns: mixed homogeneously with the soil, and arranged as 1-cm diameter aggregates (Fig. 1). Two irrigation treatments were applied: sufficient water irrigation and moderate water stress. Neutron radiography started 10 days after planting and has been performed twice a day for one week. At the end of the experiment, the containers were opened, the root were removed and dry root weight in different soil segments were measured. Neutron radiography showed root growth tendency towards Geohumus treated parts and preferential water uptake from Geohumus aggregates. Number and length of fine lateral roots were lower in treated areas compared to the non-treated zone and to control soil. Although corn plants showed an overall high proliferation towards the soil water sources, they decreased production of branches and fine root when water was more available near the main root parts. However there was 50% higher C allocation in roots grown in Geohumus compartments, as derived by the relative dry weight of root. The preferential C allocation in treated regions was higher when plants grew under water stress. We conclude that in addition to the

  14. Root Caries in Older Adults.

    PubMed

    Gregory, Dick; Hyde, Susan

    2015-08-01

    Older adults are retaining an increasing number of natural teeth, and nearly half of all individuals aged 75 and older have experienced root caries. Root caries is a major cause of tooth loss in older adults, and tooth loss is the most significant negative impact on oral health-related quality of life for the elderly. The need for improved preventive efforts and treatment strategies for this population is acute. PMID:26357814

  15. Effect of parameter choice in root water uptake models - the arrangement of root hydraulic properties within the root architecture affects dynamics and efficiency of root water uptake

    NASA Astrophysics Data System (ADS)

    Bechmann, M.; Schneider, C.; Carminati, A.; Vetterlein, D.; Attinger, S.; Hildebrandt, A.

    2014-10-01

    Detailed three-dimensional models of root water uptake have become increasingly popular for investigating the process of root water uptake. However, they suffer from a lack of information on important parameters, particularly on the spatial distribution of root axial and radial conductivities, which vary greatly along a root system. In this paper we explore how the arrangement of those root hydraulic properties and branching within the root system affects modelled uptake dynamics, xylem water potential and the efficiency of root water uptake. We first apply a simple model to illustrate the mechanisms at the scale of single roots. By using two efficiency indices based on (i) the collar xylem potential ("effort") and (ii) the integral amount of unstressed root water uptake ("water yield"), we show that an optimal root length emerges, depending on the ratio between roots axial and radial conductivity. Young roots with high capacity for radial uptake are only efficient when they are short. Branching, in combination with mature transport roots, enables soil exploration and substantially increases active young root length at low collar potentials. Second, we investigate how this shapes uptake dynamics at the plant scale using a comprehensive three-dimensional root water uptake model. Plant-scale dynamics, such as the average uptake depth of entire root systems, were only minimally influenced by the hydraulic parameterization. However, other factors such as hydraulic redistribution, collar potential, internal redistribution patterns and instantaneous uptake depth depended strongly on the arrangement on the arrangement of root hydraulic properties. Root systems were most efficient when assembled of different root types, allowing for separation of root function in uptake (numerous short apical young roots) and transport (longer mature roots). Modelling results became similar when this heterogeneity was accounted for to some degree (i.e. if the root systems contained between

  16. Aromatherapy in the Mediterranean fruit fly (Diptera: Tephritidae): sterile males exposed to ginger root oil in prerelease storage boxes display increased mating competitiveness in field-cage trials.

    PubMed

    Shelly, Todd E; McInnis, Donald O; Pahio, Elaine; Edu, James

    2004-06-01

    Previous research showed that exposure to ginger root, Zingiber officinale Roscoe, oil increased the mating success of mass-reared, sterile males of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). This work, however, involved the exposure of small groups of males (n = 25) in small containers (volume 400 ml). Several sterile male release programs use plastic adult rearing containers (so-called PARC boxes; hereafter termed storage boxes; 0.48 by 0.60 by 0.33 m) to hold mature pupae and newly emerged adults before release (approximately = 36,000 flies per box). The objective of the current study was to determine whether the application of ginger root oil to individual storage boxes increases the mating competitiveness of sterile C. capitata males. Irradiated pupae were placed in storage boxes 2 d before adult emergence, and in the initial experiment (adult exposure) ginger root oil was applied 5 d later (i.e., 3 d after peak adult emergence) for 24 h at doses of 0.0625, 0.25, 0.5, 1.0, and 2.0 ml. In a second experiment (pupal-adult exposure), ginger root oil was applied to storage boxes immediately after pupal placement and left for 6 d (i.e., 4 d after peak adult emergence) at doses of 0.25 and 1.0 ml. Using field cages, we conducted mating trials in which ginger root oil-exposed (treated) or nonexposed (control) sterile males competed against wild-like males for copulations with wild-like females. After adult exposure, treated males had significantly higher mating success than control males for all doses of ginger root oil, except 2.0 ml. After pupal-adult exposure, treated males had a significantly higher mating success than control males for the 1.0-ml but not the 0.25-ml dose of ginger root oil. The results suggest that ginger root oil can be used in conjunction with prerelease, storage boxes to increase the effectiveness of sterile insect release programs. PMID:15279263

  17. Plant root-microbe communication in shaping root microbiomes.

    PubMed

    Lareen, Andrew; Burton, Frances; Schäfer, Patrick

    2016-04-01

    A growing body of research is highlighting the impacts root-associated microbial communities can have on plant health and development. These impacts can include changes in yield quantity and quality, timing of key developmental stages and tolerance of biotic and abiotic stresses. With such a range of effects it is clear that understanding the factors that contribute to a plant-beneficial root microbiome may prove advantageous. Increasing demands for food by a growing human population increases the importance and urgency of understanding how microbiomes may be exploited to increase crop yields and reduce losses caused by disease. In addition, climate change effects may require novel approaches to overcoming abiotic stresses such as drought and salinity as well as new emerging diseases. This review discusses current knowledge on the formation and maintenance of root-associated microbial communities and plant-microbe interactions with a particular emphasis on the effect of microbe-microbe interactions on the shape of microbial communities at the root surface. Further, we discuss the potential for root microbiome modification to benefit agriculture and food production. PMID:26729479

  18. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays)

    PubMed Central

    Chimungu, Joseph G.; Loades, Kenneth W.; Lynch, Jonathan P.

    2015-01-01

    The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength were evaluated in plant roots grown in the greenhouse and in the field. Root anatomical phenes were found to be better predictors of root penetrability than root diameter per se and associated with smaller distal cortical region cell size. Smaller outer cortical region cells play an important role in stabilizing the root against ovalization and reducing the risk of local buckling and collapse during penetration, thereby increasing root penetration of hard layers. The use of stele diameter was found to be a better predictor of root tensile strength than root diameter. Cortical thickness, cortical cell count, cortical cell wall area and distal cortical cell size were stronger predictors of root bend strength than root diameter. Our results indicate that root anatomical phenes are important predictors for root penetrability of high-strength layers and root biomechanical properties. PMID:25903914

  19. How Can Science Education Foster Students' Rooting?

    ERIC Educational Resources Information Center

    Østergaard, Edvin

    2015-01-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to "prevent" (further) uprooting and efforts to "promote" rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the…

  20. MES Buffer Affects Arabidopsis Root Apex Zonation and Root Growth by Suppressing Superoxide Generation in Root Apex

    PubMed Central

    Kagenishi, Tomoko; Yokawa, Ken; Baluška, František

    2016-01-01

    In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species (ROS). MES, 2-(N-morpholino)ethanesulfonic acid as one of the Good’s buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v) because the buffer capacity of MES ranging pH 5.5–7.0 (for Arabidopsis, pH 5.8). However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone, and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone). Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the ROS homeostasis in root apex. PMID:26925066

  1. MES Buffer Affects Arabidopsis Root Apex Zonation and Root Growth by Suppressing Superoxide Generation in Root Apex.

    PubMed

    Kagenishi, Tomoko; Yokawa, Ken; Baluška, František

    2016-01-01

    In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species (ROS). MES, 2-(N-morpholino)ethanesulfonic acid as one of the Good's buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v) because the buffer capacity of MES ranging pH 5.5-7.0 (for Arabidopsis, pH 5.8). However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone, and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone). Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the ROS homeostasis in root apex. PMID:26925066

  2. Root traits for infertile soils

    PubMed Central

    White, Philip J.; George, Timothy S.; Dupuy, Lionel X.; Karley, Alison J.; Valentine, Tracy A.; Wiesel, Lea; Wishart, Jane

    2013-01-01

    Crop production is often restricted by the availability of essential mineral elements. For example, the availability of N, P, K, and S limits low-input agriculture, the phytoavailability of Fe, Zn, and Cu limits crop production on alkaline and calcareous soils, and P, Mo, Mg, Ca, and K deficiencies, together with proton, Al and Mn toxicities, limit crop production on acid soils. Since essential mineral elements are acquired by the root system, the development of crop genotypes with root traits increasing their acquisition should increase yields on infertile soils. This paper examines root traits likely to improve the acquisition of these elements and observes that, although the efficient acquisition of a particular element requires a specific set of root traits, suites of traits can be identified that benefit the acquisition of a group of mineral elements. Elements can be divided into three Groups based on common trait requirements. Group 1 comprises N, S, K, B, and P. Group 2 comprises Fe, Zn, Cu, Mn, and Ni. Group 3 contains mineral elements that rarely affect crop production. It is argued that breeding for a limited number of distinct root ideotypes, addressing particular combinations of mineral imbalances, should be pursued. PMID:23781228

  3. Electrotropism of Maize Roots 1

    PubMed Central

    Ishikawa, Hideo; Evans, Michael L.

    1990-01-01

    We examined the kinetics of electrotropic curvature in solutions of low electrolyte concentration using primary roots of maize (Zea mays L., variety Merit). When submerged in oxygenated solution across which an electric field was applied, the roots curved rapidly and strongly toward the positive electrode (anode). The strength of the electrotropic response increased and the latent period decreased with increasing field strength. At a field strength of 7.5 volts per centimeter the latent period was 6.6 minutes and curvature reached 60 degrees in about 1 hour. For electric fields greater than 10 volts per centimeter the latent period was less than 1 minute. There was no response to electric fields less than 2.8 volts per centimeter. Both electrotropism and growth were inhibited when indoleacetic acid (10 micromolar) was included in the medium. The auxin transport inhibitor pyrenoylbenzoic acid strongly inhibited electrotropism without inhibiting growth. Electrotropism was enhanced by treatments that interfere with gravitropism, e.g. decapping the roots or pretreating them with ethyleneglycol-bis-[β-ethylether]-N,N,N′,N′-tetraacetic acid. Similarly, roots of agravitropic pea (Pisum sativum, variety Ageotropum) seedlings were more responsive to electrotropic stimulation than roots of normal (variety Alaska) seedlings. The data indicate that the early steps of gravitropism and electrotropism occur by independent mechanisms. However, the motor mechanisms of the two responses may have features in common since auxin and auxin transport inhibitors reduced both gravitropism and electrotropism. PMID:11537481

  4. Magnetophoretic Induction of Root Curvature

    NASA Technical Reports Server (NTRS)

    Hasenstein, Karl H.

    1997-01-01

    The last year of the grant period concerned the consolidation of previous experiments to ascertain that the theoretical premise apply not just to root but also to shoots. In addition, we verified that high gradient magnetic fields do not interfere with regular cellular activities. Previous results have established that: (1) intracellular magnetophoresis is possible; and (2) HGMF lead to root curvature. In order to investigate whether HGMF affect the assembly and/or organization of structural proteins, we examined the arrangement of microtubules in roots exposed to HGMF. The cytoskeletal investigations were performed with fomaldehyde-fixed, nonembedded tissue segments that were cut with a vibratome. Microtubules (MTs) were stained with rat anti-yeast tubulin (YOL 1/34) and DTAF-labeled antibody against rat IgG. Microfilaments (MFs) were visualized by incubation in rhodamine-labeled phalloidin. The distribution and arrangement of both components of the cytoskeleton were examined with a confocal microscope. Measurements of growth rates and graviresponse were done using a video-digitizer. Since HGMF repel diamagnetic substances including starch-filled amyloplasts and most The second aspect of the work includes studies of the effect of cytoskeletal inhibitors on MTs and MFs. The analysis of the effect of micotubular inhibitors on the auxin transport in roots showed that there is very little effect of MT-depolymerizing or stabilizing drugs on auxin transport. This is in line with observations that application of such drugs is not immediately affecting the graviresponsiveness of roots.

  5. Variation of the Phytochemical Constituents and Antioxidant Activities of Zingiber officinale var. rubrum Theilade Associated with Different Drying Methods and Polyphenol Oxidase Activity.

    PubMed

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah

    2016-01-01

    The effects of different drying methods (freeze drying, vacuum oven drying, and shade drying) on the phytochemical constituents associated with the antioxidant activities of Z. officinale var. rubrum Theilade were evaluated to determine the optimal drying process for these rhizomes. Total flavonoid content (TFC), total phenolic content (TPC), and polyphenol oxidase (PPO) activity were measured using the spectrophotometric method. Individual phenolic acids and flavonoids, 6- and 8-gingerol and shogaol were identified by ultra-high performance liquid chromatography method. Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used for the evaluation of antioxidant activities. The highest reduction in moisture content was observed after freeze drying (82.97%), followed by vacuum oven drying (80.43%) and shade drying (72.65%). The highest TPC, TFC, and 6- and 8-shogaol contents were observed in samples dried by the vacuum oven drying method compared to other drying methods. The highest content of 6- and 8-gingerol was observed after freeze drying, followed by vacuum oven drying and shade drying methods. Fresh samples had the highest PPO activity and lowest content of flavonoid and phenolic acid compounds compared to dried samples. Rhizomes dried by the vacuum oven drying method represent the highest DPPH (52.9%) and FRAP activities (566.5 μM of Fe (II)/g DM), followed by freeze drying (48.3% and 527.1 μM of Fe (II)/g DM, respectively) and shade drying methods (37.64% and 471.8 μM of Fe (II)/g DM, respectively) with IC50 values of 27.2, 29.1, and 34.8 μg/mL, respectively. Negative and significant correlations were observed between PPO and antioxidant activity of rhizomes. Vacuum oven dried rhizomes can be utilized as an ingredient for the development of value-added food products as they contain high contents of phytochemicals with valuable antioxidant potential. PMID:27322227

  6. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster

    PubMed Central

    Danjon, Frédéric; Caplan, Joshua S.; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately. PMID

  7. Efficient hydraulic properties of root systems

    NASA Astrophysics Data System (ADS)

    Bechmann, Marcel; Schneider, Christoph; Carminati, Andrea; Hildebrandt, Anke

    2013-04-01

    Understanding the mechanisms of ecosystem root water uptake (RWU) is paramount for parameterizing hydrological models. With the increase in computational power it is possible to calculate RWU explicitly up to the single plant scale using physical models. However, application of these models for increasing our understanding of ecosystem root water uptake is hindered by the deficit in knowledge about the detailed hydraulic parameter distribution within root systems. However, those physical models may help us to identify efficient parameterizations and to describe the influence of these hydraulic parameters on RWU profiles. In this research, we investigated the combined influence of root hydraulic parameters and different root topologies on shaping efficient root water uptake. First, we use a conceptual model of simple branching structures to understand the influence of branching location and transitions in root hydraulic properties on the RWU patterns in typical sub root structures. Second, we apply a physical model called "aRoot" to test our conclusions on complex root system architectures of single plants. aRoot calculates the distribution of xylem potential within arbitrary root geometries to satisfy a given water demand depending on the available water in the soil. Redistribution of water within the bulk soil is calculated using the Richards equation. We analyzed results using a measure of uptake efficiency, which describes the effort necessary for transpiration. Simulations with the conceptual model showed that total transpiration in sub root structures is independent of root hydraulic properties over a wide range of hydraulic parameters. On the other hand efficiency of root water uptake depends crucially on distribution hydraulic parameters in line with root topology. At the same time, these parameters shape strongly the distribution of RWU along the roots, and its evolution in time, thus leading to variable individual root water uptake profiles. Calculating

  8. Sensitivity of the "Root Bundle Model" to root mechanical properties and root distribution: Implication for shallow landslide stability.

    NASA Astrophysics Data System (ADS)

    Schwarz, Massimiliano; Giadrossich, Filippo; Cohen, Denis

    2015-04-01

    Root reinforcement is recognized as an important factor for shallow landslides stability. Due to the complexity of root reinforcement mechanisms and the heterogeneity of the root-soil system, the estimation of parameters used in root reinforcement models is difficult, time consuming, and often highly uncertain. For practical applications, it is necessary to focus on the estimation of the most relevant parameters. The objective of the present contribution is to review the state of the art in the development of root reinforcement models and to discuss the sensitivity of the "Root Bundle Model" (RBM) when considering the variability of root mechanical properties and the heterogeneity of root distributions. The RBM is a strain-step loading fiber bundle model extended to include the mechanical and geometrical properties of roots. The model allows the calculation of the force-displacement behavior of a root bundle. In view of new results of field pullout tests performed on coarse roots of spruce (Picea abies) and considering a consistent dataset of root distribution of alpine tree species, we quantify the sensitivity of the RBM and the uncertainty associated with the most important input parameters. Preliminary results show that the extrapolation of force-diameter values from incomplete datasets (i.e., when only small roots are tested and values for coarse roots are extrapolated) may result in considerable errors. In particular, in the case of distributions with root diameters larger than 5 mm, root reinforcement tends to be dominated by coarse roots and their mechanical properties need to be quantified. In addition to the results of the model sensitivity, we present a possible best-practice method for the quantification of root reinforcement in view of its application to slope stability calculations and implementations in numerical models.

  9. Root branching: mechanisms, robustness, and plasticity.

    PubMed

    Dastidar, Mouli Ghosh; Jouannet, Virginie; Maizel, Alexis

    2012-01-01

    Plants are sessile organisms that must efficiently exploit their habitat for water and nutrients. The degree of root branching impacts the efficiency of water uptake, acquisition of nutrients, and anchorage. The root system of plants is a dynamic structure whose architecture is determined by modulation of primary root growth and root branching. This plasticity relies on the continuous integration of environmental inputs and endogenous developmental programs controlling root branching. This review focuses on the cellular and molecular mechanisms involved in the regulation of lateral root distribution, initiation, and organogenesis with the main focus on the root system of Arabidopsis thaliana. We also examine the mechanisms linking environmental changes to the developmental pathways controlling root branching. Recent progress that emphasizes the parallels to the formation of root branches in other species is discussed. PMID:23801487

  10. New theories of root growth modelling

    NASA Astrophysics Data System (ADS)

    Landl, Magdalena; Schnepf, Andrea; Vanderborght, Jan; Huber, Katrin; Javaux, Mathieu; Bengough, A. Glyn; Vereecken, Harry

    2016-04-01

    In dynamic root architecture models, root growth is represented by moving root tips whose line trajectory results in the creation of new root segments. Typically, the direction of root growth is calculated as the vector sum of various direction-affecting components. However, in our simulations this did not reproduce experimental observations of root growth in structured soil. We therefore developed a new approach to predict the root growth direction. In this approach we distinguish between, firstly, driving forces for root growth, i.e. the force exerted by the root which points in the direction of the previous root segment and gravitropism, and, secondly, the soil mechanical resistance to root growth or penetration resistance. The latter can be anisotropic, i.e. depending on the direction of growth, which leads to a difference between the direction of the driving force and the direction of the root tip movement. Anisotropy of penetration resistance can be caused either by microscale differences in soil structure or by macroscale features, including macropores. Anisotropy at the microscale is neglected in our model. To allow for this, we include a normally distributed random deflection angle α to the force which points in the direction of the previous root segment with zero mean and a standard deviation σ. The standard deviation σ is scaled, so that the deflection from the original root tip location does not depend on the spatial resolution of the root system model. Similarly to the water flow equation, the direction of the root tip movement corresponds to the water flux vector while the driving forces are related to the water potential gradient. The analogue of the hydraulic conductivity tensor is the root penetrability tensor. It is determined by the inverse of soil penetration resistance and describes the ease with which a root can penetrate the soil. By adapting the three dimensional soil and root water uptake model R-SWMS (Javaux et al., 2008) in this way

  11. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    NASA Technical Reports Server (NTRS)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  12. Four cuspal maxillary second premolar with single root and three root canals: Case report

    PubMed Central

    Bansal, Parul; Nikhil, Vineeta; Goyal, Ayush; Singh, Ritu

    2016-01-01

    Traditional configuration of maxillary second premolars has been described to have two cusps, one root and one or two root canals. The endodontic literature reports considerable anatomic aberrations in the root canal morphology of maxillary second premolar but the literature available on the variation in cuspal anatomy and its relationship to the root canal anatomy is sparse. The purpose of this clinical report was to describe the root and root canal configuration of a maxillary second premolar with four cusps. PMID:27563190

  13. Four cuspal maxillary second premolar with single root and three root canals: Case report.

    PubMed

    Bansal, Parul; Nikhil, Vineeta; Goyal, Ayush; Singh, Ritu

    2016-01-01

    Traditional configuration of maxillary second premolars has been described to have two cusps, one root and one or two root canals. The endodontic literature reports considerable anatomic aberrations in the root canal morphology of maxillary second premolar but the literature available on the variation in cuspal anatomy and its relationship to the root canal anatomy is sparse. The purpose of this clinical report was to describe the root and root canal configuration of a maxillary second premolar with four cusps. PMID:27563190

  14. Brown Root Rot of Alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This bulletin describes the disease of alfalfa called brown root rot (BRR) including: the disease symptoms, the fungal pathogen and its biology, its distribution, and disease management. Since the 1920s, BRR has been regarded as an important disease of forage legumes, including alfalfa, in northern ...

