Sample records for target ion channels

  1. Marine Toxins Targeting Ion Channels

    PubMed Central

    Arias, Hugo R.

    2006-01-01

    This introductory minireview points out the importance of ion channels for cell communication. The basic concepts on the structure and function of ion channels triggered by membrane voltage changes, the so-called voltage-gated ion channels (VGICs), as well as those activated by neurotransmitters, the so-called ligand-gated ion channel (LGICs), are introduced. Among the most important VGIC superfamiles, we can name the voltage-gated Na+ (NaV), Ca2+ (CaV), and K+ (KV) channels. Among the most important LGIC super families, we can include the Cys-loop or nicotinicoid, the glutamate-activated (GluR), and the ATP-activated (P2XnR) receptor superfamilies. Ion channels are transmembrane proteins that allow the passage of different ions in a specific or unspecific manner. For instance, the activation of NaV, CaV, or KV channels opens a pore that is specific for Na+, Ca2+, or K+, respectively. On the other hand, the activation of certain LGICs such as nicotinic acetylcholine receptors, GluRs, and P2XnRs allows the passage of cations (e.g., Na+, K+, and/or Ca2+), whereas the activation of other LGICs such as type A γ-butyric acid and glycine receptors allows the passage of anions (e.g., Cl− and/or HCO3−). In this regard, the activation of NaV and CaV as well as ligand-gated cation channels produce membrane depolarization, which finally leads to stimulatory effects in the cell, whereas the activation of KV as well as ligand-gated anion channels induce membrane hyperpolarization that finally leads to inhibitory effects in the cell. The importance of these ion channel superfamilies is emphasized by considering their physiological functions throughout the body as well as their pathophysiological implicance in several neuronal diseases. In this regard, natural molecules, and especially marine toxins, can be potentially used as modulators (e.g., inhibitors or prolongers) of ion channel functions to treat or to alleviate a specific ion channel-linked disease (e

  2. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets

    PubMed Central

    Vasconcelos, Luiz H. C.; Souza, Iara L. L.; Pinheiro, Lílian S.; Silva, Bagnólia A.

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation. PMID:27065858

  3. Novel ion channel targets in atrial fibrillation.

    PubMed

    Hancox, Jules C; James, Andrew F; Marrion, Neil V; Zhang, Henggui; Thomas, Dierk

    2016-08-01

    Atrial fibrillation (AF) is the most common arrhythmia in humans. It is progressive and the development of electrical and structural remodeling makes early intervention desirable. Existing antiarrhythmic pharmacological approaches are not always effective and can produce unwanted side effects. Additional atrial-selective antiarrhythmic strategies are therefore desirable. Evidence for three novel ion channel atrial-selective therapeutic targets is evaluated: atrial-selective fast sodium channel current (INa) inhibition; small conductance calcium-activated potassium (SK) channels; and two-pore (K2P) potassium channels. Data from animal models support atrial-ventricular differences in INa kinetics and also suggest atrial-ventricular differences in sodium channel β subunit expression. Further work is required to determine whether intrinsic atrial-ventricular differences in human INa exist or whether functional differences occur due to distinct atrial and ventricular action and resting potentials. SK and K2P channels (particularly K2P 3.1) offer potentially attractive atrial-selective targets. Work is needed to identify the underlying basis of SK current that contributes to (patho)physiological atrial repolarization and settings in which SK inhibition is anti- versus pro-arrhythmic. Although K2P3.1 appears to be a promising target with comparatively selective drugs for experimental use, a lack of selective pharmacology hinders evaluation of other K2P channels as potential atrial-selective targets.

  4. Cardiac ion channels

    PubMed Central

    Priest, Birgit T; McDermott, Jeff S

    2015-01-01

    Ion channels are critical for all aspects of cardiac function, including rhythmicity and contractility. Consequently, ion channels are key targets for therapeutics aimed at cardiac pathophysiologies such as atrial fibrillation or angina. At the same time, off-target interactions of drugs with cardiac ion channels can be the cause of unwanted side effects. This manuscript aims to review the physiology and pharmacology of key cardiac ion channels. The intent is to highlight recent developments for therapeutic development, as well as elucidate potential mechanisms for drug-induced cardiac side effects, rather than present an in-depth review of each channel subtype. PMID:26556552

  5. Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets

    PubMed Central

    Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.

