Sample records for target blood glucose

  1. Performance of Stochastic Targeted Blood Glucose Control Protocol by virtual trials in the Malaysian intensive care unit.

    PubMed

    Jamaludin, Ummu K; M Suhaimi, Fatanah; Abdul Razak, Normy Norfiza; Md Ralib, Azrina; Mat Nor, Mohd Basri; Pretty, Christopher G; Humaidi, Luqman

    2018-08-01

    Blood glucose variability is common in healthcare and it is not related or influenced by diabetes mellitus. To minimise the risk of high blood glucose in critically ill patients, Stochastic Targeted Blood Glucose Control Protocol is used in intensive care unit at hospitals worldwide. Thus, this study focuses on the performance of stochastic modelling protocol in comparison to the current blood glucose management protocols in the Malaysian intensive care unit. Also, this study is to assess the effectiveness of Stochastic Targeted Blood Glucose Control Protocol when it is applied to a cohort of diabetic patients. Retrospective data from 210 patients were obtained from a general hospital in Malaysia from May 2014 until June 2015, where 123 patients were having comorbid diabetes mellitus. The comparison of blood glucose control protocol performance between both protocol simulations was conducted through blood glucose fitted with physiological modelling on top of virtual trial simulations, mean calculation of simulation error and several graphical comparisons using stochastic modelling. Stochastic Targeted Blood Glucose Control Protocol reduces hyperglycaemia by 16% in diabetic and 9% in nondiabetic cohorts. The protocol helps to control blood glucose level in the targeted range of 4.0-10.0 mmol/L for 71.8% in diabetic and 82.7% in nondiabetic cohorts, besides minimising the treatment hour up to 71 h for 123 diabetic patients and 39 h for 87 nondiabetic patients. It is concluded that Stochastic Targeted Blood Glucose Control Protocol is good in reducing hyperglycaemia as compared to the current blood glucose management protocol in the Malaysian intensive care unit. Hence, the current Malaysian intensive care unit protocols need to be modified to enhance their performance, especially in the integration of insulin and nutrition intervention in decreasing the hyperglycaemia incidences. Improvement in Stochastic Targeted Blood Glucose Control Protocol in terms of u en

  2. Blood glucose screening among elderly Malaysians: Who to target?

    PubMed

    Cheah, Yong Kang; Goh, Kim-Leng

    2017-01-01

    Early detection of raised blood glucose can reduce the risk of developing diabetes. Despite being a high-risk group, a significant proportion of the elderly population does not undergo blood glucose screening. The aim of the present study was to examine the factors affecting blood glucose screening among the elderly. Data from a sample of 2463 respondents in the National Health and Morbidity Survey 2011 were used. Pearson Chi-squared tests were conducted to find factors associated with screening behavior. A logit model was used to analyze the likelihood of screening. Income, age, education, ethnicity, employment status, availability of medical coverage, and smoking behavior were significantly associated with blood glucose screening. The likelihood of blood glucose screening was positively correlated with available monthly income and was higher in those aged 60-69 years, those attaining higher education, Malays, and elderly who are medically covered. The findings of the present study provide insights for health policy formulation for the elderly. As part of their efforts to reduce national health costs, governments should pay particular attention to the elderly, who are likely to be unscreened for blood glucose levels, because they face even larger risk exposure. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  3. Blood glucose monitoring: an overview.

    PubMed

    Whitmore, Catherine

    Glucose monitoring is done to obtain information on blood glucose levels to ensure a therapeutic regimen; the aim is to maintain consistent glucose levels and avoid hypoglycaemia and hyperglycaemia. Self-management is central to diabetes control. Diabetes is individual, so self-monitoring of blood glucose (SMBG) targets and frequency of testing must be decided to meet each patient's needs. Nurses have key roles in education and advocacy. They can educate patients on what affects glucose levels, why they need to carry out SMBG, and how to interpret and act on the results. Nurses also match glucose monitoring meters to patients' needs by considering ease of use, technical features and lifestyle. Access to testing supplies is sometimes restricted through blanket policies and nurses have an advocacy role here in challenging inappropriate restrictions.

  4. Discrepancies Between Blood Glucose and Interstitial Glucose—Technological Artifacts or Physiology: Implications for Selection of the Appropriate Therapeutic Target

    PubMed Central

    Siegmund, Thorsten; Heinemann, Lutz; Kolassa, Ralf; Thomas, Andreas

    2017-01-01

    Background: For decades, the major source of information used to make therapeutic decisions by patients with diabetes has been glucose measurements using capillary blood samples. Knowledge gained from clinical studies, for example, on the impact of metabolic control on diabetes-related complications, is based on such measurements. Different to traditional blood glucose measurement systems, systems for continuous glucose monitoring (CGM) measure glucose in interstitial fluid (ISF). The assumption is that glucose levels in blood and ISF are practically the same and that the information provided can be used interchangeably. Thus, therapeutic decisions, that is, the selection of insulin doses, are based on CGM system results interpreted as though they were blood glucose values. Methods: We performed a more detailed analysis and interpretation of glucose profiles obtained with CGM in situations with high glucose dynamics to evaluate this potentially misleading assumption. Results: Considering physical activity, hypoglycemic episodes, and meal-related differences between glucose levels in blood and ISF uncover clinically relevant differences that can make it risky from a therapeutic point of view to use blood glucose for therapeutic decisions. Conclusions: Further systematic and structured evaluation as to whether the use of ISF glucose is more safe and efficient when it comes to acute therapeutic decisions is necessary. These data might also have a higher prognostic relevance when it comes to long-term metabolic consequences of diabetes. In the long run, it may be reasonable to abandon blood glucose measurements as the basis for diabetes management and switch to using ISF glucose as the appropriate therapeutic target. PMID:28322063

  5. Blood Test: Glucose

    MedlinePlus

    ... Videos for Educators Search English Español Blood Test: Glucose KidsHealth / For Parents / Blood Test: Glucose What's in ... liver or kidneys) is working. What Is a Glucose Test? A glucose test measures how much glucose ...

  6. [The optimal blood glucose target in critically ill patient: comparison of two intensive insulin therapy protocols].

    PubMed

    Raurell Torredà, Marta; del Llano Serrano, César; Almirall Solsona, Dolors; Catalan Ibars, Rosa María; Nicolás Arfelis, José María

    2014-03-04

    Recent studies in critically ill patients receiving insulin intravenous therapy (IIT) have shown an increased incidence of severe hypoglycemia, while intermittent subcutaneous insulin «sliding scales» (conventional insulin therapy [CIT]) is associated with hyperglycemia. The objective of this study is to assess whether glycemic control range IIT can affect glucose levels and their variability and to compare it with CIT. Prospective comparative cohort study in intensive care unit, with 2 study periods: Period 1, IIT with glycemic target range 110-140 mg/dL, and Period 2, IIT of 140-180 mg/dL. In both periods CIT glycemic target was 110-180 mg/dL. We assessed severe hypoglycemia (< 50 mg/dL), moderate hypoglycemia (51-79 mg/dL), hyperglycemia (> 216 mg/L) and the variability of blood glucose. We studied 221 patients with 12.825 blood glucose determinations. Twenty-six and 17% of patients required IIT for glycemic control in Period 1 and 2, respectively. Hypoglycemia was associated with a discontinuous nutritional intake, glycemic target 110-140 mg/dL and low body mass index (BMI) (P = .002). Hyperglycemia was exclusively associated with a history of diabetes mellitus (OR 2.6 [95% CI 1.6 to 4.5]). Glycemic variability was associated with a discontinuous nutritional intake, low BMI, CIT insulinization, diabetes mellitus, elderly and high APACHE II (P < .001). The use of IIT is useful to reduce the variability of blood glucose. Although the 140-180 mg/dL range would be more secure as to presenting greater variability and hyperglycemia, the 110-140 mg/dL range is most suitable. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  7. The optimal blood glucose level for critically ill adult patients.

    PubMed

    Lv, Shaoning; Ross, Paul; Tori, Kathleen

    2017-09-01

    Glycaemic control is recognized as one of the important aspects in managing critically ill patients. Both hyperglycaemia and hypoglycaemia independently increase the risk of patient mortality. Hence, the identification of optimal glycaemic control is of paramount importance in the management of critically ill patients. The aim of this literature review is to examine the current status of glycaemic control in critically ill adult patients. This literature review will focus on randomized controlled trials comparing intensive insulin therapy to conventional insulin therapy, with an objective to identify optimal blood glucose level targets for critically ill adult patients. A literature review was conducted to identify large randomized controlled trials for the optimal targeted blood glucose level for critically ill adult patients published since 2000. A total of eight studies fulfilled the selection criteria of this review. With current human and technology resources, the results of the studies support commencing glycaemic control once the blood glucose level of critically ill patients reaches 10 mmol/L and maintaining this level between 8 mmol/L and 10 mmol/L. This literature review provides a recommendation for targeting the optimal blood glucose level for critically ill patients within moderate blood glucose level target range (8-10 mmol/L). The need for uniformed glucometrics for unbiased reporting and further research for optimal blood glucose target is required, especially in light of new technological advancements in closed-loop insulin delivery and monitoring devices. This literature review has revealed a need to call for consensus in the measurement and reporting of glycaemic control using standardized glucometrics. © 2017 British Association of Critical Care Nurses.

  8. Use of a plastic insulin dosage guide to correct blood glucose levels out of the target range and for carbohydrate counting in subjects with type 1 diabetes.

    PubMed

    Kaufman, F R; Halvorson, M; Carpenter, S

    1999-08-01

    To improve glycemic control, a hand-held plastic Insulin Dosage Guide was developed to correct blood glucose levels outside of the target range. Protocol 1: Some 40 children (mean age 10.6+/-4.6 years) were randomly assigned for 3 months to use a written-on-paper algorithm or the Insulin Dosage Guide to correct abnormal blood glucose levels. Mean HbA1c and blood glucose levels and time to teach insulin dosage correction were compared. Protocol 2: The Insulin Dosage Guide was used by 83 subjects (mean age 11.4+/-4.3 years) for 1 year, and mean HbA1c levels, blood glucose levels, and number of consecutive high blood glucose values taken before and after the year were compared. Protocol 3: Some 20 patients (mean age 10.1+/-3.7 years) using rapid-acting insulin and 64 patients (mean age 15.9+/-3.6 years) using an insulin pump and rapid-acting insulin used the Insulin Dosage Guide and had mean blood glucose levels, HbA1c, and percentage of blood glucose levels outside of the target range determined. Protocol 1: There was a significant reduction in mean HbA1c (P = 0.04) and blood glucose levels (P = 0.05) and in the time needed to teach how to correct blood glucose values using the Insulin Dosage Guide compared with the paper algorithm. Protocol 2: There was a decrease in mean HbA1c levels (P = 0.0001) and a decrease in the mean number of consecutive blood glucose levels (P = 0.001) over the 1-year time period. Protocol 3: With rapid-acting insulin, there was a significant increase in the percentage of blood glucose levels within the target range (1 month, P = 0.04; at 3 months, P = 0.03). With the insulin pump, there was a high rate (90%) of blood glucose levels in the target range during pump initiation when the Insulin Dosage Guide was used. This inexpensive hand-held plastic card, which is portable and easy to use, may help patients improve glycemia and successfully manage diabetes.

  9. Analytical and Clinical Performance of Blood Glucose Monitors

    PubMed Central

    Boren, Suzanne Austin; Clarke, William L.

    2010-01-01

    Background The objective of this study was to understand the level of performance of blood glucose monitors as assessed in the published literature. Methods Medline from January 2000 to October 2009 and reference lists of included articles were searched to identify eligible studies. Key information was abstracted from eligible studies: blood glucose meters tested, blood sample, meter operators, setting, sample of people (number, diabetes type, age, sex, and race), duration of diabetes, years using a glucose meter, insulin use, recommendations followed, performance evaluation measures, and specific factors affecting the accuracy evaluation of blood glucose monitors. Results Thirty-one articles were included in this review. Articles were categorized as review articles of blood glucose accuracy (6 articles), original studies that reported the performance of blood glucose meters in laboratory settings (14 articles) or clinical settings (9 articles), and simulation studies (2 articles). A variety of performance evaluation measures were used in the studies. The authors did not identify any studies that demonstrated a difference in clinical outcomes. Examples of analytical tools used in the description of accuracy (e.g., correlation coefficient, linear regression equations, and International Organization for Standardization standards) and how these traditional measures can complicate the achievement of target blood glucose levels for the patient were presented. The benefits of using error grid analysis to quantify the clinical accuracy of patient-determined blood glucose values were discussed. Conclusions When examining blood glucose monitor performance in the real world, it is important to consider if an improvement in analytical accuracy would lead to improved clinical outcomes for patients. There are several examples of how analytical tools used in the description of self-monitoring of blood glucose accuracy could be irrelevant to treatment decisions. PMID:20167171

  10. Is Low Blood Glucose (Hypoglycemia) Dangerous?

    MedlinePlus

    ... for brain damage related to repeated severe hypoglycemia. Guidelines for managing hypoglycemia Recognize symptoms (physical, emotional, mental) ... not risen above the target levels defined above . Guidelines for safe driving Check blood glucose levels before ...

  11. Is reducing variability of blood glucose the real but hidden target of intensive insulin therapy?

    PubMed

    Egi, Moritoki; Bellomo, Rinaldo; Reade, Michael C

    2009-01-01

    Since the first report that intensive insulin therapy reduced mortality in selected surgical critically ill patients, lowering of blood glucose levels has been recommended as a means of improving patient outcomes. In this initial Leuven trial, blood glucose control by protocol using insulin was applied to 98.7% of patients in the intensive group but to only 39.2% (P < 0.0001) of patients in the control group. If appropriately applied, such protocols should decrease both the mean blood glucose concentration and its variability (variation of blood glucose concentration). Thus, it is logically possible that the benefit of intensive insulin therapy in the first Leuven trial was due to a decrease in mean glucose levels, a decrease in their variability, or both. Several recent studies have confirmed significant associations between variability of blood glucose levels and patient outcomes. Decreasing the variability of blood glucose levels might be an important dimension of glucose management, a possible mechanism by which an intensive insulin protocol exerts its putative beneficial effects, and an important goal of glucose management in the intensive care unit. Clinicians need to be aware of this controversy when considering the application of intensive insulin therapy and interpreting future trials.

  12. Impact of Diet Composition on Blood Glucose Regulation.

    PubMed

    Russell, Wendy R; Baka, Athanasia; Björck, Inger; Delzenne, Nathalie; Gao, Dan; Griffiths, Helen R; Hadjilucas, Ellie; Juvonen, Kristiina; Lahtinen, Sampo; Lansink, Mirian; Loon, Luc Van; Mykkänen, Hannu; Östman, Elin; Riccardi, Gabriele; Vinoy, Sophie; Weickert, Martin O

    2016-01-01

    Nutritional management of blood glucose levels is a strategic target in the prevention and management of type 2 diabetes mellitus (T2DM). To implement such an approach, it is essential to understand the effect of food on glycemic regulation and on the underlying metabolic derangements. This comprehensive review summarizes the results from human dietary interventions exploring the impact of dietary components on blood glucose levels. Included are the major macronutrients; carbohydrate, protein and fat, micronutrient vitamins and minerals, nonnutrient phytochemicals and additional foods including low-calorie sweeteners, vinegar, and alcohol. Based on the evidence presented in this review, it is clear that dietary components have significant and clinically relevant effects on blood glucose modulation. An integrated approach that includes reducing excess body weight, increased physical activity along with a dietary regime to regulate blood glucose levels will not only be advantages in T2DM management, but will benefit the health of the population and limit the increasing worldwide incidence of T2DM.

  13. Current concepts in blood glucose monitoring

    PubMed Central

    Khadilkar, Kranti Shreesh; Bandgar, Tushar; Shivane, Vyankatesh; Lila, Anurag; Shah, Nalini

    2013-01-01

    Blood glucose monitoring has evolved over the last century. The concept of adequate glycemic control and minimum glycemic variability requires an ideal, accurate and reliable glucose monitoring system. The search for an ideal blood glucose monitoring system still continues. This review explains the various blood glucose monitoring systems with special focus on the monitoring systems like self- monitored blood glucose (SMBG) and continuous glucose monitoring system (CGMS). It also focuses on the newer concepts of blood glucose monitoring and their incorporation in routine clinical management of diabetes mellitus. PMID:24910827

  14. Blood glucose level reconstruction as a function of transcapillary glucose transport.

    PubMed

    Koutny, Tomas

    2014-10-01

    A diabetic patient occasionally undergoes a detailed monitoring of their glucose levels. Over the course of a few days, a monitoring system provides a detailed track of their interstitial fluid glucose levels measured in their subcutaneous tissue. A discrepancy in the blood and interstitial fluid glucose levels is unimportant because the blood glucose levels are not measured continuously. Approximately five blood glucose level samples are taken per day, and the interstitial fluid glucose level is usually measured every 5min. An increased frequency of blood glucose level sampling would cause discomfort for the patient; thus, there is a need for methods to estimate blood glucose levels from the glucose levels measured in subcutaneous tissue. The Steil-Rebrin model is widely used to describe the relationship between blood and interstitial fluid glucose dynamics. However, we measured glucose level patterns for which the Steil-Rebrin model does not hold. Therefore, we based our research on a different model that relates present blood and interstitial fluid glucose levels to future interstitial fluid glucose levels. Using this model, we derived an improved model for calculating blood glucose levels. In the experiments conducted, this model outperformed the Steil-Rebrin model while introducing no additional requirements for glucose sample collection. In subcutaneous tissue, 26.71% of the calculated blood glucose levels had absolute values of relative differences from smoothed measured blood glucose levels less than or equal to 5% using the Steil-Rebrin model. However, the same difference interval was encountered in 63.01% of the calculated blood glucose levels using the proposed model. In addition, 79.45% of the levels calculated with the Steil-Rebrin model compared with 95.21% of the levels calculated with the proposed model had 20% difference intervals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Evaluation of Blood Glucose Meter Efficacy in an Antenatal Diabetes Clinic.

    PubMed

    McGrath, Rachel T; Donnelly, Vanessa C; Glastras, Sarah J; Preda, Veronica A; Sheriff, Nisa; Ward, Peter; Hocking, Samantha L; Fulcher, Gregory R

    2016-02-01

    The optimal treatment of diabetes in pregnancy requires accurate measurement of blood glucose levels, in order to minimize adverse outcomes for both mother and neonate. Self-monitoring of blood glucose is routinely used to measure glycemic control and to assess whether treatment targets are being met; however, the accuracy of blood glucose meters in pregnancy is unclear. Pregnant women with gestational, type 1, or type 2 diabetes mellitus were eligible to participate. Nonfasting capillary blood glucose levels were measured in duplicate using the BGStar(®) (Sanofi, Sydney, Australia) and FreeStyle Lite(®) (Abbott, Sydney) blood glucose meters. Venous blood samples were collected and analyzed for plasma glucose, hematocrit, and glycated hemoglobin. Capillary blood glucose was compared with plasma glucose and further assessed according to International Organization for Standardization (ISO) 15197:2013 standards. One hundred ten women were recruited, providing 96 samples suitable for analysis. The mean ± SD laboratory plasma glucose level was 4.6 ± 1.4 mmol/L; the BGStar and FreeStyle Lite capillary blood glucose values were 5.3 ± 1.4 mmol/L and 5.0 ± 1.3 mmol/L, respectively. Both meters showed a positive bias (0.42 mmol/L for the FreeStyle Lite and 0.65 mmol/L for the BGStar). Furthermore, neither meter fulfilled the ISO 15197:2013 standards, and there was a nonsignificant improvement in meter performance at blood glucose levels of ≤4.2 mmol/L. Hematocrit did not affect the results of either blood glucose meter. Clarke Error Grid analysis demonstrated that approximately 70% of the results of both meters would lead to appropriate clinical action. The BGStar and FreeStyle Lite blood glucose meters did not meet ISO 15197:2013 recommendations for blood glucose monitoring systems when assessed in a population of women with diabetes in pregnancy. Clinicians should consider this difference in blood glucose readings when making diabetes

  16. Targeting hepatic glucose output in the treatment of type 2 diabetes

    PubMed Central

    Rines, Amy K.; Sharabi, Kfir; Tavares, Clint D. J.; Puigserver, Pere

    2017-01-01

    Type 2 diabetes mellitus is characterized by the dysregulation of glucose homeostasis resulting in hyperglycemia. Although current diabetes treatments have exhibited some success in lowering blood glucose, their effect is not always sustained and their use may be associated with undesirable side effects, such as hypoglycemia. Novel diabetic drugs, which may be used in combination with existing therapies, are therefore needed. The potential of specifically targeting the liver in order to normalize blood glucose levels has not been fully exploited. Here, we review the molecular mechanisms controlling hepatic gluconeogenesis and glycogen storage, and assess the prospect of therapeutically targeting associated pathways to treat type 2 diabetes. PMID:27516169

  17. Blood glucose prediction using neural network

    NASA Astrophysics Data System (ADS)

    Soh, Chit Siang; Zhang, Xiqin; Chen, Jianhong; Raveendran, P.; Soh, Phey Hong; Yeo, Joon Hock

    2008-02-01

    We used neural network for blood glucose level determination in this study. The data set used in this study was collected using a non-invasive blood glucose monitoring system with six laser diodes, each laser diode operating at distinct near infrared wavelength between 1500nm and 1800nm. The neural network is specifically used to determine blood glucose level of one individual who participated in an oral glucose tolerance test (OGTT) session. Partial least squares regression is also used for blood glucose level determination for the purpose of comparison with the neural network model. The neural network model performs better in the prediction of blood glucose level as compared with the partial least squares model.

  18. Blood glucose regulation during living-donor liver transplant surgery.

    PubMed

    Gedik, Ender; İlksen Toprak, Hüseyin; Koca, Erdinç; Şahin, Taylan; Özgül, Ülkü; Ersoy, Mehmet Özcan

    2015-04-01

    The goal of this study was to compare the effects of 2 different regimens on blood glucose levels of living-donor liver transplant. The study participants were randomly allocated to the dextrose in water plus insulin infusion group (group 1, n = 60) or the dextrose in water infusion group (group 2, n = 60) using a sealed envelope technique. Blood glucose levels were measured 3 times during each phase. When the blood glucose level of a patient exceeded the target level, extra insulin was administered via a different intravenous route. The following patient and procedural characteristics were recorded: age, sex, height, weight, body mass index, end-stage liver disease, Model for End-Stage Liver Disease score, total anesthesia time, total surgical time, and number of patients who received an extra bolus of insulin. The following laboratory data were measured pre- and postoperatively: hemoglobin, hematocrit, platelet count, prothrombin time, international normalized ratio, potassium, creatinine, total bilirubin, and albumin. No hypoglycemia was noted. The recipients exhibited statistically significant differences in blood glucose levels during the dissection and neohepatic phases. Blood glucose levels at every time point were significantly different compared with the first dissection time point in group 1. Excluding the first and second anhepatic time points, blood glucose levels were significantly different as compared with the first dissection time point in group 2 (P < .05). We concluded that dextrose with water infusion alone may be more effective and result in safer blood glucose levels as compared with dextrose with water plus insulin infusion for living-donor liver transplant recipients. Exogenous continuous insulin administration may induce hyperglycemic attacks, especially during the neohepatic phase of living-donor liver transplant surgery. Further prospective studies that include homogeneous patient subgroups and diabetic recipients are needed to support the

  19. Accuracy of blood-glucose measurements using glucose meters and arterial blood gas analyzers in critically ill adult patients: systematic review

    PubMed Central

    2013-01-01

    Introduction Glucose control to prevent both hyperglycemia and hypoglycemia is important in an intensive care unit. Arterial blood gas analyzers and glucose meters are commonly used to measure blood-glucose concentration in an intensive care unit; however, their accuracies are still unclear. Methods We performed a systematic literature search (January 1, 2001, to August 31, 2012) to find clinical studies comparing blood-glucose values measured with glucose meters and/or arterial blood gas analyzers with those simultaneously measured with a central laboratory machine in critically ill adult patients. Results We reviewed 879 articles and found 21 studies in which the accuracy of blood-glucose monitoring by arterial blood gas analyzers and/or glucometers by using central laboratory methods as references was assessed in critically ill adult patients. Of those 21 studies, 11 studies in which International Organization for Standardization criteria, error-grid method, or percentage of values within 20% of the error of a reference were used were selected for evaluation. The accuracy of blood-glucose measurements by arterial blood gas analyzers and glucose meters by using arterial blood was significantly higher than that of measurements with glucose meters by using capillary blood (odds ratios for error: 0.04, P < 0.001; and 0.36, P < 0.001). The accuracy of blood-glucose measurements with arterial blood gas analyzers tended to be higher than that of measurements with glucose meters by using arterial blood (P = 0.20). In the hypoglycemic range (defined as < 81 mg/dl), the incidence of errors using these devices was higher than that in the nonhypoglycemic range (odds ratios for error: arterial blood gas analyzers, 1.86, P = 0.15; glucose meters with capillary blood, 1.84, P = 0.03; glucose meters with arterial blood, 2.33, P = 0.02). Unstable hemodynamics (edema and use of a vasopressor) and use of insulin were associated with increased error of blood glucose monitoring with

  20. Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery.

    PubMed

    Patching, Simon G

    2017-03-01

    Glucose transporters (GLUTs) at the blood-brain barrier maintain the continuous high glucose and energy demands of the brain. They also act as therapeutic targets and provide routes of entry for drug delivery to the brain and central nervous system for treatment of neurological and neurovascular conditions and brain tumours. This article first describes the distribution, function and regulation of glucose transporters at the blood-brain barrier, the major ones being the sodium-independent facilitative transporters GLUT1 and GLUT3. Other GLUTs and sodium-dependent transporters (SGLTs) have also been identified at lower levels and under various physiological conditions. It then considers the effects on glucose transporter expression and distribution of hypoglycemia and hyperglycemia associated with diabetes and oxygen/glucose deprivation associated with cerebral ischemia. A reduction in glucose transporters at the blood-brain barrier that occurs before the onset of the main pathophysiological changes and symptoms of Alzheimer's disease is a potential causative effect in the vascular hypothesis of the disease. Mutations in glucose transporters, notably those identified in GLUT1 deficiency syndrome, and some recreational drug compounds also alter the expression and/or activity of glucose transporters at the blood-brain barrier. Approaches for drug delivery across the blood-brain barrier include the pro-drug strategy whereby drug molecules are conjugated to glucose transporter substrates or encapsulated in nano-enabled delivery systems (e.g. liposomes, micelles, nanoparticles) that are functionalised to target glucose transporters. Finally, the continuous development of blood-brain barrier in vitro models is important for studying glucose transporter function, effects of disease conditions and interactions with drugs and xenobiotics.

  1. [The blood glucose value not necessarily indicates correctly the cellular metabolic state].

    PubMed

    Simon, Kornél; Wittmann, István

    2017-03-01

    In clinical recommendations the normalized blood glucose level is declared as the main target in therapy of diabetes mellitus, i.e. the achievement of euglycemia is the main therapeutic goal. This approach suggests, that the normal blood glucose value is the marker of the normal carbohydrate metabolism (eumetabolism), and vice versa: hyperglycemia is associated with abnormal metabolism (dysmetabolism). However the question arises, whether identical blood glucose values do reflect the same intracellular biochemical mechanisms? On the basis of data published in the literature authors try to answer these questions by studying the relations between the short/longterm blood glucose level and the cellular metabolism in different clinical settings characterized by divergent pathophysiological parameters. The correlations between blood glucose level and cellular metabolism in development of micro-, and macroangiopathy, in the breakthrough phenomenon, as well as during administration of metabolic promoters, the discrepancies of relation between blood glucose values and cellular metabolism in type 1, and type 2 diabetes mellitus, furthermore association between blood glucose value and myocardial metabolism in acute and chronic stress were analyzed. Authors conclude, that the actual blood glucose values reveal the actual cellular metabolism in a very variable manner: neither euglycemia does mandatorily indicate eumetabolism (balance of cellular energy production), nor hyperglycemia is necessarily a marker of abnormal metabolic state (dept of cellular energy production). Moreover, at the same actual blood glucose level both the metabolic efficacy of the same organ may sharply vary, and the intracellular biochemical machinery could also be very different. In case of the very same longterm blood glucose level the metabolic state of the different organs could be very variable: some organs show an energetically balanced metabolism, while others produce a significant deficit. These

  2. Blood Glucose Levels and Problem Behavior

    ERIC Educational Resources Information Center

    Valdovinos, Maria G.; Weyand, David

    2006-01-01

    The relationship between varying blood glucose levels and problem behavior during daily scheduled activities was examined. The effects that varying blood glucose levels had on problem behavior during daily scheduled activities were examined. Prior research has shown that differing blood glucose levels can affect behavior and mood. Results of this…

  3. Calibration in dogs of a subcutaneous miniaturized glucose sensor using a glucose meter for blood glucose determination.

    PubMed

    Poitout, V; Moatti-Sirat, D; Reach, G

    1992-01-01

    The feasibility of calibrating a glucose sensor by using a wearable glucose meter for blood glucose determination and moderate variations of blood glucose concentration was assessed. Six miniaturized glucose sensors were implanted in the subcutaneous tissue of conscious dogs, and the parameters used for the in vivo calibration of the sensor (sensitivity coefficient and extrapolated current in the absence of glucose) were determined from values of blood glucose and sensor response obtained during glucose infusion. (1) Venous plasma glucose level and venous total blood glucose level were measured simultaneously on the same sample, using a Beckman analyser and a Glucometer II, respectively. The regression between plasma glucose (x) and whole blood glucose (y) was y = 1.12x-0.08 mM (n = 114 values, r = 0.96, p = 0.0001). The error grid analysis indicated that the use of a Glucometer II for blood glucose determination was appropriate in dogs. (2) The in vivo sensitivity coefficients were 0.57 +/- 0.11 nA mM-1 when determined from plasma glucose, and 0.51 +/- 0.07 nA mM-1 when determined from whole blood glucose (t = 1.53, p = 0.18, n.s.). The background currents were 0.88 +/- 0.57 nA when determined from plasma glucose, and 0.63 +/- 0.77 nA when determined from whole blood glucose (t = 0.82, p = 0.45, n.s.). (3) The regression equation of the estimation of the subcutaneous glucose level obtained from the two methods was y = 1.04x + 0.56 mM (n = 171 values, r = 0.98, p = 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)

  4. An artificial pancreas provided a novel model of blood glucose level variability in beagles.

    PubMed

    Munekage, Masaya; Yatabe, Tomoaki; Kitagawa, Hiroyuki; Takezaki, Yuka; Tamura, Takahiko; Namikawa, Tsutomu; Hanazaki, Kazuhiro

    2015-12-01

    Although the effects on prognosis of blood glucose level variability have gained increasing attention, it is unclear whether blood glucose level variability itself or the manifestation of pathological conditions that worsen prognosis. Then, previous reports have not been published on variability models of perioperative blood glucose levels. The aim of this study is to establish a novel variability model of blood glucose concentration using an artificial pancreas. We maintained six healthy, male beagles. After anesthesia induction, a 20-G venous catheter was inserted in the right femoral vein and an artificial pancreas (STG-22, Nikkiso Co. Ltd., Tokyo, Japan) was connected for continuous blood glucose monitoring and glucose management. After achieving muscle relaxation, total pancreatectomy was performed. After 1 h of stabilization, automatic blood glucose control was initiated using the artificial pancreas. Blood glucose level varied for 8 h, alternating between the target blood glucose values of 170 and 70 mg/dL. Eight hours later, the experiment was concluded. Total pancreatectomy was performed for 62 ± 13 min. Blood glucose swings were achieved 9.8 ± 2.3 times. The average blood glucose level was 128.1 ± 5.1 mg/dL with an SD of 44.6 ± 3.9 mg/dL. The potassium levels after stabilization and at the end of the experiment were 3.5 ± 0.3 and 3.1 ± 0.5 mmol/L, respectively. In conclusion, the results of the present study demonstrated that an artificial pancreas contributed to the establishment of a novel variability model of blood glucose levels in beagles.

  5. Effects of simulated altitude on blood glucose meter performance: implications for in-flight blood glucose monitoring.

    PubMed

    Olateju, Tolu; Begley, Joseph; Flanagan, Daniel; Kerr, David

    2012-07-01

    Most manufacturers of blood glucose monitoring equipment do not give advice regarding the use of their meters and strips onboard aircraft, and some airlines have blood glucose testing equipment in the aircraft cabin medical bag. Previous studies using older blood glucose meters (BGMs) have shown conflicting results on the performance of both glucose oxidase (GOX)- and glucose dehydrogenase (GDH)-based meters at high altitude. The aim of our study was to evaluate the performance of four new-generation BGMs at sea level and at a simulated altitude equivalent to that used in the cabin of commercial aircrafts. Blood glucose measurements obtained by two GDH and two GOX BGMs at sea level and simulated altitude of 8000 feet in a hypobaric chamber were compared with measurements obtained using a YSI 2300 blood glucose analyzer as a reference method. Spiked venous blood samples of three different glucose levels were used. The accuracy of each meter was determined by calculating percentage error of each meter compared with the YSI reference and was also assessed against standard International Organization for Standardization (ISO) criteria. Clinical accuracy was evaluated using the consensus error grid method. The percentage (standard deviation) error for GDH meters at sea level and altitude was 13.36% (8.83%; for meter 1) and 12.97% (8.03%; for meter 2) with p = .784, and for GOX meters was 5.88% (7.35%; for meter 3) and 7.38% (6.20%; for meter 4) with p = .187. There was variation in the number of time individual meters met the standard ISO criteria ranging from 72-100%. Results from all four meters at both sea level and simulated altitude fell within zones A and B of the consensus error grid, using YSI as the reference. Overall, at simulated altitude, no differences were observed between the performance of GDH and GOX meters. Overestimation of blood glucose concentration was seen among individual meters evaluated, but none of the results obtained would have resulted in

  6. Blood Glucose Test: MedlinePlus Lab Test Information

    MedlinePlus

    ... https://medlineplus.gov/labtests/bloodglucosetest.html Blood Glucose Test To use the sharing features on this page, please enable JavaScript. What is a Blood Glucose Test? A blood glucose test measures the glucose levels ...

  7. Predicted Blood Glucose from Insulin Administration Based on Values from Miscoded Glucose Meters

    PubMed Central

    Raine, Charles H.; Pardo, Scott; Parkes, Joan Lee

    2008-01-01

    Objectives The proper use of many types of self-monitored blood glucose (SMBG) meters requires calibration to match strip code. Studies have demonstrated the occurrence and impact on insulin dose of coding errors with SMBG meters. This paper reflects additional analyses performed with data from Raine et al. (JDST, 2:205–210, 2007). It attempts to relate potential insulin dose errors to possible adverse blood glucose outcomes when glucose meters are miscoded. Methods Five sets of glucose meters were used. Two sets of meters were autocoded and therefore could not be miscoded, and three sets required manual coding. Two of each set of manually coded meters were deliberately miscoded, and one from each set was properly coded. Subjects (n = 116) had finger stick blood glucose obtained at fasting, as well as at 1 and 2 hours after a fixed meal (Boost®; Novartis Medical Nutrition U.S., Basel, Switzerland). Deviations of meter blood glucose results from the reference method (YSI) were used to predict insulin dose errors and resultant blood glucose outcomes based on these deviations. Results Using insulin sensitivity data, it was determined that, given an actual blood glucose of 150–400 mg/dl, an error greater than +40 mg/dl would be required to calculate an insulin dose sufficient to produce a blood glucose of less than 70 mg/dl. Conversely, an error less than or equal to -70 mg/dl would be required to derive an insulin dose insufficient to correct an elevated blood glucose to less than 180 mg/dl. For miscoded meters, the estimated probability to produce a blood glucose reduction to less than or equal to 70 mg/dl was 10.40%. The corresponding probabilities for autocoded and correctly coded manual meters were 2.52% (p < 0.0001) and 1.46% (p < 0.0001), respectively. Furthermore, the errors from miscoded meters were large enough to produce a calculated blood glucose outcome less than or equal to 50 mg/dl in 42 of 833 instances. Autocoded meters produced zero (0) outcomes

  8. Predicted blood glucose from insulin administration based on values from miscoded glucose meters.

    PubMed

    Raine, Charles H; Pardo, Scott; Parkes, Joan Lee

    2008-07-01

    The proper use of many types of self-monitored blood glucose (SMBG) meters requires calibration to match strip code. Studies have demonstrated the occurrence and impact on insulin dose of coding errors with SMBG meters. This paper reflects additional analyses performed with data from Raine et al. (JDST, 2:205-210, 2007). It attempts to relate potential insulin dose errors to possible adverse blood glucose outcomes when glucose meters are miscoded. Five sets of glucose meters were used. Two sets of meters were autocoded and therefore could not be miscoded, and three sets required manual coding. Two of each set of manually coded meters were deliberately miscoded, and one from each set was properly coded. Subjects (n = 116) had finger stick blood glucose obtained at fasting, as well as at 1 and 2 hours after a fixed meal (Boost((R)); Novartis Medical Nutrition U.S., Basel, Switzerland). Deviations of meter blood glucose results from the reference method (YSI) were used to predict insulin dose errors and resultant blood glucose outcomes based on these deviations. Using insulin sensitivity data, it was determined that, given an actual blood glucose of 150-400 mg/dl, an error greater than +40 mg/dl would be required to calculate an insulin dose sufficient to produce a blood glucose of less than 70 mg/dl. Conversely, an error less than or equal to -70 mg/dl would be required to derive an insulin dose insufficient to correct an elevated blood glucose to less than 180 mg/dl. For miscoded meters, the estimated probability to produce a blood glucose reduction to less than or equal to 70 mg/dl was 10.40%. The corresponding probabilities for autocoded and correctly coded manual meters were 2.52% (p < 0.0001) and 1.46% (p < 0.0001), respectively. Furthermore, the errors from miscoded meters were large enough to produce a calculated blood glucose outcome less than or equal to 50 mg/dl in 42 of 833 instances. Autocoded meters produced zero (0) outcomes less than or equal to 50 mg

  9. Evaluation of the agreement among three handheld blood glucose meters and a laboratory blood analyzer for measurement of blood glucose concentration in Hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Acierno, Mark J; Mitchell, Mark A; Schuster, Patricia J; Freeman, Diana; Sanchez-Migallon Guzman, David; Tully, Thomas N

    2009-02-01

    To determine the degree of agreement between 3 commercially available point-of-care blood glucose meters and a laboratory analyzer for measurement of blood glucose concentrations in Hispaniolan Amazon parrots (Amazona ventralis). 20 healthy adult Hispaniolan Amazon parrots. A 26-gauge needle and 3-mL syringe were used to obtain a blood sample (approx 0.5 mL) from a jugular vein of each parrot. Small volumes of blood (0.6 to 1.5 microL) were used to operate each of the blood glucose meters, and the remainder was placed into lithium heparin microtubes and centrifuged. Plasma was harvested and frozen at -30 degrees C. Within 5 days after collection, plasma samples were thawed and plasma glucose concentrations were measured by means of the laboratory analyzer. Agreement between pairs of blood glucose meters and between each blood glucose meter and the laboratory analyzer was evaluated by means of the Bland-Altman method, and limits of agreement (LOA) were calculated. None of the results of the 3 blood glucose meters agreed with results of the laboratory analyzer. Each point-of-care blood glucose meter underestimated the blood glucose concentration, and the degree of negative bias was not consistent (meter A bias, -94.9 mg/dL [LOA, -148.0 to -41.7 mg/dL]; meter B bias, -52 mg/dL [LOA, -107.5 to 3.5 mg/dL]; and meter C bias, -78.9 mg/dL [LOA, -137.2 to -20.6 mg/dL]). On the basis of these results, use of handheld blood glucose meters in the diagnosis or treatment of Hispaniolan Amazon parrots and other psittacines cannot be recommended.

  10. Cutpoints for screening blood glucose concentrations in healthy senior cats.

    PubMed

    Reeve-Johnson, Mia K; Rand, Jacquie S; Vankan, Dianne; Anderson, Stephen T; Marshall, Rhett; Morton, John M

    2017-12-01

    Objectives The objectives of this study were to determine the reference interval for screening blood glucose in senior cats, to apply this to a population of obese senior cats, to compare screening and fasting blood glucose, to assess whether screening blood glucose is predicted by breed, body weight, body condition score (BCS), behaviour score, fasting blood glucose and/or recent carbohydrate intake and to assess its robustness to changes in methodology. Methods The study included a total of 120 clinically healthy client-owned cats aged 8 years and older of varying breeds and BCSs. Blood glucose was measured at the beginning of the consultation from an ear/paw sample using a portable glucose meter calibrated for cats, and again after physical examination from a jugular sample. Fasting blood glucose was measured after overnight hospitalisation and fasting for 18-24 h. Results The reference interval upper limit for screening blood glucose was 189 mg/dl (10.5 mmol/l). Mean screening blood glucose was greater than mean fasting glucose. Breed, body weight, BCS, behaviour score, fasting blood glucose concentration and amount of carbohydrate consumed 2-24 h before sampling collectively explained only a small proportion of the variability in screening blood glucose. Conclusions and relevance Screening blood glucose measurement represents a simple test, and cats with values from 117-189 mg/dl (6.5-10.5 mmol/l) should be retested several hours later. Cats with initial screening blood glucose >189 mg/dl (10.5 mmol/l), or a second screening blood glucose >116 mg/dl (6.4 mmol/l) several hours after the first, should have fasting glucose and glucose tolerance measured after overnight hospitalisation.

  11. Correlation of salivary glucose level with blood glucose level in diabetes mellitus.

    PubMed

    Gupta, Shreya; Nayak, Meghanand T; Sunitha, J D; Dawar, Geetanshu; Sinha, Nidhi; Rallan, Neelakshi Singh

    2017-01-01

    Saliva is a unique fluid, which is important for normal functioning of the oral cavity. Diabetes mellitus (DM) is a disease of absolute or relative insulin deficiency characterized by insufficient secretion of insulin by pancreatic beta-cells. The diagnosis of diabetes through blood is difficult in children, older adults, debilitated and chronically ill patients, so diagnosis by analysis of saliva can be potentially valuable as collection of saliva is noninvasive, easier and technically insensitive, unlike blood. The aim of the study was to correlate blood glucose level (BGL) and salivary glucose level (SGL) in DM patients. A cross-sectional study was conducted in 120 patients, who were categorized as 40 controlled diabetics, 40 uncontrolled diabetics and 40 healthy, age- and sex-matched individuals constituted the controls. The blood and unstimulated saliva samples were collected from the patients at the different intervals for fasting, random and postprandial levels. These samples were then subjected for analysis of glucose in blood and saliva using glucose oxidase/peroxidase reagent in HITACHI 902 (R) Automatic analyzer, and the results were recorded. The mean SGLs were higher in uncontrolled and controlled diabetic groups than in nondiabetic group. A highly statistically significant correlation was found between fasting saliva glucose and fasting blood glucose in all the groups. With increase in BGL, increase in SGL was observed in patients with diabetes suggesting that SGL can be used for monitoring glycemic level in DM.

  12. Correlation of salivary glucose level with blood glucose level in diabetes mellitus

    PubMed Central

    Gupta, Shreya; Nayak, Meghanand T; Sunitha, JD; Dawar, Geetanshu; Sinha, Nidhi; Rallan, Neelakshi Singh

    2017-01-01

    Background: Saliva is a unique fluid, which is important for normal functioning of the oral cavity. Diabetes mellitus (DM) is a disease of absolute or relative insulin deficiency characterized by insufficient secretion of insulin by pancreatic beta-cells. The diagnosis of diabetes through blood is difficult in children, older adults, debilitated and chronically ill patients, so diagnosis by analysis of saliva can be potentially valuable as collection of saliva is noninvasive, easier and technically insensitive, unlike blood. The aim of the study was to correlate blood glucose level (BGL) and salivary glucose level (SGL) in DM patients. Methodology: A cross-sectional study was conducted in 120 patients, who were categorized as 40 controlled diabetics, 40 uncontrolled diabetics and 40 healthy, age- and sex-matched individuals constituted the controls. The blood and unstimulated saliva samples were collected from the patients at the different intervals for fasting, random and postprandial levels. These samples were then subjected for analysis of glucose in blood and saliva using glucose oxidase/peroxidase reagent in HITACHI 902(R) Automatic analyzer, and the results were recorded. Results: The mean SGLs were higher in uncontrolled and controlled diabetic groups than in nondiabetic group. A highly statistically significant correlation was found between fasting saliva glucose and fasting blood glucose in all the groups. Conclusion: With increase in BGL, increase in SGL was observed in patients with diabetes suggesting that SGL can be used for monitoring glycemic level in DM. PMID:29391704

  13. Change in blood glucose level in rats after immobilization

    NASA Technical Reports Server (NTRS)

    Platonov, R. D.; Baskakova, G. M.; Chepurnov, S. A.

    1981-01-01

    Experiments were carried out on male white rats divided into four groups. In group one the blood glucose level was determined immediately after immobilization. In the other three groups, two hours following immobilization, the blood glucose level was determined every 20 minutes for 3 hours 40 minutes by the glucose oxidase method. Preliminary immobilization for 2 hours removed the increase in the blood glucose caused by the stress reaction. By the 2nd hour of immobilization in the presence of continuing stress, the blood glucose level stabilized and varied within 42 + or - 5.5 and 47 + or - 8.1 mg %. Within 2 hours after the immobilization, the differences in the blood glucose level of the rats from the control groups were statistically insignificant.

  14. Blood Glucose, Diet-Based Glycemic Load and Cognitive Aging Among Dementia-Free Older Adults

    PubMed Central

    Andel, Ross; McEvoy, Cathy; Dahl Aslan, Anna K.; Finkel, Deborah; Pedersen, Nancy L.

    2015-01-01

    Background. Although evidence indicates that Type II Diabetes is related to abnormal brain aging, the influence of elevated blood glucose on long-term cognitive change is unclear. In addition, the relationship between diet-based glycemic load and cognitive aging has not been extensively studied. The focus of this study was to investigate the influence of diet-based glycemic load and blood glucose on cognitive aging in older adults followed for up to 16 years. Methods. Eight-hundred and thirty-eight cognitively healthy adults aged ≥50 years (M = 63.1, SD = 8.3) from the Swedish Adoption/Twin Study of Aging were studied. Mixed effects growth models were utilized to assess overall performance and change in general cognitive functioning, perceptual speed, memory, verbal ability, and spatial ability as a function of baseline blood glucose and diet-based glycemic load. Results. High blood glucose was related to poorer overall performance on perceptual speed as well as greater rates of decline in general cognitive ability, perceptual speed, verbal ability, and spatial ability. Diet-based glycemic load was related to poorer overall performance in perceptual speed and spatial ability. Conclusion. Diet-based glycemic load and, in particular, elevated blood glucose appear important for cognitive performance/cognitive aging. Blood glucose control (perhaps through low glycemic load diets) may be an important target in the detection and prevention of age-related cognitive decline. PMID:25149688

  15. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    NASA Astrophysics Data System (ADS)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  16. Glucose turnover and defense of blood glucose levels in Arctic fox (Alopex lagopus).

    PubMed

    Tallas, P G; White, R G

    1988-01-01

    1. Glucose utilization was assessed in fed and fasted arctic fox, maintained on a diet similar in composition to food available in the wild. 2. Fasted (24 hr) glucose concentration was not significantly different from the fed level (134 mg/dl). 3. Fasting was associated with a significant reduction in glucose space, pool size, total entry rate, and irreversible loss which suggests a decline in gluconeogenesis. 4. Glucose recycling was not significantly different between the fed and fasted states. 5. We suggest that, in the arctic fox, the mechanism for defending blood glucose levels during fasting is based on restricting blood glucose to tissues with a high glucose dependency.

  17. Intracerebroventricular Kainic Acid-Induced Damage Affects Blood Glucose Level in d-glucose-fed Mouse Model

    PubMed Central

    Kim, Chea-Ha

    2015-01-01

    We have previously reported that the intracerebroventricular (i.c.v.) administration of kainic acid (KA) results in significant neuronal damage on the hippocampal CA3 region. In this study, we examined possible changes in the blood glucose level after i.c.v. pretreatment with KA. The blood glucose level was elevated at 30 min, began to decrease at 60 min and returned to normal at 120 min after D-glucose-feeding. We found that the blood glucose level in the KA-pretreated group was higher than in the saline-pretreated group. The up-regulation of the blood glucose level in the KA-pretreated group was still present even after 1~4 weeks. The plasma corticosterone and insulin levels were slightly higher in the KA-treated group. Corticosterone levels decreased whereas insulin levels were elevated when mice were fed with D-glucose. The i.c.v. pretreatment with KA for 24 hr caused a significant reversal of D-glucose-induced down-regulation of corticosterone level. However, the insulin level was enhanced in the KA-pretreated group compared to the vehicle-treated group when mice were fed with D-glucose. These results suggest that KA-induced alterations of the blood glucose level are related to cell death in the CA3 region whereas the up-regulation of blood glucose level in the KA-pretreated group appears to be due to a reversal of D-glucose feeding-induced down-regulation of corticosterone level. PMID:25792867

  18. Intracerebroventricular Kainic Acid-Induced Damage Affects Blood Glucose Level in d-glucose-fed Mouse Model.

    PubMed

    Kim, Chea-Ha; Hong, Jae-Seung

    2015-03-01

    We have previously reported that the intracerebroventricular (i.c.v.) administration of kainic acid (KA) results in significant neuronal damage on the hippocampal CA3 region. In this study, we examined possible changes in the blood glucose level after i.c.v. pretreatment with KA. The blood glucose level was elevated at 30 min, began to decrease at 60 min and returned to normal at 120 min after D-glucose-feeding. We found that the blood glucose level in the KA-pretreated group was higher than in the saline-pretreated group. The up-regulation of the blood glucose level in the KA-pretreated group was still present even after 1~4 weeks. The plasma corticosterone and insulin levels were slightly higher in the KA-treated group. Corticosterone levels decreased whereas insulin levels were elevated when mice were fed with D-glucose. The i.c.v. pretreatment with KA for 24 hr caused a significant reversal of D-glucose-induced down-regulation of corticosterone level. However, the insulin level was enhanced in the KA-pretreated group compared to the vehicle-treated group when mice were fed with D-glucose. These results suggest that KA-induced alterations of the blood glucose level are related to cell death in the CA3 region whereas the up-regulation of blood glucose level in the KA-pretreated group appears to be due to a reversal of D-glucose feeding-induced down-regulation of corticosterone level.

  19. Transcutaneous blood glucose monitoring system based on an ISFET glucose sensor and studies on diabetic patients.

    PubMed

    Ito, N; Saito, A; Kayashima, S; Kimura, J; Kuriyama, T; Nagata, N; Arai, T; Kikuchi, M

    1995-01-01

    A transcutaneous blood glucose monitoring system consists of an ion-sensitive field-effect transistor (ISFET) glucose sensor unit and a suction effusion fluid (SEF) collecting unit. The SEF is directly collected by a weak suction (400 mmHg absolute pressure) through the skin from which the corneum layer of the epidermis has been previously removed. An ISFET glucose sensor unit is able to measure glucose concentrations in a microliter order sampling volume. The system was applied to three diabetic patients during a 75 g oral glucose tolerance test for monitoring blood glucose levels. During the experiments, glucose changes in the SEF followed actual blood glucose levels with 10 min delays. Results suggest the feasibility of utilizing quasi-continuous, transcutaneous blood glucose monitoring for individual patients with various diabetic histories or diabetic complications.

  20. Evaluation of Correlation of Blood Glucose and Salivary Glucose Level in Known Diabetic Patients.

    PubMed

    Gupta, Anjali; Singh, Siddharth Kumar; Padmavathi, B N; Rajan, S Y; Mamatha, G P; Kumar, Sandeep; Roy, Sayak; Sareen, Mohit

    2015-05-01

    Diabetes mellitus is a chronic heterogenous disease in which there is dysregulation of carbohydrates, protein and lipid metabolism; leading to elevated blood glucose levels. The present study was conducted to evaluate the correlation between blood glucose and salivary glucose levels in known diabetic patients and control group and also to evaluate salivary glucose level as a diagnostic tool in diabetic patients. A total number of 250 patients were studied, out of which 212 formed the study group and 38 formed the control group. Among 250 patients, correlation was evaluated between blood glucose and salivary glucose values which on analysis revealed Pearson correlation of 0.073. The p-value was 0.247, which was statistically non significant. Salivary glucose values cannot be considered as a diagnostic tool for diabetic individuals.

  1. Prospective Study of Fasting Blood Glucose and Intracerebral Hemorrhagic Risk.

    PubMed

    Jin, Cheng; Li, Guohong; Rexrode, Kathryn M; Gurol, Mahmut E; Yuan, Xiaodong; Hui, Ying; Ruan, Chunyu; Vaidya, Anand; Wang, Yanxiu; Wu, Shouling; Gao, Xiang

    2018-01-01

    Although diabetes mellitus is an established independent risk factor for ischemic stroke, the association between fasting blood glucose and intracerebral hemorrhage (ICH) is limited and inconsistent. The objective of the current study was to examine the potential impact of long-term fasting blood glucose concentration on subsequent risk of ICH. This prospective study included 96 110 participants of the Kailuan study, living in Kailuan community, Tangshan city, China, who were free of cardiovascular diseases and cancer at baseline (2006). Fasting blood glucose concentration was measured in 2006, 2008, 2010, and 2012. Updated cumulative average fasting blood glucose concentration was used as primary exposure of the current study. Incident ICH from 2006 to 2015 was confirmed by review of medical records. During 817 531 person-years of follow-up, we identified 755 incident ICH cases. The nadir risk of ICH was observed at fasting blood glucose concentration of 5.3 mmol/L. The adjusted hazard ratios and their 95% confidence intervals (CIs) of ICH were 1.59 (95% CI, 1.26-2.02) for diabetes mellitus or fasting blood glucose ≥7.00 mmol/L, 1.31 (95% CI, 1.02-1.69) for impaired fasting blood glucose (fasting blood glucose, 6.10-6.99 mmol/L), 0.98 (95% CI, 0.78-1.22) for fasting blood glucose 5.60 to 6.09 mmol/L, and 2.04 (95% CI, 1.23-3.38) for hypoglycemia (fasting blood glucose, <4.00 mmol/L), comparing with normal fasting blood glucose 4.00 to 5.59 mmol/L. The results persisted after excluding individuals who used hypoglycemic, aspirin, antihypertensive agents, or anticoagulants, and those with intracerebral hemorrhagic cases occurred in the first 2 years of follow-up. In this large community-based cohort, low (<4.0 mmol/L) and high (≥6.1 mmol/L) fasting blood glucose concentrations were associated with higher risk of incident ICH, relative to fasting blood glucose concentrations of 4.00 to 6.09 mmol/L. © 2017 American Heart Association, Inc.

  2. Comparison of 5 reflectance meters for capillary blood glucose determination.

    PubMed

    Kolopp, M; Louis, J; Pointel, J P; Kohler, F; Drouin, P; Debry, G

    1983-03-01

    Manufacturing quality, accuracy and users opinion (i.e. medical and nurses staff and patients) were compared among five Destrostix reading reflectance-meters for home-blood-glucose-monitoring. Two machines (dextrometer and glucometer) equipped with microprocessors, integrated circuits and good quality wiring are best made. Reflectance-meter capillary blood glucose measurements were found to be accurate enough for home-blood-glucose-monitoring, compared to a reference method. However, two machines from the same brand were different in blood glucose accuracy. Glucocheck had poorest results. Users prefer small sized, battery powered machines. Glucometer appears to be best suited to home-blood-glucose-monitoring.

  3. Glucose predictability, blood capillary permeability, and glucose utilization rate in subcutaneous, skeletal muscle, and visceral fat tissues.

    PubMed

    Koutny, Tomas

    2013-11-01

    This study suggests an approach for the comparison and evaluation of particular compartments with modest experimental setup costs. A glucose level prediction model was used to evaluate the compartment's glucose transport rate across the blood capillary membrane and the glucose utilization rate by the cells. The glucose levels of the blood, subcutaneous tissue, skeletal muscle tissue, and visceral fat were obtained in experiments conducted on hereditary hypertriglyceridemic rats. After the blood glucose level had undergone a rapid change, the experimenter attempted to reach a steady blood glucose level by manually correcting the glucose infusion rate and maintaining a constant insulin infusion rate. The interstitial fluid glucose levels of subcutaneous tissue, skeletal muscle tissue, and visceral fat were evaluated to determine the reaction delay compared with the change in the blood glucose level, the interstitial fluid glucose level predictability, the blood capillary permeability, the effect of the concentration gradient, and the glucose utilization rate. Based on these data, the glucose transport rate across the capillary membrane and the utilization rate in a particular tissue were determined. The rates obtained were successfully verified against positron emission tomography experiments. The subcutaneous tissue exhibits the lowest and the most predictable glucose utilization rate, whereas the skeletal muscle tissue has the greatest glucose utilization rate. In contrast, the visceral fat is the least predictable and has the shortest reaction delay compared with the change in the blood glucose level. The reaction delays obtained for the subcutaneous tissue and skeletal muscle tissue were found to be approximately equal using a metric based on the time required to reach half of the increase in the interstitial fluid glucose level. © 2013 Published by Elsevier Ltd.

  4. Using LSTMs to learn physiological models of blood glucose behavior.

    PubMed

    Mirshekarian, Sadegh; Bunescu, Razvan; Marling, Cindy; Schwartz, Frank

    2017-07-01

    For people with type 1 diabetes, good blood glucose control is essential to keeping serious disease complications at bay. This entails carefully monitoring blood glucose levels and taking corrective steps whenever they are too high or too low. If blood glucose levels could be accurately predicted, patients could take proactive steps to prevent blood glucose excursions from occurring. However, accurate predictions require complex physiological models of blood glucose behavior. Factors such as insulin boluses, carbohydrate intake, and exercise influence blood glucose in ways that are difficult to capture through manually engineered equations. In this paper, we describe a recursive neural network (RNN) approach that uses long short-term memory (LSTM) units to learn a physiological model of blood glucose. When trained on raw data from real patients, the LSTM networks (LSTMs) obtain results that are competitive with a previous state-of-the-art model based on manually engineered physiological equations. The RNN approach can incorporate arbitrary physiological parameters without the need for sophisticated manual engineering, thus holding the promise of further improvements in prediction accuracy.

  5. Blood glucose, diet-based glycemic load and cognitive aging among dementia-free older adults.

    PubMed

    Seetharaman, Shyam; Andel, Ross; McEvoy, Cathy; Dahl Aslan, Anna K; Finkel, Deborah; Pedersen, Nancy L

    2015-04-01

    Although evidence indicates that Type II Diabetes is related to abnormal brain aging, the influence of elevated blood glucose on long-term cognitive change is unclear. In addition, the relationship between diet-based glycemic load and cognitive aging has not been extensively studied. The focus of this study was to investigate the influence of diet-based glycemic load and blood glucose on cognitive aging in older adults followed for up to 16 years. Eight-hundred and thirty-eight cognitively healthy adults aged ≥50 years (M = 63.1, SD = 8.3) from the Swedish Adoption/Twin Study of Aging were studied. Mixed effects growth models were utilized to assess overall performance and change in general cognitive functioning, perceptual speed, memory, verbal ability, and spatial ability as a function of baseline blood glucose and diet-based glycemic load. High blood glucose was related to poorer overall performance on perceptual speed as well as greater rates of decline in general cognitive ability, perceptual speed, verbal ability, and spatial ability. Diet-based glycemic load was related to poorer overall performance in perceptual speed and spatial ability. Diet-based glycemic load and, in particular, elevated blood glucose appear important for cognitive performance/cognitive aging. Blood glucose control (perhaps through low glycemic load diets) may be an important target in the detection and prevention of age-related cognitive decline. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Accuracy of Handheld Blood Glucose Meters at High Altitude

    PubMed Central

    de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background Due to increasing numbers of people with diabetes taking part in extreme sports (e.g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior studies reported bias in blood glucose measurements using different BGMs at high altitude. We hypothesized that glucose-oxidase based BGMs are more influenced by the lower atmospheric oxygen pressure at altitude than glucose dehydrogenase based BGMs. Methodology/Principal Findings Glucose measurements at simulated altitude of nine BGMs (six glucose dehydrogenase and three glucose oxidase BGMs) were compared to glucose measurement on a similar BGM at sea level and to a laboratory glucose reference method. Venous blood samples of four different glucose levels were used. Moreover, two glucose oxidase and two glucose dehydrogenase based BGMs were evaluated at different altitudes on Mount Kilimanjaro. Accuracy criteria were set at a bias <15% from reference glucose (when >6.5 mmol/L) and <1 mmol/L from reference glucose (when <6.5 mmol/L). No significant difference was observed between measurements at simulated altitude and sea level for either glucose oxidase based BGMs or glucose dehydrogenase based BGMs as a group phenomenon. Two GDH based BGMs did not meet set performance criteria. Most BGMs are generally overestimating true glucose concentration at high altitude. Conclusion At simulated high altitude all tested BGMs, including glucose oxidase based BGMs, did not show influence of low atmospheric oxygen pressure. All BGMs, except for two GDH based BGMs, performed within predefined criteria. At true high altitude one GDH based BGM had best precision and accuracy. PMID:21103399

  7. Effect of high altitude on blood glucose meter performance.

    PubMed

    Fink, Kenneth S; Christensen, Dale B; Ellsworth, Allan

    2002-01-01

    Participation in high-altitude wilderness activities may expose persons to extreme environmental conditions, and for those with diabetes mellitus, euglycemia is important to ensure safe travel. We conducted a field assessment of the precision and accuracy of seven commonly used blood glucose meters while mountaineering on Mount Rainier, located in Washington State (elevation 14,410 ft). At various elevations each climber-subject used the randomly assigned device to measure the glucose level of capillary blood and three different concentrations of standardized control solutions, and a venous sample was also collected for later glucose analysis. Ordinary least squares regression was used to assess the effect of elevation and of other environmental potential covariates on the precision and accuracy of blood glucose meters. Elevation affects glucometer precision (p = 0.08), but becomes less significant (p = 0.21) when adjusted for temperature and relative humidity. The overall effect of elevation was to underestimate glucose levels by approximately 1-2% (unadjusted) for each 1,000 ft gain in elevation. Blood glucose meter accuracy was affected by elevation (p = 0.03), temperature (p < 0.01), and relative humidity (p = 0.04) after adjustment for the other variables. The interaction between elevation and relative humidity had a meaningful but not statistically significant effect on accuracy (p = 0.07). Thus, elevation, temperature, and relative humidity affect blood glucose meter performance, and elevated glucose levels are more greatly underestimated at higher elevations. Further research will help to identify which blood glucose meters are best suited for specific environments.

  8. A multiscale, model-based analysis of the multi-tissue interplay underlying blood glucose regulation in type I diabetes.

    PubMed

    Wadehn, Federico; Schaller, Stephan; Eissing, Thomas; Krauss, Markus; Kupfer, Lars

    2016-08-01

    A multiscale model for blood glucose regulation in diabetes type I patients is constructed by integrating detailed metabolic network models for fat, liver and muscle cells into a whole body physiologically-based pharmacokinetic/pharmacodynamic (pBPK/PD) model. The blood glucose regulation PBPK/PD model simulates the distribution and metabolization of glucose, insulin and glucagon on an organ and whole body level. The genome-scale metabolic networks in contrast describe intracellular reactions. The developed multiscale model is fitted to insulin, glucagon and glucose measurements of a 48h clinical trial featuring 6 subjects and is subsequently used to simulate (in silico) the influence of geneknockouts and drug-induced enzyme inhibitions on whole body blood glucose levels. Simulations of diabetes associated gene knockouts and impaired cellular glucose metabolism, resulted in elevated whole body blood-glucose levels, but also in a metabolic shift within the cell's reaction network. Such multiscale models have the potential to be employed in the exploration of novel drug-targets or to be integrated into control algorithms for artificial pancreas systems.

  9. Asymptotic tracking and disturbance rejection of the blood glucose regulation system.

    PubMed

    Ashley, Brandon; Liu, Weijiu

    2017-07-01

    Type 1 diabetes patients need external insulin to maintain blood glucose within a narrow range from 65 to 108 mg/dl (3.6 to 6.0 mmol/l). A mathematical model for the blood glucose regulation is required for integrating a glucose monitoring system into insulin pump technology to form a closed-loop insulin delivery system on the feedback of the blood glucose, the so-called "artificial pancreas". The objective of this paper is to treat the exogenous glucose from food as a glucose disturbance and then develop a closed-loop feedback and feedforward control system for the blood glucose regulation system subject to the exogenous glucose disturbance. For this, a mathematical model for the glucose disturbance is proposed on the basis of experimental data, and then incorporated into an existing blood glucose regulation model. Because all the eigenvalues of the disturbance model have zero real parts, the center manifold theory is used to establish blood glucose regulator equations. We then use their solutions to synthesize a required feedback and feedforward controller to reject the disturbance and asymptotically track a constant glucose reference of 90  mg/dl. Since the regulator equations are nonlinear partial differential equations and usually impossible to solve analytically, a linear approximation solution is obtained. Our numerical simulations show that, under the linear approximate feedback and feedforward controller, the blood glucose asymptotically tracks its desired level of 90 mg/dl approximately. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Blood Glucose Monitoring Before and After Type 1 Diabetes Clinic Visits.

    PubMed

    Driscoll, Kimberly A; Johnson, Suzanne Bennett; Wang, Yuxia; Wright, Nancy; Deeb, Larry C

    2017-12-23

    To determine patterns of blood glucose monitoring in children and adolescents with type 1 diabetes (T1D) before and after routine T1D clinic visits. Blood glucose monitoring data were downloaded at four consecutive routine clinic visits from children and adolescents aged 5-18 years. Linear mixed models were used to analyze patterns of blood glucose monitoring in patients who had at least 28 days of data stored in their blood glucose monitors. In general, the frequency of blood glucose monitoring decreased across visits, and younger children engaged in more frequent blood glucose monitoring. Blood glucose monitoring increased before the T1D clinic visits in younger children, but not in adolescents. It declined after the visit regardless of age. Members of the T1D care team need to consider that a T1D clinic visit may prompt an increase in blood glucose monitoring when making treatment changes and recommendations. Tailored interventions are needed to maintain that higher level of adherence across time. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  11. Twenty-four-hour variations in blood glucose level in Japanese type 2 diabetes patients based on continuous glucose monitoring.

    PubMed

    Hajime, Maiko; Okada, Yosuke; Mori, Hiroko; Otsuka, Takashi; Kawaguchi, Mayuko; Miyazaki, Megumi; Kuno, Fumi; Sugai, Kei; Sonoda, Satomi; Tanaka, Kenichi; Kurozumi, Akira; Narisawa, Manabu; Torimoto, Keiichi; Arao, Tadashi; Tanaka, Yoshiya

    2018-01-01

    High fluctuations in blood glucose are associated with various complications. The correlation between glycated hemoglobin (HbA1c) level and fluctuations in blood glucose level has not been studied in Japanese patients with type 2 diabetes. In the present study, blood glucose profile stratified by HbA1c level was evaluated by continuous glucose monitoring (CGM) in Japanese type 2 diabetes patients. Our retrospective study included 294 patients with type 2 diabetes who were divided by HbA1c level into five groups (≥6.0 to <7.0%, ≥7.0 to <8.0%, ≥8.0 to <9.0%, ≥9.0 to <10.0% and ≥10%). The correlation between HbA1c level and CGM data was analyzed. The primary end-point was the difference in blood glucose fluctuations among the HbA1c groups. The mean blood glucose level increased significantly with increasing HbA1c (P trend  < 0.01). The standard deviation increased with increases in HbA1c (P trend  < 0.01). The mean amplitude of glycemic excursions did not vary significantly with HbA1c. The levels of maximum blood glucose, minimum blood glucose, each preprandial blood glucose, each postprandial maximum blood glucose, range of increase in postprandial glucose from pre-meal to after breakfast, the area under the blood concentration-time curve >180 mg/dL and percentage of the area under the blood concentration-time curve >180 mg/dL were higher with higher HbA1c. Mean glucose level and pre-breakfast blood glucose level were significant and independent determinants of HbA1c. In Japanese patients treated for type 2 diabetes, the mean amplitude of glycemic excursions did not correlate with HbA1c, making it difficult to assess blood glucose fluctuations using HbA1c. Parameters other than HbA1c are required to evaluate fluctuations in blood glucose level in patients receiving treatment for type 2 diabetes. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia

  12. "Learning" Can Improve the Blood Glucose Control Performance for Type 1 Diabetes Mellitus.

    PubMed

    Wang, Youqing; Zhang, Jinping; Zeng, Fanmao; Wang, Na; Chen, Xiaoping; Zhang, Bo; Zhao, Dong; Yang, Wenying; Cobelli, Claudio

    2017-01-01

    A learning-type artificial pancreas has been proposed to exploit the repetitive nature in the blood glucose dynamics. We clinically evaluated the efficacy of the learning-type artificial pancreas. We conducted a pilot clinical study in 10 participants of mean age 36.1 years (standard deviation [SD] 12.7; range 16-58) with type 1 diabetes. Each trial was conducted for eight consecutive mornings. The first two mornings were open-loop to obtain the individualized parameters. Then, the following six mornings were closed-loop, during which a learning-type model predictive control algorithm was employed to calculate the insulin infusion rate. To evaluate the algorithm's robustness, each participant took exercise or consumed alcohol on the fourth or sixth closed-loop day and the order was determined randomly. The primary outcome was the percentage of time spent in the target glucose range of 3.9-8.0 mmol/L between 0900 and 1200 h. The percentage of time with glucose spent in target range was significantly improved from 51.6% on day 1 to 71.6% on day 3 (mean difference between groups 17.9%, confidence interval [95% CI] 3.6-32.1; P = 0.020). There were no hypoglycemic episodes developed on day 3 compared with two episodes on day 1. There was no difference in the percentage of time with glucose spent in target range between exercise day versus day 5 and alcohol day versus day 5. The learning-type artificial pancreas system achieved good glycemic regulation and provided increased effectiveness over time. It showed a satisfactory performance even when the blood glucose was challenged by exercise or alcohol.

  13. Fundamental study on non-invasive blood glucose sensing.

    PubMed

    Xu, K; Li, Q; Lu, Z; Jiang, J

    2002-01-01

    Diabetes is a disease which severely threatens the health of human beings. Unfortunately, current monitoring techniques with finger sticks discourage the regular use. Noninvasive spectroscopic measurement of blood glucose is a simple and painless technique, and reduces the long-term health care costs of diabetic patients due to no reagents. It is suitable for home use. Moreover, the establishment of the methodology not only applies to blood glucose noninvasive measurement, but also can be extended to noninvasive measurement of other analytes in body fluid, which will be of important significance for the development of the technique of clinical analysis. In this paper, some fundamental researches, which have been achieved in our laboratory in the field of non-invasive blood glucose measurement, were introduced. 1. Fundamental research was done for the glucose concentrations from simple to complex samples with near and middle infrared spectroscopy: (1) the relationship between the instrument precision and prediction accuracy of the glucose measurement; (2) the change of the result of the quantitative measurement with the change of the complexity of samples; (3) the attempt of increasing the prediction accuracy of the glucose measurement by improving the methods of modeling. The research results showed that it is feasible for non-invasive blood glucose measurement with near and middle infrared spectroscopy in theory, and the experimental results, from simple to complex samples, proved that it is effective for the methodology consisting of hardware and software. 2. According to the characteristics of human body measurement, the effects of measuring conditions on measurement results, such as: (1) the effect of measurement position; (2) the effect of measurement pressure; (3) the effect of measurement site; (4) the effect of measured individual, were investigated. With the fundamental researches, the special problems of human body measurement were solved. In addition

  14. Modeling and Measurement of Correlation between Blood and Interstitial Glucose Changes

    PubMed Central

    Shi, Ting; Li, Dachao; Li, Guoqing; Zhang, Yiming; Xu, Kexin; Lu, Luo

    2016-01-01

    One of the most effective methods for continuous blood glucose monitoring is to continuously measure glucose in the interstitial fluid (ISF). However, multiple physiological factors can modulate glucose concentrations and affect the lag phase between blood and ISF glucose changes. This study aims to develop a compensatory tool for measuring the delay in ISF glucose variations in reference to blood glucose changes. A theoretical model was developed based on biophysics and physiology of glucose transport in the microcirculation system. Blood and interstitial fluid glucose changes were measured in mice and rats by fluorescent and isotope methods, respectively. Computer simulation mimicked curves were fitted with data resulting from fluorescent measurements of mice and isotope measurements of rats, indicating that there were lag times for ISF glucose changes. It also showed that there was a required diffusion distance for glucose to travel from center of capillaries to interstitial space in both mouse and rat models. We conclude that it is feasible with the developed model to continuously monitor dynamic changes of blood glucose concentration through measuring glucose changes in ISF with high accuracy, which requires correct parameters for determining and compensating for the delay time of glucose changes in ISF. PMID:27239479

  15. Effect of cholera toxin administered supraspinally or spinally on the blood glucose level in pain and d-glucose fed animal models.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Choi, Seong-Soo; Suh, Hong-Won

    2013-04-01

    In the present study, the effect of intrathecal (i.t.) or intracerebroventricular (i.c.v.) administration with cholera toxin (CTX) on the blood glucose level was examined in ICR mice. The i.t. treatment with CTX alone for 24 h dose-dependently increased the blood glucose level. However, i.c.v. treatment with CTX for 24 h did not affect the blood glucose level. When mice were orally fed with D-glucose (2 g/kg), the blood glucose level reached to a maximum level at 30 min and almost returned to the control level at 120 min after D-glucose feeding. I.c.v. pretreatment with CTX increased the blood glucose level in a potentiative manner, whereas i.t. pretreatment with CTX increased the blood glucose level in an additive manner in a D-glucose fed group. In addition, the blood glucose level was increased in formalin-induced pain animal model. I.c.v. pretreatment with CTX enhanced the blood glucose level in a potentiative manner in formalin-induced pain animal model. On the other hand, i.t. pretreatment with CTX increased the blood glucose level in an additive manner in formalin-induced pain animal model. Our results suggest that CTX administered supraspinally or spinally differentially modulates the regulation of the blood glucose level in D-glucose fed model as well as in formalin-induced pain model.

  16. Blood glucose monitoring skills in children with Type I diabetes.

    PubMed

    Perwien, A R; Johnson, S B; Dymtrow, D; Silverstein, J

    2000-06-01

    While blood glucose monitoring has become increasingly important in diabetes care, studies have yet to address the accuracy of youngsters' performance of blood glucose testing with current reflectance meters. The present study examined testing skills and predictors of accurate testing skills in a sample of 7-14-year-old children attending a summer camp for youth with diabetes (n=266). A 15-item behavior observational skill test was used to assess accuracy of blood glucose monitoring skills with reflectance meters. Accurate performance of individual skills ranged between 14.6% and 99.6% for the sample. However, a number of children made critical errors (errors that were likely to lead to inaccurate blood glucose testing results). When duration of diabetes and metabolic control were controlled, female gender, older age, experience with a particular meter, and absence of hypoglycemia at the time of testing were positively associated with accurate skill performance. Findings suggest that younger children, children using a new blood glucose testing meter, and children suspected of having hypoglycemia should be supervised and observed when testing. Although all young children should be supervised when blood glucose testing, boys may need closer supervision until an older age than girls. This study underscores the need for health care providers to periodically observe children's blood glucose monitoring techniques to assure accurate testing habits and to correct problematic testing behaviors.

  17. Impulsiveness, postprandial blood glucose, and glucoregulation affect measures of behavioral flexibility.

    PubMed

    Riby, Leigh M; Lai Teik Ong, Derek; Azmie, Nurulnadia Binti Mohamad; Ooi, Ee Lyn; Regina, Caroline; Yeo, Eugene Ki Wai; Massa, Jacqueline; Aquili, Luca

    2017-12-01

    Behavioral flexibility (BF) performance is influenced by both psychological and physiological factors. Recent evidence suggests that impulsivity and blood glucose can affect executive function, of which BF is a subdomain. Here, we hypothesized that impulsivity, fasting blood glucose (FBG), glucose changes (ie, glucoregulation) from postprandial blood glucose (PBG) following the intake of a 15-g glucose beverage could account for variability in BF performance. The Stroop Color-Word Test and the Wisconsin Card Sorting Test (WCST) were used as measures of BF, and the Barratt Impulsiveness Scale (BIS-11) to quantify participants' impulsivity. In Study 1, neither impulsivity nor FBG could predict performance on the Stroop or the WCST. In Study 2, we tested whether blood glucose levels following the intake of a sugary drink, and absolute changes in glucose levels following the intake of the glucose beverage could better predict BF. Results showed that impulsivity and the difference in blood glucose between time 1 (postprandial) and time 2, but not blood glucose levels at time 2 per se could account for variation in performance on the WCST but not on the Stroop task. More specifically, lower impulsivity scores on the BIS-11, and smaller differences in blood glucose levels from time 1 to time 2 predicted a decrease in the number of total and perseverative errors on the WCST. Our results show that measures of impulsivity and glucoregulation can be used to predict BF. Importantly our data extend the work on glucose and cognition to a clinically relevant domain of cognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy.

    PubMed

    Pandey, Rishikesh; Paidi, Santosh Kumar; Valdez, Tulio A; Zhang, Chi; Spegazzini, Nicolas; Dasari, Ramachandra Rao; Barman, Ishan

    2017-02-21

    The successful development of a noninvasive blood glucose sensor that can operate reliably over sustained periods of time has been a much sought after but elusive goal in diabetes management. Since diabetes has no well-established cure, control of elevated glucose levels is critical for avoiding severe secondary health complications in multiple organs including the retina, kidney and vasculature. While fingerstick testing continues to be the mainstay of blood glucose detection, advances in electrochemical sensing-based minimally invasive approaches have opened the door for alternate methods that would considerably improve the quality of life for people with diabetes. In the quest for better sensing approaches, optical technologies have surfaced as attractive candidates as researchers have sought to exploit the endogenous contrast of glucose, notably its absorption, scattering, and polarization properties. Vibrational spectroscopy, especially spontaneous Raman scattering, has exhibited substantial promise due to its exquisite molecular specificity and minimal interference of water in the spectral profiles acquired from the blood-tissue matrix. Yet, it has hitherto been challenging to leverage the Raman scattering signatures of glucose for prediction in all but the most basic studies and under the least demanding conditions. In this Account, we discuss the newly developed array of methodologies that address the key challenges in measuring blood glucose accurately using Raman spectroscopy and unlock new prospects for translation to sustained noninvasive measurements in people with diabetes. Owing to the weak intensity of spontaneous Raman scattering, recent research has focused on enhancement of signals from the blood constituents by designing novel excitation-collection geometries and tissue modulation methods while our attempts have led to the incorporation of nonimaging optical elements. Additionally, invoking mass transfer modeling into chemometric algorithms has

  19. Can gingival crevicular blood be relied upon for assessment of blood glucose level?

    PubMed

    Dwivedi, Shivani; Verma, Sharmila J; Shah, Monali; Jain, Kapil

    2014-11-01

    Diabetes mellitus (DM) is undiagnosed in approximately half of the patients actually suffering from the disease. In addition, the prevalence of DM is more than twice as high as in patients with periodontitis when compared to periodontally healthy subjects. Thus, a high number of patients with periodontitis may have undiagnosed DM. The purpose of the present study was to evaluate whether blood oozing from a gingival crevice during routine periodontal examination can be used for determining glucose levels. Observational cross-sectional studies were carried out in 75 patients (43 males and 32 females) with chronic periodontitis who were divided into two groups: Group I and Group II, respectively. Blood oozing from the gingival crevices of anterior teeth following periodontal probing was collected with the stick of glucose self-monitoring device, and the blood glucose levels were measured. At the same time, finger-prick blood was taken for glucometric analysis and subsequent readings were recorded. The patient's blood glucose values ranged from 74 to 256 mg/dl. The comparison between gingival crevicular blood and finger-prick blood showed a very strong correlation, with a t value of 3.97 (at P value = 0.001). The data from this study has shown that GCB collected during diagnostic periodontal examination can be an excellent source of blood for glucometric analysis.

  20. Frequency of high blood glucose prior to FDG PET.

    PubMed

    Khandani, Amir H; Bravo, Isabel M; Patel, Parth S; Ivanovic, Marijana; Kirk, Deepa

    2017-05-01

    To assess the frequency of blood glucose level higher than 150 mg/dL in non-diabetic patients presenting for FDG PET. We reviewed the electronic medical record (EMR) of all lymphoma patients who had at least one FDG PET/CT from July 1, 2014 through June 30, 2015. We extracted the blood glucose level at the time of the FDG PET during this 1-year time period and any previous PET scans these patients had. Patients' diabetic status was determined from EMR. One hundred seventeen patients with 574 scans were included: 91 non-diabetic with 429 scans and 26 diabetic patients with 145 scans. Blood glucose level ranged from 44 to 259 mg/dL: 44 to 144 mg/dL in non-diabetic patients and 73 to 259 mg/dL in diabetic patients. There was no non-diabetic patient with a glucose level higher than 150 mg/dL at any occasion. Only one scan was performed with 144 mg/dL of glucose. All other scans were performed with a glucose level less than 140 mg/dL. There were nine diabetic patients with glucose level less than 150 mg/dL prior to all of their scans and 17 diabetic patients with a glucose level higher than 150 mg/dL prior to PET at least on one occasion. In all non-diabetic patients, blood glucose level was below the lower limit of the recommended range prior to all their FDG PET scans while this was not the case in diabetic patients. We conclude that measuring blood glucose level prior to FDG PET may be limited to diabetic patients.

  1. Measurement of Glucose in Blood with a Phenylboronic Acid Optical Sensor

    PubMed Central

    Worsley, Graham J.; Tourniaire, Guilhem A.; Medlock, Kathryn E. S.; Sartain, Felicity K.; Harmer, Hazel E.; Thatcher, Michael; Horgan, Adrian M.; Pritchard, John

    2008-01-01

    Background Current methods of glucose monitoring rely predominantly on enzymes such as glucose oxidase for detection. Phenylboronic acid receptors have been proposed as alternative glucose binders. A unique property of these molecules is their ability to bind glucose in a fully reversible covalent manner that facilitates direct continuous measurements. We examined (1) the ability of a phenylboronic-based sensor to measure glucose in blood and blood plasma and (2) the effect on measurement accuracy of a range of potential interferents. We also showed that the sensor is able to track glucose fluctuations occurring at rates mimicking those experienced in vivo. Method In vitro static measurements of glucose in blood and blood plasma were conducted using holographic sensors containing acrylamide, N,N′-methylenebisacrylamide, 3-acrylamidophenylboronic acid, and (3-acrylamidopropyl) trimethylammonium chloride. The same sensors were also used for in vitro measurements performed under flow conditions. Results The opacity of the liquid had no affect on the ability of the optical sensor to measure glucose in blood or blood plasma. The presence of common antibiotics, diabetic drugs, pain killers, and endogenous substances did not affect the measurement accuracy, as shown by error grid analysis. Ex vivo flow experiments showed that the sensor is able to track changes accurately in concentration occurring in real time without lag or evidence of hysteresis. Conclusions The ability of phenylboronic acid sensors to measure glucose in whole blood was demonstrated for the first time. Holographic sensors are ideally suited to continuous blood glucose measurements, being physically and chemically robust and potentially calibration free. PMID:19885345

  2. Mibefradil reduces blood glucose concentration in db/db mice

    PubMed Central

    Lu, Yujie; Long, Min; Zhou, Shiwen; Xu, Zihui; Hu, Fuquan; Li, Ming

    2014-01-01

    OBJECTIVE: Numerous recent studies suggest that abnormal intracellular calcium concentration ([Ca2+]i) is a common defect in diabetic animal models and patients. Abnormal calcium handling is an important mechanism in the defective pancreatic β-cell function in type 2 diabetes. T-type Ca2+ channel antagonists lower blood glucose in type 2 diabetes, but the mechanism remains unknown. METHODS: We examined the effect of the Ca2+ channel antagonist mibefradil on blood glucose in male db/db mice and phenotypically normal heterozygous mice by intraperitoneal injection. RESULTS: Mibefradil (15 mg/kg, i.p., b.i.d.) caused a profound reduction of fasting blood glucose from 430.92±20.46 mg/dl to 285.20±5.74 mg/dl in three days. The hypoglycemic effect of mibefradil was reproduced by NNC 55-0396, a compound structurally similar to mibefradil but more selective for T-type Ca2+ channels, but not by the specific L-type Ca2+ channel blocker nicardipine. Mibefradil did not show such hypoglycemic effects in heterozygous animals. In addition, triglycerides, basal insulin and food intake were significantly decreased by mibefradil treatment in the db/db mice but not in the controls. Western blot analysis, immunohistochemistry and immunofluorescence staining showed a significantly increased expression of T-type Ca2+ channel α-subunits Cav3.1 and Cav3.2 in liver and brain tissues from db/db mice compared to those from heterozygous animals. CONCLUSIONS: Collectively, these results suggest that T-type Ca2+ channels are potential therapeutic targets for antidiabetic drugs. PMID:24473561

  3. Optical coherence tomography for blood glucose monitoring through signal attenuation

    NASA Astrophysics Data System (ADS)

    De Pretto, Lucas R.; Yoshimura, Tania M.; Ribeiro, Martha S.; de Freitas, Anderson Z.

    2016-03-01

    Development of non-invasive techniques for glucose monitoring is crucial to improve glucose control and treatment adherence in patients with diabetes. Hereafter, Optical Coherence Tomography (OCT) may offer a good alternative for portable glucometers, since it uses light to probe samples. Changes in the object of interest can alter the intensity of light returning from the sample and, through it, one can estimate the sample's attenuation coefficient (μt) of light. In this work, we aimed to explore the behavior of μt of mouse's blood under increasing glucose concentrations. Different samples were prepared in four glucose concentrations using a mixture of heparinized blood, phosphate buffer saline and glucose. Blood glucose concentrations were measured with a blood glucometer, for reference. We have also prepared other samples diluting the blood in isotonic saline solution to check the effect of a higher multiple-scattering component on the ability of the technique to differentiate glucose levels based on μt. The OCT system used was a commercial Spectral Radar OCT with 930 nm central wavelength and spectral bandwidth (FWHM) of 100 nm. The system proved to be sensitive for all blood glucose concentrations tested, with good correlations with the obtained attenuation coefficients. A linear tendency was observed, with an increase in attenuation with higher values of glucose. Statistical difference was observed between all groups (p<0.001). This work opens the possibility towards a non-invasive diagnostic modality using OCT for glycemic control, which eliminates the use of analytes and/or test strips, as in the case with commercially available glucometers.

  4. Corticosterone and exogenous glucose alter blood glucose levels, neurotoxicity, and vascular toxicity produced by methamphetamine.

    PubMed

    Bowyer, John F; Tranter, Karen M; Sarkar, Sumit; George, Nysia I; Hanig, Joseph P; Kelly, Kimberly A; Michalovicz, Lindsay T; Miller, Diane B; O'Callaghan, James P

    2017-10-01

    Our previous studies have raised the possibility that altered blood glucose levels may influence and/or be predictive of methamphetamine (METH) neurotoxicity. This study evaluated the effects of exogenous glucose and corticosterone (CORT) pretreatment alone or in combination with METH on blood glucose levels and the neural and vascular toxicity produced. METH exposure consisted of four sequential injections of 5, 7.5, 10, and 10 mg/kg (2 h between injections) D-METH. The three groups given METH in combination with saline, glucose (METH+Glucose), or CORT (METH+CORT) had significantly higher glucose levels compared to the corresponding treatment groups without METH except at 3 h after the last injection. At this last time point, the METH and METH+Glucose groups had lower levels than the non-METH groups, while the METH+CORT group did not. CORT alone or glucose alone did not significantly increase blood glucose. Mortality rates for the METH+CORT (40%) and METH+Glucose (44%) groups were substantially higher than the METH (< 10%) group. Additionally, METH+CORT significantly increased neurodegeneration above the other three METH treatment groups (≈ 2.5-fold in the parietal cortex). Thus, maintaining elevated levels of glucose during METH exposure increases lethality and may exacerbate neurodegeneration. Neuroinflammation, specifically microglial activation, was associated with degenerating neurons in the parietal cortex and thalamus after METH exposure. The activated microglia in the parietal cortex were surrounding vasculature in most cases and the extent of microglial activation was exacerbated by CORT pretreatment. Our findings show that acute CORT exposure and elevated blood glucose levels can exacerbate METH-induced vascular damage, neuroinflammation, neurodegeneration and lethality. Cover Image for this issue: doi. 10.1111/jnc.13819. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  5. Quantitative influence of risk factors on blood glucose level.

    PubMed

    Chen, Songjing; Luo, Senlin; Pan, Limin; Zhang, Tiemei; Han, Longfei; Zhao, Haixiu

    2014-01-01

    The aim of this study is to quantitatively analyze the influence of risk factors on the blood glucose level, and to provide theory basis for understanding the characteristics of blood glucose change and confirming the intervention index for type 2 diabetes. The quantitative method is proposed to analyze the influence of risk factors on blood glucose using back propagation (BP) neural network. Ten risk factors are screened first. Then the cohort is divided into nine groups by gender and age. According to the minimum error principle, nine BP models are trained respectively. The quantitative values of the influence of different risk factors on the blood glucose change can be obtained by sensitivity calculation. The experiment results indicate that weight is the leading cause of blood glucose change (0.2449). The second factors are cholesterol, age and triglyceride. The total ratio of these four factors reaches to 77% of the nine screened risk factors. And the sensitivity sequences can provide judgment method for individual intervention. This method can be applied to risk factors quantitative analysis of other diseases and potentially used for clinical practitioners to identify high risk populations for type 2 diabetes as well as other disease.

  6. Association between blood glucose level derived using the oral glucose tolerance test and glycated hemoglobin level.

    PubMed

    Kim, Hyoung Joo; Kim, Young Geon; Park, Jin Soo; Ahn, Young Hwan; Ha, Kyoung Hwa; Kim, Dae Jung

    2016-05-01

    Glycated hemoglobin (HbA1c) is widely used as a marker of glycemic control. Translation of the HbA1c level to an average blood glucose level is useful because the latter figure is easily understood by patients. We studied the association between blood glucose levels revealed by the oral glucose tolerance test (OGTT) and HbA1c levels in a Korean population. A total of 1,000 subjects aged 30 to 64 years from the Cardiovascular and Metabolic Diseases Etiology Research Center cohort were included. Fasting glucose levels, post-load glucose levels at 30, 60, and 120 minutes into the OGTT, and HbA1c levels were measured. Linear regression of HbA1c with mean blood glucose levels derived using the OGTT revealed a significant correlation between these measures (predicted mean glucose [mg/dL] = 49.4 × HbA1c [%] - 149.6; R (2) = 0.54, p < 0.001). Our linear regression equation was quite different from that of the Alc-Derived Average Glucose (ADAG) study and Diabetes Control and Complications Trial (DCCT) cohort. Discrepancies between our results and those of the ADAG study and DCCT cohort may be attributable to differences in the test methods used and the extent of insulin secretion. More studies are needed to evaluate the association between HbA1c and self monitoring blood glucose levels.