  15. Dry root rot of chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dry root rot of chickpea is a serious disease under dry hot summer conditions, particularly in the semi-arid tropics of Ethiopia, and in central and southern India. It usually occurs at reproductive stages of the plant. Symptoms include drooping of petioles and leaflets of the tips, but not the low...

  16. Rhizoctonia root rot of lentil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia root rot is a soilborne disease of lentil caused by the fungal pathogen Rhizoctonia solani, and is favored by cool (11-19 C or 52 - 66 F) and wet soil conditions. The disease starts as reddish or dark brown lesions on lentil plants near the soil line, and develops into sunken lesions an...

  17. [Root arthrosis of the thumb].

    PubMed

    Hautefeuille, P; Duquesnoy, B

    1991-12-15

    Root arthrosis of the thumb results from a degenerative lesion of the trapezometacarpal joint. It is particularly frequent in menopausal women. The often prolonged pain it produces sometimes raises therapeutic problems. Treatment is always medical at first, but when it fails several surgical operations will ensure permanent painlessness. PMID:1808686

  18. Disease notes - Bacterial root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot initiated by lactic acid bacteria, particularly Leuconostoc, occurs every year in Idaho sugarbeet fields. Hot fall weather seems to make the problem worse. Although Leuconostoc initiates the rot, other bacteria and yeast frequently invade the tissue as well. The acetic acid bac...

  19. Cutting the Roots of Violence.

    ERIC Educational Resources Information Center

    Koziey, Paul W.

    1996-01-01

    Violence is rooted in obedience to authority and in comparisons--foundations of our institutions of parenting and schooling. Obedience brings reward and punishment, comparison perpetuates a cycle of competition and conflict. Television violence is especially harmful because children easily understand visual images. The Reality Research approach to…

  20. Excising the Root from STEM

    ERIC Educational Resources Information Center

    Lock, Roger

    2009-01-01

    There are a number of well-intentioned STEM initiatives, some designed to improve the recruitment and retention of science teachers. Sometimes it appears that the initiators are remote from direct contact with the "grass roots" issues that feed the "stem" on which the blossoms of young enthusiastic recruits to the science teaching profession are…

  1. Molecular regulatory mechanism of tooth root development

    PubMed Central

    Huang, Xiao-Feng; Chai, Yang

    2012-01-01

    The root is crucial for the physiological function of the tooth, and a healthy root allows an artificial crown to function as required clinically. Tooth crown development has been studied intensively during the last few decades, but root development remains not well understood. Here we review the root development processes, including cell fate determination, induction of odontoblast and cementoblast differentiation, interaction of root epithelium and mesenchyme, and other molecular mechanisms. This review summarizes our current understanding of the signaling cascades and mechanisms involved in root development. It also sets the stage for de novo tooth regeneration. PMID:23222990

  2. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  3. Investigation of VEGGIE Root Mat

    NASA Technical Reports Server (NTRS)

    Subbiah, Arun M.

    2013-01-01

    VEGGIE is a plant growth facility that utilizes the phenomenon of capillary action as its primary watering system. A cloth made of Meta Aramid fiber, known as Nomex is used to wick water up from a reservoir to the bottom of the plants roots. This root mat system is intended to be low maintenance with no moving parts and requires minimal crew interface time. Unfortunately, the water wicking rates are inconsistent throughout the plant life cycle, thus causing plants to die. Over-wicking of water occurs toward the beginning of the cycle, while under-wicking occurs toward the middle. This inconsistency of wicking has become a major issue, drastically inhibiting plant growth. The primary objective is to determine the root cause of the inconsistent wicking through experimental testing. Suspect causes for the capillary water column to break include: a vacuum effect due to a negative pressure gradient in the water reservoir, contamination of material due to minerals in water and back wash from plant fertilizer, induced air bubbles while using syringe refill method, and material limitations of Nomex's ability to absorb and retain water. Experimental testing will be conducted to systematically determine the cause of under and over-wicking. Pressure gages will be used to determine pressure drop during the course of the plant life cycle and during the water refill process. A debubbler device will be connected to a root mat in order to equalize pressure inside the reservoir. Moisture and evaporation tests will simultaneously be implemented to observe moisture content and wicking rates over the course of a plant cycle. Water retention tests will be performed using strips of Nomex to determine materials wicking rates, porosity, and absorptivity. Through these experimental tests, we will have a better understanding of material properties of Nomex, as well as determine the root cause of water column breakage. With consistent test results, a forward plan can be achieved to resolve

  4. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.

    PubMed

    Uga, Yusaku; Sugimoto, Kazuhiko; Ogawa, Satoshi; Rane, Jagadish; Ishitani, Manabu; Hara, Naho; Kitomi, Yuka; Inukai, Yoshiaki; Ono, Kazuko; Kanno, Noriko; Inoue, Haruhiko; Takehisa, Hinako; Motoyama, Ritsuko; Nagamura, Yoshiaki; Wu, Jianzhong; Matsumoto, Takashi; Takai, Toshiyuki; Okuno, Kazutoshi; Yano, Masahiro

    2013-09-01

    The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops. PMID:23913002

  5. Nicotiana Roots Recruit Rare Rhizosphere Taxa as Major Root-Inhabiting Microbes.

    PubMed

    Saleem, Muhammad; Law, Audrey D; Moe, Luke A

    2016-02-01

    Root-associated microbes have a profound impact on plant health, yet little is known about the distribution of root-associated microbes among different root morphologies or between rhizosphere and root environments. We explore these issues here with two commercial varieties of burley tobacco (Nicotiana tabacum) using 16S rRNA gene amplicon sequencing from rhizosphere soil, as well as from primary, secondary, and fine roots. While rhizosphere soils exhibited a fairly rich and even distribution, root samples were dominated by Proteobacteria. A comparison of abundant operational taxonomic units (OTUs) between rhizosphere and root samples indicated that Nicotiana roots select for rare taxa (predominantly Proteobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Acidobacteria) from their corresponding rhizosphere environments. The majority of root-inhabiting OTUs (~80 %) exhibited habitat generalism across the different root morphological habitats, although habitat specialists were noted. These results suggest a specific process whereby roots select rare taxa from a larger community. PMID:26391804

  6. The role of strigolactones in root development

    PubMed Central

    Sun, Huwei; Tao, Jinyuan; Gu, Pengyuan; Xu, Guohua; Zhang, Yali

    2016-01-01

    Strigolactones (SLs) and their derivatives were recently defined as novel phytohormones that orchestrate shoot and root growth. Levels of SLs, which are produced mainly by plant roots, increase under low nitrogen and phosphate levels to regulate plant responses. Here, we summarize recent work on SL biology by describing their role in the regulation of root development and hormonal crosstalk during root deve-lopment. SLs promote the elongation of seminal/primary roots and adventitious roots (ARs) and they repress lateral root formation. In addition, auxin signaling acts downstream of SLs. AR formation is positively or negatively regulated by SLs depending largely on the plant species and experimental conditions. The relationship between SLs and auxin during AR formation appears to be complex. Most notably, this hormonal response is a key adaption that radically alters rice root architecture in response to nitrogen- and phosphate-deficient conditions. PMID:26515106

  7. Environmental Control of Root System Biology.

    PubMed

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Dinneny, José R

    2016-04-29

    The plant root system traverses one of the most complex environments on earth. Understanding how roots support plant life on land requires knowing how soil properties affect the availability of nutrients and water and how roots manipulate the soil environment to optimize acquisition of these resources. Imaging of roots in soil allows the integrated analysis and modeling of environmental interactions occurring at micro- to macroscales. Advances in phenotyping of root systems is driving innovation in cross-platform-compatible methods for data analysis. Root systems acclimate to the environment through architectural changes that act at the root-type level as well as through tissue-specific changes that affect the metabolic needs of the root and the efficiency of nutrient uptake. A molecular understanding of the signaling mechanisms that guide local and systemic signaling is providing insight into the regulatory logic of environmental responses and has identified points where crosstalk between pathways occurs. PMID:26905656

  8. Rhizosphere biophysics and root water uptake

    NASA Astrophysics Data System (ADS)

    Carminati, Andrea; Zarebanadkouki, Mohsen; Ahmed, Mutez A.; Passioura, John

    2016-04-01

    The flow of water into the roots and the (putative) presence of a large resistance at the root-soil interface have attracted the attention of plant and soil scientists for decades. Such resistance has been attributed to a partial contact between roots and soil, large gradients in soil matric potential around the roots, or accumulation of solutes at the root surface creating a negative osmotic potential. Our hypothesis is that roots are capable of altering the biophysical properties of the soil around the roots, the rhizosphere, facilitating root water uptake in dry soils. In particular, we expect that root hairs and mucilage optimally connect the roots to the soil maintaining the hydraulic continuity across the rhizosphere. Using a pressure chamber apparatus we measured the relation between transpiration rate and the water potential difference between soil and leaf xylem during drying cycles in barley mutants with and without root hairs. The samples were grown in well structured soils. At low soil moistures and high transpiration rates, large drops in water potential developed around the roots. These drops in water potential recovered very slowly, even after transpiration was severely decreased. The drops in water potential were much bigger in barley mutants without root hairs. These mutants failed to sustain high transpiration rates in dry conditions. To explain the nature of such drops in water potential across the rhizosphere we performed high resolution neutron tomography of the rhizosphere of the barleys with and without root hairs growing in the same soil described above. The tomograms suggested that the hydraulic contact between the soil structures was the highest resistance for the water flow in dry conditions. The tomograms also indicate that root hairs and mucilage improved the hydraulic contact between roots and soil structures. At high transpiration rates and low water contents, roots extracted water from the rhizosphere, while the bulk soil, due its

  9. Single-rooted primary first mandibular molar

    PubMed Central

    Haridoss, SelvaKumar; Swaminathan, Kavitha; Rajendran, Vijayakumar; Rajendran, Bharathan

    2014-01-01

    Morphological variations like single-rooted molar in primary dentition are scarce. Understanding the root canal anatomy and variations is necessary for successful root canal therapy. The purpose of the present article is to report successful endodontic treatment of primary left mandibular first molar with an abnormal morphology of a single root. This case report highlights the importance of knowledge and its applications in the management of anomalous anatomic variants which play a crucial role in the success of endodontic treatment. PMID:25150245

  10. Root proliferation in decaying roots and old root channels: A nutrient conservation mechanism in oligotrophic mangrove forests?

    USGS Publications Warehouse

    McKee, K.L.

    2001-01-01

    1. In oligotrophic habitats, proliferation of roots in nutrient-rich microsites may contribute to overall nutrient conservation by plants. Peat-based soils on mangrove islands in Belize are characterized by the presence of decaying roots and numerous old root channels (0.1-3.5 cm diameter) that become filled with living and highly branched roots of Rhizophora mangle and Avicennia germinans. The objectives of this study were to quantify the proliferation of roots in these microsites and to determine what causes this response. 2. Channels formed by the refractory remains of mangrove roots accounted for only 1-2% of total soil volume, but the proportion of roots found within channels varied from 9 to 24% of total live mass. Successive generations of roots growing inside increasingly smaller root channels were also found. 3. When artificial channels constructed of PVC pipe were buried in the peat for 2 years, those filled with nutrient-rich organic matter had six times more roots than empty or sand-filled channels, indicating a response to greater nutrient availability rather than to greater space or less impedance to root growth. 4. Root proliferation inside decaying roots may improve recovery of nutrients released from decomposing tissues before they can be leached or immobilized in this intertidal environment. Greatest root proliferation in channels occurred in interior forest zones characterized by greater soil waterlogging, which suggests that this may be a strategy for nutrient capture that minimizes oxygen losses from the whole root system. 5. Improved efficiency of nutrient acquisition at the individual plant level has implications for nutrient economy at the ecosystem level and may explain, in part, how mangroves persist and grow in nutrient-poor environments.

  11. Bioavailable concentrations of germanium and rare earth elements in soil as affected by low molecular weight organic acids and root exudates

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Tesch, Silke; Heilmeier, Hermann

    2014-05-01

    Availability of elements in soil to plant is generally dependent on the solubility and mobility of elements in soil solution which is controlled by soil, elemental properties and plant-soil interactions. Low molecular organic acids or other root exudates may increase mobility and availability of certain elements for plants as an effect of lowering pH in the rhizosphere and complexation. However, these processes take place in a larger volume in soil, therefore to understand their nature, it is also important to know in which layers of the soil what factors modify these processes. In this work the influence of citric acid and root exudates of white lupin (Lupinus albus L.) on bioavailable concentrations of germanium, lanthan, neodymium, gadolinium and erbium in soil solution and uptake in root and shoot of rape (Brassica napus L.), comfrey (Symphytum officinale L.), common millet (Panicum milliaceum L.) and oat (Avena sativa L.) was investigated. Two different pot experiments were conducted: (1) the mentioned plant species were treated with nutrient solutions containing various amount of citric acid; (2) white lupin was cultivated in mixed culture (0 % lupin, 33 % lupin) with oat (Avena sativa L.) and soil solution was obtained by plastic suction cups placed at various depths. As a result, addition of citric acid significantly increased germanium concentrations in plant tissue of comfrey and rape and increased translocation of germanium, lanthan, neodymium, gadolinium and erbium from root to shoot. The cultivation of white lupin in mixed culture with oat led to significantly higher concentrations of germanium and increasing concentrations of lanthan, neodymium, gadolinium and erbium in soil solution and aboveground plant tissue. In these pots concentrations of citric acid in soil solution were significantly higher than in the control. The results show, that low molecular organic acids exuded by plant roots are of great importance for the mobilization of germanium

  12. EFFECTS OF OZONE ON ROOT PROCESSES

    EPA Science Inventory

    Ozone alters root growth and root processes by first reducing photosynthesis and altering foliar metabolic pathways. The alteration in foliar metabolism is reflected in lowered carbohydrate levels in the roots. This can reduce key metabolic processes such as mineral uptake and sy...

  13. Cultivar selection for sugarbeet root rot resistance.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal and bacterial root rots in sugar beet caused by Rhizoctonia solani (Rs) and Leuconostoc mesenteroides subsp. dextranicum (Lm) can lead to root yield losses greater than 50%. To reduce the impact of these root rots on sucrose loss in the field, storage, and factories, studies were conducted t...

  14. Effect of scapling on root respiration rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scalping improves root quality at harvest since impurities such as potassium, sodium, amino nitrogen and invert sugars that hinder sugarbeet processing are concentrated in the upper root crown. The effect of scalping on root storage properties, however, is less clear. A small study was conducted t...

  15. [Root caries--scanning electron microscopic observations].

    PubMed

    Heinrich, R; Hornová, J; Kneist, S; Künzel, W

    1990-01-01

    Sound and carious root surfaces of 24 extracted human teeth with extensive periodontal attachment loss were examined by SEM. The microflora covering the radicular surfaces was a complex flora consisting of filamentous and fusiform bacteria, short and long rods. Cocci and coccoid bacteria were observed on root surfaces. Bacterial invasion in the exposed peripheral root dentin was delayed by sclerotic dentin. PMID:2150459

  16. Springback in Root Gravitropism 1

    PubMed Central

    Leopold, A. Carl; Wettlaufer, Scott H.

    1989-01-01

    Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as `springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalmaic acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a `memory' effect carried over from a prior gravistimulation. PMID:11537456

  17. The rhizosphere revisited: root microbiomics

    PubMed Central

    Bakker, Peter A. H. M.; Berendsen, Roeland L.; Doornbos, Rogier F.; Wintermans, Paul C. A.; Pieterse, Corné M. J.

    2013-01-01

    The rhizosphere was defined over 100 years ago as the zone around the root where microorganisms and processes important for plant growth and health are located. Recent studies show that the diversity of microorganisms associated with the root system is enormous. This rhizosphere microbiome extends the functional repertoire of the plant beyond imagination. The rhizosphere microbiome of Arabidopsis thaliana is currently being studied for the obvious reason that it allows the use of the extensive toolbox that comes with this model plant. Deciphering plant traits that drive selection and activities of the microbiome is now a major challenge in which Arabidopsis will undoubtedly be a major research object. Here we review recent microbiome studies and discuss future research directions and applicability of the generated knowledge. PMID:23755059

  18. Changes in nuclear and nucleolar protein content during the growth and differentiation of root parenchyma cells in plant species with different DNA-endoreplication dynamics.

    PubMed

    Marciniak, K; Bilecka, A

    1986-01-01

    Using cytophotometric procedures, we measured the nuclear and nucleolar protein content of successive zones of growth and differentiation in consecutive (1-7 mm) root segments obtained from eight species of the Angiospermae after staining the preparations with Feulgen-Naphthol Yellow S (F-NYS). In meristematic cells the nuclear and nucleolar protein content was found to double during the cell cycle. In species in which differentiation occurs at the same time as nuclear DNA endoreplication, i.e. Vicia faba subsp. minor, V. faba subsp. major, Pisum sativum, Hordeum vulgare and Amaryllis belladonna, the pool of nuclear proteins observed during the G2 phase of the cell cycle was seen in the differentiated zone in nuclei containing 8C DNA. Species in which differentiation is not accompanied by the process of nuclear DNA endoreplication, i.e. Levisticum officinale, Tulipa kaufmanniana and Haemanthus katharinae, exhibited the highest nuclear proteins content during the G2 phase of the cell cycle; comparably high values were not found in the differentiated zone. A decrease in nucleolar protein content was observed during the process of differentiation, this tendency being more evident in the studied species that do not exhibit endoreplication. PMID:3733472

  19. Phene Synergism between Root Hair Length and Basal Root Growth Angle for Phosphorus Acquisition1[OPEN

    PubMed Central

    Miguel, Magalhaes Amade

    2015-01-01

    Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here. PMID:25699587

  20. Modeling root reinforcement using a root-failure Weibull survival function

    NASA Astrophysics Data System (ADS)

    Schwarz, M.; Giadrossich, F.; Cohen, D.

    2013-11-01

    Root networks contribute to slope stability through complex interactions with soil that include mechanical compression and tension. Due to the spatial heterogeneity of root distribution and the dynamics of root turnover, the quantification of root reinforcement on steep slopes is challenging and consequently the calculation of slope stability also. Although considerable progress has been made, some important aspects of root mechanics remain neglected. In this study we address specifically the role of root-strength variability on the mechanical behavior of a root bundle. Many factors contribute to the variability of root mechanical properties even within a single class of diameter. This work presents a new approach for quantifying root reinforcement that considers the variability of mechanical properties of each root diameter class. Using the data of laboratory tensile tests and field pullout tests, we calibrate the parameters of the Weibull survival function to implement the variability of root strength in a numerical model for the calculation of root reinforcement (RBMw). The results show that, for both laboratory and field data sets, the parameters of the Weibull distribution may be considered constant with the exponent equal to 2 and the normalized failure displacement equal to 1. Moreover, the results show that the variability of root strength in each root diameter class has a major influence on the behavior of a root bundle with important implications when considering different approaches in slope stability calculation. Sensitivity analysis shows that the calibration of the equations of the tensile force, the elasticity of the roots, and the root distribution are the most important steps. The new model allows the characterization of root reinforcement in terms of maximum pullout force, stiffness, and energy. Moreover, it simplifies the implementation of root reinforcement in slope stability models. The realistic quantification of root reinforcement for tensile

  1. Root-cubing and general root-powering methods for finding the zeros of polynomials

    NASA Technical Reports Server (NTRS)

    Bareiss, E. H.

    1969-01-01

    Mathematical analysis technique generalizes a root squaring and root cubing method into a general root powering method. The introduction of partitioned polynomials into this general root powering method simplifies the coding of the polynomial transformations into input data suitable for processing by computer. The method includes analytic functions.