    2017-01-01

    Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations. PMID:28218247

  6. Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets

    NASA Astrophysics Data System (ADS)

    Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.

    2017-02-01

    Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations.

  7. Therapeutic potential of peptide toxins that target ion channels.

    PubMed

    Beraud, Evelyne; Chandy, K George

    2011-10-01

    Traditional healthcare systems in China, India, Greece and the Middle East have for centuries exploited venomous creatures as a resource for medicines. This review focuses on one class of pharmacologically active compounds from venom, namely peptide toxins that target ion channels. We highlight their therapeutic potential and the specific channels they target. The field of therapeutic application is vast, including pain, inflammation, cancer, neurological disorders, cardioprotection, and autoimmune diseases. One of these peptides is in clinical use, and many others are in various stages of pre-clinical and clinical development.

  8. Potential therapeutic targets for ATP-gated P2X receptor ion channels.

    PubMed

    Li, Zhiyuan; Liang, Dong; Chen, Ling

    2008-04-01

    P2X receptors make up a novel family of ligand-gated ion channels that are activated by binding of extracellular ATP. These receptors can form a number of homomeric and heteromeric ion channels, which are widely distributed throughout the human body. They are thought to play an important role in many cellular processes, including synaptic transmission and thrombocyte aggregation. These ion channels are also involved in the pathology of several disease states, including chronic inflammation and neuropathic pain, and thus are the potential targets for drug development. The recent discovery of potent and highly selective antagonists for P2X(7) receptors, through the use of high-throughput screening, has helped to further understand the P2X receptor pharmacology and provided new evidence that P2X(7) receptors play a specific role in chronic pain states. In this review, we discuss how the P2X family of ion channels has distinguished itself as a potential new drug target. We are optimistic that safe and effective candidate drugs will be suitable for progression into clinical development.

  9. From Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules

    PubMed Central

    Nasiripourdori, Adak; Taly, Valérie; Grutter, Thomas; Taly, Antoine

    2011-01-01

    Ligand-gated ion channels (LGIC) play a central role in inter-cellular communication. This key function has two consequences: (i) these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii) they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted. PMID:22069709

  10. Novel screening techniques for ion channel targeting drugs

    PubMed Central

    Obergrussberger, Alison; Stölzle-Feix, Sonja; Becker, Nadine; Brüggemann, Andrea; Fertig, Niels; Möller, Clemens

    2015-01-01

    Ion channels are integral membrane proteins that regulate the flux of ions across the cell membrane. They are involved in nearly all physiological processes, and malfunction of ion channels has been linked to many diseases. Until recently, high-throughput screening of ion channels was limited to indirect, e.g. fluorescence-based, readout technologies. In the past years, direct label-free biophysical readout technologies by means of electrophysiology have been developed. Planar patch-clamp electrophysiology provides a direct functional label-free readout of ion channel function in medium to high throughput. Further electrophysiology features, including temperature control and higher-throughput instruments, are continually being developed. Electrophysiological screening in a 384-well format has recently become possible. Advances in chip and microfluidic design, as well as in cell preparation and handling, have allowed challenging cell types to be studied by automated patch clamp. Assays measuring action potentials in stem cell-derived cardiomyocytes, relevant for cardiac safety screening, and neuronal cells, as well as a large number of different ion channels, including fast ligand-gated ion channels, have successfully been established by automated patch clamp. Impedance and multi-electrode array measurements are particularly suitable for studying cardiomyocytes and neuronal cells within their physiological network, and to address more complex physiological questions. This article discusses recent advances in electrophysiological technologies available for screening ion channel function and regulation. PMID:26556400