  7. Work related stress and blood glucose levels.

    PubMed

    Sancini, A; Ricci, S; Tomei, F; Sacco, C; Pacchiarotti, A; Nardone, N; Ricci, P; Suppi, A; De Cesare, D P; Anzelmo, V; Giubilati, R; Pimpinella, B; Rosati, M V; Tomei, G

    2017-01-01

    The aim of the study is to evaluate work-related subjective stress in a group of workers on a major Italian company in the field of healthcare through the administration of a valid "questionnaire-tool indicator" (HSE Indicator Tool), and to analyze any correlation between stress levels taken from questionnaire scores and blood glucose values. We studied a final sample consisting of 241 subjects with different tasks. The HSE questionnaire - made up of 35 items (divided into 7 organizational dimensions) with 5 possible answers - has been distributed to all the subjects in occasion of the health surveillance examinations provided by law. The questionnaire was then analyzed using its specific software to process the results related to the 7 dimensions. These results were compared using the Pearson correlation and multiple linear regression with the blood glucose values obtained from each subject. From the analysis of the data the following areas resulted critical, in other words linked to an intermediate (yellow area) or high (red area) condition of stress: sustain from managers, sustain from colleagues, quality of relationships and professional changes. A significant positive correlation (p <0.05) between the mean values of all critical areas and the concentrations of glucose values have been highlighted with the correlation index of Pearson. Multiple linear regression confirmed these findings, showing that the critical dimensions resulting from the questionnaire were the significant variables that can increase the levels of blood glucose. The preliminary results indicate that perceived work stress can be statistically associated with increased levels of blood glucose.

  8. Blood glucose concentrations in prehospital trauma patients with traumatic shock: A retrospective analysis.

    PubMed

    Kreutziger, Janett; Lederer, Wolfgang; Schmid, Stefan; Ulmer, Hanno; Wenzel, Volker; Nijsten, Maarten W; Werner, Daniel; Schlechtriemen, Thomas

    2018-01-01

    Deranged glucose metabolism after moderate to severe trauma with either high or low concentrations of blood glucose is associated with poorer outcome. Data on prehospital blood glucose concentrations and trauma are scarce. The primary aim was to describe the relationship between traumatic shock and prehospital blood glucose concentrations. The secondary aim was to determine the additional predictive value of prehospital blood glucose concentration for traumatic shock when compared with vital parameters alone. Retrospective analysis of the predefined, observational database of a nationwide Helicopter Emergency Medical Service (34 bases). Emergency trauma patients treated by Helicopter Emergency Medical Service between 2005 and 2013 were investigated. All adult trauma patients (≥18 years) with recorded blood glucose concentrations were enrolled. Primary outcome: upper and lower thresholds of blood glucose concentration more commonly associated with traumatic shock. Secondary outcome: additional predictive value of prehospital blood glucose concentrations when compared with vital parameters alone. Of 51 936 trauma patients, 20 177 were included. In total, 220 (1.1%) patients died on scene. Hypoglycaemia (blood glucose concentration 2.8 mmol l or less) was observed in 132 (0.7%) patients, hyperglycaemia (blood glucose concentration exceeding 15 mmol l) was observed in 265 patients (1.3%). Blood glucose concentrations more than 10 mmol l (n = 1308 (6.5%)) and 2.8 mmol l or less were more common in patients with traumatic shock (P < 0.0001). The Youden index for traumatic shock ((sensitivity + specificity) - 1) was highest when blood glucose concentration was 3.35 mmol l (P < 0.001) for patients with low blood glucose concentrations and 7.75 mmol l (P < 0.001) for those with high blood glucose concentrations. In logistic regression analysis of patients with spontaneous circulation on scene, prehospital blood glucose

  9. Parsimonious model for blood glucose level monitoring in type 2 diabetes patients.

    PubMed

    Zhao, Fang; Ma, Yan Fen; Wen, Jing Xiao; DU, Yan Fang; Li, Chun Lin; Li, Guang Wei

    2014-07-01

    To establish the parsimonious model for blood glucose monitoring in patients with type 2 diabetes receiving oral hypoglycemic agent treatment. One hundred and fifty-nine adult Chinese type 2 diabetes patients were randomized to receive rapid-acting or sustained-release gliclazide therapy for 12 weeks. Their blood glucose levels were measured at 10 time points in a 24 h period before and after treatment, and the 24 h mean blood glucose levels were measured. Contribution of blood glucose levels to the mean blood glucose level and HbA1c was assessed by multiple regression analysis. The correlation coefficients of blood glucose level measured at 10 time points to the daily MBG were 0.58-0.74 and 0.59-0.79, respectively, before and after treatment (P<0.0001). The multiple stepwise regression analysis showed that the blood glucose levels measured at 6 of the 10 time points could explain 95% and 97% of the changes in MBG before and after treatment. The three blood glucose levels, which were measured at fasting, 2 h after breakfast and before dinner, of the 10 time points could explain 84% and 86% of the changes in MBG before and after treatment, but could only explain 36% and 26% of the changes in HbA1c before and after treatment, and they had a poorer correlation with the HbA1c than with the 24 h MBG. The blood glucose levels measured at fasting, 2 h after breakfast and before dinner truly reflected the change 24 h blood glucose level, suggesting that they are appropriate for the self-monitoring of blood glucose levels in diabetes patients receiving oral anti-diabetes therapy. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  10. MicroRNA-451 Negatively Regulates Hepatic Glucose Production and Glucose Homeostasis by Targeting Glycerol Kinase-Mediated Gluconeogenesis.

    PubMed

    Zhuo, Shu; Yang, Mengmei; Zhao, Yanan; Chen, Xiaofang; Zhang, Feifei; Li, Na; Yao, Pengle; Zhu, Tengfei; Mei, Hong; Wang, Shanshan; Li, Yu; Chen, Shiting; Le, Yingying

    2016-11-01

    MicroRNAs (miRNAs) are a new class of regulatory molecules implicated in type 2 diabetes, which is characterized by insulin resistance and hepatic glucose overproduction. We show that miRNA-451 (miR-451) is elevated in the liver tissues of dietary and genetic mouse models of diabetes. Through an adenovirus-mediated gain- and loss-of-function study, we found that miR-451 negatively regulates hepatic gluconeogenesis and blood glucose levels in normal mice and identified glycerol kinase (Gyk) as a direct target of miR-451. We demonstrate that miR-451 and Gyk regulate hepatic glucose production, the glycerol gluconeogenesis axis, and the AKT-FOXO1-PEPCK/G6Pase pathway in an opposite manner; Gyk could reverse the effect of miR-451 on hepatic gluconeogenesis and AKT-FOXO1-PEPCK/G6Pase pathway. Moreover, overexpression of miR-451 or knockdown of Gyk in diabetic mice significantly inhibited hepatic gluconeogenesis, alleviated hyperglycemia, and improved glucose tolerance. Further studies showed that miR-451 is upregulated by glucose and insulin in hepatocytes; the elevation of hepatic miR-451 in diabetic mice may contribute to inhibiting Gyk expression. This study provides the first evidence that miR-451 and Gyk regulate the AKT-FOXO1-PEPCK/G6Pase pathway and play critical roles in hepatic gluconeogenesis and glucose homeostasis and identifies miR-451 and Gyk as potential therapeutic targets against hyperglycemia in diabetes. © 2016 by the American Diabetes Association.

  11. Regulation of Blood Glucose by Hypothalamic Pyruvate Metabolism

    NASA Astrophysics Data System (ADS)

    Lam, Tony K. T.; Gutierrez-Juarez, Roger; Pocai, Alessandro; Rossetti, Luciano

    2005-08-01

    The brain keenly depends on glucose for energy, and mammalians have redundant systems to control glucose production. An increase in circulating glucose inhibits glucose production in the liver, but this negative feedback is impaired in type 2 diabetes. Here we report that a primary increase in hypothalamic glucose levels lowers blood glucose through inhibition of glucose production in rats. The effect of glucose requires its conversion to lactate followed by stimulation of pyruvate metabolism, which leads to activation of adenosine triphosphate (ATP)-sensitive potassium channels. Thus, interventions designed to enhance the hypothalamic sensing of glucose may improve glucose homeostasis in diabetes.

  12. The modulatory role of spinally located histamine receptors in the regulation of the blood glucose level in d-glucose-fed mice.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2014-02-01

    The possible roles of spinal histamine receptors in the regulation of the blood glucose level were studied in ICR mice. Mice were intrathecally (i.t.) treated with histamine 1 (H1) receptor agonist (2-pyridylethylamine) or antagonist (cetirizine), histamine 2 (H2) receptor agonist (dimaprit) or antagonist (ranitidine), histamine 3 (H3) receptor agonist (α-methylhistamine) or antagonist (carcinine) and histamine 4 (H4) receptor agonist (VUF 8430) or antagonist (JNJ 7777120), and the blood glucose level was measured at 30, 60 and 120 min after i.t. administration. The i.t. injection with α-methylhistamine, but not carcinine slightly caused an elevation of the blood glucose level. In addition, histamine H1, H2, and H4 receptor agonists and antagonists did not affect the blood glucose level. In D-glucose-fed model, i.t. pretreatment with cetirizine enhanced the blood glucose level, whereas 2-pyridylethylamine did not affect. The i.t. pretreatment with dimaprit, but not ranitidine, enhanced the blood glucose level in D-glucose-fed model. In addition, α-methylhistamine, but not carcinine, slightly but significantly enhanced the blood glucose level D-glucose-fed model. Finally, i.t. pretreatment with JNJ 7777120, but not VUF 8430, slightly but significantly increased the blood glucose level. Although histamine receptors themselves located at the spinal cord do not exert any effect on the regulation of the blood glucose level, our results suggest that the activation of spinal histamine H2 receptors and the blockade of spinal histamine H1 or H3 receptors may play modulatory roles for up-regulation and down-regulation, respectively, of the blood glucose level in D-glucose fed model.

  13. Clinical assessment of blood glucose homeostasis in horses: comparison of a continuous glucose monitoring system with a combined intravenous glucose and insulin test protocol.

    PubMed

    Johnson, P J; Wiedmeyer, C E; LaCarrubba, A; Messer, N T; Dingfelder, H A; Cogswell, A M; Amorim, J R R; Ganjam, V K

    2011-01-01

    The combined glucose-insulin test (CGIT) is helpful for evaluating insulin sensitivity. A continuous glucose monitoring system (CGMS) reports changes in interstitial glucose concentrations as they occur in the blood. Use of the CGMS minimizes animal contact and may be useful when performing a CGIT. Results obtained using a CGMS are useful for the evaluation of glucose responses during the evaluation of insulin sensitivity in equids. Seven mature, obese ponies. Ponies were equipped with CGMS for determination of interstitial glucose concentrations. Glucose (150 mg/kg, i.v.) and insulin (0.1 U/kg, i.v.) were administered and blood glucose concentrations determined at (minutes after time zero) 1, 5, 15, 25, 35, 45, 60, 75, 90, 105, and 120 with a hand-held glucometer. Blood chemistry results were compared with simultaneously obtained results using CGMS. Concordance coefficients determined for comparison of blood glucose concentrations determined by a hand-held glucometer and those determined by CGMS after the zero time point were 0.623, 0.764, 0.834, 0.854, and 0.818 (for delays of 0, 5, 10, 15, and 20 minutes, respectively). Interstitial glucose concentrations obtained by the CGMS compared favorably to blood glucose concentrations. CGMS may be useful for assessment of glucose dynamics in the CGIT. Copyright © 2010 by the American College of Veterinary Internal Medicine.

  14. Ghrelin administered spinally increases the blood glucose level in mice.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-04-01

    Ghrelin is known as a regulator of the blood glucose homeostasis and food intake. In the present study, the possible roles of ghrelin located in the spinal cord in the regulation of the blood glucose level were investigated in ICR mice. We found that intrathecal (i.t.) injection with ghrelin (from 1 to 10 μg) caused an elevation of the blood glucose level. In addition, i.t. pretreatment with YIL781 (ghrelin receptor antagonist; from 0.1 to 5 μg) markedly attenuated ghrelin-induced hyperglycemic effect. The plasma insulin level was increased by ghrelin. The enhanced plasma insulin level by ghrelin was reduced by i.t. pretreatment with YIL781. However, i.t. pretreatment with glucagon-like peptide-1 (GLP-1; 5 μg) did not affect the ghrelin-induced hyperglycemia. Furthermore, i.t. administration with ghrelin also elevated the blood glucose level, but in an additive manner, in d-glucose-fed model. Our results suggest that the activation of ghrelin receptors located in the spinal cord plays important roles for the elevation of the blood glucose level. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Analytical Performance Evaluation of Infopia Element™ Auto-coding Blood Glucose Monitoring System for Self-Monitoring of Blood Glucose.

    PubMed

    Park, Hae-Il; Lee, Seong-Su; Son, Jang-Won; Kwon, Hee-Sun; Kim, Sung Rae; Chae, Hyojin; Kim, Myungshin; Kim, Yonggoo; Yoo, Soonjib

    2016-11-01

    Element™ Auto-coding Blood Glucose Monitoring System (BGMS; Infopia Co., Ltd., Anyang-si, Korea) was developed for self-monitoring of blood glucose (SMBG). Precision, linearity, and interference were tested. Eighty-four capillary blood samples measured by Element™ BGMS were compared with central laboratory method (CLM) results in venous serum. Accuracy was evaluated using ISO 15197:2013 criteria. Coefficients of variation (CVs; mean) were 2.4% (44.2 mg/dl), 3.7% (100.6 mg/dl), and 2.1% (259.8 mg/dl). Linearity was shown at concentrations 39.25-456.25 mg/l (y = 0.989 + 0.984x, SE = 17.63). Up to 15 mg/dl of galactose, ascorbic acid, and acetaminophen, interference > 10.4% was not observed. Element™ BGMS glucose was higher than CLM levels by 3.2 mg/dl (at 200 mg/dl) to 8.2 mg/dl (at 100 mg/dl). The minimum specification for bias (3.3%) was met at 140 and 200 mg/l glucose. In the Clarke and consensus error grids, 100% of specimens were within zone A and B. For Element™ BGMS values, 92.9% (78/84) to 94.0% (79/84) were within a 15 mg/dl (< 100 mg/dl) or 15% (> 100 mg/dl) of the average CLM value. Element™ BGMS was considered an appropriate SMBG for home use; however, the positive bias at low-to-mid glucose levels requires further improvement. © 2016 Wiley Periodicals, Inc.

  16. Institutional blood glucose monitoring system for hospitalized patients: an integral component of the inpatient glucose control program.

    PubMed

    Boaz, Mona; Landau, Zohar; Matas, Zipora; Wainstein, Julio

    2009-09-01

    The ability to measure patient blood glucose levels at bedside in hospitalized patients and to transmit those values to a central database enables and facilitates glucose control and follow-up and is an integral component in the care of the hospitalized diabetic patient. The goal of this study was to evaluate the performance of an institutional glucometer employed in the framework of the Program for the Treatment of the Hospitalized Diabetic Patient (PTHDP) at E. Wolfson Medical Center, Holon, Israel. As part of the program to facilitate glucose control in hospitalized diabetic patients, an institutional glucometer was employed that permits uploading of data from stands located in each inpatient department and downloading of that data to a central hospital-wide database. Blood glucose values from hospitalized diabetic patients were collected from August 2007 to October 2008. The inpatient glucose control program was introduced gradually beginning January 2008. During the follow-up period, more than 150,000 blood glucose measures were taken. Mean glucose was 195.7 +/- 99.12 mg/dl during the follow-up period. Blood glucose values declined from 206 +/- 105 prior to PTHDP (August 2007-December 2007) to 186 +/- 92 after its inception (January 2008-October 2008). The decline was associated significantly with time (r = 0.11, p < 0.0001). The prevalence of blood glucose values lower than 60 mg/dl was 1.48% [95% confidence interval (CI) 0.36%] prior to vs 1.55% (95% CI 0.37%) following implementation of the PTHDP. Concomitantly, a significant increase in the proportion of blood glucose values between 80 and 200 mg/dl was observed, from 55.5% prior to program initiation vs 61.6% after program initiation (p < 0.0001). The present study was designed to observe changes in institution-wide glucose values following implementation of the PTHDP. Information was extracted from the glucometer system itself. Because the aforementioned study was not a clinical trial, we cannot rule out

  17. Elevated 1-h post-challenge plasma glucose levels in subjects with normal glucose tolerance or impaired glucose tolerance are associated with whole blood viscosity.

    PubMed

    Marini, Maria Adelaide; Fiorentino, Teresa Vanessa; Andreozzi, Francesco; Mannino, Gaia Chiara; Perticone, Maria; Sciacqua, Angela; Perticone, Francesco; Sesti, Giorgio

    2017-08-01

    It has been suggested that glucose levels ≥155 mg/dl at 1-h during an oral glucose tolerance test (OGTT) may predict development of type 2 diabetes and cardiovascular events among adults with normal glucose tolerance (NGT 1 h-high). Studies showed a link between increased blood viscosity and type 2 diabetes. However, whether blood viscosity is associated with dysglycemic conditions such as NGT 1 h-high, impaired glucose tolerance (IGT) or impaired fasting glucose (IFG) is unsettled. 1723 non-diabetic adults underwent biochemical evaluation and OGTT. A validated formula based on hematocrit and total plasma proteins was employed to estimate whole blood viscosity. Subjects were categorized into NGT with 1 h glucose <155 mg/dL (NGT-1 h-low), NGT-1 h-high, IFG and/or IGT. Hematocrit and blood viscosity values appeared significantly higher in individuals with NGT 1 h-high, IFG and/or IGT as compared to NGT 1 h-low subjects. Blood viscosity was significantly correlated with age, waist circumference, blood pressure, HbA1c, fasting, 1- and 2-h post-challenge insulin levels, total cholesterol and low-density lipoprotein, triglycerides, fibrinogen, white blood cell, and inversely correlated with high-density lipoprotein and insulin sensitivity. Of the four glycemic parameters, 1-h post-challenge glucose showed the strongest correlation with blood viscosity (β = 0.158, P < 0.0001) in a multivariate regression analysis model including several atherosclerosis risk factors. Our results demonstrate a positive relationship between blood viscosity and 1-h post-challenge plasma glucose. They also suggest that a subgroup of NGT individuals with 1-h post-challenge plasma >155 mg/dl have increased blood viscosity comparable to that observed in subjects with IFG and/or IGT.

  18. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring.

    PubMed

    Chen, Yihao; Lu, Siyuan; Zhang, Shasha; Li, Yan; Qu, Zhe; Chen, Ying; Lu, Bingwei; Wang, Xinyan; Feng, Xue

    2017-12-01

    Currently, noninvasive glucose monitoring is not widely appreciated because of its uncertain measurement accuracy, weak blood glucose correlation, and inability to detect hyperglycemia/hypoglycemia during sleep. We present a strategy to design and fabricate a skin-like biosensor system for noninvasive, in situ, and highly accurate intravascular blood glucose monitoring. The system integrates an ultrathin skin-like biosensor with paper battery-powered electrochemical twin channels (ETCs). The designed subcutaneous ETCs drive intravascular blood glucose out of the vessel and transport it to the skin surface. The ultrathin (~3 μm) nanostructured biosensor, with high sensitivity (130.4 μA/mM), fully absorbs and measures the glucose, owing to its extreme conformability. We conducted in vivo human clinical trials. The noninvasive measurement results for intravascular blood glucose showed a high correlation (>0.9) with clinically measured blood glucose levels. The system opens up new prospects for clinical-grade noninvasive continuous glucose monitoring.

  19. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring

    PubMed Central

    Chen, Yihao; Lu, Siyuan; Zhang, Shasha; Li, Yan; Qu, Zhe; Chen, Ying; Lu, Bingwei; Wang, Xinyan; Feng, Xue

    2017-01-01

    Currently, noninvasive glucose monitoring is not widely appreciated because of its uncertain measurement accuracy, weak blood glucose correlation, and inability to detect hyperglycemia/hypoglycemia during sleep. We present a strategy to design and fabricate a skin-like biosensor system for noninvasive, in situ, and highly accurate intravascular blood glucose monitoring. The system integrates an ultrathin skin-like biosensor with paper battery–powered electrochemical twin channels (ETCs). The designed subcutaneous ETCs drive intravascular blood glucose out of the vessel and transport it to the skin surface. The ultrathin (~3 μm) nanostructured biosensor, with high sensitivity (130.4 μA/mM), fully absorbs and measures the glucose, owing to its extreme conformability. We conducted in vivo human clinical trials. The noninvasive measurement results for intravascular blood glucose showed a high correlation (>0.9) with clinically measured blood glucose levels. The system opens up new prospects for clinical-grade noninvasive continuous glucose monitoring. PMID:29279864

  20. Acute effect of glucose on cerebral blood flow, blood oxygenation, and oxidative metabolism.

    PubMed

    Xu, Feng; Liu, Peiying; Pascual, Juan M; Xiao, Guanghua; Huang, Hao; Lu, Hanzhang

    2015-02-01

    While it is known that specific nuclei of the brain, for example hypothalamus, contain glucose-sensing neurons thus their activity is affected by blood glucose level, the effect of glucose modulation on whole-brain metabolism is not completely understood. Several recent reports have elucidated the long-term impact of caloric restriction on the brain, showing that animals under caloric restriction had enhanced rate of tricarboxylic acid cycle (TCA) cycle flux accompanied by extended life span. However, acute effect of postprandial blood glucose increase has not been addressed in detail, partly due to a scarcity and complexity of measurement techniques. In this study, using a recently developed noninvasive MR technique, we measured dynamic changes in global cerebral metabolic rate of O2 (CMRO2 ) following a 50 g glucose ingestion (N = 10). A time dependent decrease in CMRO2 was observed, which was accompanied by a reduction in oxygen extraction fraction (OEF) with unaltered cerebral blood flow (CBF). At 40 min post-ingestion, the amount of CMRO2 reduction was 7.8 ± 1.6%. A control study without glucose ingestion was performed (N = 10), which revealed no changes in CMRO2 , CBF, or OEF, suggesting that the observations in the glucose study was not due to subject drowsiness or fatigue after staying inside the scanner. These findings suggest that ingestion of glucose may alter the rate of cerebral metabolism of oxygen in an acute setting. © 2014 Wiley Periodicals, Inc.

  1. Glucose targets for preventing diabetic kidney disease and its progression.

    PubMed

    Ruospo, Marinella; Saglimbene, Valeria M; Palmer, Suetonia C; De Cosmo, Salvatore; Pacilli, Antonio; Lamacchia, Olga; Cignarelli, Mauro; Fioretto, Paola; Vecchio, Mariacristina; Craig, Jonathan C; Strippoli, Giovanni Fm

    2017-06-08

    Diabetes is the leading cause of end-stage kidney disease (ESKD) around the world. Blood pressure lowering and glucose control are used to reduce diabetes-associated disability including kidney failure. However there is a lack of an overall evidence summary of the optimal target range for blood glucose control to prevent kidney failure. To evaluate the benefits and harms of intensive (HbA1c < 7% or fasting glucose levels < 120 mg/dL versus standard glycaemic control (HbA1c ≥ 7% or fasting glucose levels ≥ 120 mg/dL for preventing the onset and progression of kidney disease among adults with diabetes. We searched the Cochrane Kidney and Transplant Specialised Register up to 31 March 2017 through contact with the Information Specialist using search terms relevant to this review. Studies contained in the Specialised Register are identified through search strategies specifically designed for CENTRAL, MEDLINE, and EMBASE; handsearching conference proceedings; and searching the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. Randomised controlled trials evaluating glucose-lowering interventions in which people (aged 14 year or older) with type 1 or 2 diabetes with and without kidney disease were randomly allocated to tight glucose control or less stringent blood glucose targets. Two authors independently assessed studies for eligibility and risks of bias, extracted data and checked the processes for accuracy. Outcomes were mortality, cardiovascular complications, doubling of serum creatinine (SCr), ESKD and proteinuria. Confidence in the evidence was assessing using GRADE. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes, and mean difference (MD) and 95% CI for continuous outcomes. Fourteen studies involving 29,319 people with diabetes were included and 11 studies involving 29,141 people were

  2. Effects of blood glucose, blood lipids and blood pressure control on recovery of patients with gastric cancer complicated with metabolic syndrome after radical gastrectomy.

    PubMed

    Sun, Li; Zhou, Pingping; Hua, Qingli; Jin, Changming; Guo, Chunling; Song, Bing

    2018-06-01

    This study aimed to investigate the effects of blood glucose, blood lipids and blood pressure control on recovery of patients with gastric cancer complicated with metabolic syndrome (MS) after radical gastrectomy. A total of 150 patients with gastric cancer, who were treated in Daqing Longnan Hospital from November, 2015 to May, 2017, were enrolled in this study. The patients were divided into the MS group (80 cases) and non-MS group (70 cases). Patients in the MS group were given corresponding drugs to control blood pressure, blood lipids and blood glucose, while patients in the non-MS group were not treated with those drugs. Patients in the MS group were divided into the normal and abnormal groups according to the levels of blood glucose, blood lipids and blood pressure. Moreover, occurrences of complications were compared between the normal and abnormal groups. Before surgery, blood glucose, blood lipids and blood pressure in the MS group were significantly higher than those in the non-MS group (p<0.05). One month after operation, blood glucose, blood lipids and blood pressure of the MS group decreased significantly compared to those before operation (p<0.05). Incidence of complications at 1 and 3 months after operation was significantly lower in the normal groups than that in the corresponding abnormal groups (p<0.05). Postoperative recovery was significantly better in the normal groups than that in the corresponding abnormal groups (p<0.05). Logistic regression analysis showed that the incidence of postoperative complications was related to fasting blood glucose, 2 h postprandial blood glucose, glycosylated hemoglobin, total triglycerides (TGs), LDL, mean blood pressure and BMI (p<0.05). The results show that, control of blood glucose, blood lipids and blood pressure in patients with gastric cancer complicated with MS after radical gastrectomy can reduce the incidence of postoperative complications and promote postoperative recovery.

  3. Prognostic value of low blood glucose at the presentation of E. coli bacteremia.

    PubMed

    Alamgir, Shamsuddin; Volkova, Natalia B; Peterson, Michael W

    2006-11-01

    Septicemia is the tenth leading cause of death in the United States, and Escherichia coli is the most common isolate in blood cultures. Low blood glucose is a known complication of sepsis. The prognostic role of low blood glucose in E. coli bacteremia is unknown. The study's objective was to identify the incidence of low blood glucose at the presentation of E. coli bacteremia and determine its influence on prognosis and outcome. A retrospective cohort study was conducted in university-affiliated community hospitals. Subjects were consecutive patients diagnosed with E. coli bacteremia between 1997 and 2003. We identified 1060 patients with documented E. coli bacteremia. We excluded 105 patients who were younger than 18 years old or pregnant. We recorded demographic characteristics, discharge diagnosis, and outcome. Among the 955 patients with E. coli bacteremia, the average age was 64+/-19.4 years. Overall, 4.6% had documented low blood glucose (blood glucose <70 mg/dL) at presentation. The incidence of low blood glucose was the same in diabetic and nondiabetic patients. Patients with low blood glucose had a 4.7 times higher risk of death compared to patients with non-low blood glucose. Race, age, sex, and diabetes had no influence on survival. Gastrointestinal and genitourinary sources for E. coli bacteremia were more commonly associated with low blood glucose (P <.001). The study was limited to E. coli-positive blood cultures and to the one hospital system. Low blood glucose is present at the onset of E. coli bacteremia in 4.6% of patients. This represents a potentially large number of patients because E. coli is the most common blood culture isolate. Low blood glucose predicts poor outcome, especially in patients with abnormal hepatic and renal function. Low blood glucose should be considered an early clinical sign of E. coli bacteremia and aggressive therapy should be instituted to potentially save lives.

  4. Admission blood glucose predicted haemorrhagic shock in multiple trauma patients.

    PubMed

    Kreutziger, Janett; Rafetseder, Andreas; Mathis, Simon; Wenzel, Volker; El Attal, René; Schmid, Stefan

    2015-01-01

    Admission blood glucose is known to be a predictor for outcome in several disease patterns, especially in critically ill trauma patients. The underlying mechanisms for the association of hyperglycaemia and poor outcome are still not proven. It was hypothesised that hyperglycaemia upon hospital admission is associated with haemorrhagic shock and in-hospital mortality. Data was extracted from an observational trauma database of the level 1 trauma centre at Innsbruck Medical University hospital. Trauma patients (≥18 years) with multiple injuries and an Injury Severity Score ≥17 were included and analysed. In total, 279 patients were analysed, of which 42 patients (15.1%) died. With increasing blood glucose upon hospital admission, the rate of patients with haemorrhagic shock rose significantly [from 4.4% (glucose 4.1-5.5mmol/L) to 87.5% (glucose >15mmol/L), p<0.0001]. Mortality was also associated with initial blood glucose [≤5.50mmol/L 8.3%; 5.51-7.50mmol/L 10.9%, 7.51-10mmol/L 12.4%; 10.01-15mmol/L 32.0%; ≥15.01mmol/L 12.5%, p=0.008]. Admission blood glucose was a better indicator for haemorrhagic shock (cut-off 9.4mmol/L, sensitivity 67.1%, specificity 83.9%) than haemoglobin, base excess, bicarbonate, pH, lactate, or vital parameters. Regarding haemorrhagic shock, admission blood glucose is more valuable during initial patient assessment than the second best predictive parameter, which was admission haemoglobin (cut-off value 6.5mmol/L (10.4g/dL): sensitivity 61.3%, specificity 83.9%). In multiple trauma, non-diabetic patients, admission blood glucose predicted the incidence of haemorrhagic shock. Admission blood glucose is an inexpensive, rapidly and easily available laboratory value that might help to identify patients at risk for haemorrhagic shock during initial evaluation upon hospital admission. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Repeated Plyometric Exercise Attenuates Blood Glucose in Healthy Adults

    PubMed Central

    BARILLAS, SALDIAM R.; WATKINS, CASEY M.; WONG, MEGAN A.; DOBBS, IAN J.; ARCHER, DAVID C.; MUNGER, CAMERON N.; GALPIN, ANDREW J.; COBURN, JARED W.; BROWN, LEE E.

    2017-01-01

    Plyometric exercise is popular in commercial exercise programs aiming to maximize energy expenditure for weight loss. However, the effect of plyometric exercise on blood glucose is unknown. The purpose of this study was to investigate the effect of relatively high intensity plyometric exercise on blood glucose. Thirteen subjects (6 females age= 21.8 ± 1.0 yrs.; height= 163.7 ± 7.8 cm; mass= 60.8 ± 6.7 kg and 7 males age= 22.0 ± 2.6 yrs.; height= 182.3 ± 3.6 cm; mass= 87.4 ± 12.5 kg) volunteered to participate. Subjects completed two random conditions on two separate days, consisting of either five sets of 10 maximal effort countermovement squat jumps (SJ) with 50 seconds’ rest between sets or quiet sitting (SIT) for the time equated to the SJ duration (~4min). Immediately after each condition, subjects drank 75g of anhydrous glucose (CHO) in 100ml of water. Blood glucose measurements were taken via finger prick pre and immediately post SJ or SIT, and 5, 15, 30, and 60 min post. A 2×6 (condition × time) ANOVA revealed a significant interaction where SJ blood glucose was lower at 15 (114.0 ± 14.6 mg/dl) and 30 (142.1 ± 22.5 mg/dl) min compared to SIT (15min 130.8 ± 14.0 mg/dl and 30min 159.3 ± 21.0 mg/dl). The current plyometric protocol attenuated CHO-induced blood glucose at 15 and 30 min. This may be due to increased physiological stress applied to the muscles, thus increasing muscular glucose uptake. PMID:29170708

  6. Repeated Plyometric Exercise Attenuates Blood Glucose in Healthy Adults.

    PubMed

    Barillas, Saldiam R; Watkins, Casey M; Wong, Megan A; Dobbs, Ian J; Archer, David C; Munger, Cameron N; Galpin, Andrew J; Coburn, Jared W; Brown, Lee E

    2017-01-01

    Plyometric exercise is popular in commercial exercise programs aiming to maximize energy expenditure for weight loss. However, the effect of plyometric exercise on blood glucose is unknown. The purpose of this study was to investigate the effect of relatively high intensity plyometric exercise on blood glucose. Thirteen subjects (6 females age= 21.8 ± 1.0 yrs.; height= 163.7 ± 7.8 cm; mass= 60.8 ± 6.7 kg and 7 males age= 22.0 ± 2.6 yrs.; height= 182.3 ± 3.6 cm; mass= 87.4 ± 12.5 kg) volunteered to participate. Subjects completed two random conditions on two separate days, consisting of either five sets of 10 maximal effort countermovement squat jumps (SJ) with 50 seconds' rest between sets or quiet sitting (SIT) for the time equated to the SJ duration (~4min). Immediately after each condition, subjects drank 75g of anhydrous glucose (CHO) in 100ml of water. Blood glucose measurements were taken via finger prick pre and immediately post SJ or SIT, and 5, 15, 30, and 60 min post. A 2×6 (condition × time) ANOVA revealed a significant interaction where SJ blood glucose was lower at 15 (114.0 ± 14.6 mg/dl) and 30 (142.1 ± 22.5 mg/dl) min compared to SIT (15min 130.8 ± 14.0 mg/dl and 30min 159.3 ± 21.0 mg/dl). The current plyometric protocol attenuated CHO-induced blood glucose at 15 and 30 min. This may be due to increased physiological stress applied to the muscles, thus increasing muscular glucose uptake.

  7. The Na+-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer.

    PubMed

    Koepsell, Hermann

    2017-02-01

    Orally applied SGLT2 (SLC5A2) inhibitors that enter the blood and decrease renal reabsorption of glucose have been approved as antidiabetic drugs. They decrease blood glucose levels, slightly reduce body weight and blood pressure, and decrease the risk for diabetic nephropathy. The SGLT2 inhibitor empagliflozin has been shown to reduce the risk of severe cardiac failure. This review summarizes knowledge about the functions of SGLT2 and the pathophysiology of type 2 diabetes (T2D) and diabetic follow-up diseases. In addition, proposed pathophysiological mechanisms of therapeutic effects and of side effects of SGLT2 inhibitors are described. A recently investigated strategy to employ orally applied SGLT1 (SLC5A1) inhibitors for treatment of diabetes is discussed. The SGLT1 inhibitors reduce glucose absorption and decrease blood glucose excursions after the intake of glucose-rich food. Knowledge concerning the expression of SGLT1 in different organs is compiled and potential side effects of SGLT1 inhibitors entering the blood are discussed. Because selective targeting of SGLT1 expression presents a strategy to decrease SGLT1-mediated glucose absorption, current knowledge about the regulation of SGLT1 is also discussed. This includes the possibility to decrease SGLT1 abundance in the small intestinal brush-border membrane by a peptide derived from protein RS1 (RSC1A1) that regulates membrane trafficking. Finally the possibility to employ SGLT1 and SGLT2 as targets for anticancer therapy is discussed. SGLT1 and SGLT2 are expressed in various tumors where they supply the tumor cells with glucose for euglycemic glycolysis. Tumor growth of carcinoma expressing SGLT2 can be slowed down by an SGLT2 inhibitor. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Impact of sodium–glucose cotransporter 2 inhibitors on blood pressure

    PubMed Central

    Reed, James W

    2016-01-01

    SGLT2 inhibitors are glucose-lowering agents used to treat type 2 diabetes mellitus (T2DM). These agents target the kidney to promote urinary glucose excretion, resulting in improved blood glucose control. SGLT2-inhibitor therapy is also associated with weight loss and blood pressure (BP) lowering. Hypertension is a common comorbidity in patients with T2DM, and is associated with excess morbidity and mortality. This review summarizes data on the effect of SGLT2 inhibitors marketed in the US (namely canagliflozin, dapagliflozin, or empagliflozin) on BP in patients with T2DM. Boolean searches were conducted that included terms related to BP or hypertension with terms for SGLT2 inhibitors, canagliflozin, dapagliflozin, or empagliflozin using PubMed, Google, and Google Scholar. Data from numerous randomized controlled trials of SGLT2 inhibitors in patients with T2DM demonstrated clinically relevant reductions in both systolic and diastolic BP, assessed via seated office measurements and 24-hour ambulatory BP monitoring. Observed BP lowering was not associated with compensatory increases in heart rate. Circadian BP rhythm was also maintained. The mechanism of SGLT2 inhibitor-associated BP reduction is not fully understood, but is assumed to be related to osmotic diuresis and natriuresis. Other factors that may also contribute to BP reduction include SGLT2 inhibitor-associated decreases in body weight and reduced arterial stiffness. Local inhibition of the renin–angiotensin–aldosterone system secondary to increased delivery of sodium to the juxtaglomerular apparatus during SGLT2 inhibition has also been postulated. Although SGLT2 inhibitors are not indicated as BP-lowering agents, the modest decreases in systolic and diastolic BP observed with SGLT2 inhibitors may provide an extra clinical advantage for the majority of patients with T2DM, in addition to improving blood glucose control. PMID:27822054

  9. Effect of levulose containing sweets on blood and salivary glucose levels.

    PubMed

    Subramaniam, Priya; K L, Girish Babu; Gona, Harsha

    2015-06-01

    It is common that many diabetic patients crave for sweets which are normally prohibited. To satisfy their desire to have sweets, alternative sweeteners have been introduced to provide sweetness to some items of their diabetic diet. To (1) assess the effect of sweets containing levulose on glucose levels in blood and saliva, and (2) compare it with effect of sweets containing sucrose on blood and saliva levels of glucose. The study consisted of 20 healthy participants, aged 17-20 years. Two sweet preparations of 36 g each were selected for the study. One preparation was sweetened with levulose (diabetic sweet; Group I) and the other with sucrose (regular sweet; Group II). Blood sugar and salivary glucose levels were estimated before and after the consumption of diabetic and regular sweets. The mean increase in salivary glucose level was lower in Group I than in Group II. Similarly, increase in blood glucose levels in Group I was lower and highly significant. In comparison with regular sweets, consumption of levulose containing sweet resulted in significantly lower blood and salivary glucose levels.

  10. Emotionally arousing pictures increase blood glucose levels and enhance recall.

    PubMed

    Blake, T M; Varnhagen, C K; Parent, M B

    2001-05-01

    Arousal enhances memory in human participants and this enhancing effect is likely due to the release of peripheral epinephrine. As epinephrine does not readily enter the brain, one way that peripheral epinephrine may enhance memory is by increasing circulating blood glucose levels. The present study investigated the possibility that emotionally arousing color pictures would improve memory and elevate blood glucose levels in human participants. Blood glucose levels were measured before, 15 min, and 30 min after male university students viewed 60 emotionally arousing or relatively neutral pictures. Participants viewed each picture for 6 s and then had 10 s to rate the arousal (emotional intensity) and valence (pleasantness) of each picture. A free-recall memory test was given 30 min after the last picture was viewed. Although the emotionally arousing and neutral picture sets were given comparable valence ratings, participants who viewed the emotionally arousing pictures rated the pictures as being more arousing, recalled more pictures, and had higher blood glucose levels after viewing the pictures than did participants who viewed the neutral pictures. These findings indicate that emotionally arousing pictures increase blood glucose levels and enhance memory, and that this effect is not due to differences in the degree of pleasantness of the stimuli. These findings support the possibility that increases in circulating blood glucose levels in response to emotional arousal may be part of the biological mechanism that allows emotional arousal to enhance memory. Copyright 2001 Academic Press.

  11. Quantify Glucose Level in Freshly Diabetic's Blood by Terahertz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Chen, Xiaofeng; Ma, Shihua; Wu, Xiumei; Yang, Wenxing; Zhang, Weifeng; Li, Xiao

    2018-04-01

    We demonstrate the capability of terahertz (THz) time-domain spectroscopy (TDS) to quantify glucose level in ex vivo freshly diabetic's blood. By investigating the THz spectra of different human blood, we find out THz absorption coefficients reflect a high sensitivity to the glucose level in blood. With a quantitative analysis of 70 patients, we demonstrate that the THz absorption coefficients and the blood glucose levels perform a linear relationship. A comparative experiment between THz measurement and glucometers is also conducted with another 20 blood samples, and the results confirm that the relative error is as less as 15%. Our ex vivo human blood study indicates that THz technique has great potential application to diagnose blood glucose level in clinical practice.

  12. Continuous non-invasive blood glucose monitoring by spectral image differencing method

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Liao, Ningfang; Cheng, Haobo; Liang, Jing

    2018-01-01

    Currently, the use of implantable enzyme electrode sensor is the main method for continuous blood glucose monitoring. But the effect of electrochemical reactions and the significant drift caused by bioelectricity in body will reduce the accuracy of the glucose measurements. So the enzyme-based glucose sensors need to be calibrated several times each day by the finger-prick blood corrections. This increases the patient's pain. In this paper, we proposed a method for continuous Non-invasive blood glucose monitoring by spectral image differencing method in the near infrared band. The method uses a high-precision CCD detector to switch the filter in a very short period of time, obtains the spectral images. And then by using the morphological method to obtain the spectral image differences, the dynamic change of blood sugar is reflected in the image difference data. Through the experiment proved that this method can be used to monitor blood glucose dynamically to a certain extent.

  13. Noninvasive measurement of blood glucose level using mid-infrared quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Yoshioka, Kiriko; Kino, Saiko; Matsuura, Yuji

    2017-04-01

    For non-invasive measurement of blood glucose level, attenuated total reflection (ATR) absorption spectroscopy system using a QCL as a light source was developed. The results of measurement of glucose solutions showed that the system had a sensitivity that was enough for blood glucose measurement. In-vivo measurement using the proposed system based on QCL showed that there was a correlation between absorptions measured with human lips and blood glucose level.

  14. Effect of intrapleural oxytocin injection on blood glucose level in rat (rattus norvegicous).

    PubMed

    Dezhkam, Y; Dezhkam, N

    2014-01-01

    The effect of Oxytocin on energy metabolism is still question. The aim of the present study was to investigate the effect of exogenous oxytocin injection in different dose and timetable on blood glucose level in rat. In this study 16 adult female rats were divided into 2 groups (Treatment 1(T1) and Treatment 2(T2)). T1 with 8 adult female rats received 0.2 IU/Kg oxytocin via intrapleural (IP) and blood glucose level was tested at 0th, 20th, 40th and 60th min after injection by collecting the blood from jugular vein. In T2 eight female rats received 0.4 IU/kg oxytocin via IP taking blood glucose measure at the same minutes as T1. The experiment tested in three replicates. Blood glucose meter (Model: 3TMSO1G) was used with glucose smart blood glucose monitoring system to the measurement of blood glucose level in rats. Data were analyzed using the GLM procedure of SAS (SAS, version 9) PDIFF was used to compare least square means among treatments adjusting by tukey test. There were hypoglycemic tendency in the changes of the blood glucose level in both T1 and T2, 20th min after injection (88.79 ± 3.28, 68.58 ± 3.63, respectively), while in the remaining subjects (4th and 60th min) blood glucose level increased (115.54 ± 4, 79.7 ± 2.09 and 136.33 ± 5.8, 123.54 ± 0.9, respectively). These results showed that blood glucose level in T1 significantly higher than T2 (p < 0.0001). These in vivo results showed that exogenous oxytocin can be good choice to decrease the blood glucose level very fast.

  15. Synthesis and characterisation of glucose-functional glycopolymers and gold nanoparticles: study of their potential interactions with ovine red blood cells.

    PubMed

    Wilkins, Laura E; Phillips, Daniel J; Deller, Robert C; Davies, Gemma-Louise; Gibson, Matthew I

    2015-03-20

    Carbohydrate-protein interactions can assist with the targeting of polymer- and nano-delivery systems. However, some potential protein targets are not specific to a single cell type, resulting in reductions in their efficacy due to undesirable non-specific cellular interactions. The glucose transporter 1 (GLUT-1) is expressed to different extents on most cells in the vasculature, including human red blood cells and on cancerous tissue. Glycosylated nanomaterials bearing glucose (or related) carbohydrates, therefore, could potentially undergo unwanted interactions with these transporters, which may compromise the nanomaterial function or lead to cell agglutination, for example. Here, RAFT polymerisation is employed to obtain well-defined glucose-functional glycopolymers as well as glycosylated gold nanoparticles. Agglutination and binding assays did not reveal any significant binding to ovine red blood cells, nor any haemolysis. These data suggest that gluco-functional nanomaterials are compatible with blood, and their lack of undesirable interactions highlights their potential for delivery and imaging applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. MicroRNA-21 regulates hepatic glucose metabolism by targeting FOXO1.

    PubMed

    Luo, Ailing; Yan, Haibo; Liang, Jichao; Du, Chunyuan; Zhao, Xuemei; Sun, Lijuan; Chen, Yong

    2017-09-05

    Abnormal activation of hepatic gluconeogenesis is a major contributor to fasting hyperglycemia in type 2 diabetes; however, the potential role of microRNAs in gluconeogenesis remains unclear. Here, we showed that hepatic expression levels of microRNA-21 (miR-21) were decreased in db/db and high-fat diet (HFD)-induced diabetic mice. Adenovirus-mediated overexpression of miR-21 decreased the expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) and inhibited glucose production in primary mouse hepatocytes. Silencing of miR-21 reversed this effect. Overexpression of miR-21 in the livers of db/db and HFD-induced mice was able to suppress hepatic gluconeogenesis, subsequently decreasing blood glucose levels and improving glucose and insulin intolerance. Furthermore, overexpression of miR-21 in primary mouse hepatocytes and mouse livers decreased the protein levels of FOXO1 and increased hepatic insulin sensitivity. By contrast, silencing of miR-21 increased the protein levels of FOXO1, subsequently leading to a decrease in insulin sensitivity and impaired glucose intolerance in C57BL/6 mice fed with high-fat diet for 4weeks. Finally, we confirmed that FOXO1 was a potential target of miR-21. These results suggest that miR-21 is a critical regulator in hepatic gluconeogenesis and may provide a novel therapeutic target for treating insulin resistance and type 2 diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Chronic fructose substitution for glucose or sucrose in food or beverages has little effect on fasting blood glucose, insulin, or triglycerides: a systematic review and meta-analysis.

    PubMed

    Evans, Rebecca A; Frese, Michael; Romero, Julio; Cunningham, Judy H; Mills, Kerry E

    2017-08-01

    Background: Conflicting evidence exists on the role of long-term fructose consumption on health. No systematic review has addressed the effect of isoenergetic fructose replacement of other sugars and its effect on glycated hemoglobin (HbA1c), fasting blood glucose, insulin, and triglycerides. Objective: The objective of this study was to review the evidence for a reduction in fasting glycemic and insulinemic markers after chronic, isoenergetic replacement of glucose or sucrose in foods or beverages by fructose. The target populations were persons without diabetes, those with impaired glucose tolerance, and those with type 2 diabetes. Design: We searched the Cochrane Library, MEDLINE, EMBASE, the WHO International Clinical Trials Registry Platform Search Portal, and clinicaltrials.gov The date of the last search was 26 April 2016. We included randomized controlled trials of isoenergetic replacement of glucose, sucrose, or both by fructose in adults or children with or without diabetes of ≥2 wk duration that measured fasting blood glucose. The main outcomes analyzed were fasting blood glucose and insulin as well as fasting triglycerides, blood lipoproteins, HbA1c, and body weight. Results: We included 14 comparison arms from 11 trials, including 277 patients. The studies varied in length from 2 to 10 wk (mean: 28 d) and included doses of fructose between 40 and 150 g/d (mean: 68 g/d). Fructose substitution in some subgroups resulted in significantly but only slightly lowered fasting blood glucose (-0.14 mmol/L; 95% CI: -0.24, -0.036 mmol/L), HbA1c [-10 g/L (95% CI: -12.90, -7.10 g/L; impaired glucose tolerance) and -6 g/L (95% CI: -8.47, -3.53 g/L; normoglycemia)], triglycerides (-0.08 mmol/L; 95% CI: -0.14, -0.02 mmol/L), and body weight (-1.40 kg; 95% CI: -2.07, -0.74 kg). There was no effect on fasting blood insulin or blood lipids. Conclusions: The evidence suggests that the substitution of fructose for glucose or sucrose in food or beverages may be of benefit

  18. A Study on the Correlation between Cord Blood Glucose Level and the Apgar Score.

    PubMed

    Khan, Kalyan; Saha, Ashis Ranjan

    2013-02-01

    The study of the biochemical parameters of cord blood acts as a mirror, which usually reflects the neonatal status. The widely used system for the evaluation of a neonate is the Apgar score. There is no comprehensive published data which has established the association between the cord blood glucose level and the Apgar score. Similarly, there is also no well accepted reference range of the cord blood glucose level. The main objectives of the present study was to ascertain any adverse effects of an abnormal cord blood glucose level on the neonatal status and to find out a standard reference level of glucose in cord blood. The cord blood glucose estimation was done by using the glucose oxidase peroxidase method and the statistical analysis was performed by using the SPSS, version 16 software. In the present study, the cord blood glucose level was found to have no correlation with the Apgar scores which were calculated at both one minute and five minutes after birth. It was also found that for the foetus to be free from any obvious complication, the cord blood glucose level had to be around 87 mg/dl. The fluctuations in the maternal glucose levels are weakly associated with the glucose level in the cord blood.

  19. Comparison of three point-of-care blood glucose meters for use in adult and juvenile alpacas.

    PubMed

    Tennent-Brown, Brett S; Koenig, Amie; Williamson, Lisa H; Boston, Raymond C

    2011-08-01

    To compare the performance of 3 point-of-care glucose meters in adult and juvenile alpacas with that of a laboratory-based analyzer. Evaluation study. 35 adult alpacas and 21 juvenile alpacas. Whole blood samples obtained via jugular venipuncture were tested with all 3 point-of-care glucose meters; plasma samples were also tested with 1 of those meters. Glucose concentrations determined by use of the point-of-care meters were compared with results from the laboratory-based analyzer. Plasma glucose concentrations determined by use of the laboratory-based analyzer ranged from 36 to 693 mg/dL. Over the entire range of glucose concentrations tested, the Lin concordance correlation coefficient (agreement) was significant and excellent for all comparisons. Concordance decreased for 1 glucometer when testing whole blood samples over a narrower range of glucose concentrations (50 to 200 mg/dL). Bias was typically small (< 10 mg/dL) for 3 of the 4 comparisons but considerable for 1 meter with the use of whole blood. The limits of agreement were wide for all comparisons over the entire range of glucose concentrations tested but decreased to within acceptable limits when the narrower glucose range (50 to 200 mg/dL) was analyzed for 3 of the comparisons. For samples with a PCV < 25%, bias and the limits of agreement were greater for one of the meters tested. Discrepancies between point-of-care glucose meters and reference techniques can be considerable in alpacas, emphasizing the importance of assessing individual meter performance in a target population.

  20. A data driven nonlinear stochastic model for blood glucose dynamics.

    PubMed

    Zhang, Yan; Holt, Tim A; Khovanova, Natalia

    2016-03-01

    The development of adequate mathematical models for blood glucose dynamics may improve early diagnosis and control of diabetes mellitus (DM). We have developed a stochastic nonlinear second order differential equation to describe the response of blood glucose concentration to food intake using continuous glucose monitoring (CGM) data. A variational Bayesian learning scheme was applied to define the number and values of the system's parameters by iterative optimisation of free energy. The model has the minimal order and number of parameters to successfully describe blood glucose dynamics in people with and without DM. The model accounts for the nonlinearity and stochasticity of the underlying glucose-insulin dynamic process. Being data-driven, it takes full advantage of available CGM data and, at the same time, reflects the intrinsic characteristics of the glucose-insulin system without detailed knowledge of the physiological mechanisms. We have shown that the dynamics of some postprandial blood glucose excursions can be described by a reduced (linear) model, previously seen in the literature. A comprehensive analysis demonstrates that deterministic system parameters belong to different ranges for diabetes and controls. Implications for clinical practice are discussed. This is the first study introducing a continuous data-driven nonlinear stochastic model capable of describing both DM and non-DM profiles. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Tale of two sites: capillary versus arterial blood glucose testing in the operating room.

    PubMed

    Akinbami, Felix; Segal, Scott; Schnipper, Jeffrey L; Stopfkuchen-Evans, Matthias; Mills, Jonathan; Rogers, Selwyn O

    2012-04-01

    Pre- and intraoperative glycemic control has been identified as a putative target to improve outcomes of surgical patients. Glycemic control requires frequent monitoring of blood glucose levels with appropriate adjustments. However, monitoring standards have been called into question, especially in cases in which capillary samples are used. Point-of-care testing (POCT) using capillary samples and glucometers has been noted to give relatively accurate results for critically ill patients. However, the package inserts of most glucometers warn that they should not be used for patients in shock. This has led clinicians to doubt their accuracy in the operating room. The accuracy of capillary samples when tested in patients undergoing surgical procedures has not been proven. This study aims to determine the accuracy of intraoperative blood glucose values using capillary samples relative to arterial samples. A prospective study was conducted by collecting paired capillary and arterial samples of patients undergoing major operations at a tertiary medical center from August 2009 to May 2011. Subjects were a convenience sample of patients who had arterial lines and needed glucose testing while undergoing the procedure. Precision Xceed Pro (Abbott) handheld glucometers were used to obtain the blood glucose values. Our primary outcome of interest was the degree of correlation between capillary and arterial blood glucose values or the degree to which arterial glucose levels can be predicted by capillary glucose samples. We used linear regression and the Student t tests for statistical analyses. Seventy-two-paired samples were collected. Of the cases, 54% were major abdominal operations, whereas 24% were vascular operations. The mean values ± standard deviation for glucose levels were 146 ± 35 mg/dL (capillary) and 147 ± 36 mg/dL (arterial). The mean time ± standard deviation between the collection of both samples was 3.5 ± 1.3 minutes. The regression coefficient showed a

  2. Self-Control, Daily Negative Affect and Blood Glucose Control in Adolescents with Type 1 Diabetes

    PubMed Central

    Lansing, Amy Hughes; Berg, Cynthia A.; Butner, Jonathan; Wiebe, Deborah J.

    2016-01-01

    Objective For adolescents with type 1 diabetes, maintaining optimal daily blood glucose control is a complex self-regulatory process that likely requires self-control. This study examined whether higher self-control was associated with lower daily negative affect about diabetes and, in turn, better daily blood glucose control, i.e., lower mean daily blood glucose (MBG) and smaller standard deviations of daily blood glucose (SDBG), through two paths: 1) self-control maintaining lower mean level of negative affect and 2) self-control buffering the association of the number of daily diabetes problems with daily negative affect. Methods Adolescents (M age=12.87 years) with type 1 diabetes (n=180) completed an initial survey containing a self-report measure of self-control. Nightly electronic diaries were completed for 14 days where adolescents reported daily problems with and negative affect about diabetes, and used a study-provided blood glucose meter. Results Hypotheses were examined through multilevel modeling. Lower mean levels of daily negative affect partially mediated the relation between higher adolescent self-control and lower MBG. Adolescent self-control also buffered the association of the number of daily problems with daily negative affect, and smaller fluctuations in daily negative affect were associated with lower SDBG. Conclusions Adolescent self-control is associated with daily affect regulatory processes that may influence MBG. However, fluctuations in daily negative affect about diabetes may represent a unique within-person daily process associated with SDBG. These findings suggest that studies examining daily disease processes and interventions targeting daily affect regulation may be important to improving health in adolescents with type 1 diabetes. PMID:26914647

  3. Alarm characterization for a continuous glucose monitor that replaces traditional blood glucose monitoring.

    PubMed

    McGarraugh, Geoffrey

    2010-01-01

    Continuous glucose monitoring (CGM) devices available in the United States are approved for use as adjuncts to self-monitoring of blood glucose (SMBG); all CGM alarms require SMBG confirmation before treatment. In this report, an analysis method is proposed to determine the CGM threshold alarm accuracy required to eliminate SMBG confirmation. The proposed method builds on the Clinical and Laboratory Standards Institute (CLSI) guideline for evaluating CGM threshold alarms using data from an in-clinic study of subjects with type 1 diabetes. The CLSI method proposes a maximum time limit of +/-30 minutes for the detection of hypo- and hyperglycemic events but does not include limits for glucose measurement accuracy. The International Standards Organization (ISO) standard for SMBG glucose measurement accuracy (ISO 15197) is +/-15 mg/dl for glucose <75 mg/dl and +/-20% for glucose > or = 75 mg/dl. This standard was combined with the CLSI method to more completely characterize the accuracy of CGM alarms. Incorporating the ISO 15197 accuracy margins, FreeStyle Navigator CGM system alarms detected 70 mg/dl hypoglycemia within 30 minutes at a rate of 70.3%, with a false alarm rate of 11.4%. The device detected high glucose in the range of 140-300 mg/dl within 30 minutes at an average rate of 99.2%, with a false alarm rate of 2.1%. Self-monitoring of blood glucose confirmation is necessary for detecting and treating hypoglycemia with the FreeStyle Navigator CGM system, but at high glucose levels, SMBG confirmation adds little incremental value to CGM alarms. 2010 Diabetes Technology Society.

  4. Rice (Oryza sativa japonica) Albumin Suppresses the Elevation of Blood Glucose and Plasma Insulin Levels after Oral Glucose Loading.

    PubMed

    Ina, Shigenobu; Ninomiya, Kazumi; Mogi, Takashi; Hase, Ayumu; Ando, Toshiki; Matsukaze, Narumi; Ogihara, Jun; Akao, Makoto; Kumagai, Hitoshi; Kumagai, Hitomi

    2016-06-22

    The suppressive effect of rice albumin (RA) of 16 kDa on elevation of blood glucose level after oral loading of starch or glucose and its possible mechanism were examined. RA suppressed the increase in blood glucose levels in both the oral starch tolerance test and the oral glucose tolerance test. The blood glucose concentrations 15 min after the oral administration of starch were 144 ± 6 mg/dL for control group and 127 ± 4 mg/dL for RA 200 mg/kg BW group, while those after the oral administration of glucose were 157 ± 7 mg/dL for control group and 137 ± 4 mg/dL for RA 200 mg/kg BW group. However, in the intraperitoneal glucose tolerance test, no significant differences in blood glucose level were observed between RA and the control groups, indicating that RA suppresses the glucose absorption from the small intestine. However, RA did not inhibit the activity of mammalian α-amylase. RA was hydrolyzed to an indigestible high-molecular-weight peptide (HMP) of 14 kDa and low-molecular-weight peptides by pepsin and pancreatin. Furthermore, RA suppressed the glucose diffusion rate through a semipermeable membrane like dietary fibers in vitro. Therefore, the indigestible HMP may adsorb glucose and suppress its absorption from the small intestine.

  5. The Effect of Fasting Duration on Baseline Blood Glucose Concentration, Blood Insulin Concentration, Glucose/Insulin Ratio, Oral Sugar Test, and Insulin Response Test Results in Horses.

    PubMed

    Bertin, F R; Taylor, S D; Bianco, A W; Sojka-Kritchevsky, J E

    2016-09-01

    Published descriptions of the oral sugar test (OST) and insulin response test (IRT) have been inconsistent when specifying the protocol for fasting horses before testing. The purpose of our study was to examine the effect of fasting duration on blood glucose concentration, blood insulin concentration, glucose/insulin ratio, OST, and IRT results in horses. Ten healthy adult horses. Both OST and IRT were performed on horses without fasting and after fasting for 3, 6, and 12 hours. Thus, 8 tests were performed per horse in a randomized order. Blood collected at the initial time point of the OST was analysed for both blood glucose and serum insulin concentrations so that baseline concentrations and the glucose/insulin ratio could be determined. Unless fasted, horses had free-choice access to grass hay. There was no effect of fasting and fasting duration on blood glucose concentration, serum insulin concentration, glucose/insulin ratio, or the OST. Response to insulin in the IRT was decreased in fasted horses. The effect increased with fasting duration, with the least response to insulin administration after a 12-hour fast. These data indicate that insulin sensitivity is not a fixed trait in horses. Fasting a horse is not recommended for a glucose/insulin ratio or IRT, and fasting a horse for 3 hours is recommended for the OST. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  6. Improved blood glucose estimation through multi-sensor fusion.

    PubMed

    Xiong, Feiyu; Hipszer, Brian R; Joseph, Jeffrey; Kam, Moshe

    2011-01-01

    Continuous glucose monitoring systems are an integral component of diabetes management. Efforts to improve the accuracy and robustness of these systems are at the forefront of diabetes research. Towards this goal, a multi-sensor approach was evaluated in hospitalized patients. In this paper, we report on a multi-sensor fusion algorithm to combine glucose sensor measurements in a retrospective fashion. The results demonstrate the algorithm's ability to improve the accuracy and robustness of the blood glucose estimation with current glucose sensor technology.

  7. Relationships between extraction and metabolism of glucose, blood flow, and tissue blood volume in regions of rat brain.

    PubMed

    Cremer, J E; Cunningham, V J; Seville, M P

    1983-09-01

    Studies were made on the relationships between the rate of glucose metabolism, the transport of glucose between plasma and brain, cerebral blood flow, and blood content. Conscious control rats were compared with rats with intense tremors induced with cismethrin. The influence of plasma glucose concentration was studied by fasting some animals overnight prior to the induction of tremors. Mean plasma glucose was 8.83 mM in controls, 12.57 mM in fed rats with tremors, and 4.94 mM in rats fasted overnight prior to induction of tremors. Of 12 brain regions studied, nine showed an increased rate of glucose utilization in both fed and fasted trembling rats. Cerebellum had the highest percentage increase (200%). Rates of unidirectional glucose influx in fed trembling rats were significantly greater than those in controls in eight regions. In fasted animals, rates were the same as in controls, except in cerebellum, where it was 1.6 times higher. These high rates of glucose influx at low plasma glucose concentrations were indicative of a change in kinetic parameters of glucose transport. Unidirectional glucose influx rates were transformed to estimates of maximal transport rates (Tmax), based on the Michaelis-Menten equation. Average plasma glucose concentrations in regional capillaries (c) were calculated and shown to be maintained at values close to arterial plasma glucose concentrations (Ca), in all brain regions of each group. In trembling rats, Tmax for each brain region was higher than that in controls. In fasted rats with tremors, Tmax was higher in several brain regions than in fed rats. Tmax in cerebellum was 3.37, 4.71, and 7.89 mumol g-1 min-1 in control, fed trembling, and fasted trembling rats, respectively. Blood flow increased significantly in all regions in rats with tremors and was higher in fasted than in fed animals. There was only a weak correlation between blood flow and Tmax. Blood content of several regions increased in rats with tremors, and there was

  8. Resource guide 2004. Blood glucose. Monitors and data management systems.

    PubMed

    2004-01-01

    Before you buy a blood glucose monitor (also known as a blood glucose meter), check with your doctor and diabetes educator. Make sure the one you choose is well suited to your particular needs. You might want to have one at home and one for use at school or the office.

  9. Application of optical coherence tomography for noninvasive blood glucose monitoring during hyperglycemia

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Ashitkov, Taras V.; Motamedi, Massoud; Esenaliev, Rinat O.

    2003-10-01

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from Diabetes Mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for chemical analysis. Recently we proposed to use optical coherence tomography (OCT) for continuous noninvasive blood glucose sensing through skin. In this paper we tested the OCT technique for noninvasive monitoring of blood glucose concentration in lip tissue of New Zealand rabbits and Yucatan micropigs during glucose clamping experiments. Obtained results show good agreement with results obtained in skin studies, good correlation of changes in the OCT signal slope measured at the depth of 250 to 500 μm with changes in blood glucose concentration, and higher stability of the OCT data points than that obtained from skin.

  10. Method and apparatus for non-invasive monitoring of blood glucose

    DOEpatents

    Thomas, Graham H.; Watson, Roger M.; Noell, J. Oakey

    1992-06-09

    A new and improved method and apparatus are provided for non-invasive monitoring of changes in blood glucose concentration in a tissue specimen and particularly in an individual. The method uses acoustic velocity measurements for monitoring the effect of glucose concentration upon the density and adiabatic compressibility of the serum. In a preferred embodiment, the acoustic velocity measurements are made through the earlobe of a subject by means of an acoustic probe or monitor which includes a transducer for transmitting and receiving ultrasonic energy pulses to and from the blood flowing in the subject's earlobe and a reflector for facilitating reflection of the acoustic pulses from the blood. The probe is designed in such a way that when properly affixed to an ear, the transducer is positioned flush against the anterior portion of an earlobe while the reflector is positioned flush against the interior portion of the earlobe. A microthermocouple is provided on the probe for monitoring the internal temperature of the blood being sampled. An electrical system, essentially comprising a frequency generator, a time intervalometer and an oscilloscope, is linked to the glucose monitoring probe. The electrical system analyzes selected ones of the pulses reflected from the blood sample in order to determine therefrom the acoustic velocity of the blood which, in turn, provides a representation of the blood glucose concentration levels at the time of the acoustic velocity measurements.

  11. Proportional Insulin Infusion in Closed-Loop Control of Blood Glucose

    PubMed Central

    Grasman, Johan

    2017-01-01

    A differential equation model is formulated that describes the dynamics of glucose concentration in blood circulation. The model accounts for the intake of food, expenditure of calories and the control of glucose levels by insulin and glucagon. These and other hormones affect the blood glucose level in various ways. In this study only main effects are taken into consideration. Moreover, by making a quasi-steady state approximation the model is reduced to a single nonlinear differential equation of which parameters are fit to data from healthy subjects. Feedback provided by insulin plays a key role in the control of the blood glucose level. Reduced β-cell function and insulin resistance may hamper this process. With the present model it is shown how by closed-loop control these defects, in an organic way, can be compensated with continuous infusion of exogenous insulin. PMID:28060898

  12. Quality assessment of patients’ self-monitoring of blood glucose in community pharmacies

    PubMed Central

    Kjome, Reidun L. S.; Granas, Anne G.; Nerhus, Kari; Sandberg, Sverre

    2009-01-01

    Objective To evaluate diabetes patients’ self-monitoring of blood glucose using a community pharmacy-based quality assurance procedure, to investigate whether the procedure improved the quality of the patient performance of self monitoring of blood glucose, and to examine the opinions of the patients taking part in the study. Methods The results of patient blood glucose measurements were compared to the results obtained with HemoCue Glucose 201+ by pharmacy employees in 16 Norwegian community pharmacies. Patient performance was monitored using an eight item checklist. Patients whose blood glucose measurements differed from pharmacy measurements by more than 20% were instructed in the correct use of their glucometer. The patients then re-measured their blood glucose. If the results were still outside the set limits, the control procedure was repeated with a new lot of glucometer strips, and then with a new glucometer. The patients returned for a follow-up visit after three months. Results During the first visit, 5% of the 338 patients had measurements that deviated from pharmacy blood glucose values by more than 20% and user errors were observed for 50% of the patients. At the second visit, there was no significant change in the analytical quality of patient measurements, but the percentage of patients who made user errors had decreased to 29% (p < 0.001). Eighty-five percent of the patients reported that they used their blood glucose results to adjust medication, exercise or meals. Fifty-one percent of the patients reported a greater trust in their measurements after the second visit. Eighty percent of patients wished to have their measurements assessed yearly. Of these patients, 83% preferred to have the assessment done at the community pharmacy. Conclusion A community pharmacy-based quality assessment procedure of patients’ self monitoring of blood glucose significantly reduced the number of user errors. The analytical quality of the patients’ measurements

  13. Testing versus guessing blood glucose values: impact on self-care behaviors in type 2 diabetes.

    PubMed

    Pettus, Jeremy; Stenger, Patricia; Schachner, Holly C; Dunne, Nancy; Parkes, Joan Lee; Pardo, Scott; Edelman, Steven V

    2014-09-01

    To assess differences between estimated blood glucose values and those measured on a blood glucose meter and the impact on self-care behavior in type 2 diabetes. Subjects ≥18 years with type 2 diabetes (N = 297) attending a Taking Control of Your Diabetes conference were asked questions about diabetes management and to estimate their current blood glucose. Study staff tested subjects' blood glucose on a meter. After seeing the result, subjects were again asked questions on diabetes management. NCT01453413. The percentage of subject blood glucose estimations that were outside ISO 15197:2003 accuracy criteria (>±15 mg/dL or >±20% of meter glucose values). Nearly half (46%) of subjects estimated blood glucose values outside ISO 15197:2003 accuracy criteria. Time since last blood glucose test, time since last meal, testing frequency, and A1C did not have an effect on differences between estimated blood glucose values and meter results. In the questionnaire before blood glucose testing, most subjects strongly agreed, agreed, or neither agreed nor disagreed that 'I make decisions about my diabetes, such as my food intake or my insulin dose even when I do not test my blood sugar' (71%) and 'My body tells me without testing if my blood sugar is low or high' (77%). After blood glucose testing, 99% of subjects strongly agreed, agreed, or neither agreed nor disagreed that 'Knowing my blood sugar by checking could help me make different diabetes decisions'. Self-monitoring of blood glucose is an important component of diabetes self-management. Testing rather than guessing blood glucose values is important to obtain accurate results and inform people with type 2 diabetes to make effective, appropriate diabetes management decisions. A potential limitation of this study is that the subject population may not be representative of the general population of people with diabetes; however, the conference setting may attract a more motivated population, which could

  14. Exogenous glucagon-like peptide-1 attenuates glucose absorption and reduces blood glucose concentration after small intestinal glucose delivery in critical illness.

    PubMed

    Miller, Asaf; Deane, Adam M; Plummer, Mark P; Cousins, Caroline E; Chapple, Lee-Anne S; Horowitz, Michael; Chapman, Marianne J

    2017-03-01

    To evaluate the effect of exogenous glucagonlike peptide-1 (GLP-1) on small intestinal glucose absorption and blood glucose concentrations during critical illness. A prospective, blinded, placebo-controlled, cross-over, randomised trial in a mixed medical-surgical adult intensive care unit, with 12 mechanically ventilated critically ill patients, who were suitable for receiving small intestinal nutrient. On consecutive days, in a randomised order, participants received intravenous GLP-1 (1.2 pmol/ kg/min) or placebo (0.9% saline) as a continuous infusion over 270 minutes. After 6 hours of fasting, intravenous infusions of GLP-1 or placebo began at T = -30 min (in which T = time), with the infusion maintained at a constant rate until study completion at T = 240 min. At T = 0 min, a 100 mL bolus of mixed liquid nutrient meal (1 kcal/mL) containing 3 g of 3-O-methyl-D-gluco-pyranose (3-OMG), a marker of glucose absorption, was administered directly into the small intestine, via a post-pyloric catheter, over 6 minutes. Blood samples were taken at regular intervals for the measurement of plasma glucose and 3-OMG concentrations. Intravenous GLP-1 attenuated initial small intestinal glucose absorption (mean area under the curve [AUC] 0-30 for 3-OMG: GLP-1 group, 4.4 mmol/L/min [SEM, 0.9 mmol/L/min] v placebo group, 6.5 mmol/L/min [SEM, 1.0 mmol/L/min]; P = 0.01), overall small intestinal glucose absorption (mean AUC 0-240 for 3-OMG: GLP-1, 68.2 mmol/L/ min [SEM, 4.7 mmol/L/min] v placebo, 77.7 mmol/L/min [SEM, 4.4 mmol/lLmin]; P = 0.02), small intestinal glucose absorption and overall blood glucose concentration (mean AUC 0-240 for blood glucose: GLP-1, 2062 mmol/L/min [SEM, 111 mmol/L/min] v placebo 2328 mmol/L/min [SEM, 145 mmol/L/min]; P = 0.005). Short-term administration of exogenous GLP-1 reduces small intestinal glucose absorption for up to 4 hours during critical illness. This is likely to be an additional mechanism for the glucose-lowering effect of this agent.

  15. Blood glucose control for patients with acute coronary syndromes in Qatar.

    PubMed

    Wilby, Kyle John; Elmekaty, Eman; Abdallah, Ibtihal; Habra, Masa; Al-Siyabi, Khalid

    2016-01-01

    Blood glucose is known to be elevated in patients presenting with acute coronary syndromes. However a gap in knowledge exists regarding effective management strategies once admitted to acute care units. It is also unknown what factors (if any) predict elevated glucose values during initial presentation. OBJECTIVES of the study were to characterize blood glucose control in patients admitted to the cardiac care unit (CCU) in Qatar and to determine predictive factors associated with high glucose levels (>10 mmol/l) on admission to the CCU. All data for this study were obtained from the CCU at Heart Hospital in Doha, Qatar. A retrospective chart review was completed for patients admitted to the CCU in Qatar from October 1st, 2012 to March 31st, 2013, of which 283 were included. Baseline characteristics (age, gender, nationality, medical history, smoking status, type of acute coronary syndrome), capillary and lab blood glucose measurements, and use of insulin were extracted. Time spent in glucose ranges of <4, 4 to <8, 8 to <10, and >10 mmol/1 was calculated manually. Univariate and multivariate logistic regression were performed to assess factors associated with high glucose on admission. The primary analysis was completed with capillary data and a sensitivity analysis was completed using laboratory data. Blood glucose values measured on admission and throughout length of stay in the CCU. Capillary blood glucose data showed majority of time was spent in the range of >10 mmol/l (41.95%), followed by 4-8 mmol/l (35.44%), then 8-10 mmol/l (21.45%), and finally <4 mmol/l (1.16%). As a sensitivity analysis, laboratory data showed very similar findings. Diabetes, hypertension, and non-smoker status predicted glucose values >10 mmol/l on admission (p < 0.05) in a univariate analysis but only diabetes remained significant in a multivariate model (OR 23.3; 95% CI, 11.5-47.3). Diabetes predicts high glucose values on hospital admission for patients with ACS and patients

  16. Frequency of self-monitoring blood glucose and attainment of HbA1c target values.

    PubMed

    Elgart, Jorge F; González, Lorena; Prestes, Mariana; Rucci, Enzo; Gagliardino, Juan J

    2016-02-01

    Test strips for self-monitoring of blood glucose (SMBG) represent in Argentina, around 50 % of diabetes treatment cost; the frequency of their use is closely associated with hyperglycemia treatment. However, the favorable impact of SMBG on attainment of HbA1c goal in different treatment conditions remains controversial. We therefore attempted to estimate the relationship between use of SMBG test strips and degree of attainment of metabolic control in an institution of our social security subsector (SSS) in which provision is fully covered and submitted to a regular audit system. Observational retrospective study using information of 657 patients with T2DM (period 2009-2010) from the database of the Diabetes and Other Cardiovascular Risk Factors Program (DICARO) of one institution of our SSS. DICARO provides-with an audit system-100 % coverage for all drugs and keeps records of clinical, metabolic and treatment data from every patient. The average monthly test strips/patient used for SMBG increased as a function of treatment intensification: Monotherapy with oral antidiabetic drugs (OAD) < combined OAD therapy < insulin treatment. In every condition, the number was larger in people with target HbA1c levels. Test strips represented the larger percentage of total prescription cost. In our population, the type of hyperglycemia treatment was the main driver of test strip use for SMBG; in every condition tested, targeted HbA1c values were associated with greater strip use. Patient education and prescription audit may optimize its use and treatment outcomes.

  17. The Effects of Blood Glucose Levels on Cognitive Performance: A Review of the Literature

    NASA Technical Reports Server (NTRS)

    Feldman, Jolene; Barshi, Immanuel

    2007-01-01

    The purpose of this review paper is to discuss the research literature on the effects of blood glucose levels on executive and non-executive functions in humans. The review begins with a brief description of blood glucose, how it has been studied, previous syntheses of prior studies, and basic results regarding the role of blood glucose on cognitive functioning. The following sections describe work that investigated the effect of blood glucose on both non-executive and executive functions (e.g., sensory processing, psychomotor functioning, attention, vigilance, memory, language and communication, judgement and decision-making, and complex task performance). Within each section, summaries of the findings and challenges to the literature are included. Measurement conversions of blood glucose levels, blood glucose values, and associated symptoms are depicted. References to the types of tests used to investigate blood glucose and cognitive performance are provided. For more detailed descriptions of references within (and in addition to) this paper, an annotated bibliography is also provided. Several moderator variables including individual differences and contextual variables related to the effects of blood glucose levels on performance (e.g., age, gender, time of day, familiarity with the task and symptom awareness, expectancy effects, dose dependent effects, time dependent effects, task specific effects, rising and falling blood glucose levels, and speed and/or accuracy trade-offs) are addressed later in the paper. Some suggestions for future experimental methodologies are also made.

  18. Accuracy evaluation of contour next compared with five blood glucose monitoring systems across a wide range of blood glucose concentrations occurring in a clinical research setting.

    PubMed

    Klaff, Leslie J; Brazg, Ronald; Hughes, Kristen; Tideman, Ann M; Schachner, Holly C; Stenger, Patricia; Pardo, Scott; Dunne, Nancy; Parkes, Joan Lee

    2015-01-01

    This study evaluated the accuracy of Contour(®) Next (CN; Bayer HealthCare LLC, Diabetes Care, Whippany, NJ) compared with five blood glucose monitoring systems (BGMSs) across a wide range of clinically occurring blood glucose levels. Subjects (n=146) were ≥ 18 years and had type 1 or type 2 diabetes. Subjects' glucose levels were safely lowered or raised to provide a wide range of glucose values. Capillary blood samples were tested on six BGMSs and a YSI glucose analyzer (YSI Life Sciences, Inc., Yellow Springs, OH) as the reference. Extreme glucose values were achieved by glucose modification of the blood sample. System accuracy was assessed by mean absolute difference (MAD) and mean absolute relative difference (MARD) across several glucose ranges, with <70 mg/dL evaluated by MAD as the primary end point. In the low glucose range (<70 mg/dL), MAD values were as follows: Accu-Chek(®) Aviva Nano (Roche Diagnostics, Indianapolis, IN), 3.34 mg/dL; CN, 2.03 mg/dL; FreeStyle Lite(®) (FSL; Abbott Diabetes Care, Inc., Alameda, CA), 2.77 mg/dL; OneTouch(®) Ultra(®) 2 (LifeScan, Inc., Milpitas, CA), 10.20 mg/dL; OneTouch(®) Verio(®) Pro (LifeScan, Inc.), 4.53 mg/dL; and Truetrack(®) (Nipro Diagnostics, Inc., Fort Lauderdale, FL), 11.08 mg/dL. The lowest MAD in the low glucose range, from CN, was statistically significantly lower than those of the other BGMSs with the exception of the FSL. CN also had a statistically significantly lower MARD than all other BGMSs in the low glucose range. In the overall glucose range (21-496 mg/dL), CN yielded the lowest MAD and MARD values, which were statistically significantly lower in comparison with the other BGMSs. When compared with other BGMSs, CN demonstrated the lowest mean deviation from the reference value (by MAD and MARD) across multiple glucose ranges.

  19. Depletion of norepinephrine of the central nervous system Down-regulates the blood glucose level in d-glucose-fed and restraint stress models.

    PubMed

    Park, Soo-Hyun; Kim, Sung-Su; Lee, Jae-Ryeong; Sharma, Naveen; Suh, Hong-Won

    2016-05-04

    DSP-4[N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride] is a neurotoxin that depletes norepinephrine. The catecholaminergic system has been implicated in the regulation of blood glucose level. In the present study, the effect of DSP-4 administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) on blood glucose level was examined in d-glucose-fed and restraint stress mice models. Mice were pretreated once i.c.v. or i.t. with DSP-4 (10-40μg) for 3days, and d-glucose (2g/kg) was fed orally. Blood glucose level was measured 0 (prior to glucose feeding or restraint stress), 30, 60, and 120min after d-glucose feeding or restraint stress. The i.c.v. or i.t. pretreatment with DSP-4 attenuated blood glucose level in the d-glucose-fed model. Plasma corticosterone level was downregulated in the d-glucose-fed model, whereas plasma insulin level increased in the d-glucose-fed group. The i.c.v. or i.t. pretreatment with DSP-4 reversed the downregulation of plasma corticosterone induced by feeding d-glucose. In addition, the d-glucose-induced increase in plasma insulin was attenuated by the DSP-4 pretreatment. Furthermore, i.c.v. or i.t. pretreatment with DSP-4 reduced restraint stress-induced increases in blood glucose levels. Restraint stress increased plasma corticosterone and insulin levels. The i.c.v. pretreatment with DSP-4 attenuated restraint stress-induced plasma corticosterone and insulin levels. Our results suggest that depleting norepinephrine at the supraspinal and spinal levels appears to be responsible for downregulating blood glucose levels in both d-glucose-fed and restraint stress models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. The effect of an instant hand sanitizer on blood glucose monitoring results.

    PubMed

    Mahoney, John J; Ellison, John M; Glaeser, Danielle; Price, David

    2011-11-01

    People with diabetes mellitus are instructed to clean their skin prior to self-monitoring of blood glucose to remove any dirt or food residue that might affect the reading. Alcohol-based hand sanitizers have become popular when soap and water are not available. The aim of this study was to determine whether a hand sanitizer is compatible with glucose meter testing and effective for the removal of exogenous glucose. We enrolled 34 nonfasting subjects [14 male/20 female, mean ages 45 (standard deviation, 9.4)] years, 2 with diagnosed diabetes/32 without known diabetes]. Laboratory personnel prepared four separate fingers on one hand of each subject by (1) cleaning the second finger with soap and water and towel drying (i.e., control finger), (2) cleaning the third finger with an alcohol-based hand sanitizer, (3) coating the fourth finger with cola and allowing it to air dry, and (4) coating the fifth finger with cola and then cleaning it with the instant hand sanitizer after the cola had dried. Finger sticks were performed on each prepared finger and blood glucose was measured. Several in vitro studies were also performed to investigate the effectiveness of the hand sanitizer for removal of exogenous glucose.z Mean blood glucose values from fingers cleaned with instant hand sanitizer did not differ significantly from the control finger (p = .07 and .08, respectively) and resulted in 100% accurate results. Blood glucose data from the fourth (cola-coated) finger were substantially higher on average compared with the other finger conditions, but glucose data from the fifth finger (cola-coated then cleaned with hand sanitizer) was similar to the control finger. The data from in vitro experiments showed that the hand sanitizer did not adversely affect glucose meter results, but when an exogenous glucose interference was present, the effectiveness of the hand sanitizer on glucose bias (range: 6% to 212%) depended on the surface area and degree of dilution. In our study

  1. The Effect of an Instant Hand Sanitizer on Blood Glucose Monitoring Results

    PubMed Central

    Mahoney, John J; Ellison, John M; Glaeser, Danielle; Price, David

    2011-01-01

    Background People with diabetes mellitus are instructed to clean their skin prior to self-monitoring of blood glucose to remove any dirt or food residue that might affect the reading. Alcohol-based hand sanitizers have become popular when soap and water are not available. The aim of this study was to determine whether a hand sanitizer is compatible with glucose meter testing and effective for the removal of exogenous glucose. Methods We enrolled 34 nonfasting subjects [14 male/20 female, mean ages 45 (standard deviation, 9.4)] years, 2 with diagnosed diabetes/32 without known diabetes]. Laboratory personnel prepared four separate fingers on one hand of each subject by (1) cleaning the second finger with soap and water and towel drying (i.e., control finger), (2) cleaning the third finger with an alcohol-based hand sanitizer, (3) coating the fourth finger with cola and allowing it to air dry, and (4) coating the fifth finger with cola and then cleaning it with the instant hand sanitizer after the cola had dried. Finger sticks were performed on each prepared finger and blood glucose was measured. Several in vitro studies were also performed to investigate the effectiveness of the hand sanitizer for removal of exogenous glucose.z Results Mean blood glucose values from fingers cleaned with instant hand sanitizer did not differ significantly from the control finger (p = .07 and .08, respectively) and resulted in 100% accurate results. Blood glucose data from the fourth (cola-coated) finger were substantially higher on average compared with the other finger conditions, but glucose data from the fifth finger (cola-coated then cleaned with hand sanitizer) was similar to the control finger. The data from in vitro experiments showed that the hand sanitizer did not adversely affect glucose meter results, but when an exogenous glucose interference was present, the effectiveness of the hand sanitizer on glucose bias (range: 6% to 212%) depended on the surface area and degree of

  2. Blood glucose level prediction based on support vector regression using mobile platforms.

    PubMed

    Reymann, Maximilian P; Dorschky, Eva; Groh, Benjamin H; Martindale, Christine; Blank, Peter; Eskofier, Bjoern M

    2016-08-01

    The correct treatment of diabetes is vital to a patient's health: Staying within defined blood glucose levels prevents dangerous short- and long-term effects on the body. Mobile devices informing patients about their future blood glucose levels could enable them to take counter-measures to prevent hypo or hyper periods. Previous work addressed this challenge by predicting the blood glucose levels using regression models. However, these approaches required a physiological model, representing the human body's response to insulin and glucose intake, or are not directly applicable to mobile platforms (smart phones, tablets). In this paper, we propose an algorithm for mobile platforms to predict blood glucose levels without the need for a physiological model. Using an online software simulator program, we trained a Support Vector Regression (SVR) model and exported the parameter settings to our mobile platform. The prediction accuracy of our mobile platform was evaluated with pre-recorded data of a type 1 diabetes patient. The blood glucose level was predicted with an error of 19 % compared to the true value. Considering the permitted error of commercially used devices of 15 %, our algorithm is the basis for further development of mobile prediction algorithms.

  3. Skin glucose metabolism and microvascular blood flow during local insulin delivery and after an oral glucose load.

    PubMed

    Iredahl, Fredrik; Högstedt, Alexandra; Henricson, Joakim; Sjöberg, Folke; Tesselaar, Erik; Farnebo, Simon

    2016-10-01

    Insulin causes capillary recruitment in muscle and adipose tissue, but the metabolic and microvascular effects of insulin in the skin have not been studied in detail. The aim of this study was to measure glucose metabolism and microvascular blood flow in the skin during local insulin delivery and after an oral glucose load. Microdialysis catheters were inserted intracutanously in human subjects. In eight subjects two microdialysis catheters were inserted, one perfused with insulin and one with control solution. First the local effects of insulin was studied, followed by a systemic provocation by an oral glucose load. Additionally, as control experiment, six subjects did not recieve local delivery of insulin or the oral glucose load. During microdialysis the local blood flow was measured by urea clearance and by laser speckle contrast imaging (LSCI). Within 15 minutes of local insulin delivery, microvascular blood flow in the skin increased (urea clearance: P=.047, LSCI: P=.002) paralleled by increases in pyruvate (P=.01) and lactate (P=.04), indicating an increase in glucose uptake. An oral glucose load increased urea clearance from the catheters, indicating an increase in skin perfusion, although no perfusion changes were detected with LSCI. The concentration of glucose, pyruvate and lactate increased in the skin after the oral glucose load. Insulin has metabolic and vasodilatory effects in the skin both when given locally and after systemic delivery through an oral glucose load. © 2016 John Wiley & Sons Ltd.

  4. Effect of pertussis toxin pretreated centrally on blood glucose level induced by stress.

    PubMed

    Suh, Hong-Won; Sim, Yun-Beom; Park, Soo-Hyun; Sharma, Naveen; Im, Hyun-Ju; Hong, Jae-Seung

    2016-09-01

    In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 µg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a Gi inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism.

  5. Path modelling of antecedent of diabetes mellitus on blood glucose measurements

    NASA Astrophysics Data System (ADS)

    Latif, Humaira'Abdul; Hamid, Mohd Rashid Ab; Azizan, Nor Azlinna; Jemain, Abdul Aziz

    2017-05-01

    Diabetes Mellitus (DM) is one of the non-communicable diseases and public health problems facing the worldwide population that includes Malaysia. Hitherto, the prevalence of DM becomes worsening with an estimated of 3.4 million Malaysians are diabetes sufferers and expectedly increasing year by year. Thus, this study is of great importance by regressing the medical factors that affect the blood glucose level using structural equation modelling (SEM). The SEM with partial least squares (PLS) estimation was applied to a secondary data of 644 respondents, aged ≥ 18 years in Malaysia. The data were collected in 2011 by Ministry of Health Malaysia (MOH). The variables under study are blood glucose level, cholesterol level (CL), systolic blood pressure (SBP), diastolic blood pressure (DBP), waist circumference (WC) and body mass index (BMI). From the modelling analysis, it showed that the cholesterol level (CL), systolic blood pressure (SBP) and waist circumference (WC) showed a positive significant relationship p < 0.01 (one-tailed) in influencing the blood sugar level. Whereas, diastolic blood pressure (DBP) is positively significant at p < 0.05 (one-tailed) and body mass index (BMI) is significant at p < 0.10 (one-tailed) towards blood glucose level. In conclusions, the findings from this study revealed the most salient predictors for blood glucose level which are CL, SBP and WC for diabetes mellitus among adults.

  6. Frequency of impaired glucose tolerance and diabetes mellitus in subjects with fasting blood glucose below 6.1 mmol/L (110 mg/dL).

    PubMed

    Khan, S H; Ijaz, A; Bokhari, S A Raza; Hanif, M S; Azam, N

    2013-02-01

    The diagnosis of diabetes mellitus by the available criteria is controversial and relies heavily on fasting glucose results. This cross-sectional study in 2010-2011 aimed to measure the frequency of impaired glucose tolerance and diabetes mellitus in 127 subjects having fasting blood glucose < 7.0 mmol/L and to measure the agreement between different standard diagnostic criteria. Subjects presenting to a laboratory for analysis of fasting blood glucose for excluding diabetes mellitus underwent a 2-hour 75 g oral glucose challenge. A total of 40.6% of subjects with fasting blood glucose from 5.6-6.0 mmol/L had abnormal glucose regulation on the basis ofthe gold standard glucose challenge. Agreement between American Diabetes Association and World Health Organization diagnostic criteria was only fair (kappa = 0.32). Abnormalities of glucose metabolism including impaired glucose tolerance and diabetes mellitus can exist at fasting blood glucose results < 6.1 mmol/L (110 mg/dL).