  2. Application of glutathione to roots selectively inhibits cadmium transport from roots to shoots in oilseed rape

    PubMed Central

    Nakamura, Shin-ichi

    2013-01-01

    Glutathione is a tripeptide involved in various aspects of plant metabolism. This study investigated the effects of the reduced form of glutathione (GSH) applied to specific organs (source leaves, sink leaves, and roots) on cadmium (Cd) distribution and behaviour in the roots of oilseed rape plants (Brassica napus) cultured hydroponically. The translocation ratio of Cd from roots to shoots was significantly lower in plants that had root treatment of GSH than in control plants. GSH applied to roots reduced the Cd concentration in the symplast sap of root cells and inhibited root-to-shoot Cd translocation via xylem vessels significantly. GSH applied to roots also activated Cd efflux from root cells to the hydroponic solution. Inhibition of root-to-shoot translocation of Cd was visualized, and the activation of Cd efflux from root cells was also shown by using a positron-emitting tracer imaging system (PETIS). This study investigated a similar inhibitory effect on root-to-shoot translocation of Cd by the oxidized form of glutathione, GSSG. Inhibition of Cd accumulation by GSH was abolished by a low-temperature treatment. Root cells of plants exposed to GSH in the root zone had less Cd available for xylem loading by actively excluding Cd from the roots. Consequently, root-to-shoot translocation of Cd was suppressed and Cd accumulation in the shoot decreased. PMID:23364937

  3. Estimate of fine root production including the impact of decomposed roots in a Bornean tropical rainforest

    NASA Astrophysics Data System (ADS)

    Katayama, Ayumi; Khoon Koh, Lip; Kume, Tomonori; Makita, Naoki; Matsumoto, Kazuho; Ohashi, Mizue

    2016-04-01

    Considerable carbon is allocated belowground and used for respiration and production of roots. It is reported that approximately 40 % of GPP is allocated belowground in a Bornean tropical rainforest, which is much higher than those in Neotropical rainforests. This may be caused by high root production in this forest. Ingrowth core is a popular method for estimating fine root production, but recent study by Osawa et al. (2012) showed potential underestimates of this method because of the lack of consideration of the impact of decomposed roots. It is important to estimate fine root production with consideration for the decomposed roots, especially in tropics where decomposition rate is higher than other regions. Therefore, objective of this study is to estimate fine root production with consideration of decomposed roots using ingrowth cores and root litter-bag in the tropical rainforest. The study was conducted in Lambir Hills National Park in Borneo. Ingrowth cores and litter bags for fine roots were buried in March 2013. Eighteen ingrowth cores and 27 litter bags were collected in May, September 2013, March 2014 and March 2015, respectively. Fine root production was comparable to aboveground biomass increment and litterfall amount, and accounted only 10% of GPP in this study site, suggesting most of the carbon allocated to belowground might be used for other purposes. Fine root production was comparable to those in Neotropics. Decomposed roots accounted for 18% of fine root production. This result suggests that no consideration of decomposed fine roots may cause underestimate of fine root production.

  4. The pattern of secondary root formation in curving roots of Arabidopsis thaliana (L.) Heynh

    NASA Technical Reports Server (NTRS)

    Fortin, M. C.; Pierce, F. J.; Poff, K. L.

    1989-01-01

    A gravitational stimulus was used to induce the curvature of the main root of Arabidopsis thaliana. The number of secondary roots increased on the convex side and decreased on the concave side of any curved main root axes in comparison with straight roots used as the control. The same phenomenon was observed with the curved main roots of plants grown on a clinostat and of mutant plants exhibiting random root orientation. The data suggest that the pattern of lateral root formation is associated with curvature but is independent of the environmental stimuli used to induce curvature.

  5. Optimal root arrangement of cereal crops

    NASA Astrophysics Data System (ADS)

    Jung, Yeonsu; Park, Keunhwan; Kim, Ho-Young

    2015-11-01

    The plant root absorbs water from the soil and supplies it to the rest part of the plant. It consists of a number of root fibers, through whose surfaces water uptake occurs. There is an intriguing observation that for most of cereal crops such as maize and wheat, the volume density of root in the soil declines exponentially as a function of depth. To understand this empirical finding, we construct a theoretical model of root water uptake, where mass transfer into root surface is modeled just as heat flux around a fin. Agreement between the theoretically predicted optimal root distribution in vertical direction and biological data supports the hypothesis that the plant root has evolved to achieve the optimal water uptake in competition with neighbors. This study has practical implication in the agricultural industry as well as optimal design of water transport networks in both micro- and macroscales. Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Korea.

  6. General complex polynomial root solver

    NASA Astrophysics Data System (ADS)

    Skowron, J.; Gould, A.

    2012-12-01

    This general complex polynomial root solver, implemented in Fortran and further optimized for binary microlenses, uses a new algorithm to solve polynomial equations and is 1.6-3 times faster than the ZROOTS subroutine that is commercially available from Numerical Recipes, depending on application. The largest improvement, when compared to naive solvers, comes from a fail-safe procedure that permits skipping the majority of the calculations in the great majority of cases, without risking catastrophic failure in the few cases that these are actually required.

  7. Xanthones from Garcinia propinqua Roots.

    PubMed

    Meesakul, Pornphimol; Pansanit, Acharavadee; Maneerat, Wisanu; Sripisut, Tawanun; Ritthiwigrom, Thunwadee; Machana, Theeraphan; Cheenpracha, Sarot; Laphookhieo, Surat

    2016-01-01

    Phytochemical investigation of Garcinia propinqua roots led to the isolation and identification of a new xanthone, doitunggarcinone D (1), together with 15 known compounds (2-16). Their structures were elucidated by intensive analysis of spectroscopic data. Compounds 3, 6, 7, 14, 15 and 16 exhibited strong antibacterial activity against Bacillus subtilis TISTR 088 with MIC values in the range of 1-4 µg/mL. Compounds 3, 7, 10 and 14 also showed good antibacterial activity against B. cereus TISTR 688 with MIC values ranging from 4-8 µg/mL. PMID:26996028

  8. Morphometric data of canine sacral nerve roots with reference to electrical sacral root stimulation.

    PubMed

    Rijkhoff, N J; Koldewijn, E L; d'Hollosy, W; Debruyne, F M; Wijkstra, H

    1996-01-01

    Experiments to investigate restoration of lower urinary tract control by electrical stimulation of the sacral nerve roots are mostly performed on dogs, yet little morphometric data (such as canine root and fiber diameter distributions) are available. The aim of this study was to acquire morphometric data of the intradural canine sacral dorsal and ventral roots (S1-S3). Cross-sections of sacral roots of two beagle dogs were analyzed using a light microscope and image processing software. The cross-sectional area of each root was measured. The diameters of the fibers and the axons in the cross-sections of the S2 and S3 roots were measured and used to construct nerve fiber diameter frequency distribution histograms. The results show a unimodal diameter distribution for the dorsal roots and a bimodal distribution for the ventral roots. In addition the average ratio g of the axon diameter to fiber diameter was calculated for each root. PMID:8732990

  9. Root canal treatment of a maxillary first premolar with three roots

    PubMed Central

    Mathew, Josey; Devadathan, Aravindan; Syriac, Gibi; Shamini, Sai

    2015-01-01

    Successful root canal treatment needs a thorough knowledge of both internal and external anatomy of a tooth. Variations in root canal anatomy constitute an impressive challenge to the successful completion of endodontic treatment. Undetected extra roots and canals are a major reason for failed root canal treatment. Three separate roots in a maxillary first premolar have a very low incidence of 0.5–6%. Three rooted premolars are anatomically similar to molars and are sometimes called “small molars or radiculous molars.” This article explains the diagnosis and endodontic management of a three rooted maxillary premolar with separate canals in each root highlighting that statistics may indicate a low incidence of abnormal variations in root canal morphology of a tooth, but aberrant anatomy is a possibility in any tooth. Hence, modern diagnostics like cone beam computed tomography, and endodontic operating microscope may have to be used more for predictable endodontic treatment. PMID:26538958

  10. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Reed, R. C.; Brady, S. R.; Muday, G. K.

    1998-01-01

    In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development.

  11. Foraging strategies in trees of different root morphology: the role of root lifespan.

    PubMed

    Adams, Thomas S; McCormack, M Luke; Eissenstat, David M

    2013-09-01

    Resource exploitation of patches is influenced not simply by the rate of root production in the patches but also by the lifespan of the roots inhabiting the patches. We examined the effect of sustained localized nitrogen (N) fertilization on root lifespan in four tree species that varied widely in root morphology and presumed foraging strategy. The study was conducted in a 12-year-old common garden in central Pennsylvania using a combination of data from minirhizotron and root in-growth cores. The two fine-root tree species, Acer negundo L. and Populus tremuloides Michx., exhibited significant increases in root lifespan with local N fertilization; no significant responses were observed in the two coarse-root tree species, Sassafras albidum Nutt. and Liriodendron tulipifera L. Across species, coarse-root tree species had longer median root lifespan than fine-root tree species. Localized N fertilization did not significantly increase the N concentration or the respiration of the roots growing in the N-rich patch. Our results suggest that some plant species appear to regulate the lifespan of different portions of their root system to improve resource acquisition while other species do not. Our results are discussed in the context of different strategies of foraging of nutrient patches in species of different root morphology. PMID:24128849

  12. PATTERNS IN SOIL FERTILITY AND ROOT HERBIVORY INTERACT TO INFLUENCE FINE-ROOT DYNAMICS.

    SciTech Connect

    Stevens, Glen, N.; Jones, Robert, H.

    2006-03-01

    Fine-scale soil nutrient enrichment typically stimulates root growth, but it may also increase root herbivory, resulting in trade-offs for plant species and potentially influencing carbon cycling patterns. We used root ingrowth cores to investigate the effects of microsite fertility and root herbivory on root biomass in an aggrading upland forest in the coastal plain of South Carolina, USA. Treatments were randomly assigned to cores from a factorial combination of fertilizer and insecticide. Soil, soil fauna, and roots were removed from the cores at the end of the experiment (8–9 mo), and roots were separated at harvest into three diameter classes. Each diameter class responded differently to fertilizer and insecticide treatments. The finest roots (,1.0 mm diameter), which comprised well over half of all root biomass, were the only ones to respond significantly to both treatments, increasing when fertilizer and when insecticide were added (each P , 0.0001), with maximum biomass found where the treatments were combined (interaction term significant, P , 0.001). These results suggest that root-feeding insects have a strong influence on root standing crop with stronger herbivore impacts on finer roots and within more fertile microsites. Thus, increased vulnerability to root herbivory is a potentially significant cost of root foraging in nutrient-rich patches.

  13. A statistical approach to root system classification

    PubMed Central

    Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter

    2013-01-01

    Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for “plant functional type” identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential. PMID:23914200

  14. A statistical approach to root system classification.

    PubMed

    Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter

    2013-01-01

    Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for "plant functional type" identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential. PMID:23914200

  15. Root hairs aid soil penetration by anchoring the root surface to pore walls

    PubMed Central

    Bengough, A. Glyn; Loades, Kenneth; McKenzie, Blair M.

    2016-01-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3–3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0–1.5g cm−3). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm−3 soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm−3 soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm−3). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm−3 soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. PMID:26798027

  16. Root hairs aid soil penetration by anchoring the root surface to pore walls.

    PubMed

    Bengough, A Glyn; Loades, Kenneth; McKenzie, Blair M

    2016-02-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3-3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0-1.5g cm(-3)). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm(-3) soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm(-3) soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm(-3)). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm(-3) soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. PMID:26798027

  17. 1-aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots and root tips and soybean cyst nematode (Heterodera glycines) colonized root pieces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It's fairly well established that a functional ethylene response path is important to root knot and cyst nematode colonization of plant roots. However, ethylene plays many roles in root development and the role of ethylene in nematode colonization of roots may be indirect, e.g. lateral root initiati...

  18. Roots at the percolation threshold

    NASA Astrophysics Data System (ADS)

    Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea

    2015-04-01

    The rhizosphere is the layer of soil around the roots where complex and dynamic interactions between plants and soil affect the capacity of plants to take up water. The physical properties of the rhizosphere are affected by mucilage, a gel exuded by roots. Mucilage can absorb large volumes of water, but it becomes hydrophobic after drying. We use a percolation model to describe the rewetting of dry rhizosphere. We find that at a critical mucilage concentration the rhizosphere becomes impermeable. The critical mucilage concentration depends on the radius of the soil particle size. Capillary rise experiments with neutron radiography prove that for concentrations below the critical mucilage concentration water could easily cross the rhizosphere, while above the critical concentration water could no longer percolate through it. Our studies, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively alter the soil hydraulic conductivity. Is mucilage exudation a plant mechanism to efficiently control the rhizosphere conductivity and the access to water?

  19. Roots at the percolation threshold.

    PubMed

    Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea

    2015-04-01

    The rhizosphere is the layer of soil around the roots where complex and dynamic interactions between plants and soil affect the capacity of plants to take up water. The physical properties of the rhizosphere are affected by mucilage, a gel exuded by roots. Mucilage can absorb large volumes of water, but it becomes hydrophobic after drying. We use a percolation model to describe the rewetting of dry rhizosphere. We find that at a critical mucilage concentration the rhizosphere becomes impermeable. The critical mucilage concentration depends on the radius of the soil particle size. Capillary rise experiments with neutron radiography prove that for concentrations below the critical mucilage concentration water could easily cross the rhizosphere, while above the critical concentration water could no longer percolate through it. Our studies, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively alter the soil hydraulic conductivity. Is mucilage exudation a plant mechanism to efficiently control the rhizosphere conductivity and the access to water? PMID:25974526

  20. Distribution of Pb, Cd and Ba in soils and plants of two contaminated sites.

    PubMed

    Pichtel, J; Kuroiwa, K; Sawyerr, H T

    2000-10-01

    Evaluation of metal accumulation in soils and plants is of environmental importance due to their health effects on humans and other biota. Soil material and plant tissue were collected along transects in two heavily contaminated facilities, a Superfund site and a lead-acid battery dump, and analyzed for metal content. Soil lead (Pb), cadmium (Cd) and barium (Ba) concentrations for the Superfund site averaged 55,480, 8.5 and 132.3 mg/kg, respectively. Soil Pb occurred primarily in the carbonate, sulfide/residual and organic chemical fractions (41.6, 28.6 and 16.7%, respectively). Soil Pb, Cd and Ba concentrations for the dump site averaged 29,400, 3.9 and 1130 mg/kg, respectively. Soil Pb occurred mostly in the organic and carbonate fractions as 48.5 and 42.5%, respectively. Pb uptake in the two sites ranged from non-detectable (Agrostemma githago, Plantago rugelii, Alliaria officinalis shoots), to 1800 mg/kg (Agrostemma githago root). Cd uptake was maximal in Taraxacum officinale at 15.4 mg/kg (Superfund site). In the majority > or =65%) of the plants studied, root Pb and Cd content was higher than that for the shoots. Tissue Pb correlated slightly with exchangeable and soluble soil Pb; however, tissue Cd was poorly correlated with soil Cd species. None of the sampled plants accumulated measurable amounts of Ba. Those plants that removed most Pb and Cd were predominantly herbaceous species, some of which produce sufficient biomass to be practical for phytoremediation technologies. Growth chamber studies demonstrated the ability of T. officinale and Ambrosia artemisiifolia to successfully remove soil Pb and Cd during repeated croppings. Tissue Pb was correlated with exchangeable soil Pb at r(2)=0.68 in Ambrosia artemisiifolia. PMID:15092867

  1. Salt stress signals shape the plant root.

    PubMed

    Galvan-Ampudia, Carlos S; Testerink, Christa

    2011-06-01

    Plants use different strategies to deal with high soil salinity. One strategy is activation of pathways that allow the plant to export or compartmentalise salt. Relying on their phenotypic plasticity, plants can also adjust their root system architecture (RSA) and the direction of root growth to avoid locally high salt concentrations. Here, we highlight RSA responses to salt and osmotic stress and the underlying mechanisms. A model is presented that describes how salinity affects auxin distribution in the root. Possible intracellular signalling pathways linking salinity to root development and direction of root growth are discussed. These involve perception of high cytosolic Na+ concentrations in the root, activation of lipid signalling and protein kinase activity and modulation of endocytic pathways. PMID:21511515

  2. High resolution modeling of water and nutrient uptake by plant roots: at a scale from single root to root system

    NASA Astrophysics Data System (ADS)

    Abesha, Betiglu; Vanderborght, Jan; Javaux, Mathieu; Schnepf, Andrea; Vereecken, Harry

    2014-05-01

    The uptake of nutrients by plant roots is a multiscale problem. At the small scale, nutrient fluxes towards single roots lead to strong gradients in nutrient concentrations around single roots. At the scale of the root system and soil profile, nutrient fluxes are generated by water fluxes and variations in nutrient uptake due to spatially varying root density, nutrient concentrations and water contents. In this contribution, we present a numerical simulation model that describes the processes at the scale of a single root and the scale of the entire root system simultaneously. Water flow and nutrient transport in the soil are described by the 3-D Richards and advection-dispersion equations, respectively. Water uptake by a root segment is simulated based on the difference between the soil water potential at the soil root interface and in the xylem tissue. The xylem water potential is derived from solving a set of flow equations that describe flow in the root network (Javaux et al., 2008). Nutrient uptake by a segment is simulated as a function of the nutrient concentration at the soil-root interface using a nonlinear Michaelis-Menten equation. An accurate description of the nutrient concentrations gradients around single roots requires a spatial resolution in the sub mm scale and is therefore not feasible for simulations of the entire root system or soil profile. In order to address this problem, a 1-D axisymmetric model (Barber and Cushman, 1981) was used to describe nutrient transport towards a single root segment. The network of connected cylindrical models was coupled to a 3-D regular grid that was used to solve the flow and transport equations at the root system scale. The coupling was done by matching the fluxes across the interfaces of the voxels of the 3-D grid that contain root segments with the fluxes at the outer boundaries of the cylindrical domains and by matching the sink terms in these voxels with uptake by the root segments. To demonstrate the

  3. Root phenology in a changing climate.

    PubMed

    Radville, Laura; McCormack, M Luke; Post, Eric; Eissenstat, David M

    2016-06-01

    Plant phenology is one of the strongest indicators of ecological responses to climate change, and altered phenology can have pronounced effects on net primary production, species composition in local communities, greenhouse gas fluxes, and ecosystem processes. Although many studies have shown that aboveground plant phenology advances with warmer temperatures, demonstration of a comparable association for belowground phenology has been lacking because the factors that influence root phenology are poorly understood. Because roots can constitute a large fraction of plant biomass, and root phenology may not respond to warming in the same way as shoots, this represents an important knowledge gap in our understanding of how climate change will influence phenology and plant performance. We review studies of root phenology and provide suggestions to direct future research. Only 29% of examined studies approached root phenology quantitatively, strongly limiting interpretation of results across studies. Therefore, we suggest that researchers emphasize quantitative analyses in future phenological studies. We suggest that root initiation, peak growth, and root cessation may be under different controls. Root initiation and cessation may be more constrained by soil temperature and the timing of carbon availability, whereas the timing of peak root growth may represent trade-offs among competing plant sinks. Roots probably do not experience winter dormancy in the same way as shoots: 89% of the studies that examined winter phenology found evidence of growth during winter months. More research is needed to observe root phenology, and future studies should be careful to capture winter and early season phenology. This should be done quantitatively, with direct observations of root growth utilizing rhizotrons or minirhizotrons. PMID:26931171

  4. Root Doctors as Providers of Primary Care

    PubMed Central

    Stitt, Van J.

    1983-01-01

    Physicians in primary care recognize that as many as 65 percent of the patients seen in their offices are there for psychological reasons. In any southern town with a moderate population of blacks, there are at least two “root doctors.” These root doctors have mastered the power of autosuggestion and are treating these patients with various forms of medication and psychological counseling. This paper updates the practicing physician on root doctors who practice primary care. PMID:6887277

  5. Root doctors as providers of primary care.

    PubMed

    Stitt, V J

    1983-07-01

    Physicians in primary care recognize that as many as 65 percent of the patients seen in their offices are there for psychological reasons. In any southern town with a moderate population of blacks, there are at least two "root doctors." These root doctors have mastered the power of autosuggestion and are treating these patients with various forms of medication and psychological counseling. This paper updates the practicing physician on root doctors who practice primary care. PMID:6887277

  6. Temperature sensing by primary roots of maize

    NASA Technical Reports Server (NTRS)

    Poff, K. L.

    1990-01-01

    Zea mays L. seedlings, grown on agar plates at 26 degrees C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.