  11. Novel screening techniques for ion channel targeting drugs.

    PubMed

    Obergrussberger, Alison; Stölzle-Feix, Sonja; Becker, Nadine; Brüggemann, Andrea; Fertig, Niels; Möller, Clemens

    2015-01-01

    Ion channels are integral membrane proteins that regulate the flux of ions across the cell membrane. They are involved in nearly all physiological processes, and malfunction of ion channels has been linked to many diseases. Until recently, high-throughput screening of ion channels was limited to indirect, e.g. fluorescence-based, readout technologies. In the past years, direct label-free biophysical readout technologies by means of electrophysiology have been developed. Planar patch-clamp electrophysiology provides a direct functional label-free readout of ion channel function in medium to high throughput. Further electrophysiology features, including temperature control and higher-throughput instruments, are continually being developed. Electrophysiological screening in a 384-well format has recently become possible. Advances in chip and microfluidic design, as well as in cell preparation and handling, have allowed challenging cell types to be studied by automated patch clamp. Assays measuring action potentials in stem cell-derived cardiomyocytes, relevant for cardiac safety screening, and neuronal cells, as well as a large number of different ion channels, including fast ligand-gated ion channels, have successfully been established by automated patch clamp. Impedance and multi-electrode array measurements are particularly suitable for studying cardiomyocytes and neuronal cells within their physiological network, and to address more complex physiological questions. This article discusses recent advances in electrophysiological technologies available for screening ion channel function and regulation.

  12. Sperm-specific ion channels: targets holding the most potential for male contraceptives in development.

    PubMed

    Zheng, Li-Ping; Wang, Hua-Feng; Li, Bao-Ming; Zeng, Xu-Hui

    2013-10-01

    There is a global need for an ideal method of male contraception. However, the development of male contraceptives has not been well successful. Research on sperm-specific ion channels, especially the recent advance obtained from electrophysiological studies, has emphasized the conception that those channels are targets with the most potential to develop non-hormonal male contraceptives. While summarizing the general options for male contraception, this review focuses on the properties and functions of sperm ion channels together with the attempts of utilizing these channels to develop male contraceptives. We believe that a deeper insight into the signaling and molecular mechanisms by which ion channels regulate sperm functions will pave the way for developing novel male-based contraceptives. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Predicting the Types of Ion Channel-Targeted Conotoxins Based on AVC-SVM Model.

    PubMed

    Xianfang, Wang; Junmei, Wang; Xiaolei, Wang; Yue, Zhang

    2017-01-01

    The conotoxin proteins are disulfide-rich small peptides. Predicting the types of ion channel-targeted conotoxins has great value in the treatment of chronic diseases, epilepsy, and cardiovascular diseases. To solve the problem of information redundancy existing when using current methods, a new model is presented to predict the types of ion channel-targeted conotoxins based on AVC (Analysis of Variance and Correlation) and SVM (Support Vector Machine). First, the F value is used to measure the significance level of the feature for the result, and the attribute with smaller F value is filtered by rough selection. Secondly, redundancy degree is calculated by Pearson Correlation Coefficient. And the threshold is set to filter attributes with weak independence to get the result of the refinement. Finally, SVM is used to predict the types of ion channel-targeted conotoxins. The experimental results show the proposed AVC-SVM model reaches an overall accuracy of 91.98%, an average accuracy of 92.17%, and the total number of parameters of 68. The proposed model provides highly useful information for further experimental research. The prediction model will be accessed free of charge at our web server.