  7. The modulatory role of alpha-melanocyte stimulating hormone administered spinally in the regulation of blood glucose level in d-glucose-fed and restraint stress mouse models.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-08-01

    Alpha-melanocyte stimulating hormone (α-MSH) is known as a regulator of the blood glucose homeostasis and food intake. In the present study, the possible roles of α-MSH located in the spinal cord in the regulation of the blood glucose level were investigated in d-glucose-fed and immobilization stress (IMO) mouse models. We found in the present study that intrathecal (i.t.) injection with α-MSH alone did not affect the blood glucose level. However, i.t. administration with α-MSH reduced the blood glucose level in d-glucose-fed model. The plasma insulin level was increased in d-glucose-fed model and was further increased by α-MSH, whereas α-MSH did not affect plasma corticosterone level in d-glucose-fed model. In addition, i.t. administration with glucagon alone enhanced blood glucose level and, i.t. injection with glucagon also increased the blood glucose level in d-glucose-fed model. In contrasted to results observed in d-glucose-fed model, i.t. treatment with α-MSH caused enhancement of the blood glucose level in IMO model. The plasma insulin level was increased in IMO model. The increased plasma insulin level by IMO was reduced by i.t. treatment with α-MSH, whereas i.t. pretreatment with α-MSH did not affect plasma corticosterone level in IMO model. Taken together, although spinally located α-MSH itself does not alter the blood glucose level, our results suggest that the activation of α-MSH system located in the spinal cord play important modulatory roles for the reduction of the blood glucose level in d-glucose fed model whereas α-MSH is responsible for the up-regulation of the blood glucose level in IMO model. The enhancement of insulin release may be responsible for modulatory action of α-MSH in down-regulation of the blood glucose in d-glucose fed model whereas reduction of insulin release may be responsible for modulatory action of α-MSH in up-regulation of the blood glucose in IMO model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effect of repaglinide versus glimepiride on daily blood glucose variability and changes in blood inflammatory and oxidative stress markers.

    PubMed

    Yamazaki, Masahiro; Hasegawa, Goji; Majima, Saori; Mitsuhashi, Kazuteru; Fukuda, Takuya; Iwase, Hiroya; Kadono, Mayuko; Asano, Mai; Senmaru, Takafumi; Tanaka, Muhei; Fukui, Michiaki; Nakamura, Naoto

    2014-01-01

    Hemoglobin A1c is the main treatment target for patients with type 2 diabetes. It has also been shown recently that postprandial glucose and daily glucose fluctuations affect the progression of diabetic complications and atherosclerotic damages. Continuous glucose monitoring was performed in patients with type 2 diabetes to evaluate the efficacy of repaglinide vs. glimepiride on postprandial glucose spikes and fluctuations. A total of 10 Japanese patients with type 2 diabetes treated with glimepiride monotherapy were enrolled. After observation period for 8 weeks, glimepiride was changed to repaglinide. Continuous glucose monitoring was performed whilst consuming calorie-restricted diets for two days at baseline and at the end of the 12-week trial. Blood and urine samples were collected for measurement of glucose control parameters and inflammatory and oxidative stress markers on the last day of taking either glimepiride or repaglinide. Nine patients completed the trial. Although the glucose control parameters were not significantly different between glimepiride and repaglinide, the mean amplitude of glycemic excursions measured by continuous glucose monitoring was significantly reduced by changing treatment from glimepiride to repaglinide. The levels of plasminogen activator inhibitor-1, high sensitivity C-reactive protein, and urinary 8-hydoroxydeoxyguanosine were reduced significantly by repaglinide treatment. These results suggest that repaglinide may decrease the risk of cardiovascular disease in type 2 diabetes by minimizing glucose fluctuations thereby reducing inflammation and oxidative stress.

  9. Development of portable health monitoring system for automatic self-blood glucose measurement

    NASA Astrophysics Data System (ADS)

    Kim, Huijun; Mizuno, Yoshihumi; Nakamachi, Eiji; Morita, Yusuke

    2010-02-01

    In this study, a new HMS (Health Monitoring System) device is developed for diabetic patient. This device mainly consists of I) 3D blood vessel searching unit and II) automatic blood glucose measurement (ABGM) unit. This device has features such as 1)3D blood vessel location search 2) laptop type, 3) puncturing a blood vessel by using a minimally invasive micro-needle, 4) very little blood sampling (10μl), and 5) automatic blood extraction and blood glucose measurement. In this study, ABGM unit is described in detail. It employs a syringe type's blood extraction mechanism because of its high accuracy. And it consists of the syringe component and the driving component. The syringe component consists of a syringe itself, a piston, a magnet, a ratchet and a micro-needle whose inner diameter is about 80μm. And the syringe component is disposable. The driving component consists of body parts, a linear stepping motor, a glucose enzyme sensor and a slider for accurate positioning control. The driving component has the all-in-one mechanism with a glucose enzyme sensor for compact size and stable blood transfer. On designing, required thrust force to drive the slider is designed to be greater than the value of the blood extraction force. Further, only one linear stepping motor is employed for blood extraction and transportation processes. The experimental result showed more than 80% of volume ratio under the piston speed 2.4mm/s. Further, the blood glucose was measured successfully by using the prototype unit. Finally, the availability of our ABGM unit was confirmed.

  10. Clinical assessment of the accuracy of blood glucose measurement devices.

    PubMed

    Pfützner, Andreas; Mitri, Michael; Musholt, Petra B; Sachsenheimer, Daniela; Borchert, Marcus; Yap, Andrew; Forst, Thomas

    2012-04-01

    Blood glucose meters for patient self-measurement need to comply with the accuracy standards of the ISO 15197 guideline. We investigated the accuracy of the two new blood glucose meters BG*Star and iBG*Star (Sanofi-Aventis) in comparison to four other competitive devices (Accu-Chek Aviva, Roche Diagnostics; FreeStyle Freedom Lite, Abbott Medisense; Contour, Bayer; OneTouch Ultra 2, Lifescan) at different blood glucose ranges in a clinical setting with healthy subjects and patients with type 1 and type 2 diabetes. BGStar and iBGStar are employ dynamic electrochemistry, which is supposed to result in highly accurate results. The study was performed on 106 participants (53 female, 53 male, age (mean ± SD): 46 ± 16 years, type 1: 32 patients, type 2: 34 patients, and 40 healthy subjects). Two devices from each type and strips from two different production lots were used for glucose assessment (∼200 readings/meter). Spontaneous glucose assessments and glucose or insulin interventions under medical supervision were applied to perform measurements in the different glucose ranges in accordance with the ISO 15197 requirements. Sample values <50 mg/dL and >400 mg/dL were prepared by laboratory manipulations. The YSI glucose analyzer (glucose oxidase method) served as the standard reference method which may be considered to be a limitation in light of glucose hexokinase-based meters. For all devices, there was a very close correlation between the glucose results compared to the YSI reference method results. The correlation coefficients were r = 0.995 for BGStar and r = 0.992 for iBGStar (Aviva: 0.995, Freedom Lite: 0.990, Contour: 0.993, Ultra 2: 0.990). Error-grid analysis according to Parkes and Clarke revealed both 100% of the readings to be within the clinically acceptable areas (Clarke: A + B with BG*Star (100 + 0), Aviva (97 + 3), and Contour (97 + 3); and 99.5% with iBG*Star (97.5 + 2), Freedom Lite (98 + 1.5), and Ultra

  11. Correlation between high blood IL-6 level, hyperglycemia, and glucose control in septic patients.

    PubMed

    Nakamura, Masataka; Oda, Shigeto; Sadahiro, Tomohito; Watanabe, Eizo; Abe, Ryuzo; Nakada, Taka-Aki; Morita, Yasumasa; Hirasawa, Hiroyuki

    2012-12-12

    The aim of the present study was to investigate the relationship between the blood IL-6 level, the blood glucose level, and glucose control in septic patients. This retrospective observational study in a general ICU of a university hospital included a total of 153 patients with sepsis, severe sepsis, or septic shock who were admitted to the ICU between 2005 and 2010, stayed in the ICU for 7 days or longer, and did not receive steroid therapy prior to or after ICU admission. The severity of stress hyperglycemia, status of glucose control, and correlation between those two factors in these patients were investigated using the blood IL-6 level as an index of hypercytokinemia. A significant positive correlation between blood IL-6 level and blood glucose level on ICU admission was observed in the overall study population (n = 153; r = 0.24, P = 0.01), and was stronger in the nondiabetic subgroup (n = 112; r = 0.42, P < 0.01). The rate of successful glucose control (blood glucose level < 150 mg/dl maintained for 6 days or longer) decreased with increase in blood IL-6 level on ICU admission (P < 0.01). The blood IL-6 level after ICU admission remained significantly higher and the 60-day survival rate was significantly lower in the failed glucose control group than in the successful glucose control group (P < 0.01 and P < 0.01, respectively). High blood IL-6 level was correlated with hyperglycemia and with difficulties in glucose control in septic patients. These results suggest the possibility that hypercytokinemia might be involved in the development of hyperglycemia in sepsis, and thereby might affect the success of glucose control.

  12. Non-invasive blood glucose monitor based on spectroscopy using a smartphone.

    PubMed

    Dantu, Vishnu; Vempati, Jagannadh; Srivilliputhur, Srinivasan

    2014-01-01

    Development of a novel method for non-invasive measurement of blood glucose concentration using smartphone is discussed. Our research work has three major contributions to society and science. First, we modified and extended the Beer-Lambert's law in physics to accommodate for multiple wavelengths. This extension can aid researchers who wish to perform optical spectroscopy. Second, we successfully developed a creative and non-invasive way for diabetic patients to measure glucose levels via a smartphone. Researchers and chemists can now use their smartphones to determine the absorbance and, therefore, concentration of a chemical. Third, we created an inexpensive way to perform optical spectroscopy by using a smartphone. Monitoring blood glucose using a smartphone application that simply uses equipment already available on smartphones will improve the lives of diabetic patients who can continuously check their blood glucose levels while avoiding the current inconvenient, unhygienic, and costly invasive glucose meters.

  13. [Predictors of mean blood glucose control and its variability in diabetic hospitalized patients].

    PubMed

    Sáenz-Abad, Daniel; Gimeno-Orna, José Antonio; Sierra-Bergua, Beatriz; Pérez-Calvo, Juan Ignacio

    2015-01-01

    This study was intended to assess the effectiveness and predictors factors of inpatient blood glucose control in diabetic patients admitted to medical departments. A retrospective, analytical cohort study was conducted on patients discharged from internal medicine with a diagnosis related to diabetes. Variables collected included demographic characteristics, clinical data and laboratory parameters related to blood glucose control (HbA1c, basal plasma glucose, point-of-care capillary glucose). The cumulative probability of receiving scheduled insulin regimens was evaluated using Kaplan-Meier analysis. Multivariate regression models were used to select predictors of mean inpatient glucose (MHG) and glucose variability (standard deviation [GV]). The study sample consisted of 228 patients (mean age 78.4 (SD 10.1) years, 51% women). Of these, 96 patients (42.1%) were treated with sliding-scale regular insulin only. Median time to start of scheduled insulin therapy was 4 (95% CI, 2-6) days. Blood glucose control measures were: MIG 181.4 (SD 41.7) mg/dL, GV 56.3 (SD 22.6). The best model to predict MIG (R(2): .376; P<.0001) included HbA1c (b=4.96; P=.011), baseline plasma glucose (b=.056; P=.084), mean capillary blood glucose in the first 24hours (b=.154; P<.0001), home treatment (versus oral agents) with basal insulin only (b=13.1; P=.016) or more complex (pre-mixed insulin or basal-bolus) regimens (b=19.1; P=.004), corticoid therapy (b=14.9; P=.002), and fasting on admission (b=10.4; P=.098). Predictors of inpatient blood glucose control which should be considered in the design of DM management protocols include home treatment, HbA1c, basal plasma glucose, mean blood glucose in the first 24hours, fasting, and corticoid therapy. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  14. Monitoring of tissue optical properties using OCT: application for blood glucose analysis

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Eledrisi, Mohsen S.; Ashitkov, Taras V.; Motamedi, Massoud; Esenaliev, Rinat O.

    2002-07-01

    Noninvasive monitoring of tissue optical properties in real time could significantly improve diagnostics and management of various diseases. Recently we proposed to use high- resolution Optical Coherence Tomography (OCT) technique for measurement of tissue scattering coefficient at the depth of up to 1mm. Our pilot studies performed in vitro and in vivo demonstrated that measurement of tissue scattering with this technique can potentially be applied for noninvasive monitoring of blood glucose concentration. High resolution and coherent photon detection of the OCT technique allowed detection of glucose-induced changes in the scattering coefficient. In this paper we report results of in vivo studies performed in dog, New Zealand rabbits, and first human subjects. OCT system with the wavelength of 1300 nm was used in our experiments. OCT signal slope was measured and compared with actual blood glucose concentration. Bolus glucose injections and glucose clamping administrations were used in animal studies. OCT signals were recorded form human subjects during oral glucose tolerance test. Results obtained form both animal and human studies show good correlation between slope of the OCT signals and actual blood glucose concentration measured using standard glucometesr. Sensitivity and accuracy of blood glucose concentrations monitoring with the OCT is discussed. Obtained result suggest that OCT is a promising technique for noninvasive monitoring of tissue analytes including glucose.

  15. Evaluation of blood glucose concentration measurement using photoacoustic spectroscopy in near-infrared region

    NASA Astrophysics Data System (ADS)

    Namita, Takeshi; Sato, Mitsuki; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    2017-03-01

    Diabetes, a typical lifestyle-related disease, is an important disease presenting risks of various complications such as retinopathy, kidney failure, and nervous neuropathy. To treat diabetes, regular and continual self-measurement of blood glucose concentrations is necessary to maintain blood glucose levels and to prevent complications. Usually, daily measurements are taken using invasive methods such as finger-prick blood sampling. Some non-invasive optical techniques have been proposed to reduce pain and infection risk, however, few practical techniques exist today. To realize highly accurate and practical measurement of blood glucose concentrations, the feasibility of a photoacoustic method using near-infrared light was evaluated. A photoacoustic signal from a solution of glucose in water (+0-5 g/dl) or equine blood (+0-400 mg/dl) was measured using a hydrophone (9 mm diameter) at 800-1800 nm wavelengths. We investigated the relation between the glucose solution concentration and the photoacoustic signal intensity or peak position of the received photoacoustic signal (i.e. speed of sound in solutions). Results show that the signal intensity and sound speed of the glucose solution increase with increased glucose concentration for wavelengths at which light absorbance of glucose is high. For quantitative estimation of the glucose solution concentration, the photoacoustic signal intensity ratio between two wavelengths, at which dependence of the signal intensity on glucose concentration is high and low, was calculated. Results confirmed that the signal intensity ratios increase linearly with the glucose concentration. These analyses verified the feasibility of glucose level estimation using photoacoustic measurement in the near-infrared region.

  16. Impacts of sodium-glucose co-transporter type 2 inhibitors on central blood pressure.

    PubMed

    Takenaka, Tsuneo; Ohno, Yoichi; Suzuki, Hiromichi

    2018-03-01

    To assess the effects of sodium-glucose co-transporter type 2 inhibitors on central blood pressure, an important determinant of cardiovascular events. Canagliflozin, Empagliflozin or Luseogliflozin was given for 102 type 2 diabetic patients with hypertension and nephropathy. Central blood pressure was evaluated by radial tonometry. Clinical parameters were followed for 6 months. Three differing sodium-glucose co-transporter type 2 inhibitors similarly reduced brachial and central blood pressures, casual blood sugar, haemoglobin A1c, estimated glomerular filtration rate and albuminuria without significant changes in pulse rate and lipid profiles. Central systolic blood pressure was associated with the decreases in albuminuria by sodium-glucose co-transporter type 2 inhibitors. Comparable influences of various sodium-glucose co-transporter type 2 inhibitors on central blood pressure suggest class effects.

  17. In vivo noninvasive measurement of preprandial and postprandial blood glucose using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Zhang, Xiyang; Li, Zhifang; Li, Hui

    2016-10-01

    Blood glucose concentration measurement is essential for the diagnosis and treatment of diabetes. However, conventional glucose measurement methods are invasive and not suitable for real-time monitoring. This study demonstrated a noninvasive blood glucose measurement method using optical coherence tomography to image human lip in vivo. Optical coherence tomography (OCT) is a noninvasive and depth-resolved technique capable of acquiring tissue structure images in real time. Human lip has very thin skin and is full of blood vessels, which is appropriate for noninvasive glucose measurement. To verify the feasibility of OCT for glucose concentration monitoring, two groups of OCT imaging data were obtained from human lips of normal people. In one group, OCT images of lip were acquired from people on an empty stomach. In the other group, the same sites of lip were observed by OCT 2 hours after breakfast. Evident differences were found from two groups of OCT images that correspond to preprandial glucose and 2- hour postprandial glucose, respectively. The relationship between OCT image and blood glucose concentration was investigated. The result indicates that OCT possesses considerable prospects in terms of noninvasive blood glucose measurement.

  18. Blood glucose regulation mechanism in depressive disorder animal model during hyperglycemic states.

    PubMed

    Lim, Su-Min; Park, Soo-Hyun; Sharma, Naveen; Kim, Sung-Su; Lee, Jae-Ryeong; Jung, Jun-Sub; Suh, Hong-Won

    2016-06-01

    Depression is more common among diabetes people than in the general population. In the present study, blood glucose change in depression animal model was characterized by various types of hyperglycemia models such as d-glucose-fed-, immobilization stress-, and drug-induced hyperglycemia models. First, the ICR mice were enforced into chronic restraint stress for 2h daily for 2 weeks to produce depression animal model. The animals were fed with d-glucose (2g/kg), forced into restraint stress for 30min, or administered with clonidine (5μg/5μl) supraspinally or spinally to produce hyperglycemia. The blood glucose level in depression group was down-regulated compared to that observed in the normal group in d-glucose-fed-, restraint stress-, and clonidine-induced hyperglycemia models. The up-regulated corticosterone level induced by d-glucose feeding or restraint stress was reduced in the depression group while the up-regulation of plasma corticosterone level is further elevated after i.t. or i.c.v. clonidine administration in the depression group. The up-regulated insulin level induced by d-glucose feeding or restraint stress was reduced in the depression group. On the other hand, blood corticosterone level in depression group was up-regulated compared to the normal group after i.t. or i.c.v. clonidine administration. Whereas the insulin level in depression group was not altered when mice were administered clonidine i.t. or i.c.v. Our results suggest that the blood glucose level in depression group is down-regulated compared to the normal group during d-glucose-fed-, immobilization stress-, and clonidine-induced hyperglycemia in mice. The down-regulation of the blood glucose level might be one of the important pathophysiologic changes in depression. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes.

    PubMed

    Zoungas, Sophia; Chalmers, John; Neal, Bruce; Billot, Laurent; Li, Qiang; Hirakawa, Yoichiro; Arima, Hisatomi; Monaghan, Helen; Joshi, Rohina; Colagiuri, Stephen; Cooper, Mark E; Glasziou, Paul; Grobbee, Diederick; Hamet, Pavel; Harrap, Stephen; Heller, Simon; Lisheng, Liu; Mancia, Giuseppe; Marre, Michel; Matthews, David R; Mogensen, Carl E; Perkovic, Vlado; Poulter, Neil; Rodgers, Anthony; Williams, Bryan; MacMahon, Stephen; Patel, Anushka; Woodward, Mark

    2014-10-09

    In the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) factorial trial, the combination of perindopril and indapamide reduced mortality among patients with type 2 diabetes, but intensive glucose control, targeting a glycated hemoglobin level of less than 6.5%, did not. We now report results of the 6-year post-trial follow-up. We invited surviving participants, who had previously been assigned to perindopril-indapamide or placebo and to intensive or standard glucose control (with the glucose-control comparison extending for an additional 6 months), to participate in a post-trial follow-up evaluation. The primary end points were death from any cause and major macrovascular events. The baseline characteristics were similar among the 11,140 patients who originally underwent randomization and the 8494 patients who participated in the post-trial follow-up for a median of 5.9 years (blood-pressure-lowering comparison) or 5.4 years (glucose-control comparison). Between-group differences in blood pressure and glycated hemoglobin levels during the trial were no longer evident by the first post-trial visit. The reductions in the risk of death from any cause and of death from cardiovascular causes that had been observed in the group receiving active blood-pressure-lowering treatment during the trial were attenuated but significant at the end of the post-trial follow-up; the hazard ratios were 0.91 (95% confidence interval [CI], 0.84 to 0.99; P=0.03) and 0.88 (95% CI, 0.77 to 0.99; P=0.04), respectively. No differences were observed during follow-up in the risk of death from any cause or major macrovascular events between the intensive-glucose-control group and the standard-glucose-control group; the hazard ratios were 1.00 (95% CI, 0.92 to 1.08) and 1.00 (95% CI, 0.92 to 1.08), respectively. The benefits with respect to mortality that had been observed among patients originally assigned to blood

  20. Evaluation of a novel supplement to reduce blood glucose through the use of a modified oral glucose tolerance test

    PubMed Central

    Smith, Adam J; Giunta, Brian; Shytle, R Douglas; Blum, James M

    2011-01-01

    Elevated blood glucose is a major component in metabolic syndrome and pre-diabetes, sometimes leading to type 2 diabetes mellitus (DM II). Additionally, it may lead to adipose deposits when left elevated for long periods. The epidemiology of DM II clearly shows that uncontrolled blood glucose levels leads to many adverse conditions including heart disease, retinal damage, renal failure, erectile dysfunction, and other significant medical conditions. Here we conducted a single-center, prospective, randomized, double-blinded, placebo-controlled, parallel-group- clinical trial of a nutraceutical supplement vs. placebo to measure its glucose lowering effect in generally healthy adults before and after a simple sugars meal. Subjects reported to the test clinic on multiple days to receive placebo or treatment, a simple sugars meal, as well as pre-and postprandial blood glucose measurement (modified oral glucose tolerance test). Each subject served as his or her own control and thirty-one subjects completed the trial with at least one oral glucose tolerance test (OGTT) with the nutraceutical supplement and placebo. Statistical analysis revealed the nutraceutical supplement significantly lowered postprandial glucose levels by 36% and 59% at 45 and 60 minutes, respectively (***P<.001). The study was limited by its composition of primarily overweight females. Future studies will be required over longer periods in more heterogeneous and larger groups to determine the long-term effect of this supplement on blood glucose levels in terms of prophylaxis or treatment for DM II. PMID:21416063

  1. Optical coherence tomography technique for noninvasive blood glucose monitoring: phantom, animal, and human studies

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Ashitkov, Taras V.; Larina, Irina V.; Petrova, Irina Y.; Eledrisi, Mohsen S.; Motamedi, Massoud; Esenaliev, Rinat O.

    2002-06-01

    Continuous noninvasive monitoring of blood glucose concentration can improve management of Diabetes Mellitus, reduce mortality, and considerably improve quality of life of diabetic patients. Recently, we proposed to use the OCT technique for noninvasive glucose monitoring. In this paper, we tested noninvasive blood glucose monitoring with the OCT technique in phantoms, animals, and human subjects. An OCT system with the wavelength of 1300 nm was used in our experiments. Phantom studies performed on aqueous suspensions of polystyrene microspheres and milk showed 3.2% decrease of exponential slope of OCT signals when glucose concentration increased from 0 to 100 mM. Theoretical calculations based on the Mie theory of scattering support the results obtained in phantoms. Bolus glucose injections and glucose clamping experiments were performed in animals (New Zealand rabbits and Yucatan micropigs). Good correlation between changes in the OCT signal slope and actual blood glucose concentration were observed in these experiments. First studies were performed in healthy human subjects (using oral glucose tolerance tests). Dependence of the slope of the OCT signals on the actual blood glucose concentration was similar to that obtained in animal studies. Our studies suggest that the OCT technique can potentially be used for noninvasive blood glucose monitoring.

  2. Lower mean blood glucose during short-term intensive insulin therapy is associated with long-term glycemic remission in patients with newly diagnosed type 2 diabetes: Evidence-based recommendations for standardization.

    PubMed

    Liu, Liehua; Liu, Juan; Xu, Lijuan; Ke, Weijian; Wan, Xuesi; Li, Hai; He, Xiaoying; Wang, Liangjiao; Cao, Xiaopei; Xiao, Haipeng; Li, Yanbing

    2017-11-30

    Optimal glycemic targets during short-term intensive insulin therapy in patients with newly diagnosed type 2 diabetes are not standardized. The present study was carried out to determine the optimal glycemic targets during therapy by analyzing the impacts of glucose levels on therapeutic outcomes. A total of 95 individuals with newly diagnosed type 2 diabetes were enrolled. Short-term intensive insulin therapy was carried out using an insulin pump to achieve and maintain glycemic targets (fasting blood glucose ≤6.0 mmol/L, 2-h postprandial blood glucose ≤7.8 mmol/L) for 14 days, with daily eight-point capillary blood glucose profiles recorded. Patients were followed up for 1 year after discharge. In most participants, the mean blood glucose and glycemic excursion parameters during the therapy were controlled within the normal range. Mean blood glucose was independently associated with amelioration of acute insulin response (r = -0.25, P = 0.015) and 1-year remission (odds ratio 0.12, 95% confidence interval 0.034-0.426), but negatively associated with more level 1 hypoglycemia (r = -0.34, P = 0.001), although major hypoglycemia was rare. Among mean blood glucose tertiles, patients in the middle (68.7%) and lower (75.0%) tertiles had a higher 1-year remission rate compared with the upper tertile (32.3%, both P < 0.001), whereas only the middle tertile did not have increased hypoglycemia compared with the upper tertile (8.1 ± 5.4 vs 7.2 ± 3.9 events/person, P = 0.48). Stricter glycemic control during short-term intensive insulin therapy produced more remission despite self-manageable hypoglycemia. Based on glycemic parameters in the middle mean tertile, we propose new glycemic targets that are approximately 0.4 mmol/L lower than current the targets, as long-term benefit outweighs short-term risks. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  3. Why control blood glucose levels?

    PubMed

    Rossini, A A

    1976-03-01

    The controversy as to the relationship between the degree of control of diabetes and the progression of the complications of the disease has not been solved. However, in this review, various studies suggesting a relationship between the metabolic abnormality and the diabetic complications are examined. The disadvantages of the uncontrolled diabetes mellitus can be divided into two major categories-short-term and long-term. The short-term disadvantages of controlled diabetes mellitus include the following: (1) ketoacidosis and hyperosmolar coma; (2) intracellular dehydration; (3) electrolyte imbalance; (4) decreased phagocytosis; (5) immunologic and lymphocyte activity; (6) impairment of wound healing; and (7) abnormality of lipids. The long-term disadvantages of uncontrolled diabetes melitus include the following: (1) nephropathy; (2) neuropathy; (3) retinopathy; (4) cataract formation; (5) effect on perinatal mortality; (6) complications of vascular disease; and (7) the evaluation of various clinical studies suggesting the relationship of elevated blood glucose levels and complications of diabetes mellitus. It is suggested that until the question of control can absolutely be resolved, the recommendation is that the blood glucose levels should be controlled as close to the normal as possible.

  4. Assessment of three frequently used blood glucose monitoring devices in clinical routine.

    PubMed

    Zueger, Thomas; Schuler, Vanessa; Stettler, Christoph; Diem, Peter; Christ, Emanuel R

    2012-07-12

    Self-monitoring of blood glucose plays an important role in the management of diabetes and has been shown to improve metabolic control. The use of blood glucose meters in clinical practice requires sufficient reliability to allow adequate treatment. Direct comparison of different blood glucose meters in clinical practice, independent of the manufactures is scarce. We, therefore, aimed to evaluate three frequently used blood glucose meters in daily clinical practice. Capillary blood glucose was measured simultaneous using the following glucose meters: Contour® (Bayer Diabetes Care, Zürich, Switzerland), Accu-Chek® aviva (Roche Diagnostics, Rotkreuz, Switzerland), Free-Style® lite (Abbott Diabetes Care, Baar, Switzerland). The reference method consisted of the HemoCue® Glucose 201+ System (HemoCue® AB, Ängelholm, Sweden) with plasma conversion. The devices were assessed by comparison of the Mean Absolute Relative Differences (MARD), the Clarke Error Grid Analysis (EGA) and the compliance with the International Organization of Standardization criteria (ISO 15197:2003). Capillary blood samples were obtained from 150 patients. MARD was 10.1 ± 0.65%, 7.0 ± 0.62% and 7.8 ± 0.48% for Contour®, Accu-Chek® and Free-Style®, respectively. EGA showed 99.3% (Contour®), 98.7% (Accu-Chek®) and 100% (Free-Style®) of all measurements in zone A and B (clinically acceptable). The ISO criteria were fulfilled by Accu-Chek® (95.3%) and Free-Style® (96%), but not by Contour® (92%). In the present study the three glucose meters provided good agreement with the reference and reliable results in daily clinical routine. Overall, the Free-Style® and Accu-Chek® device slightly outperformed the Contour® device.

  5. Wireless enzyme sensor system for real-time monitoring of blood glucose levels in fish.

    PubMed

    Endo, Hideaki; Yonemori, Yuki; Hibi, Kyoko; Ren, Huifeng; Hayashi, Tetsuhito; Tsugawa, Wakako; Sode, Koji

    2009-01-01

    Periodic checks of fish health and the rapid detection of abnormalities are thus necessary at fish farms. Several studies indicate that blood glucose levels closely correlate to stress levels in fish and represent the state of respiratory or nutritional disturbance. We prepared a wireless enzyme sensor system to determine blood glucose levels in fish. It can be rapidly and conveniently monitored using the newly developed needle-type enzyme sensor, consisting of a Pt-Ir wire, Ag/AgCl paste, and glucose oxidase. To prevent the effects of interfering anionic species, such as uric acid and ascorbic acid, on the sensor response, the Pt-Ir electrode was coated with Nafion, and then glucose oxidase was immobilized on the coated electrode. The calibration curve of the glucose concentration was linear, from 0.18 to 144mg/dl, and the detection limit was 0.18mg/dl. The sensor was used to wirelessly monitor fish glucose levels. The sensor-calibrated glucose levels and actual blood glucose levels were in excellent agreement. The fluid of the inner sclera of the fish eyeball (EISF) was a suitable site for sensor implantation to obtain glucose sample. There was a close correlation between glucose concentrations in the EISF and those in the blood. Glucose concentrations in fish blood could be monitored in free-swimming fish in an aquarium for 3 days.

  6. Sustained effect of glucagon on body weight and blood glucose: Assessed by continuous glucose monitoring in diabetic rats

    PubMed Central

    Thomsen, Maria; Rosenkilde, Mette Marie

    2018-01-01

    Insulin is a vital part of diabetes treatment, whereas glucagon is primarily used to treat insulin-induced hypoglycemia. However, glucagon is suggested to have a central role in the regulation of body weight, which would be beneficial for diabetic patients. Since the glucagon effect on blood glucose is known to be transient, it is relevant to investigate the pharmacodynamics of glucagon after repeated dosing. In the present study, we used telemetry to continuously measure blood glucose in streptozotocin induced diabetic Sprague-Dawley rats. This allowed for a more detailed analysis of glucose regulation compared to intermittent blood sampling. In particular, we evaluated the blood glucose-lowering effect of different insulin doses alone, and in combination with a long acting glucagon analog (LAG). We showed how the effect of the LAG accumulated and persisted over time. Furthermore, we found that addition of the LAG decreased body weight without affecting food intake. In a subsequent study, we focused on the glucagon effect on body weight and food intake during equal glycemic control. In order to obtain comparable maximum blood glucose lowering effect to insulin alone, the insulin dose had to be increased four times in combination with 1 nmol/kg of the LAG. In this set-up the LAG prevented further increase in body weight despite the four times higher insulin-dose. However, the body composition was changed. The insulin group increased both lean and fat mass, whereas the group receiving four times insulin in combination with the LAG only significantly increased the fat mass. No differences were observed in food intake, suggesting a direct effect on energy expenditure by glucagon. Surprisingly, we observed decreased levels of FGF21 in plasma compared to insulin treatment alone. With the combination of insulin and the LAG the blood glucose-lowering effect of insulin was prolonged, which could potentially be beneficial in diabetes treatment. PMID:29558502

  7. Influence of artificial sweetener on human blood glucose concentration.

    PubMed

    Skokan, Ilse; Endler, P Christian; Wulkersdorfer, Beatrix; Magometschnigg, Dieter; Spranger, Heinz

    2007-10-05

    Artificial sweeteners, such as saccharin or cyclamic acid are synthetically manufactured sweetenings. Known for their low energetic value they serve especially diabetic and adipose patients as sugar substitutes. It has been hypothesized that the substitution of sugar with artificial sweeteners may induce a decrease of the blood glucose. The aim of this study was to determine the reliability of this hypothesis by comparing the influence of regular table sugar and artificial sweeteners on the blood glucose concentration. In this pilot-study 16 patients were included suffering from adiposity, pre-diabetes and hypertension. In the sense of a cross-over design, three test trials were performed at intervals of several weeks. Each trial was followed by a test free interval. Within one test trial each patient consumed 150 ml test solution (water) that contained either 6 g of table sugar ("Kandisin") with sweetener free serving as control group. Tests were performed within 1 hr after lunch to ensure conditions comparable to patients having a desert. Every participant had to determine their blood glucose concentration immediately before and 5, 15, 30 and 60 minutes after the intake of the test solution. For statistics an analysis of variance was performed. The data showed no significant changes in the blood glucose concentration. Neither the application of sugar (F(4;60) = 1.645; p = .175) nor the consumption of an artificial sweetener (F(2.068;31.023) = 1.551; p > .05) caused significant fluctuations in the blood sugar levels. Over a time frame of 60 minutes in the control group a significant decrease of the blood sugar concentration was found (F(2.457;36.849) = 4.005; p = .020) as a physiological reaction during lunch digestion.

  8. Effects of exposure to malathion on blood glucose concentration: a meta-analysis.

    PubMed

    Ramirez-Vargas, Marco Antonio; Flores-Alfaro, Eugenia; Uriostegui-Acosta, Mayrut; Alvarez-Fitz, Patricia; Parra-Rojas, Isela; Moreno-Godinez, Ma Elena

    2018-02-01

    Exposure to malathion (an organophosphate pesticide widely used around the world) has been associated with alterations in blood glucose concentration in animal models. However, the results are inconsistent. The aim of this meta-analysis was to evaluate whether malathion exposure can disturb the concentrations of blood glucose in exposed rats. We performed a literature search of online databases including PubMed, EBSCO, and Google Scholar and reviewed original articles that analyzed the relation between malathion exposure and glucose levels in animal models. The selection of articles was based on inclusion and exclusion criteria. The database search identified thirty-five possible articles, but only eight fulfilled our inclusion criteria, and these studies were included in the meta-analysis. The effect of malathion on blood glucose concentration showed a non-monotonic dose-response curve. In addition, pooled analysis showed that blood glucose concentrations were 3.3-fold higher in exposed rats than in the control group (95% CI, 2-5; Z = 3.9; p < 0.0001) in a random-effect model. This result suggested that alteration of glucose homeostasis is a possible mechanism of toxicity associated with exposure to malathion.

  9. Effect of repaglinide versus glimepiride on daily blood glucose variability and changes in blood inflammatory and oxidative stress markers

    PubMed Central

    2014-01-01

    Background Hemoglobin A1c is the main treatment target for patients with type 2 diabetes. It has also been shown recently that postprandial glucose and daily glucose fluctuations affect the progression of diabetic complications and atherosclerotic damages. Methods Continuous glucose monitoring was performed in patients with type 2 diabetes to evaluate the efficacy of repaglinide vs. glimepiride on postprandial glucose spikes and fluctuations. A total of 10 Japanese patients with type 2 diabetes treated with glimepiride monotherapy were enrolled. After observation period for 8 weeks, glimepiride was changed to repaglinide. Continuous glucose monitoring was performed whilst consuming calorie-restricted diets for two days at baseline and at the end of the 12-week trial. Blood and urine samples were collected for measurement of glucose control parameters and inflammatory and oxidative stress markers on the last day of taking either glimepiride or repaglinide. Results Nine patients completed the trial. Although the glucose control parameters were not significantly different between glimepiride and repaglinide, the mean amplitude of glycemic excursions measured by continuous glucose monitoring was significantly reduced by changing treatment from glimepiride to repaglinide. The levels of plasminogen activator inhibitor-1, high sensitivity C-reactive protein, and urinary 8-hydoroxydeoxyguanosine were reduced significantly by repaglinide treatment. Conclusion These results suggest that repaglinide may decrease the risk of cardiovascular disease in type 2 diabetes by minimizing glucose fluctuations thereby reducing inflammation and oxidative stress. PMID:24843385

  10. Blood glucose concentrations of arm and finger during dynamic glucose conditions.

    PubMed

    Szuts, Ete Z; Lock, J Paul; Malomo, Kenneth J; Anagnostopoulos, Althea

    2002-01-01

    We set out to determine the physiological difference between the capillary blood of the arm and finger with the greatest possible accuracy using the HemoCue B-glucose analyzer on subjects undergoing a meal tolerance test (MTT) or oral glucose tolerance test (OGTT). MTT study was performed on 50 subjects who drank a liquid meal (Ensure, 40 g of carbohydrates) and who were tested on the arm and finger every 30 min for up to 4 h. OGTT study was performed on 12 subjects who drank a 100-g glucose solution (Glucola) and were tested on the arm and finger every 15 min during the first hour and thereafter every 30 min for up to 3 h. Average percent glucose difference between arm and finger reached a maximal value about 1 h following glucose load, with arm glucose being about 5% lower than that of finger. At other times, average differences were less than this. At the greatest rate of glucose change (>2 mg/dL-min), mean percent bias was found to be about 6%. Despite these measurable differences, when arm results were plotted on the Clarke error grid against finger values, >97% of the data were within zone A (rest in zone B). Thus, physiological differences between arm and finger were clinically insignificant. Our studies with HemoCue confirmed the existence of measurable physiological glucose differences between arm and finger following a glucose challenge, but these differences were found to be clinically insignificant even in those subjects in whom they were measurable.

  11. Acarbose reduces blood glucose by activating miR-10a-5p and miR-664 in diabetic rats.

    PubMed

    Zhang, Qian; Xiao, Xinhua; Li, Ming; Li, Wenhui; Yu, Miao; Zhang, Huabing; Wang, Zhixin; Xiang, Hongding

    2013-01-01

    MicroRNAs (miRNAs) are non-coding RNA molecules involved in the post-transcriptional regulation of a large number of genes, including those involved in glucose metabolism. Acarbose is an α-glucosidase inhibitor that improves glycemic control by decreasing the intestinal absorption of glucose, thereby decreasing the elevation of postprandial blood glucose. However, acarbose is poorly absorbed into the blood stream from the gut. Therefore, the exact mechanisms by which acarbose affects glucose metabolism are unclear. This study investigated the effect of acarbose on glucose metabolism in diabetic rats and tested the hypothesis that acarbose acts directly through miRNA-regulated expression in the intestinal epithelium. Rats were divided into four groups: a control group, a diabetic group (DM), a low dose of acarbose group (AcarL) and a high dose of acarbose group (AcarH). Ileum samples were analyzed using miRCURY LNA™ microRNA Array, qPCR and immunohistochemistry. We found that 8-week treatment with acarbose significantly decreased fasting blood glucose. Oral glucose tolerance tests (OGTT) showed that blood glucose was significantly reduced in the AcarL and AcarH groups at 30 min, 60 min and 120 min after oral glucose administration. We found that miR-151*, miR-10a-5p, miR-205, miR-17-5p, miR-145 and miR-664 were up-regulated in the AcarH group, while miR-541 and miR-135b were down-regulated. Through target gene analysis, real time PCR and immunohistochemistry verification, we found that these miRNAs suppressed the expression of proinflammatory cytokines [IL6 (interleukin 6) and TNF (tumor necrosis factor)] and mitogen activated protein kinase 1 (MAPK1). Our data suggest that acarbose can improve blood glucose in diabetic rats through the MAPK pathway and can down-regulate proinflammatory factors by activating miR-10a-5p and miR-664 in the ileum.

  12. Acarbose Reduces Blood Glucose by Activating miR-10a-5p and miR-664 in Diabetic Rats

    PubMed Central

    Zhang, Qian; Xiao, Xinhua; Li, Ming; Li, Wenhui; Yu, Miao; Zhang, Huabing; Wang, Zhixin; Xiang, Hongding

    2013-01-01

    MicroRNAs (miRNAs) are non-coding RNA molecules involved in the post-transcriptional regulation of a large number of genes, including those involved in glucose metabolism. Acarbose is an α-glucosidase inhibitor that improves glycemic control by decreasing the intestinal absorption of glucose, thereby decreasing the elevation of postprandial blood glucose. However, acarbose is poorly absorbed into the blood stream from the gut. Therefore, the exact mechanisms by which acarbose affects glucose metabolism are unclear. This study investigated the effect of acarbose on glucose metabolism in diabetic rats and tested the hypothesis that acarbose acts directly through miRNA-regulated expression in the intestinal epithelium. Rats were divided into four groups: a control group, a diabetic group (DM), a low dose of acarbose group (AcarL) and a high dose of acarbose group (AcarH). Ileum samples were analyzed using miRCURY LNA™ microRNA Array, qPCR and immunohistochemistry. We found that 8-week treatment with acarbose significantly decreased fasting blood glucose. Oral glucose tolerance tests (OGTT) showed that blood glucose was significantly reduced in the AcarL and AcarH groups at 30 min, 60 min and 120 min after oral glucose administration. We found that miR-151*, miR-10a-5p, miR-205, miR-17-5p, miR-145 and miR-664 were up-regulated in the AcarH group, while miR-541 and miR-135b were down-regulated. Through target gene analysis, real time PCR and immunohistochemistry verification, we found that these miRNAs suppressed the expression of proinflammatory cytokines [IL6 (interleukin 6) and TNF (tumor necrosis factor)] and mitogen activated protein kinase 1 (MAPK1). Our data suggest that acarbose can improve blood glucose in diabetic rats through the MAPK pathway and can down-regulate proinflammatory factors by activating miR-10a-5p and miR-664 in the ileum. PMID:24260283

  13. Changes in blood glucose among trained normoglycemic adults during a mini-trampoline exercise session.

    PubMed

    Martins Cunha, Raphael; Raiana Bentes, Mariana; Araújo, Victor H; DA Costa Souza, Mayara C; Vasconcelos Noleto, Marcelo; Azevedo Soares, Ademar; Machado Lehnen, Alexandre

    2016-12-01

    Blood glucose changes response during and after exercise are modulated by the postabsorptive state, intensity and duration of exercise, and the level of physical fitness as well. This study focused on the idea that high-intensity interval exercise, as mini-trampoline class, can reduce blood glucose. Thus, we examined acute changes in blood glucose among trained normoglycemic adults during a mini-trampoline exercise session. Twenty-four normoglycemic adult subjects were enrolled in the study. After physical assessment they were randomly assigned to either the experimental (N.=12) or the control group (N.=12). The experimental group performed a 50-minute session of moderate-to-high intensity (70 to 85% HRmax) exercise on a mini-trampoline commonly used in fitness classes. The control group did not perform any exercise, and all procedures were otherwise similar to the experimental group. Capillary blood glucose was measured before and every 15 minutes during the exercise session. The effects of exercise on blood glucose levels (group; time; and group interaction) were estimated using a generalized estimating equation (GEE) followed by Bonferroni's post-hoc Test (P<0.05). The experimental group showed a decrease in blood glucose levels from baseline (108.7 mg/dL): 26.1% reduction (15 min; P<0.001), 24.2% (30 min; P<0.001), and 15.7% (45 min; P<0.001). Compared to the control group, blood glucose levels in the experimental group were reduced by 18.8% (15 min; P<0.001), 14.3% (30 min; P<0.001) and 6.9% (45 min; P=0.025). The study results provide good evidence that a prescribed exercise program on a mini-trampoline can be used for reducing blood glucose levels and thus can potentially control blood glucose.

  14. [A comparative study of the glucose level in dry blood stains from donors and cadavers].

    PubMed

    Kachina, N N

    1994-01-01

    Glucose concentrations in dry spots of cadaveric and donor blood stored at room temperature for different periods were measured. Studies by glucose oxidase method revealed that glucose levels in dry spots of both cadaveric and donor blood gradually reduced until completely disappeared, but in comparison with glucose level lowering in liquid blood the period during which this carbohydrate completely disappeared from a dry blood spot was by several times longer. Effects of the velocity of blood spot drying and of microorganisms contaminating the sample may make the expert conclusions doubtful.

  15. A comprehensive evaluation of strip performance in multiple blood glucose monitoring systems.

    PubMed

    Katz, Laurence B; Macleod, Kirsty; Grady, Mike; Cameron, Hilary; Pfützner, Andreas; Setford, Steven

    2015-05-01

    Accurate self-monitoring of blood glucose is a key component of effective self-management of glycemic control. Accurate self-monitoring of blood glucose results are required for optimal insulin dosing and detection of hypoglycemia. However, blood glucose monitoring systems may be susceptible to error from test strip, user, environmental and pharmacological factors. This report evaluated 5 blood glucose monitoring systems that each use Verio glucose test strips for precision, effect of hematocrit and interferences in laboratory testing, and lay user and system accuracy in clinical testing according to the guidelines in ISO15197:2013(E). Performance of OneTouch(®) VerioVue™ met or exceeded standards described in ISO15197:2013 for precision, hematocrit performance and interference testing in a laboratory setting. Performance of OneTouch(®) Verio IQ™, OneTouch(®) Verio Pro™, OneTouch(®) Verio™, OneTouch(®) VerioVue™ and Omni Pod each met or exceeded accuracy standards for user performance and system accuracy in a clinical setting set forth in ISO15197:2013(E).

  16. Near-infrared spectral methods for noninvasively measuring blood glucose

    NASA Astrophysics Data System (ADS)

    Fei, Sun; Kong, Deyi; Mei, Tao; Tao, Yongchun

    2004-05-01

    Determination of blood glucose concentrations in diabetic patients is a frequently occurring procedure and an important tool for diabetes management. Use of noninvasive detection techniques can relieve patients from the pain of frequent finger pokes and avoid the infection of disease via blood. This thesis discusses current research and analyzes the advantages and shortages of different measurement methods, including: optical methods (Transmission, Polarimetry and scattering), then, we give emphasis to analyze the technology of near-infrared (NIR) spectra. NIR spectral range 700 nm ~2300 nm was used because of its good transparency for biological tissue and presence of glucose absorption band. In this work, we present an outline of noninvasive blood glucose measurement. A near-infrared light beam is passed through the finger, and the spectral components of the emergent beam are measured using spectroscopic techniques. The device includes light sources having the wavelengths of 600 nm - 1800 nm to illuminate the tissue. Receptors associated with the light sources for receiving light and generating a transmission signal representing the light transmitted are also provided. Once a transmission signal is received by receptors, and the high and low values from each of the signals are stored in the device. The averaged values are then analyzed to determine the glucose concentration, which is displayed on the device.

  17. Association of physical activity with blood pressure and blood glucose among Malaysian adults: a population-based study.

    PubMed

    Teh, Chien Huey; Chan, Ying Ying; Lim, Kuang Hock; Kee, Chee Cheong; Lim, Kuang Kuay; Yeo, Pei Sien; Azahadi, Omar; Fadhli, Yusoff; Tahir, Aris; Lee, Han Lim; Nazni, Wasi Ahmad

    2015-12-03

    The health-enhancing benefits of physical activity (PA) on hypertension and diabetes have been well documented for decades. This study aimed to determine the association of PA with systolic and diastolic blood pressure as well as blood glucose in the Malaysian adult population. Data were extracted from the 2011 National Health and Morbidity Survey (NHMS), a nationally representative, cross-sectional study. A two-stage stratified sampling method was used to select a representative sample of 18,231 Malaysian adults aged 18 years and above. The PA levels of the respondents were categorised as low, moderate or high according to the International Physical Activity Questionnaire (IPAQ)-short form. Blood pressure and fasting blood glucose levels were measured using a digital blood pressure-measuring device and finger-prick test, respectively. Systolic blood pressure (SBP) level was positively associated with PA level (p = 0.02) whilst no significant association was noted between PA level and diastolic blood pressure (DBP). In contrast, respondents with low (adjusted coefficient = 0.17) or moderate (adjusted coefficient = 0.03) level of PA had significantly higher blood glucose level as compared to those who were highly active (p = 0.04). A significant negative association was observed between PA level and blood glucose only. Future studies should employ an objective measurement in estimating PA level in order to elucidate the actual relationship between PA, hypertension and diabetes for the development of effective interventions to combat the increasing burden of premature-mortality and cardiovascular disease-related morbidity in Malaysia.

  18. Suggestion of a Numerical Model for the Blood Glucose Adjustment with Ingesting a Food

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naokatsu; Takai, Hiroshi

    In this study, we present a numerical model of the time dependence of blood glucose value after ingesting a meal. Two numerical models are proposed in this paper to explain a digestion mechanism and an adjustment mechanism of blood glucose in the body, respectively. It is considered that models are exhibited by using simple equations with a transfer function and a block diagram. Additionally, the time dependence of blood glucose was measured, when subjects ingested a sucrose or a starch. As a result, it is clear that the calculated result of models using a computer can be fitted very well to the measured result of the time dependence of blood glucose. Therefore, it is considered that the digestion model and the adjustment model are useful models in order to estimate a blood glucose value after ingesting meals.

  19. [PROGNOSTIC SIGNIFICANCE OF CHANGES OF BLOOD GLUCOSE LEVEL IN PATIENTS WITH THORACOABDOMINAL INJURIES.

    PubMed

    Sorokin, E P; Ponomarev, S V; Shilyaeva, Ye V; Bel'skih, Ye A; Gritsan, A I

    2016-07-01

    Background Currently, one of the causes of high morbidity and mortality is injuries. Predict the outcome of injuries - it is an important task of the treating physician. Trauma is a stress factor so to predict the outcome, you can use markers of stress, the most accessible ofwhich is blood glucose. to reveal the dynamics of the relationship between blood glucose levels and the outlook for the life ofpatients with thoracoabdominal injuries. A retrospective analysis of medical records of hospitalized patients were divided into two groups, depending on the outlook for the life of (favorable or unfavorable), and each of the groups - into two subgroups according to the presence or absence of signs of intoxication at admission. The subgroups were calculated and compared the mean blood glucose levels at different hours of hospital treatment. It was found that the average blood glucose levels at various hours of hospital stay were significantly higher in patients with poor outcome. The most noticeable was the difference in the first days of hospital treatment. Signs of intoxication was associated with lower values of glucose and a tendency to hypoglycaemia. In addition, among patients with high blood glucose ( 8 mg / dL) was observed over deaths in the first day of hospital stay. High blood glucose levels ( 8,0 mmol / L) in the first day of hospital treatment is a predictor ofpoor outcome in patients with thoracoabdominal injuries.

  20. Blood Glucose Levels Following Intra-Articular Steroid Injections in Patients with Diabetes: A Systematic Review.

    PubMed

    Choudhry, M N; Malik, R A; Charalambous, Charalambos Panayiotou

    2016-03-22

    Parenterally administered steroids have been shown to affect the metabolism of glucose and to cause abnormal blood glucose levels in diabetic patients. These abnormal blood glucose levels in diabetic patients raise concerns that intra-articular steroid injections also may affect blood glucose levels. We performed a systematic review of studies examining the effect of intra-articular steroid injections on blood glucose levels in patients with diabetes mellitus. A literature search of the PubMed, EMBASE, AMED, and CINAHL databases using all relevant keywords and phrases revealed 532 manuscripts. After the application of inclusion criteria, seven studies with a total of seventy-two patients were analyzed. All studies showed a rise in blood glucose levels following intra-articular steroid injection. Four of the seven studies showed a substantial increase in blood glucose. Peak values reached as high as 500 mg/dL. The peak increase in blood glucose did not occur immediately following intra-articular steroid injection, and in some cases it took several days to occur. In many patients, post-injection hyperglycemia occurred within twenty-four to seventy-two hours. Intra-articular steroid injections may cause hyperglycemia in patients with diabetes mellitus, and patients should be warned of this complication. Diabetic patients should be advised to regularly monitor their blood glucose levels for up to a week after injection and should seek medical advice if safe thresholds are breached. Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.

  1. Photoacoustic determination of glucose concentration in whole blood by a near-infrared laser diode

    NASA Astrophysics Data System (ADS)

    Zhao, Zuomin; Myllylae, Risto A.

    2001-06-01

    The near-infrared photoacoustic technique is recognized as a potential method for the non-invasive determination of human glucose, because near-infrared light can incident a few millimeters into human tissue, where it produces an acoustic wave capable of carrying information about the composition of the tissue. This paper demonstrates a photoacoustic glucose measurement in a blood sample as a step toward a non-invasive measurement. The experimental apparatus consists of a near-infrared laser diode operating with 4 micro joules pulse energy at 905 nm, a roller pump connected to a silicon plastic tube and a cuvette for circulating the blood sample. In addition, the apparatus comprises a PZT piezoelectric transducer integrated with a battery-powered preamplifier to receive the photoacoustic signal. During the experiment, a glucose solution is mixed into a human blood sample to change its concentration. Although the absorption coefficient of glucose is much smaller than that of blood in the near-infrared region, the osmotic and hydrophilic properties of glucose decrease the reduced scattering coefficient of blood caused by the dissolved glucose surrounding the blood cells. This changes the distribution of the absorbed optical energy in blood, which, in turn, produces a change in the photoacoustic signal. Our experiment demonstrates that signal amplitudes in fresh and stored blood samples in crease about 7% and 10%, respectively, when the glucose concentration reaches the upper limit of the physiological region (500 mg/dl).

  2. Blood glucose measurement by glucometer in comparison with standard method in diagnosis of neonatal hypoglycemia.

    PubMed

    Nayeri, Fatemeh; Shariat, Mamak; Mousavi Behbahani, Hamid Modarres; Dehghan, Padideh; Ebrahim, Bita

    2014-01-01

    Hypoglycemia is considered as a serious risk factor in neonates. In the majority of cases, it occurs with no clinical symptoms. Accordingly, early diagnosis is extremely imperative, which can also lead to less morbidity and mortality. The aim of this study was to assess the importance of screening blood glucose using glucometer (known as a quick and cost-effective diagnostic test) in comparison with laboratory method. A total of 219 neonates at risk of hypoglycemia were included in this study. Blood glucose was measured by glucometer and laboratory. In addition glucose level of capillary blood was measured by glucometer at the same time. Sensitivity and specificity of capillary blood glucose measurement by glucometer were 83.5%, 97.5% respectively (ppv=80%), (npv=98%). Capillary blood glucose measured by glucometer has an acceptable sensitivity and specificity in measurement of neonatal blood glucose. Therefore measurement by glucometer is recommended as a proper diagnostic test.

  3. Paper membrane-based SERS platform for the determination of glucose in blood samples.

    PubMed

    Torul, Hilal; Çiftçi, Hakan; Çetin, Demet; Suludere, Zekiye; Boyacı, Ismail Hakkı; Tamer, Uğur

    2015-11-01

    In this report, we present a paper membrane-based surface-enhanced Raman scattering (SERS) platform for the determination of blood glucose level using a nitrocellulose membrane as substrate paper, and the microfluidic channel was simply constructed by wax-printing method. The rod-shaped gold nanorod particles were modified with 4-mercaptophenylboronic acid (4-MBA) and 1-decanethiol (1-DT) molecules and used as embedded SERS probe for paper-based microfluidics. The SERS measurement area was simply constructed by dropping gold nanoparticles on nitrocellulose membrane, and the blood sample was dropped on the membrane hydrophilic channel. While the blood cells and proteins were held on nitrocellulose membrane, glucose molecules were moved through the channel toward the SERS measurement area. Scanning electron microscopy (SEM) was used to confirm the effective separation of blood matrix, and total analysis is completed in 5 min. In SERS measurements, the intensity of the band at 1070 cm(-1) which is attributed to B-OH vibration decreased depending on the rise in glucose concentration in the blood sample. The glucose concentration was found to be 5.43 ± 0.51 mM in the reference blood sample by using a calibration equation, and the certified value for glucose was 6.17 ± 0.11 mM. The recovery of the glucose in the reference blood sample was about 88 %. According to these results, the developed paper-based microfluidic SERS platform has been found to be suitable for use for the detection of glucose in blood samples without any pretreatment procedure. We believe that paper-based microfluidic systems may provide a wide field of usage for paper-based applications.

  4. Effect of ground cinnamon on postprandial blood glucose concentration in normal-weight and obese adults.

    PubMed

    Magistrelli, Ashley; Chezem, Jo Carol

    2012-11-01

    In healthy normal-weight adults, cinnamon reduces blood glucose concentration and enhances insulin sensitivity. Insulin resistance, resulting in increased fasting and postprandial blood glucose and insulin levels, is commonly observed in obese individuals. The objective of the study was to compare declines in postprandial glycemic response in normal-weight and obese subjects with ingestion of 6 g ground cinnamon. In a crossover study, subjects consumed 50 g available carbohydrate in instant farina cereal, served plain or with 6 g ground cinnamon. Blood glucose concentration, the main outcome measure, was assessed at minutes 0, 15, 30, 45, 60, 90, and 120. Repeated-measures analysis of variance evaluated the effects of body mass index (BMI) group, dietary condition, and time on blood glucose. Paired t-test assessed blood glucose at individual time points and glucose area under the curve (AUC) between dietary conditions. Thirty subjects between the ages of 18 and 30 years, 15 with BMIs between 18.5 and 24.9 and 15 with BMIs of 30.0 or more, completed the study. There was no significant difference in blood glucose between the two BMI groups at any time point. However, in a combined analysis of all subjects, the addition of cinnamon to the cereal significantly reduced 120-minute glucose AUC (P=0.008) and blood glucose at 15 (P=0.001), 30 (P<0.001), 45 (P<0.001), and 60 (P=0.001) minutes. At 120 minutes, blood glucose was significantly higher with cinnamon consumption (P<0.001). These results suggest cinnamon may be effective in moderating postprandial glucose response in normal weight and obese adults. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  5. Acute Inactivity Impairs Glycemic Control but Not Blood Flow to Glucose Ingestion

    PubMed Central

    Reynolds, Leryn J; Credeur, Daniel P; Holwerda, Seth W; Leidy, Heather J; Fadel, Paul J; Thyfault, John P

    2014-01-01

    Purpose Insulin-stimulated increases in skeletal muscle blood flow play a role in glucose disposal. Indeed, 7 days of aerobic exercise in type 2 diabetes patients increased blood flow responses to an oral glucose tolerance test (OGTT) and improved glucose tolerance. More recent work suggests that reduced daily physical activity impairs glycemic control (GC) in healthy individuals. Herein, we sought to determine if an acute reduction in daily activity (from >10,000 to <5,000 steps/day) for 5 days (RA5) in healthy individuals reduced insulin-stimulated blood flow and GC in parallel and if a 1 day return to activity (RTA1) improved these outcomes. Methods OGTTs were performed as a stimulus to increase insulin in 14 healthy, recreationally active men (24±1.1 yrs) at baseline, RA5, and RTA1. Measures of insulin sensitivity (Matsuda index) and femoral and brachial artery blood flow were made during the OGTT. Free living measures of GC including peak postprandial glucose (peak PPG) were also made via continuous glucose monitoring. Results Femoral and brachial artery blood flow increased during the OGTT but neither was significantly impacted by changes in physical activity (p>0.05). However, insulin sensitivity was decreased by RA5 (11.3±1.5 to 8.0±1.0; p<0.05). Likewise, free living GC measures of peak post prandial blood glucose (113±3 to 123±5 mg/dL; p<0.05) was significantly increased at RA5. Interestingly, insulin sensitivity and GC as assessed by peak PPG were not restored after RTA1 (p>0.05). Conclusions Thus, acute reductions in physical activity impaired GC and insulin sensitivity; however blood flow responses to an OGTT were not affected. Further, a 1 day return to activity was not sufficient to normalize GC following 5 days of reduced daily physical activity. PMID:25207931

  6. Glucose-dependent blood flow dynamics in murine pancreatic islets in vivo

    PubMed Central

    Nyman, Lara R.; Ford, Eric

    2010-01-01

    Pancreatic islets are highly vascularized and arranged so that regions containing β-cells are distinct from those containing other cell types. Although islet blood flow has been studied extensively, little is known about the dynamics of islet blood flow during hypoglycemia or hyperglycemia. To investigate changes in islet blood flow as a function of blood glucose level, we clamped blood glucose sequentially at hyperglycemic (∼300 mg/dl or 16.8 mM) and hypoglycemic (∼50 mg/dl or 2.8 mM) levels while simultaneously imaging intraislet blood flow in mouse models that express green fluorescent protein in the β-cells or yellow fluorescent protein in the α-cells. Using line scanning confocal microscopy, in vivo blood flow was assayed after intravenous injection of fluorescent dextran or sulforhodamine-labeled red blood cells. Regardless of the sequence of hypoglycemia and hyperglycemia, islet blood flow is faster during hyperglycemia, and apparent blood volume is greater during hyperglycemia than during hypoglycemia. However, there is no change in the order of perfusion of different islet endocrine cell types in hypoglycemia compared with hyperglycemia, with the islet core of β-cells usually perfused first. In contrast to the results in islets, there was no significant difference in flow rate in the exocrine pancreas during hyperglycemia compared with hypoglycemia. These results indicate that glucose differentially regulates blood flow in the pancreatic islet vasculature independently of blood flow in the rest of the pancreas. PMID:20071562

  7. [Effects of blood glucose control on glucose variability and clinical outcomes in patients with severe acute pancreatitis in intensive care unit].

    PubMed

    Wu, Jing; Sun, Qiuhong; Yang, Hua

    2015-05-19

    To explore the effects of blood glucose control on glucose variability and clinical outcomes in patients with severe acute pancreatitis in intensive care unit (ICU). A total of 72 ICU patients with severe acute pancreatitis were recruited and divided randomly into observation and control groups (n = 36 each). Both groups were treated conventionally. And the observation group achieved stable blood glucose at 6.1-8.3 mmol/L with intensive glucose control. The length of ICU and hospital stays, ICU mortality rate, transit operative rate, concurrent infection rate, admission blood glucose, glycosylated hemoglobin, mean insulin dose, mean blood glucose, blood glucose value standard deviation (GLUSD), glycemic liability index (GLUGLI) and mean amplitude of glycemic excursion (GLUMAGE) of two groups were compared. At the same time, the relationship between blood glucose variability, ICU mortality rate and its predictive value were analyzed by correlation analysis and receiver operating characteristic curve (ROC). The lengths of ICU and hospital stays of observation group were all significantly less than those of the control group [(11.7 ± 9.9) vs (15.9 ± 8.02) days, (21.8 ± 10.8) vs (28.2 ± 12.7) days, P < 0.05]. In observation group, the rates of pulmonary infection (27.78%) and hematogenous infection (5.56%) were all significantly lower than those of control group (72.22%, 38.89%, P < 0.05). The values of mean blood glucose value and GLUSD of observation group were significantly lower than those of control group [(7.4 ± 1.1) vs (9.6 ± 1.2), (1.8 ± 1.0) vs (2.5 ± 1.3) mmol/L]. The differences were statistically significant (P < 0.05). While the dose of insulin [(70.2 ± 47.6) vs (34.4 ± 38.6) U/d] was significantly higher than that of control group (P < 0.05). Bivariate correlation analysis showed that ICU mortality rate was positively correlated with GLUGLI (r = 0.368, P < 0.05). ROC curve analysis showed that, AUC of GLUGLI was 0.748 and 95% CI 0.551-0.965 (P

  8. Blood Glucose Measurement in the Intensive Care Unit: What Is the Best Method?

    PubMed Central

    Le, Huong T.; Harris, Neil S.; Estilong, Abby J.; Olson, Arvid; Rice, Mark J.

    2013-01-01

    Abnormal glucose measurements are common among intensive care unit (ICU) patients for numerous reasons and hypoglycemia is especially dangerous because these patients are often sedated and unable to relate the associated symptoms. Additionally, wide swings in blood glucose have been closely tied to increased mortality. Therefore, accurate and timely glucose measurement in this population is critical. Clinicians have several choices available to assess blood glucose values in the ICU, including central laboratory devices, blood gas analyzers, and point-of-care meters. In this review, the method of glucose measurement will be reviewed for each device, and the important characteristics, including accuracy, cost, speed of result, and sample volume, will be reviewed, specifically as these are used in the ICU environment. Following evaluation of the individual measurement devices and after considering the many features of each, recommendations are made for optimal ICU glucose determination. PMID:23567008

  9. Is the formula of Traub still up to date in antemortem blood glucose level estimation?

    PubMed

    Palmiere, Cristian; Sporkert, Frank; Vaucher, Paul; Werner, Dominique; Bardy, Daniel; Rey, François; Lardi, Christelle; Brunel, Christophe; Augsburger, Marc; Mangin, Patrice

    2012-05-01

    According to the hypothesis of Traub, also known as the 'formula of Traub', postmortem values of glucose and lactate found in the cerebrospinal fluid or vitreous humor are considered indicators of antemortem blood glucose levels. However, because the lactate concentration increases in the vitreous and cerebrospinal fluid after death, some authors postulated that using the sum value to estimate antemortem blood glucose levels could lead to an overestimation of the cases of glucose metabolic disorders with fatal outcomes, such as diabetic ketoacidosis. The aim of our study, performed on 470 consecutive forensic cases, was to ascertain the advantages of the sum value to estimate antemortem blood glucose concentrations and, consequently, to rule out fatal diabetic ketoacidosis as the cause of death. Other biochemical parameters, such as blood 3-beta-hydroxybutyrate, acetoacetate, acetone, glycated haemoglobin and urine glucose levels, were also determined. In addition, postmortem native CT scan, autopsy, histology, neuropathology and toxicology were performed to confirm diabetic ketoacidosis as the cause of death. According to our results, the sum value does not add any further information for the estimation of antemortem blood glucose concentration. The vitreous glucose concentration appears to be the most reliable marker to estimate antemortem hyperglycaemia and, along with the determination of other biochemical markers (such as blood acetone and 3-beta-hydroxybutyrate, urine glucose and glycated haemoglobin), to confirm diabetic ketoacidosis as the cause of death.

  10. Association between Knowledge-Attitude-Practices and Control of Blood Glucose, Blood Pressure, and Blood Lipids in Patients with Type 2 Diabetes in Shanghai, China: A Cross-Sectional Study.

    PubMed

    Yang, Hua; Gao, Jian; Ren, Limin; Li, Shuyu; Chen, Zhangyan; Huang, Junfang; Zhu, Shanzhu; Pan, Zhigang

    2017-01-01

    Knowledge-attitude-practices (KAP) significantly impact the outcome of self-management in patients with diabetes, yet the association between KAP and the combined control of the levels of blood glucose, blood pressure, and blood lipids in these patients remains uncertain. This community-based cross-sectional study was conducted from December 2014 to December 2016 on 3977 patients with type 2 diabetes in Shanghai. KAP were evaluated using the modified Chinese version of the Diabetes, Hypertension and Hyperlipidemia (DHL) Knowledge Instrument, Diabetes Empowerment Scale-Short Form (DES-SF), and Summary of Diabetes Self-Care Activities (SDSCA). Clinical and biochemical measurements were performed at each sampling site. The association between KAP scores and achieving the combined target goal was assessed by multiple logistic regression. Patients having a higher score of knowledge were more likely to achieve the combined target goal. Furthermore, a turning point of knowledge score was found that the possibility of achieving the combined target goal presented a sharp increase when the knowledge score was more than 70. However, the scores of attitude and practices had no significant relations with achieving the combined target goal. Health intervention strategies, especially increasing integrated diabetes knowledge, should be targeted to patients with type 2 diabetes in communities.

  11. Accuracy Evaluation of Five Blood Glucose Monitoring Systems: The North American Comparator Trial

    PubMed Central

    Halldorsdottir, Solveig; Warchal-Windham, Mary Ellen; Wallace, Jane F.; Pardo, Scott; Parkes, Joan Lee; Simmons, David A.

    2013-01-01

    Background This study evaluated differences in accuracy between the CONTOUR® NEXT EZ (EZ) blood glucose monitoring system (BGMS) and four other BGMSs [ACCU-CHEK® Aviva (ACAP), FreeStyle Freedom Lite® (FFL), ONE TOUCH® Ultra®2 (OTU2), and TRUEtrack® (TT)]. Methods Up to three capillary blood samples (N = 393) were collected from 146 subjects with and without diabetes. One sample per subject was tested with fresh (natural) blood; the other samples were glycolyzed to lower blood glucose to <70 mg/dl. Meter results were compared with results from plasma from the same sample tested on a Yellow Springs Instruments (YSI) 2300 STAT Plus™ glucose analyzer. Blood glucose monitoring system accuracy was compared using mean absolute relative difference (MARD; from laboratory reference method results) and other analyses. Separate analyses on fresh (natural) samples only were conducted to determine potential effects of glycolysis on MARD values of systems utilizing glucose-oxidase-based test strip chemistry. Results Across the tested glucose range, the EZ had the lowest MARD of 4.7%; the ACAP, FFL, OTU2, and TT had MARD values of 6.3%, 18.3%, 23.4%, and 26.2%, respectively. For samples with glucose concentrations <70 mg/dl, the EZ had the lowest MARD (0.65%), compared with the ACAP (2.5%), FFL (18.3%), OTU2 (22.4%), and TT (33.2%) systems. Conclusions The EZ had the lowest MARD across the tested glucose ranges when compared with four other BGMSs when all samples were analyzed as well as when natural samples only were analyzed. PMID:24124957

  12. Noninvasive biosensor and wireless interrogating system for glucose in blood

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Whitchurch, Ashwin K.; Sarukesi, K.

    2003-07-01

    Hypoglycemia-abnormal decrease in blood sugar-is a major obstacle in the management of diabetes and prevention of long-term complications, and it may impose serious effects on the brain, including impairment of memory and other cognitive functions. This paper presents the development of a non-invasive sensor with miniaturized telemetry device in a wrist-watch for monitoring glucose concentration in blood. The sensor concept is based on optical chirality of glucose level in the interstitial fluid. The wrist watch consists of a laser power source of the wavelength compatible with the glucose. A nanofilm with specific chirality is placed at the bottom of the watch. The light then passes through the film and illuminates a small area on the skin. It has been documented that there is certain concentration of sugar level is taken by the intertitial fluid from the blood stream and deposit a portion of it at the dead skin. The wrist-watch when in contact with the outer skin of the human will thus monitor the glucose concentration. A wireless monitoring system in the watch then downloads the data from the watch to a Palm or a laptop computer.

  13. Long-term blood glucose monitoring with implanted telemetry device in conscious and stress-free cynomolgus monkeys.

    PubMed

    Wang, B; Sun, G; Qiao, W; Liu, Y; Qiao, J; Ye, W; Wang, H; Wang, X; Lindquist, R; Wang, Y; Xiao, Y-F

    2017-09-01

    Continuous blood glucose monitoring, especially long-term and remote, in diabetic patients or research is very challenging. Nonhuman primate (NHP) is an excellent model for metabolic research, because NHPs can naturally develop Type 2 diabetes mellitus (T2DM) similarly to humans. This study was to investigate blood glucose changes in conscious, moving-free cynomolgus monkeys (Macaca fascicularis) during circadian, meal, stress and drug exposure. Blood glucose, body temperature and physical activities were continuously and simultaneously recorded by implanted HD-XG telemetry device for up to 10 weeks. Blood glucose circadian changes in normoglycemic monkeys significantly differed from that in diabetic animals. Postprandial glucose increase was more obvious after afternoon feeding. Moving a monkey from its housing cage to monkey chair increased blood glucose by 30% in both normoglycemic and diabetic monkeys. Such increase in blood glucose declined to the pre-procedure level in 30 min in normoglycemic animals and >2 h in diabetic monkeys. Oral gavage procedure alone caused hyperglycemia in both normoglycemic and diabetic monkeys. Intravenous injection with the stress hormones, angiotensin II (2 μg/kg) or norepinephrine (0.4 μg/kg), also increased blood glucose level by 30%. The glucose levels measured by the telemetry system correlated significantly well with glucometer readings during glucose tolerance tests (ivGTT or oGTT), insulin tolerance test (ITT), graded glucose infusion (GGI) and clamp. Our data demonstrate that the real-time telemetry method is reliable for monitoring blood glucose remotely and continuously in conscious, stress-free, and moving-free NHPs with the advantages highly valuable to diabetes research and drug discovery.

  14. Performance Evaluation of Three Blood Glucose Monitoring Systems Using ISO 15197

    PubMed Central

    Bedini, José Luis; Wallace, Jane F.; Pardo, Scott; Petruschke, Thorsten

    2015-01-01

    Background: Blood glucose monitoring is an essential component of diabetes management. Inaccurate blood glucose measurements can severely impact patients’ health. This study evaluated the performance of 3 blood glucose monitoring systems (BGMS), Contour® Next USB, FreeStyle InsuLinx®, and OneTouch® Verio™ IQ, under routine hospital conditions. Methods: Venous blood samples (N = 236) obtained for routine laboratory procedures were collected at a Spanish hospital, and blood glucose (BG) concentrations were measured with each BGMS and with the available reference (hexokinase) method. Accuracy of the 3 BGMS was compared according to ISO 15197:2013 accuracy limit criteria, by mean absolute relative difference (MARD), consensus error grid (CEG) and surveillance error grid (SEG) analyses, and an insulin dosing error model. Results: All BGMS met the accuracy limit criteria defined by ISO 15197:2013. While all measurements of the 3 BGMS were within low-risk zones in both error grid analyses, the Contour Next USB showed significantly smaller MARDs between reference values compared to the other 2 BGMS. Insulin dosing errors were lowest for the Contour Next USB than compared to the other systems. Conclusions: All BGMS fulfilled ISO 15197:2013 accuracy limit criteria and CEG criterion. However, taking together all analyses, differences in performance of potential clinical relevance may be observed. Results showed that Contour Next USB had lowest MARD values across the tested glucose range, as compared with the 2 other BGMS. CEG and SEG analyses as well as calculation of the hypothetical bolus insulin dosing error suggest a high accuracy of the Contour Next USB. PMID:26445813

  15. Mesenteric blood flow, glucose absorption and blood pressure responses to small intestinal glucose in critically ill patients older than 65 years.

    PubMed

    Sim, Jennifer A; Horowitz, M; Summers, M J; Trahair, L G; Goud, R S; Zaknic, A V; Hausken, T; Fraser, J D; Chapman, M J; Jones, K L; Deane, A M

    2013-02-01

    To compare nutrient-stimulated changes in superior mesenteric artery (SMA) blood flow, glucose absorption and glycaemia in individuals older than 65 years with, and without, critical illness. Following a 1-h 'observation' period (t (0)-t (60)), 0.9 % saline and glucose (1 kcal/ml) were infused directly into the small intestine at 2 ml/min between t (60)-t (120), and t (120)-t (180), respectively. SMA blood flow was measured using Doppler ultrasonography at t (60) (fasting), t (90) and t (150) and is presented as raw values and nutrient-stimulated increment from baseline (Δ). Glucose absorption was evaluated using serum 3-O-methylglucose (3-OMG) concentrations during, and for 1 h after, the glucose infusion (i.e. t (120)-t (180) and t (120)-t (240)). Mean arterial pressure was recorded between t (60)-t (240). Data are presented as median (25th, 75th percentile). Eleven mechanically ventilated critically ill patients [age 75 (69, 79) years] and nine healthy volunteers [70 (68, 77) years] were studied. The magnitude of the nutrient-stimulated increase in SMA flow was markedly less in the critically ill when compared with healthy subjects [Δt (150): patients 115 (-138, 367) versus health 836 (618, 1,054) ml/min; P = 0.001]. In patients, glucose absorption was reduced during, and for 1 h after, the glucose infusion when compared with health [AUC(120-180): 4.571 (2.591, 6.551) versus 11.307 (8.447, 14.167) mmol/l min; P < 0.001 and AUC(120-240): 26.5 (17.7, 35.3) versus 40.6 (31.7, 49.4) mmol/l min; P = 0.031]. A close relationship between the nutrient-stimulated increment in SMA flow and glucose absorption was evident (3-OMG AUC(120-180) and ∆SMA flow at t (150): r (2) = 0.29; P < 0.05). In critically ill patients aged >65 years, stimulation of SMA flow by small intestinal glucose infusion may be attenuated, which could account for the reduction in glucose absorption.

  16. Comparison of the clinical information provided by the FreeStyle Navigator continuous interstitial glucose monitor versus traditional blood glucose readings.

    PubMed

    McGarraugh, Geoffrey V; Clarke, William L; Kovatchev, Boris P

    2010-05-01

    The purpose of the analysis was to compare the clinical utility of data from traditional self-monitoring of blood glucose (SMBG) to that of continuous glucose monitoring (CGM). A clinical study of the clinical accuracy of the FreeStyle Navigator CGM System (Abbott Diabetes Care, Alameda, CA), which includes SMBG capabilities, was conducted by comparison to the YSI blood glucose analyzer (YSI Inc., Yellow Springs, OH) using 58 subjects with type 1 diabetes. The Continuous Glucose-Error Grid Analysis (CG-EGA) was used as the analytical tool. Using CG-EGA, the "clinically accurate," "benign errors," and "clinical errors" were 86.8%, 8.7%, and 4.5% for SMBG and 92.7%, 3.7%, and 3.6% for CGM, respectively. If blood glucose is viewed as a process in time, SMBG would provide accurate information about this process 86.8% of the time, whereas CGM would provide accurate information about this process 92.7% of the time (P < 0.0001). In the hypoglycemic range, however, SMBG is more accurate as the "clinically accurate," "benign errors," and "clinical errors" were 83.5%, 6.4%, and 10.1% for SMBG and 57.1%, 8.4%, and 34.5% (P < 0.0001) for CGM, respectively. While SMBG produces more accurate instantaneous glucose values than CGM, control of blood glucose involves a system in flux, and CGM provides more detailed insight into the dynamics of that system. In the normal and elevated glucose ranges, the additional information about the direction and rate of glucose change provided by the FreeStyle Navigator CGM System increases the ability to make correct clinical decisions when compared to episodic SMBG tests.

  17. Effects of 50 mg vildagliptin twice daily vs. 50 mg sitagliptin once daily on blood glucose fluctuations evaluated by long-term self-monitoring of blood glucose.

    PubMed

    Nomoto, Hiroshi; Kimachi, Kimihiko; Miyoshi, Hideaki; Kameda, Hiraku; Cho, Kyu Yong; Nakamura, Akinobu; Nagai, So; Kondo, Takuma; Atsumi, Tatsuya

    2017-04-29

    To date, several clinical trials have compared differences in glucose fluctuation observed with dipeptidyl peptidase-4 inhibitor treatment in patients with type 2 diabetes mellitus. However, most patients were assessed for limited periods or during hospitalization. The aim of the present study was to evaluate the effects of switching from sitagliptin to vildagliptin, or vice versa, on 12-week glucose fluctuations using self-monitoring of blood glucose in the standard care setting. We conducted a multicenter, prospective, open-label controlled trial in Japanese patients with type 2 diabetes. Thirty-two patients were treated with vildagliptin (50 mg) twice daily or sitagliptin (50 mg) once daily and were allocated to one of two groups: vildagliptin treatment for 12 weeks before switching to sitagliptin for 12 weeks, or vice versa. Daily profiles of blood glucose were assessed several times during each treatment period, and the mean amplitude of glycemic excursions and M-value were calculated. Metabolic biomarkers such as hemoglobin A1c (HbA1c), glycated albumin, and 1,5-anhydroglucitol were also assessed. With vildagliptin treatment, mean amplitude of glycemic excursions was significantly improved compared with sitagliptin treatment (57.9 ± 22.2 vs. 68.9 ± 33.0 mg/dL; p=0.0045). M-value (p=0.019) and mean blood glucose (p=0.0021) were also lower with vildagliptin, as were HbA1c, glycated albumin, and 1,5-anhydroglucitol. There were no significant differences in other metabolic parameters evaluated. Reduction of daily blood glucose profile fluctuations by vildagliptin was superior to that of sitagliptin in Japanese patients with type 2 diabetes.

  18. Study on the mechanism of human blood glucose concentration measuring using mid-infrared spectral analysis technology

    NASA Astrophysics Data System (ADS)

    Li, Xiang

    2016-10-01

    All forms of diabetes increase the risk of long-term complications. Blood glucose monitoring is of great importance for controlling diabetes procedure, preventing the complications and improving the patient's life quality. At present, the clinical blood glucose concentration measurement is invasive and could be replaced by noninvasive spectroscopy analytical techniques. The mid-infrared spectral region contains strong characteristic and well-defined absorption bands. Therefore, mid-infrared provides an opportunity for monitoring blood glucose invasively with only a few discrete bonds. Although the blood glucose concentration measurement using mid-infrared spectroscopy has a lot of advantages, the disadvantage is also obvious. The absorption in this infrared region is fundamental molecular group vibration. Absorption intensity is very strong, especially for biological molecules. In this paper, it figures out that the osmosis rate of glucose has a certain relationship with the blood glucose concentration. Therefore, blood glucose concentration could be measured indirectly by measuring the glucose exudate in epidermis layer. Human oral glucose tolerance tests were carried out to verify the correlation of glucose exudation in shallow layer of epidermis layer and blood glucose concentration. As it has been explained above, the mid-infrared spectral region contains well-defined absorption bands, the intensity of absorption peak around 1123 cm-1 was selected to measure the glucose and that around 1170 cm-1 was selected as reference. Ratio of absorption peak intensity was recorded for each set of measurement. The effect and importance of the cleaning the finger to be measured before spectrum measuring are discussed and also verified by experiment.

  19. Relative accuracy of the BD Logic and FreeStyle blood glucose meters.

    PubMed

    2007-04-01

    The BD Logic((R)) (Becton, Dickinson and Co., Franklin Lakes, NJ) and FreeStyle((R)) (Abbott Diabetes Care, Alameda, CA) meters are used to transmit data directly to insulin pumps for calculation of insulin doses and to calibrate continuous glucose sensors as well as to monitor blood glucose levels. The accuracy of the two meters was evaluated in two inpatient studies conducted by the Diabetes Research in Children Network (DirecNet). In both studies, meter glucose measurements made with either venous or capillary blood were compared with reference glucose measurements made by the DirecNet Central Laboratory at the University of Minnesota using a hexokinase enzymatic method. The BD Logic tended to read lower than the laboratory reference regardless of whether venous (median difference = -9 mg/dL) or capillary blood (median difference = -7 mg/dL) was used. This resulted in lower accuracy of the BD Logic compared with the FreeStyle meter based on the median relative absolute difference (RAD) for both venous blood (median RAD, 9% vs. 5%, P < 0.001) and capillary blood (median RAD, 11% vs. 6%, P = 0.008). The greatest discrepancy in the performance of the two meters was at higher reference glucose values. Accuracy was not significantly different when the reference was < or = 70 mg/dL. The BD Logic meter is less accurate than the FreeStyle meter.

  20. Optical coherence tomography for blood glucose monitoring in vitro through spatial and temporal approaches

    NASA Astrophysics Data System (ADS)

    De Pretto, Lucas Ramos; Yoshimura, Tania Mateus; Ribeiro, Martha Simões; Zanardi de Freitas, Anderson

    2016-08-01

    As diabetes causes millions of deaths worldwide every year, new methods for blood glucose monitoring are in demand. Noninvasive approaches may increase patient adherence to treatment while reducing costs, and optical coherence tomography (OCT) may be a feasible alternative to current invasive diagnostics. This study presents two methods for blood sugar monitoring with OCT in vitro. The first, based on spatial statistics, exploits changes in the light total attenuation coefficient caused by different concentrations of glucose in the sample using a 930-nm commercial OCT system. The second, based on temporal analysis, calculates differences in the decorrelation time of the speckle pattern in the OCT signal due to blood viscosity variations with the addition of glucose with data acquired by a custom built Swept Source 1325-nm OCT system. Samples consisted of heparinized mouse blood, phosphate buffer saline, and glucose. Additionally, further samples were prepared by diluting mouse blood with isotonic saline solution to verify the effect of higher multiple scattering components on the ability of the methods to differentiate glucose levels. Our results suggest a direct relationship between glucose concentration and both decorrelation rate and attenuation coefficient, with our systems being able to detect changes of 65 mg/dL in glucose concentration.

  1. Application of optical lens of a CD writer for detecting the blood glucose semi-invasively

    NASA Astrophysics Data System (ADS)

    Meshram, N. D.; Dahikar, P. B.

    2014-10-01

    Recent technological advancements in the photonics industry have led to a resurgence of interest in optical glucose sensing and to realistic progress toward the development of an optical glucose sensor. Such a sensor has the potential to significantly improve the quality of life for the estimated 16 million diabetics in this country by making routine glucose measurements more convenient. Currently over 100 small companies and universities are working to develop noninvasive or minimally invasive glucose sensing technologies, and optical methods play a large role in these efforts. It has become overwhelmingly clear that frequent monitoring and tight control of blood sugar levels are requisite for effective management of Diabetes mellitus and reduction of the complications associated with this disease. The pain and trouble associated with current "finger-stick" methods for blood glucose monitoring result in decreased patient compliance and a failure to control blood sugar levels. Thus, the development of a convenient noninvasive blood glucose monitor holds the potential to significantly reduce the morbidity and mortality associated with Diabetes. A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on photodiode based laser operating at 632.8 nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively..

  2. The fluctuation of blood glucose, insulin and glucagon concentrations before and after insulin therapy in type 1 diabetes

    NASA Astrophysics Data System (ADS)

    Arif, Idam; Nasir, Zulfa

    2015-09-01

    A dynamical-systems model of plasma glucose, insulin and glucagon concentrations has been developed to investigate the effects of insulin therapy on blood glucose, insulin and glucagon regulations in type 1 diabetic patients. Simulation results show that the normal regulation of blood glucose concentration depends on insulin and glucagon concentrations. On type 1 diabetic case, the role of insulin on regulating blood glucose is not optimal because of the destruction of β cells in pancreas. These β cells destructions cause hyperglycemic episode affecting the whole body metabolism. To get over this, type 1 diabetic patients need insulin therapy to control the blood glucose level. This research has been done by using rapid acting insulin (lispro), long-acting insulin (glargine) and the combination between them to know the effects of insulin therapy on blood glucose, insulin and glucagon concentrations. Simulation results show that these different types of insulin have different effects on blood glucose concentration. Insulin therapy using lispro shows better blood glucose control after consumption of meals. Glargin gives better blood glucose control between meals and during sleep. Combination between lispro and glargine shows better glycemic control for whole day blood glucose level.

  3. Performance of the CONTOUR® TS Blood Glucose Monitoring System.

    PubMed

    Frank, Joy; Wallace, Jane F; Pardo, Scott; Parkes, Joan Lee

    2011-01-01

    Self-monitoring of blood glucose (SMBG) remains an important component of diabetes management, engendering a need for affordable blood glucose (BG) meters that are accurate, precise, and convenient. The CONTOUR® TS is a BG meter that endeavors to meet this need. It uses glucose dehydrogenase/flavin dinucleotide chemistry, automatic test strip calibration, and autocompensation for hematocrit along with the ease of use that has come to be expected of a modern meter. The objective of this clinical trial was to determine whether the CONTOUR TS system met these criteria. The system was evaluated at a single clinical site with 106 subjects with type 1 or type 2 diabetes. Blood glucose values ranged from 60 to 333 mg/dl over all subjects. Both lay users and health care professionals (HCPs) tested the meters, with test strips from three different lots. Results were compared to a reference analyzer of verified precision and accuracy. Forty-nine of the subjects also participated in a home study of the meter. Lay users learned to use the system without assistance and were surveyed on its use at the end of the study. When used with capillary blood, both subjects and HCPs obtained results that exceeded the International Organization for Standardization 15197:2003 criteria, (i.e., ≥95% of values fell within 20% or 15 mg/dl of the laboratory value for BG levels greater than or less than 75 mg/dl, respectively). Specifically, lay users achieved 97.9% and HCPs 98.6%. When used with venous blood, 99.8% of measurements were within the criteria. All measurements for both capillary and venous blood fell into zones A or B of the Parkes error grid, deemed clinically accurate. Hematocrit was found to have no influence on BG measurements. A large majority of the subjects found the system easy to learn and to use. The CONTOUR TS BG meter system gave accurate and reproducible results with both capillary and venous blood; subjects learned to use the meter system by following the user guide

  4. Additive postprandial blood glucose-attenuating and satiety-enhancing effect of cinnamon and acetic acid.

    PubMed

    Mettler, Samuel; Schwarz, Isaline; Colombani, Paolo C

    2009-10-01

    Cinnamon and vinegar or acetic acid were reported to reduce the postprandial blood glucose response. We hypothesized that the combination of these substances might result in an additive effect. Therefore, we determined the 2-hour postprandial blood glucose and satiety response to a milk rice meal supplemented with either cinnamon or acetic acid on their own or in combination. Subjects (n = 27) consumed the meal on 4 occasions as either pure (control trial), with 4 g cinnamon, 28 mmol acetic acid, or the combination of cinnamon + acetic acid. Blood glucose and satiety were assessed before eating and 15, 30, 45, 60, 90, and 120 minutes postprandially. At 15 minutes, the combination of cinnamon + acetic acid resulted in a significantly reduced blood glucose concentration compared with the control meal (P = .021). The incremental area under the blood glucose response curve over 120 minutes did, however, not differ between the trials (P = .539). The satiety score of the cinnamon + acetic acid trial was significantly higher than that in the control trial at 15 (P = .024) and 30 minutes (P = .024), but the incremental area under the curve of the satiety response did not differ (P = .116) between the trials. In conclusion, the significant effect of the combination of cinnamon and acetic acid on blood glucose and satiety immediately after meal intake indicated an additive effect of the 2 substances. Whether larger doses of cinnamon and acetic acid may result in a more substantial additive effect on blood glucose or satiety remains to be investigated.

  5. A novel Alaska pollack-derived peptide, which increases glucose uptake in skeletal muscle cells, lowers the blood glucose level in diabetic mice.

    PubMed

    Ayabe, Tatsuhiro; Mizushige, Takafumi; Ota, Wakana; Kawabata, Fuminori; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kanamoto, Ryuhei; Ohinata, Kousaku

    2015-08-01

    We found that the tryptic digest of Alaska pollack protein exhibits a glucose-lowering effect in KK-Ay mice, a type II diabetic model. We then searched for glucose-lowering peptides in the digest. Ala-Asn-Gly-Glu-Val-Ala-Gln-Trp-Arg (ANGEVAQWR) was identified from a peak of the HPLC fraction selected based on the glucose-lowering activity in an insulin resistance test using ddY mice. ANGEVAQWR (3 mg kg(-1)) decreased the blood glucose level after intraperitoneal administration. Among its fragment peptides, the C-terminal tripeptide, Gln-Trp-Arg (QWR, 1 mg kg(-1)), lowered the blood glucose level, suggesting that the C-terminal is critical for glucose-lowering activity. QWR also enhanced glucose uptake into C2C12, a mouse skeletal muscle cell line. QWR did not induce the phosphorylation of serine/threonine protein kinase B (Akt) and adenosine monophosphate-activated protein kinase (AMPK). We also demonstrated that QWR lowered the blood glucose level in NSY and KK-Ay, type II diabetic models.