  7. Advanced Techniques for Root Cause Analysis

    Energy Science and Technology Software Center (ESTSC)

    2000-09-19

    Five items make up this package, or can be used individually. The Chronological Safety Management Template utilizes a linear adaptation of the Integrated Safety Management System laid out in the form of a template that greatly enhances the ability of the analyst to perform the first step of any investigation which is to gather all pertinent facts and identify causal factors. The Problem Analysis Tree is a simple three (3) level problem analysis tree whichmore » is easier for organizations outside of WSRC to use. Another part is the Systemic Root Cause Tree. One of the most basic and unique features of Expanded Root Cause Analysis is the Systemic Root Cause portion of the Expanded Root Cause Pyramid. The Systemic Root Causes are even more basic than the Programmatic Root Causes and represent Root Causes that cut across multiple (if not all) programs in an organization. the Systemic Root Cause portion contains 51 causes embedded at the bottom level of a three level Systemic Root Cause Tree that is divided into logical, organizationally based categorie to assist the analyst. The Computer Aided Root Cause Analysis that allows the analyst at each level of the Pyramid to a) obtain a brief description of the cause that is being considered, b) record a decision that the item is applicable, c) proceed to the next level of the Pyramid to see only those items at the next level of the tree that are relevant to the particular cause that has been chosen, and d) at the end of the process automatically print out a summary report of the incident, the causal factors as they relate to the safety management system, the probable causes, apparent causes, Programmatic Root Causes and Systemic Root Causes for each causal factor and the associated corrective action.« less

  8. Springback and diagravitropism in Merit corn roots.

    PubMed Central

    Kelly, M O; Leopold, A C

    1992-01-01

    Dark-treated Merit corn (Zea mays L.) roots are diagravitropic and lose curvature upon withdrawal of the gravity stimulus (springback). Springback was not detected in a variety of corn that is orthogravitropic in the dark, nor in Merit roots in which tropistic response was enhanced either with red light or with abscisic acid. A possible interpretation is that springback may be associated with a weak growth response of diagravitropic roots. PMID:11537884

  9. Springback and diagravitropism in Merit corn roots

    NASA Technical Reports Server (NTRS)

    Kelly, M. O.; Leopold, A. C.

    1992-01-01

    Dark-treated Merit corn (Zea mays L.) roots are diagravitropic and lose curvature upon withdrawal of the gravity stimulus (springback). Springback was not detected in a variety of corn that is orthogravitropic in the dark, nor in Merit roots in which tropistic response was enhanced either with red light or with abscisic acid. A possible interpretation is that springback may be associated with a weak growth response of diagravitropic roots.

  10. Springback and diagravitropism in Merit corn roots.

    PubMed

    Kelly, M O; Leopold, A C

    1992-06-01

    Dark-treated Merit corn (Zea mays L.) roots are diagravitropic and lose curvature upon withdrawal of the gravity stimulus (springback). Springback was not detected in a variety of corn that is orthogravitropic in the dark, nor in Merit roots in which tropistic response was enhanced either with red light or with abscisic acid. A possible interpretation is that springback may be associated with a weak growth response of diagravitropic roots. PMID:11537884

  11. Temperature sensing by primary roots of maize

    SciTech Connect

    Fortin, M.C.A.; Poff, K.L. )

    1990-09-01

    Zea mays L. seedlings, grown on agar plates at 26{degree}C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.

  12. Behavioral response of grape root borer (Lepidoptera: Sesiidae) neonates to grape root volatiles.

    PubMed

    Rijal, J P; Zhang, A; Bergh, J C

    2013-12-01

    Grape root borer, Vitacea polistiformis (Harris), is an oligophagous and potentially destructive pest of grape in commercial vineyards throughout much of the eastern United States. Larvae feed on vine roots, although little is known about their below-ground interactions with host plants. The behavioral response of groups of grape root borer neonates to stimuli from host and nonhost roots was evaluated in single and paired stimuli bioassays in which stimuli were presented in opposing wells attached to the bottom of petri dish arenas. Stimulus sources included root pieces and root headspace volatiles from 3309 and 420-A grape rootstocks (host) and apple (nonhost) and ethanol-based extracts of 3309 and 420-A roots. In single stimulus assays, significantly more larvae were recovered from wells containing grape roots, apple roots, grape extracts, and grape root volatiles than from control wells, but there was no significant response to volatiles collected from the headspace of apple roots. In paired stimuli assays, significantly more larvae were recovered from wells containing grape than apple roots. There was no difference in larval distribution between wells when 420-A and 3309 roots were presented simultaneously, although a significantly greater response to 3309 than 420-A root extract was recorded. When soil was added to the assays, significantly more larvae were recovered from wells containing grape roots than from those containing only soil, but this response was not detected in assays using buried apple roots. These results are discussed in relation to the plant-insect interactions between grape root borer larvae and their Vitaceae hosts. PMID:24216488

  13. Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots

    PubMed Central

    Passot, Sixtine; Gnacko, Fatoumata; Moukouanga, Daniel; Lucas, Mikaël; Guyomarc’h, Soazig; Ortega, Beatriz Moreno; Atkinson, Jonathan A.; Belko, Marème N.; Bennett, Malcolm J.; Gantet, Pascal; Wells, Darren M.; Guédon, Yann; Vigouroux, Yves; Verdeil, Jean-Luc; Muller, Bertrand; Laplaze, Laurent

    2016-01-01

    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed three distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits, primary root lenght and lateral root density, in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal. PMID:27379124

  14. Root-to-Root Travel of the Beneficial Bacterium Azospirillum brasilense†

    PubMed Central

    Bashan, Yoav; Holguin, Gina

    1994-01-01

    The root-to-root travel of the beneficial bacterium Azospirillum brasilense on wheat and soybean roots in agar, sand, and light-textured soil was monitored. We used a motile wild-type (Mot+) strain and a motility-deficient (Mot-) strain which was derived from the wild-type strain. The colonization levels of inoculated roots were similar for the two strains. Mot+ cells moved from inoculated roots (either natural or artificial roots in agar, sand, or light-textured soil) to noninoculated roots, where they formed a band-type colonization composed of bacterial aggregates encircling a limited part of the root, regardless of the plant species. The Mot- strain did not move toward noninoculated roots of either plant species and usually stayed at the inoculation site and root tips. The effect of attractants and repellents was the primary factor governing the motility of Mot+ cells in the presence of adequate water. We propose that interroot travel of A. brasilense is an essential preliminary step in the root-bacterium recognition mechanism. Bacterial motility might have a general role in getting Azospirillum cells to the site where firmer attachment favors colonization of the root system. Azospirillum travel toward plants is a nonspecific active process which is not directly dependent on nutrient deficiency but is a consequence of a nonspecific bacterial chemotaxis, influenced by the balance between attractants and possibly repellents leaked by the root. PMID:16349297

  15. Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots.

    PubMed

    Passot, Sixtine; Gnacko, Fatoumata; Moukouanga, Daniel; Lucas, Mikaël; Guyomarc'h, Soazig; Ortega, Beatriz Moreno; Atkinson, Jonathan A; Belko, Marème N; Bennett, Malcolm J; Gantet, Pascal; Wells, Darren M; Guédon, Yann; Vigouroux, Yves; Verdeil, Jean-Luc; Muller, Bertrand; Laplaze, Laurent

    2016-01-01

    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed three distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits, primary root lenght and lateral root density, in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal. PMID:27379124

  16. Measurements of water uptake of maize roots: the key function of lateral roots

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be

  17. Genetic ablation of root cap cells in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Tsugeki, R.; Fedoroff, N. V.

    1999-01-01

    The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of a diphtheria toxin A-chain gene. Transgenic toxin-expressing plants are viable and have normal aerial parts but agravitropic roots, implying loss of root cap function. Several cell layers are missing from the transgenic root caps, and the remaining cells are abnormal. Although the radial organization of the roots is normal in toxin-expressing plants, the root tips have fewer cytoplasmically dense cells than do wild-type root tips, suggesting that root meristematic activity is lower in transgenic than in wild-type plants. The roots of transgenic plants have more lateral roots and these are, in turn, more highly branched than those of wild-type plants. Thus, root cap ablation alters root architecture both by inhibiting root meristematic activity and by stimulating lateral root initiation. These observations imply that the root caps contain essential components of the signaling system that determines root architecture.

  18. Deriving the unit hydrograph by root selection

    NASA Astrophysics Data System (ADS)

    Turner, J. E.; Dooge, J. C. I.; Bree, T.

    1989-09-01

    De Laine's method of deriving the unit hydrograph from the common roots of polynomials corresponding to different storms is used as a basis for proposing a new procedure in which the unit hydrograph roots can be selected from among the polynomial roots for the runoff of a single storm. The selection is made on the basis that the complex unit hydrograph roots form a characteristic "skew circle" pattern when plotted on an Argand diagram. The application of the procedure to field data is illustrated for both a single-peaked and a double-peaked event.

  19. New substitution models for rooting phylogenetic trees

    PubMed Central

    Williams, Tom A.; Heaps, Sarah E.; Cherlin, Svetlana; Nye, Tom M. W.; Boys, Richard J.; Embley, T. Martin

    2015-01-01

    The root of a phylogenetic tree is fundamental to its biological interpretation, but standard substitution models do not provide any information on its position. Here, we describe two recently developed models that relax the usual assumptions of stationarity and reversibility, thereby facilitating root inference without the need for an outgroup. We compare the performance of these models on a classic test case for phylogenetic methods, before considering two highly topical questions in evolutionary biology: the deep structure of the tree of life and the root of the archaeal radiation. We show that all three alignments contain meaningful rooting information that can be harnessed by these new models, thus complementing and extending previous work based on outgroup rooting. In particular, our analyses exclude the root of the tree of life from the eukaryotes or Archaea, placing it on the bacterial stem or within the Bacteria. They also exclude the root of the archaeal radiation from several major clades, consistent with analyses using other rooting methods. Overall, our results demonstrate the utility of non-reversible and non-stationary models for rooting phylogenetic trees, and identify areas where further progress can be made. PMID:26323766

  20. Maxillary First Molar with Two Root Canals

    PubMed Central

    Rahimi, Saeed; Ghasemi, Negin

    2013-01-01

    Knowledge regarding the anatomic morphology of maxillary molars is absolutely essential for the success of endodontic treatment. The morphology of the permanent maxillary first molar has been reviewed extensively; however, the presence of two canals in a two-rooted maxillary first molar has rarely been reported in studies describing tooth and root canal anatomies. This case report presents a patient with a maxillary first molar with two roots and two root canals, who was referred to the Department of Endodontics, Tabriz University of Medical Sciences, Iran. PMID:23862051

  1. The nth root of sequential effect algebras

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Wu, Junde

    2010-06-01

    In 2005, Gudder [Int. J. Theor. Phys. 44, 2219 (2005)] presented 25 problems of sequential effect algebras, the 20th problem asked: In a sequential effect algebra, if the square root of some element exists, is it unique? In this paper, we show that for each given positive integer n >1, there is a sequential effect algebra such that the nth root of its some element c is not unique, and the nth root of c is not the kth root of c (k

  2. New substitution models for rooting phylogenetic trees.

    PubMed

    Williams, Tom A; Heaps, Sarah E; Cherlin, Svetlana; Nye, Tom M W; Boys, Richard J; Embley, T Martin

    2015-09-26

    The root of a phylogenetic tree is fundamental to its biological interpretation, but standard substitution models do not provide any information on its position. Here, we describe two recently developed models that relax the usual assumptions of stationarity and reversibility, thereby facilitating root inference without the need for an outgroup. We compare the performance of these models on a classic test case for phylogenetic methods, before considering two highly topical questions in evolutionary biology: the deep structure of the tree of life and the root of the archaeal radiation. We show that all three alignments contain meaningful rooting information that can be harnessed by these new models, thus complementing and extending previous work based on outgroup rooting. In particular, our analyses exclude the root of the tree of life from the eukaryotes or Archaea, placing it on the bacterial stem or within the Bacteria. They also exclude the root of the archaeal radiation from several major clades, consistent with analyses using other rooting methods. Overall, our results demonstrate the utility of non-reversible and non-stationary models for rooting phylogenetic trees, and identify areas where further progress can be made. PMID:26323766

  3. Increased symplasmic permeability in barley root epidermal cells correlates with defects in root hair development.

    PubMed

    Marzec, M; Muszynska, A; Melzer, M; Sas-Nowosielska, H; Kurczynska, E U

    2014-03-01

    It is well known that the process of plant cell differentiation depends on the symplasmic isolation of cells. Before starting the differentiation programme, the individual cell or group of cells should restrict symplasmic communication with neighbouring cells. We tested the symplasmic communication between epidermal cells in the different root zones of parental barley plants Hordeum vulgare L., cv. 'Karat' with normal root hair development, and two root hairless mutants (rhl1.a and rhl1.b). The results clearly show that symplasmic communication was limited during root hair differentiation in the parental variety, whereas in both root hairless mutants epidermal cells were still symplasmically connected in the corresponding root zone. This paper is the first report on the role of symplasmic isolation in barley root cell differentiation, and additionally shows that a disturbance in the restriction of symplasmic communication is present in root hairless mutants. PMID:23927737

  4. Increased symplasmic permeability in barley root epidermal cells correlates with defects in root hair development

    PubMed Central

    Marzec, M; Muszynska, A; Melzer, M; Sas-Nowosielska, H; Kurczynska, E U; Wick, S

    2014-01-01

    It is well known that the process of plant cell differentiation depends on the symplasmic isolation of cells. Before starting the differentiation programme, the individual cell or group of cells should restrict symplasmic communication with neighbouring cells. We tested the symplasmic communication between epidermal cells in the different root zones of parental barley plants Hordeum vulgare L., cv. ‘Karat’ with normal root hair development, and two root hairless mutants (rhl1.a and rhl1.b). The results clearly show that symplasmic communication was limited during root hair differentiation in the parental variety, whereas in both root hairless mutants epidermal cells were still symplasmically connected in the corresponding root zone. This paper is the first report on the role of symplasmic isolation in barley root cell differentiation, and additionally shows that a disturbance in the restriction of symplasmic communication is present in root hairless mutants. PMID:23927737

  5. OZONE DECREASES SPRING ROOT GROWTH AND ROOT CARBOHYDRATE CONTENT IN PONDEROSA PINE THE YEAR FOLLOWING EXPOSURE

    EPA Science Inventory

    Storage carbohydrates are extremely important for new shoot and root development following dormancy or during periods of high stress. he hypothesis that ozone decreases carbohydrate storage and decreases new root growth during the year following exposure was investigated. eedling...

  6. Rapid Plant Identification Using Species- and Group-Specific Primers Targeting Chloroplast DNA

    PubMed Central

    Staudacher, Karin; Schallhart, Nikolaus; Mitterrutzner, Evi; Steiner, Eva-Maria; Thalinger, Bettina; Traugott, Michael

    2012-01-01

    Plant identification is challenging when no morphologically assignable parts are available. There is a lack of broadly applicable methods for identifying plants in this situation, for example when roots grow in mixture and for decayed or semi-digested plant material. These difficulties have also impeded the progress made in ecological disciplines such as soil- and trophic ecology. Here, a PCR-based approach is presented which allows identifying a variety of plant taxa commonly occurring in Central European agricultural land. Based on the trnT-F cpDNA region, PCR assays were developed to identify two plant families (Poaceae and Apiaceae), the genera Trifolium and Plantago, and nine plant species: Achillea millefolium, Fagopyrum esculentum, Lolium perenne, Lupinus angustifolius, Phaseolus coccineus, Sinapis alba, Taraxacum officinale, Triticum aestivum, and Zea mays. These assays allowed identification of plants based on size-specific amplicons ranging from 116 bp to 381 bp. Their specificity and sensitivity was consistently high, enabling the detection of small amounts of plant DNA, for example, in decaying plant material and in the intestine or faeces of herbivores. To increase the efficacy of identifying plant species from large number of samples, specific primers were combined in multiplex PCRs, allowing screening for multiple species within a single reaction. The molecular assays outlined here will be applicable manifold, such as for root- and leaf litter identification, botanical trace evidence, and the analysis of herbivory. PMID:22253728

  7. Root-growth-inhibiting sheet

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene; Van Voris, Peter

    1993-01-01

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a "geotextile" and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  8. Root-growth-inhibiting sheet

    DOEpatents

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.; Van Voris, P.

    1993-01-26

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a geotextile'' and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  9. ROOT CAUSE ANALYSIS PROGRAM MANUAL

    SciTech Connect

    Gravois, Melanie C.

    2007-05-02

    Root Cause Analysis (RCA) identifies the cause of an adverse condition that, if corrected, will preclude recurrence or greatly reduce the probability of recurrence of the same or similar adverse conditions and thereby protect the health and safety of the public, the workers, and the environment. This procedure sets forth the requirements for management determination and the selection of RCA methods and implementation of RCAs that are a result of significant findings from Price-Anderson Amendments Act (PAAA) violations, occurrences/events, Significant Adverse Conditions, and external oversight Corrective Action Requests (CARs) generated by the Office of Enforcement (PAAA headquarters), the U.S. Environmental Protection Agency, and other oversight entities against Lawrence Berkeley National Laboratory (LBNL). Performance of an RCA may result in the identification of issues that should be reported in accordance with the Issues Management Program Manual.

  10. Root hair formation in rice (Oryza sativa L.) differs between root types and is altered in artificial growth conditions.

    PubMed

    Nestler, Josefine; Keyes, Samuel David; Wissuwa, Matthias

    2016-06-01

    Root hairs are important sites for nutrient uptake, especially in P limiting conditions. Here we provide first insights into root hair development for the diverse root types of rice grown under different conditions, and show the first in situ images of rice root hairs in intact soil. Roots of plants grown in upland fields produced short root hairs that showed little responsiveness to P deficiency, and had a higher root hair density in the high P condition. These results were reproducible in rhizoboxes under greenhouse conditions. Synchrotron-based in situ analysis of root hairs in intact soil further confirmed this pattern of root hair formation. In contrast, plants grown in nutrient solution produced more and longer root hairs in low P conditions, but these were unequally distributed among the different root types. While nutrient solution-grown main roots had longer hairs compared to upland field-grown main roots, second order lateral roots did not form any root hairs in nutrient solution-grown plants. Furthermore, root hair formation for plants grown in flooded lowland fields revealed few similarities with those grown in nutrient solution, thus defining nutrient solution as a possible measure of maximal, but not natural root hair development. By combining root hair length and density as a measure for root hair impact on the whole soil-grown root system we show that lateral roots provided the majority of root hair surface. PMID:26976815

  11. Malformations of the tooth root in humans.

    PubMed

    Luder, Hans U

    2015-01-01

    The most common root malformations in humans arise from either developmental disorders of the root alone or disorders of radicular development as part of a general tooth dysplasia. The aim of this review is to relate the characteristics of these root malformations to potentially disrupted processes involved in radicular morphogenesis. Radicular morphogenesis proceeds under the control of Hertwig's epithelial root sheath (HERS) which determines the number, length, and shape of the root, induces the formation of radicular dentin, and participates in the development of root cementum. Formation of HERS at the transition from crown to root development appears to be very insensitive to adverse effects, with the result that rootless teeth are extremely rare. In contrast, shortened roots as a consequence of impaired or prematurely halted apical growth of HERS constitute the most prevalent radicular dysplasia which occurs due to trauma and unknown reasons as well as in association with dentin disorders. While odontoblast differentiation inevitably stops when growth of HERS is arrested, it seems to be unaffected even in cases of severe dentin dysplasias such as regional odontodysplasia and dentin dysplasia type I. As a result radicular dentin formation is at least initiated and progresses for a limited time. The only condition affecting cementogenesis is hypophosphatasia which disrupts the formation of acellular cementum through an inhibition of mineralization. A process particularly susceptible to adverse effects appears to be the formation of the furcation in multirooted teeth. Impairment or disruption of this process entails taurodontism, single-rooted posterior teeth, and misshapen furcations. Thus, even though many characteristics of human root malformations can be related to disorders of specific processes involved in radicular morphogenesis, precise inferences as to the pathogenesis of these dysplasias are hampered by the still limited knowledge on root formation

  12. Malformations of the tooth root in humans

    PubMed Central

    Luder, Hans U.