  6. A new blood glucose management algorithm for type 2 diabetes: a position statement of the Australian Diabetes Society.

    PubMed

    Gunton, Jenny E; Cheung, N Wah; Davis, Timothy M E; Zoungas, Sophia; Colagiuri, Stephen

    2014-12-11

    Lowering blood glucose levels in people with type 2 diabetes has clear benefits for preventing microvascular complications and potential benefits for reducing macrovascular complications and death. Treatment needs to be individualised for each person with diabetes. This should start with selecting appropriate glucose and glycated haemoglobin targets, taking into account life expectancy and the patient's wishes. For most people, early use of glucose-lowering therapies is warranted. A range of recently available therapies has added to the options for lowering glucose levels, but this has made the clinical pathway for treating diabetes more complicated. This position statement from the Australian Diabetes Society outlines the risks, benefits and costs of the available therapies and suggests a treatment algorithm incorporating the older and newer agents.

  7. Perspectives of patients with non-insulin-treated type 2 diabetes on self-monitoring of blood glucose: A qualitative study.

    PubMed

    Chen, Chen-Mei; Hung, Li-Chen; Chen, Yang-Lin; Yeh, Mei Chang

    2018-04-01

    To explore experiences of self-monitoring of blood glucose among patients with non-insulin-treated type 2 diabetes. Self-monitoring of blood glucose is essential to diabetes care and facilitates glycaemic control. Patients' perspectives of self-monitoring of blood glucose have seldom been discussed in the literature, and engagement in self-monitoring of blood glucose is consistently low. The descriptive phenomenological method was used. Purposive sampling was conducted to recruit participants from the endocrinology departments of medical institutions in Taiwan based on the following criteria: (i) having a medical diagnosis of type 2 diabetes, (ii) not being treated with insulin, (iii) having engaged in self-monitoring of blood glucose at least once within the preceding 6 months, (iv) being at least 20 years old and (v) not having any major mental or cognitive disorders. Data were collected in outpatient consultation rooms, the participants' homes and other settings where the participants felt secure and comfortable. In-depth interviews were conducted to collect data from 16 patients with diabetes. The participants perceived that lifestyle affected blood glucose levels and did not know how to handle high or low blood glucose levels. Their willingness to continue self-monitoring of blood glucose depended on whether healthcare professionals checked or discussed their blood glucose levels with them. The patients' knowledge regarding blood glucose variation and healthcare professionals' attitudes affected the patients' self-monitoring of blood glucose behaviours. The empirical findings illustrated self-monitoring of blood glucose experiences and recommended that healthcare professionals' closely attend to patients' requirements and responses to diabetes and incorporate the self-monitoring of blood glucose into therapy plans. Healthcare professionals should reinforce patients' knowledge on appropriate responses to high and low blood glucose levels, intervene

  8. How Should Blood Glucose Meter System Analytical Performance Be Assessed?

    PubMed

    Simmons, David A

    2015-08-31

    Blood glucose meter system analytical performance is assessed by comparing pairs of meter system and reference instrument blood glucose measurements measured over time and across a broad array of glucose values. Consequently, no single, complete, and ideal parameter can fully describe the difference between meter system and reference results. Instead, a number of assessment tools, both graphical (eg, regression plots, modified Bland-Altman plots, and error grid analysis) and tabular (eg, International Organization for Standardization guidelines, mean absolute difference, and mean absolute relative difference) have been developed to evaluate meter system performance. The strengths and weaknesses of these methods of presenting meter system performance data, including a new method known as Radar Plots, are described here. © 2015 Diabetes Technology Society.

  9. Performance of a new test strip for freestyle blood glucose monitoring systems.

    PubMed

    Lock, John Paul; Brazg, Ronald; Bernstein, Robert M; Taylor, Elizabeth; Patel, Mona; Ward, Jeanne; Alva, Shridhara; Chen, Ting; Welsh, Zoë; Amor, Walter; Bhogal, Claire; Ng, Ronald

    2011-01-01

    a new strip, designed to enhance the ease of use and minimize interference of non-glucose sugars, has been developed to replace the current FreeStyle (Abbott Diabetes Care, Alameda, CA) blood glucose test strip. We evaluated the performance of this new strip. laboratory evaluation included precision, linearity, dynamic range, effects of operating temperature, humidity, altitude, hematocrit, interferents, and blood reapplication. System accuracy, lay user performance, and ease of use for finger capillary blood testing and accuracy for venous blood testing were evaluated at clinics. Lay users also compared the speed and ease of use between the new strip and the current FreeStyle strip. for glucose concentrations <75 mg/dL, 73%, 100%, and 100% of the individual capillary blood glucose results obtained by lay users fell within ± 5, 10, and 15 mg/dL, respectively, of the reference. For glucose concentrations ≥75 mg/dL, 68%, 95%, 99%, and 99% of the lay user results fell within  ±  5%, 10%, 15%, and 20%, respectively, of the reference. Comparable accuracy was obtained in the venous blood study. Lay users found the new test strip easy to use and faster and easier to use than the current FreeStyle strip. The new strip maintained accuracy under various challenging conditions, including high concentrations of various interferents, sample reapplication up to 60 s, and extremes in hematocrit, altitude, and operating temperature and humidity. our results demonstrated excellent accuracy of the new FreeStyle test strip and validated the improvements in minimizing interference and enhancing ease of use.

  10. Resonator graphene microfluidic antenna (RGMA) for blood glucose detection

    NASA Astrophysics Data System (ADS)

    Jizat, Noorlindawaty Md.; Mohamad, Su Natasha; Ishak, Muhammad Ikman

    2017-09-01

    Graphene is capable of highly sensitive analyte detection due to its nanoscale nature. Here we show a resonator graphene microfluidic antenna (RGMA) is used to detect the dielectric properties of aqueous glucose solution which represent the glucose level in blood. Simulation verified the high sensitivity of proposed RGMA made with aqueous glucose solutions at different concentrations. The RGMA yielded a sensor sensitivity of 0.1882GHz/mgml-1 as plotted from the slope of the linear fit from the result averages in S11 and S21 parameter, respectively. This results indicate that the proposed resonator antenna achieves high sensitivity and linear to the changes of glucose concentration.

  11. Do high blood glucose peaks contribute to higher HbA1c? Results from repeated continuous glucose measurements in children.

    PubMed

    Ulf, Samuelsson; Ragnar, Hanas; Arne, Whiss Per; Johnny, Ludvigsson

    2008-08-01

    HbA1c levels are influenced by the glycemic control of previous 2-3 months. Sometimes patients have surprisingly low HbA1c in spite of many correctly measured high blood glucose values, which is difficult to explain. As glucose sensors give an objective picture based on glucose readings several times per minute over 24 hours, we used the area under the curve (AUC) of such subcutaneous glucose profiles to evaluate their relationship with HbA1c. Thirty-two patients were randomized into two study arms, one open and the other blinded. Both arms had 8 pump users and 8 patients with multiple daily injections (MDI). After three months the two arms crossed over. Both study arms wore a continuous glucose monitoring system (CGMS) for 3 days every 2 weeks. HbA1c was determined before and after each 3-month study period. There was no relationship between HbA1c and s.c. glucose AUC or between HbA1c and the number of peaks >15.0 mmol/L when all CGMS profiles during the 6 months were taken together. Children on MDI showed a positive relationship between HbA1c and AUC (P<0.01) as well as the number of peaks (P<0.01). Children with a negative relationship between HbA1c and AUC generally had fewer fluctuations in blood glucose values, whereas children with a positive relationship had wide fluctuations. between s.c. glucose AUC and HbA1c, the results indicate that wide blood glucose fluctuations may be related to high HbA1c values. Therefore, complications and therapeutic interventions should aim at reducing such fluctuations. Although there was no relationship between s.c. glucose AUC and HbA1c, the results indicate that wide blood glucose fluctuations may be related to high HbA1c values. Therefore, complications and therapeutic interventions should aim at reducing such fluctuations.

  12. Gingival crevicular blood for screening of blood glucose level in patients with & without diabetes: a chair-side test.

    PubMed

    Bhavsar, M V; Brahmbhatt, N A; Sahayata, V; Bhavsar, N V

    2016-05-01

    Diabetes is a pandemic disease with increasing prevalence and serious complications. Periodontitis being one of its presentation and is its sixth recognized complication. This study compares blood glucose levels in gingival crevicular blood of patients with and without diabetes elicited during routine periodontal probing and venous blood sample. Seventy patients with moderate gingivitis and periodontitis positive for bleeding on probing were chosen. All the subjects were divided in two groups, group I consisted of 35 diabetic and group II of 35 non-diabetic subjects. Blood from the gingiva of the most inflamed site was collected with the test strip of a glucose self-monitoring device, and the blood glucose levels were measured. At the same time, intravenous blood was collected for measurement in a laboratory glucose analyzer. Gingival index and probing pocket depth were evaluated for each subject at same time. The mean GCB levels and VB derived from all samples were 156.07 ± 49.23 mg dl(-1) and 156 ± 49.89 mg dl(-1) , respectively, for diabetic group and 90.80 ± 11.07 and 93.41 ± 9.30 for non-diabetic group. In both the groups, the difference between GCB and VB glucose levels was non-significant (P > 0.005). Highly significant correlation between GCB and VB (r = 0.972 for diabetic and r = 0.721 for non-diabetic) in both the groups was found. The data from this study show that GCB collected during diagnostic periodontal examination can be an excellent source for estimation of blood sugar or glucometric analysis. This technique is also suitable for routine screening of diabetic and early diagnosis of unknown diabetic cases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. High-order sliding-mode control for blood glucose regulation in the presence of uncertain dynamics.

    PubMed

    Hernández, Ana Gabriela Gallardo; Fridman, Leonid; Leder, Ron; Andrade, Sergio Islas; Monsalve, Cristina Revilla; Shtessel, Yuri; Levant, Arie

    2011-01-01

    The success of blood glucose automatic regulation depends on the robustness of the control algorithm used. It is a difficult task to perform due to the complexity of the glucose-insulin regulation system. The variety of model existing reflects the great amount of phenomena involved in the process, and the inter-patient variability of the parameters represent another challenge. In this research a High-Order Sliding-Mode Control is proposed. It is applied to two well known models, Bergman Minimal Model, and Sorensen Model, to test its robustness with respect to uncertain dynamics, and patients' parameter variability. The controller designed based on the simulations is tested with the specific Bergman Minimal Model of a diabetic patient whose parameters were identified from an in vivo assay. To minimize the insulin infusion rate, and avoid the hypoglycemia risk, the glucose target is a dynamical profile.

  14. A non-invasive blood glucose meter design using multi-type sensors

    NASA Astrophysics Data System (ADS)

    Nguyen, D.; Nguyen, Hienvu; Roveda, Janet

    2012-10-01

    In this paper, we present a design of a multi optical modalities blood glucose monitor. The Monte Carlo tissues optics simulation with typical human skin model suggests the SNR ratio for a detector sensor is 104 with high sensitivity that can detect low blood sugar limit at 1 mMole/dL ( <20 mg/dL). A Bayesian filtering algorithm is proposed for multisensor fusion to identify whether e user has the danger of having diabetes. The new design has real time response (on the average of 2 minutes) and provides great potential to perform real time monitoring for blood glucose.

  15. Blood glucose measurement with multiple quantum cascade lasers using hollow-optical fiber-based ATR spectroscopy

    NASA Astrophysics Data System (ADS)

    Yoshioka, K.; Kino, S.; Matsuura, Y.

    2018-02-01

    For non-invasive blood glucose measurement, a measurement system based on mid-infrared ATR spectroscopy equipped with a combination of a QCL as a light source and a hollow-optical fiber as a beam delivery medium is developed. Firstly the measurement sensitivity of the system is evaluated by using glucose solutions and the result shows a significant correlation between optical absorbance and solution concentration. It is also confirmed that the system has a sensitivity that is enough for blood glucose measurement. Then optical absorption of human lips in the mid-infrared wavelength region is measured using a QCL with a wavenumber of 1080 cm-1 where human tissue exhibits strong absorption of glucose and its metabolites. As a result, the measured absorption follows the change of blood glucose well with a time delay of around 10 minutes and correlation factor between the absorbance and the blood glucose level is 0.42.

  16. Analytical model for real time, noninvasive estimation of blood glucose level.

    PubMed

    Adhyapak, Anoop; Sidley, Matthew; Venkataraman, Jayanti

    2014-01-01

    The paper presents an analytical model to estimate blood glucose level from measurements made non-invasively and in real time by an antenna strapped to a patient's wrist. Some promising success has been shown by the RIT ETA Lab research group that an antenna's resonant frequency can track, in real time, changes in glucose concentration. Based on an in-vitro study of blood samples of diabetic patients, the paper presents a modified Cole-Cole model that incorporates a factor to represent the change in glucose level. A calibration technique using the input impedance technique is discussed and the results show a good estimation as compared to the glucose meter readings. An alternate calibration methodology has been developed that is based on the shift in the antenna resonant frequency using an equivalent circuit model containing a shunt capacitor to represent the shift in resonant frequency with changing glucose levels. Work under progress is the optimization of the technique with a larger sample of patients.

  17. Noninvasive blood glucose sensing on human body with near-infrared reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Zhen-hao; Hao, Chang-ning; Zhang, Lin-lin; Huang, Yan-chao; Shi, Yi-qin; Jiang, Geng-ru; Duan, Jun-li

    2011-08-01

    The non-invasive blood glucose sensing method has shown its high impact on the clinic application. This can make the measurement on the clinically relevant concentrations of glucose be free from the pain of patient. The transmission spectrum study indicates that the dependence of glucose concentration on the absorbance is in linear manner for the glucose concentration in the region of 30mg/dL to 4.5×104mg/dL. By the near infrared reflection spectroscopy of fiber spectrometer, the reflection band between 1.2μm and 1.35μm can be used to correlated with the glucose concentration in the range of 30 to 300 mg/dL. This reflection band is finally used to measure the glucose concentration effect in non-invasive manner, which gives the statistical significance of P value 0.02. Our experiment result shows that it is possible to get the glucose concentration by the near infrared reflection spectrum measurement on the human forefinger. This non-invasive blood glucose sensing method may useful in clinic after more experiment for different people.

  18. 75 FR 2549 - Clinical Accuracy Requirements for Point of Care Blood Glucose Meters; Public Meeting; Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ...] Clinical Accuracy Requirements for Point of Care Blood Glucose Meters; Public Meeting; Request for Comments... Requirements for Point of Care Blood Glucose Meters. The purpose of the public meeting is to discuss the clinical accuracy requirements of blood glucose meters and other topics related to their use in point of...

  19. Direct analysis of [6,6-(2)H2]glucose and [U-(13)C6]glucose dry blood spot enrichments by LC-MS/MS.

    PubMed

    Coelho, Margarida; Mendes, Vera M; Lima, Inês S; Martins, Fátima O; Fernandes, Ana B; Macedo, M Paula; Jones, John G; Manadas, Bruno

    2016-06-01

    A liquid chromatography tandem mass spectrometry (LC-MS/MS) using multiple reaction monitoring (MRM) in a triple-quadrupole scan mode was developed and comprehensively validated for the determination of [6,6-(2)H2]glucose and [U-(13)C6]glucose enrichments from dried blood spots (DBS) without prior derivatization. The method is demonstrated with dried blood spots obtained from rats administered with a primed-constant infusion of [U-(13)C6]glucose and an oral glucose load enriched with [6,6-(2)H2]glucose. The sensitivity is sufficient for analysis of the equivalent to <5μL of blood and the overall method was accurate and precise for the determination of DBS isotopic enrichments. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Olfactory stimulation modulates the blood glucose level in rats.

    PubMed

    Tsuji, Tadataka; Tanaka, Susumu; Bakhshishayan, Sanam; Kogo, Mikihiko; Yamamoto, Takashi

    2018-01-01

    In both humans and animals, chemosensory stimuli, including odors and tastes, induce a variety of physiologic and mental responses related to energy homeostasis, such as glucose kinetics. The present study examined the importance of olfactory function in glucose kinetics following ingestion behavior in a simplified experimental scenario. We applied a conventional glucose tolerance test to rats with and without olfactory function and analyzed subsequent blood glucose (BG) curves in detail. The loss of olfactory input due to experimental damage to the olfactory mucosa induced a marked decrease in the area under the BG curve. Exposure to grapefruit odor and its main component, limonene, both of which activate the sympathetic nerves, before glucose loading also greatly depressed the BG curve. Pre-loading exposure to lavender odor, a parasympathetic activator, stabilized the BG level. These results suggest that olfactory function is important for proper glucose kinetics after glucose intake and that certain fragrances could be utilized as tools for controlling BG levels.

  1. Changes in blood glucose and insulin responses to intravenous glucose tolerance tests and blood biochemical values in adult female Japanese black bears (Ursus thibetanus japonicus).

    PubMed

    Kamine, Akari; Shimozuru, Michito; Shibata, Haruki; Tsubota, Toshio

    2012-02-01

    The metabolic mechanisms to circannual changes in body mass of bears have yet to be elucidated. We hypothesized that the Japanese black bear (Ursus thibetanus japonicus) has a metabolic mechanism that efficiently converts carbohydrates into body fat by altering insulin sensitivity during the hyperphagic stage before hibernation. To test this hypothesis, we investigated the changes in blood biochemical values and glucose and insulin responses to intravenous glucose tolerance tests (IVGTT) during the active season (August, early and late November). Four, adult, female bears (5-17 years old) were anesthetized with 6 mg/kg TZ (tiletamine HCl and zolazepam HCl) in combination with 0.1 mg/kg acepromazine maleate. The bears were injected intravenously with glucose (0.5 g/kg of body mass), and blood samples were obtained before, at, and intermittently after glucose injection. The basal triglycerides concentration decreased significantly with increase in body mass from August to November. Basal levels of plasma glucose and serum insulin concentrations were not significantly different among groups. The results of IVGTT demonstrated the increased peripheral insulin sensitivity and glucose tolerance in early November. In contrast, peripheral insulin resistance was indicated by the exaggerated insulin response in late November. Our findings suggest that bears shift their glucose and lipid metabolism from the stage of normal activity to the hyperphagic stage in which they show lipogenic-predominant metabolism and accelerate glucose uptake by increasing the peripheral insulin sensitivity.

  2. [Ways to improve measurement accuracy of blood glucose sensing by mid-infrared spectroscopy].

    PubMed

    Wang, Yan; Li, Ning; Xu, Kexin

    2006-06-01

    Mid-infrared (MIR) spectroscopy is applicable to blood glucose sensing without using any reagent, however, due to a result of inadequate accuracy, till now this method has not been used in clinical detection. The principle and key technologies of blood glucose sensing by MIR spectroscopy are presented in this paper. Along with our experimental results, the paper analyzes ways to enhance measurement accuracy and prediction accuracy by the following four methods: selection of optimized spectral region; application of spectra data processing method; elimination of the interference with other components in the blood, and promotion in system hardware. According to these four improving methods, we designed four experiments, i.e., strict determination of the region where glucose concentration changes most sensitively in MIR, application of genetic algorithm for wavelength selection, normalization of spectra for the purpose of enhancing measuring reproduction, and utilization of CO2 laser as light source. The results show that the measurement accuracy of blood glucose concentration is enhanced almost to a clinical detection level.

  3. Influence of cross-linked arabinoxylans on the postprandial blood glucose response in rats.

    PubMed

    Vogel, Barbara; Gallaher, Daniel D; Bunzel, Mirko

    2012-04-18

    Viscous dietary fibers are well established to reduce the blood glucose response to a meal. In this study, arabinoxylans, the most abundant dietary fiber in most cereals, were extracted under alkaline conditions and cross-linked by using laccase. Cross-linking of the arabinoxylans led to gel formation and increased in vitro viscosity almost 100-fold after drying and rehydration. To determine the ability of these cross-linked arabinoxylans to blunt the postprandial blood glucose curve of a meal, arabinoxylans, either native or cross-linked, and either prehydrated or not, were fed to rats as part of a meal, and blood glucose was monitored at intervals after the meal. Cellulose, a nonviscous fiber, served as a control. Cross-linked, but not native, arabinoxylans significantly reduced the area under the blood glucose time curve 5-9% relative to cellulose, indicating that they remained viscous within the gastrointestinal tract, and thus likely provide the health benefits found with other viscous fibers.

  4. The Body Mass Index, Blood Pressure, and Fasting Blood Glucose in Patients With Methamphetamine Dependence.

    PubMed

    Lv, Dezhao; Zhang, Meijuan; Jin, Xuru; Zhao, Jiyun; Han, Bin; Su, Hang; Zhang, Jie; Zhang, Xiangyang; Ren, Wenwei; He, Jincai

    2016-03-01

    Methamphetamine (MA) is a prevalently abused psychostimulant in the world. Previously published studies and case reports indicated potential associations between MA and body mass index (BMI) and cardiovascular factors (eg, blood pressure and fasting blood glucose). However, these associations have not been studied clearly. This study aimed to investigate BMI and cardiovascular factors in the MA-dependent patients.A total of 1019 MA-dependent patients were recruited between February 2, 2008 and March 11, 2013. A case report was used to gather information on sociocharacteristics and drug-dependent history. Meanwhile, a number of 1019 age- and sex-matched controls' information were collected from the physical examination center. We measured BMI, blood pressure, and fasting blood glucose among the participants.MA-dependent patients had significantly lower BMI (20.4 ± 0.1 vs 23.9 ± 0.1 kg/m, P < 0.001), lower fasting blood glucose (5.0 ± 0.01 vs 5.2 ± 0.01 mmol/L, P < 0.001) and higher systolic blood pressure (122.1 ± 0.4 vs 114.8 ± 0.4 mmHg, P < 0.001) compared with the control group after adjustment of possible confounders. Additional, we only found the duration of MA use was independently associated with BMI (B = -0.08, P = 0.04).This study demonstrated that MA dependence was associated with BMI and cardiovascular factors. In addition, we found a negative association between duration of MA use and BMI.

  5. Hybrid CARS for Non-Invasive Blood Glucose Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Pestov, Dmitry; Zhang, Aihua; Murawski, Robert; Sokolov, Alexei; Welch, George; Laane, Jaan; Scully, Marlan

    2007-10-01

    We develop a spectroscopy technique that combines the advantages of both the frequency-resolved coherent anti-Stokes Raman scattering (CARS) and the time-resolved CARS. We use broadband preparation pulses to get an instantaneous coherent excitation of multiplex molecular vibration levels and subsequent optically shaped time-delayed narrowband probing pulse to detect these vibrations. This technique can suppress the nonresonant background and retrieve the molecular fingerprint signal efficiently and rapidly. We employ this technique to glucose detection, the final goal of which is accurate, non-invasive (i.e. painless) and continuous monitoring of blood glucose concentration in the Diabetes diagnosis to replace the current glucose measurement process, which requires painful fingerpricks and therefore cannot be performed more than a few times a day. We have gotten the CARS spectra of glucose aqueous solution down to 2 mM.

  6. Effect of emulin on blood glucose in type 2 diabetics.

    PubMed

    Ahrens, Milton Joseph; Thompson, Daryl L

    2013-03-01

    Emulin™ is a patented blend of chlorogenic acid, myricetin, and quercetin that has shown efficacy in reducing midday and post-oral glucose tolerance test (OGTT) area under the curve (AUC) glucose in streptozotocin-treated rats. The purpose of this study was to determine if similar effects would be evident in type 2 diabetic humans. Forty human subjects with confirmed type 2 diabetes (10 each in 4 groups: placebo/no medication, Emulin/no medication, placebo/metformin and Emulin/metformin) were evaluated. At the end of 1 week, fasting blood glucose, 2 h postprandial, actual peak glucose, and AUC (post-50 g OGTT) were determined. The placebo-only group had a large (5%-13%) increase in all parameters. The Emulin group and those on metformin performed similarly with reductions between 1% and 5%, with Emulin slightly outperforming the medication-alone group. The most significant reduction occurred in the Emulin/metformin group, with decreases in the parameters by up to 20%. These results suggest that Emulin, if consumed regularly, could not only have the acute effect of lowering the glycemic impact of foods, but chronically lower background blood glucose levels of type 2 diabetics.

  7. Blood optical properties at various glucose level values in THz frequency range

    NASA Astrophysics Data System (ADS)

    Gusev, S. I.; Borovkova, M. A.; Strepitov, M. A.; Khodzitsky, M. K.

    2015-07-01

    The number of diabetics is rapidly growing every day in all parts of the world. By the year 2010, the number of patients suffering from diabetes had amounted to more than 230 million people, which is estimated as 3.5% of the whole world adult population [1]. According to expert forecasts, this number is projected to double by the year 2025, which is going to be 7% of whole Earth population. It was calculated that every 10 seconds someone in the world dies due to diabetes and its complications, which is 3 million people per year. The average life expectancy of children with diabetes is less than 28.3 years of onset. Diabetes is considered to be the fourth most common cause of death in industrialized countries. Vascular complications due to diabetes cause early disability and high mortality. Mortality from heart diseases and strokes is 2-3 times more likely for patients suffering from diabetes, whereas blindness, nephropathy and lower limbs gangrene happen respectively 10, 12-15 times, and almost 20 times more often for diabetics than general population. The number and strength of complications depend directly on the blood glucose level control quality. At the moment, the blood glucose level measurements are performed by glucometers [2,3]. This method requires that a patient makes a finger puncture for every measurement. About five punctures per day should be done for proper glucose monitoring, which is about 1,800 punctures per year. Besides, each measurement by glucometer requires a distinct test strip. Expenses for 1,800 test strips could be estimated as about 450 euros per year. It is also necessary to take into account that each puncture has a risk of blood poisoning. Using non-invasive techniques for glucose level control could reduce the amount of possible risky manipulations by 1800 per year. Moreover, it is worth mentioning that only eight of ten fingers are suitable for puncturing, and the constant skin damage which cannot be avoided is quite annoying for

  8. Accuracy and precision evaluation of seven self-monitoring blood glucose systems.

    PubMed

    Kuo, Chih-Yi; Hsu, Cheng-Teng; Ho, Cheng-Shiao; Su, Ting-En; Wu, Ming-Hsun; Wang, Chau-Jong

    2011-05-01

    Self-monitoring blood glucose (SMBG) systems play a critical role in management of diabetes. SMBG systems should at least meet the minimal requirement of the World Health Organization's ISO 15197:2003. For tight glycemic control, a tighter accuracy requirement is needed. Seven SMBG systems were evaluated for accuracy and precision: Bionime Rightest(™) GM550 (Bionime Corp., Dali City, Taiwan), Accu-Chek(®) Performa (Roche Diagnostics, Indianapolis, IN), OneTouch(®) Ultra(®)2 (LifeScan Inc., Milpitas, CA), MediSense(®) Optium(™) Xceed (Abbott Diabetes Care Inc., Alameda, CA), Medisafe (TERUMO Corp., Tokyo, Japan), Fora(®) TD4227 (Taidac Technology Corp., Wugu Township, Taiwan), and Ascensia Contour(®) (Bayer HealthCare LLC, Mishawaka, IN). The 107 participants (44 men and 63 women) were between 23 and 91 years old. The analytical results of seven SMBG systems were compared with those of plasma analyzed with the hexokinase method (Olympus AU640, Olympus America Inc., Center Valley, PA). The imprecision of the seven blood glucose meters ranged from 1.1% to 4.7%. Three of the seven blood glucose meters (42.9%) fulfilled the minimum accuracy criteria of ISO 15197:2003. The mean absolute relative error value for each blood glucose meter was calculated and ranged from 6.5% to 12.0%. More than 40% of evaluated SMBG systems meet the minimal accuracy criteria requirement of ISO 15197:2003. However, considering tighter criteria for accuracy of ±15%, only the Bionime Rightest GM550 meets this requirement. Because SMBG systems play a critical role in management of diabetes, manufacturers have to strive to improve accuracy and precision and to ensure the good quality of blood glucose meters and test strips.

  9. Effect of sulfonylureas administered centrally on the blood glucose level in immobilization stress model.

    PubMed

    Sharma, Naveen; Sim, Yun-Beom; Park, Soo-Hyun; Lim, Su-Min; Kim, Sung-Su; Jung, Jun-Sub; Hong, Jae-Seung; Suh, Hong-Won

    2015-05-01

    Sulfonylureas are widely used as an antidiabetic drug. In the present study, the effects of sulfonylurea administered supraspinally on immobilization stress-induced blood glucose level were studied in ICR mice. Mice were once enforced into immobilization stress for 30 min and returned to the cage. The blood glucose level was measured 30, 60, and 120 min after immobilization stress initiation. We found that intracerebroventricular (i.c.v.) injection with 30 µg of glyburide, glipizide, glimepiride or tolazamide attenuated the increased blood glucose level induced by immobilization stress. Immobilization stress causes an elevation of the blood corticosterone and insulin levels. Sulfonylureas pretreated i.c.v. caused a further elevation of the blood corticosterone level when mice were forced into the stress. In addition, sulfonylureas pretreated i.c.v. alone caused an elevation of the plasma insulin level. Furthermore, immobilization stress-induced insulin level was reduced by i.c.v. pretreated sulfonylureas. Our results suggest that lowering effect of sulfonylureas administered supraspinally against immobilization stress-induced increase of the blood glucose level appears to be primarily mediated via elevation of the plasma insulin level.

  10. Using meta-differential evolution to enhance a calculation of a continuous blood glucose level.

    PubMed

    Koutny, Tomas

    2016-09-01

    We developed a new model of glucose dynamics. The model calculates blood glucose level as a function of transcapillary glucose transport. In previous studies, we validated the model with animal experiments. We used analytical method to determine model parameters. In this study, we validate the model with subjects with type 1 diabetes. In addition, we combine the analytic method with meta-differential evolution. To validate the model with human patients, we obtained a data set of type 1 diabetes study that was coordinated by Jaeb Center for Health Research. We calculated a continuous blood glucose level from continuously measured interstitial fluid glucose level. We used 6 different scenarios to ensure robust validation of the calculation. Over 96% of calculated blood glucose levels fit A+B zones of the Clarke Error Grid. No data set required any correction of model parameters during the time course of measuring. We successfully verified the possibility of calculating a continuous blood glucose level of subjects with type 1 diabetes. This study signals a successful transition of our research from an animal experiment to a human patient. Researchers can test our model with their data on-line at https://diabetes.zcu.cz. Copyright © 2016 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Application of optical lens of a CD writer for detecting the blood glucose semi-invasively

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meshram, N. D., E-mail: meshramnileshsd@gmail.com; Dahikar, P. B., E-mail: pbdahikar@rediffmail.com

    Recent technological advancements in the photonics industry have led to a resurgence of interest in optical glucose sensing and to realistic progress toward the development of an optical glucose sensor. Such a sensor has the potential to significantly improve the quality of life for the estimated 16 million diabetics in this country by making routine glucose measurements more convenient. Currently over 100 small companies and universities are working to develop noninvasive or minimally invasive glucose sensing technologies, and optical methods play a large role in these efforts. It has become overwhelmingly clear that frequent monitoring and tight control of bloodmore » sugar levels are requisite for effective management of Diabetes mellitus and reduction of the complications associated with this disease. The pain and trouble associated with current “finger-stick” methods for blood glucose monitoring result in decreased patient compliance and a failure to control blood sugar levels. Thus, the development of a convenient noninvasive blood glucose monitor holds the potential to significantly reduce the morbidity and mortality associated with Diabetes. A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on photodiode based laser operating at 632.8 nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively.« less

  12. [SOMATOTYPE, NUTRITIONAL STATUS AND BLOOD GLUCOSE LEVEL OF PHYSICAL EDUCATION STUDENTS].

    PubMed

    Valdés-Badilla, Pablo; Salvador Soler, Noemí; Godoy-Cumillaf, Andrés; Carmona-López, María Ines; Fernández, Juan José; Durán-Agüero, Samuel

    2015-09-01

    classical studies have compared the glycemia with the nutritional status in both children and adults; however studies that consider also somatotype are unknown. associating the somatotype and nutritional status with the glycemic level of students of Pedagogy in Physical Education (PPE). the sample included 40 subjects, divided between 13 women and 27 men. It was determined in each subject BMI, somatotype and also a fasting blood glucose sample was obtained. the somatotype in male PPE students was mesomorphic (3-2-2) with a nutritional status of overweight (25 kg/m2) and balanced mesomorphic (4-4-2) with normal weight (22 kg/m2) in women PPE students. While average fasting blood glucose was 69 mg / dl. No association between somatotype and BMI with blood sugar levels of students of PPE, however, women of PEF showed significant positive correlations between mesomorphy and the ICC (0.577) and between glycemia and height (0.650). somatotype and BMI of the students of PPE are consistent with their age and sex, but no association between somatotype and glucose was observed. Moreover, the average blood glucose levels were somewhat lower compared to normative tables, a situation that could be related to physical activity, however, requires further study to confirm it. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  13. Association of sleep duration with blood glucose level of Gujarati Indian adolescents.

    PubMed

    Patel, Minal C; Shaikh, Wasim A; Singh, S K

    2012-01-01

    Recently studies conducted in various parts of the world indicate short sleep duration as a novel risk factor for development of type 2 diabetes. However, ethnic differences exist in the etiopathogenesis of diseases, the current study was undertaken to study the effect of sleep duration on the blood glucose level of Gujarati Indian adolescents. A randomized, non-experimental, cross-sectional study was done on the voluntary participants n = 332 Gujarati adolescent boys and girls of age group 13-20 years studying at the schools and colleges in the Anand district. The participants were assessed for their sleep duration, body composition and blood glucose level. The sleep duration was reported by the subjects as the number of hours they slept on most of the nights in a week over the last one-year. The observations of the study were then analyzed after grouping them into: 1) Adequate sleep duration at night, ASDN (> or = 7 hrs) and 2) Inadequate sleep duration at night, ISDN (< 7 hrs) groups. One-way ANOVA and post hoc Tuky-Krammer test were used for finding significant differences (P < 0.05) between groups. No significant difference was found in all parameters of body composition and fasting blood glucose level between the ASDN group and ISDN group in both boys and girls. However, gender difference exists in the body composition and blood glucose level. The current study indicates that inadequate sleep duration at night (< 7 hrs) does not affect the blood glucose level of the Gujarati Indian adolescents of age group 13-20 years.

  14. Research of transmissive near infrared spectroscopy for non-invasive blood glucose measurement

    NASA Astrophysics Data System (ADS)

    Yang, Wenming; Liao, Ningfang; Li, Yasheng; Shao, Liwei; Huang, Dehuang

    2016-10-01

    Near infrared (NIR) has prospectively applied in non-invasive blood glucose measurement due to glucose absorption among the 1.0-2.5m spectral bands. However, this significant technology is hard to be developed because of other blood components and low signal-to-noise ratio (SNR). In this work, we presented a non-invasive glucose measurement system using Fourier transform spectrometer which will work in fingertips or other human body tissues. A refrigerated InGaAs detector with high quantum efficiency performing well in the range of 1.0-1.7μm wavelength is used to acquire transmissive radiation. Preliminary experiment investigations were set up to test glucose levels of aqueous solutions with different concentrations. The analytical modeling of the interferogram data is based on arithmetic Fourier transform and supported by the curvilineal characterization. Experimental results show the variation of light intensity among different glucose concentrations and emphasize the obvious absorption of glucose in NIR wave-range. This study confirms the suitability that NIR can be developed in non-invasive glucose measurement.

  15. The Rectangle Target Plot: A New Approach to the Graphical Presentation of Accuracy of Systems for Self-Monitoring of Blood Glucose.

    PubMed

    Stephan, Peter; Schmid, Christina; Freckmann, Guido; Pleus, Stefan; Haug, Cornelia; Müller, Peter

    2015-10-09

    The measurement accuracy of systems for self-monitoring of blood glucose (SMBG) is usually analyzed by a method comparison in which the analysis results are displayed using difference plots or similar graphs. However, such plots become difficult to comprehend as the number of data points displayed increases. This article introduces a new approach, the rectangle target plot (RTP), which aims to provide a simplified and comprehensible visualization of accuracy data. The RTP is based on ISO 15197 accuracy evaluations of SMBG systems. Two-sided tolerance intervals for normally distributed data are calculated for absolute and relative differences at glucose concentrations <100 mg/dL and ≥100 mg/dL. These tolerance intervals provide an estimator of where a 90% proportion of results is found with a confidence level of 95%. Plotting these tolerance intervals generates a rectangle whose center indicates the systematic measurement difference of the investigated system relative to the comparison method. The size of the rectangle depends on the measurement variability. The RTP provides a means of displaying measurement accuracy data in a simple and comprehensible manner. The visualization is simplified by reducing the displayed information from typically 200 data points to just 1 rectangle. Furthermore, this allows data for several systems or several lots from 1 system to be displayed clearly and concisely in a single graph. © 2015 Diabetes Technology Society.

  16. [A non-invasive portable blood-glucose monitoring system: sampling of suction effusion fluid].

    PubMed

    Arai, T; Kayashima, S; Kikuchi, M; Kaneyoshi, A; Itoh, N

    1995-04-01

    We developed a new portable transcutaneous blood glucose monitoring system using non-invasive collection of suction effusion fluid (SEF) from human skin. A ion sensitive field effect transistor (ISFET) sensor was employed to measure glucose concentration in a very small quantity of the SEF. The system was composed of a couple of portions. One structure was a suction cell, and the other was a main frame. The suction cell included the ISFET glucose sensor, a dilution mechanism, and a sucking interface to human skin. The main frame contained a dilution solution reservoir, a liquid waste reservoir, a fluid pump, a vacuum pump, a micro processor, batteries, and a user interface. The system is self-contained for portable usage during up to 6 hrs monitoring. This system may be the first blood glucose monitoring equipment which does not use blood sampling.

  17. Blood glucose concentration and risk of liver cancer: systematic review and meta-analysis of prospective studies.

    PubMed

    Han, Hedong; Zhang, Tianyi; Jin, Zhichao; Guo, Honglei; Wei, Xin; Liu, Yuzhou; Chen, Qi; He, Jia

    2017-07-25

    The question of whether elevated blood glucose is a risk factor for liver cancer has been intensively studied, yet with inconsistent results. To explore the relationship between blood glucose concentration and risk of liver cancer, we conduct a meta-analysis of prospective studies. Literature search was comprehensively performed using database of PubMed, EMBASE and the Cochrane Library through October 2016. Random-effect models were used to combine the effect estimations. Eight articles containing ten studies with a total of 1975 liver cancer cases were included. The pooled RRs demonstrated that elevated fasting blood glucose was associated with increased risk of liver cancer (combined RRs: 1.77; 95% CI: 1.46, 2.13) with mild heterogeneity (I2 = 30.40%, P = 0.17). In sensitivity analysis, the pooled result remained significant (combined RRs: 1.33; 95% CI: 1.12, 1.59; I2 = 33.90%, P = 0.16) when we restricted blood glucose categories in the range of nondiabetic subjects. We also detected a J-shaped non-linear dose-response relationship between blood glucose concentration and risk of liver cancer. There is evidence that elevated blood glucose increases risk of liver cancer across the range of prediabetes and diabetes. Considering the rapidly increasing prevalence of prediabetes and diabetes, controlling blood glucose may lower the risk of liver cancer.

  18. Blood concentrations of amino acids, glucose and lactate during experimental swine dysentery.

    PubMed

    Jonasson, R; Essén-Gustavsson, B; Jensen-Waern, M

    2007-06-01

    The aim of this study was to examine blood concentrations of amino acids, glucose and lactate in association with experimental swine dysentery. Ten pigs (approximately 23kg) were orally inoculated with Brachyspira hyodysenteriae. Eight animals developed muco-haemorrhagic diarrhoea with impaired general appearance, changes in white blood cell counts and increased levels of the acute phase protein Serum Amyolid A. Blood samples were taken before inoculation, during the incubation period, during clinical signs of dysentery and during recovery. Neither plasma glucose nor lactate concentrations changed during the course of swine dysentery, but the serum concentrations of gluconeogenic non-essential amino acids decreased during dysentery. This was mainly due to decreases in alanine, glutamine, serine and tyrosine. Lysine increased during dysentery and at the beginning of the recovery period, and leucine increased during recovery. Glutamine, alanine and tyrosine levels show negative correlations with the numbers of neutrophils and monocytes. In conclusion, swine dysentery altered the blood concentrations of amino acids, but not of glucose or lactate.

  19. Carbohydrate Ingestion Before and During Soccer Match Play and Blood Glucose and Lactate Concentrations

    PubMed Central

    Russell, Mark; Benton, David; Kingsley, Michael

    2014-01-01

    Context: The ingestion of carbohydrate (CHO) before and during exercise and at halftime is commonly recommended to soccer players for maintaining blood glucose concentrations throughout match play. However, an exercise-induced rebound glycemic response has been observed in the early stages of the second half of simulated soccer-specific exercise when CHO-electrolyte beverages were consumed regularly. Therefore, the metabolic effects of CHO beverage consumption throughout soccer match play remain unclear. Objective: To investigate the blood glucose and blood lactate responses to CHOs ingested before and during soccer match play. Design: Crossover study. Setting: Applied research study. Patients or Other Participants: Ten male outfield academy soccer players (age = 15.6 ± 0.2 years, height = 1.74 ± 0.02 m, mass = 65.3 ± 1.9 kg, estimated maximal oxygen consumption = 58.4 ± 0.8 mL·kg−1·min−1). Intervention(s): Players received a 6% CHO-electrolyte solution or an electrolyte (placebo) solution 2 hours before kickoff, before each half (within 10 minutes), and every 15 minutes throughout exercise. Blood samples were obtained at rest, every 15 minutes during the match (first half: 0–15, 15–30, and 30–45 minutes; second half: 45–60, 60–75, and 75–90 minutes) and 10 minutes into the halftime break. Main Outcome Measure(s): Metabolic responses (blood glucose and blood lactate concentrations) and markers of exercise intensity (heart rate) were recorded. Results: Supplementation influenced the blood glucose response to exercise (time × treatment interaction effect: P ≤ .05), such that glucose concentrations were higher at 30 to 45 minutes in the CHO than in the placebo condition. However, in the second half, blood glucose concentrations were similar between conditions because of transient reductions from peak values occurring in both trials at halftime. Blood lactate concentrations were elevated above those at rest in the first 15 minutes of exercise

  20. Carbohydrate ingestion before and during soccer match play and blood glucose and lactate concentrations.

    PubMed

    Russell, Mark; Benton, David; Kingsley, Michael

    2014-01-01

    The ingestion of carbohydrate (CHO) before and during exercise and at halftime is commonly recommended to soccer players for maintaining blood glucose concentrations throughout match play. However, an exercise-induced rebound glycemic response has been observed in the early stages of the second half of simulated soccer-specific exercise when CHO-electrolyte beverages were consumed regularly. Therefore, the metabolic effects of CHO beverage consumption throughout soccer match play remain unclear. To investigate the blood glucose and blood lactate responses to CHOs ingested before and during soccer match play. Crossover study. Applied research study. Ten male outfield academy soccer players (age = 15.6 ± 0.2 years, height = 1.74 ± 0.02 m, mass = 65.3 ± 1.9 kg, estimated maximal oxygen consumption = 58.4 ± 0.8 mL·kg(-1)·min(-1)). Players received a 6% CHO-electrolyte solution or an electrolyte (placebo) solution 2 hours before kickoff, before each half (within 10 minutes), and every 15 minutes throughout exercise. Blood samples were obtained at rest, every 15 minutes during the match (first half: 0-15, 15-30, and 30-45 minutes; second half: 45-60, 60-75, and 75-90 minutes) and 10 minutes into the halftime break. Metabolic responses (blood glucose and blood lactate concentrations) and markers of exercise intensity (heart rate) were recorded. Supplementation influenced the blood glucose response to exercise (time × treatment interaction effect: P ≤ .05), such that glucose concentrations were higher at 30 to 45 minutes in the CHO than in the placebo condition. However, in the second half, blood glucose concentrations were similar between conditions because of transient reductions from peak values occurring in both trials at halftime. Blood lactate concentrations were elevated above those at rest in the first 15 minutes of exercise (time-of-sample effect: P < .001) and remained elevated throughout exercise. Supplementation did not influence the pattern of

  1. Dexamethasone and perioperative blood glucose in patients undergoing total joint arthroplasty: A retrospective study.

    PubMed

    Nurok, Michael; Cheng, Jennifer; Romeo, Giulio R; Vecino, Stephanie M; Fields, Kara G; YaDeau, Jacques T

    2017-02-01

    Perioperative dexamethasone is commonly used to prevent nausea. It can also increase blood glucose levels, and recent concern about its blood glucose-elevating effect in humans has been raised. This study aimed to demonstrate relationships between dexamethasone administration and elevated perioperative blood glucose in patients undergoing total joint arthroplasty. Retrospective study. Academic, orthopedic hospital. A total of 625 patients (18-99years) who underwent total hip or total knee arthroplasty with an ASA ≤3 were included in the study. Patients who received dexamethasone perioperatively were compared to those who did not receive dexamethasone. The primary outcome, which was any postoperative glucose >200mg/dl, was compared between groups using multiple logistic regression. Demographic information, intraoperative information, incidence of postoperative nausea and vomiting, white blood cell count, medication use, and length of stay were also collected. Perioperative dexamethasone (median [1st quartile, 3rd quartile] dose=4 [4, 8] mg) was administered to 76% of patients. Only 5.6% (95% CI: 3.8-7.5) of patients had postoperative glucose levels >200mg/dl. After covariate adjustment, there was no evidence of a difference in odds of experiencing postoperative glucose levels >200mg/dl (odds ratio [95% CI]: 0.76 [0.28-2.07]; P=0.594) and maximum glucose levels (P=0.518) between groups. Dexamethasone-treated patients had greater changes in white blood cell count between baseline and postoperative days 0-1. There was no evidence of a difference in wound healing and length of stay between groups. There was no evidence of an association between perioperative dexamethasone administration and the odds of having postoperative glucose levels >200mg/dl or higher maximum glucose levels. However, these findings may not be generalizable to patients having different baseline characteristics or procedures. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Analysis of blood glucose distribution characteristics in a health examination population in Chengdu (2007-2015).

    PubMed

    Huang, Wenxia; Xu, Wangdong; Zhu, Ping; Yang, Hanwei; Su, Linchong; Tang, Huairong; Liu, Yi

    2017-12-01

    With socioeconomic growth and cultural changes in China, the level of blood glucose may have changed in recent years. This study aims to detect the blood glucose distribution characteristics with a large size of health examination population.A total of 641,311 cases (360,259 males and 281,052 females) more than 18 years old during 2007 to 2015 were recruited from the Health Examination Center at West China hospital, Sichuan University.The percentage of cases with abnormal glucose level and the mean level of glucose were significantly increased since 2007 to 2015 overall. The percentage of cases with abnormal glucose level in males was significantly higher than that in females every year, and the percentage of cases with abnormal glucose level in aged population was higher than the young population. In addition, the mean level of glucose was higher in aged population with normal level of glucose than the young population with normal level of glucose, and the mean level of glucose was higher in males with normal level of glucose than the females with normal level of glucose.The population showed an increased level of blood glucose. Some preventive action may be adopted early and more attention can be paid to them.

  3. PSECMAC intelligent insulin schedule for diabetic blood glucose management under nonmeal announcement.

    PubMed

    Teddy, S D; Quek, C; Lai, E M-K; Cinar, A

    2010-03-01

    Therapeutically, the closed-loop blood glucose-insulin regulation paradigm via a controllable insulin pump offers a potential solution to the management of diabetes. However, the development of such a closed-loop regulatory system to date has been hampered by two main issues: 1) the limited knowledge on the complex human physiological process of glucose-insulin metabolism that prevents a precise modeling of the biological blood glucose control loop; and 2) the vast metabolic biodiversity of the diabetic population due to varying exogneous and endogenous disturbances such as food intake, exercise, stress, and hormonal factors, etc. In addition, current attempts of closed-loop glucose regulatory techniques generally require some form of prior meal announcement and this constitutes a severe limitation to the applicability of such systems. In this paper, we present a novel intelligent insulin schedule based on the pseudo self-evolving cerebellar model articulation controller (PSECMAC) associative learning memory model that emulates the healthy human insulin response to food ingestion. The proposed PSECMAC intelligent insulin schedule requires no prior meal announcement and delivers the necessary insulin dosage based only on the observed blood glucose fluctuations. Using a simulated healthy subject, the proposed PSECMAC insulin schedule is demonstrated to be able to accurately capture the complex human glucose-insulin dynamics and robustly addresses the intraperson metabolic variability. Subsequently, the PSECMAC intelligent insulin schedule is employed on a group of type-1 diabetic patients to regulate their impaired blood glucose levels. Preliminary simulation results are highly encouraging. The work reported in this paper represents a major paradigm shift in the management of diabetes where patient compliance is poor and the need for prior meal announcement under current treatment regimes poses a significant challenge to an active lifestyle.

  4. Effect of blood glucose level on acute stress response of grass carp Ctenopharyngodon idella.

    PubMed

    Jiang, Danli; Wu, Yubo; Huang, Di; Ren, Xing; Wang, Yan

    2017-10-01

    Stress has a considerable impact on welfare and productivity of fish, and blood glucose level of fish may be a factor modulating stress response. This study evaluated the effect of blood glucose level and handling on acute stress response of grass carp Ctenopharyngodon idella. Fish were intraperitoneally injected with glucose at 0, 0.2, 0.5, and 1.0 mg g -1 body mass (BM) and then were exposed to handling for 5 min. Glucose injection resulted in increase of plasma glucose level and liver glycogen content and decrease of plasma lactate level. Handling resulted in increase of plasma levels of cortisol, glucose, and lactate and plasma lactic dehydrogenase (LDH) activity and decrease of liver glycogen content. At 1 h post-stress, the plasma cortisol level was lower in the stressed fish injected with glucose at 0.5 mg g -1 BM than the stressed fish injected with glucose at 0, 0.2, and 1.0 mg g -1 BM. No significant differences were found in the activities of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate kinase (PK) in the liver between the stressed and unstressed fish, regardless of the dose of glucose injection. At 1 h post-stress, the liver glucose-6-phosphatase (G6Pase) activity was higher in the fish without glucose injection than in the fish injected with glucose. This study reveals that blood glucose level can affect stress response of grass carp by modulating cortisol release and glucose homeostasis through glycogen metabolism and gluconeogenesis in the liver.

  5. Diadenosine tetraphosphate (Ap4A) induces a diabetogenic situation: its impact on blood glucose, plasma insulin, gluconeogenesis, glucose uptake and GLUT-4 transporters.

    PubMed

    Verspohl, E J; Hohmeier, N; Lempka, M

    2003-12-01

    Diadenosine polyphosphates such as Ap4A are physiologically released compounds for which both receptors as well as a role as second messengers for influencing insulin release have been shown. So far little is known about their pathophysiological impact on diabetes with respect to blood glucose and plasma insulin, glucose production via gluconeogenesis, glucose uptake and GLUT-4 expression. Rats given an intravenous bolus of Ap4A (0.75 mg/kg) developed a rapid and dramatic increase in blood glucose. Plasma insulin was only transiently increased (for 4 min), but did not follow the normally stimulatory effect of the elevated blood glucose. A bolus of 25 microg Ap4A quickly increased glucose release from perfused rat liver. Glucose uptake was reduced in 3T3 adipocytes. Reduced amounts of translocated GLUT-4 were found in 3T3 cell membranes incubated with 10 microM Ap4A. Thus, Ap4A itself induces a diabetic situation which is likely to be mediated by an increase in gluconeogenesis and/or an insulin resistance caused by a decrease in GLUT-4 and an attenuation of glucose uptake.

  6. Comparison of breath gases, including acetone, with blood glucose and blood ketones in children and adolescents with type 1 diabetes.

    PubMed

    Blaikie, Tom P J; Edge, Julie A; Hancock, Gus; Lunn, Daniel; Megson, Clare; Peverall, Rob; Richmond, Graham; Ritchie, Grant A D; Taylor, David

    2014-11-25

    Previous studies have suggested that breath gases may be related to simultaneous blood glucose and blood ketone levels in adults with type 2 and type 1 diabetes. The aims of this study were to investigate these relationships in children and young people with type 1 diabetes in order to assess the efficacy of a simple breath test as a non-invasive means of diabetes management. Gases were collected in breath bags and measurements were compared with capillary blood glucose and ketone levels taken at the same time on a single visit to a routine hospital clinic in 113 subjects (59 male, age 7 years 11 months-18 years 3 months) with type 1 diabetes. The patients were well-controlled with relatively low concentrations of the blood ketone measured (β hydroxybutyrate, 0-0.4 mmol l(-1)). Breath acetone levels were found to increase with blood β hydroxybutyrate levels and a significant relationship was found between the two (Spearman's rank correlation ρ = 0.364, p < 10(-4)). A weak positive relationship was found between blood glucose and breath acetone (ρ = 0.16, p = 0.1), but led to the conclusion that single breath measurements of acetone do not provide a good measure of blood glucose levels in this cohort. This result suggests a potential to develop breath gas analysis to provide an alternative to blood testing for ketone measurement, for example to assist with the management of type 1 diabetes.

  7. Lower Glucose Target is Associated with Improved 30-Day Mortality in Cardiac and Cardiothoracic Patients.

    PubMed

    Hersh, Andrew M; Hirshberg, Eliotte L; Wilson, Emily L; Orme, James F; Morris, Alan H; Lanspa, Michael J

    2018-04-26

    Practice guidelines recommend against Intensive Insulin Therapy (IIT) in critically ill patients based on trials that had high rates of severe hypoglycemia. Intermountain Healthcare uses a computerized intravenous insulin protocol (eProtocol-insulin) that allows choice of blood glucose (BG) targets (80-110 mg/dl versus 90-140 mg/dl), and has low rates of severe hypoglycemia. We sought to study the effects of BG target on mortality in adult patients in cardiac intensive care units (ICUs) that have very low rates of severe hypoglycemia. Critically ill patients receiving intravenous insulin were treated with either of two BG targets (80-110 mg/dl versus 90-140 mg/dl). We created a propensity score for BG target using factors believed to have influenced clinicians' choice, and then performed a propensity-score-adjusted regression analysis for 30-day mortality. 1809 patients met inclusion criteria. Baseline patient characteristics were similar. Median glucose was lower in the 80-110 mg/dl group (104 mg/dl vs. 122 mg/dl, p<0.001). Severe hypoglycemia occurred at very low rates in both groups (1.16% vs. 0.35%, p=0.051). Unadjusted 30-day mortality was lower in the 80-110 mg/dl group (4.3% vs 9.2%, p<0.001). This remained after propensity-score-adjusted regression (OR 0.65; 95% CI, 0.43-0.98; p=0.04). Tight glucose control can be achieved with low rates of severe hypoglycemia, and is associated with decreased 30-day mortality in a cohort of largely cardiac patients. While such findings should not be used to guide clinical practice at present, the use of tight glucose control should be re-examined using a protocol that has low rates of severe hypoglycemia. Copyright © 2018. Published by Elsevier Inc.

  8. Jew's mellow leaves (Corchorus olitorius) suppress elevation of postprandial blood glucose levels in rats and humans.

    PubMed

    Innami, Satoshi; Ishida, Hiroshi; Nakamura, Kahoru; Kondo, Mika; Tabata, Kimiko; Koguchi, Takashi; Shimizu, Jun; Furusho, Tadasu

    2005-01-01

    The study was performed to explore the suppressive effect of Jew's mellow leaves (JML) on postprandial blood glucose levels in rats and humans. A soluble dietary fiber (SDF) was extracted from the freeze-dried JML powder. An elevation of the postprandial blood glucose level in rats given 1% or 2% JML-SDF solution orally together with 20% glucose solution was significantly suppressed as compared with that observed in the control rats given only glucose solution. When seven healthy young male adults ingested 225 mL of JML mixed juice containing 15 g of freeze-dried powder with 75 g of glucose in the fasting state in the morning, the elevation of the postprandial blood glucose level was significantly suppressed as compared with the control subjects. The diffusion rate of glucose and the permeation rate of glucose in the cultured Caco-2 cells were both significantly reduced by the addition of appropriate amounts of JML-SDF when compared to the controls. These results indicate that the effective substance in JML for suppressing blood glucose elevation is a kind of mucilaginous SDF. The mechanism by which this suppression occurs may be largely attributable to the delayed absorption of glucose from the intestinal membrane in the upper digestive tract by viscous SDF.

  9. Performance of Cleared Blood Glucose Monitors.

    PubMed

    Klonoff, David C; Prahalad, Priya

    2015-07-01

    Cleared blood glucose monitor (BGM) systems do not always perform as accurately for users as they did to become cleared. We performed a literature review of recent publications between 2010 and 2014 that present data about the frequency of inaccurate performance using ISO 15197 2003 and ISO 15197 2013 as target standards. We performed an additional literature review of publications that present data about the clinical and economic risks of inaccurate BGMs for making treatment decisions or calibrating continuous glucose monitors (CGMs). We found 11 publications describing performance of 98 unique BGM systems. 53 of these 98 (54%) systems met ISO 15197 2003 and 31 of the 98 (32%) tested systems met ISO 15197 2013 analytical accuracy standards in all studies in which they were evaluated. Of the tested systems, 33 were identified by us as FDA-cleared. Among these FDA-cleared BGM systems, 24 out of 32 (75%) met ISO 15197 2003 and 15 out of 31 (48.3%) met ISO 15197 2013 in all studies in which they were evaluated. Among the non-FDA-cleared BGM systems, 29 of 65 (45%) met ISO 15197 2003 and 15 out of 65 (23%) met ISO 15197 2013 in all studies in which they were evaluated. It is more likely that an FDA-cleared BGM system, compared to a non-FDA-cleared BGM system, will perform according to ISO 15197 2003 (χ(2) = 6.2, df = 3, P = 0.04) and ISO 15197 2013 (χ(2) = 11.4, df = 3, P = 0.003). We identified 7 articles about clinical risks and 3 articles about economic risks of inaccurate BGMs. We conclude that a significant proportion of cleared BGMs do not perform at the level for which they were cleared or according to international standards of accuracy. Such poor performance leads to adverse clinical and economic consequences. © 2015 Diabetes Technology Society.

  10. Remote Blood Glucose Monitoring in mHealth Scenarios: A Review.

    PubMed

    Lanzola, Giordano; Losiouk, Eleonora; Del Favero, Simone; Facchinetti, Andrea; Galderisi, Alfonso; Quaglini, Silvana; Magni, Lalo; Cobelli, Claudio

    2016-11-24

    Glucose concentration in the blood stream is a critical vital parameter and an effective monitoring of this quantity is crucial for diabetes treatment and intensive care management. Effective bio-sensing technology and advanced signal processing are therefore of unquestioned importance for blood glucose monitoring. Nevertheless, collecting measurements only represents part of the process as another critical task involves delivering the collected measures to the treating specialists and caregivers. These include the clinical staff, the patient's significant other, his/her family members, and many other actors helping with the patient treatment that may be located far away from him/her. In all of these cases, a remote monitoring system, in charge of delivering the relevant information to the right player, becomes an important part of the sensing architecture. In this paper, we review how the remote monitoring architectures have evolved over time, paralleling the progress in the Information and Communication Technologies, and describe our experiences with the design of telemedicine systems for blood glucose monitoring in three medical applications. The paper ends summarizing the lessons learned through the experiences of the authors and discussing the challenges arising from a large-scale integration of sensors and actuators.

  11. Remote Blood Glucose Monitoring in mHealth Scenarios: A Review

    PubMed Central

    Lanzola, Giordano; Losiouk, Eleonora; Del Favero, Simone; Facchinetti, Andrea; Galderisi, Alfonso; Quaglini, Silvana; Magni, Lalo; Cobelli, Claudio

    2016-01-01

    Glucose concentration in the blood stream is a critical vital parameter and an effective monitoring of this quantity is crucial for diabetes treatment and intensive care management. Effective bio-sensing technology and advanced signal processing are therefore of unquestioned importance for blood glucose monitoring. Nevertheless, collecting measurements only represents part of the process as another critical task involves delivering the collected measures to the treating specialists and caregivers. These include the clinical staff, the patient’s significant other, his/her family members, and many other actors helping with the patient treatment that may be located far away from him/her. In all of these cases, a remote monitoring system, in charge of delivering the relevant information to the right player, becomes an important part of the sensing architecture. In this paper, we review how the remote monitoring architectures have evolved over time, paralleling the progress in the Information and Communication Technologies, and describe our experiences with the design of telemedicine systems for blood glucose monitoring in three medical applications. The paper ends summarizing the lessons learned through the experiences of the authors and discussing the challenges arising from a large-scale integration of sensors and actuators. PMID:27886122

  12. A Post-Marketing Surveillance Study to Evaluate Performance of the EXIMO™ Blood Glucose Monitoring System.

    PubMed

    Chandnani, Sonia R; Ramakrishna, C D; Dave, Bhargav A; Kothavade, Pankaj S; Thakkar, Ashok S

    2017-05-01

    The performance of Blood Glucose Monitoring System (BGMS) is critical as the information provided by the system guide the patient or health care professional in making treatment decisions. However, besides evaluating accuracy of the BGMS in laboratory setting, it is equally important that the intended users (healthcare professionals and patients) should be able to achieve blood glucose measurements with similar level of high accuracy. To assess the performance of EXIMO™ (Meril Diagnostics Pvt. Ltd., Vapi, Gujarat, India) BGMS as per International Organization for Standardization (ISO) 15197:2013 section 8 user performance criteria. This was a non-randomized and post-marketing study conducted at a tertiary care centre of India. A total of 1005 patients with diabetes themselves performed fingertip blood glucose measurement using EXIMO™ BGMS. Immediately after capillary blood glucose measurement using the blood glucose monitoring system, venous blood sample from each patient was obtained by a trained technician which was assessed by reference laboratory method- Cobas Integra 400 plus (Roche Instrument Centre, Rotkreuz, Switzerland). All the blood glucose measurements assessed by EXIMO™ were compared with laboratory results. Performance of the system was assessed as per ISO 15197:2013 criteria using Bland-Altman plot, Parkes-Consensus Error Grid (CEG) and Surveillance Error Grid analyses (SEG). A total of 1005 patients participated in the study. Average age of the patients was 44.93±14.65 years. Evaluation of capillary fingertip blood glucose measurements demonstrated that 95.82% measurements fulfilled ISO 15197:2013 section 8 user performance criteria. All the results lie within clinically non-critical zones; Zone A (99.47%; n=1000) and Zone B (0.53%; n=05) of the CEG analysis. As per SEG analysis, majority of the results fell within "no-risk" zone (risk score 0 to 0.5; 90.42%). The result of the study confirmed that intended users are able to obtain accurate

  13. A Post-Marketing Surveillance Study to Evaluate Performance of the EXIMO™ Blood Glucose Monitoring System

    PubMed Central

    Chandnani, Sonia R.; Ramakrishna, C. D.; Dave, Bhargav A.; Kothavade, Pankaj S.

    2017-01-01

    Introduction The performance of Blood Glucose Monitoring System (BGMS) is critical as the information provided by the system guide the patient or health care professional in making treatment decisions. However, besides evaluating accuracy of the BGMS in laboratory setting, it is equally important that the intended users (healthcare professionals and patients) should be able to achieve blood glucose measurements with similar level of high accuracy. Aim To assess the performance of EXIMO™ (Meril Diagnostics Pvt. Ltd., Vapi, Gujarat, India) BGMS as per International Organization for Standardization (ISO) 15197:2013 section 8 user performance criteria. Materials and Methods This was a non-randomized and post-marketing study conducted at a tertiary care centre of India. A total of 1005 patients with diabetes themselves performed fingertip blood glucose measurement using EXIMO™ BGMS. Immediately after capillary blood glucose measurement using the blood glucose monitoring system, venous blood sample from each patient was obtained by a trained technician which was assessed by reference laboratory method- Cobas Integra 400 plus (Roche Instrument Centre, Rotkreuz, Switzerland). All the blood glucose measurements assessed by EXIMO™ were compared with laboratory results. Performance of the system was assessed as per ISO 15197:2013 criteria using Bland-Altman plot, Parkes-Consensus Error Grid (CEG) and Surveillance Error Grid analyses (SEG). Results A total of 1005 patients participated in the study. Average age of the patients was 44.93±14.65 years. Evaluation of capillary fingertip blood glucose measurements demonstrated that 95.82% measurements fulfilled ISO 15197:2013 section 8 user performance criteria. All the results lie within clinically non-critical zones; Zone A (99.47%; n=1000) and Zone B (0.53%; n=05) of the CEG analysis. As per SEG analysis, majority of the results fell within “no-risk” zone (risk score 0 to 0.5; 90.42%). Conclusion The result of the

  14. Blood glucose monitoring in type 2 diabetes – Nepalese patients’ opinions and experiences

    PubMed Central

    Sapkota, Sujata; Brien, Jo-anne E; Aslani, Parisa

    2017-01-01

    ABSTRACT Background: Blood glucose monitoring forms a vital component of diabetes care. Monitoring conducted at home using glucometers, and in laboratories by professionals, are two common methods of blood glucose monitoring in clinical practice. Objective: To investigate Nepalese patients’ perceptions and practices of blood glucose monitoring in diabetes. Methods: In-depth interviews were conducted with 48 Nepalese participants with type 2 diabetes in Sydney and Kathmandu. The interviews were audio-recorded, transcribed verbatim and thematically analysed. Results: In Australia, most participants perceived home monitoring as useful; and both home and laboratory monitoring were conducted at fairly regular intervals. In Nepal, only a small number conducted home monitoring and the laboratory method formed the primary method of day-to-day monitoring. The laboratory method was preferred due to easy access to laboratories, lack of faith in glucometers and perceptions that home monitoring is costlier. However, overall monitoring was irregular in Nepal. In addition to the healthcare system which enabled cheaper self-monitoring in Australia, Nepalese in Australia also tended to have a better understanding about the purpose of home monitoring. Conclusions: This study has highlighted the disparity in perceptions and practices related to blood glucose monitoring. Understanding the importance of blood glucose monitoring and access to affordable resources are critical facilitators for conducting regular monitoring. Both patient and health-system factors play a key role in ensuring continued diabetes monitoring and management. PMID:28585892

  15. Measurement of tissue optical properties with optical coherence tomography: Implication for noninvasive blood glucose concentration monitoring

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from diabetes mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for analysis. There have been enormous efforts by many scientific groups and companies to quantify glucose concentration noninvasively using different optical techniques. However, these techniques face limitations associated with low sensitivity, accuracy, and insufficient specificity of glucose concentrations over a physiological range. Optical coherence tomography (OCT), a new technology, is being applied for noninvasive imaging in tissues with high resolution. OCT utilizes sensitive detection of photons coherently scattered from tissue. The high resolution of this technique allows for exceptionally accurate measurement of tissue scattering from a specific layer of skin compared with other optical techniques and, therefore, may provide noninvasive and continuous monitoring of blood glucose concentration with high accuracy. In this dissertation work I experimentally and theoretically investigate feasibility of noninvasive, real-time, sensitive, and specific monitoring of blood glucose concentration using an OCT-based biosensor. The studies were performed in scattering media with stable optical properties (aqueous suspensions of polystyrene microspheres and milk), animals (New Zealand white rabbits and Yucatan micropigs), and normal subjects (during oral glucose tolerance tests). The results of these studies demonstrated: (1) capability of the OCT technique to detect changes in scattering coefficient with the accuracy of about 1.5%; (2) a sharp and linear decrease of the OCT signal slope in the dermis with the increase of blood glucose concentration; (3) the change in the OCT signal slope measured during bolus glucose injection experiments (characterized by a sharp increase of blood glucose concentration) is higher than that measured in

  16. On the suitability of refractometry for the analysis of glucose in blood-derived fluids.

    PubMed

    Zirk, K; Poetzschke, H

    2004-07-01

    Refractometry is the determination of the optical refractive index of a substance or a mixture of substances. It is a very sensitive method for the detection and quantification of dissolved analytes, but it is incapable of distinguishing between different analytes. The aim of this investigation was to determine the principle suitability of refractometry for the quantification of glucose (blood sugar) in blood and various blood fluids which can readily be obtained for medical diagnosis, in particular blood plasma, blood serum, and their ultrafiltrates. After the oral intake of freshly dissolved alpha-glucose, the in vivo blood contents of the alpha and beta anomers of glucose were found to be in an at least approximate equilibrium at all times. This observation is a prerequisite for a refractometrical determination of glucose due to the fact that both molecule forms have different refractive index increments. An assessment of the glucose content in untreated blood fluids was not possible, since no suitable relationship to the refractive index was found, most probably due to the influence of the many other substances present in blood on this parameter. However, after removal of certain macromolecules by ultrafiltration, value pairs showed a high level of correlation, providing the nominal molecular weight limit (cut-off) of the ultrafilter used possessed a maximum of 300 kDa. Besides macromolecules, the osmolality of the fluids undergoing measurement also proved to be a considerable interfering factor, particularly when values were outside the normal physiological range between 285 and 293 mmol/L. If a clinical application of this method is to be contemplated it is imperative (1) that blood cells are separated and removed, (2) that macromolecules present in plasma or serum are removed, e.g. by ultrafiltration, and (3) that beyond the results presented the influence of all small molecules other than glucose on the overall refractive index be determined and included in

  17. On the Problem of Patient-Specific Endogenous Glucose Production in Neonates on Stochastic Targeted Glycemic Control

    PubMed Central

    Dickson, Jennifer L.; Hewett, James N.; Gunn, Cameron A.; Lynn, Adrienne; Shaw, Geoffrey M.; Chase, Geoffrey

    2013-01-01

    Background: Both stress and prematurity can induce hyperglycemia in the neonatal intensive care unit, which, in turn, is associated with worsened outcomes. Endogenous glucose production (EGP) is the formation of glucose by the body from substrates and contributes to blood glucose (BG) levels. Due to the inherent fragility of the extremely low birth weight (ELBW) neonates, true fasting EGP cannot be explicitly determined, introducing uncertainty into glycemic models that rely on quantifying glucose sources. Stochastic targeting, or STAR, is one such glycemic control framework. Methods: A literature review was carried out to gather metabolic and EGP values on preterm infants with a gestational age (GA) <32 weeks and a birth weight (BW) <2 kg. The data were analyzed for EGP trends with BW, GA, BG, plasma insulin, and glucose infusion (GI) rates. Trends were modeled and compared with a literature-derived range of population constant EGP models using clinically validated virtual trials on retrospective clinical data. Results: No clear relationship was found for EGP and BW, GA, or plasma insulin. Some evidence of suppression of EGP with increasing GI or BG was seen. Virtual trial results showed that population-constant EGP models fit clinical data best and gave tighter control performance to a target band in virtual trials. Conclusions: Variation in EGP cannot easily be quantified, and EGP is sufficiently modeled as a population constant in the neonatal intensive care insulin–nutrition–glucose model. Analysis of the clinical data and fitting error suggests that ELBW hyperglycemic preterm neonates have unsuppressed EGP in the higher range than that seen in literature. PMID:23911173

  18. Determination of NIR informative wavebands for transmission non-invasive blood glucose measurement using a Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Yang, Wenming; Liao, Ningfang; Cheng, Haobo; Li, Yasheng; Bai, Xueqiong; Deng, Chengyang

    2018-03-01

    Non-invasive blood glucose measurement using near infrared (NIR) spectroscopy relies on wavebands that provide reliable information about spectral absorption. In this study, we investigated wavebands which are informative for blood glucose in the NIR shortwave band (900˜1450 nm) and the first overtone band (1450˜1700 nm) through a specially designed NIR Fourier transform spectrometer (FTS), which featured a test fixture (where a sample or subject's finger could be placed) and all-reflective optics, except for a Michelson structure. Different concentrations of glucose solution and seven volunteers who had undergone oral glucose tolerance tests (OGTT) were studied to acquire transmission spectra in the shortwave band and the first overtone band. Characteristic peaks of glucose absorption were identified from the spectra of glucose aqueous solution by second-order derivative processing. The wavebands linked to blood glucose were successfully estimated through spectra of the middle fingertip of OGTT participants by a simple linear regression and correlation coefficient. The light intensity difference showed that glucose absorption in the first overtone band was much more prominent than it was in the shortwave band. The results of the SLR model established from seven OGTTs in total on seven participants enabled a positive estimation of the glucose-linked wavelength. It is suggested that wavebands with prominent characteristic peaks, a high correlation coefficient between blood glucose and light intensity difference and a relatively low standard deviation of predicted values will be the most informative wavebands for transmission non-invasive blood glucose measurement methods. This work provides a guidance for waveband selection for the development of non-invasive NIR blood glucose measurement.

  19. A glucose monitoring system for on line estimation in man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit.

    PubMed

    Poitout, V; Moatti-Sirat, D; Reach, G; Zhang, Y; Wilson, G S; Lemonnier, F; Klein, J C

    1993-07-01

    We have developed a miniaturized glucose sensor which has been shown previously to function adequately when implanted in the subcutaneous tissue of rats and dogs. Following a glucose load, the sensor output increases, making it possible to calculate a sensitivity coefficient to glucose in vivo, and an extrapolated background current in the absence of glucose. These parameters are used for estimating at any time the apparent subcutaneous glucose concentration from the current. In the previous studies, this calibration was performed a posteriori, on the basis of the retrospective analysis of the changes in blood glucose and in the current generated by the sensor. However, for clinical application of the system, an on line estimation of glucose concentration would be necessary. Thus, this study was undertaken in order to assess the possibility of calibrating the sensor in real time, using a novel calibration procedure and a monitoring unit which was specifically designed for this purpose. This electronic device is able to measure, to filter and to store the current. During an oral glucose challenge, when a stable current is reached, it is possible to feed the unit with two different values of blood glucose and their corresponding times. The unit calculates the in vivo parameters, transforms every single value of current into an estimation of the glucose concentration, and then displays this estimation. In this study, 11 sensors were investigated of which two did not respond to glucose. In the other nine trials, the volunteers were asked to record every 30 s what appeared on the display during the secondary decrease in blood glucose.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Influence of partial pressure of oxygen in blood samples on measurement performance in glucose-oxidase-based systems for self-monitoring of blood glucose.

    PubMed

    Baumstark, Annette; Schmid, Christina; Pleus, Stefan; Haug, Cornelia; Freckmann, Guido

    2013-11-01

    Partial pressure of oxygen (pO2) in blood samples can affect blood glucose (BG) measurements, particularly in systems that employ the glucose oxidase (GOx) enzyme reaction on test strips. In this study, we assessed the impact of different pO2 values on the performance of five GOx systems and one glucose dehydrogenase (GDH) system. Two of the GOx systems are labeled by the manufacturers to be sensitive to increased blood oxygen content, while the other three GOx systems are not. Aliquots of 20 venous samples were adjusted to the following pO2 values: <45, ~70, and ≥150 mmHg. For each system, five consecutive measurements on each sample aliquot were performed using the same test strip lot. Relative differences between the mean BG results at pO2 ~70 mmHg, which is considered to be similar to pO2 in capillary blood samples, and the mean BG result at pO2 <45 and ≥150 mmHg were calculated. For all tested GOx systems, mean relative differences in the BG measurement results were between 6.1% and 22.6% at pO2 <45 mmHg and between -7.9% and -14.9% at pO2 ≥150 mmHg. For both pO2 levels, relative differences of all tested GOx systems were significant (p < .0001). The GDH system showed mean relative differences of -1.0% and -0.4% at pO2 values <45 and ≥150 mmHg, respectively, which were not significant. These data suggest that capillary blood pO2 variations lead to clinically relevant BG measurement deviations in GOx systems, even in GOx systems that are not labeled as being oxygen sensitive. © 2013 Diabetes Technology Society.

  1. The Health Behavior Schedule-II for Diabetes Predicts Self-Monitoring of Blood Glucose

    ERIC Educational Resources Information Center

    Frank, Maxwell T.; Cho, Sungkun; Heiby, Elaine M.; Lee, Chun-I; Lahtela, Adrienne L.

    2006-01-01

    The Health Behavior Schedule-II for Diabetes (HBS-IID) is a 27-item questionnaire that was evaluated as a predictor of self-monitoring of blood glucose (SMBG). The HBS-IID was completed by 96 adults with Type 2 diabetes. Recent glycosylated hemoglobin HbA1c and fasting blood glucose results were taken from participants' medical records. Only 31.3%…

  2. Electromagnetic Radiofrequency Radiation Emitted from GSM Mobile Phones Decreases the Accuracy of Home Blood Glucose Monitors

    PubMed Central

    Mortazavi, SMJ; Gholampour, M; Haghani, M; Mortazavi, G; Mortazavi, AR

    2014-01-01

    Mobile phones are two-way radios that emit electromagnetic radiation in microwave range. As the number of mobile phone users has reached 6 billion, the bioeffects of exposure to mobile phone radiation and mobile phone electromagnetic interference with electronic equipment have received more attention, globally. As self-monitoring of blood glucose can be a beneficial part of diabetes control, home blood glucose testing kits are very popular. The main goal of this study was to investigate if radiofrequency radiation emitted from a common GSM mobile phone can alter the accuracy of home blood glucose monitors. Forty five female nondiabetic students aged 17-20 years old participated in this study. For Control-EMF group (30 students), blood glucose concentration for each individual was measured in presence and absence of radiofrequency radiation emitted by a common GSM mobile phone (HTC touch, Diamond 2) while the phone was ringing. For Control- Repeat group (15 students), two repeated measurements were performed for each participant in the absence of electromagnetic fields. The magnitude of the changes between glucose levels in two repeated measurements (|ΔC|) in Control-Repeat group was 1.07 ± 0.88 mg/dl while this magnitude for Control-EMF group was 7.53 ± 4.76 mg/dl (P < 0.001, two-tailed test). To the best of our knowledge, this is the first study to assess the electromagnetic interference in home blood glucose monitors. It can be concluded that electromagnetic interference from mobile phones has an adverse effect on the accuracy of home blood glucose monitors. We suggest that mobile phones should be used at least 50 cm away from home blood glucose monitors. PMID:25505778

  3. Electromagnetic Radiofrequency Radiation Emitted from GSM Mobile Phones Decreases the Accuracy of Home Blood Glucose Monitors.

    PubMed

    Mortazavi, Smj; Gholampour, M; Haghani, M; Mortazavi, G; Mortazavi, Ar

    2014-09-01

    Mobile phones are two-way radios that emit electromagnetic radiation in microwave range. As the number of mobile phone users has reached 6 billion, the bioeffects of exposure to mobile phone radiation and mobile phone electromagnetic interference with electronic equipment have received more attention, globally. As self-monitoring of blood glucose can be a beneficial part of diabetes control, home blood glucose testing kits are very popular. The main goal of this study was to investigate if radiofrequency radiation emitted from a common GSM mobile phone can alter the accuracy of home blood glucose monitors. Forty five female nondiabetic students aged 17-20 years old participated in this study. For Control-EMF group (30 students), blood glucose concentration for each individual was measured in presence and absence of radiofrequency radiation emitted by a common GSM mobile phone (HTC touch, Diamond 2) while the phone was ringing. For Control- Repeat group (15 students), two repeated measurements were performed for each participant in the absence of electromagnetic fields. The magnitude of the changes between glucose levels in two repeated measurements (|ΔC|) in Control-Repeat group was 1.07 ± 0.88 mg/dl while this magnitude for Control-EMF group was 7.53 ± 4.76 mg/dl (P < 0.001, two-tailed test). To the best of our knowledge, this is the first study to assess the electromagnetic interference in home blood glucose monitors. It can be concluded that electromagnetic interference from mobile phones has an adverse effect on the accuracy of home blood glucose monitors. We suggest that mobile phones should be used at least 50 cm away from home blood glucose monitors.

  4. Enhanced self-monitoring blood glucose in non-insulin requiring Type 2 diabetes: A qualitative study in primary care.

    PubMed

    Brackney, Dana Elisabeth

    2018-03-31

    To contribute to both theoretical and practical understanding of the role of self-monitoring blood glucose for self-management by describing the experience of people with non-insulin requiring Type 2 diabetes in an enhanced structured self-monitoring blood glucose intervention. The complex context of self-monitoring blood glucose in Type 2 diabetes requires a deeper understanding of the clients' illness experience with structured self-monitoring of blood glucose. Clients' numeracy skills contribute to their response to blood glucose readings. Nurses' use of motivational interviewing to increase clients' regulatory self-efficacy is important to the theoretical perspective of the study. A qualitative descriptive study. A purposive sample of eleven adults recently (<2 years) diagnosed with non-insulin requiring Type 2 diabetes who had experienced a structured self-monitoring blood glucose intervention participated in this study. Audio recordings of semi-structured interviews and photos of logbooks were analyzed for themes using constant comparison and member checking. The illness experience states of Type 2 diabetes include 'Diagnosis', 'Behavior change', and 'Routine checking'. People check blood glucose to confirm their Type 2 diabetes diagnosis, to console their diabetes related fears, to create personal explanations of health behavior's impact on blood glucose, to activate behavior change and to congratulate their diabetes self-management efforts. These findings support the Transtheoretical model's stages of change and change processes. Blood glucose checking strengthens the relationships between theoretical concepts found in Diabetes Self-management Education-Support including: engagement, information sharing, and behavioral support. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Maternal whole blood cell miRNA-340 is elevated in gestational diabetes and inversely regulated by glucose and insulin.

    PubMed

    Stirm, Laura; Huypens, Peter; Sass, Steffen; Batra, Richa; Fritsche, Louise; Brucker, Sara; Abele, Harald; Hennige, Anita M; Theis, Fabian; Beckers, Johannes; Hrabě de Angelis, Martin; Fritsche, Andreas; Häring, Hans-Ulrich; Staiger, Harald

    2018-01-22

    The number of pregnancies complicated by gestational diabetes (GDM) is increasing worldwide. To identify novel characteristics of GDM, we studied miRNA profiles of maternal and fetal whole blood cells (WBCs) from GDM and normal glucose tolerant (NGT) pregnant women matched for body mass index and maternal age. After adjustment for maternal weight gain and pregnancy week, we identified 29 mature micro-RNAs (miRNAs) up-regulated in GDM, one of which, i.e., miRNA-340, was validated by qPCR. mRNA and protein expression of PAIP1, a miRNA-340 target gene, was found down-regulated in GDM women, accordingly. In lymphocytes derived from the mothers' blood and treated in vitro, insulin increased and glucose reduced miRNA-340 expression. In fetal cord blood samples, no associations of miRNA-340 with maternal GDM were observed. Our results provide evidence for insulin-induced epigenetic, i.e., miRNA-dependent, programming of maternal WBCs in GDM.

  6. Calibration Experiments Conducted for Noninvasive Blood Glucose Sensing Through the Eye

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Bockle, Stefan; Suh, Kwang I.; Rovati, Luigi L.

    2004-01-01

    There are more than 16 million diabetics in the United States and more than 100 million worldwide. Diabetes can lead to severe complications over time such as blindness, renal and cardiovascular diseases, and peripheral neuropathy in the limbs. Poor blood circulation in diabetics can lead to gangrene and the subsequent amputation of extremities. In addition, this pathology is the fourth leading cause of death in the United States. The most effective way to manage diabetes is frequent blood glucose monitoring performed by the patients themselves. However, because of pain, inconvenience, and the fear of developing infections from finger-prick blood tests or implants, many patients monitor their blood glucose levels less frequently than is recommended by their physicians. Therefore, a noninvasive, painless, and convenient method to monitor blood glucose would greatly benefit diabetics. Likewise, detecting, preventing, and treating the untoward effects of prolonged space travel (e.g., a human mission to Mars) in real-time requires the development of noninvasive diagnostic technologies that are compact and powerful. As a "window to the body," the eye offers the opportunity to use light in various forms to detect ocular and systemic abnormalities long before clinical symptoms appear and to help develop preventative and therapeutic countermeasures early. The noninvasive feature of these technologies permits frequent repetition of tests, enabling an evaluation of the response to therapy.

  7. Blood plasma separation in ZnO nanoflowers-supported paper based microfluidic for glucose sensing

    NASA Astrophysics Data System (ADS)

    Muhimmah, Luthviyah Choirotul; Roekmono, Hadi, Harsono; Yuwono, Rio Akbar; Wahyuono, Ruri Agung

    2018-04-01

    Blood plasma separation is essential to analyze and quantify the bio-substances in the human blood and hence, allows for diagnosing various diseases. This paper presents the two layer paper-based microfluidic analytical devices coated with ZnO nanoflowers (ZnO NF-µPAD) for a rapid blood plasma separation and glucose sensing. Plasma separation in ZnO NF-µPAD was evaluated experimentally and numerically using computational fluid dynamics package for a flow over porous networks. Glucose detection was carried out using Fourier-transform infrared (FTIR) measurements. The glucose concentrations in the red blood samples investigated here vary in the range of 150 - 310 mg.dl-1. The plasma separation process on ZnO NF-μPAD requires 240 ± 93 s. The spectroscopic data reveals that the IR absorptions and Raman signals at the typical vibrational frequencies of glucose are increasing at higher glucose concentration. After subtraction from absorption background arising from ZnO NF and the paper, linearly increasing IR absorption (913 and 1349 cm-1) and Raman signals (1346 and 1461 cm-1) are observable with a relatively good sensitivity.

  8. Community nurses and self-management of blood glucose.

    PubMed

    Abbott, S; Burns, J; Gleadell, A; Gunnell, C

    2007-01-01

    Self-monitoring of blood glucose (SMBG) is commonly recommended to patients with diabetes, although the rationale for this is unclear. This small research project was designed to explore the reasons why nurses working in the community recommend SMBG. Seven interviews were carried out with community nurses caring primarily for housebound patients. Those interviewed believed that a sound evidence-base supported the recommendation that patients test their blood, but not urine, for glucose levels. Though nurses believed in the importance of patient choice and empowerment, the scope for these was limited among housebound patients. There was no evidence that patients understood how to respond to test results, or that comprehensive care planning was normal practice. Although small, this study suggests that nurses working in community settings may need to update their knowledge. It also suggests that a national debate is necessary to disseminate better the evidence about SMBG, and its implications for nursing practice.

  9. GLUT-1 GLUCOSE TRANSPORTERS IN THE BLOOD-BRAIN BARRIER: DIFFERENTIAL PHOSPHORYLATION

    PubMed Central

    Devraj, Kavi; Klinger, Marianne E.; Myers, Roland L.; Mokashi, Ashwini; Hawkins, Richard A.; Simpson, Ian A.

    2013-01-01

    Glucose is the primary metabolic fuel for the mammalian brain and a continuous supply is required to maintain normal CNS function. The transport of glucose across the blood-brain barrier (BBB) into the brain is mediated by the facilitative glucose transporter GLUT-1. Prior studies (Simpson et al. 2001) had revealed that the conformations of the GLUT-1 transporter were different in luminal (blood facing) and abluminal (brain facing) membranes of bovine cerebral endothelial cells, based on differential antibody recognition. In this study we have extended these observations and using a combination of 2D-PAGE/Western blotting and immunogold electron microscopy we determined that these different conformations are exhibited in vivo and arise from differential phosphorylation of GLUT-1 and not from alternative splicing or altered O- or N-linked glycosylation. PMID:21910135

  10. Effect of cinnamon on postprandial blood glucose, gastric emptying, and satiety in healthy subjects.

    PubMed

    Hlebowicz, Joanna; Darwiche, Gassan; Björgell, Ola; Almér, Lars-Olof

    2007-06-01

    Previous studies of patients with type 2 diabetes showed that cinnamon lowers fasting serum glucose, triacylglycerol, and LDL- and total cholesterol concentrations. We aimed to study the effect of cinnamon on the rate of gastric emptying, the postprandial blood glucose response, and satiety in healthy subjects. The gastric emptying rate (GER) was measured by using standardized real-time ultrasonography. Fourteen healthy subjects were assessed by using a crossover trial. The subjects were examined after an 8-h fast if they had normal fasting blood glucose concentrations. GER was calculated as the percentage change in the antral cross-sectional area 15-90 min after ingestion of 300 g rice pudding (GER1) or 300 g rice pudding and 6 g cinnamon (GER2). The median value of GER1 was 37%, and that of GER2 was 34.5%. The addition of cinnamon to the rice pudding significantly delayed gastric emptying and lowered the postprandial glucose response (P < 0.05 for both). The reduction in the postprandial blood glucose concentration was much more noticeable and pronounced than was the lowering of the GER. The effect of cinnamon on satiety was not significant. The intake of 6 g cinnamon with rice pudding reduces postprandial blood glucose and delays gastric emptying without affecting satiety. Inclusion of cinnamon in the diet lowers the postprandial glucose response, a change that is at least partially explained by a delayed GER.

  11. Identification of informative bands in the short-wavelength NIR region for non-invasive blood glucose measurement.

    PubMed

    Uwadaira, Yasuhiro; Ikehata, Akifumi; Momose, Akiko; Miura, Masayo

    2016-07-01

    The "glucose-linked wavelength" in the short-wavelength near-infrared (NIR) region, in which the light intensity reflected from the hand palm exhibits a good correlation to the blood glucose value, was investigated. We performed 391 2-h carbohydrate tolerance tests (CTTs) using 34 participants and a glucose-linked wavelength was successfully observed in almost every CTT; however, this wavelength varied between CTTs even for the same person. The large resulting data set revealed the distribution of the informative wavelength. The blood glucose values were efficiently estimated by a simple linear regression with clinically acceptable accuracies. The result suggested the potential for constructing a personalized low-invasive blood glucose sensor using short-wavelength NIR spectroscopy.

  12. Galanin regulates blood glucose level in the zebrafish: a morphological and functional study.

    PubMed

    Podlasz, P; Jakimiuk, A; Chmielewska-Krzesinska, M; Kasica, N; Nowik, N; Kaleczyc, J

    2016-01-01

    The present study has demonstrated the galaninergic innervation of the endocrine pancreas including sources of the galaninergic nerve fibers, and the influence of galanin receptor agonists on blood glucose level in the zebrafish. For the first time, a very abundant galaninergic innervation of the endocrine pancreas during development is shown, from the second day post-fertilization to adulthood. The fibers originated from ganglia consisting of galanin-IR, non-adrenergic (non-sensory) neurons located rostrally to the pancreatic tissue. The ganglia were found on the dorsal side of the initial part of the anterior intestinal segment, close to the intestinal branch of the vagus nerve. The galanin-IR neurons did not show immunoreactivity for applied antibodies against tyrosine hydroxylase, choline acetyltransferase, and vesicular acetylcholine transporter. Intraperitoneal injections of galanin analog NAX 5055 resulted in a statistically significant increase in the blood glucose level. Injections of another galanin receptor agonist, galnon, also caused a rise in blood glucose level; however, it was not statistically significant. The present findings suggest that, like in mammals, in the zebrafish galanin is involved in the regulation of blood glucose level. However, further studies are needed to elucidate the exact mechanism of the galanin action.

  13. Sodium-glucose co-transporter type 2 inhibitors reduce evening home blood pressure in type 2 diabetes with nephropathy.

    PubMed

    Takenaka, Tsuneo; Kishimoto, Miyako; Ohta, Mari; Tomonaga, Osamu; Suzuki, Hiromichi

    2017-05-01

    The effects of sodium-glucose co-transporter type 2 inhibitors on home blood pressure were examined in type 2 diabetes with nephropathy. The patients with diabetic nephropathy were screened from medical records in our hospitals. Among them, 52 patients who measured home blood pressure and started to take sodium-glucose co-transporter type 2 inhibitors were selected. Clinical parameters including estimated glomerular filtration rate, albuminuria and home blood pressure for 6 months were analysed. Sodium-glucose co-transporter type 2 inhibitors (luseogliflozin 5 mg/day or canagliflozin 100 mg/day) reduced body weight, HbA1c, albuminuria, estimated glomerular filtration rate and office blood pressure. Although sodium-glucose co-transporter type 2 inhibitors did not alter morning blood pressure, it reduced evening systolic blood pressure. Regression analyses revealed that decreases in evening blood pressure predicted decrements in albuminuria. The present data suggest that sodium-glucose co-transporter type 2 inhibitors suppress sodium overload during daytime to reduce evening blood pressure and albuminuria.

  14. Introduction of a Novel Smartphone-Coupled Blood Glucose Monitoring System

    PubMed Central

    Jendrike, Nina; Baumstark, Annette; Chen, Chieh-Hsiao; Rittmeyer, Delia; Haug, Cornelia; Freckmann, Guido

    2017-01-01

    The novel system for self-monitoring of blood glucose (SMBG) PixoTest couples SMBG to a smartphone and does not require a separate glucose meter. The integrated system includes all components necessary for a glucose measurement, and owing to a colorimetric measurement principle, a smartphone camera can capture color changes and a software app calculates the corresponding glucose value. In the presented study, the system was evaluated in terms of system accuracy as described in ISO 15197:2013. It was shown to fulfill system accuracy requirements with 97-99% of results from three different reagent system lots within the accuracy limits and 100% of results within zone A of the consensus error grid. PMID:28459160

  15. Cinnamon intake lowers fasting blood glucose: meta-analysis.

    PubMed

    Davis, Paul A; Yokoyama, Wallace

    2011-09-01

    Cinnamon, the dry bark and twig of Cinnamomum spp., is a rich botanical source of polyphenolics that has been used for centuries in Chinese medicine and has been shown to affect blood glucose and insulin signaling. Cinnamon's effects on blood glucose have been the subject of many clinical and animal studies; however, the issue of cinnamon intake's effect on fasting blood glucose (FBG) in people with type 2 diabetes and/or prediabetes still remains unclear. A meta-analysis of clinical studies of the effect of cinnamon intake on people with type 2 diabetes and/or prediabetes that included three new clinical trials along with five trials used in previous meta-analyses was done to assess cinnamon's effectiveness in lowering FBG. The eight clinical studies were identified using a literature search (Pub Med and Biosis through May 2010) of randomized, placebo-controlled trials reporting data on cinnamon and/or cinnamon extract and FBG. Comprehensive Meta-Analysis (Biostat Inc., Englewood, NJ, USA) was performed on the identified data for both cinnamon and cinnamon extract intake using a random-effects model that determined the standardized mean difference ([i.e., Change 1(control) - Change 2(cinnamon)] divided by the pooled SD of the post scores). Cinnamon intake, either as whole cinnamon or as cinnamon extract, results in a statistically significant lowering in FBG (-0.49±0.2 mmol/L; n=8, P=.025) and intake of cinnamon extract only also lowered FBG (-0.48 mmol/L±0.17; n=5, P=.008). Thus cinnamon extract and/or cinnamon improves FBG in people with type 2 diabetes or prediabetes.

  16. Glucose buffer is suitable for blood group conversion with α-N acetylgalactosaminidase and α-galactosidase.

    PubMed

    Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng

    2014-01-01

    It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes' ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion.

  17. Glucose buffer is suitable for blood group conversion with α-N acetylgalactosaminidase and α-galactosidase

    PubMed Central

    Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng

    2014-01-01

    Background It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. Materials and methods We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes’ ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. Results The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. Conclusion These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion. PMID:24333060

  18. Value of self-monitoring blood glucose pattern analysis in improving diabetes outcomes.

    PubMed

    Parkin, Christopher G; Davidson, Jaime A

    2009-05-01

    Self-monitoring of blood glucose (SMBG) is an important adjunct to hemoglobin A1c (HbA1c) testing. This action can distinguish between fasting, preprandial, and postprandial hyperglycemia; detect glycemic excursions; identify and monitor resolution of hypoglycemia; and provide immediate feedback to patients about the effect of food choices, activity, and medication on glycemic control. Pattern analysis is a systematic approach to identifying glycemic patterns within SMBG data and then taking appropriate action based upon those results. The use of pattern analysis involves: (1) establishing pre- and postprandial glucose targets; (2) obtaining data on glucose levels, carbohydrate intake, medication administration (type, dosages, timing), activity levels and physical/emotional stress; (3) analyzing data to identify patterns of glycemic excursions, assessing any influential factors, and implementing appropriate action(s); and (4) performing ongoing SMBG to assess the impact of any therapeutic changes made. Computer-based and paper-based data collection and management tools can be developed to perform pattern analysis for identifying patterns in SMBG data. This approach to interpreting SMBG data facilitates rational therapeutic adjustments in response to this information. Pattern analysis of SMBG data can be of equal or greater value than measurement of HbA1c levels. 2009 Diabetes Technology Society.

  19. Fundamental Importance of Reference Glucose Analyzer Accuracy for Evaluating the Performance of Blood Glucose Monitoring Systems (BGMSs).

    PubMed

    Bailey, Timothy S; Klaff, Leslie J; Wallace, Jane F; Greene, Carmine; Pardo, Scott; Harrison, Bern; Simmons, David A

    2016-07-01

    As blood glucose monitoring system (BGMS) accuracy is based on comparison of BGMS and laboratory reference glucose analyzer results, reference instrument accuracy is important to discriminate small differences between BGMS and reference glucose analyzer results. Here, we demonstrate the important role of reference glucose analyzer accuracy in BGMS accuracy evaluations. Two clinical studies assessed the performance of a new BGMS, using different reference instrument procedures. BGMS and YSI analyzer results were compared for fingertip blood that was obtained by untrained subjects' self-testing and study staff testing, respectively. YSI analyzer accuracy was monitored using traceable serum controls. In study 1 (N = 136), 94.1% of BGMS results were within International Organization for Standardization (ISO) 15197:2013 accuracy criteria; YSI analyzer serum control results showed a negative bias (-0.64% to -2.48%) at the first site and a positive bias (3.36% to 6.91%) at the other site. In study 2 (N = 329), 97.8% of BGMS results were within accuracy criteria; serum controls showed minimal bias (<0.92%) at both sites. These findings suggest that the ability to demonstrate that a BGMS meets accuracy guidelines is influenced by reference instrument accuracy. © 2016 Diabetes Technology Society.

  20. Dielectric properties of glucose solutions in the millimetre-wave range and control of glucose content in blood

    NASA Astrophysics Data System (ADS)

    Meriakri, V. V.; Chigrai, E. E.; Kim, D.; Nikitin, I. P.; Pangonis, L. I.; Parkhomenko, M. P.; Won, J. H.

    2007-04-01

    The measurement of the dielectric properties of sugar solutions, as well as blood imitators and blood, in the millimetre-wave range allows one to obtain valuable information on the possibility of real-time control of glucose concentration in blood. These measurements are also of interest for other applications, for example in the wine industry and for the determination of water content in oil, oil products and other liquids.

  1. Gaussian Process modelling of blood glucose response to free-living physical activity data in people with type 1 diabetes.

    PubMed

    Valletta, John Joseph; Chipperfield, Andrew J; Byrne, Christopher D

    2009-01-01

    Good blood glucose control is important to people with type 1 diabetes to prevent diabetes-related complications. Too much blood glucose (hyperglycaemia) causes long-term micro-vascular complications, while a severe drop in blood glucose (hypoglycaemia) can cause life-threatening coma. Finding the right balance between quantity and type of food intake, physical activity levels and insulin dosage, is a daily challenge. Increased physical activity levels often cause changes in blood glucose due to increased glucose uptake into tissues such as muscle. To date we have limited knowledge about the minute by minute effects of exercise on blood glucose levels, in part due to the difficulty in measuring glucose and physical activity levels continuously, in a free-living environment. By using a light and user-friendly armband we can record physical activity energy expenditure on a minute-by-minute basis. Simultaneously, by using a continuous glucose monitoring system we can record glucose concentrations. In this paper, Gaussian Processes are used to model the glucose excursions in response to physical activity data, to study its effect on glycaemic control.

  2. Efficacy of sitagliptin on blood glucose fluctuation in Japanese type 2 diabetic patients with basal-supported oral therapy.

    PubMed

    Takahara, Mitsuyoshi; Shiraiwa, Toshihiko; Kaneto, Hideaki; Katakami, Naoto; Matsuoka, Taka-Aki; Shimomura, Iichiro

    2012-01-01

    We retrospectively investigated the effect of adding dipeptidyl peptidase-4 (DPP-4) inhibitor and tapering sulfonylurea on blood glucose fluctuation in Asian patients with type 2 diabetes mellitus under basal-supported oral therapy (BOT). We recruited twenty-two consecutive Japanese patients with type 2 diabetes mellitus who had blood glucose fluctuation under the combination therapy of insulin glargine and glimepiride and had sitagliptin initiated with glimepiride tapared. Their hemoglobin A1c levels and mean blood glucose profiles of seven points in self-monitoring blood glucose (SMBG) were 7.4 ± 0.6% and 8.6 ± 2.0 mmol/L, respectively. Sitagliptin was initiated with the dose of 50 mg per day and titrated up to 100 mg per day when necessary. Glimepiride was withdrawn if possible. Blood glucose fluctuation was evaluated with SMBG by calculating M-value, its range (the difference of maximum and minimum blood glucose levels), and its coefficient of variation (CV). Two months after sitagliptin add-on, M-value was decreased from 19 ± 13 to 13 ± 8 (p = 0.04). Blood glucose range and CV were also improved from 9.6 ± 2.9 mmol/L to 7.9 ± 2.6 mmol/L (p = 0.01), and from 33 ± 8% to 29 ± 8% (p < 0.01), respectively. Hemoglobin A1c levels and mean blood glucose profiles were unchanged (p = 0.93 and 0.47). In conclusion, blood glucose fluctuation was significantly improved two months after adding sitagliptin and tapering glimepiride in type 2 diabetic Japanese patients who were treated by BOT with insulin glargine and glimepiride.

  3. A Simple Laboratory Experiment to Determine the Kinetics of Mutarotation of D-Glucose Using a Blood Glucose Meter

    ERIC Educational Resources Information Center

    Perles, Carlos E.; Volpe, Pedro L. O.

    2008-01-01

    A simple commercial blood glucose meter is used to follow the kinetics of mutarotation of D-glucose in aqueous solution. The results may be compared with those obtained using an automatic polarimeter, if this is available This experiment is proposed for use by students in a general chemistry, biology, organic chemistry, and physical chemistry…

  4. Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques.

    PubMed

    Monte-Moreno, Enric

    2011-10-01

    This work presents a system for a simultaneous non-invasive estimate of the blood glucose level (BGL) and the systolic (SBP) and diastolic (DBP) blood pressure, using a photoplethysmograph (PPG) and machine learning techniques. The method is independent of the person whose values are being measured and does not need calibration over time or subjects. The architecture of the system consists of a photoplethysmograph sensor, an activity detection module, a signal processing module that extracts features from the PPG waveform, and a machine learning algorithm that estimates the SBP, DBP and BGL values. The idea that underlies the system is that there is functional relationship between the shape of the PPG waveform and the blood pressure and glucose levels. As described in this paper we tested this method on 410 individuals without performing any personalized calibration. The results were computed after cross validation. The machine learning techniques tested were: ridge linear regression, a multilayer perceptron neural network, support vector machines and random forests. The best results were obtained with the random forest technique. In the case of blood pressure, the resulting coefficients of determination for reference vs. prediction were R(SBP)(2)=0.91, R(DBP)(2)=0.89, and R(BGL)(2)=0.90. For the glucose estimation, distribution of the points on a Clarke error grid placed 87.7% of points in zone A, 10.3% in zone B, and 1.9% in zone D. Blood pressure values complied with the grade B protocol of the British Hypertension society. An effective system for estimate of blood glucose and blood pressure from a photoplethysmograph is presented. The main advantage of the system is that for clinical use it complies with the grade B protocol of the British Hypertension society for the blood pressure and only in 1.9% of the cases did not detect hypoglycemia or hyperglycemia. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. The Correlation of Blood Glucose Concentration and the Movement of Laser Secondary Speckle Pattern of the Artery

    NASA Astrophysics Data System (ADS)

    Saputra, M. A.; Prajitno, P.

    2018-04-01

    Blood glucose is the molecule needed for human life, it usually measured invasively (by taking blood). but that measurement is still very vulnerable. The alternative method namely the non-invasive method is very interesting. In addition, the article [1] explains the relationship between the movement of the arterial pulse with glucose concentration, therefore the research study to investigate the correlation between the blood glucose and the movement of laser speckle pattern resulted from the arterial movement will be promising as the non-invasive method for measuring the blood glucose concentration. In this study, the laser speckle pattern imaging method, where the microscopically movement of the object is illuminated by a laser beam and recorded by the high-speed camera in a certain interval time, are used to identify the movement patterns of the artery. From the image processing, the graphs such as electrocardiograph (ECG) can be extracted. The average of the maximum peaks of the graph can be correlated with the blood glucose concentration in the blood, as the same as shown in the article [2]. From the data that has been obtained in this research, the movement of the speckle tends to increase in accordance with the rise of blood glucose concentration.

  6. Blood Glucose Levels in Diabetic Patients Following Corticosteroid Injections into the Subacromial Space of the Shoulder.

    PubMed

    Aleem, Alexander W; Syed, Usman Ali M; Nicholson, Thema; Getz, Charles L; Namdari, Surena; Beredjiklian, Pedro K; Abboud, Joseph A

    2017-09-01

    Corticosteroid injections are used to treat a variety of orthopedic conditions with the goal of decreasing pain and inflammation. Administration of systemic or local corticosteroids risks temporarily increasing blood glucose levels, especially diabetic patients. The purpose of this study is to quantify the effects of corticosteroid injections on blood glucose levels in diabetic patients with shoulder pathology. Diabetic patients who regularly monitored their blood glucose levels and were indicated for a subacromial corticosteroid injection were included in this prospective investigation. The typical normal morning fasting glucose and most recent hemoglobin A1c level was recorded for each patient. After injection, patients were contacted daily to confirm their fasting morning glucose level for 10 days post-injection. Seventeen consecutive patients were enrolled. Patients with hemoglobin A1c of <7% had an average rise in blood glucose of 38 mg/dL compared to 98 mg/dL in the poorly controlled group after injection ( P <0.001). Well-controlled patients' glucose levels returned to near baseline levels around post-injection day 8, while poorly controlled patients levels remained elevated. Similarly, insulin-dependent diabetic patients had an average increase in fasting glucose level of 99 mg/dL versus 50 mg/dL in non-insulin-dependent diabetic patients ( P <0.001). After corticosteroid injection, patients with well-controlled diabetes experience smaller elevations and faster return to baseline glucose levels than patients with poor control. Insulin dependent diabetics experienced similar findings as patients with poor control. Future studies are needed to evaluate dosing to optimize the risks of blood glucose elevation while maintaining therapeutic benefit.

  7. Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment.

    PubMed

    2018-01-01

    Type 1 diabetes is a condition in which the pancreas produces little or no insulin. People with type 1 diabetes must manage their blood glucose levels by monitoring the amount of glucose in their blood and administering appropriate amounts of insulin via injection or an insulin pump. Continuous glucose monitoring may be beneficial compared to self-monitoring of blood glucose using a blood glucose meter. It provides insight into a person's blood glucose levels on a continuous basis, and can identify whether blood glucose levels are trending up or down. We conducted a health technology assessment, which included an evaluation of clinical benefit, value for money, and patient preferences related to continuous glucose monitoring. We compared continuous glucose monitoring with self-monitoring of blood glucose using a finger-prick and a blood glucose meter. We performed a systematic literature search for studies published since January 1, 2010. We created a Markov model projecting the lifetime horizon of adults with type 1 diabetes, and performed a budget impact analysis from the perspective of the health care payer. We also conducted interviews and focus group discussions with people who self-manage their type 1 diabetes or support the management of a child with type 1 diabetes. Twenty studies were included in the clinical evidence review. Compared with self-monitoring of blood glucose, continuous glucose monitoring improved the percentage of time patients spent in the target glycemic range by 9.6% (95% confidence interval 8.0-11.2) to 10.0% (95% confidence interval 6.75-13.25) and decreased the number of severe hypoglycemic events.Continuous glucose monitoring was associated with higher costs and small increases in health benefits (quality-adjusted life-years). Incremental cost-effectiveness ratios (ICERs) ranged from $592,206 to $1,108,812 per quality-adjusted life-year gained in analyses comparing four continuous glucose monitoring interventions to usual care

  8. Body mass index, triglycerides, glucose, and blood pressure as predictors of type 2 diabetes in a middle-aged Norwegian cohort of men and women.

    PubMed

    Hjellvik, Vidar; Sakshaug, Solveig; Strøm, Hanne

    2012-01-01

    Obesity, hypertension, and hypertriglyceridemia are important risk factors for type 2 diabetes (T2D). We wanted to assess the risk associated with these three factors alone and in combination, and the relative importance of these and several other risk factors (eg, nonfasting glucose) as predictors of T2D. Risk factors in a Norwegian population (n = 109,796) aged 40-45 years were measured in health studies in 1995-1999. Blood glucose-lowering drugs dispensed in 2004-2009 were used to estimate the incidence of T2D. Groups based on combinations of body mass index (BMI), diastolic blood pressure, and triglycerides were defined by using the 50% and 90% quantiles for each variable for men and women. The relative importance of BMI, triglycerides, total cholesterol, high-density lipoprotein cholesterol, glucose, blood pressure, and year of birth for predicting T2D was assessed using deviance from univariate and multivariate logistic regression models. Height, weight, and blood pressure were measured. All biomarkers were measured in nonfasting blood samples. In the various groups of BMI, triglycerides, and diastolic blood pressure, the incidence of T2D ranged from 0.5% to 19.7% in men and from 0.15% to 21.8% in women. BMI was the strongest predictor of incident T2D, followed by triglyceride levels in women and glucose levels in men. The inclusion of risk factors other than BMI, glucose, triglycerides, and blood pressure in multivariate models only marginally improved the prediction. BMI was the strongest predictor of type 2 diabetes. At defined levels of BMI, the incidence of T2D varied substantially with triglyceride levels and blood pressure. Thus, controlling triglycerides and blood pressure in middle-aged individuals should be targeted to prevent later onset of T2D.

  9. [Relationship between blood glucose levels and salivary pH and buffering capacity in type II diabetes patients].

    PubMed

    Elkafri, I H; Mashlah, A; Shaqifa, A

    2014-03-13

    This study was evaluated the relationship between blood glucose levels and salivary pH and buffering capacity in type II diabetic patients. The sample comprised 210 participants (age ranged 40-60 years). Based on fasting blood glucose levels the participants were divided into 3 groups: controls with normal blood glucose levels; diabetic patients with levels ≤ 200 mg/dL; and diabetic patients with levels > 200 mg/dL. Salivary pH and buffering capacity were determined in a sample of resting (non-stimulated) saliva taken from each participant. Salivary pH levels in diabetic patients with blood glucose levels > 200 mg/dL were lower than in the controls and diabetic patients with levels ≤ 200 mg/dL. Salivary pH levels were comparable in controls and diabetic patients with blood glucose levels ≤ 200 mg/dL. Salivary buffering capacity in the 3 groups was comparable.

  10. Measurement of glucose area under the curve using minimally invasive interstitial fluid extraction technology: evaluation of glucose monitoring concepts without blood sampling.

    PubMed

    Sato, Toshiyuki; Okada, Seiki; Hagino, Kei; Asakura, Yoshihiro; Kikkawa, Yasuo; Kojima, Junko; Watanabe, Toshihiro; Maekawa, Yasunori; Isobe, Kazuki; Koike, Reona; Nakajima, Hiromu; Asano, Kaoru

    2011-12-01

    Monitoring postprandial hyperglycemia is crucial in treating diabetes, although its dynamics make accurate monitoring difficult. We developed a new technology for monitoring postprandial hyperglycemia using interstitial fluid (ISF) extraction technology without blood sampling. The glucose area under the curve (AUC) using this system was measured as accumulated ISF glucose (IG) with simultaneous calibration with sodium ions. The objective of this study was to evaluate this technological concept in healthy individuals. Minimally invasive ISF extraction technology (MIET) comprises two steps: pretreatment with microneedles and ISF accumulation over a specific time by contact with a solvent. The correlation between glucose and sodium ion levels using MIET was evaluated in 12 subjects with stable blood glucose (BG) levels during fasting. BG and IG time courses were evaluated in three subjects to confirm their relationship while BG was fluctuating. Furthermore, the accuracy of glucose AUC measurements by MIET was evaluated several hours after a meal in 30 subjects. A high correlation was observed between glucose and sodium ion levels when BG levels were stable (R=0.87), indicating that sodium ion is a good internal standard for calibration. The variation in IG and BG with MIET was similar, indicating that IG is an adequate substitute for BG. Finally, we showed a strong correlation (R=0.92) between IG-AUC and BG-AUC after a meal. These findings validate the adequacy of glucose AUC measurements using MIET. Monitoring glucose using MIET without blood sampling may be beneficial to patients with diabetes.

  11. Effect of decrease in both postprandial blood glucose (PBG) and fasting blood glucose (FBG) levels in normal beagle dogs with nateglinide enteric coated granules and immediate release tablets.

    PubMed

    Makino, Chisato; Ninomiya, Nobutaka; Sakai, Hidetoshi; Orita, Haruo; Okano, Akira; Yabuki, Akira

    2006-04-01

    Nateglinide is a new quick action/short duration (QRSD) type of oral blood glucose regulator, and nateglinide immediate release tablets are used for patients with mild diabetes under the trade name of Fastic((R)) tablets. In this study, we attempted to determine if it was possible to control both post-prandial blood glucose level (PBG) and fasting blood glucose level (FBG) for moderate or severe diabetes through controlled release of nateglinide. Enteric coated granules were selected for the administration form for controlled release of nateglinide, and three types of enteric coated granules were prepared having dissolution pH values of 5.5, 6.5 and 7.2. The three types of enteric coated granules were each administered separately or the enteric coated granules having an dissolution pH of 6.5 were administered simultaneous to administration of nateglinide immediate release tablets to normal beagle dogs just before feeding followed by measurement of plasma nateglinide concentration, plasma insulin concentration and blood glucose level. In the case of administering enteric coated granules alone (nateglinide: 9 mg/kg), the absorption of nateglinide was confirmed to tend to be delayed as the dissolution pH increased. In the case of an dissolution pH of 5.5, decreases in both PBG and FBG were observed. In the case of dissolution pH values of 6.5 and 7.2, only decrease in FBG was observed. In case of nateglinide immediate release tablets (nateglinide: 9 mg/kg), only decrease in PBG was observed. Decreases in both PBG and FBG were observed in the case of simultaneous administration of dissolution pH 6.5 enteric coated granules and nateglinide immediate release tablets just before feeding (nateglinide: 90 mg/head+60 mg/head). A correlation was observed between plasma nateglinide concentrations and blood glucose levels. On the other hand, there were no correlations observed between changes in plasma insulin concentrations and blood glucose levels. In case of nateglinide

  12. Involvement of α(2)-adrenergic receptor in the regulation of the blood glucose level induced by immobilization stress.

    PubMed

    Kang, Yu-Jung; Sim, Yun-Beom; Park, Soo-Hyun; Sharma, Naveen; Suh, Hong-Won

    2015-01-01

    The blood glucose profiles were characterized after mice were forced into immobilization stress with various exposure durations. The blood glucose level was significantly enhanced by immobilization stress for 30 min or 1 h, respectively. On the other hand, the blood glucose level was not affected in the groups which were forced into immobilization stress for 2 or 4 h. We further examined the effect of yohimbine (an α2-adrenergic receptor antagonist) administered systemically or centrally in the immobilization stress model. Mice were pretreated intraperitoneally (i.p.; from 0.5 to 5 mg/kg), intracerebroventricularly (i.c.v.; from 1 to 10 µg/5 µl), or intrathecally (i.t.; from 1 to 10 µg/5 µl) with yohimbine for 10 min and then, forced into immobilization stress for 30 min. The blood glucose level was measured right after immobilization stress. We found that up-regulation of the blood glucose level induced by immobilization stress was abolished by i.p. pretreatment with yohimbine. And the immobilization stress-induced blood glucose level was not inhibited by i.c.v. or i.t. pretreatment with yohimbine at a lower dose (1 µg/5 µl). However, immobilization stress-induced blood glucose level was significantly inhibited by i.c.v. or i.t. pretreatment with yohimbine at higher doses (5 and 10 µg/5 µl). In addition, the i.p. (5 mg/kg), i.c.v. (10 µg/5 µl), or i.t. (10 µg/5 µl) pretreatment with yohimbine reduced hypothalamic glucose transporter 4 expression. The involvement of α2-adrenergic receptor in regulation of immobilization stress- induced blood glucose level was further confirmed by the i.p, i.c.v, or i.t pretreatment with idazoxan, another specific α2-adrenergic receptor antagonist. Finally, i.p., i.c.v., or i.t. pretreatment with yohimbine attenuated the blood glucose level in D-glucose-fed model. We suggest that α2-adrenergic receptors located at the peripheral, the brain and the spinal cord play important roles in the up

  13. High blood sugar levels significantly impact the prognosis of colorectal cancer patients through down-regulation of microRNA-16 by targeting Myb and VEGFR2

    PubMed Central

    Huang, Ching-Wen; Lu, Chien-Yu; Miao, Zhi-Feng; Chang, Se-Fen; Juo, Suh-Hang Hank; Wang, Jaw-Yuan

    2016-01-01

    The high prevalence of type 2 diabetes mellitus in colorectal cancer patients is a crucial public health issue worldwide. The deregulation of microRNAs has been shown to be associated with the progression of CRC; however, the effects of high blood sugar levels on miR deregulation and, in turn, CRC remain unexplored. In this study, 520 CRC patients were classified into two groups according to their blood sugar levels (≧110 or <110 mg/dL). Clinicopathologic features, clinical outcomes, and serum miR-16 levels of the two groups were then analyzed, while cell cycles, cell proliferation, migration, and cellular miR-16 expression were investigated via D-(+)-glucose administration. Additionally, the target genes of miR-16 were identified. Through multivariate analysis, both the disease-free survival and overall survival of the CRC patients were found to be associated with the UICC stage, perineural invasion, and blood glucose levels (P < 0.05). Serum miR-16 levels were significantly lower in the high blood glucose patients than in the normal blood glucose patients (P = 0.0329). With D-(+)-glucose administration, the proliferation and migration of CRC cells in vitro increased remarkably (P < 0.05), while their accumulation in the G1 phase decreased significantly. Cellular miR-16 expression was suppressed by D-(+)-glucose administration. The expression levels of two target genes, Myb and VEGFR2, were affected significantly by miR-16, while glucose administration inhibited miR-16 expression and enhanced tumor cell proliferation and migration. Hyperglycemia can impact the clinical outcomes of CRC patients, likely by inhibiting miR-16 expression and the expression of its downstream genes Myb and VEGFR2. PMID:26934556

  14. Effect of vigorous physical activity on blood lipid and glucose.

    PubMed

    Kwon, Hyoung-Jeong; Lee, Han-Joon

    2017-12-01

    The aim of the study is to investigate how the participation of vigorous physical activities in the health examination contributes to blood lipid and blood glucose. A total of 56,810 workers from the Ulsan University Hospital in Ulsan, Subjects were tested for health checkups from February to November in 2016. The subject is those who does not have medical history, current ailments, and medication histories, and selected those who conducted the study of subjects tested to research. And this study did not consider their drinking and smoking. The final selected population was 11,557 and categorized as a vigorous physical activity of the health survey items. In this study, the group participated by the vigorous physical activity activities, group 1 (n= 70) had more than 6 days of vigorous physical activity, group 2 (n= 2,960) is 3 to 5 days of vigorous physical activity, the group 3 (n= 7,389) is 1 to 2 days of vigorous physical activity. The group 4 (n= 1,138) were classified as those who did not perform vigorous physical activity. To achieve the purpose of the study, the questionnaire examined blood lipid and blood glucose, using questions related to physical activity related to health examination in the Ulsan University Hospital. We obtained the mean and standard deviation for each group and conducted the one-way analysis of variance as an independent variable. Post hoc is least significant difference test and significant level is 0.05. Vigorous physical activity more than 3 days of participation had a positive affect high-density lipoprotein cholesterol and triglyceride. But participation in vigorous physical activity did not affect blood glucose.

  15. Flight is the key to postprandial blood glucose balance in the fruit bats Eonycteris spelaea and Cynopterus sphinx.

    PubMed

    Peng, Xingwen; He, Xiangyang; Liu, Qi; Sun, Yunxiao; Liu, Hui; Zhang, Qin; Liang, Jie; Peng, Zhen; Liu, Zhixiao; Zhang, Libiao

    2017-11-01

    Excessive sugar consumption could lead to high blood glucose levels that are harmful to mammalian health and life. Despite consuming large amounts of sugar-rich food, fruit bats have a longer lifespan, raising the question of how these bats overcome potential hyperglycemia. We investigated the change of blood glucose level in nectar-feeding bats ( Eonycteris spelaea ) and fruit-eating bats ( Cynopterus sphinx ) via adjusting their sugar intake and time of flight. We found that the maximum blood glucose level of C. sphinx was higher than 24 mmol/L that is considered to be pathological in other mammals. After C. sphinx bats spent approximately 75% of their time to fly, their blood glucose levels dropped markedly, and the blood glucose of E. spelaea fell to the fast levels after they spent 70% time of fly. Thus, the level of blood glucose elevated with the quantity of sugar intake but declined with the time of flight. Our results indicate that high-intensive flight is a key regulator for blood glucose homeostasis during foraging. High-intensive flight may confer benefits to the fruit bats in foraging success and behavioral interactions and increases the efficiency of pollen and seed disposal mediated by bats.

  16. Verification of Non-Invasive Blood Glucose Measurement Method Based on Pulse Wave Signal Detected by FBG Sensor System.

    PubMed

    Kurasawa, Shintaro; Koyama, Shouhei; Ishizawa, Hiroaki; Fujimoto, Keisaku; Chino, Shun

    2017-11-23

    This paper describes and verifies a non-invasive blood glucose measurement method using a fiber Bragg grating (FBG) sensor system. The FBG sensor is installed on the radial artery, and the strain (pulse wave) that is propagated from the heartbeat is measured. The measured pulse wave signal was used as a collection of feature vectors for multivariate analysis aiming to determine the blood glucose level. The time axis of the pulse wave signal was normalized by two signal processing methods: the shortest-time-cut process and 1-s-normalization process. The measurement accuracy of the calculated blood glucose level was compared with the accuracy of these signal processing methods. It was impossible to calculate a blood glucose level exceeding 200 mg/dL in the calibration curve that was constructed by the shortest-time-cut process. In the 1-s-normalization process, the measurement accuracy of the blood glucose level was improved, and a blood glucose level exceeding 200 mg/dL could be calculated. By verifying the loading vector of each calibration curve to calculate the blood glucose level with a high measurement accuracy, we found the gradient of the peak of the pulse wave at the acceleration plethysmogram greatly affected.

  17. A randomized, double-blind clinical study to determine the effect of ANKASCIN 568 plus on blood glucose regulation.

    PubMed

    Wang, Yin-Ruei; Liu, Sheng-Fu; Shen, You-Cheng; Chen, Chien-Li; Huang, Chine-Ning; Pan, Tzu-Ming; Wang, Chin-Kun

    2017-04-01

    Diabetes is the fourth major cause of death in Taiwan. High blood glucose can lead to macrovascular diseases, small vessel diseases (retinopathy, kidney disease), and neuropathy. This study aimed to investigate whether Monascus-fermented products (ANKASCIN 568 plus) can regulate blood glucose and blood lipids. This study enrolled 39 patients with a fasting blood glucose level between 100 mg/dL and 180 mg/dL, and a glycated hemoglobin (HbA1c) level of <9%. All patients were randomly divided into placebo (n=20) and experimental (n=19) groups. Each patient received two placebo capsules (maltodextrin) or ANKASCIN 568 plus capsules daily for 12 weeks. The patients were screened during follow-up 4 weeks after the administration of sample or placebo had been discontinued. Blood and urine samples were collected at the initial, 6 th week, 12 th week, and 16 th week. The anthropometric indicators of blood pressure, fasting plasma glucose level, postprandial plasma glucose level, insulin level, insulin resistance, blood lipid changes, and liver, kidney, and thyroid function indices were measured. After 6 weeks, changes in fasting blood glucose, low-density lipoprotein cholesterol (LDL-C), and total cholesterol (TC) levels showed that ANKASCIN 568 plus had a more favorable effect than the placebo. Compared to baseline, a statistically significant decrease of 8.5%, 10.3%, and 7.5% was observed in fasting blood glucose, LDL-C and, TC levels, respectively (p<0.05 for all pairs). Therefore, ANKASCIN 568 plus produced by Monascus purpureus NTU 568 fermentation may be a potentially useful agent for the regulation of blood glucose and blood lipids and for treatment of coronary artery diseases. Copyright © 2016. Published by Elsevier B.V.

  18. Effects of Panax ginseng, consumed with and without glucose, on blood glucose levels and cognitive performance during sustained 'mentally demanding' tasks.

    PubMed

    Reay, Jonathon L; Kennedy, David O; Scholey, Andrew B

    2006-11-01

    Single doses of the traditional herbal treatment Panax ginseng have recently been shown to lower blood glucose levels and elicit cognitive improvements in healthy, overnight-fasted volunteers. The specific mechanisms responsible for these effects are not known. However, cognitive improvements may be related to the glycaemic properties of Panax ginseng. Using a double-blind, placebo-controlled, balanced-crossover design, 27 healthy young adults completed a 10 minute "cognitive demand" test battery at baseline. They then consumed capsules containing either ginseng (extract G115) or a placebo and 30 minutes later a drink containing glucose or placebo. A further 30 minutes later (i.e. 60 minutes post-baseline/capsules) they completed the "cognitive demand" battery six times in immediate succession. Depending on the condition to which the participant was allocated on that particular day, the combination of capsules/drink treatments corresponded to a dose of: 0mg G115/0 mg glucose (placebo); 200mg G115/0 mg glucose (ginseng); 0 mg G115/25 g glucose (glucose) or 200 mg G115/25 g glucose (ginseng/glucose combination). The 10 minute "cognitive demand" battery comprised a Serial Threes subtraction task (2 min); a Serial Sevens subtraction task (2 min); a Rapid Visual Information Processing task (5 min); and a "mental fatigue" visual analogue scale. Blood glucose levels were measured prior to the day's treatment, and before and after the post-dose completions of the battery. The results showed that both Panax ginseng and glucose enhanced performance of a mental arithmetic task and ameliorated the increase in subjective feelings of mental fatigue experienced by participants during the later stages of the sustained, cognitively demanding task performance. Accuracy of performing the Rapid Visual Information Processing task (RVIP) was also improved following the glucose load. There was no evidence of a synergistic relationship between Panax ginseng and exogenous glucose ingestion

  19. Performance analysis of the OneTouch UltraVue blood glucose monitoring system.

    PubMed

    Chang, Anna; Orth, Alice; Le, Bryan; Menchavez, Perla; Miller, Lupe

    2009-09-01

    OneTouch UltraVue is a new meter for self-monitoring of blood glucose that includes a color display, used-strip ejector, and no-button interface. The system uses an electrochemical biosensor technology based on glucose oxidase chemistry to detect glucose concentrations from 20 to 600 mg/dl (1.1 to 33.3 mmol/liter). Accuracy and reproducibility were evaluated over a wide range of glucose concentrations according to standard criteria. Clinical accuracy was assessed by health care providers (HCPs) in two studies and by diabetes patients in the second study. Reference glucose levels were determined by a YSI 2300 analyzer. Same-day reproducibility and day-to-day reproducibility were also evaluated. In the accuracy studies, 99.7% and 98.7% of tests by HCPs and 97.0% of tests by patients were within +/-15 mg/dl (+/-0.8 mmol/liter) of the YSI reference for blood glucose <75 mg/dl (<4.2 mmol/liter), and within +/-20% for blood glucose > or =75 mg/dl (> or =4.2 mmol/liter), respectively. Consensus error grid analysis showed that 99.7% and 95.3% of tests by HCPs and 97.0% of tests by patients fell within zone A (i.e., has no effect on clinical action); all other results were in zone B (i.e., altered clinical action, little or no effect on clinical outcome). In the reproducibility studies, the standard deviation was <1.5 mg/dl (<0.1 mmol/liter) for glucose concentrations <100 mg/dl (<5.6 mmol/liter), and the coefficient of variation was <2% for concentrations > or = 100 mg/dl (> or =5.6 mmol/liter). OneTouch UltraVue meets standard acceptability criteria for accuracy and reproducibility across a wide range of glucose concentrations. Its simple interface and lack of contact with used strips make it a viable option for older patients and their caregivers. 2009 Diabetes Technology Society.

  20. Effects of Cinnamomum zeylanicum (Ceylon cinnamon) on blood glucose and lipids in a diabetic and healthy rat model

    PubMed Central

    Ranasinghe, Priyanga; Perera, Sanja; Gunatilake, Mangala; Abeywardene, Eranga; Gunapala, Nuwan; Premakumara, Sirimal; Perera, Kamal; Lokuhetty, Dilani; Katulanda, Prasad

    2012-01-01

    Objectives: To evaluate short- and long-term effects of Cinnamomum zeylanicum on food consumption, body weight, glycemic control, and lipids in healthy and diabetes-induced rats. Materials and Methods: The study was conducted in two phases (Phase I and Phase II), using Sprague-Dawley rats in four groups. Phase I evaluated acute effects on fasting blood glucose (FBG) (Groups 1 and 2) and on post-oral glucose (Groups 3 and 4) blood glucose. Groups 1 and 3 received distilled-water and Groups 2 and 4 received cinnamon-extracts. Phase II evaluated effects on food consumption, body weight, blood glucose, and lipids over 1 month. Group A (n = 8, distilled-water) and Group B (n = 8, cinnamon-extracts) were healthy rats, while Group C (n = 5, distilled-water) and Group D (n = 5, cinnamon-extracts) were diabetes-induced rats. Serum lipid profile and HbA1c were measured on D-0 and D-30. FBG, 2-h post-prandial blood glucose, body weight, and food consumption were measured on every fifth day. Results: Phase I: There was no significant difference in serial blood glucose values in cinnamon-treated group from time 0 (P > 0.05). Following oral glucose, the cinnamon group demonstrated a faster decline in blood glucose compared to controls (P < 0.05). Phase II: Between D0 and D30, the difference in food consumption was shown only in diabetes-induced rats (P < 0.001). Similarly, the significant difference following cinnamon-extracts in FBG and 2-h post-prandial blood glucose from D0 to D30 was shown only in diabetes-induced rats. In cinnamon-extracts administered groups, total and LDL cholesterol levels were lower on D30 in both healthy and diabetes-induced animals (P < 0.001). Conclusions: C. zeylanicum lowered blood glucose, reduced food intake, and improved lipid parameters in diabetes-induced rats. PMID:22518078

  1. Repaglinide improves blood glucose control in sulphonylurea-naive type 2 diabetes.

    PubMed

    Van Gaal, L F; Van Acker, K L; De Leeuw, I H

    2001-09-01

    The prandial glucose regulator repaglinide has a rapid onset of action, a short half-life and is metabolised mainly by the liver. Here we report the findings of a 10-week, double-blind, parallel, placebo controlled, randomised trial with repaglinide in 25 diet-treated, sulphonylurea-naïve patients with Type 2 diabetes. Repaglinide was titrated, based on capillary blood glucose, from 0.5 mg to a maximum of 4 mg, preprandially with breakfast and dinner. After 10 weeks, repaglinide was associated with a decrease in HbA(1c) of 2.3%Hb relative to the placebo group (P=0.018). This reflected a 30% decrease within the repaglinide group from a mean HbA(1c) of 7.0 to 4.9%Hb (P<0.002). Repaglinide was also associated with a decrease in fructosamine, by 0.88 mmol/l, relative to placebo (P<0.001), with a 20% decrease (from 3.80 to 3.04 mmol/l) within the repaglinide group (P<0.001). Fasting and postprandial blood glucose concentrations decreased in association with repaglinide by 3.6 and 6.4 mmol/l, respectively, relative to placebo (P<0.001 in each case). Within the repaglinide group fasting and postprandial blood glucose decreased by 3.9 and 6.2 mmol/l, respectively (P<0.001 in each case). The number of patients reporting hypoglycaemia in the repaglinide group was similar to placebo (15 vs. 20, respectively; NS). Test meal assessments confirmed that repaglinide effectively controls glucose levels by stimulating mealtime insulin secretion. Fasting serum insulin concentration was not raised compared to baseline or placebo during repaglinide therapy, albeit that fasting glucose levels were decreased by repaglinide. Twice-daily meal-related insulin secretagogue therapy with repaglinide, a new short and rapid-acting prandial glucose regulator, is capable of improving all measures of glycaemic control without increased hypoglycaemia or fasting hyperinsulinaemia.

  2. Continuous Glucose Monitoring (CGM) or Blood Glucose Monitoring (BGM): Interactions and Implications.

    PubMed

    Heinemann, Lutz

    2018-04-01

    At the 2017 10th annual International Conference on Advanced Technologies and Treatments for Diabetes (ATTD) in Paris, France, four speakers presented their perspectives on the roles of continuous glucose monitoring (CGM) and of blood glucose monitoring (BGM) in patient management within one symposium. These presentations included discussions of the differences in the accuracy of CGM and BGM, a clinical perspective on the physiological reasons behind differences in CGM and BGM values, and an overview of the impact of variations in device accuracy on patients with diabetes. Subsequently a short summary of these presentations is given, highlighting the value of good accuracy of BGM or CGM systems and the ongoing need for standardization. The important role of both BGM and CGM in patient management was a theme across all presentations.

  3. [Influence and mechanism of a tight control of blood glucose by intensive insulin therapy on human sepsis].

    PubMed

    Yu, Wen-kui; Li, Wei-qin; Wang, Xiao-dong; Yan, Xiao-wen; Qi, Xiao-ping; Li, Ning; Li, Jie-shou

    2005-01-01

    To investigate the effect of a tight control of blood glucose by intensive insulin therapy on human sepsis, and to explore the potential mechanism of the intensive insulin therapy. Eligible patients were randomized by a blinded pharmacist to receive tight control of blood glucose by intensive insulin therapy (maintenance of blood glucose at a level between 4.4 and 6.1 mmol/L) or to receive conventional treatment (maintenance of glucose at a level between 10.0 and 11.1 mmol/L). The expression of HLA-DR on peripheral monocytes was measured in 54 patients by flow cytometry on 24 h, 3 d, 5 d, 7 d, 10 d and 14 d of intensive care in parallel with serum c-reactive protein (CRP), severity of the disease (APACHE II score, SOFA score) and clinical data collection. Patients receiving intensive insulin therapy were less likely to require prolonged mechanical ventilation. Tight control of blood glucose significantly reduced the number of days during which leukopenia or leukocytosis and the days with hypo- or hyperthermia (P < 0.05). Hypoglycemia occurred in 3 patients (10.7%) in the tight control of blood glucose group. There were no instance of hemodynamic deterioration or convulsions. Compared with the conventional treatment, tight control of blood glucose also increased the HLA-DR expression of peripheral monocytes, and there were significantly difference on 3 d, 5 d and 7 d (P < 0.05). Whereas it suppressed the elevated serum CRP concentrations, there was significantly difference on 7 d (P < 0.05). Tight control of blood glucose by intensive insulin therapy expedited healing of human sepsis, and increased the HLA-DR expression of peripheral and suppressed the elevated serum CRP. So, it is necessary to use insulin to strict control the glucose levels in human sepsis.

  4. Does self-monitoring of blood glucose levels improve dietary compliance for obese patients with type II diabetes?

    PubMed

    Wing, R R; Epstein, L H; Nowalk, M P; Scott, N; Koeske, R; Hagg, S

    1986-11-01

    Self-monitoring of blood glucose levels is currently being recommended for obese patients with type II diabetes to improve weight loss and glycemic control. To determine whether self-monitoring of blood glucose levels improves dietary compliance in these patients, 50 obese patients with type II diabetes were randomly assigned either to a standard behavioral weight control program or to a weight control program that included self-monitoring of blood glucose levels and focused on the weight-blood glucose relationship. Both groups lost significant amounts of weight and maintained their losses for at least one year; reductions in medication could be made for 70 percent of patients. These data suggest that the behavioral weight control used in this study may be of benefit to patients with type II diabetes. However, there was no evidence that the addition of self-monitoring of blood glucose levels to the treatment program improved the outcome in terms of weight loss, reduction in medication, dietary compliance, or mood state.

  5. Sodium nitroprusside increases human skeletal muscle blood flow, but does not change flow distribution or glucose uptake.

    PubMed

    Pitkanen, O P; Laine, H; Kemppainen, J; Eronen, E; Alanen, A; Raitakari, M; Kirvela, O; Ruotsalainen, U; Knuuti, J; Koivisto, V A; Nuutila, P

    1999-12-15

    1. The role of blood flow as a determinant of skeletal muscle glucose uptake is at present controversial and results of previous studies are confounded by possible direct effects of vasoactive agents on glucose uptake. Since increase in muscle blood flow can be due to increased flow velocity or recruitment of new capillaries, or both, it would be ideal to determine whether the vasoactive agent affects flow distribution or only increases the mean flow. 2. In the present study blood flow, flow distribution and glucose uptake were measured simultaneously in both legs of 10 healthy men (aged 29 +/- 1 years, body mass index 24 +/- 1 kg m-2) using positron emission tomography (PET) combined with [15O]H2O and [18F]fluoro-2-deoxy-D-glucose (FDG). The role of blood flow in muscle glucose uptake was studied by increasing blood flow in one leg with sodium nitroprusside (SNP) and measuring glucose uptake simultaneously in both legs during euglycaemic hyperinsulinaemia (insulin infusion 6 pmol kg-1 min-1). 3. SNP infusion increased skeletal muscle blood flow by 86 % (P < 0.01), but skeletal muscle flow distribution and insulin-stimulated glucose uptake (61.4 +/- 7. 5 vs. 67.0 +/- 7.5 micromol kg-1 min-1, control vs. SNP infused leg, not significant), as well as flow distribution between different tissues of the femoral region, remained unchanged. The effect of SNP infusion on blood flow and distribution were unchanged during infusion of physiological levels of insulin (duration, 150 min). 4. Despite a significant increase in mean blood flow induced by an intra-arterial infusion of SNP, glucose uptake and flow distribution remained unchanged in resting muscles of healthy subjects. These findings suggest that SNP, an endothelium-independent vasodilator, increases non-nutritive, but not nutritive flow or capillary recruitment.

  6. Development of Noninvasive Blood Glucose Sensor Using the Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujita, Keiichi; Tamura, Kazuto; Kaneko, Wataru; Ishizawa, Hiroaki; Toba, Eiji

    Recently, diabetics have been steadily increasing, because change of diet, lack of exercise, increase an alcoholic intake, and increase a stress. It is a very serious problem for us. About 23.6 millions of people in Japan approach the danger of diabetes. Therefore, it is necessary to get insulin injection. And they have to measure blood glucose again and again a day. So, they are burden too heavy. This paper describes a new noninvasive measurement of blood glucose based on optical sensing. This uses Fourier transform infrared spectroscopy of attenuated total reflection. Non-invasive measurement was carried out by using 3 methods. And standard error of prediction is about ±20mg/dl by 3 method. This paper also describes practical application of this method.

  7. Estimation of gingival crevicular blood glucose level for the screening of diabetes mellitus: A simple yet reliable method.

    PubMed

    Parihar, Sarita; Tripathi, Richik; Parihar, Ajit Vikram; Samadi, Fahad M; Chandra, Akhilesh; Bhavsar, Neeta

    2016-01-01

    This study was designed to assess the reliability of blood glucose level estimation in gingival crevicular blood(GCB) for screening diabetes mellitus. 70 patients were included in study. A randomized, double-blind clinical trial was performed. Among these, 39 patients were diabetic (including 4 patients who were diagnosed during the study) and rest 31 patients were non-diabetic. GCB obtained during routine periodontal examination was analyzed by glucometer to know blood glucose level. The same patient underwent for finger stick blood (FSB) glucose level estimation with glucometer and venous blood (VB) glucose level with standardized laboratory method as per American Diabetes Association Guidelines. 1 All the three blood glucose levels were compared. Periodontal parameters were also recorded including gingival index (GI) and probing pocket depth (PPD). A strong positive correlation ( r ) was observed between glucose levels of GCB with FSB and VB with the values of 0.986 and 0.972 in diabetic group and 0.820 and 0.721 in non-diabetic group. As well, the mean values of GI and PPD were more in diabetic group than non-diabetic group with the statistically significant difference ( p  < 0.005). GCB can be reliably used to measure the blood glucose level as the values were closest to glucose levels estimated by VB. The technique is safe, easy to perform and non-invasive to the patient and can increase the frequency of diagnosing diabetes during routine periodontal therapy.

  8. [The research of near-infrared blood glucose measurement using particle swarm optimization and artificial neural network].

    PubMed

    Dai, Juan; Ji, Zhong; Du, Yubao

    2017-08-01

    Existing near-infrared non-invasive blood glucose detection modelings mostly detect multi-spectral signals with different wavelength, which is not conducive to the popularization of non-invasive glucose meter at home and does not consider the physiological glucose dynamics of individuals. In order to solve these problems, this study presented a non-invasive blood glucose detection model combining particle swarm optimization (PSO) and artificial neural network (ANN) by using the 1 550 nm near-infrared absorbance as the independent variable and the concentration of blood glucose as the dependent variable, named as PSO-2ANN. The PSO-2ANN model was based on two sub-modules of neural networks with certain structures and arguments, and was built up after optimizing the weight coefficients of the two networks by particle swarm optimization. The results of 10 volunteers were predicted by PSO-2ANN. It was indicated that the relative error of 9 volunteers was less than 20%; 98.28% of the predictions of blood glucose by PSO-2ANN were distributed in the regions A and B of Clarke error grid, which confirmed that PSO-2ANN could offer higher prediction accuracy and better robustness by comparison with ANN. Additionally, even the physiological glucose dynamics of individuals may be different due to the influence of environment, temper, mental state and so on, PSO-2ANN can correct this difference only by adjusting one argument. The PSO-2ANN model provided us a new prospect to overcome individual differences in blood glucose prediction.

  9. Performance Analysis of Fuzzy-PID Controller for Blood Glucose Regulation in Type-1 Diabetic Patients.

    PubMed

    Yadav, Jyoti; Rani, Asha; Singh, Vijander

    2016-12-01

    This paper presents Fuzzy-PID (FPID) control scheme for a blood glucose control of type 1 diabetic subjects. A new metaheuristic Cuckoo Search Algorithm (CSA) is utilized to optimize the gains of FPID controller. CSA provides fast convergence and is capable of handling global optimization of continuous nonlinear systems. The proposed controller is an amalgamation of fuzzy logic and optimization which may provide an efficient solution for complex problems like blood glucose control. The task is to maintain normal glucose levels in the shortest possible time with minimum insulin dose. The glucose control is achieved by tuning the PID (Proportional Integral Derivative) and FPID controller with the help of Genetic Algorithm and CSA for comparative analysis. The designed controllers are tested on Bergman minimal model to control the blood glucose level in the facets of parameter uncertainties, meal disturbances and sensor noise. The results reveal that the performance of CSA-FPID controller is superior as compared to other designed controllers.

  10. Effect of GABA receptor agonists or antagonists injected spinally on the blood glucose level in mice.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2013-05-01

    The possible roles of gamma-amino butyric acid (GABA) receptors located in the spinal cord for the regulation of the blood glucose level were studied in ICR mice. We found in the present study that intrathecal (i.t.) injection with baclofen (a GABAB receptor agonist; 1-10 μg/5 μl) or bicuculline (a GABAA receptor antagonist; 1-10 μg/5 μl) caused an elevation of the blood glucose level in a dose-dependent manner. The hyperglycemic effect induced by baclofen was more pronounced than that induced by bicuculline. However, muscimol (a GABAA receptor agonist; 1-5 μg/5 μl) or phaclofen (a GABAB receptor antagonist; 5-10 μg/5 μl) administered i.t. did not affect the blood glucose level. Baclofen-induced elevation of the blood glucose was dose-dependently attenuated by phaclofen. Furthermore, i.t. pretreatment with pertussis toxin (PTX; 0.05 or 0.1 μg/5 μl) for 6 days dose-dependently reduced the hyperglycemic effect induced by baclofen. Our results suggest that GABAB receptors located in the spinal cord play important roles for the elevation of the blood glucose level. Spinally located PTX-sensitive G-proteins appear to be involved in hyperglycemic effect induced by baclofen. Furthermore, inactivation of GABAA receptors located in the spinal cord appears to be responsible for tonic up-regulation of the blood glucose level.

  11. Associations between spontaneous meal initiations and blood glucose dynamics in overweight men in negative energy balance.

    PubMed

    Kovacs, Eva M R; Westerterp-Plantenga, Margriet S; Saris, Wim H M; Melanson, Kathleen J; Goossens, Ine; Geurten, Peter; Brouns, Fred

    2002-01-01

    The aim of the present study was to investigate associations between spontaneous meal initiations and blood glucose dynamics in overweight male subjects in negative energy balance. In a randomized crossover design, fifteen overweight male subjects (BMI 28.6 (SD 1.8 kg/m2) participated in three treatments, each of which consisted of 2 weeks consuming a low-energy diet followed by a test of voluntary food ingestion in the absence of time-related cues. The low-energy diet consisted of three daily meals (947 kJ) which were either semi-solid with or without 2.5 g guar gum, or solid, and a dinner of subject's own choice. During the time-blinded test, on the first, second, and third meal initiation subjects ingested a low-energy meal corresponding to that used during the preceding weeks. Changes in blood glucose were monitored on-line. Associations between spontaneous meal initiations and blood glucose dynamics were determined using the chi2 test. No difference was found between treatments in the occurrence of postabsorptive and postprandial declines in blood glucose or in associations between meal initiations and blood glucose dynamics. Postprandial dynamic blood glucose declines were associated with meal initiation (chi2 26 8, P<0.00 1), but postabsorptive and postprandial transient declines were not. In overweight subjects, the usual association between transient declines and spontaneous meal initiation was completely absent in negative energy balance.

  12. Fundamental Importance of Reference Glucose Analyzer Accuracy for Evaluating the Performance of Blood Glucose Monitoring Systems (BGMSs)

    PubMed Central

    Bailey, Timothy S.; Klaff, Leslie J.; Wallace, Jane F.; Greene, Carmine; Pardo, Scott; Harrison, Bern; Simmons, David A.

    2016-01-01

    Background: As blood glucose monitoring system (BGMS) accuracy is based on comparison of BGMS and laboratory reference glucose analyzer results, reference instrument accuracy is important to discriminate small differences between BGMS and reference glucose analyzer results. Here, we demonstrate the important role of reference glucose analyzer accuracy in BGMS accuracy evaluations. Methods: Two clinical studies assessed the performance of a new BGMS, using different reference instrument procedures. BGMS and YSI analyzer results were compared for fingertip blood that was obtained by untrained subjects’ self-testing and study staff testing, respectively. YSI analyzer accuracy was monitored using traceable serum controls. Results: In study 1 (N = 136), 94.1% of BGMS results were within International Organization for Standardization (ISO) 15197:2013 accuracy criteria; YSI analyzer serum control results showed a negative bias (−0.64% to −2.48%) at the first site and a positive bias (3.36% to 6.91%) at the other site. In study 2 (N = 329), 97.8% of BGMS results were within accuracy criteria; serum controls showed minimal bias (<0.92%) at both sites. Conclusions: These findings suggest that the ability to demonstrate that a BGMS meets accuracy guidelines is influenced by reference instrument accuracy. PMID:26902794

  13. Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment

    PubMed Central

    Vandersluis, Stacey; Kabali, Conrad; Djalalov, Sandjar; Gajic-Veljanoski, Olga; Wells, David; Holubowich, Corinne

    2018-01-01

    Background Type 1 diabetes is a condition in which the pancreas produces little or no insulin. People with type 1 diabetes must manage their blood glucose levels by monitoring the amount of glucose in their blood and administering appropriate amounts of insulin via injection or an insulin pump. Continuous glucose monitoring may be beneficial compared to self-monitoring of blood glucose using a blood glucose meter. It provides insight into a person's blood glucose levels on a continuous basis, and can identify whether blood glucose levels are trending up or down. Methods We conducted a health technology assessment, which included an evaluation of clinical benefit, value for money, and patient preferences related to continuous glucose monitoring. We compared continuous glucose monitoring with self-monitoring of blood glucose using a finger-prick and a blood glucose meter. We performed a systematic literature search for studies published since January 1, 2010. We created a Markov model projecting the lifetime horizon of adults with type 1 diabetes, and performed a budget impact analysis from the perspective of the health care payer. We also conducted interviews and focus group discussions with people who self-manage their type 1 diabetes or support the management of a child with type 1 diabetes. Results Twenty studies were included in the clinical evidence review. Compared with self-monitoring of blood glucose, continuous glucose monitoring improved the percentage of time patients spent in the target glycemic range by 9.6% (95% confidence interval 8.0–11.2) to 10.0% (95% confidence interval 6.75–13.25) and decreased the number of severe hypoglycemic events. Continuous glucose monitoring was associated with higher costs and small increases in health benefits (quality-adjusted life-years). Incremental cost-effectiveness ratios (ICERs) ranged from $592,206 to $1,108,812 per quality-adjusted life-year gained in analyses comparing four continuous glucose monitoring

  14. Non-invasive method to detect the changes of glucose concentration in whole blood using photometric technique.

    PubMed

    Rajan, Shiny Amala Priya; Towe, Bruce C

    2014-01-01

    A non-invasive method is developed to monitor rapid changes in blood glucose levels in diabetic patients. The system depends on an optical cell built with a LED that emits light of wavelength 535nm, which is a peak absorbance of hemoglobin. As the glucose concentration in blood decreases, its osmolarity also decreases and the Red Blood Cells (RBCs) swell and decrease the path length absorption coefficient. Decreasing absorption coefficient increases the transmission of light through the whole blood. The system was tested with a constructed optical cell that held whole blood in a capillary tube. As expected the light transmitted to the photodiode increases with decreasing glucose concentration. The average response time of the system was between 30-40 seconds.

  15. Internet-Based Contingency Management to Improve Adherence with Blood Glucose Testing Recommendations for Teens with Type 1 Diabetes

    ERIC Educational Resources Information Center

    Raiff, Bethany R.; Dallery, Jesse

    2010-01-01

    The current study used Internet-based contingency management (CM) to increase adherence with blood glucose testing to at least 4 times daily. Four teens diagnosed with Type 1 diabetes earned vouchers for submitting blood glucose testing videos over a Web site. Participants submitted a mean of 1.7 and 3.1 blood glucose tests per day during the 2…

  16. Dose-response study of sajabalssuk ethanol extract from Artemisia princeps Pampanini on blood glucose in subjects with impaired fasting glucose or mild type 2 diabetes.

    PubMed

    Choi, Ji-Young; Shin, Su-Kyung; Jeon, Seon-Min; Baek, Nam-In; Chung, Hae-Gon; Jeong, Tae-Sook; Lee, Kyung Tae; Lee, Mi-Kyung; Choi, Myung-Sook

    2011-01-01

    Previously we reported that an ethanol extract from Artemisia princeps Pampanini lowered blood glucose in db/db mice. Here we report a preliminary study in which the blood glucose-lowering effects of two different doses of sajabalssuk ethanol extract (SBE), containing eupatilin and jaseocidin, were examined in hyperglycemic subjects with fasting blood glucose (FBG) levels of 100-150 mg/dL. Subjects were randomized into four groups: negative control (2,000 mg of lactose /day), positive control (1,140 mg of pinitol/day), low-dose SBE (2,000 mg of SBE/day), and high-dose SBE (4,000 mg of SBE/day). After 8 weeks of supplementation, FBG and glycosylated hemoglobin levels were significantly lowered in low-and high-dose SBE groups compared to the baseline values; high-dose SBE also resulted in significantly lower plasma free fatty acid levels and systolic blood pressure. This study demonstrated that supplementation of 2 g or 4 g of SBE daily can significantly reduce blood glucose in hyperglycemic subjects, although high-dose SBE seemed to be more effective than low-dose SBE for lowering plasma free fatty acid level and systolic blood pressure.

  17. [Evaluation of accuracy and influence factors of bedside blood glucose monitoring in critically ill patients].

    PubMed

    Feng, Tao; Cao, Xiang-yuan

    2012-08-01

    To evaluate the accuracy and influence factors of point-of-care testing (POCT) for glucose in critically ill patients. Two hundred and forty critically ill patients aged ≥18 years in department of critical care medicine were enrolled. According to blood glucose level (BGL) during glucose control, patients were divided into three groups: (1) hypoglycemia group, BGL<4.5 mmol/L, n=32; (2) euglycemia group, BGL 4.5-8.3 mmol/L, n=138; (3) hyperglycemia group, BGL>8.3 mmol/L, n=70. The blood samples from vein, artery and capillary of patients were collected synchronically and the blood glucose of POCT were determined with glucose oxidase (GOD) and glucose dehydrogenase (GDH) methods, respectively, compared with blood glucose reference values of laboratory [hexokinase method (HK method)]. The accuracy of POCT for glucose and influence factors were analyzed statistically by the logistic regression method. (1) The inaccurate rates of glucose values in blood samples from vein, artery and capillary in hypoglycemia group (GDH method: 25.00%, 40.62%, 40.62%; GOD method: 59.38%, 71.88%, 71.88%) were significantly higher than those in euglycemia group (GDH method: 2.90%, 9.42%, 7.97%; GOD method: 18.12%, 27.54%, 27.54%) and hyperglycemia group (GDH method: 1.43%, 8.57%, 4.28%; GOD method: 11.43%, 8.57%, 11.43%, all P<0.01). (2) The average levels of difference for the glucose reference value of laboratory and the glucose value measured by glucometer in hypoglycemia group were 0.41-0.69 mmol/L (GDH method) and 0.92-1.18 mmol/L (GOD method), in euglycemia 0.16-0.33 mmol/L and 0.77-0.90 mmol/L, in hyperglycemia group -0.06-0.18 mmol/L and 0.56-0.76 mmol/L, respectively. (3) The correlation coefficients between the laboratory and glucometer in hypoglycemia group were respectively 0.812-0.853 (GDH method) and 0.723-0.816 (GOD method). The correlation coefficients in euglycemia group were 0.862-0.890 and 0.768-0.857. They were elevated to 0.922-0.957 and 0.896-0.922 in hyperglycemia

  18. A nanostructure of functional targeting epirubicin liposomes dually modified with aminophenyl glucose and cyclic pentapeptide used for brain glioblastoma treatment

    PubMed Central

    Zhang, Cheng-Xiang; Zhao, Wei-Yu; Liu, Lei; Ju, Rui-Jun; Mu, Li-Min; Zhao, Yao; Zeng, Fan; Xie, Hong-Jun; Yan, Yan; Lu, Wan-Liang

    2015-01-01

    The objectives of the present study were to develop functional targeting epirubicin liposomes for transferring drugs across the blood-brain barrier (BBB), treating glioblastoma, and disabling neovascularization. The studies were performed on glioblastoma cells in vitro and on glioblastoma-bearing mice. The results showed that the constructed liposomes had a high encapsulation efficiency for drugs (>95%), suitable particle size (109 nm), and less leakage in the blood component-containing system; were significantly able to be transported across the BBB; and exhibited efficacies in killing glioblastoma cells and in destroying glioblastoma neovasculature in vitro and in glioblastoma-bearing mice. The action mechanisms of functional targeting epirubicin liposomes correlated with the following features: the long circulation in the blood system, the ability to be transported across the BBB via glucose transporter-1, and the targeting effects on glioblastoma cells and on the endothelial cells of the glioblastoma neovasculature via the integrin β3 receptor. In conclusion, functional targeting epirubicin liposomes could be used as a potential therapy for treating brain glioblastoma and disabling neovascularization in brain glioblastomas. PMID:26418720

  19. Effect of glucose on the optical properties of arterial blood using Mie theory simulations

    NASA Astrophysics Data System (ADS)

    Clancy, Neil T.; Leahy, Martin J.

    2005-08-01

    The glucose concentration in arterial plasma has immediate effects on the optical properties of blood-bearing tissue due primarily to the alteration of refractive index mismatch between the scattering particles (red blood cells) and the medium (plasma). The influence of these effects on pulse oximetry is investigated using a numerical model based on Mie theory. The objective is to determine whether or not physiological fluctuations in blood glucose levels could sufficiently vary the optical properties to shift the calibration curve of a commercial pulse oximeter significantly.

  20. A Bayesian network for modelling blood glucose concentration and exercise in type 1 diabetes.

    PubMed

    Ewings, Sean M; Sahu, Sujit K; Valletta, John J; Byrne, Christopher D; Chipperfield, Andrew J

    2015-06-01

    This article presents a new statistical approach to analysing the effects of everyday physical activity on blood glucose concentration in people with type 1 diabetes. A physiologically based model of blood glucose dynamics is developed to cope with frequently sampled data on food, insulin and habitual physical activity; the model is then converted to a Bayesian network to account for measurement error and variability in the physiological processes. A simulation study is conducted to determine the feasibility of using Markov chain Monte Carlo methods for simultaneous estimation of all model parameters and prediction of blood glucose concentration. Although there are problems with parameter identification in a minority of cases, most parameters can be estimated without bias. Predictive performance is unaffected by parameter misspecification and is insensitive to misleading prior distributions. This article highlights important practical and theoretical issues not previously addressed in the quest for an artificial pancreas as treatment for type 1 diabetes. The proposed methods represent a new paradigm for analysis of deterministic mathematical models of blood glucose concentration. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. SELF BLOOD GLUCOSE MONITORING UNDERESTIMATES HYPERGLYCEMIA AND HYPOGLYCEMIA AS COMPARED TO CONTINUOUS GLUCOSE MONITORING IN TYPE 1 AND TYPE 2 DIABETES.

    PubMed

    Mangrola, Devna; Cox, Christine; Furman, Arianne S; Krishnan, Sridevi; Karakas, Sidika E

    2018-01-01

    When glucose records from self blood glucose monitoring (SBGM) do not reflect estimated average glucose from glycosylated hemoglobin (HgBA1) or when patients' clinical symptoms are not explained by their SBGM records, clinical management of diabetes becomes a challenge. Our objective was to determine the magnitude of differences in glucose values reported by SBGM versus those documented by continuous glucose monitoring (CGM). The CGM was conducted by a clinical diabetes educator (CDE)/registered nurse by the clinic protocol, using the Medtronic iPRO2 ™ system. Patients continued SBGM and managed their diabetes without any change. Data from 4 full days were obtained, and relevant clinical information was recorded. De-identified data sets were provided to the investigators. Data from 61 patients, 27 with type 1 diabetes (T1DM) and 34 with T2DM were analyzed. The lowest, highest, and average glucose recorded by SBGM were compared to the corresponding values from CGM. The lowest glucose values reported by SBGM were approximately 25 mg/dL higher in both T1DM ( P = .0232) and T2DM ( P = .0003). The highest glucose values by SBGM were approximately 30 mg/dL lower in T1DM ( P = .0005) and 55 mg/dL lower in T2DM ( P<.0001). HgBA1c correlated with the highest and average glucose by SBGM and CGM. The lowest glucose values were seen most frequently during sleep and before breakfast; the highest were seen during the evening and postprandially. SBGM accurately estimates the average glucose but underestimates glucose excursions. CGM uncovers glucose patterns that common SBGM patterns cannot. CDE = certified diabetes educator; CGM = continuous glucose monitoring; HgBA1c = glycosylated hemoglobin; MAD = mean absolute difference; SBGM = self blood glucose monitoring; T1DM = type 1 diabetes; T2DM = type 2 diabetes.

  2. Identification of individualised empirical models of carbohydrate and insulin effects on T1DM blood glucose dynamics

    NASA Astrophysics Data System (ADS)

    Cescon, Marzia; Johansson, Rolf; Renard, Eric; Maran, Alberto

    2014-07-01

    One of the main limiting factors in improving glucose control for type 1 diabetes mellitus (T1DM) subjects is the lack of a precise description of meal and insulin intake effects on blood glucose. Knowing the magnitude and duration of such effects would be useful not only for patients and physicians, but also for the development of a controller targeting glycaemia regulation. Therefore, in this paper we focus on estimating low-complexity yet physiologically sound and individualised multi-input single-output (MISO) models of the glucose metabolism in T1DM able to reflect the basic dynamical features of the glucose-insulin metabolic system in response to a meal intake or an insulin injection. The models are continuous-time second-order transfer functions relating the amount of carbohydrate of a meal and the insulin units of the accordingly administered dose (inputs) to plasma glucose evolution (output) and consist of few parameters clinically relevant to be estimated. The estimation strategy is continuous-time data-driven system identification and exploits a database in which meals and insulin boluses are separated in time, allowing the unique identification of the model parameters.

  3. The Relationship Between a Balanced Time Perspective and Self-monitoring of Blood Glucose Among People With Type 1 Diabetes.

    PubMed

    Baird, Harriet M; Webb, Thomas L; Martin, Jilly; Sirois, Fuschia M

    2018-05-10

    Self-monitoring of blood glucose helps people with type 1 diabetes to maintain glycemic control and reduce the risk of complications. However, adherence to blood glucose monitoring is often suboptimal. Like many health behaviors, self-monitoring of blood glucose involves exerting effort in the present to achieve future benefits. As such, the present research explored whether individual differences in time perspective-specifically, the extent to which people have a balanced time perspective-are associated with the frequency with which people with type 1 diabetes monitor their blood glucose and, thus, maintain glycemic control. Adults with type 1 diabetes completed measures of time perspective, feelings associated with monitoring, attitudes toward monitoring, and trait self-control. Objective data regarding the frequency with which participants monitored their blood glucose levels and their long-term glycemic control were extracted from their medical records. Hierarchical regression analyses and tests of indirect effects (N = 129) indicated that having a more balanced time perspective was associated with more frequent monitoring of blood glucose and, as a result, better glycemic control. Further analyses (N = 158) also indicated that there was an indirect relationship between balanced time perspective and monitoring of blood glucose via the feelings that participants associated with monitoring and their subsequent attitudes toward monitoring. These findings point to the importance and relevance of time perspective for understanding health-related behavior and may help to inform interventions designed to promote self-monitoring of blood glucose in people with type 1 diabetes.

  4. Proposed Application of Fast Fourier Transform in Near Infra Red Based Non Invasive Blood Glucose Monitoring System

    NASA Astrophysics Data System (ADS)

    Jenie, R. P.; Iskandar, J.; Kurniawan, A.; Rustami, E.; Syafutra, H.; Nurdin, N. M.; Handoyo, T.; Prabowo, J.; Febryarto, R.; Rahayu, M. S. K.; Damayanthi, E.; Rimbawan; Sukandar, D.; Suryana, Y.; Irzaman; Alatas, H.

    2017-03-01

    Worldwide emergence of glycaemic status related health disorders, such as diabetes and metabolic syndrome, is growing in alarming rate. The objective was to propose new methods for non invasive blood glucose level measurement system, based on implementation of Fast Fourier Transform methods. This was an initial-lab-scale-research. Data on non invasive blood glucose measurement are referred from Scopus, Medline, and Google Scholar, from 2011 until 2016, and was used as design references, combined with in house verification. System was developed in modular fashion, based on aforementioned compiled references. Several preliminary tests to understand relationship between LED and photo-diode responses have been done. Several references were used as non invasive blood glucose measurement tools design basis. Solution is developed in modular fashion. we have proven different sensor responses to water and glucose. Human test for non invasive blood glucose level measurement system is needed.

  5. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice.

    PubMed

    Kim, Sung Hee; Hyun, Sun Hee; Choung, Se Young

    2006-03-08

    The anti-diabetic effect of Cinnamomi cassiae extract (Cinnamon bark: Lauraceae) in a type II diabetic animal model (C57BIKsj db/db) was studied. Cinnamon extract was administered at different dosages (50, 100, 150 and 200 mg/kg) for 6 weeks. It was found that blood glucose concentration is significantly decreased in a dose-dependent manner (P<0.001) with the most in the 200 mg/kg group compared with the control. In addition, serum insulin levels and HDL-cholesterol levels were significantly higher (P<0.01) and the concentration of triglyceride, total cholesterol and intestinal alpha-glycosidase activity were significantly lower after 6 weeks of the administration. These results suggest that cinnamon extract has a regulatory role in blood glucose level and lipids and it may also exert a blood glucose-suppressing effect by improving insulin sensitivity or slowing absorption of carbohydrates in the small intestine.

  6. Overweight, high blood pressure and impaired fasting glucose in Uyghur, Han, and Kazakh Chinese children and adolescents.

    PubMed

    Yan, W L; Li, X S; Wang, Q; Huang, Y D; Zhang, W G; Zhai, X H; Wang, C C; Lee, J H

    2015-01-01

    To investigate whether the levels of blood pressure and fasting glucose differ among Chinese children of three different ethnicities (i.e., Uyghurs, Kazakhs, and Hans) and whether the differences are explained by childhood obesity. A school-based cross-sectional study was conducted in a large three ethnic pediatric population (n = 6633), whose ages ranged from 7 to 18 years. Anthropometrics and blood pressure were measured using standard protocols. Fasting glucose was measured in a subset of children (n = 2295) who were randomly selected based on ethnicity and age. The age-sex stratified Chinese national cut-offs were used to define obesity and high blood pressure (HBP). The prevalence of HBP, impaired fasting glucose (IFG), mean levels of blood pressure, and glucose were compared among three ethnic groups. 2142 Uyghurs, 2078 Han, and 1997 Kazakhs were analyzed. After adjusting for age and body mass index (BMI), the mean blood pressure for Uyghurs was on average, 2-4 mm Hg lower than those for Hans and Kazakhs. Kazakhs had the lowest mean fasting glucose compared with Hans and Uyghurs (4.5 vs. 5.0 vs. 4.8 mmol/L, respectively). The differences in blood pressure and fasting glucose persisted even after adjusting for age and BMI, and the differences among ethnic groups in blood pressure levels and fasting glucose levels were observed as early as 7-9 years of age. The prevalence of HBP and IFG differed significantly among Uyghurs, Hans, and Kazakhs, and the ethnic differences observed in childhood were consistent with those observed in adults from the same region. While childhood obesity is a significant risk factor for hypertension and elevated glucose, the differences among ethnic groups were not explained by obesity alone.

  7. Comparison of high glucose concentration blood and crystalloid cardioplegia in paediatric cardiac surgery: a randomized clinical trial

    PubMed Central

    Mimic, Branko; Ilic, Slobodan; Vulicevic, Irena; Milovanovic, Vladimir; Tomic, Danijela; Mimic, Ana; Stankovic, Sanja; Zecevic, Tatjana; Davies, Ben; Djordjevic, Miroslav

    2016-01-01

    OBJECTIVES This study investigates the effects of high glucose content on patients undergoing cold crystalloid versus cold blood cardioplegia in terms of early clinical results, functional myocardial recovery and ischaemia–reperfusion injury in patients undergoing repair of acyanotic cardiac lesions. METHODS Patients were randomly assigned to receive either crystalloid (n = 31) or blood cardioplegia (n = 31). Early clinical results were assessed. Changes in left ventricular fractional shortening, arterial blood lactate levels, central venous saturation, cardiac Troponin I release and blood glucose concentration were measured during the first 24 h after ischaemia. RESULTS There was no significant difference in clinical outcomes and postoperative complication rates between groups. The postoperative changes in left ventricular function, lactate levels, central venous saturation and Troponin I were not significantly different between groups. The use of crystalloid cardioplegia was associated with significant increases in serum glucose compared with blood cardioplegia. CONCLUSIONS A high glucose content blood cardioplegia does not show any advantage compared with crystalloid cardioplegia in terms of clinical outcomes, functional recovery and the degree of ischaemic injury in infants and children undergoing repair of acyanotic heart lesions. High glucose concentration of the cardioplegic solution might potentiate ischaemia–reperfusion injury and diminish the beneficial effects of blood cardioplegia. PMID:26831677

  8. Comparision between bed side testing of blood glucose by glucometer vs centralized testing in a tertiary care hospital.

    PubMed

    Baig, Ayaz; Siddiqui, Imran; Jabbar, Abdul; Azam, Syed Iqbal; Sabir, Salman; Alam, Shahryar; Ghani, Farooq

    2007-01-01

    To determine the accuracy, turnaround time and cost effectiveness of bedside monitoring of blood glucose levels by non-laboratory health care workers and centralized testing of blood glucose by automated analyzer in a tertiary care hospital. The study was conducted in Section of Chemical Pathology, Department of Pathology and Microbiology and Section of Endocrinology Department of Medicine, Aga Khan University and Hospital Karachi, from April 2005 to March 2006. One hundred and ten patients were included in the study. The blood glucose levels were analyzed on glucometer (Precision Abbott) by finger stick, using Biosensor Technology. At the same time venous blood was obtained to analyze glucose in clinical laboratory on automated analyzer (SYNCHRON CX7) by glucose oxidase method. We observed good correlation between bed side glucometer and laboratory automated analyzer for glucose values between 3.3 mmol/L (60 mg/dl) and 16.7 (300 mg/dl). A significant difference was observed for glucose values less than 3.3 mmol/L (p = 0.002) and glucose values more than 16.67 mmol/l (p = 0.049). Mean Turnaround time for glucometer and automated analyzer were 0.08 hours and 2.49 hours respectively. The cost of glucose testing with glucometer was 48.8% lower than centralized lab based testing. Bedside glucometer testing, though less expensive does not have good accuracy in acutely ill patient with either very high or very low blood glucose levels.

  9. Cook and Chill: Effect of Temperature on the Performance of Nonequilibrated Blood Glucose Meters.

    PubMed

    Deakin, Sherine; Steele, Dominic; Clarke, Sarah; Gribben, Cathryn; Bexley, Anne-Marie; Laan, Remmert; Kerr, David

    2015-08-20

    Exposure to extreme temperature can affect the performance of blood glucose monitoring systems. The aim was to determine the non-equilibrated performance of these systems at extreme high and low temperatures that can occur in daily life. The performances of 5 test systems, (1) Abbott FreeStyle Freedom Lite, (2) Roche AccuChek Aviva, (3) Bayer Contour, (4) LifeScan OneTouch Verio, and (5) Sanofi BG Star, were compared after "cooking" (50°C for 1 hour) or "chilling" (-5°C for 1 hour) with room temperature controls (23°C) using whole blood with glucose concentrations of 50, 100, and 200 mg/dl. The equilibration period (time from the end of incubation to when the test system is operational) was between 1 and 8 minutes, and each test system took between 15 and 30 minutes after incubation to obtain stable measurements at room temperature. Incubating the strips at -5°C or 50°C had little effect on the glucose measurement, whereas incubating the meters introduced bias in performance between 0 and 15 minutes but not subsequently, compared to room temperature controls and at all 3 glucose levels. Compensating technologies embedded within blood glucose monitoring systems studied here perform well at extreme temperatures. People with diabetes need to be alerted to this feature to avoid perceptions of malperformance of their devices and the possible inability to get blood glucose readings on short notice (eg, during time of suspected rapid change or before an unplanned meal). © 2015 Diabetes Technology Society.

  10. Glycemic index and postprandial blood glucose response to Japanese strawberry jam in normal adults.

    PubMed

    Kurotobi, Tomoka; Fukuhara, Kimiaki; Inage, Hiroko; Kimura, Shuichi

    2010-01-01

    We investigated in 30 healthy adults the glycemic index (GI) of five strawberry jams made from various sugar compositions. The jam containing the highest ratio of glucose showed a high GI, while that containing a high ratio of fructose, a jam made from polydextrose, showed a low GI. There was a high correlation (r=0.969, p=0.006) between the GI and the predicted GI calculated from the sugar composition of the jams. Moreover, the influence on postprandial blood glucose response after an intake of only 20 g of jam and one slice of bread with 20 g jam was measured in 8 healthy adults. The blood glucose level after an intake of 20 g of the high GI jam containing the high glucose ratio was higher than that of other jams at 15 min, but there was no significant difference after 30 min. Regardless of whether the GI was low or high, differences in the jams were not observed in the postprandial blood glucose level or the area under the curve after eating either one slice of bread (60 g) or one slice of bread with less than 20 g of jam.

  11. Molecular weight dependent glucose lowering effect of low molecular weight Chitosan Oligosaccharide (GO2KA1) on postprandial blood glucose level in SD rats model.

    PubMed

    Jo, Sung-Hoon; Ha, Kyoung-Soo; Moon, Kyoung-Sik; Kim, Jong-Gwan; Oh, Chen-Gum; Kim, Young-Cheul; Apostolidis, Emmanouil; Kwon, Young-In

    2013-07-09

    This research investigated the effect of enzymatically digested low molecular weight (MW) chitosan oligosaccharide on type 2 diabetes prevention. Three different chitosan oligosaccharide samples with varying MW were evaluated in vitro for inhibition of rat small intestinal α-glucosidase and porcine pancreatic α-amylase (GO2KA1; <1000 Da, GO2KA2; 1000-10,000 Da, GO2KA3; MW > 10,000 Da). The in vitro results showed that all tested samples had similar rat α-glucosidase inhibitory and porcine α-amylase inhibitory activity. Based on these observations, we decided to further investigate the effect of all three samples at a dose of 0.1 g/kg, on reducing postprandial blood glucose levels in Sprague-Dawley (SD) rat model after sucrose loading test. In the animal trial, all tested samples had postprandial blood glucose reduction effect, when compared to control, however GO2KA1 supplementation had the strongest effect. The glucose peak (Cmax) for GO2KA1 and control was 152 mg/dL and 193 mg/dL, respectively. The area under the blood glucose-time curve (AUC) for GO2KA1 and control was 262 h mg/dL and 305 h mg/dL, respectively. Furthermore, the time of peak plasma concentration of blood glucose (Tmax) for GO2KA1 was significantly delayed (0.9 h) compared to control (0.5 h). These results suggest that GO2KA1 could have a beneficial effect for blood glucose management relevant to diabetes prevention in normal and pre-diabetic individuals. The suggested mechanism of action is via inhibition of the carbohydrate hydrolysis enzyme α-glucosidase and since GO2KA1 (MW < 1000 Da) had higher in vivo effect, we hypothesize that it is more readily absorbed and might exert further biological effect once it is absorbed in the blood stream, relevant to blood glucose management.

  12. Comparison of EML 105 and advantage analysers measuring capillary versus venous whole blood glucose in neonates.

    PubMed

    McNamara, P J; Sharief, N

    2001-09-01

    Near-patient blood glucose monitoring is an essential component of neonatal intensive care but the analysers currently used are unreliable and inaccurate. The aim of this study was to compare a new glucose electrode-based analyser (EML 105) and a non-wipe reflectance photometry method (Advantage) as opposed to a recognized laboratory reference method (Hexokinase). We also investigated the effect of sample route and haematocrit on the accuracy of the glucose readings obtained by each method of analysis. Whole blood glucose concentrations ranging from 0 to 3.5 mmol/l were carefully prepared in a laboratory setting and blood samples from each respective solution were then measured by EML 105 and Advantage analysers. The results obtained were then compared with the corresponding plasma glucose reading obtained by the Hexokinase method, using linear regression analysis. An in vivo study was subsequently performed on 103 neonates, over a 1-y period, using capillary and venous whole blood samples. Whole blood glucose concentration was estimated from each sample using both analysers and compared with the corresponding plasma glucose concentration estimated by the Hexokinase method. Venous blood was centrifuged and haematocrit was estimated using standardized curves. The effect of haematocrit on the agreement between whole blood and plasma glucose was investigated, estimating the degree of correlation on a scatterplot of the results and linear regression analysis. Both the EML 105 and Hexokinase methods were highly accurate, in vitro, with small proportional biases of 2% and 5%, respectively. However, in vivo, both study analysers overestimated neonatal plasma glucose, ranging from at best 0.45 mmol/l (EML 105 venous) to 0.69 mmol/l (EML capillary). There was no significant difference in the agreement of capillary (GD = 0.12, 95% CI, [-0.32,0.08], p = 0.2) or venous samples (GD = 0.05, 95% CI. [0.09, 0.19], p = 0.49) with plasma glucose when analysed by either study method

  13. 'Knowing where I am': self-monitoring of blood glucose in diabetes.

    PubMed

    Meetoo, Danny; Wong, Louise; Fatani, Tughreed

    2018-05-24

    Although the prevalence of all types of chronic conditions is increasing, diabetes is one of the few long-term metabolic disorders that individuals can successfully manage, monitor and control on a day-to-day basis. Self-monitoring of blood glucose (SMBG) is considered an essential component of diabetes self-care management. When used appropriately, SMBG can help to identify factors associated with hyper- and hypoglycaemia, facilitate learning, and empower people with diabetes to make changes to improve their glycaemic control. SMBG can be a useful tool for healthcare providers, who can teach individuals to monitor glucose at specific times to assess the effectiveness of medications and guide medication management. However, there is an ongoing debate regarding whether, as is the case with type 1 diabetes, all people with type 2 diabetes should also be given the opportunity to learn about the value of, and skills required to, monitor blood glucose as appropriate to their specific needs.

  14. Social Inclusion Predicts Lower Blood Glucose and Low-Density Lipoproteins in Healthy Adults.

    PubMed

    Floyd, Kory; Veksler, Alice E; McEwan, Bree; Hesse, Colin; Boren, Justin P; Dinsmore, Dana R; Pavlich, Corey A

    2017-08-01

    Loneliness has been shown to have direct effects on one's personal well-being. Specifically, a greater feeling of loneliness is associated with negative mental health outcomes, negative health behaviors, and an increased likelihood of premature mortality. Using the neuroendocrine hypothesis, we expected social inclusion to predict decreases in both blood glucose levels and low-density lipoproteins (LDLs) and increases in high-density lipoproteins (HDLs). Fifty-two healthy adults provided self-report data for social inclusion and blood samples for hematological tests. Results indicated that higher social inclusion predicted lower levels of blood glucose and LDL, but had no effect on HDL. Implications for theory and practice are discussed.

  15. Interleukin-1β (IL-1β) increases pain behavior and the blood glucose level: possible involvement of sympathetic nervous system.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2012-07-01

    The relationship between interleukin-1β (IL-1β)-induced nociception and the blood glucose level was studied in ICR mice. We found in the present study that intrathecal (i.t.) injection of IL-1β increased pain behavior. In addition, i.t. IL-1β injection caused an elevation of the blood glucose level. The time-course study showed that maximal blood glucose level was observed 30 and 60 min after i.t. IL-1β administration. Furthermore, i.t. injection of IL-1β enhanced the blood glucose level when mice were orally fed with d-glucose. The i.t. administration of IL-1β antagonist (AF12198) inhibited the hyperglycemia and pain behaviors induced by IL-1β. We found in the present study that adrenal tyrosine hydroxylase (TH) mRNA level was also increased by i.t. IL-1β injection. Furthermore, intraperitoneal (i.p.) pretreatment with phentolamine (an α(1)-adrenergic blocker) or yohimbine (an α(2)-adrenergic blocker) significantly attenuated the blood glucose level and pain behavior induced by IL-1β administered i.t. However, the blood glucose level and pain behavior were not affected by butoxamine (a β(2)-adrenergic blocker), whereas metoprolol (a β(2)-adrenergic blocker) enhanced IL-1β-induced blood glucose level and pain behavior in mice fed with d-glucose. However, its effect was not statistically significant. Our results suggest that IL-1β administered i.t. increases the blood glucose level via an activation of α adrenergic nervous system. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Blood Glucose Meters and Accessibility to Blind and Visually Impaired People

    PubMed Central

    Burton, Darren M.; Enigk, Matthew G.; Lilly, John W.

    2012-01-01

    In 2007, five blood glucose meters (BGMs) were introduced with integrated speech output necessary for use by persons with vision loss. One of those five meters had fully integrated speech output, allowing a person with vision loss independence in accessing all features and functions of the meter. In comparison, 13 BGMs with integrated speech output were available in 2011. Accessibility attributes of these 11 meters were tabulated and product design features examined. All 13 meters were found to be usable by persons with vision loss to obtain a blood glucose measurement. However, only 4 of them featured the fully integrated speech output necessary for a person with vision loss to access all features and functions independently. PMID:22538131

  17. Feasibility of overnight closed-loop control based on hourly blood glucose measurements.

    PubMed

    Patte, Caroline; Pleus, Stefan; Galley, Paul; Weinert, Stefan; Haug, Cornelia; Freckmann, Guido

    2012-07-01

    Safe and effective closed-loop control (artificial pancreas) is the ultimate goal of insulin delivery. In this study, we examined the performance of a closed-loop control algorithm used for the overnight time period to safely achieve a narrow target range of blood glucose (BG) concentrations prior to breakfast. The primary goal was to compare the quality of algorithm control during repeated overnight experiments. Twenty-three subjects with type 1 diabetes performed 2 overnight experiments on each of three visits at the study site, resulting in 138 overnight experiments. On the first evening, the subject's insulin therapy was applied; on the second, the insulin was delivered by an algorithm based on subcutaneous continuous glucose measurements (including meal control) until midnight. Overnight closed-loop control was applied between midnight and 6 a.m. based on hourly venous BG measurements during the first and second nights. The number of BG values within the target range (90-150 mg/dl) increased from 52.9% (219 out of 414 measurements) during the first nights to 72.2% (299 out of 414 measurements) during the second nights (p < .001, χ²-test). The occurrence of hypoglycemia interventions was reduced from 14 oral glucose interventions, the latest occurring at 2:36 a.m. during the first nights, to 1 intervention occurring at 1:02 a.m. during the second nights (p < .001, χ²-test). Overnight controller performance improved when optimized initial control was given; this was suggested by the better metabolic control during the second night. Adequate controller run-in time seems to be important for achieving good overnight control. In addition, the findings demonstrate that hourly BG data are sufficient for the closed-loop control algorithm tested to achieve appropriate glycemic control. © 2012 Diabetes Technology Society.