    2015-01-01

    The most common root malformations in humans arise from either developmental disorders of the root alone or disorders of radicular development as part of a general tooth dysplasia. The aim of this review is to relate the characteristics of these root malformations to potentially disrupted processes involved in radicular morphogenesis. Radicular morphogenesis proceeds under the control of Hertwig's epithelial root sheath (HERS) which determines the number, length, and shape of the root, induces the formation of radicular dentin, and participates in the development of root cementum. Formation of HERS at the transition from crown to root development appears to be very insensitive to adverse effects, with the result that rootless teeth are extremely rare. In contrast, shortened roots as a consequence of impaired or prematurely halted apical growth of HERS constitute the most prevalent radicular dysplasia which occurs due to trauma and unknown reasons as well as in association with dentin disorders. While odontoblast differentiation inevitably stops when growth of HERS is arrested, it seems to be unaffected even in cases of severe dentin dysplasias such as regional odontodysplasia and dentin dysplasia type I. As a result radicular dentin formation is at least initiated and progresses for a limited time. The only condition affecting cementogenesis is hypophosphatasia which disrupts the formation of acellular cementum through an inhibition of mineralization. A process particularly susceptible to adverse effects appears to be the formation of the furcation in multirooted teeth. Impairment or disruption of this process entails taurodontism, single-rooted posterior teeth, and misshapen furcations. Thus, even though many characteristics of human root malformations can be related to disorders of specific processes involved in radicular morphogenesis, precise inferences as to the pathogenesis of these dysplasias are hampered by the still limited knowledge on root formation

  13. Root-soil relationships and terroir

    NASA Astrophysics Data System (ADS)

    Tomasi, Diego

    2015-04-01

    Soil features, along with climate, are among the most important determinants of a succesful grape production in a certain area. Most of the studies, so far, investigated the above-ground vine response to differente edaphic and climate condition, but it is clearly not sufficient to explain the vine whole behaviour. In fact, roots represent an important part of the terroir system (soil-plant-atmosphere-man), and their study can provide better comprehension of vine responses to different environments. The root density and distribution, the ability of deep-rooting and regenerating new roots are good indicators of root well-being, and represents the basis for an efficient physiological activity of the root system. Root deepening and distribution are strongly dependent and sensitive on soil type and soil properties, while root density is affected mostly by canopy size, rootstock and water availability. According to root well-being, soil management strategies should alleviate soil impediments, improving aeration and microbial activity. Moreover, agronomic practices can impact root system performance and influence the above-ground growth. It is well known, for example, that the root system size is largely diminished by high planting densities. Close vine spacings stimulate a more effective utilization of the available soil, water and nutrients, but if the competition for available soil becomes too high, it can repress vine growth, and compromise vineyard longevity, productivity and reaction to growing season weather. Development of resilient rootstocks, more efficient in terms of water and nutrient uptake and capable of dealing with climate and soil extremes (drought, high salinity) are primary goals fore future research. The use of these rootstocks will benefit a more sustainable use of the soil resources and the preservation and valorisation of the terroir.

  14. Root reinforcement of soils under compression

    NASA Astrophysics Data System (ADS)

    Schwarz, M.; Rist, A.; Cohen, D.; Giadrossich, F.; Egorov, P.; Büttner, D.; Stolz, M.; Thormann, J.-J.

    2015-10-01

    It is well recognized that roots reinforce soils and that the distribution of roots within vegetated hillslopes strongly influences the spatial distribution of soil strength. Previous studies have focussed on the contribution of root reinforcement under conditions of tension or shear. However, no systematic investigation into the contribution of root reinforcement to soils experiencing compression, such as the passive Earth forces at the toe of a landslide, is found in the literature. An empirical-analytical model (CoRoS) for the quantification of root reinforcement in soils under compression is presented and tested against experimental data. The CoRoS model describes the force-displacement behavior of compressed, rooted soils and can be used to provide a framework for improving slope stability calculations. Laboratory results showed that the presence of 10 roots with diameters ranging from 6 to 28 mm in a rectangular soil profile 0.72 m by 0.25 m increased the compressive strength of the soil by about 40% (2.5 kN) at a displacement of 0.05 m, while the apparent stiffness of the rooted soil was 38% higher than for root-free soil. The CoRoS model yields good agreement with experimentally determined values of maximum reinforcement force and compression force as a function of displacement. These results indicate that root reinforcement under compression has a major influence on the mechanical behavior of soil and that the force-displacement behavior of roots should be included in analysis of the compressive regimes that commonly are present in the toe of landslides.

  15. Root susceptibility and inoculum production from roots of Eastern United States oak species to Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about root susceptibility of eastern U.S. tree species to Phytophthora ramorum. In this study, we examined root susceptibility and inoculum production from roots. Sprouted acorns of Q. rubra, Q. palustrus, Q. coccinia, Q. alba, Q. michauxii and Q. prinus were exposed to motile zoos...

  16. RootScan: Software for high-throughput analysis of root anatomical traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RootScan is a program for semi-automated image analysis of anatomical phenes in root cross-sections. RootScan uses pixel value thresholds to separate the cross-section from its background and to visually dissect it into tissue regions. Area measurements and object counts are performed within various...

  17. Effect of Root Moisture Content and Diameter on Root Tensile Properties

    PubMed Central

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872

  18. Root susceptibility and inoculum production from roots of eastern oak species to Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about root susceptibility of eastern tree species to Phytophthora ramorum. In this study, we examined root susceptibility and inoculum production from roots. Oak radicles of several eastern oak species were exposed to zoospore suspensions of 1, 10, 100, or 1000 zoospores per ml at ...

  19. Root-Gel Interactions and the Root Waving Behavior of Arabidopsis1[w

    PubMed Central

    Thompson, Matthew V.; Holbrook, N. Michele

    2004-01-01

    Arabidopsis roots grown on inclined agarose gels exhibit a sinusoidal growth pattern known as root waving. While root waving has been attributed to both intrinsic factors (e.g. circumnutation) and growth responses to external signals such as gravity, the potential for physical interactions between the root and its substrate to influence the development of this complex phenotype has been generally ignored. Using a rotating stage microscope and time-lapse digital imaging, we show that (1) root tip mobility is impeded by the gel surface, (2) this impedance causes root tip deflections by amplifying curvature in the elongation zone in a way that is distinctly nontropic, and (3) root tip impedance is augmented by normal gravitropic pressure applied by the root tip against the gel surface. Thus, both lateral corrective bending near the root apex and root tip impedance could be due to different vector components of the same graviresponse. Furthermore, we speculate that coupling between root twisting and bending is a mechanical effect resulting from root tip impedance. PMID:15247406

  20. Kinetics of short-term root-carbon mineralization in roots of biofuel crops in soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand and document the rates of root decomposition in biofuel cropping systems, we compared the evolution of CO2 from roots incubated with samples of two Iowa Mollisols. Root samples were collected from experimental plots for four cropping systems: a multispecies reconstructed prairie...

  1. Effect of Root Moisture Content and Diameter on Root Tensile Properties.

    PubMed

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872

  2. Relations between Roots and Coefficients of Cubic Equations with One Root Negative the Reciprocal of Another

    ERIC Educational Resources Information Center

    Asiru, M. A.

    2007-01-01

    Under predetermined conditions on the roots and coefficients, necessary and sufficient conditions relating the coefficients of a given cubic equation x[cubed] + ax[squared] + bx + c = 0 can be established so that the roots possess desired properties. In this note, the condition for one root of a cubic equation to be "the negative reciprocal of…

  3. Coupling root architecture and pore network modeling - an attempt towards better understanding root-soil interactions

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Bodner, Gernot; Raoof, Amir

    2013-04-01

    Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models

  4. Effect of Root System Morphology on Root-sprouting and Shoot-rooting Abilities in 123 Plant Species from Eroded Lands in North-east Spain

    PubMed Central

    GUERRERO-CAMPO, JOAQUÍN; PALACIO, SARA; PÉREZ-RONTOMÉ, CARMEN; MONTSERRAT-MARTÍ, GABRIEL

    2006-01-01

    • Background and Aims The objective of this study was to test whether the mean values of several root morphological variables were related to the ability to develop root-borne shoots and/or shoot-borne roots in a wide range of vascular plants. • Methods A comparative study was carried out on the 123 most common plant species from eroded lands in north-east Spain. After careful excavations in the field, measurements were taken of the maximum root depth, absolute and relative basal root diameter, specific root length (SRL), and the root depth/root lateral spread ratio on at least three individuals per species. Shoot-rooting and root-sprouting were observed in a large number of individuals in many eroded and sedimentary environments. The effect of life history and phylogeny on shoot-rooting and root-sprouting abilities was also analysed. • Key Results The species with coarse and deep tap-roots tended to be root-sprouting and those with fine, fasciculate and long main roots (which generally spread laterally), tended to be shoot-rooting. Phylogeny had an important influence on root system morphology and shoot-rooting and root-sprouting capacities. However, the above relations stood after applying analyses based on phylogenetically independent contrasts (PICs). • Conclusions The main morphological features of the root system of the study species are related to their ability to sprout from their roots and form roots from their shoots. According to the results, such abilities might only be functionally viable in restricted root system morphologies and ecological strategies. PMID:16790468

  5. Meniscal Root Tears: Identification and Repair.

    PubMed

    Doherty, David B; Lowe, Walter R

    2016-01-01

    Intact menisci are capable of converting the axial load of tibiofemoral contact into hoop stress that protects the knee joint. Total meniscectomy leads to rapid degeneration of the knee. Strong clinical and biomechanical data show meniscal root tears and avulsions are the functional equivalent of total meniscectomy. Lateral root tears commonly occur with knee ligament sprains and tears. Medial root tears are generally more chronic, and can be caused by preexisting knee arthritis. Meniscal root repair is indicated when there is identification of a meniscal root tear in a knee with minimal to no arthritis. Chronic root tears in the setting of osteoarthritis are treated conservatively. Meniscal root tears can acutely occur with cruciate ligament tears, can exaggerate symptoms of instability, and will have negative ramifications on outcomes of anterior cruciate ligament reconstruction if not addressed concomitantly. In this review, we describe the importance of the menisci for knee joint longevity through anatomy and biomechanics, the diagnostic workup, and ultimately a transosseous technique for repair of meniscal root tears and avulsions. PMID:27004274

  6. ADVANCING FINE ROOT RESEARCH WITH MINIRHIZOTRONS

    EPA Science Inventory

    Minirhizotrons provide a nondestructive, in situ method for directly viewing and studying fine roots. Although many insights into fine roots have been gained using minirhizotrons, it is clear from the literature that there is still wide variation in how minirhizotrons and minirhi...

  7. Fate of HERS during Tooth Root Development

    PubMed Central

    Huang, Xiaofeng; Bringas, Pablo; Slavkin, Harold C.; Chai, Yang

    2009-01-01

    Tooth root development begins after the completion of crown formation in mammals. Previous studies have shown that Hertwig's epithelial root sheath (HERS) plays an important role in root development, but the fate of HERS has remained unknown. In order to investigate the morphological fate and analyze the dynamic movement of HERS cells in vivo, we generated K14-Cre;R26R mice. HERS cells are detectable on the surface of the root throughout root formation and do not disappear. Most of the HERS cells are attached to the surface of the cementum, and others separate to become the epithelial rest of Malasez. HERS cells secrete extracellular matrix components onto the surface of the dentin before dental follicle cells penetrate the HERS network to contact dentin. HERS cells also participate in the cementum development and may differentiate into cementocytes. During root development, the HERS is not interrupted, and instead the HERS cells continue to communicate with each other through the network structure. Furthermore, HERS cells interact with cranial neural crest derived mesenchyme to guide root development. Taken together, the network of HERS cells is crucial for tooth root development. PMID:19576204

  8. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  9. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  10. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  11. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  12. Enhancing Students' Understanding of Square Roots

    ERIC Educational Resources Information Center

    Wiesman, Jeff L.

    2015-01-01

    Students enrolled in a middle school prealgebra or algebra course often struggle to conceptualize and understand the meaning of radical notation when it is introduced. For example, although it is important for students to approximate the decimal value of a number such as [square root of] 30 and estimate the value of a square root in the form of…

  13. Sporulation on plant roots by Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora ramorum has been shown to infect the roots of many of the pathogen’s foliar hosts. Methods of detecting inoculum in runoff and of quantifying root colonization were tested using Viburnum tinus, Camellia oleifera, Quercus prinus, Umbellularia californica, and Epilobium ciliatum. Plants...

  14. Cytological and ultrastructural studies on root tissues

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Gaynor, J. J.; Galston, A. W.

    1984-01-01

    The anatomy and fine structure of roots from oat and mung bean seedlings, grown under microgravity conditions for 8 days aboard the Space Shuttle, was examined and compared to that of roots from ground control plants grown under similar conditions. Roots from both sets of oat seedlings exhibited characteristic monocotyledonous tissue organization and normal ultrastructural features, except for cortex cell mitochondria, which exhibited a 'swollen' morphology. Various stages of cell division were observed in the meristematic tissues of oat roots. Ground control and flight-grown mung bean roots also showed normal tissue organization, but root cap cells in the flight-grown roots were collapsed and degraded in appearance, especially at the cap periphery. At the ultrastructural level, these cells exhibited a loss of organelle integrity and a highly-condensed cytoplasm. This latter observation perhaps suggests a differing tissue sensitivity for the two species to growth conditions employed in space flight. The basis for abnormal root cap cell development is not understood, but the loss of these putative gravity-sensing cells holds potential significance for long term plant growth orientation during space flight.

  15. Growth and development of root system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The growth and development of root systems of cotton plants is under genetic control but may be modified by the environment. There are many factors that influence root development in cotton. These range from abiotic factors such as soil temperature, soil water, and soil aeration to biotic factors ...

  16. Field investigation of rooting potential in sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The differential influence of root systems on plant development under field conditions is very difficult. A field experiment was devised using three different row spacings (101,152 and 203 cm ) to screen sorghum germplasm for rooting potential based on the relative ability to explore additional soil...

  17. Affine root systems and dual numbers

    NASA Astrophysics Data System (ADS)

    Kostyakov, I. V.; Gromov, N. A.; Kuratov, V. V.

    The root systems in Carroll spaces with degenerate metric are defined. It is shown that their Cartan matrices and reflection groups are affine. Due to the geometric consideration the root system structure of affine algebras is determined by a sufficiently simple algorithm.

  18. Black streak root rot of lentil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black streak root rot of lentil is caused by the soil borne fungus Thielaviopsis basicola. The pathogen is widespread. The disease shows symptoms of black streaking on root, and stunted plants. The disease is favored by cool and moist weather. Management of the disease rely on avoiding fields wi...

  19. Root phenotypic characterization of lesquerella genetic resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root systems are crucial for optimizing plant growth and productivity. There has been a push to better understand root morphological and architectural traits and their plasticity because these traits determine the capacity of plants to effectively acquire available water and soil nutrients in the so...

  20. Maize root characteristis that enhance flooding tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant root systems have several cellular and molecular adaptations that are important in reducing stress caused by flooding. Of these, two physical properties of root systems provide an initial barrier toward the avoidance of stress. These are the presence of aerenchyma cells and rapid adventitious ...

  1. Sugarbeet Cultivar Evaluation for Bacterial Root Rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot of sugarbeet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States. To ameliorate the impact of bacterial root rot on sucrose loss in the field, storage piles, and factories, studies were conducted to establish an assa...

  2. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  3. Rapid phenotyping of alfalfa root system architecture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root system architecture (RSA) influences the capacity of an alfalfa plant for symbiotic nitrogen fixation, nutrient uptake and water use efficiency, resistance to frost heaving, winterhardiness, and some pest and pathogen resistance. However, we currently lack a basic understanding of root system d...

  4. Roots as a source of food.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous plant species produce edible roots that are an important source of calories and that contribute to human nutrition. This book chapter discusses the origin and domestication, production aspects and nutritional aspects of a number of root crops including; cassava (Manioc), sweetpotato (Ipomo...

  5. A new approach to root formation

    PubMed Central

    Vatanpour, Mehdi; Zarei, Mina; Javidi, Maryam; Shirazian, Shiva

    2008-01-01

    In endodontics, treatment of an open apex tooth with necrotic pulp is a problem. It seems that with promotion of remnants of Hertwig’s epithelial sheath or rest of malassez accompany with a good irrigation of root canal we can expect root formation. (Iranian Endodontic Journal 2008;3:42-43) PMID:24171018

  6. ACETOGENIC BACTERIA ASSOCIATED WITH SEAGRASS ROOTS

    EPA Science Inventory

    Seagrasses are adapted to being rooted in reduced, anoxic sediments with high rates of sulfate reduction. During the day, an oxygen gradient is generated around the roots, becoming anoxic at night. Thus, obligate anaerobic bacteria in the rhizosphere have to tolerate elevated oxy...

  7. Dehydration Accelerates Respiration in Postharvest Sugarbeet Roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarbeet (Beta vulgaris L.) roots lose water during storage and often become severely dehydrated after prolonged storage and at the outer regions of storage piles which have greater wind and sun exposure. Sucrose loss is known to be elevated in dehydrated roots, although the metabolic processes re...

  8. Method for Constructing Standardized Simulated Root Canals.

    ERIC Educational Resources Information Center

    Schulz-Bongert, Udo; Weine, Franklin S.

    1990-01-01

    The construction of visual and manipulative aids, clear resin blocks with root-canal-like spaces, for simulation of root canals is explained. Time, materials, and techniques are discussed. The method allows for comparison of canals, creation of any configuration of canals, and easy presentation during instruction. (MSE)

  9. Arabidopsis: An Adequate Model for Dicot Root Systems?

    PubMed

    Zobel, Richard W

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to eight different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of these classes of root. This then suggests that Arabidopsis root research can be considered an adequate model for dicot plant root systems. PMID:26904040

  10. GiA Roots: software for the high throughput analysis of plant root system architecture

    PubMed Central

    2012-01-01

    Background Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks. Results We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user. Conclusions We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa. We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis. PMID:22834569

  11. Effect of lead on root growth

    PubMed Central

    Fahr, Mouna; Laplaze, Laurent; Bendaou, Najib; Hocher, Valerie; Mzibri, Mohamed El; Bogusz, Didier; Smouni, Abdelaziz

    2013-01-01

    Lead (Pb) is one of the most widespread heavy metal contaminant in soils. It is highly toxic to living organisms. Pb has no biological function but can cause morphological, physiological, and biochemical dysfunctions in plants. Plants have developed a wide range of tolerance mechanisms that are activated in response to Pb exposure. Pb affects plants primarily through their root systems. Plant roots rapidly respond either (i) by the synthesis and deposition of callose, creating a barrier that stops Pb entering (ii) through the uptake of large amounts of Pb and its sequestration in the vacuole accompanied by changes in root growth and branching pattern or (iii) by its translocation to the aboveground parts of plant in the case of hyperaccumulators plants. Here we review the interactions of roots with the presence of Pb in the rhizosphere and the effect of Pb on the physiological and biochemical mechanisms of root development. PMID:23750165

  12. Systems approaches to study root architecture dynamics

    PubMed Central

    Cuesta, Candela; Wabnik, Krzysztof; Benková, Eva

    2013-01-01

    The plant root system is essential for providing anchorage to the soil, supplying minerals and water, and synthesizing metabolites. It is a dynamic organ modulated by external cues such as environmental signals, water and nutrients availability, salinity and others. Lateral roots (LRs) are initiated from the primary root post-embryonically, after which they progress through discrete developmental stages which can be independently controlled, providing a high level of plasticity during root system formation. Within this review, main contributions are presented, from the classical forward genetic screens to the more recent high-throughput approaches, combined with computer model predictions, dissecting how LRs and thereby root system architecture is established and developed. PMID:24421783

  13. The origin and early evolution of roots.

    PubMed

    Kenrick, Paul; Strullu-Derrien, Christine

    2014-10-01

    Geological sites of exceptional fossil preservation are becoming a focus of research on root evolution because they retain edaphic and ecological context, and the remains of plant soft tissues are preserved in some. New information is emerging on the origins of rooting systems, their interactions with fungi, and their nature and diversity in the earliest forest ecosystems. Remarkably well-preserved fossils prove that mycorrhizal symbionts were diverse in simple rhizoid-based systems. Roots evolved in a piecemeal fashion and independently in several major clades through the Devonian Period (416 to 360 million years ago), rapidly extending functionality and complexity. Evidence from extinct arborescent clades indicates that polar auxin transport was recruited independently in several to regulate wood and root development. The broader impact of root evolution on the geochemical carbon cycle is a developing area and one in which the interests of the plant physiologist intersect with those of the geochemist. PMID:25187527

  14. Long-term control of root growth

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene

    1992-05-26

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl-2,6-dinitro-aniline, commonly known as trifluralin.

  15. Long-term control of root growth

    SciTech Connect

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.

    1992-05-26

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl-2,6-dinitro-aniline, commonly known as trifluralin. 7 figs.

  16. Clinical management of infected root canal dentin.

    PubMed

    Love, R M

    1996-08-01

    Several hundred different species of bacteria are present in the human intraoral environment. Bacterial penetration of root canal dentin occurs when bacteria invade the root canal system. These bacteria may constitute a reservoir from which root canal reinfection may occur during or after endodontic treatment. The learning objective of this article is to review endodontic microbiology, update readers on the role of bacteria in pulp and periapical disease, and discuss the principles of management of infected root canal dentin. Complete debridement, removal of microorganisms and affected dentin, and chemomechanical cleansing of the root canal are suggested as being the cornerstones of successful endodontic therapy, followed by intracanal medication to remove residual bacteria, when required. PMID:9242125

  17. A Phase II/III Randomized, Placebo-Controlled, Double-Blind Clinical Trial of Ginger (Zingiber officinale) for Nausea Caused by Chemotherapy for Cancer: A Currently Accruing URCC CCOP Cancer Control Study.