  18. Role of self-monitoring of blood glucose in glycemic control.

    PubMed

    Karter, Andrew J

    2006-01-01

    To examine the role of self-monitoring of blood glucose (SMBG) in the management of diabetes mellitus. Current trends and published evidence are reviewed. Despite the widespread evidence that lowering glycemic levels reduces the risks of complications in patients with diabetes, little improvement in glycemic control has been noted among patients in the United States and Europe in recent years. Although SMBG has been widely used, considerable controversy surrounds its role in achieving glycemic control. The high cost of test strips has made considerations regarding appropriate recommendations for SMBG a priority, especially in light of the current climate of health-care cost-containment. Existing clinical recommendations lack specific guidance to patients and clinicians regarding SMBG practice intensity and frequency, particularly for those patients not treated with insulin. Previous studies of the association between SMBG and glycemic control often found weak and conflicting results. A reexamination of the role of SMBG is needed, with special attention to the unique needs of patients using different diabetes treatments, within special clinical subpopulations, and during initiation of SMBG versus its ongoing use. Further understanding of the intensity and frequency of SMBG needed to reflect the variability in glycemic patterns would facilitate more specific guideline development. Educational programs that focus on teaching patients the recommended SMBG practice, specific glycemic targets, and appropriate responses to various blood glucose readings would be beneficial. Continuing medical education programs for health-care providers should suggest ways to analyze patient SMBG records to tailor medication regimens. For transfer or communication of SMBG reports to the clinical staff, a standardized format that extracts key data elements and allows quick review by health-care providers would be useful. Because the practice of SMBG is expensive, the cost-effectiveness of

  19. Association Between Blood Glucose and Functional Outcome in Intracerebral Hemorrhage: A Systematic Review and Meta-Analysis.

    PubMed

    Zheng, Jun; Yu, Zhiyuan; Ma, Lu; Guo, Rui; Lin, Sen; You, Chao; Li, Hao

    2018-03-16

    Intracerebral hemorrhage (ICH) is a devastating subtype of stroke. Patients with ICH have poor functional outcomes. The association between blood glucose level and functional outcome in ICH remains unclear. This systematic review and meta-analysis aimed to investigate the association between blood glucose level and functional outcomes in patients with ICH. Literature was searched systemically in PubMed, EMBASE, Web of Science, and Cochrane Library. Published cohort studies evaluating the association between blood glucose and functional outcome in patients with ICH were included. This meta-analysis was performed using odds ratios (ORs) and 95% confidence intervals (CIs). A total of 16 studies were included in our meta-analysis. Our data show that hyperglycemia defined by cutoff values was significantly associated with unfavorable functional outcome (OR, 1.80; 95% CI, 1.36-2.39; P < 0.001). Our analysis also suggested a significant association between increased blood glucose levels and functional outcomes (OR, 1.05; 95% CI, 1.03-1.07; P < 0.001). High blood glucose level is significantly associated with poor functional outcome in ICH. Further studies with larger sample sizes, more time points, and longer follow-up times are necessary to confirm this association. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Intensive versus conventional glucose control in critically ill patients.

    PubMed

    Finfer, Simon; Chittock, Dean R; Su, Steve Yu-Shuo; Blair, Deborah; Foster, Denise; Dhingra, Vinay; Bellomo, Rinaldo; Cook, Deborah; Dodek, Peter; Henderson, William R; Hébert, Paul C; Heritier, Stephane; Heyland, Daren K; McArthur, Colin; McDonald, Ellen; Mitchell, Imogen; Myburgh, John A; Norton, Robyn; Potter, Julie; Robinson, Bruce G; Ronco, Juan J

    2009-03-26

    The optimal target range for blood glucose in critically ill patients remains unclear. Within 24 hours after admission to an intensive care unit (ICU), adults who were expected to require treatment in the ICU on 3 or more consecutive days were randomly assigned to undergo either intensive glucose control, with a target blood glucose range of 81 to 108 mg per deciliter (4.5 to 6.0 mmol per liter), or conventional glucose control, with a target of 180 mg or less per deciliter (10.0 mmol or less per liter). We defined the primary end point as death from any cause within 90 days after randomization. Of the 6104 patients who underwent randomization, 3054 were assigned to undergo intensive control and 3050 to undergo conventional control; data with regard to the primary outcome at day 90 were available for 3010 and 3012 patients, respectively. The two groups had similar characteristics at baseline. A total of 829 patients (27.5%) in the intensive-control group and 751 (24.9%) in the conventional-control group died (odds ratio for intensive control, 1.14; 95% confidence interval, 1.02 to 1.28; P=0.02). The treatment effect did not differ significantly between operative (surgical) patients and nonoperative (medical) patients (odds ratio for death in the intensive-control group, 1.31 and 1.07, respectively; P=0.10). Severe hypoglycemia (blood glucose level, < or = 40 mg per deciliter [2.2 mmol per liter]) was reported in 206 of 3016 patients (6.8%) in the intensive-control group and 15 of 3014 (0.5%) in the conventional-control group (P<0.001). There was no significant difference between the two treatment groups in the median number of days in the ICU (P=0.84) or hospital (P=0.86) or the median number of days of mechanical ventilation (P=0.56) or renal-replacement therapy (P=0.39). In this large, international, randomized trial, we found that intensive glucose control increased mortality among adults in the ICU: a blood glucose target of 180 mg or less per deciliter

  1. Performance Analysis of the OneTouch® UltraVue™ Blood Glucose Monitoring System

    PubMed Central

    Chang, Anna; Orth, Alice; Le, Bryan; Menchavez, Perla; Miller, Lupe

    2009-01-01

    Background OneTouch® UltraVue™ is a new meter for self-monitoring of blood glucose that includes a color display, used-strip ejector, and no-button interface. The system uses an electrochemical biosensor technology based on glucose oxidase chemistry to detect glucose concentrations from 20 to 600 mg/dl (1.1 to 33.3 mmol/liter). Methods Accuracy and reproducibility were evaluated over a wide range of glucose concentrations according to standard criteria. Clinical accu-racy was assessed by health care providers (HCPs) in two studies and by diabetes patients in the second study. Reference glucose lev-els were determined by a YSI 2300 analyzer. Same-day reproducibility and day-to-day reproducibility were also evaluated. Results In the accuracy studies, 99.7% and 98.7% of tests by HCPs and 97.0% of tests by patients were within ±15 mg/dl (±0.8 mmol/liter) of the YSI reference for blood glucose <75 mg/dl (<4.2 mmol/liter), and within ±20% for blood glucose ≥75 mg/dl (≥4.2 mmol/liter), respectively. Consensus error grid analysis showed that 99.7% and 95.3% of tests by HCPs and 97.0% of tests by patients fell within zone A (i.e., has no effect on clinical action); all other results were in zone B (i.e., altered clinical action, little or no effect on clini-cal outcome). In the reproducibility studies, the standard deviation was <1.5 mg/dl (<0.1 mmol/liter) for glucose concentra-tions <100 mg/dl (<5.6 mmol/liter), and the coefficient of variation was <2% for concentrations ≥100 mg/dl (≥5.6 mmol/liter). Conclusions OneTouch UltraVue meets standard acceptability criteria for accuracy and reproducibility across a wide range of glucose concentra-tions. Its simple interface and lack of contact with used strips make it a viable option for older patients and their caregivers. PMID:20144431

  2. Use of a subcutaneous glucose sensor to detect decreases in glucose concentration prior to observation in blood.

    PubMed

    Thomé-Duret, V; Reach, G; Gangnerau, M N; Lemonnier, F; Klein, J C; Zhang, Y; Hu, Y; Wilson, G S

    1996-11-01

    The development of a hypoglycemic alarm system using a subcutaneous glucose sensor implies that a decrease in blood glucose is rapidly followed by a decrease in the signal generated by the sensor. In a first set of experiments the linearity and the kinetics of the response of sensors implanted in the subcutaneous tissue of normal rats were investigated during a progressive increase in plasma glucose concentration: the sensitivities determined between 5 and 10 mM and between 10 and 15 mM were not significantly different, and a 5-10 min delay in the sensor's response was observed. In a second set of experiments, performed in diabetic rats, the kinetics of the decrease in subcutaneous glucose concentration following insulin administration was monitored during a decrease in plasma glucose level, from 15 to 3 mmol/L. During the 20 first min following insulin administration, the sensor monitored glucose concentration in subcutaneous tissue with no lag time. Subsequently, the decrease in the estimation of subcutaneous glucose concentration preceded that of plasma glucose. This phenomenon was not observed when the same sensors were investigated in vitro during a similar decrease in glucose concentration and may be due to a mechanism occurring in vivo, such as the effect of insulin on glucose transfer from the interstitial space to the cells surrounding the sensor. It reinforces the interest of the use of implantable glucose sensors as a part of a hypoglycemic alarm.

  3. Analysis article on the performance analysis of the OneTouch UltraVue blood glucose monitoring system.

    PubMed

    Solnica, Bogdan

    2009-09-01

    In this issue of Journal of Diabetes Science and Technology, Chang and colleagues present the analytical performance evaluation of the OneTouch UltraVue blood glucose meter. This device is an advanced construction with a color display, used-strip ejector, no-button interface, and short assay time. Accuracy studies were performed using a YSI 2300 analyzer, considered the reference. Altogether, 349 pairs of results covering a wide range of blood glucose concentrations were analyzed. Patients with diabetes performed a significant part of the tests. Obtained results indicate good accuracy of OneTouch UltraVue blood glucose monitoring system, satisfying the International Organization for Standardization recommendations and thereby locating >95% of tests within zone A of the error grid. Results of the precision studies indicate good reproducibility of measurements. In conclusion, the evaluation of the OneTouch UltraVue meter revealed good analytical performance together with convenient handling useful for self-monitoring of blood glucose performed by elderly diabetes patients. 2009 Diabetes Technology Society.

  4. Predicting Glucose Sensor Behavior in Blood Using Transport Modeling: Relative Impacts of Protein Biofouling and Cellular Metabolic Effects

    PubMed Central

    Novak, Matthew T.; Yuan, Fan; Reichert, William M.

    2013-01-01

    Background Tissue response to indwelling glucose sensors remains a confounding barrier to clinical application. While the effects of fully formed capsular tissue on sensor response have been studied, little has been done to understand how tissue interactions occurring before capsule formation hinder sensor performance. Upon insertion in subcutaneous tissue, the sensor is initially exposed to blood, blood borne constituents, and interstitial fluid. Using human whole blood as a simple ex vivo experimental system, the effects of protein accumulation at the sensor surface (biofouling effects) and cellular consumption of glucose in both the biofouling layer and in the bulk (metabolic effects) on sensor response were assessed. Methods Medtronic MiniMed SofSensor glucose sensors were incubated in whole blood, plasma-diluted whole blood, and cell-free platelet-poor plasma (PPP) to analyze the impact of different blood constituents on sensor function. Experimental conditions were then simulated using MATLAB to predict the relative impacts of biofouling and metabolic effects on the observed sensor responses. Results Protein biofouling in PPP in both the experiments and the simulations was found to have no interfering effect upon sensor response. Experimental results obtained with whole and dilute blood showed that the sensor response was markedly affected by blood borne glucose-consuming cells accumulated in the biofouling layer and in the surrounding bulk. Conclusions The physical barrier to glucose transport presented by protein biofouling does not hinder glucose movement to the sensor surface, and the consumption of glucose by inflammatory cells, and not erythrocytes, proximal to the sensor surface has a substantial effect on sensor response and may be the main culprit for anomalous sensor behavior immediately following implantation. PMID:24351181

  5. Evaluation of three glucometers for whole blood glucose measurements at the point of care in preterm or low-birth-weight infants.

    PubMed

    Hwang, Joon Ho; Sohn, Yong-Hak; Chang, Seong-Sil; Kim, Seung Yeon

    2015-08-01

    We evaluated three blood glucose self-monitoring for measuring whole blood glucose levels in preterm and low-birth-weight infants. Between December 1, 2012 and March 31, 2013, 230 blood samples were collected from 50 newborns, who weighed, ≤2,300 g or were ≤36 weeks old, in the the neonatal intensive care unit of Eulji University Hospital. Three blood glucose self-monitoring (A: Precision Pcx, Abbott; B: One-Touch Verio, Johnson & Johnson; C: LifeScan SureStep Flexx, Johnson & Johnson) were used for the blood glucose measurements. The results were compared to those obtained using laboratory equipment (D: Advia chemical analyzer, Siemens Healthcare Diagnostics Inc.). The correlation coefficients between laboratory equipment and the three blood glucose self-monitoring (A, B, and C) were found to be 0.888, 0.884, and 0.900, respectively. For glucose levels≤60 mg/dL, the correlation coefficients were 0.674, 0.687, and 0.679, respectively. For glucose levels>60 mg/dL, the correlation coefficients were 0.822, 0.819, and 0.839, respectively. All correlation coefficients were statistically significant. And the values from the blood glucose self-monitoring were not significantly different from the value of the laboratory equipment , after correcting for each device's average value (P>0.05). When using laboratory equipment (blood glucose ≤60 mg/dL), each device had a sensitivity of 0.458, 0.604, and 0.688 and a specificity of 0.995, 0.989, and 0.989, respectively. Significant difference is not found between three blood glucose self-monitoring and laboratory equipment. But correlation between the measured values from blood glucose self-monitoring and laboratory equipment is lower in preterm or low-birth-weight infants than adults.

  6. Lived experience of blood glucose self-monitoring among pregnant women with gestational diabetes mellitus: a phenomenological research.

    PubMed

    Youngwanichsetha, Sununta; Phumdoung, Sasitorn

    2017-10-01

    To explore and describe lived experience of blood glucose self-monitoring among pregnant Thai women with gestational diabetes mellitus. Self-monitoring of blood glucose is an essential practice among pregnant women with diabetes to prevent complications in pregnancy and the newborn infant. Phenomenological research was employed to understand lived experiences in glycemic control. Thirty participants were approached and interviewed using a semistructured interview guides. Qualitative data were analysed following Colaizzi's method. The findings revealed three themes: being worried about diabetes and blood testing, trying to control it and being patient for the child. Their worry comprised three dimensions: (1) wondering about the impacts of diabetes on the child, (2) concern about maternal health and (3) being worried about doing blood test. Trying to control diabetes was composed of three dimensions: (1) learning to test blood glucose, (2) being afraid of elevated blood sugar and (3) being aware of what to eat. Being patient for the child was composed of three dimensions: (1) overcoming food desires, (2) tolerating the fingerprick pain and (3) satisfaction with the outcomes. Women with gestational diabetes experienced being worried and afraid regarding blood glucose self-monitoring; however, they could overcome and tolerate this with some difficulties. These findings can be used to guide nursing practice in assessment of perception and response towards blood glucose self-monitoring in order to improve achievement of a good glycaemic control among pregnant women with gestational diabetes mellitus. © 2016 John Wiley & Sons Ltd.

  7. Comparison of three chemometrics methods for near-infrared spectra of glucose in the whole blood

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyan; Ding, Dong; Li, Xin; Chen, Yu; Tang, Yuguo

    2005-01-01

    Principal Component Regression (PCR), Partial Least Square (PLS) and Artificial Neural Networks (ANN) methods are used in the analysis for the near infrared (NIR) spectra of glucose in the whole blood. The calibration model is built up in the spectrum band where there are the glucose has much more spectral absorption than the water, fat, and protein with these methods and the correlation coefficients of the model are showed in this paper. Comparing these results, a suitable method to analyze the glucose NIR spectrum in the whole blood is found.

  8. Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer.

    PubMed

    Xu, Xiang; Chan, Kannie W Y; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T; van Zijl, Peter C M

    2015-12-01

    Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared with contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (P < 0.005). Both CEST and relaxation effects contribute to the signal change. DGE MRI is a feasible technique for studying brain tumor enhancement reflecting differences in tumor blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. © 2015 Wiley Periodicals, Inc.

  9. Dynamic Glucose Enhanced (DGE) MRI for Combined Imaging of Blood Brain Barrier Break Down and Increased Blood Volume in Brain Cancer

    PubMed Central

    Xu, Xiang; Chan, Kannie WY; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T.; van Zijl, Peter C.M.

    2015-01-01

    Purpose Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Methods Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. Results DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared to contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (p<0.005). Both CEST and relaxation effects contribute to the signal change. Conclusion DGE MRI is a feasible technique for studying brain tumor enhancement reflecting differences in tumor blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. PMID:26404120

  10. Transmission of hepatitis B virus among persons undergoing blood glucose monitoring in long-term-care facilities--Mississippi, North Carolina, and Los Angeles County, California, 2003-2004.

    PubMed

    2005-03-11

    Regular monitoring of blood glucose levels is an important component of routine diabetes care. Capillary blood is typically sampled with the use of a fingerstick device and tested with a portable glucometer. Because of outbreaks of hepatitis B virus (HBV) infections associated with glucose monitoring, CDC and the Food and Drug Administration (FDA) have recommended since 1990 that fingerstick devices be restricted to individual use. This report describes three recent outbreaks of HBV infection among residents in long-term-care (LTC) facilities that were attributed to shared devices and other breaks in infection-control practices related to blood glucose monitoring. Findings from these investigations and previous reports suggest that recommendations concerning standard precautions and the reuse of fingerstick devices have not been adhered to or enforced consistently in LTC settings. The findings underscore the need for education, training, adherence to standard precautions, and specific infection-control recommendations targeting diabetes-care procedures in LTC settings.

  11. The utility of blood glucose meters in biotechnological applications.

    PubMed

    FitzGerald, Jennifer; Vermerris, Wilfred

    2005-06-01

    Most methods used to measure glucose concentrations in biotechnological settings are labour-intensive and/or expensive. With this in mind we have investigated the possibility of employing blood glucose meters, the use of which has the benefit of being fast, convenient and inexpensive, for this purpose. Accu-Chek Advantage (Roche Diagnostics, Indianapolis, IN, U.S.A.) and Precision QID (Medisense, Abbott Laboratories, Indianapolis, IN, U.S.A.) meters were tested using glucose samples of known concentration, at pH 7.5 and 4.8. The Accu-Chek Advantage meter uses strips containing the enzyme glucose dehydrogenase. This meter showed a linear response for glucose concentrations between 0.50 and 6.0 g/litre, and the effect of pH was small. The Precision QID meter uses strips containing the enzyme glucose oxidase and is more sensitive to pH. The displayed glucose concentrations at low pH values were consistently lower than at higher pH values. At both pH values the response curve reached a plateau, which limited the effective range of this meter to a range of 0.30-2.5 g/litre. Unlike the Precision QID meter, the Accu-Chek Advantage meter also responded to xylose and arabinose. A synergistic effect of combining sugars was observed when a mixture of sugars consisting of glucose and arabinose, or glucose and xylose, was applied: the displayed concentrations were consistently higher than was expected on the basis of the individual calibration curves. The use of glucose meters is a fast and convenient alternative to existing methods and may be of particular use for screening purposes where a high degree of accuracy is not crucial. The choice of meter should depend on the application, and in this respect the pH, expected concentration range and the presence of other sugars are among the factors that should be considered.

  12. [The association between early blood glucose fluctuation and prognosis in critically ill patients].

    PubMed

    Tang, Jian; Gu, Qin

    2012-01-01

    To investigate the association between early blood glucose level fluctuation and prognosis of critically ill patients. A retrospective study involving 95 critically ill patients in intensive care unit (ICU) was conducted. According to the 28-day outcome after admission to ICU, the patients were divided into nonsurvivors (43 cases) and survivors (52 cases), and the blood glucose level in them was monitored in the first 72 hours. Blood glucose concentration at admission (BGadm), mean blood glucose level (MBG), hyperglycemia index (HGI), glycemic lability index (GLI), incidence of hypoglycemia and total dosage of intravenous insulin for each patient were compared. The index as an independent risk factor of mortality was determined by multivariate logistic regression analysis and the predictor value by comparing the area under the receiver operating characteristic curve (ROC curve, AUC) of each index. The BGadm (mmol/L), MBG (mmol/L), HGI and the incidence of hypoglycemia showed no significant differences between nonsurvivors and survivors [BGadm: 9.87 ± 4.48 vs. 9.26 ± 3.07, MBG: 8.59 ± 1.23 vs. 8.47 ± 1.01, HGI(6.0): 2.45 ± 0.94 vs. 1.68 ± 1.05, HGI(8.3): 0.84 ± 0.70 vs. 0.68 ± 0.51, the incidence of hypoglycemia: 9.30% vs. 5.77%, all P > 0.05], but acute physiology and chronic health evaluation II (APACHE II ) score, GLI and the total dosage of intravenous insulin (U) were significantly higher in nonsurvivors than survivors [APACHE II score: 23 ± 6 vs. 19 ± 6, GLI: 56.96 (65.43) vs. 23.87 (41.62), the total dosage of intravenous insulin: 65.5 (130.5) vs. 12.5 (90.0), all P < 0.05]. Multivariate logistic regression analysis showed that APACHE II score and GLI were both independent risk factors [APACHE II score: odds ratio (OR) = 1.09, 95% confidence interval (95%CI) 1.01-1.17; GLI: OR = 1.03, 95%CI 1.01-1.06, both P < 0.05]. When ROC curve was plotted, the AUC of APACHE II score and GLI was respectively 0.69 and 0.71, and there was no significant difference

  13. Optimal blood glucose control in diabetes mellitus treatment using dynamic programming based on Ackerman’s linear model

    NASA Astrophysics Data System (ADS)

    Pradanti, Paskalia; Hartono

    2018-03-01

    Determination of insulin injection dose in diabetes mellitus treatment can be considered as an optimal control problem. This article is aimed to simulate optimal blood glucose control for patient with diabetes mellitus. The blood glucose regulation of diabetic patient is represented by Ackerman’s Linear Model. This problem is then solved using dynamic programming method. The desired blood glucose level is obtained by minimizing the performance index in Lagrange form. The results show that dynamic programming based on Ackerman’s Linear Model is quite good to solve the problem.

  14. Effects of blood glucose on delay discounting, food intake and counterregulation in lean and obese men.

    PubMed

    Klement, Johanna; Kubera, Britta; Eggeling, Jonas; Rädel, Christin; Wagner, Christin; Park, Soyoung Q; Peters, Achim

    2018-03-01

    Delay discounting as a measure of impulsivity has been shown to be higher in obesity with an association of increased food intake. Moreover, obese humans showed a higher wanting for high-calorie food than lean men when blood glucose concentrations were low. First studies linking blood glucose levels to delay discounting yielded mixed results. We hypothesized that obese people - in comparison to lean men - have a relative lack of energy, especially when blood glucose levels are low, that results in higher levels of delay discounting, food intake and hormonal counterregulation. We investigated 20 lean and 20 obese healthy young men in a single-blind balanced cross-over design. With a standardized glucose clamp technique, subjects underwent a hypoglycemic state in one condition and a euglycemic state in the control condition. Regularly, blood was sampled for assessment of hormonal status, and questionnaires were filled out to assess delay discounting and symptom awareness. After normalizing blood glucose concentrations, subjects were free to eat from a standardized test buffet, followed by a snack test. Delay discounting was higher in obese than in lean men throughout experiments (p < 0.03). However, we did not observe significant discounting differences between glucose conditions (p > 0.1). Furthermore, the discounting performance did not correlate with food intake from the test buffet or snack test (p > 0.3). As a response to hypoglycemia, hormonal counterregulation was pronounced in both weight groups (p < 0.03), but responses of ACTH, norepinephrine and glucagon were stronger in obese compared to lean men (p < 0.03). Also, intake from the high-calorie buffet after hypoglycemia compared to euglycemia was higher in obese subjects (p < 0.02) but comparable in lean men (p > 0.5). Our data suggest that augmented delay discounting is a robust feature in obesity that is not linked to glucose levels or actual food intake. With our

  15. Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells.

    PubMed

    Prabakar, Kamalaveni R; Domínguez-Bendala, Juan; Molano, R Damaris; Pileggi, Antonello; Villate, Susana; Ricordi, Camillo; Inverardi, Luca

    2012-01-01

    We sought to assess the potential of human cord blood-derived mesenchymal stem cells (CB-MSCs) to derive insulin-producing, glucose-responsive cells. We show here that differentiation protocols based on stepwise culture conditions initially described for human embryonic stem cells (hESCs) lead to differentiation of cord blood-derived precursors towards a pancreatic endocrine phenotype, as assessed by marker expression and in vitro glucose-regulated insulin secretion. Transplantation of these cells in immune-deficient animals shows human C-peptide production in response to a glucose challenge. These data suggest that human cord blood may be a promising source for regenerative medicine approaches for the treatment of diabetes mellitus.

  16. Blood glucose meters and accessibility to blind and visually impaired people.

    PubMed

    Burton, Darren M; Enigk, Matthew G; Lilly, John W

    2012-03-01

    In 2007, five blood glucose meters (BGMs) were introduced with integrated speech output necessary for use by persons with vision loss. One of those five meters had fully integrated speech output, allowing a person with vision loss independence in accessing all features and functions of the meter. In comparison, 13 BGMs with integrated speech output were available in 2011. Accessibility attributes of these 11 meters were tabulated and product design features examined. All 13 meters were found to be usable by persons with vision loss to obtain a blood glucose measurement. However, only 4 of them featured the fully integrated speech output necessary for a person with vision loss to access all features and functions independently. © 2012 Diabetes Technology Society.

  17. Perceived diabetes task competence mediates the relationship of both negative and positive affect with blood glucose in adolescents with type 1 diabetes.

    PubMed

    Fortenberry, Katherine T; Butler, Jorie M; Butner, Jonathan; Berg, Cynthia A; Upchurch, Renn; Wiebe, Deborah J

    2009-02-01

    Adolescents dealing with type 1 diabetes experience disruptions in affect and diabetes management that may influence their blood glucose. A daily diary format examined whether daily fluctuations in both negative and positive affect were associated with adolescents' perceived diabetes task competence (DTC) and blood glucose, and whether perceived DTC mediated the relationship between daily affect and blood glucose. Sixty-two adolescents with type 1 diabetes completed a 2-week daily diary, which included daily measures of affect and perceived DTC, then recorded their blood glucose readings at the end of the day. We utilized hierarchical linear modeling to examine whether daily perceived DTC mediated the relationship between daily emotion and blood glucose. Daily perceived DTC mediated the relationship of both negative and positive affect with daily blood glucose. This study suggests that within the ongoing process of self-regulation, daily affect may be associated with blood glucose by influencing adolescents' perception of competence on daily diabetes tasks.

  18. Evaluation of the performance of the OneTouch Select Plus blood glucose test system against ISO 15197:2013.

    PubMed

    Setford, Steven; Smith, Antony; McColl, David; Grady, Mike; Koria, Krisna; Cameron, Hilary

    2015-01-01

    Assess laboratory and in-clinic performance of the OneTouch Select(®) Plus test system against ISO 15197:2013 standard for measurement of blood glucose. System performance assessed in laboratory against key patient, environmental and pharmacologic factors. User performance was assessed in clinic by system-naïve lay-users. Healthcare professionals assessed system accuracy on diabetes subjects in clinic. The system demonstrated high levels of performance, meeting ISO 15197:2013 requirements in laboratory testing (precision, linearity, hematocrit, temperature, humidity and altitude). System performance was tested against 28 interferents, with an adverse interfering effect only being recorded for pralidoxime iodide. Clinic user performance results fulfilled ISO 15197:2013 accuracy criteria. Subjects agreed that the color range indicator clearly showed if they were low, in-range or high and helped them better understand glucose results. The system evaluated is accurate and meets all ISO 15197:2013 requirements as per the tests described. The color range indicator helped subjects understand glucose results and supports patients in following healthcare professional recommendations on glucose targets.

  19. Clinical results from a noninvasive blood glucose monitor

    NASA Astrophysics Data System (ADS)

    Blank, Thomas B.; Ruchti, Timothy L.; Lorenz, Alex D.; Monfre, Stephen L.; Makarewicz, M. R.; Mattu, Mutua; Hazen, Kevin

    2002-05-01

    Non-invasive blood glucose monitoring has long been proposed as a means for advancing the management of diabetes through increased measurement and control. The use of a near-infrared, NIR, spectroscopy based methodology for noninvasive monitoring has been pursued by a number of groups. The accuracy of the NIR measurement technology is limited by challenges related to the instrumentation, the heterogeneity and time-variant nature of skin tissue, and the complexity of the calibration methodology. In this work, we discuss results from a clinical study that targeted the evaluation of individual calibrations for each subject based on a series of controlled calibration visits. While the customization of the calibrations to individuals was intended to reduce model complexity, the extensive requirements for each individual set of calibration data were difficult to achieve and required several days of measurement. Through the careful selection of a small subset of data from all samples collected on the 138 study participants in a previous study, we have developed a methodology for applying a single standard calibration to multiple persons. The standard calibrations have been applied to a plurality of individuals and shown to be persistent over periods greater than 24 weeks.

  20. Predictors of Daily Blood Glucose Monitoring in Appalachian Ohio

    ERIC Educational Resources Information Center

    Raffle, Holly; Ware, Lezlee J.; Ruhil, Anirudh V. S.; Hamel-Lambert, Jane; Denham, Sharon A.

    2012-01-01

    Objective: To determine factors contributing to successful diabetes self-management in Appalachia, as evidenced by daily blood glucose monitoring. Methods: A telephone survey (N = 3841) was conducted to assess health status and health care access. The current investigation is limited to the subset of this sample who report having diabetes (N =…

  1. Effects on cognitive performance of modulating the postprandial blood glucose profile at breakfast.

    PubMed

    Nilsson, A; Radeborg, K; Björck, I

    2012-09-01

    Considering the importance of glucose as a brain substrate, the postprandial rate of glucose delivery to the blood could be expected to affect cognitive functions. The purpose was to evaluate to what extent the rate of glucose absorption affected measures of cognitive performance in the postprandial period. In addition, cognitive performance was evaluated in relation to individual glucoregulation. A white wheat bread (WWB) enriched with guar gum (G-WWB) with the capacity to produce a low but sustained blood glucose net increment was developed. The G-WWB was evaluated in the postprandial period after breakfast with respect to effects on cognitive function (working memory and selective attention (SA)) in 40 healthy adults (49-71 years, body mass index 20-29 kg/m(2)), using a high glycaemic index WWB for comparison in a randomised crossover design. The G-WWB improved outcome in the cognitive tests (SA test) in the later postprandial period (75-225 min) in comparison with the WWB (P<0.01). Subjects with better glucoregulation performed superior in cognitive tests compared with subjects with worse glucoregulation (P<0.05). Beneficial effects on cognitive performance were observed with the G-WWB in the late postprandial period. The positive effect is suggested to emanate from improved insulin sensitivity, possibly in a combination with an enhanced neural energy supply. The results highlight the importance of carbohydrate foods that induces a low but sustained blood glucose profile in enhancing postprandial cognitive functions.

  2. Fructo-oligosaccharide effects on blood glucose: an overview.

    PubMed

    Costa, Graciana Teixeira; Guimarães, Sergio Botelho; Sampaio, Helena Alves de Carvalho

    2012-03-01

    To identify the current status of scientific knowledge in fructo-oligosaccharides (FOS), non-conventional sugars that play an important role in glycemia control. We performed a search for scientific articles in MEDLINE and LILACS databases, from January 1962 to December 2011, using English/Portuguese key words: "blood glucose/glicemia", "prebiotics/prebióticos" and "dietary fiber/fibras na dieta". From an initial number of 434 references, some repeated, 43 references published from 1962 to 2011 were included in this study. The selected texts were distributed in three topics: (1) metabolism of FOS, (2) FOS and experimental studies involving glucose and (3) human studies involving glucose and FOS. Five studies have shown that the use of FOS reduces the fecal content and increases intestinal transit time. Experimental studies have shown that dietary supplementation with high doses (60 g/Kg) of propionate, a short-chain fatty acid decreased glycemia. The use of lower doses (3 g/kg) did not produce the same results. Study in subjects with diabetes type II showed that the addition of 8 grams of FOS in the diet for 14 days, caused a reduction in serum glucose. In another study with healthy subjects, there were no changes in glycemic control. This review demonstrates that consumption of FOS has a beneficial influence on glucose metabolism. The controversies appear to be due to inadequate methodological designs and/or the small number of individuals included in some studies.

  3. Altered blood glucose concentration is associated with risk of death among patients with community-acquired Gram-negative rod bacteremia.

    PubMed

    Peralta, Galo; Sánchez, M Blanca; Garrido, J Carlos; Ceballos, Begoña; Mateos, Fátima; De Benito, Inés; Roiz, M Pía

    2010-06-22

    Altered blood glucose concentration is commonly observed in patients with sepsis, even among those without hypoglycemic treatments or history of diabetes mellitus. These alterations in blood glucose are potentially detrimental, although the precise relationship with outcome in patients with bacteremia has not been yet determined. A retrospective cohort study design for analyzing patients with Gram negative rod bacteremia was employed, with the main outcome measure being in-hospital mortality. Patients were stratified in quintiles accordingly deviation of the blood glucose concentration from a central value with lowest mortality. Cox proportional-hazards regression model was used for determining the relationship of same day of bacteremia blood glucose and death. Of 869 patients identified 63 (7.4%) died. Same day of bacteremia blood glucose concentration had a U-shaped relationship with in-hospital mortality. The lowest mortality (2%) was detected in the range of blood glucose concentration from 150 to 160 mg/dL. Greater deviation of blood glucose concentration from the central value of this range (155 mg/dL, reference value) was directly associated with higher risk of death (p = 0.002, chi for trend). The low-risk group (quintile 1) had a mortality of 3.3%, intermediate-risk group (quintiles 2, 3 and 4) a mortality of 7.1%, and the high-risk group (quintile 5) a mortality of 12.05%. In a multivariable Cox regression model, the hazard ratio for death among patients in the intermediate-risk group as compared with that in the low risk group was 2.88 (95% confidence interval, 1.01 to 8.18; P = 0.048), and for the high risk group it was 4.26 (95% confidence interval, 1.41 to 12.94; P = 0.01). Same day of bacteremia blood glucose concentration is related with outcome of patients with Gram-negative rod bacteremia. Lowest mortality is detected in patients with blood glucose concentration in an interval of 150-160 mg/dL. Deviations from these values are associated with an

  4. Altered blood glucose concentration is associated with risk of death among patients with community-acquired Gram-negative rod bacteremia

    PubMed Central

    2010-01-01

    Background Altered blood glucose concentration is commonly observed in patients with sepsis, even among those without hypoglycemic treatments or history of diabetes mellitus. These alterations in blood glucose are potentially detrimental, although the precise relationship with outcome in patients with bacteremia has not been yet determined. Methods A retrospective cohort study design for analyzing patients with Gram negative rod bacteremia was employed, with the main outcome measure being in-hospital mortality. Patients were stratified in quintiles accordingly deviation of the blood glucose concentration from a central value with lowest mortality. Cox proportional-hazards regression model was used for determining the relationship of same day of bacteremia blood glucose and death. Results Of 869 patients identified 63 (7.4%) died. Same day of bacteremia blood glucose concentration had a U-shaped relationship with in-hospital mortality. The lowest mortality (2%) was detected in the range of blood glucose concentration from 150 to 160 mg/dL. Greater deviation of blood glucose concentration from the central value of this range (155 mg/dL, reference value) was directly associated with higher risk of death (p = 0.002, chi for trend). The low-risk group (quintile 1) had a mortality of 3.3%, intermediate-risk group (quintiles 2, 3 and 4) a mortality of 7.1%, and the high-risk group (quintile 5) a mortality of 12.05%. In a multivariable Cox regression model, the hazard ratio for death among patients in the intermediate-risk group as compared with that in the low risk group was 2.88 (95% confidence interval, 1.01 to 8.18; P = 0.048), and for the high risk group it was 4.26 (95% confidence interval, 1.41 to 12.94; P = 0.01). Conclusions Same day of bacteremia blood glucose concentration is related with outcome of patients with Gram-negative rod bacteremia. Lowest mortality is detected in patients with blood glucose concentration in an interval of 150-160 mg/dL. Deviations

  5. Comparison electrical stimulation and passive stretching for blood glucose control type 2 diabetes mellitus patients

    NASA Astrophysics Data System (ADS)

    Arsianti, Rika Wahyuni; Parman, Dewy Haryanti; Lesmana, Hendy

    2018-04-01

    Physical exercise is one of the cornerstones for management and treatment type 2 diabetes mellitus. But not all people are able to perform physical exercise because of their physical limitation condition. The strategy for those people in this study is electrical stimulation and passive stretching. The aim of this study is to find out the effect of electrical stimulation and passive stretching to lowering blood glucose level. 20 subjects is divided into electrical stimulation and passive stretching group. The provision of electrical stimulation on lower extremities muscles for 30 minutes for electrical stimulation group (N=10). And other underwent passive stretching for 30 minutes (N=10). The result shows that blood glucose level is decrease from 192.9 ± 10.7087 mg/dL to 165.3 ± 10.527 mg/dL for electrical stimulation intervention group while for the passive stretching group the blood glucose decrease from 153 ± 12.468 mg/dL to 136.1 ± 12.346 mg/dL. Both electrical stimulation and passive stretching are effective to lowering blood glucose level and can be proposed for those people restricted to perform exercise.

  6. Oral administration of Dictyostelium differentiation-inducing factor 1 lowers blood glucose levels in streptozotocin-induced diabetic rats.

    PubMed

    Kawaharada, Ritsuko; Nakamura, Akio; Takahashi, Katsunori; Kikuchi, Haruhisa; Oshima, Yoshiteru; Kubohara, Yuzuru

    2016-06-15

    Differentiation-inducing factor 1 (DIF-1), originally discovered in the cellular slime mold Dictyostelium discoideum, and its derivatives possess pharmacological activities, such as the promotion of glucose uptake in non-transformed mammalian cells in vitro. Accordingly, DIFs are considered promising lead candidates for novel anti-diabetic drugs. The aim of this study was to assess the anti-diabetic and toxic effects of DIF-1 in mouse 3T3-L1 fibroblast cells in vitro and in diabetic rats in vivo. Main methods We investigated the in vitro effects of DIF-1 and DIF-1(3M), a derivative of DIF-1, on glucose metabolism in 3T3-L1 cells by using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS). We also examined the effects of DIF-1 on blood glucose levels in streptozotocin (STZ)-induced rats. CE-TOF-MS revealed that 20μM DIF-1 and 20μM DIF-1(3M) promoted glucose uptake and metabolism in 3T3-L1 cells. Oral administration of DIF-1 (30mg/kg) significantly lowered basal blood glucose levels in STZ-treated rats and promoted a decrease in blood glucose levels after oral glucose loading (2.5g/kg) in the rats. In addition, daily oral administration of DIF-1 (30mg/kg/day) for 1wk significantly lowered the blood glucose levels in STZ-treated rats but did not affect their body weight and caused only minor alterations in the levels of other blood analytes. These results indicate that DIF-1 may be a good lead compound for the development of anti-diabetic drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The potential of cinnamon to reduce blood glucose levels in patients with type 2 diabetes and insulin resistance.

    PubMed

    Kirkham, S; Akilen, R; Sharma, S; Tsiami, A

    2009-12-01

    Cinnamon has a long history as an antidiabetic spice, but trials involving cinnamon supplementation have produced contrasting results. The aim of this review was to examine the results of randomized controlled clinical trials of cinnamon and evaluate the therapeutic potential amongst patients with diabetes and insulin-resistant patients, particularly the ability to reduce blood glucose levels and inhibit protein glycation. A systematic electronic literature search using the medical subject headings 'cinnamon' and 'blood glucose' was carried out to include randomized, placebo-controlled in vivo clinical trials using Cinnamomum verum or Cinnamomum cassia conducted between January 2003 and July 2008. Five type 2 diabetic and three non-diabetic studies (total N = 311) were eligible. Two of the diabetic studies illustrated significant fasting blood glucose (FBG) reductions of 18-29% and 10.3% (p < 0.05), supported by one non-diabetic trial reporting an 8.4% FBG reduction (p < 0.01) vs. placebo, and another illustrating significant reductions in glucose response using oral glucose tolerance tests (p < 0.05). Three diabetic studies reported no significant results. Whilst definitive conclusions cannot be drawn regarding the use of cinnamon as an antidiabetic therapy, it does possess antihyperglycaemic properties and potential to reduce postprandial blood glucose levels. Further research is required to confirm a possible correlation between baseline FBG and blood glucose reduction and to assess the potential to reduce pathogenic diabetic complications with cinnamon supplementation.

  8. Polarization sensitive optical low-coherence reflectometry for blood glucose monitoring in human subjects

    NASA Astrophysics Data System (ADS)

    Solanki, Jitendra; Choudhary, Om Prakash; Sen, P.; Andrews, J. T.

    2013-07-01

    A device based on polarization sensitive optical low-coherence reflectometry is developed to monitor blood glucose levels in human subjects. The device was initially tested with tissue phantom. The measurements with human subjects for various glucose concentration levels are found to be linearly dependent on the ellipticity obtainable from the home-made phase-sensitive optical low-coherence reflectometry device. The linearity obtained between glucose concentration and ellipticity are explained with theoretical calculations using Mie theory. A comparison of results with standard clinical methods establishes the utility of the present device for non-invasive glucose monitoring.

  9. Texturing Blood-Glucose-Monitoring Optics Using Oxygen Beams

    NASA Technical Reports Server (NTRS)

    Banks, Bruce

    2005-01-01

    A method has been invented for utilizing directed, hyperthermal oxygen atoms and ions for texturing tips of polymeric optical fibers or other polymeric optical components for use in optical measurement of concentration of glucose in blood. The required texture of the sensory surface of such a component amounts to a landscape of microscopic hills having high aspect ratios (hills taller than they are wide), with an average distance between hills of no more than about 5 m. This limit on the average distance between hills is chosen so that blood cells (which are wider) cannot enter the valleys between the hills, where they could obstruct optical sensing of glucose in the blood plasma. On the other hand, the plasma is required to enter the valleys, and a high aspect ratio is intended to maximize the hillside and valley surface area in contact with the plasma, thereby making it possible to obtain a given level of optical glucose- measurement sensitivity with a relatively small volume of blood. The present method of texturing by use of directed, hyperthermal (particle energy >1 eV) oxygen atoms and ions stands in contrast to a prior method of texturing by use of thermal monatomic oxygen characterized by a temperature of the order of 0.5 eV. The prior method yields low-aspect- ratio (approximately hemispherical) craters that are tens of microns wide . too wide to exclude blood cells. The figure schematically depicts parts of a typical apparatus for texturing according to the present method. One or more polymeric optical components to be textured (e.g., multiple optical fibers bundled together for simultaneous processing) are mounted in a vacuum chamber facing a suitable ion- or atom-accelerating device capable of generating a beam of oxygen atoms and/or ions having kinetic energies >1 eV. Typically, such a device includes a heated cathode, in which case it is desirable to interpose a water-cooled thermal-radiation shield to prevent melting of the polymeric component(s) to

  10. Smart point-of-care systems for molecular diagnostics based on nanotechnology: whole blood glucose analysis

    NASA Astrophysics Data System (ADS)

    Devadhasan, Jasmine P.; Kim, Sanghyo

    2015-07-01

    Complementary metal oxide semiconductor (CMOS) image sensors are received great attention for their high efficiency in biological applications. The present work describes a CMOS image sensor-based whole blood glucose monitoring system through a point-of-care (POC) approach. A simple poly-ethylene terephthalate (PET) film chip was developed to carry out the enzyme kinetic reaction at various concentrations of blood glucose. In this technique, assay reagent was adsorbed onto amine functionalized silica (AFSiO2) nanoparticles in order to achieve glucose oxidation on the PET film chip. The AFSiO2 nanoparticles can immobilize the assay reagent with an electrostatic attraction and eased to develop the opaque platform which was technically suitable chip to analyze by the camera module. The oxidized glucose then produces a green color according to the glucose concentration and is analyzed by the camera module as a photon detection technique. The photon number decreases with increasing glucose concentration. The simple sensing approach, utilizing enzyme immobilized AFSiO2 nanoparticle chip and assay detection method was developed for quantitative glucose measurement.

  11. Impact of control of blood glucose level during treatment of sudden deafness in diabetics: relationship with prognosis.

    PubMed

    Min, Sang-Ki; Shin, Ji-Ho; Chang, Mun-Young; Min, Hyun-Jin; Kim, Kyung-Soo; Lee, Sei-Young; Yang, Hoon-Shik; Hong, Young-Ho; Mun, Seog-Kyun

    2017-03-01

    The objective of this study is to investigate the impact of control of blood glucose level during treatment of sudden deafness. A retrospective study was performed involving 197 patients from January, 2011 to September, 2015. All patients were administrated prednisolone (Pharmaprednisolone tab ® , 5 mg/T; KoreaPharma) p.o under the following regimen: 60 mg/day for 4 days, 40 mg/day for 2 days, 30 mg/day for 1 day, 20 mg/day for 1 day, and 10 mg/day for 2 days. During treatment, pure tone audiometry and blood glucose level were investigated for each patient and the results were statistically analyzed. Mean hearing improvement was 19.2 dB for the non-diabetes group and 24.8 dB for the diabetes group. The greater improvement for diabetics was not statistically significant (p = 0.146). Hearing improvement was 25.1 dB for subjects with mean blood glucose <200 mg/dl and 24.6 dB for subjects with mean blood glucose >200 mg/dl; the difference was not statistically significant (p = 0.267). Mean blood glucose level was 200.8 mg/dl for subjects with hearing improvement >20 dB and 181.8 mg/dl for subjects with hearing improvement <20 dB; the difference was not statistically significant (p = 0.286). Control of blood glucose level during treatment of sudden deafness does not have a direct effect on prognosis.

  12. Light Control of Insulin Release and Blood Glucose Using an Injectable Photoactivated Depot.

    PubMed

    Sarode, Bhagyesh R; Kover, Karen; Tong, Pei Y; Zhang, Chaoying; Friedman, Simon H

    2016-11-07

    In this work we demonstrate that blood glucose can be controlled remotely through light stimulated release of insulin from an injected cutaneous depot. Human insulin was tethered to an insoluble but injectable polymer via a linker, which was based on the light cleavable di-methoxy nitrophenyl ethyl (DMNPE) group. This material was injected into the skin of streptozotocin-treated diabetic rats. We observed insulin being released into the bloodstream after a 2 min trans-cutaneous irradiation of this site by a compact LED light source. Control animals treated with the same material, but in which light was blocked from the site, showed no release of insulin into the bloodstream. We also demonstrate that additional pulses of light from the light source result in additional pulses of insulin being absorbed into circulation. A significant reduction in blood glucose was then observed. Together, these results demonstrate the feasibility of using light to allow for the continuously variable control of insulin release. This in turn has the potential to allow for the tight control of blood glucose without the invasiveness of insulin pumps and cannulas.

  13. Early blood glucose profile and neurodevelopmental outcome at two years in neonatal hypoxic-ischaemic encephalopathy

    PubMed Central

    2011-01-01

    Background To examine the blood glucose profile and the relationship between blood glucose levels and neurodevelopmental outcome in term infants with hypoxic-ischaemic encephalopathy. Methods Blood glucose values within 72 hours of birth were collected from 52 term infants with hypoxic-ischaemic encephalopathy. Hypoglycaemia [< 46.8 mg/dL (2.6 mmol/L)] and hyperglycaemia [> 150 mg/dL (8.3 mmol/L)] were correlated to neurodevelopmental outcome at 24 months of age. Results Four fifths of the 468 blood samples were in the normoglycaemic range (392/468:83.8%). Of the remaining 76 samples, 51.3% were in the hypoglycaemic range and (48.7%) were hyperglycaemic. A quarter of the hypoglycaemic samples (28.2%:11/39) and a third of the hyperglycaemic samples (32.4%:12/37) were recorded within the first 30 minutes of life. Mean (SD) blood glucose values did not differ between infants with normal and abnormal outcomes [4.89(2.28) mmol/L and 5.02(2.35) mmol/L, p value = 0.15] respectively. In term infants with hypoxic-ischaemic encephalopathy, early hypoglycaemia (between 0-6 hours of life) was associated with adverse outcome at 24 months of age [OR = 5.8, CI = 1.04-32)]. On multivariate analysis to adjust for grade of HIE this association was not statistically significant. Late hypoglycaemia (6-72 hours of life) was not associated with abnormal outcome [OR = 0.22, CI (0.04-1.14)]. The occurrence of hyperglycaemia was not associated with adverse outcome. Conclusion During the first 72 hours of life, blood glucose profile in infants with hypoxic-ischaemic encephalopathy varies widely despite a management protocol. Early hypoglycaemia (0-6 hours of life) was associated with severe HIE, and thereby; adverse outcome. PMID:21294901

  14. Estimating Plasma Glucose from Interstitial Glucose: The Issue of Calibration Algorithms in Commercial Continuous Glucose Monitoring Devices

    PubMed Central

    Rossetti, Paolo; Bondia, Jorge; Vehí, Josep; Fanelli, Carmine G.

    2010-01-01

    Evaluation of metabolic control of diabetic people has been classically performed measuring glucose concentrations in blood samples. Due to the potential improvement it offers in diabetes care, continuous glucose monitoring (CGM) in the subcutaneous tissue is gaining popularity among both patients and physicians. However, devices for CGM measure glucose concentration in compartments other than blood, usually the interstitial space. This means that CGM need calibration against blood glucose values, and the accuracy of the estimation of blood glucose will also depend on the calibration algorithm. The complexity of the relationship between glucose dynamics in blood and the interstitial space, contrasts with the simplistic approach of calibration algorithms currently implemented in commercial CGM devices, translating in suboptimal accuracy. The present review will analyze the issue of calibration algorithms for CGM, focusing exclusively on the commercially available glucose sensors. PMID:22163505

  15. Efficacy of a church-based lifestyle intervention programme to control high normal blood pressure and/or high normal blood glucose in church members: a randomized controlled trial in Pretoria, South Africa.

    PubMed

    Pengpid, Supa; Peltzer, Karl; Skaal, Linda

    2014-06-06

    In persons 15 years and above in South Africa the prevalence of pre-diabetes and diabetes has been estimated at 9.1% and 9.6%, respectively, and the prevalence of systolic prehypertension and hypertension, 38.2% and 24.6%, respectively. Elevated blood glucose and elevated blood pressure are prototype of preventable chronic cardiovascular disease risk factors.Lifestyle interventions have been shown to control high normal blood pressure and/or high normal blood glucose. This study proposes to evaluate the efficacy of a community (church)-based lifestyle intervention programme to control high normal blood pressure and/or high normal blood glucose in church members in a randomized controlled trial in Gauteng, South Africa. The objectives are to: (1) measure non-communicable diseases profile, including hypertension and diabetes, health behaviours, weight management and psychological distress of church members; (2) measure the reduction of blood glucose and blood pressure levels after the intervention; (3) prevent the development of impaired glucose tolerance; (4) compare health behaviours, weight management and psychological distress, blood glucose and blood pressure levels between intervention and control groups, and within group during 6, 12, 24 and 36 months during and post intervention. The study will use a group-randomized design, recruiting 300 church members from 12 churches. Churches will be randomly assigned to experimental and control conditions. Lifestyle interventions may prevent from the development of high blood pressure and/or diabetes. The findings will impact public health and will enable the health ministry to formulate policy related to lifestyle interventions to control blood pressure and glucose. PACTR201105000297151.

  16. Cinnamon intake lowers fasting blood glucose: an updated meta-analysis

    USDA-ARS?s Scientific Manuscript database

    OBJECTIVE – To determine if meta-analysis of recent clinical studies of cinnamon intake by people with Type II diabetes and/or prediabetes resulted in significant changes in fasting blood glucose. RESEARCH DESIGN AND METHODS -- Published clinical studies were identified using a literature search (P...

  17. Reliable glucose monitoring by ex-vivo blood microdialysis and infrared spectrometry for patients in critical care

    NASA Astrophysics Data System (ADS)

    Vahlsing, Thorsten; Delbeck, Sven; Budde, Janpeter; Ihrig, Dieter; Leonhardt, Steffen; Heise, H. Michael

    2017-02-01

    Blood glucose monitoring has been realised by biosensors in combination with micro-dialysis, using either subcutaneously or intravascularly implanted catheters. Another alternative is ex-vivo micro-dialysis of continuously sampled heparinized whole blood available from the patient even under critical care conditions. However, most devices suffer from inaccuracies due to variable recovery rates. Infrared spectrometry has been suggested for analyte quantification, since besides glucose other clinically relevant analytes can be simultaneously determined that are, e.g., important for intensive care patients. Perfusates with acetate and mannitol have been investigated as recovery markers (internal standards). In contrast to the previously used acetate, an almost linear dependency between mannitol loss and glucose recovery was observed for micro-dialysis of glucose spiked aqueous albumin solutions or porcine heparinized whole blood when testing flat membranes within a custom-made micro-dialysator. By this, a straightforward compensation of any dialysis recovery rate variation during patient monitoring is possible. The combination of microdialysis with infrared spectrometry provides a calibration-free assay for accurate continuous glucose monitoring, as reference spectra of dialysate components can be a-priori allocated.

  18. Analysis Article on the Performance Analysis of the OneTouch® UltraVue™ Blood Glucose Monitoring System

    PubMed Central

    Solnica, Bogdan

    2009-01-01

    In this issue of Journal of Diabetes Science and Technology, Chang and colleagues present the analytical performance evaluation of the OneTouch® UltraVue™ blood glucose meter. This device is an advanced construction with a color display, used-strip ejector, no-button interface, and short assay time. Accuracy studies were performed using a YSI 2300 analyzer, considered the reference. Altogether, 349 pairs of results covering a wide range of blood glucose concentrations were analyzed. Patients with diabetes performed a significant part of the tests. Obtained results indicate good accuracy of OneTouch UltraVue blood glucose monitoring system, satisfying the International Organization for Standardization recommendations and thereby locating >95% of tests within zone A of the error grid. Results of the precision studies indicate good reproducibility of measurements. In conclusion, the evaluation of the OneTouch UltraVue meter revealed good analytical performance together with convenient handling useful for self-monitoring of blood glucose performed by elderly diabetes patients. PMID:20144432

  19. Evaluation of MOSFET-type glucose sensor using platinum electrode with glucose oxidase

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Hamamoto, Yasutaro; Hirano, Yoshiaki

    2005-02-01

    As the population ages, health management will be one of the important issues. The development of a safe medical machine based on MEMS technologies for the human body will be the primary research project in the future. We have developed the glucose sensor, as one of the medical based devices, for use in the Health Monitoring System (HMS). HMS is the device that continuously monitors human health conditions. For example, blood is the monitoring target of HMS. The glucose sensor specifically detects the glucose levels of the blood and monitors the glucose concentration as the blood sugar level. This glucose sensor has a "separated Au electrode", which immobilizes GOx. In our previous work, GOx was immobilized onto Au electrode by the SAMs (Self-Assembled Monolayer) method, and the sensor, using this working electrode, detected the glucose concentration of an aqueous glucose solution. In this report, we used a Pt electrode, which immobilized GOx, as a working electrode. Au electrode, which was used previously, was dissolved by the application of current in the presence of chloride ions. Based on the above-mentioned fact, a new working electrode, which immobilized GOx, was produced using Pt, which did not possess such characteristics. These Pt working electrodes were produced using the covalent binding method and the cross-link method, and both the electrodes displayed a good sensing property. In addition, the electrode using glutaraldehyde (GA) and bovine serum albumin (BSA) as crosslinking agents was produced, and it displayed better characteristics as compared with those displayed by the electrode that used only GA. Based on the above-mentioned techniques, the improvement in performance of the sensor was confirmed.

  20. Follow-up of blood glucose distribution characteristics in a health examination population in Chengdu from 2010 to 2016.

    PubMed

    Wang, Yuting; Xu, Wangdong; Zhang, Qiongying; Bao, Ting; Yang, Hanwei; Huang, Wenxia; Tang, Huairong

    2018-02-01

    The worldwide prevalence and incidence of diabetes and obesity are increasing in pandemic proportions. Thus, regular health examination is an important way for early detection of diabetes and glucose intolerance. The present study aims to detect the blood glucose distribution characteristics of the participants in the Health Examination Center at West China Hospital, Sichuan University from 2010 to 2016.A prospective cohort included 9168 Chinese participants, aged 18 years or more, who had available information on fasting blood glucose concentrations at the start of the study (2010). Examination surveys were conducted every year from 2010 to 2016. Cases having serum level of fasting blood glucose between 2.2 and 6.1 mmol/L were considered as normality, while serum level of fasting blood glucose < 2.2 or higher than 6.2 mmol/L were considered as abnormality.The percentage of participants having normal level of glucose was gradually reduced both in males and females from 2010 to 2016, by which the percentage of males having normal level of glucose was significantly lower than that in females. Moreover, the mean level of glucose was significantly increased from 2010 to 2016 both in males and females overall, and the mean level of glucose was higher in males compared with that in females every year. Furthermore, we showed that the level of glucose was gradually increased year by year in each age group, and the level of glucose was higher in aged cases compared with the young population.The study population in the current study showed higher levels of glucose with ages increasing, and males indicated higher expression of glucose than that in females. Some preventive action may be adopted early and more attention can be paid to this health-examination population.

  1. Follow-up of blood glucose distribution characteristics in a health examination population in Chengdu from 2010 to 2016

    PubMed Central

    Wang, Yuting; Xu, Wangdong; Zhang, Qiongying; Bao, Ting; Yang, Hanwei; Huang, Wenxia; Tang, Huairong

    2018-01-01

    Abstract The worldwide prevalence and incidence of diabetes and obesity are increasing in pandemic proportions. Thus, regular health examination is an important way for early detection of diabetes and glucose intolerance. The present study aims to detect the blood glucose distribution characteristics of the participants in the Health Examination Center at West China Hospital, Sichuan University from 2010 to 2016. A prospective cohort included 9168 Chinese participants, aged 18 years or more, who had available information on fasting blood glucose concentrations at the start of the study (2010). Examination surveys were conducted every year from 2010 to 2016. Cases having serum level of fasting blood glucose between 2.2 and 6.1 mmol/L were considered as normality, while serum level of fasting blood glucose < 2.2 or higher than 6.2 mmol/L were considered as abnormality. The percentage of participants having normal level of glucose was gradually reduced both in males and females from 2010 to 2016, by which the percentage of males having normal level of glucose was significantly lower than that in females. Moreover, the mean level of glucose was significantly increased from 2010 to 2016 both in males and females overall, and the mean level of glucose was higher in males compared with that in females every year. Furthermore, we showed that the level of glucose was gradually increased year by year in each age group, and the level of glucose was higher in aged cases compared with the young population. The study population in the current study showed higher levels of glucose with ages increasing, and males indicated higher expression of glucose than that in females. Some preventive action may be adopted early and more attention can be paid to this health-examination population. PMID:29465557

  2. A glucose-centric perspective of hyperglycemia.

    PubMed

    Ramasarma, T; Rafi, M

    2016-02-01

    targets. Some are effective in slowing formation of glucose in intestines by inhibiting α-glucosidases (e.g., salacia/saptarangi). Knowledge gained from French lilac on active guanidine group helped developing Metformin (1,1-dimethylbiguanide) one of the popular drugs in use. One strategy of keeping sugar content in diets in check is to use artificial sweeteners with no calories, no glucose or fructose and no effect on blood glucose (e.g., steviol, erythrytol). However, the three commonly used non-caloric artificial sweeteners, saccharin, sucralose and aspartame later developed glucose intolerance, the very condition they are expected to evade. Ideal way of keeping blood glucose under 6 mM and HbA1c, the glycation marker of hemoglobin, under 7% in blood is to correct the defects in signals that allow glucose flow into glycogen, still a difficult task with drugs and diets.

  3. Institutional point-of-care glucometer identifies population trends in blood glucose associated with war.

    PubMed

    Boaz, Mona; Matas, Zipora; Chaimy, Tova; Landau, Zohar; Bar Dayan, Yosefa; Berlovitz, Yitzhak; Wainstein, Julio

    2013-11-01

    Acute physiological stress has been shown to impair glucose homeostasis. War is a period of acute psychological stress, and its effect on glucose control is unknown. In this study random point-of-care (POC) glucose levels were measured using an automated, institutional glucometer in hospitalized adult patients prior to versus during the Israeli Pillar of Defense campaign (November 7-10, 2012). Random POC glucose values measured with the institutional blood glucose monitoring system were obtained 1 week prior to the Pillar of Defense campaign (November 7-10, 2012) and compared with values to those obtained during the first 4 days of the war (November 14-17, 2012). In total, 3,573 POC glucose measures were included: 1,865 during the pre-war period and 1,708 during the campaign. POC glucose measures were significantly higher during the war compared with the week preceding the war: 9.7±4.7 versus 9.3±4.2 mmol/L (P=0.02). In a general linear model, period (pre-war vs. during war) persisted as a significant predictor of POC glucose even after controlling for age, sex, and department type (internal medicine vs. surgical). Acute stress, such as a wartime situation, is associated with a significant increase in random blood glucose values in a population of hospitalized adults. Long-term follow-up of the individuals hospitalized during these two periods can reveal differences in morbidity and mortality trends.

  4. Measuring changes in lipid and blood glucose values in the health and wellness program of Prudential Financial, Inc.

    PubMed

    Short, Meghan E; Goetzel, Ron Z; Young, Jared S; Kowlessar, Niranjana M; Liss-Levinson, Rivka C; Tabrizi, Maryam J; Roemer, Enid Chung; Sabatelli, Adriano A; Winick, Keith; Montes, Myrtho; Crighton, K Andrew

    2010-08-01

    To determine the effect of health promotion programs of Prudential Financial, Inc on biometric measures of blood lipids and glucose. Using actual biometric and self-reported measures of blood lipids and glucose values for the employees of Prudential Financial, Inc, we examined 1) the extent to which self-reported lipid and blood glucose values correlate to laboratory data, 2) whether self-reported and measured lipid values differ for physically active and sedentary employees, and 3) whether participation in a disease management program affects employees' lipid measures. We found significant differences in self-reported and measured total cholesterol and low-density lipoprotein values, although these differences and those for all lipid and blood glucose values were not clinically meaningful. Supporting previous clinical studies, high-density lipoprotein values were significantly higher for fitness center users compared with sedentary employees. Finally, disease management participants showed a significant reduction in total cholesterol and low-density lipoprotein during a 3-year period compared with nonparticipants. On average, the employees of Prudential Financial, Inc were aware of and accurately reported their lipid and blood glucose levels. Results from this study support the value of evaluating corporate health promotion programs, using measured biometric outcomes.

  5. New Criteria for Assessing the Accuracy of Blood Glucose Monitors Meeting, October 28, 2011

    PubMed Central

    Walsh, John; Roberts, Ruth; Vigersky, Robert A.; Schwartz, Frank

    2012-01-01

    Glucose meters (GMs) are routinely used for self-monitoring of blood glucose by patients and for point-of-care glucose monitoring by health care providers in outpatient and inpatient settings. Although widely assumed to be accurate, numerous reports of inaccuracies with resulting morbidity and mortality have been noted. Insulin dosing errors based on inaccurate GMs are most critical. On October 28, 2011, the Diabetes Technology Society invited 45 diabetes technology clinicians who were attending the 2011 Diabetes Technology Meeting to participate in a closed-door meeting entitled New Criteria for Assessing the Accuracy of Blood Glucose Monitors. This report reflects the opinions of most of the attendees of that meeting. The Food and Drug Administration (FDA), the public, and several medical societies are currently in dialogue to establish a new standard for GM accuracy. This update to the FDA standard is driven by improved meter accuracy, technological advances (pumps, bolus calculators, continuous glucose monitors, and insulin pens), reports of hospital and outpatient deaths, consumer complaints about inaccuracy, and research studies showing that several approved GMs failed to meet FDA or International Organization for Standardization standards in post-approval testing. These circumstances mandate a set of new GM standards that appropriately match the GMs’ analytical accuracy to the clinical accuracy required for their intended use, as well as ensuring their ongoing accuracy following approval. The attendees of the New Criteria for Assessing the Accuracy of Blood Glucose Monitors meeting proposed a graduated standard and other methods to improve GM performance, which are discussed in this meeting report. PMID:22538160

  6. New Criteria for Assessing the Accuracy of Blood Glucose Monitors meeting, October 28, 2011.

    PubMed

    Walsh, John; Roberts, Ruth; Vigersky, Robert A; Schwartz, Frank

    2012-03-01

    Glucose meters (GMs) are routinely used for self-monitoring of blood glucose by patients and for point-of-care glucose monitoring by health care providers in outpatient and inpatient settings. Although widely assumed to be accurate, numerous reports of inaccuracies with resulting morbidity and mortality have been noted. Insulin dosing errors based on inaccurate GMs are most critical. On October 28, 2011, the Diabetes Technology Society invited 45 diabetes technology clinicians who were attending the 2011 Diabetes Technology Meeting to participate in a closed-door meeting entitled New Criteria for Assessing the Accuracy of Blood Glucose Monitors. This report reflects the opinions of most of the attendees of that meeting. The Food and Drug Administration (FDA), the public, and several medical societies are currently in dialogue to establish a new standard for GM accuracy. This update to the FDA standard is driven by improved meter accuracy, technological advances (pumps, bolus calculators, continuous glucose monitors, and insulin pens), reports of hospital and outpatient deaths, consumer complaints about inaccuracy, and research studies showing that several approved GMs failed to meet FDA or International Organization for Standardization standards in postapproval testing. These circumstances mandate a set of new GM standards that appropriately match the GMs' analytical accuracy to the clinical accuracy required for their intended use, as well as ensuring their ongoing accuracy following approval. The attendees of the New Criteria for Assessing the Accuracy of Blood Glucose Monitors meeting proposed a graduated standard and other methods to improve GM performance, which are discussed in this meeting report. © 2012 Diabetes Technology Society.

  7. Factors interfering with the accuracy of five blood glucose meters used in Chinese hospitals.

    PubMed

    Lv, Hong; Zhang, Guo-jun; Kang, Xi-xiong; Yuan, Hui; Lv, Yan-wei; Wang, Wen-wen; Randall, Rollins

    2013-09-01

    The prevalence of diabetes is increasing in China. Glucose control is very important in diabetic patients. The aim of this study was to compare the accuracy of five glucose meters used in Chinese hospitals with a reference method, in the absence and presence of various factors that may interfere with the meters. Within-run precision of the meters was evaluated include Roche Accu-Chek Inform®, Abbott Precision PCx FreeStyle®, Bayer Contour®, J&J LifeScan SureStep Flexx®, and Nova Biomedical StatStrip®. The interference of hematocrit level, maltose, ascorbic acid, acetaminophen, galactose, dopamine, and uric acid were tested in three levels of blood glucose, namely low, medium, and high concentrations. Accuracy (bias) of the meters and analytical interference by various factors were evaluated by comparing results obtained in whole blood specimens with those in plasma samples of the whole blood specimens run on the reference method. Impact of oxygen tension on above five blood glucose meters was detected. Precision was acceptable and slightly different between meters. There were no significant differences in the measurements between the meters and the reference method. The hematocrit level significantly interfered with all meters, except StatStrip. Measurements were affected to varying degrees by different substances at different glucose levels, e.g. acetaminophen and ascorbic acid (Freestyle), maltose and galactose (FreeStyle, Accu-Chek), uric acid (FreeStyle, Bayer Contour), and dopamine (Bayer Contour). The measurements with the five meters showed a good correlation with the plasma hexokinase reference method, but most were affected by the hematocrit level. Some meters also showed marked interference by other substances. © 2013 Wiley Periodicals, Inc.

  8. Achieving the same for less: improving mood depletes blood glucose for people with poor (but not good) emotion control.

    PubMed

    Niven, Karen; Totterdell, Peter; Miles, Eleanor; Webb, Thomas L; Sheeran, Paschal

    2013-01-01

    Previous studies have found that acts of self-control like emotion regulation deplete blood glucose levels. The present experiment investigated the hypothesis that the extent to which people's blood glucose levels decline during emotion regulation attempts is influenced by whether they believe themselves to be good or poor at emotion control. We found that although good and poor emotion regulators were equally able to achieve positive and negative moods, the blood glucose of poor emotion regulators was reduced after performing an affect-improving task, whereas the blood glucose of good emotion regulators remained unchanged. As evidence suggests that glucose is a limited energy resource upon which self-control relies, the implication is that good emotion regulators are able to achieve the same positive mood with less cost to their self-regulatory resource. Thus, depletion may not be an inevitable consequence of engaging in emotion regulation.

  9. Development and Validation of a Rapid (13)C6-Glucose Isotope Dilution UPLC-MRM Mass Spectrometry Method for Use in Determining System Accuracy and Performance of Blood Glucose Monitoring Devices.

    PubMed

    Matsunami, Risë K; Angelides, Kimon; Engler, David A

    2015-05-18

    There is currently considerable discussion about the accuracy of blood glucose concentrations determined by personal blood glucose monitoring systems (BGMS). To date, the FDA has allowed new BGMS to demonstrate accuracy in reference to other glucose measurement systems that use the same or similar enzymatic-based methods to determine glucose concentration. These types of reference measurement procedures are only comparative in nature and are subject to the same potential sources of error in measurement and system perturbations as the device under evaluation. It would be ideal to have a completely orthogonal primary method that could serve as a true standard reference measurement procedure for establishing the accuracy of new BGMS. An isotope-dilution liquid chromatography/mass spectrometry (ID-UPLC-MRM) assay was developed using (13)C6-glucose as a stable isotope analogue to specifically measure glucose concentration in human plasma, and validated for use against NIST standard reference materials, and against fresh isolates of whole blood and plasma into which exogenous glucose had been spiked. Assay performance was quantified to NIST-traceable dry weight measures for both glucose and (13)C6-glucose. The newly developed assay method was shown to be rapid, highly specific, sensitive, accurate, and precise for measuring plasma glucose levels. The assay displayed sufficient dynamic range and linearity to measure across the range of both normal and diabetic blood glucose levels. Assay performance was measured to within the same uncertainty levels (<1%) as the NIST definitive method for glucose measurement in human serum. The newly developed ID UPLC-MRM assay can serve as a validated reference measurement procedure to which new BGMS can be assessed for glucose measurement performance. © 2015 Diabetes Technology Society.

  10. Impact of partial pressure of oxygen in blood samples on the performance of systems for self-monitoring of blood glucose.

    PubMed

    Schmid, Christina; Baumstark, Annette; Pleus, Stefan; Haug, Cornelia; Tesar, Martina; Freckmann, Guido

    2014-03-01

    The partial pressure of oxygen (pO2) in blood samples can affect glucose measurements with oxygen-sensitive systems. In this study, we assessed the influence of different pO2 levels on blood glucose (BG) measurements with five glucose oxidase (GOD) systems and one glucose dehydrogenase (GDH) system. All selected GOD systems were indicated by the manufacturers to be sensitive to increased oxygen content of the blood sample. Venous blood samples of 16 subjects (eight women, eight men; mean age, 52 years; three with type 1 diabetes, four with type 2 diabetes, and nine without diabetes) were collected. Aliquots of each sample were adjusted to the following pO2 values: ≤45 mm Hg, approximately 70 mm Hg, and ≥150 mm Hg. For each system, five consecutive measurements on each sample were performed using the same test strip lot. Relative differences between the mean BG value at a pO2 level of approximately 70 mm Hg, which was considered to be similar to pO2 values in capillary blood samples, and the mean BG value at pO2 levels ≤45 mm Hg and ≥150 mm Hg were calculated. The GOD systems showed mean relative differences between 11.8% and 44.5% at pO2 values ≤45 mm Hg and between -14.6% and -21.2% at pO2 values ≥150 mm Hg. For the GDH system, the mean relative differences were -0.3% and -0.2% at pO2 values ≤45 mm Hg and ≥150 mm Hg, respectively. The magnitude of the pO2 impact on BG measurements seems to vary among the tested oxygen-sensitive GOD systems. The pO2 range in which oxygen-sensitive systems operate well should be provided in the product information.

  11. Lifestyle, glucose regulation and the cognitive effects of glucose load in middle-aged adults.

    PubMed

    Riby, Leigh M; McLaughlin, Jennifer; Riby, Deborah M; Graham, Cheryl

    2008-11-01

    Interventions aimed at improving glucose regulatory mechanisms have been suggested as a possible source of cognitive enhancement in the elderly. In particular, previous research has identified episodic memory as a target for facilitation after either moderate increases in glycaemia (after a glucose drink) or after improvements in glucose regulation. The present study aimed to extend this research by examining the joint effects of glucose ingestion and glucose regulation on cognition. In addition, risk factors associated with the development of poor glucose regulation in middle-aged adults were considered. In a repeated measures design, thirty-three middle-aged adults (aged 35-55 years) performed a battery of memory and non-memory tasks after either 25 g or 50 g glucose or a sweetness matched placebo drink. To assess the impact of individual differences in glucose regulation, blood glucose measurements were taken on four occasions during testing. A lifestyle and diet questionnaire was also administered. Consistent with previous research, episodic memory ability benefited from glucose ingestion when task demands were high. Blood glucose concentration was also found to predict performance across a number of cognitive domains. Interestingly, the risk factors associated with poor glucose regulation were linked to dietary impacts traditionally associated with poor health, e.g. the consumption of high-sugar sweets and drinks. The research replicates earlier work suggesting that task demands are critical to the glucose facilitation effect. Importantly, the data demonstrate clear associations between elevated glycaemia and relatively poor cognitive performance, which may be partly due to the effect of dietary and lifestyle factors.

  12. Training to estimate blood glucose and to form associations with initial hunger

    PubMed Central

    Ciampolini, Mario; Bianchi, Riccardo

    2006-01-01

    Background The will to eat is a decision associated with conditioned responses and with unconditioned body sensations that reflect changes in metabolic biomarkers. Here, we investigate whether this decision can be delayed until blood glucose is allowed to fall to low levels, when presumably feeding behavior is mostly unconditioned. Following such an eating pattern might avoid some of the metabolic risk factors that are associated with high glycemia. Results In this 7-week study, patients were trained to estimate their blood glucose at meal times by associating feelings of hunger with glycemic levels determined by standard blood glucose monitors and to eat only when glycemia was < 85 mg/dL. At the end of the 7-week training period, estimated and measured glycemic values were found to be linearly correlated in the trained group (r = 0.82; p = 0.0001) but not in the control (untrained) group (r = 0.10; p = 0.40). Fewer subjects in the trained group were hungry than those in the control group (p = 0.001). The 18 hungry subjects of the trained group had significantly lower glucose levels (80.1 ± 6.3 mg/dL) than the 42 hungry control subjects (89.2 ± 10.2 mg/dL; p = 0.01). Moreover, the trained hungry subjects estimated their glycemia (78.1 ± 6.7 mg/dL; estimation error: 3.2 ± 2.4% of the measured glycemia) more accurately than the control hungry subjects (75.9 ± 9.8 mg/dL; estimation error: 16.7 ± 11.0%; p = 0.0001). Also the estimation error of the entire trained group (4.7 ± 3.6%) was significantly lower than that of the control group (17.1 ± 11.5%; p = 0.0001). A value of glycemia at initial feelings of hunger was provisionally identified as 87 mg/dL. Below this level, estimation showed lower error in both trained (p = 0.04) and control subjects (p = 0.001). Conclusion Subjects could be trained to accurately estimate their blood glucose and to recognize their sensations of initial hunger at low glucose concentrations. These results suggest that it is possible

  13. Infusion of fluoxetine, a serotonin reuptake inhibitor, in the shell region of the nucleus accumbens increases blood glucose concentrations in rats.

    PubMed

    Diepenbroek, C; Rijnsburger, M; Eggels, L; van Megen, K M; Ackermans, M T; Fliers, E; Kalsbeek, A; Serlie, M J; la Fleur, S E

    2017-01-10

    The brain is well known to regulate blood glucose, and the hypothalamus and hindbrain, in particular, have been studied extensively to understand the underlying mechanisms. Nuclei in these regions respond to alterations in blood glucose concentrations and can alter glucose liver output or glucose tissue uptake to maintain blood glucose concentrations within strict boundaries. Interestingly, several cortico-limbic regions also respond to alterations in glucose concentrations and have been shown to project to hypothalamic nuclei and glucoregulatory organs. For instance, electrical stimulation of the shell of the nucleus accumbens (sNAc) results in increased circulating concentrations of glucose and glucagon and activation of the lateral hypothalamus (LH). Whether this is caused by the simultaneous increase in serotonin release in the sNAc remains to be determined. To study the effect of sNAc serotonin on systemic glucose metabolism, we implanted bilateral microdialysis probes in the sNAc of male Wistar rats and infused fluoxetine, a serotonin reuptake inhibitor, or vehicle after which blood glucose, endogenous glucose production (EGP) and glucoregulatory hormones were measured. Fluoxetine in the sNAc for 1h significantly increased blood glucose concentrations without an effect on glucoregulatory hormones. This increase was accompanied by a higher EGP in the fluoxetine infused rats compared to the controls. These data provide further evidence for a role of sNAc-serotonin in the regulation of glucose metabolism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Alarm characterization for continuous glucose monitors used as adjuncts to self-monitoring of blood glucose.

    PubMed

    McGarraugh, Geoffrey

    2010-01-01

    Continuous glucose monitoring (CGM) devices available in the United States are approved for use as adjuncts to self-monitoring of blood glucose (SMBG). Alarm evaluation in the Clinical and Laboratory Standards Institute (CLSI) guideline for CGM does not specifically address devices that employ both CGM and SMBG. In this report, an alarm evaluation method is proposed for these devices. The proposed method builds on the CLSI method using data from an in-clinic study of subjects with type 1 diabetes. CGM was used to detect glycemic events, and SMBG was used to determine treatment. To optimize detection of a single glucose level, such as 70 mg/dl, a range of alarm threshold settings was evaluated. The alarm characterization provides a choice of alarm settings that trade off detection and false alarms. Detection of a range of high glucose levels was similarly evaluated. Using low glucose alarms, detection of 70 mg/dl within 30 minutes increased from 64 to 97% as alarm settings increased from 70 to 100 mg/dl, and alarms that did not require treatment (SMBG >85 mg/dl) increased from 18 to 52%. Using high glucose alarms, detection of 180 mg/dl within 30 minutes increased from 87 to 96% as alarm settings decreased from 180 to 165 mg/dl, and alarms that did not require treatment (SMBG <180 mg/dl) increased from 24 to 42%. The proposed alarm evaluation method provides information for choosing appropriate alarm thresholds and reflects the clinical utility of CGM alarms. 2010 Diabetes Technology Society.

  15. The Effect of Acute Consumption of Energy Drinks on Blood Pressure, Heart Rate and Blood Glucose in the Group of Young Adults.

    PubMed

    Nowak, Dariusz; Gośliński, Michał; Nowatkowska, Kamila

    2018-03-19

    Energy drinks (EDs) are very popular among young people, who consume them for various reasons. A standard ED typically contains 80 mg of caffeine, as well as glucose, taurine, vitamins and other ingredients. Excessive consumption of EDs and accumulation of the above ingredients, as well as their mutual interactions, can be hazardous to the health of young adults. The purpose of this study was to assess the effect of acute consumption of energy drinks on blood pressure, heart rate and blood glucose. The study involved 68 volunteers, healthy young adults (mean age 25 years), who were divided into two groups: the first consumed three EDs at one-hour intervals, and the second drank the same amount of water. All participants had their blood pressure (BP)-systolic and diastolic (SBP and DBP)-as well as heart rate (HR) and blood glucose (BG) measured. In addition, participants could report any health problems before and after consuming each portion of ED. In the above experiment, having consumed three portions of ED (240 mg of caffeine), the participants presented a significant increase in DBP ( p = 0.003), by over 8%, which coincided with a lack of any significant impact on SBP ( p = 0.809). No significant changes were noted in HR ( p = 0.750). Consumption of EDs caused a significant increase ( p < 0.001) in BG, by ca. 21%, on average. Some participants reported various discomforts, which escalated after 2 and 3 EDs. Acute consumption of EDs contributed to increased diastolic blood pressure, blood glucose and level of discomfort in healthy young people. Our results reinforce the need for further studies on a larger population to provide sufficient evidence.

  16. Vitamin K2 Improves Anxiety and Depression but not Cognition in Rats with Metabolic Syndrome: a Role of Blood Glucose?

    PubMed

    Gancheva, Silvia M; Zhelyazkova-Savova, Maria D

    2016-12-01

    The metabolic syndrome is a socially important disorder of energy utilization and storage, recognized as a factor predisposing to the development of depression, anxiety and cognitive impairment in humans. In the present study we examined the effects of vitamin K2 on the behavior of rats with metabolic syndrome and looked for relationships with the effects on blood sugar. Male Wistar rats were divided in four groups: a control group on a regular rat chow, a metabolic syndrome (MS) group fed a high-fat high-fructose diet, a control group treated with vitamin K2 and a MS group treated with vitamin K2. Vitamin K2 was given by gavage. At the end of the study (after 10 weeks) behavioral tests were performed and fasting blood glucose was measured. Anxiety was determined using the social interaction test and depression was assessed by the Porsolt test. Memory effects were estimated by the object recognition test. Correlations between fasting blood glucose and behavioral performance were analyzed. The rats from the MS group had elevated blood glucose. They had anxiety, depression and memory deficit. Vitamin K2 normalized blood glucose, reduced anxiety and depression, but did not improve memory. Time of social interaction (inverse index of anxiety) and memory recognition were negatively correlated with blood glucose in the untreated rats but the immobility time (measure of depression) was not. When vitamin K2-treated rats were added, the correlation of blood glucose with the time of social interaction was kept, but the one with the recognition memory was lost. It might be that the anxiolytic effect of vitamin K2 in this setting is at least partly due to its effects on blood glucose, while the anti-depressant effect is glucose-independent. The present study demonstrated that vitamin K2 prevented the development of anxiety and depression, but did not improve the memory deficit caused by the dietary manipulation in an experimental model of metabolic syndrome. It might be that

  17. Effects of administration route, dietary condition, and blood glucose level on kinetics and uptake of 18F-FDG in mice.

    PubMed

    Wong, Koon-Pong; Sha, Wei; Zhang, Xiaoli; Huang, Sung-Cheng

    2011-05-01

    The effects of dietary condition and blood glucose level on the kinetics and uptake of (18)F-FDG in mice were systematically investigated using intraperitoneal and tail-vein injection. Dynamic PET was performed for 60 min on 23 isoflurane-anesthetized male C57BL/6 mice after intravenous (n = 11) or intraperitoneal (n = 12) injection of (18)F-FDG. Five and 6 mice in the intravenous and intraperitoneal groups, respectively, were kept fasting overnight (18 ± 2 h), and the others were fed ad libitum. Serial blood samples were collected from the femoral artery to measure (18)F-FDG and glucose concentrations. Image data were reconstructed using filtered backprojection with CT-based attenuation correction. The standardized uptake value (SUV) was estimated from the 45- to 60-min image. The metabolic rate of glucose (MRGlu) and (18)F-FDG uptake constant (K(i)) were derived by Patlak graphical analysis. In the brain, SUV and K(i) were significantly higher in fasting mice with intraperitoneal injection, but MRGlu did not differ significantly under different dietary states and administration routes. Cerebral K(i) was inversely related to elevated blood glucose levels, irrespective of administration route or dietary state. In myocardium, SUV, K(i), and MRGlu were significantly lower in fasting than in nonfasting mice for both routes of injection. Myocardial SUV and K(i) were strongly dependent on the dietary state, and K(i) did not correlate with the blood glucose level. Similar results were obtained for skeletal muscle, although the differences were not as pronounced. Intraperitoneal injection is a valid alternative route, providing pharmacokinetic data equivalent to data from tail-vein injection for small-animal (18)F-FDG PET. Cerebral K(i) varies inversely with blood glucose level, but the measured cerebral MRGlu does not correlate with blood glucose level or dietary condition. Conversely, the K(i) values of the myocardium and skeletal muscle are strongly dependent on

  18. Development of the Diabetes Technology Society Blood Glucose Monitor System Surveillance Protocol

    PubMed Central

    Klonoff, David C.; Lias, Courtney; Beck, Stayce; Parkes, Joan Lee; Kovatchev, Boris; Vigersky, Robert A.; Arreaza-Rubin, Guillermo; Burk, Robert D.; Kowalski, Aaron; Little, Randie; Nichols, James; Petersen, Matt; Rawlings, Kelly; Sacks, David B.; Sampson, Eric; Scott, Steve; Seley, Jane Jeffrie; Slingerland, Robbert; Vesper, Hubert W.

    2015-01-01

    Background: Inaccurate blood glucsoe monitoring systems (BGMSs) can lead to adverse health effects. The Diabetes Technology Society (DTS) Surveillance Program for cleared BGMSs is intended to protect people with diabetes from inaccurate, unreliable BGMS products that are currently on the market in the United States. The Surveillance Program will provide an independent assessment of the analytical performance of cleared BGMSs. Methods: The DTS BGMS Surveillance Program Steering Committee included experts in glucose monitoring, surveillance testing, and regulatory science. Over one year, the committee engaged in meetings and teleconferences aiming to describe how to conduct BGMS surveillance studies in a scientifically sound manner that is in compliance with good clinical practice and all relevant regulations. Results: A clinical surveillance protocol was created that contains performance targets and analytical accuracy-testing studies with marketed BGMS products conducted by qualified clinical and laboratory sites. This protocol entitled “Protocol for the Diabetes Technology Society Blood Glucose Monitor System Surveillance Program” is attached as supplementary material. Conclusion: This program is needed because currently once a BGMS product has been cleared for use by the FDA, no systematic postmarket Surveillance Program exists that can monitor analytical performance and detect potential problems. This protocol will allow identification of inaccurate and unreliable BGMSs currently available on the US market. The DTS Surveillance Program will provide BGMS manufacturers a benchmark to understand the postmarket analytical performance of their products. Furthermore, patients, health care professionals, payers, and regulatory agencies will be able to use the results of the study to make informed decisions to, respectively, select, prescribe, finance, and regulate BGMSs on the market. PMID:26481642

  19. Development of the Diabetes Technology Society Blood Glucose Monitor System Surveillance Protocol.

    PubMed

    Klonoff, David C; Lias, Courtney; Beck, Stayce; Parkes, Joan Lee; Kovatchev, Boris; Vigersky, Robert A; Arreaza-Rubin, Guillermo; Burk, Robert D; Kowalski, Aaron; Little, Randie; Nichols, James; Petersen, Matt; Rawlings, Kelly; Sacks, David B; Sampson, Eric; Scott, Steve; Seley, Jane Jeffrie; Slingerland, Robbert; Vesper, Hubert W

    2016-05-01

    Inaccurate blood glucsoe monitoring systems (BGMSs) can lead to adverse health effects. The Diabetes Technology Society (DTS) Surveillance Program for cleared BGMSs is intended to protect people with diabetes from inaccurate, unreliable BGMS products that are currently on the market in the United States. The Surveillance Program will provide an independent assessment of the analytical performance of cleared BGMSs. The DTS BGMS Surveillance Program Steering Committee included experts in glucose monitoring, surveillance testing, and regulatory science. Over one year, the committee engaged in meetings and teleconferences aiming to describe how to conduct BGMS surveillance studies in a scientifically sound manner that is in compliance with good clinical practice and all relevant regulations. A clinical surveillance protocol was created that contains performance targets and analytical accuracy-testing studies with marketed BGMS products conducted by qualified clinical and laboratory sites. This protocol entitled "Protocol for the Diabetes Technology Society Blood Glucose Monitor System Surveillance Program" is attached as supplementary material. This program is needed because currently once a BGMS product has been cleared for use by the FDA, no systematic postmarket Surveillance Program exists that can monitor analytical performance and detect potential problems. This protocol will allow identification of inaccurate and unreliable BGMSs currently available on the US market. The DTS Surveillance Program will provide BGMS manufacturers a benchmark to understand the postmarket analytical performance of their products. Furthermore, patients, health care professionals, payers, and regulatory agencies will be able to use the results of the study to make informed decisions to, respectively, select, prescribe, finance, and regulate BGMSs on the market. © 2015 Diabetes Technology Society.

  20. Garlic intake lowers fasting blood glucose: meta-analysis of randomized controlled trials.

    PubMed

    Hou, Li-qiong; Liu, Yun-hui; Zhang, Yi-yi

    2015-01-01

    Garlic is a common spicy flavouring agent also used for certain therapeutic purposes. Garlic's effects on blood glucose have been the subject of many clinical and animal studies, however, studies reporting hypoglycemic effects of garlic in humans are conflicting. A comprehensive literature search was conducted to identify relevant trials of garlic or garlic extracts on markers of glycemic control [fasting blood glucose (FBG), postprandial glucose (PPG), glycosylated haemoglobin (HbA1c)]. A meta-analysis of the effect of garlic intake on human was done to assess garlic's effectiveness in lowering glucose levels. Two reviewers extracted data from each of the identified studies. Seven eligible randomized controlled trials with 513 subjects were identified. Pooled analyses showed that garlic intake results in a statistically significant lowering in FBG [SMD=-1.67; 95% CI (-2.80, -0.55), p=0.004]. Our pooled analyses did not include PPG control and HbA1c outcomes. Because only 1 study included in the meta-analysis reported PPG variables and only 2 studies reported HbA1c variables. In conclusion, the current meta-analysis showed that the administration of garlic resulted in a significant reduction in FBG concentrations. More trials are needed to investigate the effectiveness of garlic on HbA1c and PPG.

  1. Association of urinary citrate excretion, pH, and net gastrointestinal alkali absorption with diet, diuretic use, and blood glucose concentration.