    PubMed

    Hickok, Jane T; Roscoe, Joseph A; Morrow, Gary R; Ryan, Julie L

    2007-09-01

    Despite the widespread use of 5-HT3 receptor antagonist antiemetics such as ondansetron and granistron, up to 70% of patients with cancer receiving highly emetogenic chemotherapy agents experience postchemotherapy nausea and vomiting. Delayed postchemotherapy nausea (nausea that occurs >/= 24 hours after chemotherapy administration) and anticipatory nausea (nausea that develops before chemotherapy administration, in anticipation of it) are poorly controlled by currently available antiemetic agents. Scientific studies suggest that ginger (Zingiber officinale) might have beneficial effects on nausea and vomiting associated with motion sickness, surgery, and pregnancy. In 2 small studies of patients with cancer receiving chemotherapy, addition of ginger to standard antiemetic medication further reduced the severity of postchemotherapy nausea. This article describes a phase II/III randomized, dose-finding, placebo-controlled, double-blind clinical trial to assess the efficacy of ginger for nausea associated with chemotherapy for cancer. The study is currently being conducted by private practice oncology groups that are funded by the National Cancer Institute's Community Clinical Oncology Program and affiliated with the University of Rochester Cancer Center Community Clinical Oncology Program Research Base. PMID:18632524

  18. Nitrate affects sensu-stricto germination of after-ripened Sisymbrium officinale seeds by modifying expression of SoNCED5, SoCYP707A2 and SoGA3ox2 genes.

    PubMed

    Carrillo-Barral, Néstor; Matilla, Angel J; Rodríguez-Gacio, María del Carmen; Iglesias-Fernández, Raquel

    2014-03-01

    The influence of nitrate upon the germination of Sisymbrium officinale seeds is not entirely controlled by after-ripening (AR), a process clearly influenced by nitrate. Recently, we have reported that nitrate affects sensu-stricto germination of non-AR (AR0) seeds by modifying the expression of crucial genes involved in the metabolism of GA and ABA. In this study, we demonstrate that nitrate affects also the germination of AR seeds because: (i) the AR negatively alters the ABA sensitivity being the seed more ABA-sensible as the AR is farthest from optimal (AR0 and AR20 versus AR7); in the presence of diniconazole (DZ), a competitive inhibitor of ABA 8'-hydroxylase, testa rupture is affected while the endosperm rupture is not. (ii) AR7 seed-coat rupture is not inhibited by paclobutrazol (PBZ) suggesting that nitrate can act by a mechanism GA-independent. (iii) The germination process is accelerated by nitrate, most probably by the increase in the expression of SoNCED5, SoCYP707A2 and SoGA3ox2 genes. Taken together, these and previous results demonstrate that nitrate promotes germination of AR and non-AR seeds through transcriptional changes of different genes involved in ABA and GA metabolism. PMID:24467901

  19. Ultrasound/microwave-assisted solid-liquid-solid dispersive extraction with high-performance liquid chromatography coupled to tandem mass spectrometry for the determination of neonicotinoid insecticides in Dendrobium officinale.

    PubMed

    Zheng, Shuilian; Wu, Huizhen; Li, Zuguang; Wang, Jianmei; Zhang, Hu; Qian, Mingrong

    2015-01-01

    A one-step ultrasound/microwave-assisted solid-liquid-solid dispersive extraction procedure was used for the simultaneous determination of eight neonicotinoids (dinotefuran, nitenpyram, thiamethoxam, clothianidin, imidacloprid, acetamiprid, thiacloprid, imidaclothiz) in dried Dendrobium officinale by liquid chromatography combined with electrospray ionization triple quadrupole tandem mass spectrometry in multiple reaction monitoring mode. The samples were quickly extracted by acetonitrile and cleaned up by the mixed dispersing sorbents including primary secondary amine, C18 , and carbon-GCB. Parameters that could influence the ultrasound/microwave-assisted extraction efficiency such as microwave irradiation power, ultrasound irradiation power, temperature, and solvent were investigated. Recovery studies were performing well (70.4-113.7%) at three examined spiking levels (10, 50, and 100 μg/kg). Meanwhile, the limits of quantification for the neonicotinoids ranged from 0.87 to 1.92 μg/kg. The method showed good linearity in the concentration range of 1-100 μg/L with correlation coefficients >0.99. This quick and useful analytical method could provide a basis for monitoring neonicotinoid insecticide residues in herbs. PMID:25348589

  20. Management of Six Root Canals in Mandibular First Molar

    PubMed Central

    Gomes, Fabio de Almeida; Sousa, Bruno Carvalho

    2015-01-01

    Success in root canal treatment is achieved after thorough cleaning, shaping, and obturation of the root canal system. This clinical case describes conventional root canal treatment of an unusual mandibular first molar with six root canals. The prognosis for endodontic treatment in teeth with abnormal morphology is unfavorable if the clinician fails to recognize extra root canals. PMID:25685156

  1. Content of toxic and essential metals in medicinal herbs growing in polluted and unpolluted areas of Macedonia.

    PubMed

    Gjorgieva, Darinka; Kadifkova-Panovska, Tatjana; Baceva, Katerina; Stafilov, Trajce

    2010-09-01

    The aim of this study was to determine and compare Ba, Cr, Cd, Fe, Sr, Pb, and Zn content in medicinal herbs Urtica dioica L., Taraxacum officinale, and Matricaria recutita growing in polluted and unpolluted areas of the Republic of Macedonia. The metal content was determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES). In the unpolluted area of Mt. Plackovica the metal content in Taraxacum officinale was in the descending order: Fe>Sr>Zn>Ba>Cr, while Pb and Cd were below the limit of detection. In the polluted area of Veles, the order was as follows: Fe>Zn>Sr>Pb>Ba>Cd>Cr. Our results suggest that quality assurance and monitoring of toxic metals is needed for plants intended for human use and consumption. Medicinal plants should be picked in areas free of any contamination sources. PMID:20860970

  2. Root Canal Treatment of a Maxillary Second Premolar with Two Palatal Root Canals: A Case Report

    PubMed Central

    Golmohammadi, Maryam; Jafarzadeh, Hamid

    2016-01-01

    Accurate diagnosis of the root canal morphology and anatomy is essential for thorough shaping and cleaning of the entire root canal system and consequent successful treatment. This report describes a case of maxillary second premolar with two roots and three root canals (two mesial and distal palatal canals). The case report underlines the importance of complete knowledge about root canal morphology and possible variations, coupled with clinical and radiographic examination in order to increase the ability of clinicians to treat difficult cases. PMID:27471538

  3. Root Canal Treatment of a Maxillary Second Premolar with Two Palatal Root Canals: A Case Report.

    PubMed

    Golmohammadi, Maryam; Jafarzadeh, Hamid

    2016-01-01

    Accurate diagnosis of the root canal morphology and anatomy is essential for thorough shaping and cleaning of the entire root canal system and consequent successful treatment. This report describes a case of maxillary second premolar with two roots and three root canals (two mesial and distal palatal canals). The case report underlines the importance of complete knowledge about root canal morphology and possible variations, coupled with clinical and radiographic examination in order to increase the ability of clinicians to treat difficult cases. PMID:27471538

  4. Variation in root density along stream banks.

    PubMed

    Wynn, Theresa M; Mostaghimi, Saied; Burger, James A; Harpold, Adrian A; Henderson, Marc B; Henry, Leigh-Anne

    2004-01-01

    While it is recognized that vegetation plays a significant role in stream bank stabilization, the effects are not fully quantified. The study goal was to determine the type and density of vegetation that provides the greatest protection against stream bank erosion by determining the density of roots in stream banks. To quantify the density of roots along alluvial stream banks, 25 field sites in the Appalachian Mountains were sampled. The riparian buffers varied from short turfgrass to mature riparian forests, representing a range of vegetation types. Root length density (RLD) with depth and aboveground vegetation density were measured. The sites were divided into forested and herbaceous groups and differences in root density were evaluated. At the herbaceous sites, very fine roots (diameter < 0.5 mm) were most common and more than 75% of all roots were concentrated in the upper 30 cm of the stream bank. Under forested vegetation, fine roots (0.5 mm < diameter < 2.0 mm) were more common throughout the bank profile, with 55% of all roots in the top 30 cm. In the top 30 cm of the bank, herbaceous sites had significantly greater overall RLD than forested sites (alpha = 0.01). While there were no significant differences in total RLD below 30 cm, forested sites had significantly greater concentrations of fine roots, as compared with herbaceous sites (alpha = 0.01). As research has shown that erosion resistance has a direct relationship with fine root density, forested vegetation may provide better protection against stream bank erosion. PMID:15537925

  5. Root conditioning in periodontology — Revisited

    PubMed Central

    Nanda, Tarun; Jain, Sanjeev; Kaur, Harjit; Kapoor, Daljit; Nanda, Sonia; Jain, Rohit

    2014-01-01

    Objective: Root surfaces of periodontitis-affected teeth are hypermineralized and contaminated with cytotoxic and other biologically active substances. To achieve complete decontamination of the tooth surfaces, various methods including root conditioning following scaling and root planning are present. The main objective of this article is to throw light on the different root conditioning agents used and the goals accomplished by root conditioning in the field of periodontology. Materials and Methods: 20 human maxillary anterior teeth indicated for extraction due to chronic periodontitis were collected and root planned. The teeth were sectioned and specimens were divided into two groups — Group I and II. Group I dentin specimens were treated with EDTA and group II specimens were treated with tetracycline HCl solution at concentration of 10% by active burnishing technique for 3 minutes. The root surface samples were then examined by scanning electron microscope (SEM). Results: The results of the study showed that EDTA and tetracycline HCl were equally effective in removing the smear layer. It was observed that the total and patent dentinal tubules were more in number in teeth treated with tetracycline as compared to EDTA group. However, EDTA was found to be much more effective as root conditioning agent because it enlarged the diameter of dentinal tubules more than that of tetracycline HCl. Conclusion: Results of in-vitro study showed that both the agents are good root conditioning agents if applied in addition to periodontal therapy. However, further studies are required to establish the in-vivo importance of EDTA and tetracycline HCL as root conditioners. PMID:25097414

  6. Accessory roots and root canals in human anterior teeth: a review and clinical considerations.

    PubMed

    Ahmed, H M A; Hashem, A A

    2016-08-01

    Anterior teeth may have aberrant anatomical variations in the number of roots and root canals. A review of the literature was conducted using appropriate key words in major endodontic journals to identify the available reported cases as well as experimental and clinical investigations on accessory roots and root canals in anterior teeth. After retrieving the full text of related articles, cross-citations were identified, and the pooled data were then discussed. Results revealed a higher prevalence in accessory root/root canal variations in mandibular anterior teeth than in maxillary counterparts. However, maxillary incisor teeth revealed the highest tendency for accessory root/root canal aberrations caused by anomalies such as dens invaginatus and palato-gingival groove. Primary anterior teeth may also exhibit external and internal anatomical variations in the root, especially maxillary canines. Therefore, dental practitioners should thoroughly assess all teeth scheduled for root canal treatment to prevent the undesirable consequences caused by inadequate debridement of accessory configurations of the root canal system. PMID:26174943

  7. RootGraph: a graphic optimization tool for automated image analysis of plant roots

    PubMed Central

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N.; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J.

    2015-01-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions. PMID:26224880

  8. Root hair-specific expansins modulate root hair elongation in rice.

    PubMed

    ZhiMing, Yu; Bo, Kang; XiaoWei, He; ShaoLei, Lv; YouHuang, Bai; WoNa, Ding; Ming, Chen; Hyung-Taeg, Cho; Ping, Wu

    2011-06-01

    Root hair growth requires intensive cell-wall modification. This study demonstrates that root hair-specific expansin As, a sub-clade of the cell wall-loosening expansin proteins, are required for root hair elongation in rice (Oryza sativa L.). We identified a gene encoding EXPA17 (OsEXPA17) from a rice mutant with short root hairs. Promoter::reporter transgenic lines exhibited exclusive OsEXPA17 expression in root hair cells. The OsEXPA17 mutant protein (OsexpA17) contained a point mutation, causing a change in the amino acid sequence (Gly104→Arg). This amino acid alteration is predicted to disrupt a highly conserved disulfide bond in the mutant. Suppression of OsEXPA17 by RNA interference further confirmed requirement for the gene in root hair elongation. Complementation of the OsEXPA17 mutant with other root hair EXPAs (OsEXPA30 and Arabidopsis EXPA7) can restore root hair elongation, indicating functional conservation of these root hair EXPAs in monocots and dicots. These results demonstrate that members of the root hair EXPA sub-clade play a crucial role in root hair cell elongation in Graminaceae. PMID:21309868

  9. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems

    PubMed Central

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R

    2015-01-01

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes. DOI: http://dx.doi.org/10.7554/eLife.07597.001 PMID:26287479

  10. Resistance to compression of weakened roots subjected to different root reconstruction protocols

    PubMed Central

    ZOGHEIB, Lucas Villaça; SAAVEDRA, Guilherme de Siqueira Ferreira Anzaloni; CARDOSO, Paula Elaine; VALERA, Márcia Carneiro; de ARAÚJO, Maria Amélia Máximo

    2011-01-01

    Objective This study evaluated, in vitro, the fracture resistance of human non-vital teeth restored with different reconstruction protocols. Material and methods Forty human anterior roots of similar shape and dimensions were assigned to four groups (n=10), according to the root reconstruction protocol: Group I (control): non-weakened roots with glass fiber post; Group II: roots with composite resin by incremental technique and glass fiber post; Group III: roots with accessory glass fiber posts and glass fiber post; and Group IV: roots with anatomic glass fiber post technique. Following post cementation and core reconstruction, the roots were embedded in chemically activated acrylic resin and submitted to fracture resistance testing, with a compressive load at an angle of 45º in relation to the long axis of the root at a speed of 0.5 mm/min until fracture. All data were statistically analyzed with bilateral Dunnett's test (α=0.05). Results Group I presented higher mean values of fracture resistance when compared with the three experimental groups, which, in turn, presented similar resistance to fracture among each other. None of the techniques of root reconstruction with intraradicular posts improved root strength, and the incremental technique was suggested as being the most recommendable, since the type of fracture that occurred allowed the remaining dental structure to be repaired. Conclusion The results of this in vitro study suggest that the healthy remaining radicular dentin is more important to increase fracture resistance than the root reconstruction protocol. PMID:22231002

  11. Root cap influences root colonisation by Pseudomonas fluorescens SBW25 on maize.

    PubMed

    Humphris, Sonia N; Bengough, A Glyn; Griffiths, Bryan S; Kilham, Ken; Rodger, Sheena; Stubbs, Vicky; Valentine, Tracy A; Young, Iain M

    2005-09-01

    We investigated the influence of root border cells on the colonisation of seedling Zea mays roots by Pseudomonas fluorescens SBW25 in sandy loam soil packed at two dry bulk densities. Numbers of colony forming units (CFU) were counted on sequential sections of root for intact and decapped inoculated roots grown in loose (1.0 mg m(-3)) and compacted (1.3 mg m(-3)) soil. After two days of root growth, the numbers of P. fluorescens (CFU cm(-1)) were highest on the section of root just below the seed with progressively fewer bacteria near the tip, irrespective of density. The decapped roots had significantly more colonies of P. fluorescens at the tip compared with the intact roots: approximately 100-fold more in the loose and 30-fold more in the compact soil. In addition, confocal images of the root tips grown in agar showed that P. fluorescens could only be detected on the tips of the decapped roots. These results indicated that border cells, and their associated mucilage, prevented complete colonization of the root tip by the biocontrol agent P. fluorescens, possibly by acting as a disposable surface or sheath around the cap. PMID:16329978

  12. Lateral root initiation in Marsilea quadrifolia. I. Origin and histogensis of lateral roots

    NASA Technical Reports Server (NTRS)

    Lin, B. L.; Raghavan, V.

    1991-01-01

    In Marsilea quadrifolia, lateral roots arise from modified single cells of the endodermis located opposite the protoxylem poles within the meristematic region of the parent root. The initial cell divides in four specific planes to establish a five-celled lateral root primordium, with a tetrahedral apical cell in the centre and the oldest merophytes and the root cap along the sides. The cells of the merophyte divide in a precise pattern to give rise to the cells of the cortex, endodermis, pericycle, and vascular tissues of the emerging lateral root. Although the construction of the parent root is more complicated than that of lateral roots, patterns of cell division and tissue formation are similar in both types of roots, with the various tissues being arranged in similar positions in relation to the central axis. Vascular connection between the lateral root primordium and the parent root is derived from the pericycle cells lying between the former and the protoxylem members of the latter. It is proposed that the central axis of the root is not only a geometric centre, but also a physiological centre which determines the fate of the different cell types.

  13. Root phenology at Harvard Forest and beyond

    NASA Astrophysics Data System (ADS)

    Abramoff, R. Z.; Finzi, A.

    2013-12-01

    Roots are hidden from view and heterogeneously distributed making them difficult to study in situ. As a result, the causes and timing of root production are not well understood. Researchers have long assumed that above and belowground phenology is synchronous; for example, most parameterizations of belowground carbon allocation in terrestrial biosphere models are based on allometry and represent a fixed fraction of net C uptake. However, using results from metaanalysis as well as empirical data from oak and hemlock stands at Harvard Forest, we show that synchronous root and shoot growth is the exception rather than the rule. We collected root and shoot phenology measurements from studies across four biomes (boreal, temperate, Mediterranean, and subtropical). General patterns of root phenology varied widely with 1-5 production peaks in a growing season. Surprisingly, in 9 out of the 15 studies, the first root production peak was not the largest peak. In the majority of cases maximum shoot production occurred before root production (Offset>0 in 32 out of 47 plant sample means). The number of days offset between maximum root and shoot growth was negatively correlated with median annual temperature and therefore differs significantly across biomes (ANOVA, F3,43=9.47, p<0.0001). This decline in offset with increasing temperature may reflect greater year-round coupling between air and soil temperature in warm biomes. Growth form (woody or herbaceous) also influenced the relative timing of root and shoot growth. Woody plants had a larger range of days between root and shoot growth peaks as well as a greater number of growth peaks. To explore the range of phenological relationships within woody plants in the temperate biome, we focused on above and belowground phenology in two common northeastern tree species, Quercus rubra and Tsuga canadensis. Greenness index, rate of stem growth, root production and nonstructural carbohydrate content were measured beginning in April

  14. Variation of the Linkage of Root Function with Root Branch Order

    PubMed Central

    Chen, Zhengxia; Zeng, Hui

    2013-01-01

    Mounting evidence has shown strong linkage of root function with root branch order. However, it is not known whether this linkage is consistent in different species. Here, root anatomic traits of the first five branch order were examined in five species differing in plant phylogeny and growth form in tropical and subtropical forests of south China. In Paramichelia baillonii, one tree species in Magnoliaceae, the intact cortex as well as mycorrhizal colonization existed even in the fifth-order root suggesting the preservation of absorption function in the higher-order roots. In contrast, dramatic decreases of cortex thickness and mycorrhizal colonization were observed from lower- to higher-order roots in three other tree species, Cunninghamia lanceolata, Acacia auriculiformis and Gordonia axillaries, which indicate the loss of absorption function. In a fern, Dicranopteris dichotoma, there were several cortex layers with prominently thickened cell wall and no mycorrhizal colonization in the third- and fourth-order roots, also demonstrating the loss of absorptive function in higher-order roots. Cluster analysis using these anatomic traits showed a different classification of root branch order in P. baillonii from other four species. As for the conduit diameter-density relationship in higher-order roots, the mechanism underpinning this relationship in P. baillonii was different from that in other species. In lower-order roots, different patterns of coefficient of variance for conduit diameter and density provided further evidence for the two types of linkage of root function with root branch order. These linkages corresponding to two types of ephemeral root modules have important implication in the prediction of terrestrial carbon cycling, although we caution that this study was pseudo-replicated. Future studies by sampling more species can test the generality of these two types of linkage. PMID:23451168

  15. Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order-related fine root morphology and biomass?

    PubMed Central

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2015-01-01

    While most temperate broad-leaved tree species form ectomycorrhizal (EM) symbioses, a few species have arbuscular mycorrhizas (AM). It is not known whether EM and AM tree species differ systematically with respect to fine root morphology, fine root system size and root functioning. In a species-rich temperate mixed forest, we studied the fine root morphology and biomass of three EM and three AM tree species from the genera Acer, Carpinus, Fagus, Fraxinus, and Tilia searching for principal differences between EM and AM trees. We further assessed the evidence of convergence or divergence in root traits among the six co-occurring species. Eight fine root morphological and chemical traits were investigated in root segments of the first to fourth root order in three different soil depths and the relative importance of the factors root order, tree species and soil depth for root morphology was determined. Root order was more influential than tree species while soil depth had only a small effect on root morphology All six species showed similar decreases in specific root length and specific root area from the 1st to the 4th root order, while the species patterns differed considerably in root tissue density, root N concentration, and particularly with respect to root tip abundance. Most root morphological traits were not significantly different between EM and AM species (except for specific root area that was larger in AM species), indicating that mycorrhiza type is not a key factor influencing fine root morphology in these species. The order-based root analysis detected species differences more clearly than the simple analysis of bulked fine root mass. Despite convergence in important root traits among AM and EM species, even congeneric species may differ in certain fine root morphological traits. This suggests that, in general, species identity has a larger influence on fine root morphology than mycorrhiza type. PMID:25717334

  16. Scalable encryption using alpha rooting

    NASA Astrophysics Data System (ADS)

    Wharton, Eric J.; Panetta, Karen A.; Agaian, Sos S.

    2008-04-01

    Full and partial encryption methods are important for subscription based content providers, such as internet and cable TV pay channels. Providers need to be able to protect their products while at the same time being able to provide demonstrations to attract new customers without giving away the full value of the content. If an algorithm were introduced which could provide any level of full or partial encryption in a fast and cost effective manner, the applications to real-time commercial implementation would be numerous. In this paper, we present a novel application of alpha rooting, using it to achieve fast and straightforward scalable encryption with a single algorithm. We further present use of the measure of enhancement, the Logarithmic AME, to select optimal parameters for the partial encryption. When parameters are selected using the measure, the output image achieves a balance between protecting the important data in the image while still containing a good overall representation of the image. We will show results for this encryption method on a number of images, using histograms to evaluate the effectiveness of the encryption.

  17. Ecology of Root Colonizing Massilia (Oxalobacteraceae)

    PubMed Central

    Ofek, Maya; Hadar, Yitzhak; Minz, Dror

    2012-01-01

    Background Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae), a major group of rhizosphere and root colonizing bacteria of many plant species. Methodology/Principal Findings The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter) and potential competitors. Massilia absolute abundance and relative abundance (dominance) were positively related, and peaked (up to 85%) at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. Conclusions In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche. PMID:22808103

  18. How to bond to root canal dentin

    NASA Astrophysics Data System (ADS)

    Nica, Luminita; Todea, Carmen; Furtos, Gabriel; Baldea, Bogdan

    2014-01-01

    Bonding to root canal dentin may be difficult due to various factors: the structural characteristic of the root canal dentin, which is different from that of the coronal dentin; the presence of the organic tissue of the dental pulp inside the root canal, which has to be removed during the cleaning-shaping of the root canal system; the smear-layer resulted after mechanical instrumentation, which may interfere with the adhesion of the filling materials; the type of the irrigants used in the cleaning protocol; the type of the sealer and core material used in the obturation of the endodontic space; the type of the materials used for the restoration of the endodontically treated teeth. The influence of the cleaning protocol, of the root canal filling material, of the type of the adhesive system used in the restoration of the treated teeth and of the region of the root canal, on the adhesion of several filling and restorative materials to root canal dentin was evaluated in the push-out bond strength test on 1-mm thick slices of endodontically treated human teeth. The results showed that all these factors have a statistically significant influence on the push-out bond strength. Formation of resin tags between radicular dentin and the investigated materials was observed in some of the samples at SEM analysis.

  19. 13. PHOTOCOPY OF ILLUSTRATED CIRCULAR OF 'ROOTS NEW IRON POSITIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. PHOTOCOPY OF ILLUSTRATED CIRCULAR OF 'ROOTS NEW IRON POSITIVE BLAST BLOWER,' CA. JAN. 1880, FROM FILES OF ROOTS-CONNERSVILLE BLOWER CO., CONNERSVILLE, IND. - P. H. & F. M. Roots Company, Eastern Avenue, Connersville, Fayette County, IN

  20. Bitter Root Irrigation district canal, looking east, typical section (canal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bitter Root Irrigation district canal, looking east, typical section (canal full) - Bitter Root Irrigation Project, Bitter Root Irrigation Canal, Heading at Rock Creek Diversion Dam, West of U.S. Highway 93, Darby, Ravalli County, MT

  1. Bitter Root Irrigation district canal, looking east, typical section and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bitter Root Irrigation district canal, looking east, typical section and crossing - Bitter Root Irrigation Project, Bitter Root Irrigation Canal, Heading at Rock Creek Diversion Dam, West of U.S. Highway 93, Darby, Ravalli County, MT

  2. 10. PHOTOCOPY OF 'P. H. & F. M. ROOTS FOUNDARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. PHOTOCOPY OF 'P. H. & F. M. ROOTS FOUNDARY MANUFACTURERS OF ROOTS BLOWERS' FROM INDIANAPOLIS STAR, June 13, 1926, Gravure Section, p. 2 - P. H. & F. M. Roots Company, Eastern Avenue, Connersville, Fayette County, IN

  3. A thermodynamic formulation of root water uptake

    NASA Astrophysics Data System (ADS)

    Hildebrandt, A.; Kleidon, A.; Bechmann, M.

    2015-12-01

    By extracting bound water from the soil and lifting it to the canopy, root systems of vegetation perform work. Here we describe how the energetics involved in root water uptake can be quantified. The illustration is done using a simple, four-box model of the soil-root system to represent heterogeneity and a parameterization in which root water uptake is driven by the xylem potential of the plant with a fixed flux boundary condition. We use this approach to evaluate the effects of soil moisture heterogeneity and root system properties on the dissipative losses and export of energy involved in root water uptake. For this, we derive an expression that relates the energy export at the root collar to a sum of terms that reflect all fluxes and storage changes along the flow path in thermodynamic terms. We conclude that such a thermodynamic evaluation of root water uptake conveniently provides insights into the impediments of different processes along the entire flow path and explicitly accounting not only for the resistances along the flow path and those imposed by soil drying but especially the role of heterogenous soil water distribution. The results show that least energy needs to be exported and dissipative losses are minimized by a root system if it extracts water uniformly from the soil. This has implications for plant water relations in forests where canopies generate heterogenous input patterns. Our diagnostic in the energy domain should be useful in future model applications for quantifying how plants can evolve towards greater efficiency in their structure and function, particularly in heterogenous soil environments. Generally, this approach may help to better describe heterogeneous processes in the soil in a simple, yet physically-based way.

  4. Root type matters: measurements of water uptake by seminal, crown and lateral roots of maize

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez Ali; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2016-04-01

    Roots play a key role in water acquisition and are a significant component of plant adaptation to different environmental conditions. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of root water uptake in mature maize. We used neutron radiography to image the spatial distribution of maize roots and trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were five weeks-old, we injected D2O into selected soil regions. The transport of D2O was simulated using a diffusion-convection numerical model. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The model was initially developed and tested with two weeks-old maize (Ahmed et. al. 2015), for which we found that water was mainly taken up by lateral roots and the water uptake of the seminal roots was negligible. Here, we used this method to measure root water uptake in a mature maize root system. The root architecture of five weeks-old maize consisted of primary and seminal roots with long laterals and crown (nodal) roots that emerged from the above ground part of the plant two weeks after planting. The crown roots were thicker than the seminal roots and had fewer and shorter laterals. Surprisingly, we found that the water was mainly taken up by the crown roots and their laterals, while the lateral roots of seminal roots, which were the main location of water uptake of younger plants, stopped to take up water. Interestingly, we also found that in contrast to the seminal roots, the crown roots were able to take up water also from their distal segments. We conclude that for the two weeks

  5. Adventitious root induction in Arabidopsis thaliana as a model for in vitro root organogenesis.

    PubMed

    Verstraeten, Inge; Beeckman, Tom; Geelen, Danny

    2013-01-01

    Adventitious root formation, the development of roots on non-root tissue (e.g. leaves, hypocotyls and stems) is a critical step during micropropagation. Although root induction treatments are routinely used for a large number of species micropropagated in vitro as well as for in vivo cuttings, the mechanisms controlling adventitious rooting are still poorly understood. Researchers attempt to gain better insight into the molecular aspects by studying adventitious rooting in Arabidopsis thaliana. The existing assay involves etiolation of seedlings and measurements of de novo formed roots on the elongated hypocotyl. The etiolated hypocotyls express a novel auxin-controlled signal transduction pathway in which auxin response factors (ARFs), microRNAs and environmental conditions that drive adventitious rooting are integrated. An alternative assay makes use of so-called thin cell layers (TCL), excised strips of cells from the inflorescence stem of Arabidopsis thaliana. However, both the etiolated seedling system and the TCL assay are only distantly related to industrial rooting processes in which roots are induced on adult stem tissue. Here, we describe an adventitious root induction system that uses segments of the inflorescence stems of Arabidopsis thaliana, which have a histological structure similar to cuttings or in vitro micropropagated shoots. The system allows multiple treatments with chemicals as well as the evaluation of different environmental conditions on a large number of explants. It is therefore suitable for high throughput chemical screenings and experiments that require numerous data points for statistical analysis. Using this assay, the adventitious root induction capacity of classical auxins was evaluated and a differential response to the different auxins could be demonstrated. NAA, IBA and IAA stimulated adventitious rooting on the stem segment, whereas 2,4-D and picloram did not. Light conditions profoundly influenced the root induction capacity

  6. Clinical technique for invasive cervical root resorption

    PubMed Central

    Silveira, Luiz Fernando Machado; Silveira, Carina Folgearini; Martos, Josué; Piovesan, Edno Moacir; César Neto, João Batista

    2011-01-01

    This clinical case report describes the diagnosis and treatment of an external invasive cervical resorption. A 17-year-old female patient had a confirmed diagnosis of invasive cervical resorption class 4 by cone beam computerized tomography. Although, there was no communication with the root canal, the invasive resorption process was extending into the cervical and middle third of the root. The treatment of the cervical resorption of the lateral incisor interrupted the resorptive process and restored the damaged root surface and the dental functions without any esthetic sequelae. Both the radiographic examination and computed tomography are imperative to reveal the extent of the defect in the differential diagnosis. PMID:22144822

  7. Complex root networks of Chinese characters

    NASA Astrophysics Data System (ADS)

    Lee, Po-Han; Chen, Jia-Ling; Wang, Po-Cheng; Chi, Ting-Ting; Xiao, Zhi-Ren; Jhang, Zih-Jian; Yeh, Yeong-Nan; Chen, Yih-Yuh; Hu, Chin-Kun

    There are several sets of Chinese characters still available today, including Oracle Bone Inscriptions (OBI) in Shang Dynasty, Chu characters (CC) used in Chu of Warring State Period, Small Seal Script in dictionary Shuowen Jiezi (SJ) in Eastern Han Dynasty, and Kangxi Dictionary (KD) in Qing Dynasty. Such as Chinese characters were all constructed via combinations of meaningful patterns, called roots. Our studies for the complex networks of all roots indicate that the roots of the characters in OBI, CC, SJ and KD have characteristics of small world networks and scale-free networks.

  8. THttpServer class in ROOT

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, Joern; Linev, Sergey

    2015-12-01

    The new THttpServer class in ROOT implements HTTP server for arbitrary ROOT applications. It is based on Civetweb embeddable HTTP server and provides direct access to all objects registered for the server. Objects data could be provided in different formats: binary, XML, GIF/PNG, and JSON. A generic user interface for THttpServer has been implemented with HTML/JavaScript based on JavaScript ROOT development. With any modern web browser one could list, display, and monitor objects available on the server. THttpServer is used in Go4 framework to provide HTTP interface to the online analysis.

  9. BOREAS TE-2 Root Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set includes means of tree root respiration measurements on roots having diameters ranging from 0 to 2 mm conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  10. Getting to the roots of it: Genetic and hormonal control of root architecture.

    PubMed

    Jung, Janelle K H; McCouch, Susan

    2013-01-01

    Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants. PMID:23785372

  11. Light as stress factor to plant roots – case of root halotropism

    PubMed Central

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives. PMID:25566292

  12. Getting to the roots of it: Genetic and hormonal control of root architecture

    PubMed Central

    Jung, Janelle K. H.; McCouch, Susan

    2013-01-01

    Root system architecture (RSA) – the spatial configuration of a root system – is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants. PMID:23785372

  13. Arthroscopic Repair of Posterior Meniscal Root Tears

    PubMed Central

    Matheny, Lauren; Moulton, Samuel G.; Dean, Chase S.; LaPrade, Robert F.

    2016-01-01

    Objectives: The purpose of this study was to compare subjective clinical outcomes in patients requiring arthroscopic transtibial pullout repair for posterior meniscus root tears of the medial and lateral menisci. We hypothesized that improvement in function and activity level would be similar among patients undergoing lateral and medial meniscal root repairs. Methods: This study was IRB approved. All patients who underwent posterior meniscal root repair by a single orthopaedic surgeon were included in this study. Detailed operative data were documented at surgery. Patients completed a subjective questionnaire, including Lysholm score, Tegner activity scale, WOMAC, SF-12 and patient satisfaction with outcome, which were collected preoperatively and at a minimum of two years postoperatively. Failure was defined as any patient who underwent revision meniscal root repair or partial meniscectomy following the index surgery. Results: There were 50 patients (16 females, 34 males) with a mean age of 37.8 years (range, 16.6-65.7) and a mean BMI of 27.3 (range, 20.5-49.2) included in this study. Fifteen patients underwent lateral meniscus root repair and 35 patients underwent medial meniscus root repair. Three patients who underwent lateral meniscus root repair required revision meniscus root repair surgery, while no patients who underwent medial meniscus root repair required revision surgery (p=0.26). There was a significant difference in preoperative and postoperative Lysholm score (53 vs. 78) (p<0.001), Tegner activity scale (2.0 vs. 4.0) (p=0.03), SF-12 physical component subscale (38 vs. 50) (p=0.001) and WOMAC (36 vs. 8) (p<0.001) for the total population. Median patient satisfaction with outcome was 9 (range, 1-10). There was no significant difference in mean age between lateral and medial root repair groups (32 vs. 40) (p=0.12) or gender (p=0.19). There was no significant difference in gender between lateral and medial root repair groups (p=0.95). There was a

  14. RootScape: a landmark-based system for rapid screening of root architecture in Arabidopsis.

    PubMed

    Ristova, Daniela; Rosas, Ulises; Krouk, Gabriel; Ruffel, Sandrine; Birnbaum, Kenneth D; Coruzzi, Gloria M

    2013-03-01

    The architecture of plant roots affects essential functions including nutrient and water uptake, soil anchorage, and symbiotic interactions. Root architecture comprises many features that arise from the growth of the primary and lateral roots. These root features are dictated by the genetic background but are also highly responsive to the environment. Thus, root system architecture (RSA) represents an important and complex trait that is highly variable, affected by genotype × environment interactions, and relevant to survival/performance. Quantification of RSA in Arabidopsis (Arabidopsis thaliana) using plate-based tissue culture is a very common and relatively rapid assay, but quantifying RSA represents an experimental bottleneck when it comes to medium- or high-throughput approaches used in mutant or genotype screens. Here, we present RootScape, a landmark-based allometric method for rapid phenotyping of RSA using Arabidopsis as a case study. Using the software AAMToolbox, we created a 20-point landmark model that captures RSA as one integrated trait and used this model to quantify changes in the RSA of Arabidopsis (Columbia) wild-type plants grown under different hormone treatments. Principal component analysis was used to compare RootScape with conventional methods designed to measure root architecture. This analysis showed that RootScape efficiently captured nearly all the variation in root architecture detected by measuring individual root traits and is 5 to 10 times faster than conventional scoring. We validated RootScape by quantifying the plasticity of RSA in several mutant lines affected in hormone signaling. The RootScape analysis recapitulated previous results that described complex phenotypes in the mutants and identified novel gene × environment interactions. PMID:23335624

  15. Allometry of root branching and its relationship to root morphological and functional traits in three range grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several studies have documented the existence of correlative mechanisms that control lateral root emergence in plants. To better understand root branching responses to nutrients, root growth in three range grasses [Whitmar cultivar of bluebunch wheatgrass (Pseudoroegneria spicata (Pursh) Love), Hyc...

  16. Rooting depths of plants relative to biological and environmental factors

    SciTech Connect

    Foxx, T S; Tierney, G D; Williams, J M

    1984-11-01

    In 1981 to 1982 an extensive bibliographic study was completed to document rooting depths of native plants in the United States. The data base presently contains 1034 citations with approximately 12,000 data elements. In this paper the data were analyzed for rooting depths as related to life form, soil type, geographical region, root type, family, root depth to shoot height ratios, and root depth to root lateral ratios. Average rooting depth and rooting frequencies were determined and related to present low-level waste site maintenance.

  17. Understanding plant root system influences on soil strength and stability

    NASA Astrophysics Data System (ADS)

    Bengough, A. Glyn; Brown, Jennifer L.; Loades, Kenneth W.; Knappett, Jonathan A.; Meijer, Gertjan; Nicoll, Bruce

    2016-04-01

    Keywords: root growth, soil reinforcement, tensile strength Plant roots modify and reinforce the soil matrix, stabilising it against erosion and shallow landslides. Roots mechanically bind the soil particles together and modify the soil hydrology via water uptake, creation of biopores, and modification of the soil water-release characteristic. Key to understanding the mechanical reinforcement of soil by roots is the relation between root strength and root diameter measured for roots in any given soil horizon. Thin roots have frequently been measured to have a greater tensile strength than thick roots, but their strength is also often much more variable. We consider the factors influencing this strength-diameter relationship, considering relations between root tensile strength and root dry density, root water content, root age, and root turnover in several woody and non-woody species. The role of possible experimental artefacts and measurement techniques will be considered. Tensile strength increased generally with root age and decreased with thermal time after excision as a result of root decomposition. Single factors alone do not appear to explain the strength-diameter relationship, and both strength/stiffness and dry density may vary between different layers of tissue within a single root. Results will be discussed to consider how we can achieve a more comprehensive understanding of the variation in root biomechanical properties, and its consequences for soil reinforcement. Acknowledgements: The James Hutton Institute receives funding from the Scottish Government. AGB and JAK acknowledge part funding from EPSRC (EP/M020355/1).

  18. Root gravitropism in maize and Arabidopsis

    NASA Technical Reports Server (NTRS)

    Evans, Michael L.

    1993-01-01

    Research during the period 1 March 1992 to 30 November 1993 focused on improvements in a video digitizer system designed to automate the recording of surface extension in plants responding to gravistimulation. The improvements included modification of software to allow detailed analysis of localized extension patterns in roots of Arabidopsis. We used the system to analyze the role of the postmitotic isodiametric growth zone (a region between the meristem and the elongation zone) in the response of maize roots to auxin, calcium, touch and gravity. We also used the system to analyze short-term auxin and gravitropic responses in mutants of Arabidopsis with reduced auxin sensitivity. In a related project, we studied the relationship between growth rate and surface electrical currents in roots by examining the effects of gravity and thigmostimulation on surface potentials in maize roots.

  19. DMA thermal analysis of yacon tuberous roots

    NASA Astrophysics Data System (ADS)

    Blahovec, J.; Lahodová, M.; Kindl, M.; Fernández, E. C.

    2013-12-01

    Specimens prepared from yacon roots in first two weeks after harvest were tested by dynamic mechanical analysis thermal analysis at temperatures between 30 and 90°C. No differences between different parts of roots were proved. There were indicated some differences in the test parameters that were caused by short time storage of the roots. One source of the differences was loss of water during the roots storage. The measured modulus increased during short time storage. Detailed study of changes of the modulus during the specimen dynamic mechanical analysis test provided information about different development of the storage and loss moduli during the specimen heating. The observed results can be caused by changes in cellular membranes observed earlier during vegetable heating, and by composition changes due to less stable components of yacon like inulin.

  20. "Roots" Touched Children: Planned or Not

    ERIC Educational Resources Information Center

    Greathouse, Betty

    1977-01-01

    Explores children's reactions to the televised version of Alex Haley's "Roots" through interviews with thirty 8-year-old third-graders (10 Black, 10 Mexican-American, 10 White) from two classrooms in South Phoenix, Arizona. (BF/JH)

  1. Irregular sesquiterpenoids from Ligusticum grayi roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root oil of Ligusticum grayi (Apiaceae) contains numerous irregular sesquiterpenoids. In addition to the known acyclic sesquilavandulol and a new sesquilavandulyl aldehyde, two thapsanes, one epithapsane, and fourteen sesquiterpenoids representing eight novel carbon skeletons were found. The new sk...