    PubMed

    Perinpam, Majuran; Ware, Erin B; Smith, Jennifer A; Turner, Stephen T; Kardia, Sharon L R; Lieske, John C

    2017-10-01

    Urinary citrate (Ucit) protects against urinary stone formation. Acid base status and diet influence Ucit. However, the effect of demographics, diet, and glucose metabolism on Ucit excretion, urinary pH (U-pH) and net gastrointestinal alkali absorption (NAA) are not known. Twenty-four hour urine samples, blood glucose, creatinine, and cystatin C were obtained from non-Hispanic white sibships in Rochester, MN ( n  = 446; 64.5 ± 9 years; 58% female). Diet was assessed by a food frequency questionnaire. The impact of blood glucose, demographics and dietary elements on Ucit excretion, U-pH, and NAA were evaluated in bivariate and multivariable models and interaction models that included age, sex, and weight. NAA significantly associated with Ucit and U-pH In multivariate models Ucit increased with age, weight, eGFR C ys , and blood glucose, but decreased with loop diuretic and thiazide use. U-pH decreased with serum creatinine, blood glucose, and dietary protein but increased with dietary potassium. NAA was higher in males and increased with age, weight, eGFR C ys and dietary potassium. Significant interactions were observed for Ucit excretion with age and blood glucose, weight and eGFR C ys, and sex and thiazide use. Blood glucose had a significant and independent effect on U-pH and also Ucit. This study provides the first evidence that blood glucose could influence urinary stone risk independent of urinary pH, potentially providing new insight into the association of obesity and urinary stone disease. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Determination of the reference position in the near-infrared non-invasive blood glucose measurement in vivo

    NASA Astrophysics Data System (ADS)

    Han, Guang; Liu, Jin; Liu, Rong; Xu, Kexin

    2016-10-01

    Position-based reference measurement method is taken as one of the most promising method in non-invasive measurement of blood glucose based on spectroscopic methodology. Selecting an appropriate source-detector separation as the reference position is important for deducting the influence of background change and reducing the loss of useful signals. Our group proposed a special source-detector separation named floating-reference position where the signal contains only background change, that is to say, the signal at this source-detector separation is uncorrelated with glucose concentration. The existence of floating-reference position has been verified in a three layer skin by Monte Carlo simulation and in the in vitro experiment. But it is difficult to verify the existence of floating-reference position on the human body because the interference is more complex during in vivo experiment. Aiming at this situation, this paper studies the determination of the best reference position on human body by collecting signals at several source-detector separations on the palm and measuring the true blood glucose levels during oral glucose tolerance test (OGTT) experiments of 3 volunteers. Partial least square (PLS) calibration model is established between the signals at every source-detector separation and its corresponding blood glucose levels. The results shows that the correlation coefficient (R) between 1.32 mm to 1.88 mm is lowest and they can be used as reference for background correction. The signal of this special position is important for improving the accuracy of near-infrared non-invasive blood glucose measurement.

  3. Effect of aqueous extract of tops of date palm leaves on blood glucose of diabetic rats.

    PubMed

    Ismail, Mohamed Saleh; Abuzaid, Omar Ibrahim; El-Ashmawy, Ibrahim Mohamed

    2017-09-01

    Present study was carried out to examine the effect of tops of date palm leaves extract on blood glucose of streptozotocin induced diabetic rats. Forty male Sprague Dawely rats (120-130g) were housed individually and randomly allocated to two main groups; diabetic group (n=30), and normal group (n=10) in the animal lab, Faculty of Agriculture and Veterinary Medicine, Qassim University, Saudi Arabia. An aqueous extracts were prepared from tops of date palm leaves (EDPL) and were orally administered to rats. Later, the determination of glucose, BUN, creatinine, uric acid, ALT, and AST was examined. Pancreas sample were taken for histopathological examination. It was clear that the higher the concentration of EDPL the lower the weight gain (P<0.001). Glucose concentration of normal group changed by - 0.79% and decreased by -20.4% among diabetic control group, while feeding 1% and 2% EDPL had no significant effects, and the higher the amount of EDPL the higher the concentration of blood glucose. The thought that tea made from date palm leaves decrease blood glucose level has been denied by the results of this study and this tea may worsen diabetes patient's status.

  4. Effect of post-exercise caffeine and green coffee bean extract consumption on blood glucose and insulin concentrations.

    PubMed

    Beam, Jason R; Gibson, Ann L; Kerksick, Chad M; Conn, Carole A; White, Ailish C; Mermier, Christine M

    2015-02-01

    The aim of this study was to investigate the effects of ingesting caffeine and green coffee bean extract on blood glucose and insulin concentrations during a post-exercise oral glucose tolerance test. Ten male cyclists (age: 26 ± 5 y; height: 179.9 ± 5.4 cm; weight: 77.6 ± 13.3 kg; body mass index: 24 ± 4.3 kg/m(2); VO2 peak: 55.9 ± 8.4 mL·kg·min(-1)) participated in this study. In a randomized order, each participant completed three 30-min bouts of cycling at 60% of peak power output. Immediately after exercise, each participant consumed 75 g of dextrose with either 5 mg/kg body weight of caffeine, 10 mg/kg of green coffee bean extract (5 mg/kg chlorogenic acid), or placebo. Venous blood samples were collected immediately before and after exercise during completion of the oral glucose tolerance test. No significant time × treatment effects for blood glucose and insulin were found. Two-h glucose and insulin area under the curve values, respectively, for the caffeine (658 ± 74 mmol/L and 30,005 ± 13,304 pmol/L), green coffee bean extract (637 ± 100 mmol/L and 31,965 ± 23,586 pmol/L), and placebo (661 ± 77 mmol/L and 27,020 ± 12,339 pmol/L) trials were not significantly different (P > 0.05). Caffeine and green coffee bean extract did not significantly alter postexercise blood glucose and insulin concentrations when compared with a placebo. More human research is needed to determine the impact of these combined nutritional treatments and exercise on changes in blood glucose and insulin. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. [Achievement of the noninvasive measurement for human blood glucose with NIR diffusion reflectance spectrum method].

    PubMed

    Zhang, Hong-yan; Ding, Dong; Song, Li-qiang; Gu, Lin-na; Yang, Peng; Tang, Yu-guo

    2005-06-01

    The noninvasive measurement of human blood glucose was achieved with NIR diffusion reflectance spectrum method. The thumb fingertip NIR diffusion reflectance spectra of six different age healthy volunteers were collected using Nexus-870 and its NIR fiber port smart accessory. The test was implemented with changing the blood glucose concentration for the limosis and satiation of every volunteer. The calibration model was set up using PLS method with the smoothing, baseline correction and first derivatives pretreatment spectrum in the 7500-8500 cm(-1) region for single volunteer, the same age combination and that of different age. When the spectrum was obtained, the actual blood glucose value of every spectrun sample was demarcated using ultraviolet spectrophotometer. The correlation between the calibration value and true value for single volunteer is better than that for the combination of volunteers, the correlative coefficients are all over 0.90471, RMSECs are all less than 0.171.

  6. Influence of the blood glucose level on the development of retinopathy of prematurity in extremely premature children.

    PubMed

    Nicolaeva, Galina V; Sidorenko, Evgenyj I; Iosifovna, Amkhanitskaya Lyubov

    2015-01-01

    To investigate the influence of the blood glucose level on the development of retinopathy of prematurity (ROP) in extremely premature infants. Sixty-four premature infants with a gestational age of less than 30 weeks and a birth weight of less than 1500 g were included in the study. Children without ROP were allocated to Group 1 (n=14, gestational age 28.6 ± 1.4 weeks, birth weight 1162 ± 322 g), and children with spontaneous regression of ROP were allocated to Group 2 (n=32, gestational age 26.5 ± 1.2 weeks, birth weight 905 ± 224 g). Children with progressive ROP who underwent laser treatment were included in Group 3 (n=18, gestational age 25.4 ± 0.7 weeks, birth weight 763 ± 138 g). The glucose level in the capillary blood of the premature infants was monitored daily during the first 3 weeks of life. A complete ophthalmological screening was performed from the age of 1 month. The nonparametric signed-rank Wilcoxon-Mann-Whitney test was used for statistical analysis. The mean blood glucose level was 7.43 ± 2.6 mmol/L in Group 1, 7.8 ± 2.7 mmol/L in Group 2, and 6.7 ± 2.6 mmol/L in Group 3. There were no significant differences in the blood glucose levels between children with and without ROP, and also between children with spontaneously regressing ROP and progressive ROP (p>0.05). Additionally, there were no significant differences in the blood glucose levels measured at the first, second, and third weeks of life (p>0.05). The blood glucose level is not related to the development of ROP nor with its progression or regression. The glycemic level cannot be considered as a risk factor for ROP, but reflects the severity of newborns' somatic condition and morphofunctional immaturity.

  7. Development and Validation of a Rapid 13C6-Glucose Isotope Dilution UPLC-MRM Mass Spectrometry Method for Use in Determining System Accuracy and Performance of Blood Glucose Monitoring Devices

    PubMed Central

    Matsunami, Risë K.; Angelides, Kimon; Engler, David A.

    2015-01-01

    Background: There is currently considerable discussion about the accuracy of blood glucose concentrations determined by personal blood glucose monitoring systems (BGMS). To date, the FDA has allowed new BGMS to demonstrate accuracy in reference to other glucose measurement systems that use the same or similar enzymatic-based methods to determine glucose concentration. These types of reference measurement procedures are only comparative in nature and are subject to the same potential sources of error in measurement and system perturbations as the device under evaluation. It would be ideal to have a completely orthogonal primary method that could serve as a true standard reference measurement procedure for establishing the accuracy of new BGMS. Methods: An isotope-dilution liquid chromatography/mass spectrometry (ID-UPLC-MRM) assay was developed using 13C6-glucose as a stable isotope analogue to specifically measure glucose concentration in human plasma, and validated for use against NIST standard reference materials, and against fresh isolates of whole blood and plasma into which exogenous glucose had been spiked. Assay performance was quantified to NIST-traceable dry weight measures for both glucose and 13C6-glucose. Results: The newly developed assay method was shown to be rapid, highly specific, sensitive, accurate, and precise for measuring plasma glucose levels. The assay displayed sufficient dynamic range and linearity to measure across the range of both normal and diabetic blood glucose levels. Assay performance was measured to within the same uncertainty levels (<1%) as the NIST definitive method for glucose measurement in human serum. Conclusions: The newly developed ID UPLC-MRM assay can serve as a validated reference measurement procedure to which new BGMS can be assessed for glucose measurement performance. PMID:25986627

  8. Frequency of blood glucose testing among insulin-treated diabetes mellitus patients in the United Kingdom.

    PubMed

    Lee, Won Chan; Smith, Elise; Chubb, Barrie; Wolden, Michael Lyng

    2014-03-01

    Through a retrospective database analysis, this study seeks to provide an understanding of the utilization of SMBG by insulin therapy and diabetes type and to estimate healthcare costs of blood glucose monitoring in the UK diabetes population. Data were obtained from the IMS LifeLink Electronic Medical Record-Europe (EMR-EU) Database, a longitudinal database containing anonymized patient records from physician-practice data systems of office-based physicians in the UK. Depending on the insulin types used for type 1 and type 2 diabetes, patients were sub-categorized into one of four insulin regimen groups (basal, bolus, pre-mixed, or basal-bolus). Frequency of blood glucose testing was assessed descriptively throughout the 12-month post-index period, and generalized linear models were used to evaluate the effect of baseline characteristics, including insulin type, on the likelihood of blood glucose test utilization. Healthcare resource utilization and costs for all-cause services were assessed by insulin type. This study identified 8322 type 1 and type 2 diabetes patients with two insulin pharmacy records between January 1, 2009 and December 31, 2010. After applying study inclusion and exclusion criteria, a total of 2676 (32.2%) insulin-treated diabetes mellitus patients in the UK were identified, with the number of pharmacy blood glucose test strips averaging 771.1 (median 600). The glucose testing frequency was lowest among basal-only insulin patients and pre-mixed insulin patients (mean=576.2 [median=450] and mean=599.5 [median=500], respectively; non-significantly different) compared to other insulin types. Although the data did not capture the glucose frequency comprehensively, it varied significantly by insulin types, and was higher than what is recommended in the guidelines for patients with type 2 diabetes.

  9. Nanobiotechnology advanced antifouling surfaces for the continuous electrochemical monitoring of glucose in whole blood using a lab-on-a-chip.

    PubMed

    Picher, Maria M; Küpcü, Seta; Huang, Chun-Jen; Dostalek, Jakub; Pum, Dietmar; Sleytr, Uwe B; Ertl, Peter

    2013-05-07

    In the current work we have developed a lab-on-a-chip containing embedded amperometric sensors in four microreactors that can be addressed individually and that are coated with crystalline surface protein monolayers to provide a continuous, stable, reliable and accurate detection of blood glucose. It is envisioned that the microfluidic device will be used in a feedback loop mechanism to assess natural variations in blood glucose levels during hemodialysis to allow the individual adjustment of glucose. Reliable and accurate detection of blood glucose is accomplished by simultaneously performing (a) blood glucose measurements, (b) autocalibration routines, (c) mediator-interferences detection, and (d) background subtractions. The electrochemical detection of blood glucose variations in the absence of electrode fouling events is performed by integrating crystalline surface layer proteins (S-layer) that function as an efficient antifouling coating, a highly-oriented immobilization matrix for biomolecules and an effective molecular sieve with pore sizes of 4 to 5 nm. We demonstrate that the S-layer protein SbpA (from Lysinibacillus sphaericus CCM 2177) readily forms monomolecular lattice structures at the various microchip surfaces (e.g. glass, PDMS, platinum and gold) within 60 min, eliminating unspecific adsorption events in the presence of human serum albumin, human plasma and freshly-drawn blood samples. The highly isoporous SbpA-coating allows undisturbed diffusion of the mediator between the electrode surface, thus enabling bioelectrochemical measurements of glucose concentrations between 500 μM to 50 mM (calibration slope δI/δc of 8.7 nA mM(-1)). Final proof-of-concept implementing the four microfluidic microreactor design is demonstrated using freshly drawn blood. Accurate and drift-free assessment of blood glucose concentrations (6. 4 mM) is accomplished over 130 min at 37 °C using immobilized enzyme glucose oxidase by calculating the difference between

  10. Alterations in brain glucose utilization accompanying elevations in blood ethanol and acetate concentrations in the rat.

    PubMed

    Pawlosky, Robert J; Kashiwaya, Yoshihiro; Srivastava, Shireesh; King, Michael T; Crutchfield, Calvin; Volkow, Nora; Kunos, George; Li, Ting-Kai; Veech, Richard L

    2010-02-01

    Previous studies in humans have shown that alcohol consumption decreased the rate of brain glucose utilization. We investigated whether the major metabolite of ethanol, acetate, could account for this observation by providing an alternate to glucose as an energy substrate for brain and the metabolic consequences of that shift. Rats were infused with solutions of sodium acetate, ethanol, or saline containing (13)C-2-glucose as a tracer elevating the blood ethanol (BEC) and blood acetate (BAcC) concentrations. After an hour, blood was sampled and the brains of animals were removed by freeze blowing. Tissue samples were analyzed for the intermediates of glucose metabolism, Krebs' cycle, acyl-coenzyme A (CoA) compounds, and amino acids. Mean peak BEC and BAcC were approximately 25 and 0.8 mM, respectively, in ethanol-infused animals. Peak blood BAcC increased to 12 mM in acetate-infused animals. Both ethanol and acetate infused animals had a lower uptake of (13)C-glucose into the brain compared to controls and the concentration of brain (13)C-glucose-6-phosphate varied inversely with the BAcC. There were higher concentrations of brain malonyl-CoA and somewhat lower levels of free Mg(2+) in ethanol-treated animals compared to saline controls. In acetate-infused animals the concentrations of brain lactate, alpha-ketoglutarate, and fumarate were higher. Moreover, the free cytosolic [NAD(+)]/[NADH] was lower, the free mitochondrial [NAD(+)]/[NADH] and [CoQ]/[CoQH(2)] were oxidized and the DeltaG' of ATP lowered by acetate infusion from -61.4 kJ to -59.9 kJ/mol. Animals with elevated levels of blood ethanol or acetate had decreased (13)C-glucose uptake into the brain. In acetate-infused animals elevated BAcC were associated with a decrease in (13)C-glucose phosphorylation. The co-ordinate decrease in free cytosolic NAD, oxidation of mitochondrial NAD and Q couples and the decrease in DeltaG' of ATP was similar to administration of uncoupling agents indicating that the

  11. Alterations in Brain Glucose Utilization Accompanying Elevations in Blood Ethanol and Acetate Concentrations in the Rat

    PubMed Central

    Pawlosky, Robert J.; Kashiwaya, Yoshihiro; Srivastava, Shireesh; King, Michael T.; Crutchfield, Calvin; Volkow, Nora; Kunos, George; Li, Ting-Kai; Veech, Richard L.

    2010-01-01

    Background Previous studies in humans have shown that alcohol consumption decreased the rate of brain glucose utilization. We investigated whether the major metabolite of ethanol, acetate, could account for this observation by providing an alternate to glucose as an energy substrate for brain and the metabolic consequences of that shift. Methods Rats were infused with solutions of sodium acetate, ethanol, or saline containing 13C-2-glucose as a tracer elevating the blood ethanol (BEC) and blood acetate (BAcC) concentrations. After an hour, blood was sampled and the brains of animals were removed by freeze blowing. Tissue samples were analyzed for the intermediates of glucose metabolism, Krebs’ cycle, acyl-coenzyme A (CoA) compounds, and amino acids. Results Mean peak BEC and BAcC were approximately 25 and 0.8 mM, respectively, in ethanol-infused animals. Peak blood BAcC increased to 12 mM in acetate-infused animals. Both ethanol and acetate infused animals had a lower uptake of 13C-glucose into the brain compared to controls and the concentration of brain 13C-glucose-6-phosphate varied inversely with the BAcC. There were higher concentrations of brain malonyl-CoA and somewhat lower levels of free Mg2+ in ethanol-treated animals compared to saline controls. In acetate-infused animals the concentrations of brain lactate, α-ketoglutarate, and fumarate were higher. Moreover, the free cytosolic [NAD+]/[NADH] was lower, the free mitochondrial [NAD+]/[NADH] and [CoQ]/[CoQH2] were oxidized and the ΔG′ of ATP lowered by acetate infusion from −61.4 kJ to −59.9 kJ/mol. Conclusions Animals with elevated levels of blood ethanol or acetate had decreased 13C-glucose uptake into the brain. In acetate-infused animals elevated BAcC were associated with a decrease in 13C-glucose phosphorylation. The co-ordinate decrease in free cytosolic NAD, oxidation of mitochondrial NAD and Q couples and the decrease in ΔG′ of ATP was similar to administration of uncoupling agents

  12. Detection of hypoglycemia with continuous interstitial and traditional blood glucose monitoring using the FreeStyle Navigator Continuous Glucose Monitoring System.

    PubMed

    McGarraugh, Geoffrey; Bergenstal, Richard

    2009-03-01

    The objective of the analysis was to compare detection of hypoglycemic episodes (glucose <70 mg/dL lasting >15 min) with the FreeStyle Navigator Continuous Glucose Monitoring System (FSN-CGM) (Abbott Diabetes Care, Alameda, CA) alarms to detection with traditional finger stick testing at an average frequency of eight tests per day. The performance of FSN-CGM alarms was evaluated in a clinic setting using 58 subjects with type 1 diabetes mellitus (T1DM) monitoring interstitial glucose concentration over a 5-day period compared to reference YSI measurements (instrument manufactured by YSI, Yellow Springs, OH) at 15-min intervals. Finger stick glucose testing was evaluated in the home environment with 91 subjects with TIDM monitoring with the blood glucose meter integrated into the FreeStyle Navigator (FSN-BG) over a 20-day period. The reference was FSN-CGM with results masked from the subjects. Blood glucose values <=85 mg/dL were considered the optimal treatment level to avoid or reverse hypoglycemia. With a threshold alarm setting of 85 mg/dL, 90.6% of hypoglycemic episodes were detected within +/- 30 min by FSN-CGM in the clinic study. When the alarm was activated, YSI glucose was <= 85 mg/dL 77.2% of the time. In the home environment, the average FSN-BG testing frequency was 7.9 tests per day. Hypoglycemia was verified within +/- 30 min by FSN-BG measurements <= 85 mg/dL at a rate of 27.5%. Even with a high rate of FSN-BG testing, hypoglycemia detected by FSN-CGM was verified by patients with T1DM very infrequently. A high rate of hypoglycemia detection with a moderate rate of unnecessary alarms can be attained using FSN-CGM.

  13. Shinrin-yoku (forest-air bathing and walking) effectively decreases blood glucose levels in diabetic patients

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Y.; Yabunaka, Noriyuki; Takayama, Shigeru

    The influence of ''shinrin-yoku'' (forest-air bathing and walking) on blood glucose levels in diabetic patients was examined. Eighty-seven (29 male and 58 female) non-insulin-dependent diabetic patients [61 (SEM 1) years old] participated in the present study. Shinrin-yoku was performed nine times over a period of 6 years. The patients were divided into two parties. They then walked in the forest for 3 km or 6 km according to their physical ability and/or the existence of diabetic complications. The mean blood glucose level after forest walking changed from 179 (SEM 4) mg . 100 ml-1 to 108 (SEM 2) mg . 100 ml-1 (P<0.0001). The level of glycated haemoglobin A1c also decreased from 6.9 (SEM 0.2)% (before the first shinrin-yoku) to 6.5 (SEM 0.1)% (after the last shinrin-yoku; P<0.05). Blood glucose values declined by 74 (SEM 9) mg . 100 ml-1 and 70 (SEM 4) mg . 100 ml-1 after short- and long-distance walking respectively. There was no significant difference between these values. Since the forest environment causes changes in hormonal secretion and autonomic nervous functions, it is presumed that, in addition to the increased calorie consumption and improved insulin sensitivity, walking in a forest environment has other beneficial effects in decreasing blood glucose levels.

  14. Exendin-4 increases blood glucose levels acutely in rats by activation of the sympathetic nervous system.

    PubMed

    Pérez-Tilve, Diego; González-Matías, Lucas; Aulinger, Benedikt A; Alvarez-Crespo, Mayte; Gil-Lozano, Manuel; Alvarez, Elias; Andrade-Olivie, Amalia M; Tschöp, Matthias H; D'Alessio, David A; Mallo, Federico

    2010-05-01

    Exendin-4 (Ex-4), an agonist of the glucagon-like peptide-1 receptor (GLP-1R), shares many of the actions of GLP-1 on pancreatic islets, the central nervous system (CNS), and the gastrointestinal tract that mediates glucose homeostasis and food intake. Because Ex-4 has a much longer plasma half-life than GLP-1, it is an effective drug for reducing blood glucose levels in patients with type 2 diabetes mellitus (T2DM). Here, we report that acute administration of Ex-4, in relatively high doses, into either the peripheral circulation or the CNS, paradoxically increased blood glucose levels in rats. This effect was independent of the insulinotropic and hypothalamic-pituitary-adrenal activating actions of Ex-4 and could be blocked by a GLP-1R antagonist. Comparable doses of GLP-1 did not induce hyperglycemia, even when protected from rapid metabolism by a dipeptidyl peptidase IV inhibitor. Acute hyperglycemia induced by Ex-4 was blocked by hexamethonium, guanethidine, and adrenal medullectomy, indicating that this effect was mediated by sympathetic nervous system (SNS) activation. The potency of Ex-4 to elevate blood glucose waned with chronic administration such that after 6 days the familiar actions of Ex-4 to improve glucose tolerance were evident. These findings indicate that, in rats, high doses of Ex-4 activate a SNS response that can overcome the expected benefits of this peptide on glucose metabolism and actually raise blood glucose. These results have important implications for the design and interpretation of studies using Ex-4 in rats. Moreover, since there are many similarities in the response of the GLP-1R system across mammalian species, it is important to consider whether there is acute activation of the SNS by Ex-4 in humans.

  15. Effect of intraoperative amino acids with or without glucose infusion on body temperature, insulin, and blood glucose levels in patients undergoing laparoscopic colectomy: a preliminary report.

    PubMed

    Fujita, Yasuki; Tokunaga, Chiharu; Yamaguchi, Sayo; Nakamura, Kayo; Horiguchi, Yuu; Kaneko, Michiko; Iwakura, Takeo

    2014-09-01

    Amino acid administration helps to prevent intraoperative hypothermia but may enhance thermogenesis when combined with glucose infusion. The aim of this study was to examine the effect of intraoperative amino acid administration, with or without glucose infusion, on temperature regulation during laparoscopic colectomy. Twenty-one patients whose physical status was classified I or II by the American Society of Anesthesiologists, and who were undergoing elective laparoscopic colectomy were enrolled. The exclusion criteria were a history of diabetes and/or obesity, preoperative high levels of C-reactive protein, high blood glucose and/or body temperature after anesthesia induction, and surgical time >500 minutes. Each patient received an acetate ringer solution and was randomly assigned to one of three groups. Group A patients were given only amino acids. Group AG patients were given amino acids and glucose. Group C patients were given neither amino acids nor glucose. Tympanic membrane temperatures and blood glucose and insulin levels were measured intraoperatively. Intraoperative amino acid infusion significantly increased body temperature during surgery as compared with either Group AG or C. The blood glucose levels in Group AG were significantly higher than those in Groups A and C. However, there were no significant differences between Groups A and C. Two hours after anesthesia induction, serum insulin levels in Groups A and AG significantly increased compared with Group C. No significant differences in the postoperative complications or patient hospitalization lengths were detected between the groups. Intraoperative amino acid infusion without glucose administration maintains body temperature more effectively than combined amino acid and glucose infusion in patients undergoing laparoscopic colectomy, despite unaltered intraoperative insulin levels. Copyright © 2014. Published by Elsevier B.V.

  16. Effect of aluminum chloride on blood glucose level and lipid profile in normal, diabetic and treated diabetic rats.

    PubMed

    Konda, Venugopala Rao; Eerike, Madhavi; Chary, R Prasanth; Arunachalam, Ruckmani; Yeddula, Venkata Ramana; Meti, Vinayak; Devi, T Sobita

    2017-01-01

    The objectives of the study were to assess evaluate the effects of aluminum chloride (AlCl 3 ) on blood glucose and lipid levels in normal, diabetic, and glibenclamide-treated diabetic rats. Forty-two male Wistar rats were divided into seven groups of six each. Group I was normal control, Groups II and III were given AlCl 3 50 and 100 mg/kg, and Group IV to VII were administered with streptozotocin (STZ) (60 mg/kg) intraperitoneally. Group IV was diabetic control, Group V in addition was given AlCl 3 50 mg/kg, Group VI glibenclamide (10 mg/kg), and Group VII glibenclamide and AlCl 3 (50 mg/kg) per-oral daily for 28 days. Blood glucose and lipid levels were estimated at base line, after diabetes was set in and on the last day of study. Histopathological changes in pancreas, liver, and kidney were studied. No significant change was observed in blood glucose and lipid levels in Group I. Group II and III showed a dose-dependent significant increase in blood glucose was observed. Group V had a reduction in blood glucose but not to the nondiabetic level. Group VI had significant reduction in blood sugar. In Group VII, treated with glibenclamide and AlCl 3 , there was no significant change in blood glucose reduction compared to Group VI. Lipid levels were reduced in groups treated with AlCl 3 and glibenclamide and not in other groups. Gross tissue damage was seen in pancreas in STZ group and in liver and kidney in AlCl 3 groups. AlCl 3 administration in Wistar rats caused in significant hyperglycemia in normal rats, hypoglycemia in diabetic rats, and did not influenced hypoglycemic effect of glibenclamide and in addition, resulted in reduction in lipid levels.

  17. Effects of telephone follow-up on blood glucose levels and postpartum screening in mothers with Gestational Diabetes Mellitus.

    PubMed

    Khorshidi Roozbahani, Rezvan; Geranmayeh, Mehrnaz; Hantoushzadeh, Sedigheh; Mehran, Abbas

    2015-01-01

    Gestational diabetes mellitus (GDM) is a form of diabetes that occurs in pregnancy. GDM, defined as glucose intolerance, first diagnosed or initiated during pregnancy affects 1-14% of pregnancies based on various studies. Screening and early diagnosis and appropriate glycemic control can improve prenatal outcomes. Telephone follow-up seems to be a reasonable way for pregnant women follow-up. The present study evaluated the effects of telephone follow-up on blood glucose level during pregnancy and postpartum screening. Eighty mothers with GDM were enrolled in this clinical trial and randomly divided into intervention and control groups. All mothers were asked to check their blood sugar levels fivetimes daily. In intervention group, telephone intervention was performed for 10 weeks. In each follow-up, individuals were followed for insulin injections, diet, clinical tests and reminding the next visit. In control group, three times of telephone call was established to record blood sugar levels. Another telephone call was established at 6 weeks of postpartum in both study groups to evaluate the performance of the screening test for blood sugar. The mean age of mothers was 30.9±5 years in the control and 30.7±5.1 years in the intervention groups In intervention group, mean level of blood glucose, 2 hours after lunch at 28 weeks of pregnancy was significantly lower than the control group (P<0.05). Mean differences in levels of fasting blood glucose between 28 weeks and 32 and between 28 and 36 weeks of pregnancy were significantly higher in the intervention than the control group (P<0.05). Rate of postpartum glucose screening test was significantly higher in the intervention group (P<0.001). The findings of this study demonstrated that telephone follow-up could significantly reduce fasting blood glucose levels in mothers with gestational diabetes and also increased the rate of postpartum screening test.

  18. Radiation from wireless technology elevates blood glucose and body temperature in 40-year-old type 1 diabetic male.

    PubMed

    Kleiber, Catherine E

    2017-01-01

    A type 1 diabetic male reports multiple instances when his blood glucose was dramatically elevated by the presence of microwave radiation from wireless technology and plummeted when the radiation exposure ended. In one instance, his body temperature elevated in addition to his blood glucose. Both remained elevated for nearly 48 h after exposure with the effect gradually decreasing. Possible mechanisms for microwave radiation elevating blood glucose include effects on glucose transport proteins and ion channels, insulin conformational changes and oxidative stress. Temperature elevation may be caused by microwave radiation-triggered Ca 2+ efflux, a mechanism similar to malignant hyperthermia. The potential for radiation from wireless technology to cause serious biological effects has important implications and necessitates a reevaluation of its near-ubiquitous presence, especially in hospitals and medical facilities.

  19. Effect of feeding glucose, fructose, and inulin on blood glucose and insulin concentrations in normal ponies and those predisposed to laminitis.

    PubMed

    Borer, K E; Bailey, S R; Menzies-Gow, N J; Harris, P A; Elliott, J

    2012-09-01

    Identification of ponies (Equus caballus) at increased risk of pasture-associated laminitis would aid in the prevention of the disease. Insulin resistance has been associated with laminitis and could be used to identify susceptible individuals. Insulin resistance may be diagnosed by feeding supplementary water-soluble carbohydrate (WSC) and measuring blood glucose and insulin concentrations. The aim of this study was to assess the glycemic and insulinemic responses of 7 normal (NP) and 5 previously laminitic (PLP), mixed breed, native UK ponies fed glucose, fructose, and inulin [1 g/(kg·d) for 3 d] or no supplementary WSC (control) in spring and fall after a 7-d adaptation to a pasture or hay diet. Blood samples were taken for 12 h after feeding on each day, and baseline and peak concentrations and area under the curve (AUC) for glucose and insulin were recorded. Linear mixed models were used for statistical analysis. Differences between PLP and NP groups were most marked after glucose feeding with differences in peak glucose (P = 0.02) and peak insulin (P = 0.016) concentrations. Season and diet adaptation also affected results. Peak concentrations of glucose and insulin occurred 2 to 4 h after WSC feeding. Peak insulin concentration was greater and more variable in fall, particularly in PLP adapted to fall pasture. Baseline glucose and insulin concentrations varied between individuals and with season and diet adaptation but were not greater in PLP than NP. Insulin AUC was greater in PLP than NP after feeding both glucose and fructose (P = 0.017), but there were no differences between PLP and NP in glucose AUC. Glycemic and insulinemic changes were less (P ≤ 0.05) after feeding fructose than glucose, although differences between PLP and NP were still evident. Minimal changes in glucose and insulin concentrations occurred after inulin feeding. Measurement of peak insulin 2 h after feeding of a single dose of glucose (1 g/kg) may be a simple and practical way to

  20. An elevated blood glucose level and increased incidence of gestational diabetes mellitus in pregnant women with latent toxoplasmosis.

    PubMed

    Kankova, Sarka; Flegr, Jaroslav; Calda, Pavel

    2015-09-21

    About 30-50% of the world human population are infected with the protozoan parasite Toxoplasma gondii (Nicolle et Manceaux, 1908). Latent toxoplasmosis has many specific behavioural and physiological effects on the human body and influences the course of pregnancy, including secondary sex ratio of children of infected mothers. It was suggested that an increased concentration of glucose could be the proximate cause of increased sex ratio. There are some indirect indications of possible association between toxoplasmosis and certain forms of diabetes. Here we searched for a possible link between latent toxoplasmosis and the level of glucose in the blood. In a cross-sectional study, we found that pregnant women with latent toxoplasmosis had significantly higher blood glucose levels during the oral glucose tolerance test (n = 191, p = 0.010; the level of fasting plasma glucose: mean = 5.04 mmol/l vs mean = 4.88 mmol/l; blood glucose level at 1 hour mean = 7.73 mmol/l vs mean = 6.89 mmol/l and blood glucose level at two hours mean = 6.43 mmol/l vs mean = 5.74 mmol/l) and higher prevalence (19.5 %) of gestational diabetes mellitus (n = 532, p = 0.033, odds ratio = 1.78) in the 24-28th gestational weeks than T. gondii-free women (12.0 %). Increased level of glucose and increased incidence of gestational diabetes mellitus could have considerable clinical impact as contributors to the development of the metabolic syndrome and type 2 diabetes in T. gondii-infected women. Our results also brought the first empirical support for the hypothesis that the glucose concentration may play a role in T. gondii-associated offspring sex ratio shifts.

  1. In-situ monitoring of blood glucose level for dialysis machine by AAA-battery-size ATR Fourier spectroscopy

    NASA Astrophysics Data System (ADS)

    Hosono, Satsuki; Sato, Shun; Ishida, Akane; Suzuki, Yo; Inohara, Daichi; Nogo, Kosuke; Abeygunawardhana, Pradeep K.; Suzuki, Satoru; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2015-07-01

    For blood glucose level measurement of dialysis machines, we proposed AAA-battery-size ATR (Attenuated total reflection) Fourier spectroscopy in middle infrared light region. The proposed one-shot Fourier spectroscopic imaging is a near-common path and spatial phase-shift interferometer with high time resolution. Because numerous number of spectral data that is 60 (= camera frame rare e.g. 60[Hz]) multiplied by pixel number could be obtained in 1[sec.], statistical-averaging improvement realize high-accurate spectral measurement. We evaluated the quantitative accuracy of our proposed method for measuring glucose concentration in near-infrared light region with liquid cells. We confirmed that absorbance at 1600[nm] had high correlations with glucose concentrations (correlation coefficient: 0.92). But to measure whole-blood, complex light phenomenon caused from red blood cells, that is scattering and multiple reflection or so, deteriorate spectral data. Thus, we also proposed the ultrasound-assisted spectroscopic imaging that traps particles at standing-wave node. Thus, if ATR prism is oscillated mechanically, anti-node area is generated around evanescent light field on prism surface. By elimination complex light phenomenon of red blood cells, glucose concentration in whole-blood will be quantify with high accuracy. In this report, we successfully trapped red blood cells in normal saline solution with ultrasonic standing wave (frequency: 2[MHz]).

  2. Effects of the probiotic strain Lactobacillus johnsonii strain La1 on autonomic nerves and blood glucose in rats.

    PubMed

    Yamano, Toshihiko; Tanida, Mamoru; Niijima, Akira; Maeda, Keiko; Okumura, Nobuaki; Fukushima, Yoichi; Nagai, Katsuya

    2006-10-12

    Oral administration of Lactobacillus casei reportedly reduces blood glucose concentrations in a non-insulin-dependent diabetic KK-Ay mouse model. In order to determine if other lactobacillus strains affect glucose metabolism, we evaluated the effect of the probiotic strain Lactobacillus johnsonii La1 (LJLa1) strain on glucose metabolism in rats. Oral administration of LJLa1 via drinking water for 2 weeks inhibited the hyperglycemia induced by intracranial injection of 2-deoxy-D-glucose (2DG). We found that the hyperglucagonemic response induced by 2DG was also suppressed by LJLa1. Oral administration of LJLa1 for 2 weeks also reduced the elevation of blood glucose and glucagon levels after an oral glucose load in streptozotocin-diabetic rats. In addition, we recently observed that intraduodenal injection of LJLa1 reduced renal sympathetic nerve activity and enhanced gastric vagal nerve activity, suggesting that LJLa1 might affect glucose metabolism by changing autonomic nerve activity. Therefore, we evaluated the effect of intraduodenal administration of LJLa1 on adrenal sympathetic nerve activity (ASNA) in urethane-anesthetized rats, since the autonomic nervous system, including the adrenal sympathetic nerve, may be implicated in the control of the blood glucose levels. Indeed, we found that ASNA was suppressed by intraduodenal administration of LJLa1, suggesting that LJLa1 might improve glucose tolerance by reducing glucagon secretion via alteration of autonomic nerve activities.

  3. Effects of food-deprivation and refeeding on the regulation and sources of blood glucose appearance in European seabass (Dicentrarchus labrax L.).

    PubMed

    Viegas, Ivan; Rito, João; González, Juan Diego; Jarak, Ivana; Carvalho, Rui A; Metón, Isidoro; Pardal, Miguel A; Baanante, Isabel V; Jones, John G

    2013-11-01

    Sources of blood glucose in European seabass (initial weight 218.0±43.0g; mean±S.D., n=18) were quantified by supplementing seawater with deuterated water (5%-(2)H2O) for 72h and analyzing blood glucose (2)H-enrichments by (2)H NMR. Three different nutritional states were studied: continuously fed, 21-day of fast and 21-day fast followed by 3days of refeeding. Plasma glucose levels (mM) were 10.7±6.3 (fed), 4.8±1.2 (fasted), and 9.3±1.4 (refed) (means±S.D., n=6), showing poor glycemic control. For all conditions, (2)H-enrichment of glucose position 5 was equivalent to that of position 2 indicating that blood glucose appearance from endogenous glucose 6-phosphate (G6P) was derived by gluconeogenesis. G6P-derived glucose accounted for 65±7% and 44±10% of blood glucose appearance in fed and refed fish, respectively, with the unlabeled fraction assumed to be derived from dietary carbohydrate (35±7% and 56±10%, respectively). For 21-day fasted fish, blood glucose appearance also had significant contributions from unlabeled glucose (52±16%) despite the unavailability of dietary carbohydrates. To assess the role of hepatic enzymes in glycemic control, activity and mRNA levels of hepatic glucokinase (GK) and glucose 6-phosphatase (G6Pase) were assessed. Both G6Pase activity and expression declined with fasting indicating the absence of a classical counter-regulatory stimulation of hepatic glucose production in response to declining glucose levels. GK activities were basal during fed and fasted conditions, but were strongly stimulated by refeeding. Overall, hepatic G6Pase and GK showed limited capacity in regulating glucose levels between feeding and fasting states. © 2013.

  4. Comparison of the changes in blood glucose level during sedation with midazolam and propofol in implant surgery: a prospective randomized clinical trial.

    PubMed

    Kaviani, Nasser; Koosha, Farzad; Shahtusi, Mina

    2014-09-01

    Reducing the patients' stress can prevent, or at least, limit the increase in blood glucose level. The study compares the effect of propofol and midazolam on blood glucose level in the patients undergoing dental implant surgery. The effect of pre-operational stress on blood glucose level during the surgery is also evaluated. This prospective randomized clinical trial recruited 33 patients undergoing dental implant surgery and divided into two groups. Conscious sedation was performed by midazolam in one group and with propofol in another group. The pre-operational stress was scored and the blood glucose level was measured in 4 different stages; before the operation, two minutes after the local anesthetic injection; thirty minutes after the onset of operation and at the end of the operation. The results were analyzed by employing ANOVA and Pearson test. The p Value was adopted 0.05 and the confidence coefficient was assumed 95%. The average levels of the blood glucose in midazolam and propofol group were 93.82 mg/dl and 94 mg/dl before the operation which displayed a meaningful increase of blood glucose level in both groups as the operation went on. The values were 103.76 mg/dl for midazolam and 108.56 mg/dl for the propofol group (p< 0.05) at the end of the operation. No statistically significant difference was found in the average blood glucose level between two groups in the different stages of the operation (p= 0.466). The Pearson correlation coefficient test revealed a higher increase in the blood glucose level in the patients with a higher pre-operational stress score (r= 0.756, p< 0.001). Based on the results yielded by this study, patients who receive venous sedation, either by midazolam or propofol, experience increase in the blood glucose level while undergoing an operation. No statistically significant difference was detected between midazolam and propofol.

  5. Pseudohyperglycemia: Effects of Unwashed Hand after Fruit Peeling or Handling on Fingertips Blood Glucose Monitoring Results.

    PubMed

    Olamoyegun, M A; Oloyede, T; Adewoye, O G; Abdulkarim, S O; Adeleke, A A

    2016-01-01

    Self-monitoring of blood glucose (SMBG) is an important component of management for diabetes mellitus (DM), especially in T1DM and T2DM patients who are on insulin therapy. Adequate blood glucose monitoring and prompt intervention are necessary to prevent blood glucose (BG) fluctuation and delay long-term diabetes complications. People with DM are advised to clean their hands before SMBG to remove any dirt or food residue that might affect the reading. The study tested the hypothesis that falsely elevated BG levels from fingertip occur after peeling or handling fruits in an unwashed hand. Fifty apparently healthy nondiabetes volunteers were enrolled. Capillary BG samples were collected from the fingertips after peeling or handling apple, orange, banana, watermelon, and pawpaw, followed by no hand washing for 1 h, cleaning the fingertip with alcohol swab once, five times, and washing hand thoroughly with tap water and drying. These samples were then analyzed with two different glucose meters. The mean BG values, measured from fingertip blood samples after peeling, and handling any of the fruits followed by no hand washing were significantly high, even after cleaning fingertip with a swab of alcohol once. However, there were no significant difference in BG levels measured after peeling and handling fruits followed by hand washing and the level of BG before peeling and handling fruits. Handling of peeled fruits with no hand washing with tap water is associated with overestimation of capillary BG (Pseudohyperglycemia) monitored with glucose meters.

  6. Modification of beta-cell response to different postprandial blood glucose concentrations by prandial repaglinide and combined acarbose/repaglinide application.

    PubMed

    Rosak, C; Hofmann, U; Paulwitz, O

    2004-06-01

    This study was designed to compare the effects of repaglinide plus acarbose combination treatment to repaglinide alone on postprandial glucose, serum insulin, C-peptide and proinsulin concentrations. A total of 40 patients with Type 2 diabetes (T2DM) (fasting blood glucose: 120-180 mg/dl; postprandial blood glucose: 140-240 mg/dl) were included in this single-centre, controlled, randomised, single-dose, cross-over study. On two consecutive days, patients either received 2 mg repaglinide 15 min before breakfast followed by 100 mg acarbose with breakfast or repaglinide alone. Two fasting (7.30 h, 8.00 h) and five postprandial blood samples (from 8.30 h to 12.00 h) were taken for blood glucose, serum insulin, C-peptide and proinsulin determination. Repaglinide plus acarbose treatment significantly reduced the mean increase in postprandial blood glucose levels (24.2+/-18.2 mg/dl) compared to repaglinide alone (51.1+/-29.0 mg/dl; p<0.001). Serum insulin, C-peptide and proinsulin levels [mean area under the curve (AUC7.30-12.00h)] were significantly lower than those observed with repaglinide monotherapy (e.g. insulin: 1089.2+/-604.5 hr x pmol/l and 1596.8+/-1080.6 hr x pmol/l, resp., p<0.001), suggesting that acarbose modifies the rapid insulin release induced by repaglinide. Prandial treatment with a combination of acarbose and repaglinide results in an additive glucose lowering effect and modified insulin secretion compared to repaglinide alone. Postprandial hyperglycaemia is not abolished by rapid stimulation of insulin release induced by repaglinide. Additional reduction of postprandial blood glucose by acarbose modifies the stimulation of insulin release.

  7. Dynamical Analysis in the Mathematical Modelling of Human Blood Glucose

    ERIC Educational Resources Information Center

    Bae, Saebyok; Kang, Byungmin

    2012-01-01

    We want to apply the geometrical method to a dynamical system of human blood glucose. Due to the educational importance of model building, we show a relatively general modelling process using observational facts. Next, two models of some concrete forms are analysed in the phase plane by means of linear stability, phase portrait and vector…

  8. Glucose concentration in the blood of intact and alloxan-treated mice after pretreatment with commercial preparations of Stevia rebaudiana (Bertoni).

    PubMed

    Raskovic, Aleksandar; Gavrilovic, Maja; Jakovljevic, Vida; Sabo, Jan

    2004-01-01

    The study was concerned with the effect of mice pretreatment with two commercial products of Stevia rebaudiana Bertoni on the blood glucose concentration. One group of mice was pretreated four days with 200 mg/kg of Stevita (Stevita Co, INC, Arlington Texas) (stevia) and the other with 20 mg/kg of Clear Steviosides liquid (Stevita Co, INC, Herbal supplement, Brazil) (stevioside), whereas the animals of control group received at the same time physiological solution. Blood glucose concentration was measured before pretreatment and four days after that. The changes in glucose level were provoked by glucose-tolerance test (500 mg/kg, p.o.) and subcutaneous injection of adrenaline (0.2 mg/kg). The same procedure of measuring blood glucose was applied on the mice with alloxan-induced diabetes mellitus (two doses of 100 mg/kg with a 24-hour interval). Blood glucose levels in mice pretreated with stevia and stevioside were lower compared with control (7.82:6.82:8.01). Also, a smaller increase in this parameter compared to control was registered with pretreated mice in the glucose-tolerance test, pretreatment with stevioside being again more effective (8.68:6.36:5.82). Pretreatment with stevioside caused no significant increase in blood glucose concentration after administering adrenaline, which was not the case with the animals pretreated with stevia and control. Pretreatment with stevia, and to a greater extent with stevioside, protected test animals from the toxic action of alloxan compared with controls.

  9. Relationship between gestational fasting plasma glucose and neonatal birth weight, prenatal blood pressure and dystocia in pregnant Chinese women.

    PubMed

    Zhu, Min; Cai, Jing; Liu, Shujuan; Huang, Mingwei; Chen, Yao; Lai, Xiaolan; Chen, Yuyu; Zhao, Zhongwen; Wu, Fangzhen; Wu, Dongmei; Miu, Haiyan; Lai, Shenghan; Chen, Gang

    2014-09-01

    Little is known about the optimal cut-off point of fasting plasma glucose for the diagnosis of gestational diabetes mellitus for pregnant Chinese women. This study investigates the relationship between gestational fasting plasma glucose and several variables: neonatal birth weight, prenatal blood pressure and dystocia rate of pregnant women. In this study, we hoped to provide a useful tool to screen gestational diabetes mellitus in pregnant Chinese women. For 1058 pregnant women enrolled in our hospital at pregnancy weeks 22-30, fasting plasma glucose, neonatal birth weight and prenatal blood pressure, as well as dystocia conditions, were examined. We analysed the correlations between the following: gestational fasting plasma glucose and neonatal birth weight; prenatal blood pressure and gestational fasting plasma glucose as well as dystocia rate and gestational fasting plasma glucose group. A modest correlation was observed between gestational fasting plasma glucose and neonatal birth weight (r = 0.093, p = 0.003). The macrosomia rate was smallest when the gestational fasting plasma glucose was in the range 3.51-5.5 mmol/L. Prenatal blood pressure increased linearly with increasing gestational fasting plasma glucose (p = 0.000). There was a significant difference between the dystocia rates in different fasting plasma glucose groups (chi-squared = 13.015, p = 0.043). The results showed that the dystocia rate significantly increased when gestational fasting plasma glucose was >4.9 mmol/L; p = 0.03, OR = 2.156 (95% CI, 1.077-4.318). We suggest that the optimal range of gestational fasting plasma glucose for pregnant Chinese women is in the range 3.5-4.9 mmol/L. Copyright © 2014 John Wiley & Sons, Ltd.

  10. [Correlation between resting heart rate and blood glucose level in elderly patients with coronary heart disease and diabetes mellitus].

    PubMed

    Liang, Dong-Liang; Li, Xiao-Ying; Wang, Lin; Xu, Hao; Tuo, Xi-Ping; Jian, Zai-Jin; Wang, Xiao-Na; Yun, Ji-Li; Zhang, Xu; Wang, Si-Yue

    2016-05-01

    To explore the correlation between resting heart rate (RHR) and blood glucose level in elderly patients with coronary heart disease (CHD) complicated by diabetes mellitus. Between April and July, 2011, a total of 1336 outpatients over 60 years of age recruited from 165 hospitals were asked to complete a questionnaire and received blood glucose and RHR examination. According to baseline RHR, the patients were divided into 3 groups with HRH <70 min-1 (group I, 372 cases), between 70 and 79 min(-1) (group II, 533 cases), and ≥80 min(-1) (group III, 431cases) for analysis of the relationships of RHR with blood glucose control rate. HbA1c levels in the total, male and female patients differed significantly among the 3 groups (F=15.436, 15.436, and 24.270, respectively, P<0.05), and increased in the order from group I to group III. Blood glucose control rate in the total, male and female patients also differed significantly among the 3 groups (χ(2)=13.471, 6.752, and 6.522, respectively, P<0.05), and was significantly lower in group III than in group I (P<0.05). RHR was found to positively correlate with FPG, 2 hPG and HbA1c by Pearson correlation analysis (r=0.058, 0.085, and 0.058, respectively; P<0.05) and multiple linear regression analysis (β=0.075, 0.075, and 0.018, respectively; P<0.05). Multivariable logistic regression equation showed that compared with patients with RHR <70 min-1, the total, male and female patients with RHR ≥80 min(-1) had OR values of blood glucose control failure of 1.99 (95% CI: 1.23-2.37, P<0.05), 1.81 (95% CI: 1.17-2.77, P<0.05), and 2.18 (95% CI: 1.12-3.74, P<0.05), respectively. RHR in elderly CHD patients with MD is positively correlated with their blood glucose level, and an increased RHR is associated with an increased risk of poor blood glucose control. Rigorous RHR control in such high-risk patients may prove beneficial for both blood glucose control and secondary prevention of CHD.

  11. A vitamin, mineral, herb dietary supplement effect on blood glucose in uncontrolled type II diabetic subjects.

    PubMed

    González, Michael J; Ricart, Carlos M; Miranda-Massari, Jorge

    2004-06-01

    We tested a dietary supplement formulated with a synergistic combination of vitamins, minerals, herbals in a group of 15 patients with uncontrolled diabetes type II. The supplement was given for 30 days. Fasting blood glucose was measured prior to the supplementation and at the end of the 30 days treatment period. Blood glucose was significantly reduced in all patients with no adverse effects. This orthomolecular correction of faulty glucose metabolism with a combination of nontoxic, safe and fairly inexpensive nutraceuticals needs to be further substantiated. Nervertheless the idea of correcting metabolism with micronutrients is a new concept of genetic nutritioneering that seems appealing and cost effective.

  12. Meal Disturbance Effect on Control of Blood Glucose Level for Critically-ill Patients using In-silico Works

    NASA Astrophysics Data System (ADS)

    Yusof, N. F. M.; Som, A. M.; Ali, S. A.; Azman, N. H.

    2018-05-01

    This study was conducted to determine the effect of meal disturbance on blood glucose level of the critically ill patients and to simulate the control algorithm previously developed using in-silico works. The study is significant so as to reduce the mortality rate of critically ill patients who usually encounter hyperglycaemia or/and hypoglycaemia while in treatment. The meal intake is believed to affect the blood glucose regulation and causes the hyperglycaemia to occur. Critically ill patients receive their meal through parenteral and enteral nutrition. Furthermore, by using in-silico works, time consumed and resources needed for clinical evaluation of the patients can be reduced. Hovorka model was employed in which the simulation study was carried out using MATLAB on the virtual patient and it was being compared with actual patient in which the data were provided by Institut Jantung Negara (IJN). Based on the simulation, the disturbance on enteral glucose supplied had affected the blood glucose level of the patient; however, it remained unchanged for the parental glucose. To reduce the occurrence of hypoglycaemia and hyperglycaemia, the patient was injected with 30 g/hr and 10 g/hr of enteral glucose, respectively. In conclusion, the disturbance of meal received can be controlled through in-silico works.

  13. COMPARISON OF WHOLE BLOOD AND PLASMA GLUCOSE CONCENTRATIONS IN GREEN TURTLES ( CHELONIA MYDAS) DETERMINED USING A GLUCOMETER AND A DRY CHEMISTRY ANALYZER.

    PubMed

    Perrault, Justin R; Bresette, Michael J; Mott, Cody R; Stacy, Nicole I

    2018-01-01

    :  We compared glucose concentrations in whole blood and plasma from green turtles ( Chelonia mydas) using a glucometer with plasma glucose analyzed by dry chemistry analyzer. Whole blood glucose (glucometer) and plasma glucose (dry chemistry) had the best agreement ( r s =0.85) and a small negative bias (-0.08 mmol/L).

  14. Impact of Partial Pressure of Oxygen in Blood Samples on the Performance of Systems for Self-Monitoring of Blood Glucose

    PubMed Central

    Baumstark, Annette; Pleus, Stefan; Haug, Cornelia; Tesar, Martina; Freckmann, Guido

    2014-01-01

    Abstract Background: The partial pressure of oxygen (pO2) in blood samples can affect glucose measurements with oxygen-sensitive systems. In this study, we assessed the influence of different pO2 levels on blood glucose (BG) measurements with five glucose oxidase (GOD) systems and one glucose dehydrogenase (GDH) system. All selected GOD systems were indicated by the manufacturers to be sensitive to increased oxygen content of the blood sample. Materials and Methods: Venous blood samples of 16 subjects (eight women, eight men; mean age, 52 years; three with type 1 diabetes, four with type 2 diabetes, and nine without diabetes) were collected. Aliquots of each sample were adjusted to the following pO2 values: ≤45 mm Hg, approximately 70 mm Hg, and ≥150 mm Hg. For each system, five consecutive measurements on each sample were performed using the same test strip lot. Relative differences between the mean BG value at a pO2 level of approximately 70 mm Hg, which was considered to be similar to pO2 values in capillary blood samples, and the mean BG value at pO2 levels ≤45 mm Hg and ≥150 mm Hg were calculated. Results: The GOD systems showed mean relative differences between 11.8% and 44.5% at pO2 values ≤45 mm Hg and between −14.6% and −21.2% at pO2 values ≥150 mm Hg. For the GDH system, the mean relative differences were −0.3% and −0.2% at pO2 values ≤45 mm Hg and ≥150 mm Hg, respectively. Conclusions: The magnitude of the pO2 impact on BG measurements seems to vary among the tested oxygen-sensitive GOD systems. The pO2 range in which oxygen-sensitive systems operate well should be provided in the product information. PMID:24205977

  15. Glucose intolerance in dairy goats with pregnancy toxemia: Lack of correlation between blood pH and beta hydroxybutyric acid values

    PubMed Central

    Lima, Miguel S.; Cota, João B.; Vaz, Yolanda M.; Ajuda, Inês G.; Pascoal, Rita A.; Carolino, Nuno; Hjerpe, Charles A.

    2016-01-01

    This study assessed the response to a glucose tolerance test in dairy goats with pregnancy toxemia (PT), in healthy, pregnant, non-lactating dairy goats in the last month of gestation (HP), and in healthy, lactating, non-pregnant, dairy goats in mid-lactation (HL). A 500 mL volume of a 5% glucose solution was administered by the IV route. Blood glucose concentrations returned to pre-infusion levels by 90 min in all 8 HL goats, and by 180 min in all 8 HP goats. In contrast, concentrations of blood glucose were still significantly above pre-infusion levels at 180 min post-infusion in all 8 PT goats. Thus, marked glucose intolerance was demonstrated in the PT goats, and mild intolerance was noted in the HP goats. In 25 goats diagnosed with PT and having blood beta hydroxybutyric acid (BHBA) values ≥ 2.9 mmol/L, the correlation coefficient for BHBA with blood pH was non-significant. PMID:27247464

  16. Development of a high-sensitivity and portable cell using Helmholtz resonance for noninvasive blood glucose-level measurement based on photoacoustic spectroscopy.

    PubMed

    Tachibana, K; Okada, K; Kobayashi, R; Ishihara, Y

    2016-08-01

    We describe the possibility of high-sensitivity noninvasive blood glucose measurement based on photoacoustic spectroscopy (PAS). The demand for noninvasive blood glucose-level measurement has increased due to the explosive increase in diabetic patients. We have developed a noninvasive blood glucose-level measurement based on PAS. The conventional method uses a straight-type resonant cell. However, the cell volume is large, which results in a low detection sensitivity and difficult portability. In this paper, a small-sized Helmholtz-type resonant cell is proposed to improve detection sensitivity and portability by reducing the cell dead volume. First, the acoustic property of the small-sized Helmholtz-type resonant cell was evaluated by performing an experiment using a silicone rubber. As a result, the detection sensitivity of the small-sized Helmholtz-type resonant cell was approximately two times larger than that of the conventional straight-type resonant cell. In addition, the inside volume was approximately 30 times smaller. Second, the detection limits of glucose concentration were estimated by performing an experiment using glucose solutions. The experimental results showed that a glucose concentration of approximately 1% was detected by the small-sized Helmholtz-type resonant cell. Although these results on the sensitivity of blood glucose-level measurement are currently insufficient, they suggest that miniaturization of a resonance cell is effective in the application of noninvasive blood glucose-level measurement.

  17. Effect of Luffa aegyptiaca (seeds) and Carissa edulis (leaves) extracts on blood glucose level of normal and streptozotocin diabetic rats.

    PubMed

    El-Fiky, F K; Abou-Karam, M A; Afify, E A

    1996-01-01

    The present study investigates the effect of oral administration of the ethanolic extracts of Luffa aegyptiaca (seeds) and Carissa edulis (leaves) on blood glucose levels both in normal and streptozotocin (STZ) diabetic rats. Treatment with both extracts significantly reduced the blood glucose level in STZ diabetic rats during the first three hours of treatment. L. aegyptiaca extract decreased blood glucose level with a potency similar to that of the biguanide, metformin. The total glycaemic areas were 589.61 +/- 45.62 mg/dl/3 h and 660.38 +/- 64.44 mg/dl/3 h for L. aegyptiaca and metformin, respectively, vs. 816.73 +/- 43.21 mg/dl/3 h for the control (P < 0.05). On the other hand, in normal rats, both treatments produced insignificant changes in blood glucose levels compared to glibenclamide treatment.

  18. The impact of blood glucose levels on stimulated adrenocorticotropin hormone and growth hormone release in healthy subjects.

    PubMed

    Jakobsdóttir, S; Twisk, J W R; Drent, M L

    2009-12-01

    In studies investigating the influence of glucose levels on the pituitary function the methods used have been variable and mainly focused on the change in function as a reaction to unphysiological low or high blood glucose levels. In the present study the impact of physiological and elevated blood glucose levels on adrenocorticotropin hormone (ACTH) and growth hormone release are investigated. The euglycaemic and hyperglycaemic clamp techniques were used to reach stable levels of 4, 8 and 12 mmol/l blood glucose levels. After a stabilization phase of 2 h, a corticotropin releasing hormone (CRH) or a growth hormone releasing hormone (GHRH) stimulation test was performed. Seven and eight healthy male volunteers, belonging to two groups, participated in this study. The area under the curve (AUC), peak values and time to peak of ACTH, cortisol and growth hormone were calculated to evaluate the response to the CRH and GHRH stimulation test. The peak values of ACTH, cortisol and growth hormone seemed to be the highest during the 4 mmol/l clamp sessions, compared with the 8 and 12 mmol/l clamps, although the differences were not statistically significant when analysed for every subject individually. The AUC and time to peak measurements were comparable during the three clamp procedures. The pituitary reaction on CRH and GHRH was not significantly changed by various blood glucose levels. © 2009 Blackwell Publishing Ltd.

  19. Oral Lactobacillus reuteri GMN-32 treatment reduces blood glucose concentrations and promotes cardiac function in rats with streptozotocin-induced diabetes mellitus.

    PubMed

    Lin, Chih-Hsueh; Lin, Cheng-Chieh; Shibu, Marthandam Asokan; Liu, Chiu-Shong; Kuo, Chia-Hua; Tsai, Fuu-Jen; Tsai, Chang-Hai; Hsieh, Cheng-Hong; Chen, Yi-Hsing; Huang, Chih-Yang

    2014-02-01

    Impaired regulation of blood glucose levels in diabetes mellitus (DM) patients and the associated elevation of blood glucose levels are known to increase the risk of diabetic cardiomyopathy (DC). In the present study, a probiotic bacterium, Lactobacillus reuteri GMN-32, was evaluated for its potential to reduce blood glucose levels and to provide protection against DC risks in streptozotocin (STZ)-induced DM rats. The blood glucose levels of the STZ-induced DM rats when treated with L. reuteri GMN-32 decreased from 4480 to 3620 mg/l (with 10⁷ colony-forming units (cfu)/d) and 3040 mg/l (with 10⁹ cfu/d). Probiotic treatment also reduced the changes in the heart caused by the effects of DM. Furthermore, the Fas/Fas-associated protein with death domain pathway-induced caspase 8-mediated apoptosis that was observed in the cardiomyocytes of the STZ-induced DM rats was also found to be controlled in the probiotic-treated rats. The results highlight that L. reuteri GMN-32 treatment reduces blood glucose levels, inhibits caspase 8-mediated apoptosis and promotes cardiac function in DM rats as observed from their ejection fraction and fractional shortening values. In conclusion, the administration of L. reuteri GMN-32 probiotics can regulate blood glucose levels, protect cardiomyocytes and prevent DC in DM rats.

  20. Peripheral Blood Transcriptomic Signatures of Fasting Glucose and Insulin Concentrations.

    PubMed

    Chen, Brian H; Hivert, Marie-France; Peters, Marjolein J; Pilling, Luke C; Hogan, John D; Pham, Lisa M; Harries, Lorna W; Fox, Caroline S; Bandinelli, Stefania; Dehghan, Abbas; Hernandez, Dena G; Hofman, Albert; Hong, Jaeyoung; Joehanes, Roby; Johnson, Andrew D; Munson, Peter J; Rybin, Denis V; Singleton, Andrew B; Uitterlinden, André G; Ying, Saixia; Melzer, David; Levy, Daniel; van Meurs, Joyce B J; Ferrucci, Luigi; Florez, Jose C; Dupuis, Josée; Meigs, James B; Kolaczyk, Eric D

    2016-12-01

    Genome-wide association studies (GWAS) have successfully identified genetic loci associated with glycemic traits. However, characterizing the functional significance of these loci has proven challenging. We sought to gain insights into the regulation of fasting insulin and fasting glucose through the use of gene expression microarray data from peripheral blood samples of participants without diabetes in the Framingham Heart Study (FHS) (n = 5,056), the Rotterdam Study (RS) (n = 723), and the InCHIANTI Study (Invecchiare in Chianti) (n = 595). Using a false discovery rate q <0.05, we identified three transcripts associated with fasting glucose and 433 transcripts associated with fasting insulin levels after adjusting for age, sex, technical covariates, and complete blood cell counts. Among the findings, circulating IGF2BP2 transcript levels were positively associated with fasting insulin in both the FHS and RS. Using 1000 Genomes-imputed genotype data, we identified 47,587 cis-expression quantitative trait loci (eQTL) and 6,695 trans-eQTL associated with the 433 significant insulin-associated transcripts. Of note, we identified a trans-eQTL (rs592423), where the A allele was associated with higher IGF2BP2 levels and with fasting insulin in an independent genetic meta-analysis comprised of 50,823 individuals. We conclude that integration of genomic and transcriptomic data implicate circulating IGF2BP2 mRNA levels associated with glucose and insulin homeostasis. © 2016 by the American Diabetes Association.

  1. Peripheral Blood Transcriptomic Signatures of Fasting Glucose and Insulin Concentrations

    PubMed Central

    Chen, Brian H.; Hivert, Marie-France; Peters, Marjolein J.; Pilling, Luke C.; Hogan, John D.; Pham, Lisa M.; Harries, Lorna W.; Fox, Caroline S.; Bandinelli, Stefania; Dehghan, Abbas; Hernandez, Dena G.; Hofman, Albert; Hong, Jaeyoung; Joehanes, Roby; Johnson, Andrew D.; Munson, Peter J.; Rybin, Denis V.; Singleton, Andrew B.; Uitterlinden, André G.; Ying, Saixia; Melzer, David; Levy, Daniel; van Meurs, Joyce B.J.; Ferrucci, Luigi; Florez, Jose C.; Dupuis, Josée

    2016-01-01

    Genome-wide association studies (GWAS) have successfully identified genetic loci associated with glycemic traits. However, characterizing the functional significance of these loci has proven challenging. We sought to gain insights into the regulation of fasting insulin and fasting glucose through the use of gene expression microarray data from peripheral blood samples of participants without diabetes in the Framingham Heart Study (FHS) (n = 5,056), the Rotterdam Study (RS) (n = 723), and the InCHIANTI Study (Invecchiare in Chianti) (n = 595). Using a false discovery rate q <0.05, we identified three transcripts associated with fasting glucose and 433 transcripts associated with fasting insulin levels after adjusting for age, sex, technical covariates, and complete blood cell counts. Among the findings, circulating IGF2BP2 transcript levels were positively associated with fasting insulin in both the FHS and RS. Using 1000 Genomes–imputed genotype data, we identified 47,587 cis-expression quantitative trait loci (eQTL) and 6,695 trans-eQTL associated with the 433 significant insulin-associated transcripts. Of note, we identified a trans-eQTL (rs592423), where the A allele was associated with higher IGF2BP2 levels and with fasting insulin in an independent genetic meta-analysis comprised of 50,823 individuals. We conclude that integration of genomic and transcriptomic data implicate circulating IGF2BP2 mRNA levels associated with glucose and insulin homeostasis. PMID:27625022

  2. [Evaluation of hearing loss parameters in workers and its relationship with fasting blood glucose levels].

    PubMed

    Vicente-Herrero, M Teofila; Lladosa Marco, Silvia; Ramírez-Iñiguez de La Torre, M Victoria; Terradillos-García, M Jesús; López-González, Ángel Arturo

    2014-05-01

    Hearing loss due to noise is considered within the prevention plans of the most common occupational diseases. In addition to evaluation of working conditions, other personal factors increasing the risk of hypoacusis, such as diabetes, should be taken into account. To explore hearing loss in the workplace and its relationship to impaired fasting baseline blood glucose levels. An observational, cross-sectional study enrolling 1636 workers from service companies was conducted. Full audiometric evaluation was performed at different frequencies: high frequency (HF), early loss index (ELI), speech average loss (SAL), and monaural and binaural loss. Results were categorized by baseline blood glucose levels: G1 (<100mg/dl), G2 (100-125mg/dl), and G3 (>125mg/dl). Based on both HF and ELI, 11% of workers had clear indication of deafness. Women with G3 levels showed significant differences in the results of HF and ELI indexes as compared to the G1 group (P=.038 and .046, respectively). A positive association was found between hearing loss and G3 blood glucose levels in HF (OR: .338; p=.002), ELI (OR: .407; p=.007), and the monaural test in the left ear (OR: 4.77×10-5; p=.006). Despite the methodological limitations of this study, there is evidence for an increased risk of high frequency hearing loss in workers with high baseline blood glucose levels. Copyright © 2013 SEEN. Published by Elsevier Espana. All rights reserved.

  3. Cinnamon extract improves fasting blood glucose and glycosylated hemoglobin level in Chinese patients with type 2 diabetes.

    PubMed

    Lu, Ting; Sheng, Hongguang; Wu, Johnna; Cheng, Yuan; Zhu, Jianming; Chen, Yan

    2012-06-01

    For thousands of years, cinnamon has been used as a traditional treatment in China. However, there are no studies to date that investigate whether cinnamon supplements are able to aid in the treatment of type 2 diabetes in Chinese subjects. We hypothesized cinnamon should be effective in improving blood glucose control in Chinese patients with type 2 diabetes. To address this hypothesis, we performed a randomized, double-blinded clinical study to analyze the effect of cinnamon extract on glycosylated hemoglobin A(1c) and fasting blood glucose levels in Chinese patients with type 2 diabetes. A total of 66 patients with type 2 diabetes were recruited and randomly divided into 3 groups: placebo and low-dose and high-dose supplementation with cinnamon extract at 120 and 360 mg/d, respectively. Patients in all 3 groups took gliclazide during the entire 3 months of the study. Both hemoglobin A(1c) and fasting blood glucose levels were significantly reduced in patients in the low- and high-dose groups, whereas they were not changed in the placebo group. The blood triglyceride levels were also significantly reduced in the low-dose group. The blood levels of total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and liver transaminase remained unchanged in the 3 groups. In conclusion, our study indicates that cinnamon supplementation is able to significantly improve blood glucose control in Chinese patients with type 2 diabetes. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. The effect of intra-articular triamcinolone preparations on blood glucose levels in diabetic patients: a controlled study.

    PubMed

    Habib, George S; Miari, Walid

    2011-09-01

    The objective of the study was to evaluate the effect of intra-articular (IA) triamcinolone hexacetonide (TAH) and triamcinolone acetonide (TA) on blood glucose levels in patients with controlled diabetes with symptomatic osteoarthritis of the knee (OAK). Patients with controlled diabetes with symptomatic OAK who failed nonsteroidal anti-inflammatory medication and physical therapy and use modern versions of self-monitoring blood glucose devices were offered an IA injection of either 20 mg of TAH or 40 mg of TA. If agreed, patients were asked to document blood glucose levels before and 2 hr after meals for 1 week before and daily for 5 days then every other day for 1 week following the injection. The type of IA preparation was given on an alternating pattern. A sex- and aged-matched group of patients with controlled diabetes with symptomatic OAK of the knee was offered an IA hyaluronic acid (HA) injection. Significantly increased blood glucose level following the IA injection was defined as higher by at least 2 SDs than the mean comparable level before the injection. Thirty patients completed the study: 12 patients in the TAH, 12 patients in the TA group, and 6 in the HA group. All the patients who received triamcinolone preparations had significantly increased blood glucose levels with median initial levels of 227.5 and 201 mg% seen at a median of 8.5 and 13 hr following the IA injection and median peak levels of 288 and 239.5 mg% seen after a median of 24.5 and 32.5 hr following the IA injection of TA and TAH, respectively. Levels returned to normal after ∼2.5 to ∼4 days. There was no significant increase in the HA group except in 1 measurement only with marginal level in 2 patients. Intra-articular injection of either TAH or TA is associated with significantly increased blood glucose levels in patients with controlled diabetes with OAK. This increase is quite solely due to the injected steroids.

  5. [A cohort study on association between the first trimester phthalates exposure and fasting blood glucose level in the third trimester].

    PubMed

    Zhang, Y W; Gao, H; Huang, K; Xu, Y Y; Sheng, J; Tao, F B

    2017-03-10

    Objective: To examine the association between the phthalate exposure in the first trimester and fasting blood glucose level or gestational diabetes mellitus (GDM) in the third trimester in pregnant women. Methods: A total of 3 474 pregnant women, receiving their prenatal examination in Ma' anshan Maternal and Child Health-Care Hospital of Anhui province, were selected from May 2013 to September 2014. Questionnaires were used to collect the information about their socio-demographic characteristics, clinical characteristics and GDM diagnostic results in the first, second and third trimesters. Urine samples and fasting venous blood samples were collected. Concentrations of 7 kinds of phthalate metabolites in urine samples were detected by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry (SPE-HPLC-MS/MS), and multiple linear regression model was used for statistical analyses. Logistic regression analysis on the risk of the first trimester phthalate exposure for GDM in the third trimester was conducted. Results: The prevalence of GDM in this study was 12.8%, monomethyl phthalate (MMP), monoethyl phthalate (MEP), mono-n-butyl phthalate (MBP), monobenzyl phthalate (MBzP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEHHP) exposure levels were positively correlated with the fasting blood glucose level in the third trimester ( P <0.05), but mono-(2-ethylhexyl) phthalate (MEHP) and mono-(2-ethyl-5-hydroxylhexyl) phthalate (MEOHP) exposure levels were negatively correlated with the fasting blood glucose level in the third trimester ( P <0.05). Stratified analysis showed a positive correlation between MEHHP exposure and the third trimester fasting blood glucose level in both normal group and GDM group. However, MMP, MEP, MBP, MBzP, MEHP and MEOHP exposure levels had influences on the third trimester fasting blood glucose level in normal group but not in GDM group. MMP and MBP exposure might increase the risk of GDM, but MEOHP exposure might

  6. Point-of-care blood glucose measurement errors overestimate hypoglycaemia rates in critically ill patients.

    PubMed

    Nya-Ngatchou, Jean-Jacques; Corl, Dawn; Onstad, Susan; Yin, Tom; Tylee, Tracy; Suhr, Louise; Thompson, Rachel E; Wisse, Brent E

    2015-02-01

    Hypoglycaemia is associated with morbidity and mortality in critically ill patients, and many hospitals have programmes to minimize hypoglycaemia rates. Recent studies have established the hypoglycaemic patient-day as a key metric and have published benchmark inpatient hypoglycaemia rates on the basis of point-of-care blood glucose data even though these values are prone to measurement errors. A retrospective, cohort study including all patients admitted to Harborview Medical Center Intensive Care Units (ICUs) during 2010 and 2011 was conducted to evaluate a quality improvement programme to reduce inappropriate documentation of point-of-care blood glucose measurement errors. Laboratory Medicine point-of-care blood glucose data and patient charts were reviewed to evaluate all episodes of hypoglycaemia. A quality improvement intervention decreased measurement errors from 31% of hypoglycaemic (<70 mg/dL) patient-days in 2010 to 14% in 2011 (p < 0.001) and decreased the observed hypoglycaemia rate from 4.3% of ICU patient-days to 3.4% (p < 0.001). Hypoglycaemic events were frequently recurrent or prolonged (~40%), and these events are not identified by the hypoglycaemic patient-day metric, which also may be confounded by a large number of very low risk or minimally monitored patient-days. Documentation of point-of-care blood glucose measurement errors likely overestimates ICU hypoglycaemia rates and can be reduced by a quality improvement effort. The currently used hypoglycaemic patient-day metric does not evaluate recurrent or prolonged events that may be more likely to cause patient harm. The monitored patient-day as currently defined may not be the optimal denominator to determine inpatient hypoglycaemic risk. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Infant feeding and adult glucose tolerance, lipid profile, blood pressure, and obesity

    PubMed Central

    Ravelli, A; van der Meulen, J H P; Osmond, C; Barker, D; Bleker, O

    2000-01-01

    BACKGROUND—It is generally accepted that breast feeding has a beneficial effect on the health of infants and young children. Recently, a few studies have shown that the method of infant feeding is also associated with cardiovascular disease and its risk factors in adult life.
AIMS—To examine the association between the method of infant feeding in the first weeks after birth and glucose tolerance, plasma lipid profile, blood pressure, and body mass in adults aged 48-53 years.
METHODS—Subjects born at term between 1 November 1943 and 28 February 1947 in the Wilhelmina Gasthuis in Amsterdam around the time of a severe period of famine (late November 1944 to early May 1945). For 625 subjects, information was available about infant feeding at the time of discharge from hospital (on average 10.4days after birth), and at least one blood sample after an overnight fast.
RESULTS—Subjects who were bottle fed had a higher mean 120 minute plasma glucose concentration after a standard oral glucose tolerance test than those who were exclusively breast fed. They also had a higher plasma low density lipoprotein (LDL) cholesterol concentration, a lower high density lipoprotein (HDL) cholesterol concentration, and a higher LDL/HDL ratio. Systolic blood pressure and body mass index were not affected by the method of infant feeding.
CONCLUSIONS—Exclusive breast feeding seems to have a protective effect against some risk factors for cardiovascular disease in later life.

 PMID:10685933

  8. Development and Testing of a Plastic Optical Fiber Grating Biosensor for Detection of Glucose in the Blood

    NASA Astrophysics Data System (ADS)

    Yunianto, M.; Eka, D.; Permata, A. N.; Ariningrum, D.; Wahyuningsih, S.; Marzuki, A.

    2017-02-01

    The objective of this study is to detect glucose content in human blood serum using optical fiber grating with LED wavelength corresponding to the absorption of glucose content in blood serum. The testing used a UV-Vis spectrometer and Rays spectrometers, in which in the ray spectrometer it was used optical fiber biosensor using optical fiber grating. The result obtained is the typical peak of glucose absorption in UV-Vis at 581 nm wavelength and rays spectrometer on green LED at 514.2 nm wavelength with linear regression result by 0.97 and 0.94, respectively.

  9. Effects of sitagliptin or mitiglinide as an add-on to acarbose on daily blood glucose fluctuations measured by 72 h subcutaneous continuous glucose monitoring in Japanese patients with type 2 diabetes: a prospective randomized study.

    PubMed

    Osonoi, Takeshi; Saito, Miyoko; Tamasawa, Atsuko; Ishida, Hidenori; Osonoi, Yusuke

    2014-07-01

    Postprandial hyperglycemia and blood glucose fluctuations increase the risk of macroangiopathy in patients with type 2 diabetes mellitus (T2DM). However, few studies have examined the effects of oral hypoglycemic drugs on blood glucose fluctuations in daily life. Twenty-nine T2DM patients treated with acarbose were randomized to receive either sitagliptin (14 patients) or mitiglinide (15 patients) together with acarbose for 4 weeks. Patients were then switched to a combination of 10 mg mitiglinide and 0.2 mg voglibose for 4 weeks. All patients wore a continuous glucose monitoring (CGM) device for 5 - 7 days in week 3 of each treatment period. The percentage of blood glucose levels in the hyperglycemic range, blood glucose indices derived from 24-h CGM profiles and the glycemic parameters (HbA1c, glycated albumin and fasting plasma glucose) were significantly improved by adding sitagliptin or mitiglinide to ongoing acarbose therapy. These parameters also tended to improve in the mitiglinide/voglibose combination period. Daily blood glucose fluctuations were significantly improved by adding sitagliptin or mitiglinide to acarbose, and improved after switching to the mitiglinide/voglibose combination. Larger controlled studies are needed to verify the effects of adding sitagliptin or mitiglinide to acarbose on glucose fluctuations.

  10. Adaptive Blood Glucose Monitoring and Insulin Measurement Devices for Visually Impaired Persons.

    ERIC Educational Resources Information Center

    Petzinger, R. A.

    1993-01-01

    This article describes devices that people with visual impairments and diabetes can use to monitor blood glucose levels and measure insulin. A table lists devices, their manufacturers (including address and telephone number), and comments about the devices. (DB)

  11. [Study on the experimental application of floating-reference method to noninvasive blood glucose sensing].

    PubMed

    Yu, Hui; Qi, Dan; Li, Heng-da; Xu, Ke-xin; Yuan, Wei-jie

    2012-03-01

    Weak signal, low instrument signal-to-noise ratio, continuous variation of human physiological environment and the interferences from other components in blood make it difficult to extract the blood glucose information from near infrared spectrum in noninvasive blood glucose measurement. The floating-reference method, which analyses the effect of glucose concentration variation on absorption coefficient and scattering coefficient, gets spectrum at the reference point and the measurement point where the light intensity variations from absorption and scattering are counteractive and biggest respectively. By using the spectrum from reference point as reference, floating-reference method can reduce the interferences from variation of physiological environment and experiment circumstance. In the present paper, the effectiveness of floating-reference method working on improving prediction precision and stability was assessed through application experiments. The comparison was made between models whose data were processed with and without floating-reference method. The results showed that the root mean square error of prediction (RMSEP) decreased by 34.7% maximally. The floating-reference method could reduce the influences of changes of samples' state, instrument noises and drift, and improve the models' prediction precision and stability effectively.

  12. Performance of strip-based glucose meters and cassette-based blood gas analyzer for monitoring glucose levels in a surgical intensive care setting.

    PubMed

    Claerhout, Helena; De Prins, Martine; Mesotten, Dieter; Van den Berghe, Greet; Mathieu, Chantal; Van Eldere, Johan; Vanstapel, Florent

    2016-01-01

    We verified the analytical performance of strip-based handheld glucose meters (GM) for prescription use, in a comparative split-sample protocol using blood gas samples from a surgical intensive care unit (ICU). Freestyle Precision Pro (Abbott), StatStrip Connectivity Meter (Nova), ACCU-CHEK Inform II (Roche) were evaluated for recovery/linearity, imprecision/repeatability. The GMs and the ABL90 (Radiometer) blood gas analyzer (BGA) were tested for relative accuracy vs. the comparator hexokinase glucose-6-phosphate-dehydrogenase (HK/G6PDH) assay on a Cobas c702 analyzer (Roche). Recovery of spiked glucose was linear up to 19.3 mmol/L (347 mg/dL) with a slope of 0.91-0.94 for all GMs. Repeatability estimated by pooling duplicate measurements on samples below (n=9), in (n=51) or above (n=80) the 4.2-5.9 mM (74-106 mg/dL) range were for Freestyle Precision Pro: 4.2%, 4.0%, 3.6%; StatStrip Connectivity Meter: 4.0%, 4.3%, 4.5%; and ACCU-CHEK Inform II: 1.4%, 2.5%, 3.5%. GMs were in agreement with the comparator method. The BGA outperformed the GMs, with a MARD of 3.9% compared to 6.5%, 5.8% and 4.4% for the FreeStyle, StatStrip and ACCU-CHEK, respectively. Zero % of the BGA results deviated more than the FDA 10% criterion as compared to 9.4%, 3.7% and 2.2% for the FreeStyle, StatStrip and ACCU-CHEK, respectively. For all GMs, icodextrin did not interfere. Variation in the putative influence factors hematocrit and O2 tension could not explain observed differences with the comparator method. GMs quantified blood glucose in whole blood at about the 10% total error criterion, proposed by the FDA for prescription use.

  13. Human cervical carcinoma detection and glucose monitoring in blood micro vasculatures with swept source OCT

    NASA Astrophysics Data System (ADS)

    Ullah, H.; Ahmed, E.; Ikram, M.

    2013-08-01

    We report a pilot method, i.e., speckle variance (SV) and structured optical coherence tomography to visualize normal and malignant blood microvasculature in three and two dimensions and to monitor the glucose levels in blood by analyzing the Brownian motion of the red blood cells. The technique was applied on nude live mouse's skin and the obtained images depict the enhanced intravasculature network forum up to the depth of ˜2 mm with axial resolution of ˜8 μm. Microscopic images have also been obtained for both types of blood vessels to observe the tumor spatially. Our SV-OCT methodologies and results give satisfactory techniques in real time imaging and can potentially be applied during therapeutic techniques such as photodynamic therapy as well as to quantify the higher glucose levels injected intravenously to animal by determining the translation diffusion coefficient.

  14. CNS-targets in control of energy and glucose homeostasis.

    PubMed

    Kleinridders, André; Könner, A Christine; Brüning, Jens C

    2009-12-01

    The exceeding efforts in understanding the signals initiated by nutrients and hormones in the central nervous system (CNS) to regulate glucose and energy homeostasis have largely revolutionized our understanding of the neurocircuitry in control of peripheral metabolism. The ability of neurons to sense nutrients and hormones and to adopt a coordinated response to these signals is of crucial importance in controlling food intake, energy expenditure, glucose and lipid metabolism. Anatomical lesion experiments, pharmacological inhibition of signaling pathways, and, more recently, the analysis of conditional mouse mutants with modifications of hormone and nutrient signaling in defined neuronal populations have broadened our understanding of these complex neurocircuits. This review summarizes recent findings regarding the role of the CNS in sensing and transmitting nutritional and hormonal signals to control energy and glucose homeostasis and aims to define them as potential novel drug targets for the treatment of obesity and type 2 diabetes mellitus.

  15. The glucose oxidase-peroxidase assay for glucose

    USDA-ARS?s Scientific Manuscript database

    The glucose oxidase-peroxidase assay for glucose has served as a very specific, sensitive, and repeatable assay for detection of glucose in biological samples. It has been used successfully for analysis of glucose in samples from blood and urine, to analysis of glucose released from starch or glycog...

  16. The effect of guar gum addition to a semisolid meal on appetite related to blood glucose, in dieting men.

    PubMed

    Kovacs, E M R; Westerterp-Plantenga, M S; Saris, W H M; Melanson, K J; Goossens, I; Geurten, P; Brouns, F

    2002-08-01

    To investigate whether addition of modified guar gum (GG) to a low-energy semisolid meal might be effective on appetite by modifying the response of blood glucose and other blood parameters. Three intervention periods of 2 weeks each, separated by washout periods of 4 weeks. Randomized and cross-over design. Fifteen overweight male subjects (mean+/-s.d.; age, 44+/-9 y; body mass index, 28.6+/-1.8 kg/m(2)). Subjects consumed a low-energy diet divided over three times a day, consisting of a semisolid meal with (SSM+) or without (SSM) addition of 2.5 g GG, or a solid meal (SM) with the same energy content (947 kJ) and macronutrient composition, plus a dinner of the subject's own choice. At the end of each intervention, time and number of meal initiations, dynamics of blood glucose and other blood parameters, and appetite ratings such as hunger and satiety were determined in a time-blinded situation. The changes in blood glucose from meal initiation to blood glucose peak and from peak to nadir were smaller with SSM+ and SM compared to SSM. Satiety before the third meal was higher with SSM+ and SM compared to SSM (P<0.01). Meal pattern, general appetite and total energy intake were similar for all treatments. We conclude that, similar to SM, SSM+ resulted in a more moderate change in blood glucose compared to SSM and positively affected satiety before the third meal, while general appetite, total energy intake and meal pattern did not differ.

  17. Monitoring blood glucose levels in female mink during the reproductive cycle: 1. Prevention of hyperglycemia during the nursing period

    PubMed Central

    Hynes, Amber M.J.; Rouvinen-Watt, Kirsti

    2007-01-01

    Nursing sickness, the largest cause of death in female adult mink, is a metabolic disorder characterized by hyperglycemia. The impacts of body condition, dietary supplements, and reproductive status on the blood glucose concentration in female mink during the reproductive cycle were investigated. Mink dams on 3 farms were assigned to receive either herring oil (HerO) or chromium picolinate (CrPic) or to be in a control group, receiving only the basal diet, for 6 wk at the onset of lactation. Hyperglycemia was observed throughout the reproductive cycle. Significant differences in blood glucose levels were observed between farms, emphasizing the importance of herd genetics and of animal management and feeding practices in glycemic regulation. Female mink exhibiting hyperglycemia early in the reproductive cycle tended to remain hyperglycemic and to have poorer health and fewer kits. Glucose levels > 7 mmol/L can be considered critical in this regard. Supplementing the diet with CrPic reduced the blood glucose concentration. Results from this study suggest that a diet containing high-quality n-3 polyunsaturated fatty acids, high levels of carbohydrate, and CrPic supplementation may help the nursing mink dam maintain a normal blood glucose concentration during lactation. PMID:17955897

  18. Extracellular glucose can fuel metabolism in red blood cells from high glycemic Atlantic cod (Gadus morhua) but not low glycemic short-horned sculpin (Myoxocephalus scorpius).

    PubMed

    Driedzic, William R; Clow, Kathy A; Short, Connie E

    2014-11-01

    Energy metabolism was assessed in red blood cells (RBCs) from Atlantic cod and short-horned sculpin, two species that have markedly different levels of blood glucose. The objective was to determine whether the level of extracellular glucose has an impact on rates of glucose metabolism. The blood glucose level was 2.5 mmol l(-1) in Atlantic cod and 0.2 mmol l(-1) in short-horned sculpin, respectively. Oxygen consumption, lactate production and glucose utilization were measured in whole blood and related to grams of RBCs. Glucose utilization was assessed by measuring both glucose disappearance and the production of (3)H2O from [2-(3)H]-glucose. RBCs from both species have an aerobic-based metabolism. In Atlantic cod, extracellular glucose is sufficient to provide the sum of glucosyl equivalents to support both oxidative metabolism and lactate production. In contrast, extracellular glucose can account for only 10% of the metabolic rate in short-horned sculpin RBCs. In both species, about 70% of glucose enters the RBCs via facilitated transport. The difference in rates of extracellular glucose utilization is related to the extremely low levels of blood glucose in short-horned sculpin. In this species energy metabolism by RBCs must be supported by alternative fuels. © 2014. Published by The Company of Biologists Ltd.

  19. Acarbose, the α-glucosidase inhibitor, attenuates the blood pressure and splanchnic blood flow responses to meal in elderly patients with postprandial hypotension concomitant with abnormal glucose metabolism.

    PubMed

    Qiao, Wei; Li, Jing; Li, Ying; Qian, Duan; Chen, Lei; Wei, Xiansen; Jin, Jiangli; Wang, Yong

    2016-02-01

    Postprandial hypotension (PPH) is a unique clinical phenomenon in the elderly, but its underlying pathogenesis has not been completely elucidated, and drug treatment is still in clinical exploratory stage. The aim of the study was to evaluate the relationship between the fall in postprandial blood pressure and splanchnic blood flow, and to provide a theoretical basis for the treatment of PPH by taking acarbose. The study included 20 elderly inpatients diagnosed with PPH concomitant with abnormal glucose metabolism at stable condition. They were treated with 50 mg acarbose with their meal to observe the changes in blood pressure, heart rate, and blood glucose level, and to monitor the hemodynamics of the superior mesenteric artery (SMA) before and after treatment. Without acarbose treatment, patients after a meal had significantly decreased systolic and diastolic blood pressure, faster postprandial heart rate, higher postprandial glucose level at each period, and increased postprandial SMA blood flow compared with that at fasting state (P<0.05). Acarbose treatment significantly attenuated the decrease of postprandial systolic blood pressures from 35.50±12.66 to 22.25±6.90 mmHg (P=0.000), the increase of heart rate from 9.67±5.94 to 5.33±3.20 beats/min (P=0.016), the increase of postprandial blood glucose from 3.55±1.69 to 2.28±1.61 mmol/l (P=0.000), the increase of postprandial SMA blood flow from 496.80±147.15 to 374.55±97.89 ml/min (P=0.031), and the incidence of PPH, syncope, falls, dizziness, weakness, and angina pectoris (P<0.05). The maximal decrease of postprandial systolic blood pressure was positively associated with the maximal increase in postprandial SMA blood flow (r=0.351, P=0.026). Acarbose treatment showed no significant side effects. The increase in postprandial splanchnic perfusion is one of the reasons for PPH formation. Acarbose may exert its role in PPH treatment by reducing postprandial gastrointestinal blood perfusion. Giving

  20. Combining insulins for optimal blood glucose control in type 1 and 2 diabetes: Focus on insulin glulisine

    PubMed Central

    Ulrich, Heather; Snyder, Benjamin; K Garg, Satish

    2007-01-01

    Normalization of blood glucose is essential for the prevention of diabetes mellitus (DM)-related microvascular and macrovascular complications. Despite substantial literature to support the benefits of glucose lowering and clear treatment targets, glycemic control remains suboptimal for most people with DM in the United States. Pharmacokinetic limitations of conventional insulins have been a barrier to achieving treatment targets secondary to adverse effects such as hypoglycemia and weight gain. Recombinant DNA technology has allowed modification of the insulin molecule to produce insulin analogues that overcome these pharmacokinetic limitations. With time action profiles that more closely mimic physiologic insulin secretion, rapid acting insulin analogues (RAAs) reduce post-prandial glucose excursions and hypoglycemia when compared to regular human insulin (RHI). Insulin glulisine (Apidra®) is a rapid-acting insulin analogue created by substituting lysine for asparagine at position B3 and glutamic acid for lysine at position B29 on the B chain of human insulin. The quick absorption of insulin glulisine more closely reproduces physiologic first-phase insulin secretion and its rapid acting profile is maintained across patient subtypes. Clinical trials have demonstrated comparable or greater efficacy of insulin glulisine versus insulin lispro or RHI, respectively. Efficacy is maintained even when insulin glulisine is administered post-meal. In addition, glulisine appears to have a more rapid time action profile compared with insulin lispro across various body mass indexes (BMIs). The safety and tolerability profile of insulin glulisine is also comparable to that of insulin lispro or RHI in type 1 or 2 DM and it has been shown to be as safe and effective when used in a continuous subcutaneous insulin infusion (CSII). In summary, insulin glulisine is a safe, effective, and well tolerated rapid-acting insulin analogue across all BMIs and a worthy option for prandial

  1. Early and progressive impairment of spinal blood flow-glucose metabolism coupling in motor neuron degeneration of ALS model mice.

    PubMed

    Miyazaki, Kazunori; Masamoto, Kazuto; Morimoto, Nobutoshi; Kurata, Tomoko; Mimoto, Takahumi; Obata, Takayuki; Kanno, Iwao; Abe, Koji

    2012-03-01

    The exact mechanism of selective motor neuron death in amyotrophic lateral sclerosis (ALS) remains still unclear. In the present study, we performed in vivo capillary imaging, directly measured spinal blood flow (SBF) and glucose metabolism, and analyzed whether if a possible flow-metabolism coupling is disturbed in motor neuron degeneration of ALS model mice. In vivo capillary imaging showed progressive decrease of capillary diameter, capillary density, and red blood cell speed during the disease course. Spinal blood flow was progressively decreased in the anterior gray matter (GM) from presymptomatic stage to 0.80-fold of wild-type (WT) mice, 0.61 at early-symptomatic, and 0.49 at end stage of the disease. Local spinal glucose utilization (LSGU) was transiently increased to 1.19-fold in anterior GM at presymptomatic stage, which in turn progressively decreased to 0.84 and 0.60 at early-symptomatic and end stage of the disease. The LSGU/SBF ratio representing flow-metabolism uncoupling (FMU) preceded the sequential pathological changes in the spinal cord of ALS mice and was preferentially found in the affected region of ALS. The present study suggests that this early and progressive FMU could profoundly involve in the whole disease process as a vascular factor of ALS pathology, and could also be a potential target for therapeutic intervention of ALS.

  2. Investigation of the Blood Glucose Lowering Potential of the Jamaican Momordica charantia (Cerasee) Fruit in Sprague-Dawley Rats

    PubMed Central

    Burnett, A; McKoy, M-L; Singh, P

    2015-01-01

    ABSTRACT The Momordica charantia (MC) fruit has been documented to possess antidiabetic properties. However, these studies were not without controversy surrounding the blood glucose-lowering ability and the mechanism of action in diabetes therapy. In an effort to evaluate such claims in the Jamaican MC species known as cerasee, aqueous extracts of the unripe fruit were studied in normal and diabetic rats. Normal male Sprague-Dawley rats were divided into groups (n = 6) orally administered distilled water, 10% dimethyl sulfoxide (DMSO) solution, the aqueous extract (400 mg/kg body weight) and glibenclamide (15 mg/kg body weight), respectively prior to assessment of fasting blood glucose (FBG) concentration. The oral glucose tolerance test (OGTT) was conducted in normoglycaemic rats orally administered distilled water, 10% DMSO solution, glibenclamide (15 mg/kg body weight) or aqueous extracts of the fruit (200 and 400 mg/kg body weight). Blood glucose concentration was also monitored in streptozotocin-induced diabetic rats administered the aqueous extract (250 mg/kg body weight) or water vehicle after an overnight fast. The aqueous extracts showed no hypoglycaemic or antidiabetic activity. However, the administration of the aqueous extracts (200 and 400 mg/kg body weight) resulted in significant improvement in glucose tolerance of glucose-primed normoglycaemic rats during the OGTT. These data suggest that the glucose-lowering mechanism of the Jamaican MC fruit species likely involves altered glucose absorption across the gastrointestinal tract. PMID:26624580

  3. Knowledge, attitude and practice of exercise for plasma blood glucose control among patients with type-2 diabetes.

    PubMed

    Awotidebe, Taofeek O; Adedoyin, Rufus A; Afolabi, Mubaraq A; Opiyo, Rose

    2016-01-01

    Exercise plays significant role in the health outcomes of patients with diabetes, however, little is known about patients' knowledge of exercise for plasma blood glucose control among patients with type-2 diabetes (T2D). This study investigated knowledge, attitude and practice (KAP) of exercise for plasma blood glucose control among patients with T2D. This cross-sectional study recruited 299 patients with T2D (male=105; female=194) from selected government hospitals in Osun State, Nigeria using purposive sampling technique. Validated questionnaires were used to assess of exercise for plasma blood glucose control and socioeconomic status (SES) of the patients. Data were analysed using descriptive and inferential statistics. Alpha level was set at <0.05. The mean age of respondents was 51.9±9.8 years. A majority, 245(81.9%) were married individuals and more than half, 195(65.3%) were in the low SES. One hundred and forty-eight (49.5%) had good knowledge of exercise whilst 269(90.0%) had negative attitude to exercise practice. Less than a third, 82(27.4%) engaged in exercise practice for plasma blood glucose control. There was significant association between knowledge and practice of exercise ((2)=12.535; p=0.002). Furthermore, significant associations were found between knowledge and gender ((2)=11.453; p=0.003), and socioeconomic status ((2)=29.127, p=0.001) but not associated with attitude towards exercise (p>0.05). Patients with demonstrated good knowledge of exercise for plasma blood glucose control but reported negative attitude and poor practice of exercise. Copyright © 2016. Published by Elsevier Ltd.

  4. Welltang - A smart phone-based diabetes management application - Improves blood glucose control in Chinese people with diabetes.

    PubMed

    Zhou, Weibin; Chen, Min; Yuan, Jingyun; Sun, Yan

    2016-06-01

    The primary objective was to evaluate the impact of the smart phone-based diabetes management application, Welltang, on glycated hemoglobin (HbA1c). The second objective was to measure whether Welltang improves blood glucose, low-density lipoprotein cholesterol, weight, blood pressure, hypoglycemic events, satisfaction of patients to use Welltang, diabetes knowledge of patients, and self-care behaviors. One hundred evenly randomized subjects with diabetes, aged 18-74years, were recruited from the outpatient Department of Endocrinology for a 3-month study. The Welltang intervention group received training for the use of Welltang, while the control group received their usual standard of care. HbA1c, blood glucose, low-density lipoprotein cholesterol, weight, blood pressure, hypoglycemic events, satisfaction of patients to use Welltang, diabetes knowledge of patients, and self-care behaviors were measured. Patient data were analyzed using independent t test and paired sample test using SPSS version 12. The average decrease in HbA1c was 1.95% (21mmol/mol) in the intervention group and 0.79% (8mmol/mol) in the control group (P<0.001). Measures of self-monitored blood glucose, diabetes knowledge, and self-care behaviors improved in patients in the intervention group. Eighty four percent of patients in the intervention group were satisfied with the use of Welltang. Differences in hypoglycemic events, low-density lipoprotein cholesterol, weight, and blood pressure were not statistically significant. Diabetes patients using the Welltang application achieved statistically significant improvements in HbA1c, blood glucose, satisfaction of patients to use of Welltang, diabetes knowledge, and self-care behaviors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Placing blood on the target: a challenge for visually impaired persons.

    PubMed

    Cleary, M E; Hamilton, J E

    1993-01-01

    An individualized, blood glucose self-monitoring procedure for those who are visually impaired must be developed, taught, practiced, observed, and reviewed. Effective teaching requires understanding functional vision loss, observing safety precautions, organizing the work area, obtaining an adequate blood sample, ensuring accurate placement of blood on the strip, and cleaning up. Thoroughness and repetition enable the visually impaired person to perform the procedure safely and confidently.

  6. Kinetic Parameters for the Noncatalyzed and Enzyme-Catalyzed Mutarotation of Glucose Using a Blood Glucometer

    ERIC Educational Resources Information Center

    Hardee, John R.; Delgado, Bryan; Jones, Wray

    2011-01-01

    The kinetic parameters for the conversion of alpha-D-glucose to beta-D-glucose were measured using a blood glucometer. The reaction order, rate constant, and Arrhenius activation energy are reported for the noncatalyzed reaction and turnover number and Michaelis constant are reported for the reaction catalyzed by porcine kidney mutarotase. The…

  7. Blood and urine responses to ingesting fluids of various salt and glucose concentrations. [to combat orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    Frey, Mary A.; Riddle, Jeanne; Charles, John B.; Bungo, Michael W.

    1991-01-01

    To compensate for the reduced blood and fluid volumes that develop during weightlessness, the Space Shuttle crewmembers consume salt tablets and water equivalent to 1 l of normal saline, about 2 hrs before landing. This paper compares the effects on blood, urine, and cardiovascular variables of the ingestion of 1 l of normal (0.9 percent) saline with the effects of distilled water, 1 percent glucose, 0.74 percent saline with 1 percent glucose, 0.9 percent saline with 1 percent glucose, and 1.07 percent saline. It was found that the expansion of plasma volume and the concentration of urine were greater 4 hrs after ingestion of 1.07 percent saline solution than after ingestion of normal saline and that the solutions containig glucose did not enhance any variables as compared with normal saline.

  8. Preservation of blood glucose homeostasis in slow-senescing somatotrophism-deficient mice subjected to intermittent fasting begun at middle or old age.

    PubMed

    Arum, Oge; Saleh, Jamal K; Boparai, Ravneet K; Kopchick, John J; Khardori, Romesh K; Bartke, Andrzej

    2014-06-01

    Poor blood glucose homeostatic regulation is common, consequential, and costly for older and elderly populations, resulting in pleiotrophically adverse clinical outcomes. Somatotrophic signaling deficiency and dietary restriction have each been shown to delay the rate of senescence, resulting in salubrious phenotypes such as increased survivorship. Using two growth hormone (GH) signaling-related, slow-aging mouse mutants we tested, via longitudinal analyses, whether genetic perturbations that increase survivorship also improve blood glucose homeostatic regulation in senescing mammals. Furthermore, we institute a dietary restriction paradigm that also decelerates aging, an intermittent fasting (IF) feeding schedule, as either a short-term or a sustained intervention beginning at either middle or old age, and assess its effects on blood glucose control. We find that either of the two genetic alterations in GH signaling ameliorates fasting hyperglycemia; additionally, both longevity-inducing somatotrophic mutations improve insulin sensitivity into old age. Strikingly, we observe major and broad improvements in blood glucose homeostatic control by IF: IF improves ad libitum-fed hyperglycemia, glucose tolerance, and insulin sensitivity, and reduces hepatic gluconeogenesis, in aging mutant and normal mice. These results on correction of aging-resultant blood glucose dysregulation have potentially important clinical and public health implications for our ever-graying global population, and are consistent with the Longevity Dividend concept.

  9. Interleukin-1β (IL-1β) increases pain behavior and the blood glucose level: possible involvement of glucocorticoid system.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Choi, Seong-Soo; Suh, Hong-Won

    2013-10-01

    The possible involvement of glucocorticoid system in interleukin-1β (IL-1β)-induced nociception and the blood glucose level was studied in ICR mice. In the first experiment, mice were treated intrathecally (i.t.) with IL-1β (100 pg). Corticotrophin releasing hormone (CRH) mRNA (hypothalamus) and c-Fos mRNA (pituitary gland, spinal cord, and the adrenal gland) levels were measured at 30, 60 and 120 min after IL-1β administration. We found that i.t. injection with IL-1β increased CRH mRNA level in the hypothalamus. The IL-1β administered i.t. elevated c-Fos mRNA levels in the spinal cord, pituitary and adrenal glands. Furthermore, i.t. administration of IL-1β significantly increased the plasma corticosterone level up to 60 min. In addition, the adrenalectomy caused the reductions of the blood glucose level and pain behavior induced by IL-1β injected i.t. in normal and D-glucose-fed groups. Furthermore, intraperitoneal (i.p.) pretreatment with RU486 (100mg/kg) attenuated the blood glucose level and pain behavior induced by IL-1β administered i.t. in normal and D-glucose-fed groups. Our results suggest that IL-1β administered i.t. increases the blood glucose level and pain behavior via an activation of the glucocorticoid system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Application of the Reference Method Isotope Dilution Gas Chromatography Mass Spectrometry (ID/GC/MS) to Establish Metrological Traceability for Calibration and Control of Blood Glucose Test Systems

    PubMed Central

    Andreis, Elisabeth; Küllmer, Kai

    2014-01-01

    Self-monitoring of blood glucose (BG) by means of handheld BG systems is a cornerstone in diabetes therapy. The aim of this article is to describe a procedure with proven traceability for calibration and evaluation of BG systems to guarantee reliable BG measurements. Isotope dilution gas chromatography mass spectrometry (ID/GC/MS) is a method that fulfills all requirements to be used in a higher-order reference measurement procedure. However, this method is not applicable for routine measurements because of the time-consuming sample preparation. A hexokinase method with perchloric acid (PCA) sample pretreatment is used in a measurement procedure for such purposes. This method is directly linked to the ID/GC/MS method by calibration with a glucose solution that has an ID/GC/MS-determined target value. BG systems are calibrated with whole blood samples. The glucose levels in such samples are analyzed by this ID/GC/MS-linked hexokinase method to establish traceability to higher-order reference material. For method comparison, the glucose concentrations in 577 whole blood samples were measured using the PCA-hexokinase method and the ID/GC/MS method; this resulted in a mean deviation of 0.1%. The mean deviation between BG levels measured in >500 valid whole blood samples with BG systems and the ID/GC/MS was 1.1%. BG systems allow a reliable glucose measurement if a true reference measurement procedure, with a noninterrupted traceability chain using ID/GC/MS linked hexokinase method for calibration of BG systems, is implemented. Systems should be calibrated by means of a traceable and defined measurement procedure to avoid bias. PMID:24876614

  11. Development of Cell Phone Application for Blood Glucose Self-Monitoring Based on ISO/IEEE 11073 and HL7 CCD.

    PubMed

    Park, Hyun Sang; Cho, Hune; Kim, Hwa Sun

    2015-04-01

    The objectives of this research were to develop and evaluate a cell phone application based on the standard protocol for personal health devices and the standard information model for personal health records to support effective blood glucose management and standardized service for patients with diabetes. An application was developed for Android 4.0.3. In addition, an IEEE 11073 Manager, Medical Device Encoding Rule, and Bluetooth Health Device Profile Connector were developed for standardized health communication with a glucometer, and a Continuity of Care Document (CCD) Composer and CCD Parser were developed for CCD document exchange. The developed application was evaluated by five healthcare professionals and 87 users through a questionnaire comprising the following variables: usage intention, effort expectancy, social influence, facilitating condition, perceived risk, and voluntariness. As a result of the evaluation of usability, it was confirmed that the developed application is useful for blood glucose self-monitoring by diabetic patients. In particular, the healthcare professionals stated their own views that the application is useful to observe the trends in blood glucose change through the automatic function which records a blood glucose level measured using Bluetooth function, and the function which checks accumulated records of blood glucose levels. Also, a result of the evaluation of usage intention was 3.52 ± 0.42 out of 5 points. The application developed by our research team was confirmed by the verification of healthcare professionals that accurate feedback can be provided to healthcare professionals during the management of diabetic patients or education for glucose management.

  12. Development of Cell Phone Application for Blood Glucose Self-Monitoring Based on ISO/IEEE 11073 and HL7 CCD

    PubMed Central

    Park, Hyun Sang; Cho, Hune

    2015-01-01

    Objectives The objectives of this research were to develop and evaluate a cell phone application based on the standard protocol for personal health devices and the standard information model for personal health records to support effective blood glucose management and standardized service for patients with diabetes. Methods An application was developed for Android 4.0.3. In addition, an IEEE 11073 Manager, Medical Device Encoding Rule, and Bluetooth Health Device Profile Connector were developed for standardized health communication with a glucometer, and a Continuity of Care Document (CCD) Composer and CCD Parser were developed for CCD document exchange. The developed application was evaluated by five healthcare professionals and 87 users through a questionnaire comprising the following variables: usage intention, effort expectancy, social influence, facilitating condition, perceived risk, and voluntariness. Results As a result of the evaluation of usability, it was confirmed that the developed application is useful for blood glucose self-monitoring by diabetic patients. In particular, the healthcare professionals stated their own views that the application is useful to observe the trends in blood glucose change through the automatic function which records a blood glucose level measured using Bluetooth function, and the function which checks accumulated records of blood glucose levels. Also, a result of the evaluation of usage intention was 3.52 ± 0.42 out of 5 points. Conclusions The application developed by our research team was confirmed by the verification of healthcare professionals that accurate feedback can be provided to healthcare professionals during the management of diabetic patients or education for glucose management. PMID:25995960

  13. Recommending blood glucose monitors, a pharmacy perspective.

    PubMed

    Carter, Alan

    2007-03-01

    Selection of what blood glucose monitoring system to utilize has become an issue for physicians, diabetes educators, pharmacists, and patients. The field of competing makes and models of blood glucose monitoring systems has become crowded, with manufacturers touting improvements in accuracy, ease of use/alternate site options, stored results capacity, software evaluation tools, and/or price point. Personal interviews of 12 pharmacists from community and academic practice settings about monitor preference, as well as results from a national survey of pharmacist recommendations, were compared to actual wholesale sales data to estimate the impact of such recommendations on final monitor selection by the patient. Accu-Chek monitors were recommended 34.65% of the time and represented 28.58% of sales, with a success rate of 82.48% of being the monitor selected. OneTouch monitors had 27.72% of recommendations but represented 31.43% of sales, indicating possible patient brand loyalty or formulary preference for that product. FreeStyle(R) monitors came in third for pharmacist recommendations and were selected by the patient 61.68% of the time when recommended. The category of "other monitor" choices was selected 60.89% of the time by patients given those suggestions. Included in the "other monitor" category was the new disposable monitor marketed as the Sidekick. Based on sales data provided, the Sidekick made up 2.87% of "other monitor" category sales, representing 68% of the "other monitor" segment. While patients frequently follow pharmacist monitoring system suggestions, the ultimate deciding factor is most often the final out-of-pocket cost to the patient. As a result, cost of supplies often becomes the most important determining factor in final monitor selection at the patient level. If the patient cannot afford to perform the recommended daily testing intervals, all other determining factors and suggestions become moot.

  14. Comparative study of the concentration of salivary and blood glucose in type 2 diabetic patients.

    PubMed

    Vasconcelos, Ana Carolina U; Soares, Maria Sueli M; Almeida, Paulo C; Soares, Teresa C

    2010-06-01

    The objective of the present study was to comparatively evaluate the concentrations of blood and salivary glucose as well as salivary flow and xerostomia in type 2 diabetic and non-diabetic patients. The mean salivary glucose level in diabetic patients was 14.03 +/-16.76 mg/dl and 6.35 +/- 6.02 mg/dl (P = 0.036) in the control group. The mean capillary blood glucose level in diabetic patients was 213 +/- 88 mg/dl, while that in non-diabetic patients was 99 +/- 14 mg/dl (P = 0.000). The mean value for resting salivary flow was 0.21 +/- 0.16 ml/min in diabetic patients and 0.33 +/- 0.20 ml/min in the control group (P = 0.002). The stimulated salivary flow was lower in the group of diabetic patients, with a mean of 0.63 +/- 0.43 ml/min, whereas the control group showed a mean of 1.20 +/- 0.70 ml/min (P = 0.000). Of the diabetic patients, 45% exhibited hyposalivation, in contrast to 2.5% of the non-diabetic patients (P = 0.000). Xerostomia was reported in 12.5% of diabetic patients and 5% of non-diabetic patients (P = 0.23). We can conclude that salivary glucose concentration was significantly higher in the experimental group and that there was no correlation between salivary and blood glucose concentrations in diabetic patients. The total salivary flow was significantly reduced in diabetic patients and there was no significant difference as to the presence of xerostomia in both groups.

  15. The role of free-play physical activity in healthy blood glucose maintenance in children with type 1 diabetes mellitus.

    PubMed

    Marrone, Sonia; Plume, Jessica White; Kerr, Patrick; Pignol, Anna; Vogeltanz-Holm, Nancy; Holm, Jeffrey; Larsen, Margo Adams

    2009-01-01

    Medical management for children with type 1 diabetes mellitus, including insulin administration to control high blood glucose levels (BGL), is crucial. However, a child-controlled behavioural strategy, like physical activity, to maintain target BGL may be warranted. To demonstrate, pre- and post-activity BGL were collected for 73 children aged 8- to 14-years attending a diabetes camp. Change in BGL across one session of a free-play swimming activity was analysed. Average BGL was significantly reduced from 197.18 mg/dl to 177.78 mg/dl across one 45 min session, and male gender predicted larger reductions. With safety precautions and within the context of appropriate medical management, free-play activity could be used as a strategy for maintaining target BGL.

  16. Effects of Insulin on Brain Glucose Metabolism in Impaired Glucose Tolerance

    PubMed Central

    Hirvonen, Jussi; Virtanen, Kirsi A.; Nummenmaa, Lauri; Hannukainen, Jarna C.; Honka, Miikka-Juhani; Bucci, Marco; Nesterov, Sergey V.; Parkkola, Riitta; Rinne, Juha; Iozzo, Patricia; Nuutila, Pirjo

    2011-01-01

    OBJECTIVE Insulin stimulates brain glucose metabolism, but this effect of insulin is already maximal at fasting concentrations in healthy subjects. It is not known whether insulin is able to stimulate glucose metabolism above fasting concentrations in patients with impaired glucose tolerance. RESEARCH DESIGN AND METHODS We studied the effects of insulin on brain glucose metabolism and cerebral blood flow in 13 patients with impaired glucose tolerance and nine healthy subjects using positron emission tomography (PET). All subjects underwent PET with both [18F]fluorodeoxyglucose (for brain glucose metabolism) and [15O]H2O (for cerebral blood flow) in two separate conditions (in the fasting state and during a euglycemic-hyperinsulinemic clamp). Arterial blood samples were acquired during the PET scans to allow fully quantitative modeling. RESULTS The hyperinsulinemic clamp increased brain glucose metabolism only in patients with impaired glucose tolerance (whole brain: +18%, P = 0.001) but not in healthy subjects (whole brain: +3.9%, P = 0.373). The hyperinsulinemic clamp did not alter cerebral blood flow in either group. CONCLUSIONS We found that insulin stimulates brain glucose metabolism at physiological postprandial levels in patients with impaired glucose tolerance but not in healthy subjects. These results suggest that insulin stimulation of brain glucose metabolism is maximal at fasting concentrations in healthy subjects but not in patients with impaired glucose tolerance. PMID:21270256

  17. Changes in glucose-elicited blood metabolite responses following weight loss and long term weight maintenance in obese individuals with impaired glucose tolerance.

    PubMed

    Geidenstam, Nina; Danielsson, Anders P H; Spégel, Peter; Ridderstråle, Martin

    2016-03-01

    Weight loss improves insulin sensitivity and glucose tolerance in obese subjects with impaired glucose tolerance (IGT), but the long term dynamic effects on blood metabolites other than glucose during an oral glucose tolerance test (OGTT), are largely unknown. Here, we studied changes in OGTT-elicited metabolite patterns in obese subjects during a diet-induced weight loss study. Blood samples from 14 obese individuals with IGT were collected at 0, 30 and 120 min during a standard 75 g OGTT at baseline (BMI 44 ± 2 kg/m(2)), after weight loss (BMI 36 ± 2 kg/m(2)) and after weight maintenance (BMI 35 ± 2 kg/m(2)). Serum metabolite levels were analyzed by gas chromatography/mass spectrometry and compared to a lean glucose tolerant group. Changes in the OGTT-elicited metabolite patterns occurred differentially during weight loss and weight maintenance. Enhanced suppression of aromatic amino acids were associated with decreased insulinogenic index observed after weight loss (tyrosine: r=0.72, p=0.013; phenylalanine: r=0.63, p=0.039). The OGTT-elicited suppression and/or lack of increase in levels of glutamate, glutamine, isoleucine, leucine, and the fatty acids laurate, oleate and palmitate, improved towards the lean profile after weight maintenance, paralleling an improvement in glucose tolerance. The greater heterogeneity in the response before and after weight loss in the obese, compared to lean subjects, was markedly reduced after weight maintenance. Diet-induced weight loss followed by weight maintenance results in changes in metabolite profiles associated with either hepatic insulin sensitivity or peripheral glucose tolerance. Our results highlight the importance of evaluating the effects of weight loss and weight maintenance separately. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. A Novel Strategy to Prevent Advanced Atherosclerosis and Lower Blood Glucose in a Mouse Model of Metabolic Syndrome.

    PubMed

    Kanter, Jenny E; Kramer, Farah; Barnhart, Shelley; Duggan, Jeffrey M; Shimizu-Albergine, Masami; Kothari, Vishal; Chait, Alan; Bouman, Stephan D; Hamerman, Jessica A; Hansen, Bo F; Olsen, Grith S; Bornfeldt, Karin E

    2018-05-01

    Cardiovascular disease caused by atherosclerosis is the leading cause of mortality associated with type 2 diabetes and metabolic syndrome. Insulin therapy is often needed to improve glycemic control, but it does not clearly prevent atherosclerosis. Upon binding to the insulin receptor (IR), insulin activates distinct arms of downstream signaling. The IR-Akt arm is associated with blood glucose lowering and beneficial effects, whereas the IR-Erk arm might exert less desirable effects. We investigated whether selective activation of the IR-Akt arm, leaving the IR-Erk arm largely inactive, would result in protection from atherosclerosis in a mouse model of metabolic syndrome. The insulin mimetic peptide S597 lowered blood glucose and activated Akt in insulin target tissues, mimicking insulin's effects, but only weakly activated Erk and even prevented insulin-induced Erk activation. Strikingly, S597 retarded atherosclerotic lesion progression through a process associated with protection from leukocytosis, thereby reducing lesional accumulation of inflammatory Ly6C hi monocytes. S597-mediated protection from leukocytosis was accompanied by reduced numbers of the earliest bone marrow hematopoietic stem cells and reduced IR-Erk activity in hematopoietic stem cells. This study provides a conceptually novel treatment strategy for advanced atherosclerosis associated with metabolic syndrome and type 2 diabetes. © 2018 by the American Diabetes Association.

  19. Can the Accuracy of Home Blood Glucose Monitors be affected by the Received Signal Strength of 900 MHz GSM Mobile Phones?

    PubMed

    Eslami, J; Ghafaripour, F; Mortazavi, S A R; Mortazavi, S M J; Shojaei-Fard, M B

    2015-12-01

    People who use home blood glucose monitors may use their mobile phones in the close vicinity of medical devices. This study is aimed at investigating the effect of the signal strength of 900 MHz GSM mobile phones on the accuracy of home blood glucose monitors. Sixty non-diabetic volunteer individuals aged 21 - 28 years participated in this study. Blood samples were analyzed for glucose level by using a common blood glucose monitoring system. Each blood sample was analyzed twice, within ten minutes in presence and absence of electromagnetic fields generated by a common GSM mobile phone during ringing. Blood samples were divided into 3 groups of 20 samples each. Group 1: exposure to mobile phone radiation with weak signal strength. Group2: exposure to mobile phone radiation with strong signal strength. Group3: exposure to a switched-on mobile phone with no signal strength. The magnitude of the changes in the first, second and third group between glucose levels of two measurements (׀ΔC׀) were 7.4±3.9 mg/dl, 10.2±4.5 mg/dl, 8.7±8.4 mg/dl respectively. The difference in the magnitude of the changes between the 1st and the 3rd groups was not statistically significant. Furthermore, the difference in the magnitude of the changes between the 2nd and the 3rd groups was not statistically significant. Findings of this study showed that the signal strength of 900 MHz GSM mobile phones cannot play a significant role in changing the accuracy of home blood glucose monitors.

  20. Atypical blood glucose response to continuous and interval exercise in a person with type 1 diabetes: a case report.

    PubMed

    Moser, Othmar; Tschakert, Gerhard; Mueller, Alexander; Groeschl, Werner; Pieber, Thomas R; Koehler, Gerd; Eckstein, Max L; Bracken, Richard M; Hofmann, Peter

    2017-06-30

    Therapy must be adapted for people with type 1 diabetes to avoid exercise-induced hypoglycemia caused by increased exercise-related glucose uptake into muscles. Therefore, to avoid hypoglycemia, the preexercise short-acting insulin dose must be reduced for safety reasons. We report a case of a man with long-lasting type 1 diabetes in whom no blood glucose decrease during different types of exercise with varying exercise intensities and modes was found, despite physiological hormone responses. A Caucasian man diagnosed with type 1 diabetes for 24 years performed three different continuous high-intensity interval cycle ergometer exercises as part of a clinical trial (ClinicalTrials.gov identifier NCT02075567). Intensities for both modes of exercises were set at 5% below and 5% above the first lactate turn point and 5% below the second lactate turn point. Short-acting insulin doses were reduced by 25%, 50%, and 75%, respectively. Measurements taken included blood glucose, blood lactate, gas exchange, heart rate, adrenaline, noradrenaline, cortisol, glucagon, and insulin-like growth factor-1. Unexpectedly, no significant blood glucose decreases were observed during all exercise sessions (start versus end, 12.97 ± 2.12 versus 12.61 ± 2.66 mmol L -1 , p = 0.259). All hormones showed the expected response, dependent on the different intensities and modes of exercises. People with type 1 diabetes typically experience a decrease in blood glucose levels, particularly during low- and moderate-intensity exercises. In our patient, we clearly found no decline in blood glucose, despite a normal hormone response and no history of any insulin insensitivity. This report indicates that there might be patients for whom the recommended preexercise therapy adaptation to avoid exercise-induced hypoglycemia needs to be questioned because this could increase the risk of severe hyperglycemia and ketosis.

  1. Optimizing 18F-FDG PET/CT Imaging of Vessel Wall Inflammation –The Impact of 18F-FDG Circulation Time, Injected Dose, Uptake Parameters, and Fasting Blood Glucose Levels

    PubMed Central

    Bucerius, Jan; Mani, Venkatesh; Moncrieff, Colin; Machac, Josef; Fuster, Valentin; Farkouh, Michael E.; Tawakol, Ahmed; Rudd, James H. F.; Fayad, Zahi A.

    2014-01-01

    Purpose 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is increasingly used for imaging of vessel wall inflammation. However, limited data is available regarding the impact of methodological variables, i. e. patient’s pre-scan fasting glucose, the FDG circulation time, the injected FDG dose, and of different FDG uptake parameters, in vascular FDG-PET imaging. Methods 195 patients underwent vascular FDG-PET/CT of the aorta and the carotids. Arterial standard uptake values (meanSUVmax) as well as target-to-background-ratios (meanTBRmax) and the FDG blood pool activity in the superior vein cava (SVC) and the jugular veins (JV) were quantified. Vascular FDG uptake classified according to tertiles of patient’s pre-scan fasting glucose levels, the FDG circulation time, and the injected FDG dose was compared using ANOVA. Multivariate regression analyses were performed to identify the potential impact of all variables described on the arterial and blood pool FDG uptake. Results Tertile analyses revealed FDG circulation times of about 2.5 h and prescan glucose levels of less than 7.0 mmol/l showing favorable relations between the arterial and blood pool FDG uptake. FDG circulation times showed negative associations with the aortic meanSUVmax values as well as SVC- and JV FDG blood pool activity but a positive correlation with the aortic- and carotid meanTBRmax values. Pre-scan glucose was negatively associated with aortic- and carotid meanTBRmax and carotid meanSUVmax values, but correlated positively with the SVC blood pool uptake. Injected FDG dose failed to show any significant association with the vascular FDG uptake. Conclusion FDG circulation times and pre-scan blood glucose levels significantly impact FDG uptake within the aortic and carotid wall and may bias the results of image interpretation in patients undergoing vascular FDG-PET/CT. FDG dose injected was less critical. Therefore, circulation times of about 2.5 h and pre-scan glucose levels

  2. New, small, fast acting blood glucose meters--an analytical laboratory evaluation.

    PubMed

    Weitgasser, Raimund; Hofmann, Manuela; Gappmayer, Brigitta; Garstenauer, Christa

    2007-09-22

    Patients and medical personnel are eager to use blood glucose meters that are easy to handle and fast acting. We questioned whether accuracy and precision of these new, small and light weight devices would meet analytical laboratory standards and tested four meters with the above mentioned conditions. Approximately 300 capillary blood samples were collected and tested using two devices of each brand and two different types of glucose test strips. Blood from the same samples was used for comparison. Results were evaluated using maximum deviation of 5% and 10% from the comparative method, the error grid analysis, the overall deviation of the devices, the linear regression analysis as well as the CVs for measurement in series. Of all 1196 measurements a deviation of less than 5% resp. 10% from the reference method was found for the FreeStyle (FS) meter in 69.5% and 96%, the Glucocard X Meter (GX) in 44% and 75%, the One Touch Ultra (OT) in 29% and 60%, the Wellion True Track (WT) in 28.5% and 58%. The error grid analysis gave 99.7% for FS, 99% for GX, 98% for OT and 97% for WT in zone A. The remainder of the values lay within zone B. Linear regression analysis resembled these results. CVs for measurement in series showed higher deviations for OT and WT compared to FS and GX. The four new, small and fast acting glucose meters fulfil clinically relevant analytical laboratory requirements making them appropriate for use by medical personnel. However, with regard to the tight and restrictive limits of the ADA recommendations, the devices are still in need of improvement. This should be taken into account when the devices are used by primarily inexperienced persons and is relevant for further industrial development of such devices.

  3. The business of self-monitoring of blood glucose: a market profile.

    PubMed

    Hughes, Mark D

    2009-09-01

    The market for self-monitoring of blood glucose (SMBG) approached $8.8 billion worldwide in 2008. Yet despite dramatic double-digit growth in sales of SMBG products since 1980, the business is now facing declining prices and slower dollar growth. Given that SMBG meters and test strips are viewed by consumers and insurers as essentially generic products, it will be extremely challenging for new market entrants to displace well-entrenched existing competitors without a truly innovative technology. Also, in the face of declining glucose test strip prices, market expansion can only occur through identification of more of the undiagnosed diabetes population and convincing existing diabetes patients to adopt glucose testing or to test more frequently. Ultimately, a combination of technology innovations, patient education, and economic incentives may be needed to significantly expand the SMBG market and build sustainable long-term dollar growth for SMBG vendors. 2009 Diabetes Technology Society.

  4. The Business of Self-Monitoring of Blood Glucose: A Market Profile

    PubMed Central

    Hughes, Mark D.

    2009-01-01

    The market for self-monitoring of blood glucose (SMBG) approached $8.8 billion worldwide in 2008. Yet despite dramatic double-digit growth in sales of SMBG products since 1980, the business is now facing declining prices and slower dollar growth. Given that SMBG meters and test strips are viewed by consumers and insurers as essentially generic products, it will be extremely challenging for new market entrants to displace well-entrenched existing competitors without a truly innovative technology. Also, in the face of declining glucose test strip prices, market expansion can only occur through identification of more of the undiagnosed diabetes population and convincing existing diabetes patients to adopt glucose testing or to test more frequently. Ultimately, a combination of technology innovations, patient education, and economic incentives may be needed to significantly expand the SMBG market and build sustainable long-term dollar growth for SMBG vendors. PMID:20144440

  5. Hospital protocols for targeted glycemic control: Development, implementation, and models for cost justification.

    PubMed

    Magee, Michelle F

    2007-05-15

    Evolving elements of best practices for providing targeted glycemic control in the hospital setting, clinical performance measurement, basal-bolus plus correction-dose insulin regimens, components of standardized subcutaneous (s.c.) insulin order sets, and strategies for implementation and cost justification of glycemic control initiatives are discussed. Best practices for targeted glycemic control should address accurate documentation of hyperglycemia, initial patient assessment, management plan, target blood glucose range, blood glucose monitoring frequency, maintenance of glycemic control, criteria for glucose management consultations, and standardized insulin order sets and protocols. Establishing clinical performance measures, including desirable processes and outcomes, can help ensure the success of targeted hospital glycemic control initiatives. The basal-bolus plus correction-dose regimen for insulin administration will be used to mimic the normal physiologic pattern of endogenous insulin secretion. Standardized insulin order sets and protocols are being used to minimize the risk of error in insulin therapy. Components of standardized s.c. insulin order sets include specification of the hyperglycemia diagnosis, finger stick blood glucose monitoring frequency and timing, target blood glucose concentration range, cutoff values for excessively high or low blood glucose concentrations that warrant alerting the physician, basal and prandial or nutritional (i.e., bolus) insulin, correction doses, hypoglycemia treatment, and perioperative or procedural dosage adjustments. The endorsement of hospital administrators and key physician and nursing leaders is needed for glycemic control initiatives. Initiatives may be cost justified on the basis of the billings for clinical diabetes management services and/or the return- on-investment accrued to reductions in hospital length of stay, readmissions, and accurate documentation and coding of unrecognized or uncontrolled

  6. Intragastric administration of leucine or isoleucine lowers the blood glucose response to a mixed-nutrient drink by different mechanisms in healthy, lean volunteers.

    PubMed

    Ullrich, Sina S; Fitzgerald, Penelope Ce; Schober, Gudrun; Steinert, Robert E; Horowitz, Michael; Feinle-Bisset, Christine

    2016-11-01

    The branched-chain amino acids leucine and isoleucine lower blood glucose after oral glucose ingestion, and the intraduodenal infusion of leucine decreases energy intake in healthy, lean men. We investigated the effects of the intragastric administration of leucine and isoleucine on the gastric emptying of, and blood glucose responses to, a physiologic mixed-macronutrient drink and subsequent energy intake. In 2 separate studies, 12 healthy, lean subjects received on 3 separate occasions an intragastric infusion of 5 g leucine (leucine-5g) or an intragastric infusion of 10 g leucine (leucine-10g), an intragastric infusion of 5 g isoleucine (isoleucine-5g) or an intragastric infusion of 10 g isoleucine (isoleucine-10g), or a control. Fifteen minutes later, subjects consumed a mixed-nutrient drink (400 kcal, 56 g carbohydrates, 15 g protein, and 12 g fat), and gastric emptying ( 13 C-acetate breath test) and blood glucose, plasma insulin, C-peptide, glucagon, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin (leucine study only) were measured for 60 min. Immediately afterward, energy intake from a cold, buffet-style meal was assessed. Compared with the control, leucine-10g decreased the blood glucose area under the curve (AUC) (P < 0.05) and tended to reduce peak blood glucose (P = 0.07), whereas effects of leucine-5g were NS. Leucine-10g, but not leucine-5g, increased plasma insulin and C-peptide AUCs (P < 0.01 for both), but neither dose affected glucagon, GLP-1, GIP, cholecystokinin, gastric emptying, or energy intake. Compared with the control, isoleucine-10g reduced the blood glucose AUC and peak blood glucose (P < 0.01), whereas effects of isoleucine-5g were NS. Neither load affected insulin, C-peptide, glucagon, GLP-1, or GIP. Isoleucine-10g, but not isoleucine-5g, slowed gastric emptying (P < 0.05), but gastric emptying was not correlated with the blood glucose AUC. Isoleucine did not affect energy intake

  7. Bio-enhancing Effect of Piperine with Metformin on Lowering Blood Glucose Level in Alloxan Induced Diabetic Mice.

    PubMed

    Atal, Shubham; Atal, Sarjana; Vyas, Savita; Phadnis, Pradeep

    2016-01-01

    Diabetes mellitus is the most rampant metabolic pandemic of the 21(st) century. Piperine, the chief alkaloid of Piper nigrum (black pepper) is widely used in alternative and complementary therapies has been extensively studied for its bio-enhancing property. To evaluate the bio-enhancing effect of piperine with metformin in lowering blood glucose levels in alloxan-induced diabetic mice. Piperine was isolated from an extract of fruits of P. nigrum. Alloxan-induced (150 mg/kg intraperitoneal) diabetic mice were divided into four groups. Group I (control 2% gum acacia 2 g/100 mL), Group II (metformin 250 mg/kg), Group III (metformin and piperine 250 mg/kg + 10 mg/kg), and Group IV (metformin and piperine 125 mg/kg + 10 mg/kg). All the drugs were administered orally once daily for 28 days. Blood glucose levels were estimated at day 0, day 14, and end of the study (day 28). The combination of piperine with therapeutic dose of metformin (10 mg/kg + 250 mg/kg) showed significantly more lowering of blood glucose level as compared to metformin alone on both 14(th) and 28(th) day (P < 0.05). Piperine in combination with sub-therapeutic dose of metformin (10 mg/kg + 125 mg/kg) showed significantly more lowering of blood glucose as compared to control group and also showed greater lowering of blood glucose as compared to metformin (250 mg/kg) alone. Piperine has the potential to be used as a bio-enhancing agent in combination with metformin which can help reduce the dose of metformin and its adverse effects. Piperine is known for its bioenhancing property. This study evaluates the effect of piperine in combination with oral antidiabetic drug metformin. Drugs were administered for 28 days in alloxan induced diabetic mice and blood glucose lowering effect was seen. Results showed significantly better effect of combination of piperine with therapeutic dose of metformin in comparison to metformin alone. Piperine in combination with subtherapeutic dose of metformin also showed

  8. Bio-enhancing Effect of Piperine with Metformin on Lowering Blood Glucose Level in Alloxan Induced Diabetic Mice

    PubMed Central

    Atal, Shubham; Atal, Sarjana; Vyas, Savita; Phadnis, Pradeep

    2016-01-01

    Background: Diabetes mellitus is the most rampant metabolic pandemic of the 21st century. Piperine, the chief alkaloid of Piper nigrum (black pepper) is widely used in alternative and complementary therapies has been extensively studied for its bio-enhancing property. Objective: To evaluate the bio-enhancing effect of piperine with metformin in lowering blood glucose levels in alloxan-induced diabetic mice. Materials and Methods: Piperine was isolated from an extract of fruits of P. nigrum. Alloxan-induced (150 mg/kg intraperitoneal) diabetic mice were divided into four groups. Group I (control 2% gum acacia 2 g/100 mL), Group II (metformin 250 mg/kg), Group III (metformin and piperine 250 mg/kg + 10 mg/kg), and Group IV (metformin and piperine 125 mg/kg + 10 mg/kg). All the drugs were administered orally once daily for 28 days. Blood glucose levels were estimated at day 0, day 14, and end of the study (day 28). Results: The combination of piperine with therapeutic dose of metformin (10 mg/kg + 250 mg/kg) showed significantly more lowering of blood glucose level as compared to metformin alone on both 14th and 28th day (P < 0.05). Piperine in combination with sub-therapeutic dose of metformin (10 mg/kg + 125 mg/kg) showed significantly more lowering of blood glucose as compared to control group and also showed greater lowering of blood glucose as compared to metformin (250 mg/kg) alone. Conclusion: Piperine has the potential to be used as a bio-enhancing agent in combination with metformin which can help reduce the dose of metformin and its adverse effects. SUMMARY Piperine is known for its bioenhancing property. This study evaluates the effect of piperine in combination with oral antidiabetic drug metformin. Drugs were administered for 28 days in alloxan induced diabetic mice and blood glucose lowering effect was seen. Results showed significantly better effect of combination of piperine with therapeutic dose of metformin in comparison to metformin alone. Piperine

  9. Insoluble fiber is a major constituent responsible for lowering the post-prandial blood glucose concentration in the pre-germinated brown rice.

    PubMed

    Seki, Taiichiro; Nagase, Ryohei; Torimitsu, Mariko; Yanagi, Megumi; Ito, Yukihiko; Kise, Mitsuo; Mizukuchi, Aya; Fujimura, Naoko; Hayamizu, Kohusuke; Ariga, Toyohiko

    2005-08-01

    The intake of pre-germinated brown rice (PR) instead of white rice (WR) ameliorates the hyperglycemia. To clarify the mechanism(s) to decrease the post-prandial blood glucose concentration, the effect of water-soluble/oil-soluble fraction-depleted PR bran (termed as "DB"; which is destarched and defatted PR bran) on post-prandial blood glucose was compared with that of full-fat PR bran (PB) or WR. The test diets, WR diet, PB diet and DB diet which are containing identical amount of available carbohydrate (1.5 g) were fed to Wistar strain rats. Post-prandial blood glucose concentration and incremental area under the curve (IAUC) for DB diet were lower than those for WR diet, and there was no difference between the DB diet and PB diet. Changes in plasma insulin concentration and the IAUC obtained also revealed the same tendency as those observed in blood glucose concentration. These results indicate that the blood glucose-lowering effect of PB diet may be derived from the properties of PB involving substantially higher content of dietary fiber than WR, and that the potential benefit of intake of PR instead of WR in the prevention of diabetic vascular complications.

  10. The effect of intraoperative administration of dexamethasone for PONV prophylaxis on perioperative blood glucose level in obese and normal weight children.

    PubMed

    Gnatzy, Richard; Hempel, Gunther; Kaisers, Udo X; Höhne, Claudia

    2015-11-01

    The incidence of postoperative nausea and vomiting (PONV) can be reduced by dexamethasone. Single-dose administration may cause elevated blood glucose levels in obese adults. No data are available for children. The aim was to evaluate perioperative blood glucose changes related to body weight in children who received dexamethasone. This prospective observational study included 62 children. All patients received total intravenous anesthesia and a single dose of dexamethasone (0.15 mg/kg, maximum 8 mg). Blood glucose levels were measured up to 6 h. Standard deviation scores (SDS) were calculated using age- and gender-specific body mass index (BMI) percentiles, p<0.05. A total of 62 children (11.5±2.9 years, median SDS 0.43, 29% overweight/obese) were included. Blood glucose levels increased from 5.52±0.52 to 6.74±0.84 mmol/L 6 h after dexamethasone without correlation to the BMI-SDS. This study showed an increase of perioperative blood glucose (normoglycemic ranges) after single dose of dexamethasone, but no BMI-dependent effect was observed in children. Therefore, low-dose dexamethasone may be used in obese children for PONV prophylaxis.

  11. Microdialysis combined blood sampling technique for the determination of rosiglitazone and glucose in brain and blood of gerbils subjected to cerebral ischemia.

    PubMed

    Sheu, Wayne H-H; Chuang, Hsiu-Chun; Cheng, Shiu-Min; Lee, Maw-Rong; Chou, Chi-Chi; Cheng, Fu-Chou

    2011-03-25

    Rosiglitazone is a potent synthetic peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist which improves glucose control in the plasma and reduces ischemic brain injury. However, the pharmacokinetics of rosiglitazone in the brain is still unclear. In this study, a method using liquid chromatography-mass spectrometry coupled with microdialysis and an auto-blood sampling system was developed to determine rosiglitazone and glucose concentration in the brain and blood of gerbils subjected to treatment with rosiglitazone (3.0 mg kg(-1), i.p.). The results showed the limit of detection was 0.04 μg L(-1) and the correlation coefficient was 0.9997 for the determination of rosiglitazone in the brain. The mean parameters, maximum drug concentration (C(max)) and the area under the concentration-time curve from time zero to time infinity (AUC(inf)), following rosiglitazone administration were 1.06±0.28 μg L(-1) and 296.82±44.67 μg min L(-1), respectively. The time to peak concentration (C(max) or T(max)) of rosiglitazone occurred at 105±17.10 min, and the mean elimination half-life (t(1/2)) from brain was 190.81±85.18 min after administration of rosiglitazone. The brain glucose levels decreased to 71% of the basal levels in the rosiglitazone-treated group when compared with those in the control (p<0.01). Treatment with rosiglitazone decreased blood glucose levels to 80% at 1h after pretreatment of rosiglitazone (p<0.05). In addition, pretreatment with rosiglitazone significantly reduced the cerebral infarct volume compared with that of the control group. These findings suggest that this method may be useful for simultaneous and continuous determination of rosiglitazone and glucose concentrations in brain and plasma. Rosiglitazone was effective at penetrating the blood-brain barrier as evidenced by the rapid appearance of rosiglitazone in the brain, and rosiglitazone may contribute to a reduction in the extent of injuries related to cerebral ischemic stroke

  12. Performance evaluation and labeling comprehension of a new blood glucose monitoring system with integrated information management.

    PubMed

    List, Susan M; Starks, Nykole; Baum, John; Greene, Carmine; Pardo, Scott; Parkes, Joan L; Schachner, Holly C; Cuddihy, Robert

    2011-09-01

    This study evaluated performance and product labeling of CONTOUR® USB, a new blood glucose monitoring system (BGMS) with integrated diabetes management software and a universal serial bus (USB) port, in the hands of untrained lay users and health care professionals (HCPs). Subjects and HCPs tested subject's finger stick capillary blood in parallel using CONTOUR USB meters; deep finger stick blood was tested on a Yellow Springs Instruments (YSI) glucose analyzer for reference. Duplicate results by both subjects and HCPs were obtained to assess system precision. System accuracy was assessed according to International Organization for Standardization (ISO) 15197:2003 guidelines [within ±15 mg/dl of mean YSI results (samples <75 mg/dl) and ±20% (samples ≥75 mg/dl)]. Clinical accuracy was determined by Parkes error grid analysis. Subject labeling comprehension was assessed by HCP ratings of subject proficiency. Key system features and ease-of-use were evaluated by subject questionnaires. All subjects who completed the study (N = 74) successfully performed blood glucose measurements, connected the meter to a laptop computer, and used key features of the system. The system was accurate; 98.6% (146/148) of subject results and 96.6% (143/148) of HCP results exceeded ISO 15197:2003 criteria. All subject and HCP results were clinically accurate (97.3%; zone A) or associated with benign errors (2.7%; zone B). The majority of subjects rated features of the BGMS as "very good" or "excellent." CONTOUR USB exceeded ISO 15197:2003 system performance criteria in the hands of untrained lay users. Subjects understood the product labeling, found the system easy to use, and successfully performed blood glucose testing. © 2011 Diabetes Technology Society.

  13. The Effect of Family-centered Care on Management of Blood Glucose Levels in Adolescents with Diabetes.

    PubMed

    Cheraghi, Fatemeh; Shamsaei, Farshid; Mortazavi, Sayyedeh Zohreh; Moghimbeigi, Abbas

    2015-07-01

    Responsibility for diabetes management tasks must shift from caregivers to adolescents as adolescents grow older. Also, family-centered care is a way to provide efficient care for them at home. This study aimed to identify the effect of family-centered care on management of blood glucose levels in adolescents with type 1 diabetes mellitus (T1DM). This is a Pre-experimental study with a pre- and post-test design. The participants consisted of forty adolescents with T1DM, aged between 10-14 years, with their caregivers who were selected through simple random sampling from Hamadan Diabetes Research Center in Iran in 2013. The sample was divided into four similar groups. Educational sessions were conducted for each group for 30 to 40 minutes. Data collection tools were "Supervisory Behaviors of Caregiver" (SBC), "Management Behaviors of adolescents" (MBA) questionnaires, and the "Blood Glucose Levels Record Sheet". Data were analyzed using SPSS 19 and based on descriptive statistics, Kolmogorov-Smirnov, paired t-test and Pearson coefficient. There was a significant difference between the subjects' MBA and SBC mean scores before (110.17±26.6) and after (134.6±1.28) intervention in four domains: "blood glucose testing", "insulin therapy", "meal plan" and "physical activity" (P<0.001). There were significant differences between the mean levels of recorded blood glucose during a week before and after intervention and between the mean levels of Glycated Hemoglobin level (HbA1c) before (8.4±1.12) and three months after (7.78±1.2) it (P<0.001). Pearson coefficient showed a positive relationship between the supervisory behaviors of caregivers with management behaviors of adolescents before and after the intervention (P<0.001). Empowering adolescents with T1DM and their caregivers in home-centered care could improve diabetic adolescents' management of blood glucose levels and reduce their HbA1Clevels. Therefore, Family-centered care could provide for better regime

  14. Acute effects of traditional Japanese alcohol beverages on blood glucose and polysomnography levels in healthy subjects

    PubMed Central

    Kido, Megumi; Asakawa, Akihiro; Koyama, Ken-Ichiro K.; Takaoka, Toshio; Tajima, Aya; Takaoka, Shigeru; Yoshizaki, Yumiko; Okutsu, Kayu; Takamine, Kazunori T.; Sameshima, Yoshihiro

    2016-01-01

    Background. Alcohol consumption is a lifestyle factor associated with type 2 diabetes. This relationship is reportedly different depending on the type of alcohol beverage. The purpose of this study was to examine the acute effects of traditional Japanese alcohol beverages on biochemical parameters, physical and emotional state, and sleep patterns. Methods. Six healthy subjects (three men and three women; age, 28.8 ± 9.5 years; body mass index, 21.4 ± 1.6 kg/m2) consumed three different types of alcohol beverages (beer, shochu, and sake, each with 40 g ethanol) or mineral water with dinner on different days in the hospital. Blood samples were collected before and 1, 2, and 12 h after drinking each beverage, and assessments of physical and emotional state were administered at the same time. In addition, sleep patterns and brain waves were examined using polysomnography. Results. Blood glucose levels at 1 h and the 12-h area under the curve (AUC) value after drinking shochu were significantly lower than that with water and beer. The 12-h blood insulin AUC value after drinking shochu was significantly lower than that with beer. Blood glucose × insulin level at 1 h and the 2-h blood glucose × insulin AUC value with shochu were significantly lower than that with beer. The insulinogenic indexes at 2 h with beer and sake, but not shochu, were significantly higher than that with water. The visual analogue scale scores of physical and emotional state showed that the tipsiness levels with beer, shochu, and sake at 1 h were significantly higher than that with water. These tipsiness levels were maintained at 2 h. The polysomnography showed that the rapid eye movement (REM) sleep latency with shochu and sake were shorter than that with water and beer. Conclusions. Acute consumption of alcohol beverages with a meal resulted in different responses in postprandial glucose and insulin levels as well as REM sleep latency. Alcohol beverage type should be taken into consideration

  15. Acute effects of traditional Japanese alcohol beverages on blood glucose and polysomnography levels in healthy subjects.

    PubMed

    Kido, Megumi; Asakawa, Akihiro; Koyama, Ken-Ichiro K; Takaoka, Toshio; Tajima, Aya; Takaoka, Shigeru; Yoshizaki, Yumiko; Okutsu, Kayu; Takamine, Kazunori T; Sameshima, Yoshihiro; Inui, Akio

    2016-01-01

    Background. Alcohol consumption is a lifestyle factor associated with type 2 diabetes. This relationship is reportedly different depending on the type of alcohol beverage. The purpose of this study was to examine the acute effects of traditional Japanese alcohol beverages on biochemical parameters, physical and emotional state, and sleep patterns. Methods. Six healthy subjects (three men and three women; age, 28.8 ± 9.5 years; body mass index, 21.4 ± 1.6 kg/m(2)) consumed three different types of alcohol beverages (beer, shochu, and sake, each with 40 g ethanol) or mineral water with dinner on different days in the hospital. Blood samples were collected before and 1, 2, and 12 h after drinking each beverage, and assessments of physical and emotional state were administered at the same time. In addition, sleep patterns and brain waves were examined using polysomnography. Results. Blood glucose levels at 1 h and the 12-h area under the curve (AUC) value after drinking shochu were significantly lower than that with water and beer. The 12-h blood insulin AUC value after drinking shochu was significantly lower than that with beer. Blood glucose × insulin level at 1 h and the 2-h blood glucose × insulin AUC value with shochu were significantly lower than that with beer. The insulinogenic indexes at 2 h with beer and sake, but not shochu, were significantly higher than that with water. The visual analogue scale scores of physical and emotional state showed that the tipsiness levels with beer, shochu, and sake at 1 h were significantly higher than that with water. These tipsiness levels were maintained at 2 h. The polysomnography showed that the rapid eye movement (REM) sleep latency with shochu and sake were shorter than that with water and beer. Conclusions. Acute consumption of alcohol beverages with a meal resulted in different responses in postprandial glucose and insulin levels as well as REM sleep latency. Alcohol beverage type should be taken into consideration

  16. Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation.

    PubMed

    Maeda, Hiroaki; Zhu, Xia; Omura, Kazunobu; Suzuki, Shiho; Kitamura, Shinichi

    2004-01-01

    Lactobacillus kefiranofaciens was reported to produce an exopolysaccharide named kefiran. In the present study, we developed a new medium, rice hydrolyzate (RH) medium, for the culture of L. kefiranofaciens. Structural analyses revealed that the exopolysaccharide produced by L. kefiranofaciens from RH medium was composed of a hexasaccharide repeating unit, and essentially identical to the kefiran reported in previous studies. A study on the effects of kefiran in animals demonstrated that kefiran significantly suppressed increase of blood pressure and reduced the serum cholesterol levels in SHRSP/Hos rats when subjects consumed excessive dietary cholesterol. Kefiran supplementation demonstrated the ability to significantly lower blood glucose in KKAy mice. In addition, the administration of kefiran in constipated SD rats caused an obvious improvement in the levels of fecal moisture and wet weights of feces. These results suggest that kefiran could be used as a functional food to prevent some commonly occurring diseases.

  17. Performance assessment of a glucose control protocol in septic patients with an automated intermittent plasma glucose monitoring device.

    PubMed

    Umbrello, M; Salice, V; Spanu, P; Formenti, P; Barassi, A; Melzi d'Eril, G V; Iapichino, G

    2014-10-01

    The optimal level and modality of glucose control in critically ill patients is still debated. A protocolized approach and the use of nearly-continuous technologies are recommended to manage hyperglycemia, hypoglycemia and glycemic variability. We recently proposed a pato-physiology-based glucose control protocol which takes into account patient glucose/carbohydrate intake and insulin resistance. Aim of the present investigation was to assess the performance of our protocol with an automated intermittent plasma glucose monitoring device (OptiScanner™ 5000). OptiScanner™ was used in 6 septic patients, providing glucose measurement every 15' from a side-port of an indwelling central venous catheter. Target level of glucose was 80-150 mg/dL. Insulin infusion and kcal with nutritional support were also recorded. 6 septic patients were studied for 319 h (1277 measurements); 58 [45-65] hours for each patient (measurements/patient: 231 [172-265]). Blood glucose was at target for 93 [90-98]% of study time. Mean plasma glucose was 126 ± 11 mg/dL. Only 3 hypoglycemic episodes (78, 78, 69 mg/dL) were recorded. Glucose variability was limited: plasma glucose coefficient of variation was 11.7 ± 4.0% and plasma glucose standard deviation was 14.3 ± 5.5 mg/dL. The local glucose control protocol achieved satisfactory glucose control in septic patients along with a high degree of safeness. Automated intermittent plasma glucose monitoring seemed useful to assess the performance of the protocol. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  18. Hunger games: fluctuations in blood glucose levels influence support for social welfare.

    PubMed

    Aarøe, Lene; Petersen, Michael Bang

    2013-12-01

    Social-welfare policies are a modern instantiation of a phenomenon that has pervaded human evolutionary history: resource sharing. Ancestrally, food was a key shared resource in situations of temporary hunger. If evolved human psychology continues to shape how individuals think about current, evolutionarily novel conditions, this invites the prediction that attitudes regarding welfare politics are influenced by short-term fluctuations in hunger. Using blood glucose levels as a physiological indicator of hunger, we tested this prediction in a study in which participants were randomly assigned to conditions in which they consumed soft drinks containing either carbohydrates or an artificial sweetener. Analyses showed that participants with experimentally induced low blood glucose levels expressed stronger support for social welfare. Using an incentivized measure of actual sharing behavior (the dictator game), we further demonstrated that this increased support for social welfare does not translate into genuinely increased sharing motivations. Rather, we suggest that it is "cheap talk" aimed at increasing the sharing efforts of other individuals.

  19. The Accuracy of Point-of-Care Glucose Measurements

    PubMed Central

    Rebel, Annette; Rice, Mark A.; Fahy, Brenda G.

    2012-01-01

    Control of blood glucose (BG) in an acceptable range is a major therapy target for diabetes patients in both the hospital and outpatient environments. This review focuses on the state of point-of-care (POC) glucose monitoring and the accuracy of the measurement devices. The accuracy of the POC glucose monitor depends on device methodology and other factors, including sample source and collection and patient characteristics. Patient parameters capable of influencing measurements include variations in pH, blood oxygen, hematocrit, changes in microcirculation, and vasopressor therapy. These elements alone or when combined can significantly impact BG measurement accuracy with POC glucose monitoring devices (POCGMDs). In general, currently available POCGMDs exhibit the greatest accuracy within the range of physiological glucose levels but become less reliable at the lower and higher ranges of BG levels. This issue raises serious safety concerns and the importance of understanding the limitations of POCGMDs. This review will discuss potential interferences and shortcomings of the current POCGMDs and stress when these may impact the reliability of POCGMDs for clinical decision-making. PMID:22538154

  20. Self-Powered Implantable Skin-Like Glucometer for Real-Time Detection of Blood Glucose Level In Vivo

    NASA Astrophysics Data System (ADS)

    Zhang, Wanglinhan; Zhang, Linlin; Gao, Huiling; Yang, Wenyan; Wang, Shuai; Xing, Lili; Xue, Xinyu

    2018-06-01

    Implantable bioelectronics for analyzing physiological biomarkers has recently been recognized as a promising technique in medical treatment or diagnostics. In this study, we developed a self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo. Based on the piezo-enzymatic-reaction coupling effect of GOx@ZnO nanowire, the device under an applied deformation can actively output piezoelectric signal containing the glucose-detecting information. No external electricity power source or battery is needed for this device, and the outputting piezoelectric voltage acts as both the biosensing signal and electricity power. A practical application of the skin-like glucometer implanted in mouse body for detecting blood glucose level has been simply demonstrated. These results provide a new technique path for diabetes prophylaxis and treatment.

  1. Impaired fasting blood glucose is associated to cognitive impairment and cerebral atrophy in middle-aged non-human primates

    PubMed Central

    Djelti, Fathia; Dhenain, Marc; Terrien, Jérémy; Picq, Jean-Luc; Hardy, Isabelle; Champeval, Delphine; Perret, Martine; Schenker, Esther; Epelbaum, Jacques; Aujard, Fabienne

    2017-01-01

    Age-associated cognitive impairment is a major health and social issue because of increasing aged population. Cognitive decline is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. In middle-aged healthy humans, fasting blood glucose levels in the upper normal range are associated with memory impairment and cerebral atrophy. Due to a close evolutional similarity to Man, non-human primates may be useful to investigate the relationships between glucose homeostasis, cognitive deficits and structural brain alterations. In the grey mouse lemur, Microcebus murinus, spatial memory deficits have been associated with age and cerebral atrophy but the origin of these alterations have not been clearly identified. Herein, we showed that, on 28 female grey mouse lemurs (age range 2.4-6.1 years-old), age correlated with impaired fasting blood glucose (rs=0.37) but not with impaired glucose tolerance or insulin resistance. In middle-aged animals (4.1-6.1 years-old), fasting blood glucose was inversely and closely linked with spatial memory performance (rs=0.56) and hippocampus (rs=−0.62) or septum (rs=−0.55) volumes. These findings corroborate observations in humans and further support the grey mouse lemur as a natural model to unravel mechanisms which link impaired glucose homeostasis, brain atrophy and cognitive processes. PMID:28039490

  2. Impaired fasting blood glucose is associated to cognitive impairment and cerebral atrophy in middle-aged non-human primates.

    PubMed

    Djelti, Fathia; Dhenain, Marc; Terrien, Jérémy; Picq, Jean-Luc; Hardy, Isabelle; Champeval, Delphine; Perret, Martine; Schenker, Esther; Epelbaum, Jacques; Aujard, Fabienne

    2016-12-28

    Age-associated cognitive impairment is a major health and social issue because of increasing aged population. Cognitive decline is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. In middle-aged healthy humans, fasting blood glucose levels in the upper normal range are associated with memory impairment and cerebral atrophy. Due to a close evolutional similarity to Man, non-human primates may be useful to investigate the relationships between glucose homeostasis, cognitive deficits and structural brain alterations. In the grey mouse lemur, Microcebus murinus , spatial memory deficits have been associated with age and cerebral atrophy but the origin of these alterations have not been clearly identified. Herein, we showed that, on 28 female grey mouse lemurs (age range 2.4-6.1 years-old), age correlated with impaired fasting blood glucose (r s =0.37) but not with impaired glucose tolerance or insulin resistance. In middle-aged animals (4.1-6.1 years-old), fasting blood glucose was inversely and closely linked with spatial memory performance (r s =0.56) and hippocampus (r s =-0.62) or septum (r s =-0.55) volumes. These findings corroborate observations in humans and further support the grey mouse lemur as a natural model to unravel mechanisms which link impaired glucose homeostasis, brain atrophy and cognitive processes.

  3. Can the Accuracy of Home Blood Glucose Monitors be affected by the Received Signal Strength of 900 MHz GSM Mobile Phones?

    PubMed Central

    Eslami, J.; Ghafaripour, F.; Mortazavi, S.A.R.; Mortazavi, S.M.J.; Shojaei-fard, M.B.

    2015-01-01

    Background People who use home blood glucose monitors may use their mobile phones in the close vicinity of medical devices. This study is aimed at investigating the effect of the signal strength of 900 MHz GSM mobile phones on the accuracy of home blood glucose monitors. Methods Sixty non-diabetic volunteer individuals aged 21 - 28 years participated in this study. Blood samples were analyzed for glucose level by using a common blood glucose monitoring system. Each blood sample was analyzed twice, within ten minutes in presence and absence of electromagnetic fields generated by a common GSM mobile phone during ringing. Blood samples were divided into 3 groups of 20 samples each. Group 1: exposure to mobile phone radiation with weak signal strength. Group2: exposure to mobile phone radiation with strong signal strength. Group3: exposure to a switched–on mobile phone with no signal strength. Results The magnitude of the changes in the first, second and third group between glucose levels of two measurements (׀ΔC׀) were 7.4±3.9 mg/dl, 10.2±4.5 mg/dl, 8.7±8.4 mg/dl respectively. The difference in the magnitude of the changes between the 1st and the 3rd groups was not statistically significant. Furthermore, the difference in the magnitude of the changes between the 2nd and the 3rd groups was not statistically significant. Conclusion Findings of this study showed that the signal strength of 900 MHz GSM mobile phones cannot play a significant role in changing the accuracy of home blood glucose monitors. PMID:26688798

  4. Mobile diabetes intervention study: testing a personalized treatment/behavioral communication intervention for blood glucose control.

    PubMed

    Quinn, Charlene C; Gruber-Baldini, Ann L; Shardell, Michelle; Weed, Kelly; Clough, Suzanne S; Peeples, Malinda; Terrin, Michael; Bronich-Hall, Lauren; Barr, Erik; Lender, Dan

    2009-07-01

    National data find glycemic control is within target (A1c<7.0%) for 37% of patients with diabetes, and only 7% meet recommended glycemic, lipid, and blood pressure goals. To compare active interventions and usual care for glucose control in a randomized clinical trial (RCT) among persons with diabetes cared for by primary care physicians (PCPs) over the course of 1 year. Physician practices (n=36) in 4 geographic areas are randomly assigned to 1 of 4 study groups. The intervention is a diabetes communication system, using mobile phones and patient/physician portals to allow patient-specific treatment and communication. All physicians receive American Diabetes Association (ADA) Guidelines for diabetes care. Patients with poor diabetes control (A1c> or =7.5%) at baseline (n=260) are enrolled in study groups based on PCP randomization. All study patients receive blood glucose (BG) meters and a year's supply of testing materials. Patients in three treatment groups select one of two mobile phone models, receive one-year unlimited mobile phone data and service plan, register on the web-based individual patient portal and receive study treatment phone software based on study assignment. Control group patients receive usual care from their PCP. The primary outcome is mean change in A1c over a 12-month intervention period. Traditional methods of disease management have not achieved adequate control for BG and other conditions important to persons with diabetes. Tools to improve communication between patients and PCPs may improve patient outcomes and be satisfactory to patients and physicians. This RCT is ongoing.

  5. Blood glucose may condition factor VII levels in diabetic and normal subjects.

    PubMed

    Ceriello, A; Giugliano, D; Quatraro, A; Dello Russo, P; Torella, R

    1988-12-01

    Increased factor VII levels have been reported in Type 1 (insulin-dependent) diabetic subjects. A direct correlation between fasting plasma glucose and factor VII level was found to exist in both diabetic and normal subjects. Induced-hyperglycaemia was able to increase factor VII levels in both diabetic patients and normal control subjects while, when euglycaemia was achieved in diabetic patients, factor VII values returned to normal range. This study shows that the level of factor VII may be directly conditioned by circulating blood glucose and, therefore, stresses the role of hyperglycaemia in conditioning coagulation abnormalities in diabetes mellitus.

  6. Effects of laser acupoint irradiation on blood glucose and glycosylated hemoglobin in type 2 diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Liu; Guo-Xin, Xiong; Li-Ping, Zhang

    2016-06-01

    To investigate the effects of semiconductor laser acupoint irradiation on blood glucose, glycosylated hemoglobin and physical fitness in type 2 diabetes mellitus, 44 cases of type 2 diabetic patients were randomly divided into a control group and a treatment group. All patients in both groups were given a drug treatment. The Hegu, Quchi and Zusanli acupoints of patients in the treatment group were then irradiated daily for 15 d with a 10 MW semiconductor laser. Before and after treatment, patients in both groups underwent a variety of tests and measurements: a two-hour postprandial blood glucose test; a glycosylated hemoglobin test and body mass index (BMI), waist-to-hip ratio (WHR) and body fat percentage (BFP) measurements. The data detected after treatment greatly decreased in the treatment group and was significantly different from that in the control group. It is shown that the acupoint irradiation with a semiconductor laser can improve two-hour postprandial blood glucose, glycosylated hemoglobin and some physical fitness measurements in type 2 diabetes mellitus patients.

  7. Evaluation of Blood Glucose Monitoring System in Screening for Neonatal Hypoglycemia: Tighter Accuracy Standard.

    PubMed

    Tsao, Mei-Fen; Chang, Hui-Wen; Chang, Chien-Hsi; Cheng, Chi-Hsuan; Lin, Hsiu-Chen

    2017-05-01

    Neonatal hypoglycemia may cause severe neurological damages; therefore, tight glycemic control is crucial to identify neonate at risk. Previous blood glucose monitoring system (BGMS) failed to perform well in neonates; there are calls for the tightening of accuracy requirements. It remains a need for accurate BGMS for effective bedside diabetes management in neonatal care within a hospital population. A total of 300 neonates were recruited from local hospitals. Accuracy performance of a commercially available BGMS was evaluated against reference instrument in screening for neonatal hypoglycemia, and assessment was made based on the ISO15197:2013 and a tighter standard. At blood glucose level < 47 mg/dl, BGMS assessed met the minimal accuracy requirement of ISO 15197:2013 and tighter standard at 100% and 97.2%, respectively.

  8. Reliable long-term continuous blood glucose monitoring for patients in critical care using microdialysis and infrared spectrometry

    NASA Astrophysics Data System (ADS)

    Heise, H. Michael; Damm, Uwe; Kondepati, Venkata R.

    2006-02-01

    For clinical research, in-vivo blood glucose monitoring is an ongoing important topic to improve glycemic control in patients with non-adequate blood glucose regulation. Critically ill patients received much interest, since the intensive insulin therapy treatment, as established for diabetics, reduces mortality significantly. Despite the existence of commercially available, mainly amperometric biosensors, continued interest is in infrared spectroscopic techniques for reagent-free glucose monitoring. For stable long-term operation, avoiding also sensor recalibration, a bed-side device coupled to a micro-dialysis probe was developed for quasi-continuous glucose monitoring. Multivariate calibration is required for glucose concentration prediction due to the complex composition of dialysates from interstitial body fluid. Measurements were carried out with different test persons, each experiment lasting for more than 8 hours. Owing to low dialysis recovery rates, glucose concentrations in the dialysates were between 0.83 and 4.44 mM. Standard errors of prediction (SEP) obtained with Partial Least Squares (PLS) calibration and different cross-validation strategies were mainly between 0.13 and 0.18 mM based on either full interval data or specially selected spectral variables.

  9. Relationship between admission blood glucose level and prognosis in elderly patients without previously known diabetes who undergo emergency non-cardiac surgery.

    PubMed

    Ma, Jinling; He, Lei; Wang, Xiujie; Gao, Meng; Zhao, Yuexiang; Liu, Jie

    2015-08-01

    Elevated blood glucose levels on admission are important as a marker for adverse events in patients who undergo surgery. This study aims to evaluate the relationship between admission glucose level and adverse outcome during the 30-day follow-up period in elderly patients without previously known diabetes who undergo emergency non-cardiac surgery. The primary and secondary end points were all-cause and major adverse cardiac event (MACE) mortalities, respectively, during the 30-day postoperative follow-up period. Higher 30-day all-cause (24.1 %) and MACE (13.7 %) mortalities were observed in patients with an admission glucose ≥ 11.1 mmol/L than in patients with admission glucose <11.1 mmol/L (p < 0.001). Multivariate logistic regression analysis shows that an higher admission blood glucose level is an independent predictor for the development of the 30-day all-cause mortality [odds ratio (OR), 1.91; 95 % confidence interval (CI), 1.746-2.082; p < 0.001) and cardiac mortality (OR 1.97, 95 % CI 1.774-2.191; p < 0.001] after adjusting for age, gender, body mass index, comorbidities, and medication before admission. Kaplan-Meier event-free survival curves demonstrate that an admission blood glucose level ≥ 11.1 mmol/L has worse event-free survival than an admission blood glucose level <11.1 mmol/L.

  10. Changes in blood glucose level during and after light sedations using propofol-fentanyl and midazolam-fentanyl in diabetic patients who underwent cataract surgery.

    PubMed

    Khalighinejad, Pooyan; Rahimi, Mojtaba; Naghibi, Khosro; Niknam, Negar

    2015-01-01

    Surgeries may trigger the stress response which leads to changes in blood glucose level, and studies suggest that different sedation and anesthesia methods have different effects on blood glucose level. The aim of this study was to investigate changes of blood glucose levels in diabetic patients and compare them in two sedation methods of propofol + fentanyl and midazolam + fentanyl. Totally, 80 diabetic candidates for cataract surgery who had all the inclusion criteria, underwent cataract surgery using two methods of propofol (1 mg/kg/h) + fentanyl (2 μg/kg) (Group P) and midazolam (0.03 mg/kg) + fentanyl (2 μg/kg) (Group M) for light sedation. In the end, 70 patients (Group P n = 35 and Group M n = 35) remained in the study. Patients' blood glucose levels, vital signs, and hemodynamic data were assessed 30 min prior to the surgery, each 15 min during surgery and at the end of surgery. Hemodynamic parameters did not have a statistically significant difference between the two groups mean blood glucose level in Group M was 149.15 mg/dl and in Group P was 149.2 mg/dl, and based on repeated measures analysis of variance test, significant differences were not observed between the two groups (P = 0.99). T-test showed no significant differences in the blood glucose level at any time of the study between the two groups. Light sedation methods of propofol + fentanyl and midazolam + fentanyl did not have any differences in alteration of blood glucose level.

  11. Safety and efficacy of blood glucose management practices at a diabetes camp.

    PubMed

    Gunasekera, Hasantha; Ambler, Geoffrey

    2006-10-01

    Camps are an important part of diabetic management in children yet data on the safety and efficacy of camps are limited. We assessed the safety and efficacy of blood glucose management guidelines at summer camps for diabetic children. Consistent management guidelines were implemented during 10 consecutive diabetes camps held in the same facility between 1998 and 2002. Using the entire sample of campers aged 9-13 years, we analysed insulin dosage alterations, the frequency of hypoglycaemia (<4 mmol/L), hyperglycaemia (>15 mmol/L) and ketosis and evaluated our overnight management guidelines. The effects of sex, year, age, insulin regimen and duration of diagnosis on hypoglycaemia frequency were determined. Mean insulin doses decreased 19.2% (95% confidence interval 16.9-21.6%) by the last day of camp (day 6) relative to the day prior to camp. Mean blood glucose levels were 11.4 mmol/L before breakfast and the main evening meal, 11.3 mmol/L before bed, 10.8 mmol/L at midnight and 9.4 mmol/L at 3 am. Of the 10 839 readings analysed, 984 (9.1%) were below 4 mmol/L (0.5 per camper/day) with no clinical grade 3 (seizure or coma) hypoglycaemia. Hypoglycaemia frequency was independent of sex, year, age, insulin regimen and duration of diagnosis (all P > 0.05). There were 2570 (23.7%) readings above 15 mmol/L (1.4 per camper/day) but only 42 (0.4%) were associated with significant ketosis. Children at diabetes camps experience considerable blood glucose variability; however, the careful application of monitoring and management guidelines can avoid serious adverse events.

  12. Gliotransmission and Brain Glucose Sensing

    PubMed Central

    Lanfray, Damien; Arthaud, Sébastien; Ouellet, Johanne; Compère, Vincent; Do Rego, Jean-Luc; Leprince, Jérôme; Lefranc, Benjamin; Castel, Hélène; Bouchard, Cynthia; Monge-Roffarello, Boris; Richard, Denis; Pelletier, Georges; Vaudry, Hubert; Tonon, Marie-Christine; Morin, Fabrice

    2013-01-01

    Hypothalamic glucose sensing is involved in the control of feeding behavior and peripheral glucose homeostasis, and glial cells are suggested to play an important role in this process. Diazepam-binding inhibitor (DBI) and its processing product the octadecaneuropeptide (ODN), collectively named endozepines, are secreted by astroglia, and ODN is a potent anorexigenic factor. Therefore, we investigated the involvement of endozepines in brain glucose sensing. First, we showed that intracerebroventricular administration of glucose in rats increases DBI expression in hypothalamic glial-like tanycytes. We then demonstrated that glucose stimulates endozepine secretion from hypothalamic explants. Feeding experiments indicate that the anorexigenic effect of central administration of glucose was blunted by coinjection of an ODN antagonist. Conversely, the hyperphagic response elicited by central glucoprivation was suppressed by an ODN agonist. The anorexigenic effects of centrally injected glucose or ODN agonist were suppressed by blockade of the melanocortin-3/4 receptors, suggesting that glucose sensing involves endozepinergic control of the melanocortin pathway. Finally, we found that brain endozepines modulate blood glucose levels, suggesting their involvement in a feedback loop controlling whole-body glucose homeostasis. Collectively, these data indicate that endozepines are a critical relay in brain glucose sensing and potentially new targets in treatment of metabolic disorders. PMID:23160530

  13. Apelin targets gut contraction to control glucose metabolism via the brain

    PubMed Central

    Fournel, Audren; Drougard, Anne; Duparc, Thibaut; Marlin, Alysson; Brierley, Stuart M; Castro, Joel; Le-Gonidec, Sophie; Masri, Bernard; Colom, André; Lucas, Alexandre; Rousset, Perrine; Cenac, Nicolas; Vergnolle, Nathalie; Valet, Philippe; Cani, Patrice D; Knauf, Claude

    2017-01-01

    Objective The gut–brain axis is considered as a major regulatory checkpoint in the control of glucose homeostasis. The detection of nutrients and/or hormones in the duodenum informs the hypothalamus of the host's nutritional state. This process may occur via hypothalamic neurons modulating central release of nitric oxide (NO), which in turn controls glucose entry into tissues. The enteric nervous system (ENS) modulates intestinal contractions in response to various stimuli, but the importance of this interaction in the control of glucose homeostasis via the brain is unknown. We studied whether apelin, a bioactive peptide present in the gut, regulates ENS-evoked contractions, thereby identifying a new physiological partner in the control of glucose utilisation via the hypothalamus. Design We measured the effect of apelin on electrical and mechanical duodenal responses via telemetry probes and isotonic sensors in normal and obese/diabetic mice. Changes in hypothalamic NO release, in response to duodenal contraction modulated by apelin, were evaluated in real time with specific amperometric probes. Glucose utilisation in tissues was measured with orally administrated radiolabeled glucose. Results In normal and obese/diabetic mice, glucose utilisation is improved by the decrease of ENS/contraction activities in response to apelin, which generates an increase in hypothalamic NO release. As a consequence, glucose entry is significantly increased in the muscle. Conclusions Here, we identify a novel mode of communication between the intestine and the hypothalamus that controls glucose utilisation. Moreover, our data identified oral apelin administration as a novel potential target to treat metabolic disorders. PMID:26565000

  14. Blood Glucose and Insulin Concentrations after Octreotide Administration in Horses With Insulin Dysregulation.

    PubMed

    Frank, N; Hermida, P; Sanchez-Londoño, A; Singh, R; Gradil, C M; Uricchio, C K

    2017-07-01

    Octreotide is a somatostatin analog that suppresses insulin secretion. We hypothesized that octreotide would suppress insulin concentrations in horses and that normal (N) horses and those with insulin dysregulation (ID) would differ significantly in their plasma glucose and insulin responses to administration of octreotide. Twelve horses, N = 5, ID = 7. Prospective study. An oral sugar test was performed to assign horses to N and ID groups. Octreotide (1.0 μg/kg IV) was then administered, and blood was collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, 75, and 90 minute, and 2, 3, 4, 6, 8, 12, and 24 hour for measurement of glucose and insulin concentrations. Area under the curve (AUC) values were calculated. Mean AUC values for glucose and insulin did not differ between normal (n = 5) and ID (n = 7) groups after octreotide injection. Significant time (P < .001) effects were detected for glucose and insulin concentrations. A group × time interaction (P = .091) was detected for insulin concentrations after administration of octreotide, but the group (P = .33) effect was not significant. Octreotide suppresses insulin secretion, resulting in hyperglycemia, and then concentrations increase above baseline as glycemic control is restored. Our hypothesis that octreotide causes insulin concentrations to decrease in horses was supported, but differences between N and ID groups did not reach statistical significance when blood glucose and insulin responses were compared. The utility of an octreotide response test remains to be determined. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  15. Performance Evaluation and Labeling Comprehension of a New Blood Glucose Monitoring System with Integrated Information Management

    PubMed Central

    List, Susan M; Starks, Nykole; Baum, John; Greene, Carmine; Pardo, Scott; Parkes, Joan L; Schachner, Holly C; Cuddihy, Robert

    2011-01-01

    Background This study evaluated performance and product labeling of CONTOUR® USB, a new blood glucose monitoring system (BGMS) with integrated diabetes management software and a universal serial bus (USB) port, in the hands of untrained lay users and health care professionals (HCPs). Method Subjects and HCPs tested subject's finger stick capillary blood in parallel using CONTOUR USB meters; deep finger stick blood was tested on a Yellow Springs Instruments (YSI) glucose analyzer for reference. Duplicate results by both subjects and HCPs were obtained to assess system precision. System accuracy was assessed according to International Organization for Standardization (ISO) 15197:2003 guidelines [within ±15 mg/dl of mean YSI results (samples <75 mg/dl) and ±20% (samples ≥75 mg/dl)]. Clinical accuracy was determined by Parkes error grid analysis. Subject labeling comprehension was assessed by HCP ratings of subject proficiency. Key system features and ease-of-use were evaluated by subject questionnaires. Results All subjects who completed the study (N = 74) successfully performed blood glucose measurements, connected the meter to a laptop computer, and used key features of the system. The system was accurate; 98.6% (146/148) of subject results and 96.6% (143/148) of HCP results exceeded ISO 15197:2003 criteria. All subject and HCP results were clinically accurate (97.3%; zone A) or associated with benign errors (2.7%; zone B). The majority of subjects rated features of the BGMS as “very good” or “excellent.” Conclusions CONTOUR USB exceeded ISO 15197:2003 system performance criteria in the hands of untrained lay users. Subjects understood the product labeling, found the system easy to use, and successfully performed blood glucose testing. PMID:22027308

  16. Locomotor Training and Factors Associated with Blood Glucose Regulation After Spinal Cord Injury.

    PubMed

    Chilibeck, Philip D; Guertin, Pierre A

    2017-01-01

    Individuals with spinal cord injury (SCI) have increased rates of glucose intolerance, insulin insensitivity, and type II diabetes caused mainly by the deconditioning of paralyzed muscle. The purpose of this systematic review was to determine the effectiveness of locomotor training in individuals with SCI on blood glucose control. We searched studies on locomotor training for individuals with SCI with outcomes of glucose, insulin, or outcomes that could change glucose handling (i.e. increases in muscle mass, shifts in muscle fiber type composition, changes in transport proteins, or enzymes involved in glucose metabolism) in PubMed and EMBASE. Eleven studies (10 with incomplete SCI; 1 with complete SCI) were included in our review. Locomotor training included body weight supported treadmill training (BWSTT) with manual or robotic assistance, with and without functional electrical stimulation (FES), or involved FES-assisted over ground training. Six months of locomotor training in individuals with SCI resulted in significant decreases in glucose (15%) and insulin (33%) areas under the curve during oral glucose tolerance tests. Two to twelve months of locomotor training reversed some of the muscle atrophy - with muscle being the site of most glucose consumption, this is important for glucose control. Training also increased capacity for glucose storage, enzymes involved in glucose phosphorylation (hexokinase) and oxidation (citrate synthase), and glucose transport proteins (GLUT-4). Fiber type composition shifted to a slower fiber type, which favors glucose handling. There were no effects on fat mass. Locomotor training in individuals with SCI (generally an incomplete injury) increases capacity to handle glucose and results in muscular changes that should reduce the risk of type II diabetes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. [IMPACT OF PERIOPERATIVE AVERAGE BLOOD-GLUCOSE LEVEL ON PROGNOSIS OF PATIENTS WITH HIP FRACTURE AND DIABETES MELLITUS].

    PubMed

    Wang, Guoqi; Long, Anhua; Zhang, Lihai; Zhang, Hao; Yin, Peng; Tang, Peifu

    2014-07-01

    To explore the impact of perioperative average blood-glucose level on the prognosis of patients with hip fracture and diabetes mellitus. A retrospective analysis was made on the clinical data of 244 patients with hip fracture and diabetes mellitus who accorded with the inclusion criteria between September 2009 and September 2012. Of 244 patients, 125 patients with poorly controlled fasting blood-glucose (average fasting blood-glucose level > 7.8 mmol/L) were assigned in group A, and 119 patients with well controlled fasting blood-glucose (average fasting blood-glucose level ≤ 7.8 mmol/L) were assigned in group B according to "China guideline for type 2 diabetes" criteria. There was no significant difference in gender, age, disease duration of diabetes mellitus, serum albumin, fracture type and disease duration, surgical procedure, anaesthesia, and complications between 2 groups (P > 0.05). Group A had a higher hemoglobin level and fewer patients who can do some outdoor activities than group B (t = -2.353, P = 0.020; χ2 = 4.333, P = 0.037). The hospitalization time, days to await surgery, stitch removal time, the postoperative complication rate, the mortality at 1 month and 1 year after operation, and ambulatory ability at 1 year after operation were compared between the 2 groups. A total of 223 patients (114 in group A and 109 in group B) were followed up 12-15 months (mean, 13.5 months). The days to await surgery of group A were significantly more than those of group B (t = -2.743, P=0.007), but no significant difference was found in hospitalization time and stitch removal time between 2 groups (P > 0.05). The postoperative complication rate of group A (19.2%, 24/125) was significantly higher than that of group B (8.4%, 10/119) (χ2 =5.926, P = 0.015). Group A had a higher mortality at 1 month after operation than group B (6.1% vs. 0) (χ2 = 5.038, P = 0.025), but no significant difference was shown at 1 year after operation between groups A and B (8.8% vs. 4

  18. Glucose test (image)

    MedlinePlus

    ... person with diabetes constantly manages their blood's sugar (glucose) levels. After a blood sample is taken and tested, it is determined whether the glucose levels are low or high. Following your health ...

  19. Blood glucose awareness training (BGAT-2): long-term benefits.

    PubMed

    Cox, D J; Gonder-Frederick, L; Polonsky, W; Schlundt, D; Kovatchev, B; Clarke, W

    2001-04-01

    Blood glucose awareness training (BGAT) has been shown to improve awareness of blood glucose (BG) fluctuations among adults with type 1 diabetes. This study investigates the long-term (12-month) benefits of BGAT-2. A total of 73 adults with type 1 diabetes participated in a 6-month repeated baseline design with a 12-month follow-up. At 6 months and 1 month before BGAT-2 and at 1,6, and 12 months after BGAT-2, subjects used a handheld computer for 50 trials and completed psychological tests. Throughout assessment, subjects completed diaries, recording occurrences of diabetic ketoacidosis, severe hypoglycemia, and motor vehicle violations During follow-up, 50% of the subjects received booster training. During the first and last halves of both the baseline period and the follow-up period, dependent variables were generally stable. However, from baseline to follow-up, BGAT-2 led to 1) improved detection of hypoglycemia and hyperglycemia; 2) improved judgment regarding when to lower high BG, raise low BG, and not drive while hypoglycemic; 3) reduction in occurrence of diabetic ketoacidosis, severe hypoglycemia, and motor vehicle violations; and 4) improvement in terms of worry about hypoglycemia, quality of life, and diabetes knowledge. Reduction in severe hypoglycemia was not associated with a worsening of metabolic control (HbA1). The presence or absence of booster training did not differentially affect these benefits. BGAT has sustained broad-ranging benefits, independent of booster intervention.

  20. Effects of different levels of coconut fiber on blood glucose, serum insulin and minerals in rats.

    PubMed

    Sindurani, J A; Rajamohan, T

    2000-01-01

    The effect of neutral detergent fiber (NDF) from coconut kernel (Cocos nucifera L) in rats fed 5%, 15% and 30% level on the concentration of blood glucose, serum insulin and excretion of minerals was studied. Increase in the intake of fiber resulted in significant decrease in the level of blood glucose and serum insulin. Faecal excretion of Cu, Cr, Mn, Mg, Zn and Ca was found to increase in rats fed different levels of coconut fiber when compared to fiber free group. The result of the present investigation suggest that inclusion of coconut fiber in the diet results in significant hypoglycemic action.