  2. Mapping gene activity of Arabidopsis root hairs

    PubMed Central

    2013-01-01

    Background Quantitative information on gene activity at single cell-type resolution is essential for the understanding of how cells work and interact. Root hairs, or trichoblasts, tubular-shaped outgrowths of specialized cells in the epidermis, represent an ideal model for cell fate acquisition and differentiation in plants. Results Here, we provide an atlas of gene and protein expression in Arabidopsis root hair cells, generated by paired-end RNA sequencing and LC/MS-MS analysis of protoplasts from plants containing a pEXP7-GFP reporter construct. In total, transcripts of 23,034 genes were detected in root hairs. High-resolution proteome analysis led to the reliable identification of 2,447 proteins, 129 of which were differentially expressed between root hairs and non-root hair tissue. Dissection of pre-mRNA splicing patterns showed that all types of alternative splicing were cell type-dependent, and less complex in EXP7-expressing cells when compared to non-root hair cells. Intron retention was repressed in several transcripts functionally related to root hair morphogenesis, indicative of a cell type-specific control of gene expression by alternative splicing of pre-mRNA. Concordance between mRNA and protein expression was generally high, but in many cases mRNA expression was not predictive for protein abundance. Conclusions The integrated analysis shows that gene activity in root hairs is dictated by orchestrated, multilayered regulatory mechanisms that allow for a cell type-specific composition of functional components. PMID:23800126

  3. Anatomical aspects of angiosperm root evolution

    PubMed Central

    Seago, James L.; Fernando, Danilo D.

    2013-01-01

    Background and Aims Anatomy had been one of the foundations in our understanding of plant evolutionary trends and, although recent evo-devo concepts are mostly based on molecular genetics, classical structural information remains useful as ever. Of the various plant organs, the roots have been the least studied, primarily because of the difficulty in obtaining materials, particularly from large woody species. Therefore, this review aims to provide an overview of the information that has accumulated on the anatomy of angiosperm roots and to present possible evolutionary trends between representatives of the major angiosperm clades. Scope This review covers an overview of the various aspects of the evolutionary origin of the root. The results and discussion focus on angiosperm root anatomy and evolution covering representatives from basal angiosperms, magnoliids, monocots and eudicots. We use information from the literature as well as new data from our own research. Key Findings The organization of the root apical meristem (RAM) of Nymphaeales allows for the ground meristem and protoderm to be derived from the same group of initials, similar to those of the monocots, whereas in Amborellales, magnoliids and eudicots, it is their protoderm and lateral rootcap which are derived from the same group of initials. Most members of Nymphaeales are similar to monocots in having ephemeral primary roots and so adventitious roots predominate, whereas Amborellales, Austrobaileyales, magnoliids and eudicots are generally characterized by having primary roots that give rise to a taproot system. Nymphaeales and monocots often have polyarch (heptarch or more) steles, whereas the rest of the basal angiosperms, magnoliids and eudicots usually have diarch to hexarch steles. Conclusions Angiosperms exhibit highly varied structural patterns in RAM organization; cortex, epidermis and rootcap origins; and stele patterns. Generally, however, Amborellales, magnoliids and, possibly

  4. Capillary-Effect Root-Environment System

    NASA Technical Reports Server (NTRS)

    Wright, Bruce D.

    1991-01-01

    Capillary-effect root-environment system (CERES) is experimental apparatus for growing plants in nutrient solutions. Solution circulated at slight tension in cavity filled with plastic screen and covered by porous plastic membrane. By adsorptive attraction, root draws solution through membrane. Conceived for use in microgravity of space, also finds terrestrial application in germinating seedlings, because it protects them from extremes of temperature, moisture, and soil pH and from overexposure to fertilizers and herbicides.

  5. [Apical root pins of high-karat gold alloys for resected roots].

    PubMed

    Handtmann, S; Lindemann, W; Sculte, W

    1989-02-01

    Following earlier studies on corrosion of silver pins in the root canal experience will be presented with the use of high-karat gold pins for apical closure of root amputations. The commercially available standardized Ackermann silver pins were replaced by high-karat gold pins of similar Vicker hardness and inserted in 218 patients with 264 root amputations since 1986. A clinical and radiological follow-up demonstrated a success rate of over 90%. PMID:2598876

  6. Lectin Binding to the Root and Root Hair Tips of the Tropical Legume Macroptilium atropurpureum Urb

    PubMed Central

    Ridge, R. W.; Rolfe, B. G.

    1986-01-01

    Ten fluorescein isothiocyanate-labeled lectins were tested on the roots of the tropical legume Macroptilium atropurpureum Urb. Four of these (concanavalin A, peanut agglutinin, Ricinis communis agglutinin I [RCA-I], wheat germ agglutinin) were found to bind to the exterior of root cap cells, the root cap slime, and the channels between epidermal cells in the root elongation zone. One of these lectins, RCA-I, bound to the root hair tips in the mature and emerging hair zones and also to sites at which root hairs were only just emerging. There was no RCA-I binding to immature trichoblasts. Preincubation of these lectins with their hapten sugars eliminated all types of root cell binding. By using a microinoculation technique, preincubation of the root surface with RCA-I lectin was found to inhibit infection and nodulation by Rhizobium spp. Preincubation of the root surface with the RCA-I hapten β-d-galactose or a mixture of RCA-I lectin and its hapten failed to inhibit nodulation. Application of RCA-I lectin to the root surface caused no apparent detrimental effects to the root hair cells and did not prevent the growth of root hairs. The lectin did not prevent Rhizobium sp. motility or viability even after 24 h of incubation. It was concluded that the RCA-I lectin-specific sugar β-d-galactose may be involved in the recognition or early infection stages, or both, in the Rhizobium sp. infection of M. atropurpureum. Images PMID:16346989

  7. ASTROCULTURE (TM) root metabolism and cytochemical analysis.

    PubMed

    Porterfield, D M; Barta, D J; Ming, D W; Morrow, R C; Musgrave, M E

    2000-01-01

    Physiology of the root system is dependent upon oxygen availability and tissue respiration. During hypoxia nutrient and water acquisition may be inhibited, thus affecting the overall biochemical and physiological status of the plant. For the Astroculture (TM) plant growth hardware, the availability of oxygen in the root zone was measured by examining the changes in alcohol dehydrogenase (ADH) activity within the root tissue. ADH activity is a sensitive biochemical indicator of hypoxic conditions in plants and was measured in both spaceflight and control roots. In addition to the biochemical enzyme assays, localization of ADH in the root tissue was examined cytochemically. The results of these analyses showed that ADH activity increased significantly as a result of spaceflight exposure. Enzyme activity increased 248% to 304% in dwarf wheat when compared with the ground controls and Brassica showed increases between 334% and 579% when compared with day zero controls. Cytochemical staining revealed no differences in ADH tissue localization in any of the dwarf wheat treatments. These results show the importance of considering root system oxygenation in designing and building nutrient delivery hardware for spaceflight plant cultivation and confirm previous reports of an ADH response associated with spaceflight exposure. PMID:11543169

  8. Vertical root fractures and their management

    PubMed Central

    Khasnis, Sandhya Anand; Kidiyoor, Krishnamurthy Haridas; Patil, Anand Basavaraj; Kenganal, Smita Basavaraj

    2014-01-01

    Vertical root fractures associated with endodontically treated teeth and less commonly in vital teeth represent one of the most difficult clinical problems to diagnose and treat. In as much as there are no specific symptoms, diagnosis can be difficult. Clinical detection of this condition by endodontists is becoming more frequent, where as it is rather underestimated by the general practitioners. Since, vertical root fractures almost exclusively involve endodontically treated teeth; it often becomes difficult to differentiate a tooth with this condition from an endodontically failed one or one with concomitant periodontal involvement. Also, a tooth diagnosed for vertical root fracture is usually extracted, though attempts to reunite fractured root have been done in various studies with varying success rates. Early detection of a fractured root and extraction of the tooth maintain the integrity of alveolar bone for placement of an implant. Cone beam computed tomography has been shown to be very accurate in this regard. This article focuses on the diagnostic and treatment strategies, and discusses about predisposing factors which can be useful in the prevention of vertical root fractures. PMID:24778502

  9. Gene expression regulation in roots under drought.

    PubMed

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots. PMID:26663562

  10. ASTROCULTURE (TM) root metabolism and cytochemical analysis

    NASA Technical Reports Server (NTRS)

    Porterfield, D. M.; Barta, D. J.; Ming, D. W.; Morrow, R. C.; Musgrave, M. E.

    2000-01-01

    Physiology of the root system is dependent upon oxygen availability and tissue respiration. During hypoxia nutrient and water acquisition may be inhibited, thus affecting the overall biochemical and physiological status of the plant. For the Astroculture (TM) plant growth hardware, the availability of oxygen in the root zone was measured by examining the changes in alcohol dehydrogenase (ADH) activity within the root tissue. ADH activity is a sensitive biochemical indicator of hypoxic conditions in plants and was measured in both spaceflight and control roots. In addition to the biochemical enzyme assays, localization of ADH in the root tissue was examined cytochemically. The results of these analyses showed that ADH activity increased significantly as a result of spaceflight exposure. Enzyme activity increased 248% to 304% in dwarf wheat when compared with the ground controls and Brassica showed increases between 334% and 579% when compared with day zero controls. Cytochemical staining revealed no differences in ADH tissue localization in any of the dwarf wheat treatments. These results show the importance of considering root system oxygenation in designing and building nutrient delivery hardware for spaceflight plant cultivation and confirm previous reports of an ADH response associated with spaceflight exposure.

  11. Competing neighbors: light perception and root function.

    PubMed

    Gundel, Pedro E; Pierik, Ronald; Mommer, Liesje; Ballaré, Carlos L

    2014-09-01

    Plant responses to competition have often been described as passive consequences of reduced resource availability. However, plants have mechanisms to forage for favorable conditions and anticipate competition scenarios. Despite the progresses made in understanding the role of light signaling in modulating plant-plant interactions, little is known about how plants use and integrate information gathered by their photoreceptors aboveground to regulate performance belowground. Given that the phytochrome family of photoreceptors plays a key role in the acquisition of information about the proximity of neighbors and canopy cover, it is tempting to speculate that changes in the red:far-red (R:FR) ratio perceived by aboveground plant parts have important implications shaping plant behavior belowground. Exploring data from published experiments, we assess the neglected role of light signaling in the control of root function. The available evidence indicates that plant exposure to low R:FR ratios affects root growth and morphology, root exudate profiles, and interactions with beneficial soil microorganisms. Although dependent on species identity, signals perceived aboveground are likely to affect root-to-root interactions. Root systems could also be guided to deploy new growth predominantly in open areas by light signals perceived by the shoots. Studying interactions between above- and belowground plant-plant signaling is expected to improve our understanding of the mechanisms of plant competition. PMID:24894371

  12. Adaptive significance of root grafting in trees

    SciTech Connect

    Loehle, C.; Jones, R.

    1988-12-31

    Root grafting has long been observed in forest trees but the adaptive significance of this trait has not been fully explained. Various authors have proposed that root grafting between trees contributes to mechanical support by linking adjacent root systems. Keeley proposes that this trait would be of greatest advantage in swamps where soils provide poor mechanical support. He provides as evidence a greenhouse study of Nyssa sylvatica Marsh in which seedlings of swamp provenance formed between-individual root grafts more frequently than upland provenance seedlings. In agreement with this within-species study, Keeley observed that arid zone species rarely exhibit grafts. Keeley also demonstrated that vines graft less commonly than trees, and herbs never do. Since the need for mechanical support coincides with this trend, these data seem to support his model. In this paper, the authors explore the mechanisms and ecological significance of root grafting, leading to predictions of root grafting incidence. Some observations support and some contradict the mechanical support hypothesis.

  13. Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity.

    PubMed

    Julkowska, Magdalena M; Hoefsloot, Huub C J; Mol, Selena; Feron, Richard; de Boer, Gert-Jan; Haring, Michel A; Testerink, Christa

    2014-11-01

    The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles in water extraction efficiency and ion exclusion. To establish which RSA parameters are responsive to salt stress, we performed a detailed time course experiment in which Arabidopsis (Arabidopsis thaliana) seedlings were grown on agar plates under different salt stress conditions. We captured RSA dynamics with quadratic growth functions (root-fit) and summarized the salt-induced differences in RSA dynamics in three growth parameters: MR elongation, average LR elongation, and increase in number of LRs. In the ecotype Columbia-0 accession of Arabidopsis, salt stress affected MR elongation more severely than LR elongation and an increase in LRs, leading to a significantly altered RSA. By quantifying RSA dynamics of 31 different Arabidopsis accessions in control and mild salt stress conditions, different strategies for regulation of MR and LR meristems and root branching were revealed. Different RSA strategies partially correlated with natural variation in abscisic acid sensitivity and different Na(+)/K(+) ratios in shoots of seedlings grown under mild salt stress. Applying root-fit to describe the dynamics of RSA allowed us to uncover the natural diversity in root morphology and cluster it into four response types that otherwise would have been overlooked. PMID:25271266

  14. Comparative behavior of root pathogens in stems and roots of southeastern Pinus species.

    PubMed

    Matusick, George; Nadel, Ryan L; Walker, David M; Hossain, Mohammad J; Eckhardt, Lori G

    2016-04-01

    Root diseases are expected to become a greater threat to trees in the future due to accidental pathogen introductions and predicted climate changes, thus there is a need for accurate and efficient pathogenicity tests. For many root pathogens, these tests have been conducted in stems instead of roots. It, however, remains unclear whether stem and root inoculations are comparable for most fungal species. In this study we compared the growth and damage caused by five root pathogens (Grosmannia huntii, Grosmannia alacris, Leptographium procerum, Leptographium terebrantis, and Heterobasidion irregulare) in root and stem tissue of two Pinus species by inoculating mature trees and tissue amended agar in the laboratory. Most fungal species tested caused greater damage in roots of both pine hosts following inoculation. The relationship between root and stem damage was, however, similar when most combinations of pathogens were compared. These results suggest that although stem inoculations are not suitable for determining the actual damage potential of a given species, they may be viewed as a useful surrogate for root inoculations when comparing the relative pathogenicity of multiple species. When grown on amended agar, fungal species generally had greater growth in stem tissue, contrasting with the findings from tree inoculations. PMID:27020149

  15. Melatonin promotes seminal root elongation and root growth in transgenic rice after germination.

    PubMed

    Park, Sangkyu; Back, Kyoungwhan

    2012-11-01

    The effect of melatonin on root growth after germination was examined in transgenic rice seedlings expressing sheep serotonin N-acetyltransferase (NAT). Enhanced melatonin levels were found in T(3) homozygous seedlings because of the ectopic overexpression of sheep NAT, which is believed to be the rate-limiting enzyme in melatonin biosynthesis in animals. Compared with wild-type rice seeds, the transgenic rice seeds showed enhanced seminal root growth and an analogous number of adventitious roots 4 and 10 days after seeding on half-strength Murashige and Skoog medium. The enhanced initial seminal root growth in the transgenic seedlings matched their increased root biomass well. We also found that treatment with 0.5 and 1 μM melatonin promoted seminal root growth of the wild type under continuous light. These results indicate that melatonin plays an important role in regulating both seminal root length and root growth after germination in monocotyledonous rice plants. This is the first report on the effects of melatonin on root growth in gain-of-function mutant plants that produce high levels of melatonin. PMID:22640001

  16. Earliest rooting system and root : shoot ratio from a new Zosterophyllum plant.

    PubMed

    Hao, Shougang; Xue, Jinzhuang; Guo, Dali; Wang, Deming

    2010-01-01

    The enhanced chemical weathering by rooted vascular plants during the Silurian-Devonian period played a crucial role in altering global biogeochemical cycles and atmospheric environments; however, the documentation of early root morphology and physiology is scarce because the existing fossils are mostly incomplete. Here, we report an entire, uprooted specimen of a new Zosterophyllum Penhallow, named as Z. shengfengense, from the Early Devonian Xitun Formation (Lochkovian, c. 413 Myr old) of Yunnan, south China. This plant has the most ancient known record of a rooting system. The plant consists of aerial axes of 98 mm in height, showing a tufted habit, and a rhizome bearing a fibrous-like rooting system, c. 20 mm in length. The rhizome shows masses of branchings, which produce upwardly directed aerial axes and downwardly directed root-like axes. The completeness of Z. shengfengense made it possible to estimate the biomass allocation and root : shoot ratio. The root : shoot ratio of this early plant is estimated at a mean value of 0.028, and the root-like axes constitute only c. 3% of the total biomass. Zosterophyllum shengfengense was probably a semi-aquatic plant with efficient water use or a strong uptake capacity of the root-like axes. PMID:19825018

  17. New insights to lateral rooting: Differential responses to heterogeneous nitrogen availability among maize root types.

    PubMed

    Yu, Peng; White, Philip J; Li, Chunjian

    2015-01-01

    Historical domestication and the "Green revolution" have both contributed to the evolution of modern, high-performance crops. Together with increased irrigation and application of chemical fertilizers, these efforts have generated sufficient food for the growing global population. Root architecture, and in particular root branching, plays an important role in the acquisition of water and nutrients, plant performance, and crop yield. Better understanding of root growth and responses to the belowground environment could contribute to overcoming the challenges faced by agriculture today. Manipulating the abilities of crop root systems to explore and exploit the soil environment could enable plants to make the most of soil resources, increase stress tolerance and improve grain yields, while simultaneously reducing environmental degradation. In this article it is noted that the control of root branching, and the responses of root architecture to nitrate availability, differ between root types and between plant species. Since the control of root branching depends upon both plant species and root type, further work is urgently required to determine the appropriate genes to manipulate to improve resource acquisition by specific crops. PMID:26443081

  18. RootNav: Navigating Images of Complex Root Architectures1[C][W

    PubMed Central

    Pound, Michael P.; French, Andrew P.; Atkinson, Jonathan A.; Wells, Darren M.; Bennett, Malcolm J.; Pridmore, Tony

    2013-01-01

    We present a novel image analysis tool that allows the semiautomated quantification of complex root system architectures in a range of plant species grown and imaged in a variety of ways. The automatic component of RootNav takes a top-down approach, utilizing the powerful expectation maximization classification algorithm to examine regions of the input image, calculating the likelihood that given pixels correspond to roots. This information is used as the basis for an optimization approach to root detection and quantification, which effectively fits a root model to the image data. The resulting user experience is akin to defining routes on a motorist’s satellite navigation system: RootNav makes an initial optimized estimate of paths from the seed point to root apices, and the user is able to easily and intuitively refine the results using a visual approach. The proposed method is evaluated on winter wheat (Triticum aestivum) images (and demonstrated on Arabidopsis [Arabidopsis thaliana], Brassica napus, and rice [Oryza sativa]), and results are compared with manual analysis. Four exemplar traits are calculated and show clear illustrative differences between some of the wheat accessions. RootNav, however, provides the structural information needed to support extraction of a wider variety of biologically relevant measures. A separate viewer tool is provided to recover a rich set of architectural traits from RootNav’s core representation. PMID:23766367

  19. New insights to lateral rooting: Differential responses to heterogeneous nitrogen availability among maize root types

    PubMed Central

    Yu, Peng; White, Philip J; Li, Chunjian

    2015-01-01

    Historical domestication and the "Green revolution" have both contributed to the evolution of modern, high-performance crops. Together with increased irrigation and application of chemical fertilizers, these efforts have generated sufficient food for the growing global population. Root architecture, and in particular root branching, plays an important role in the acquisition of water and nutrients, plant performance, and crop yield. Better understanding of root growth and responses to the belowground environment could contribute to overcoming the challenges faced by agriculture today. Manipulating the abilities of crop root systems to explore and exploit the soil environment could enable plants to make the most of soil resources, increase stress tolerance and improve grain yields, while simultaneously reducing environmental degradation. In this article it is noted that the control of root branching, and the responses of root architecture to nitrate availability, differ between root types and between plant species. Since the control of root branching depends upon both plant species and root type, further work is urgently required to determine the appropriate genes to manipulate to improve resource acquisition by specific crops. PMID:26443081

  20. Ozone decreases spring root growth and root carbohydrate content in ponderosa pine the year following exposure

    SciTech Connect

    Andersen, C.P.; Hogsett, W.E.; Wessling, R.; Plocher, M.

    1991-01-01

    Storage carbohydrates are extremely important for new shoot and root development following dormancy or during periods of high stress. The hypothesis that ozone decreases carbohydrate storage and decreases new root growth during the year following exposure was investigated. The results suggest that (1) ponderosa pine seedlings exposed to 122 and 169 ppm hrs ozone for one season have significantly less root starch reserves available just prior to and during bud break the following year, and (2) spring root growth is decreased following ozone exposure. The carry-over effects of ozone stress may be important in long-lived perennial species which are annually subjected to ozone.