  14. Predicting the Types of Ion Channel-Targeted Conotoxins Based on AVC-SVM Model

    PubMed Central

    Xiaolei, Wang

    2017-01-01

    The conotoxin proteins are disulfide-rich small peptides. Predicting the types of ion channel-targeted conotoxins has great value in the treatment of chronic diseases, epilepsy, and cardiovascular diseases. To solve the problem of information redundancy existing when using current methods, a new model is presented to predict the types of ion channel-targeted conotoxins based on AVC (Analysis of Variance and Correlation) and SVM (Support Vector Machine). First, the F value is used to measure the significance level of the feature for the result, and the attribute with smaller F value is filtered by rough selection. Secondly, redundancy degree is calculated by Pearson Correlation Coefficient. And the threshold is set to filter attributes with weak independence to get the result of the refinement. Finally, SVM is used to predict the types of ion channel-targeted conotoxins. The experimental results show the proposed AVC-SVM model reaches an overall accuracy of 91.98%, an average accuracy of 92.17%, and the total number of parameters of 68. The proposed model provides highly useful information for further experimental research. The prediction model will be accessed free of charge at our web server. PMID:28497044

  15. High throughput screening technologies for ion channels

    PubMed Central

    Yu, Hai-bo; Li, Min; Wang, Wei-ping; Wang, Xiao-liang

    2016-01-01

    Ion channels are involved in a variety of fundamental physiological processes, and their malfunction causes numerous human diseases. Therefore, ion channels represent a class of attractive drug targets and a class of important off-targets for in vitro pharmacological profiling. In the past decades, the rapid progress in developing functional assays and instrumentation has enabled high throughput screening (HTS) campaigns on an expanding list of channel types. Chronologically, HTS methods for ion channels include the ligand binding assay, flux-based assay, fluorescence-based assay, and automated electrophysiological assay. In this review we summarize the current HTS technologies for different ion channel classes and their applications. PMID:26657056

  16. Ion channels in inflammation.

    PubMed

    Eisenhut, Michael; Wallace, Helen

    2011-04-01

    Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.

  17. Ion channel blockers for the treatment of neuropathic pain.

    PubMed

    Colombo, Elena; Francisconi, Simona; Faravelli, Laura; Izzo, Emanuela; Pevarello, Paolo

    2010-05-01

    Neuropathic pain, a severe chronic pain condition characterized by a complex pathophysiology, is a largely unmet medical need. Ion channels, which underlie cell excitability, are heavily implicated in the biological mechanisms that generate and sustain neuropathic pain. This review highlights the biological evidence supporting the involvement of voltage-, proton- and ligand-gated ion channels in the neuropathic pain setting. Ion channel modulators at different research or development stages are reviewed and referenced. Ion channel modulation is one of the main avenues to achieve novel, improved neuropathic pain treatments. Voltage-gated sodium and calcium channel and glutamate receptor modulators are likely to produce new, improved agents in the future. Rationally targeting subtypes of known ion channels, tackling recently discovered ion channel targets or combining drugs with different mechanism of action will be primary sources of new drugs in the longer term.

  18. Ion Channels in Brain Metastasis

    PubMed Central

    Klumpp, Lukas; Sezgin, Efe C.; Eckert, Franziska; Huber, Stephan M.

    2016-01-01

    Breast cancer, lung cancer and melanoma exhibit a high metastatic tropism to the brain. Development of brain metastases severely worsens the prognosis of cancer patients and constrains curative treatment options. Metastasizing to the brain by cancer cells can be dissected in consecutive processes including epithelial–mesenchymal transition, evasion from the primary tumor, intravasation and circulation in the blood, extravasation across the blood–brain barrier, formation of metastatic niches, and colonization in the brain. Ion channels have been demonstrated to be aberrantly expressed in tumor cells where they regulate neoplastic transformation, malignant progression or therapy resistance. Moreover, many ion channel modulators are FDA-approved drugs and in clinical use proposing ion channels as druggable targets for future anti-cancer therapy. The present review article aims to summarize the current knowledge on the function of ion channels in the different processes of brain metastasis. The data suggest that certain channel types involving voltage-gated sodium channels, ATP-release channels, ionotropic neurotransmitter receptors and gap junction-generating connexins interfere with distinct processes of brain metastazation. PMID:27618016

  19. Ion Channels in Innate and Adaptive Immunity

    PubMed Central

    Feske, Stefan; Wulff, Heike; Skolnik, Edward Y.

    2016-01-01

    Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy. PMID:25861976

  20. Transient receptor potential ion channels in primary sensory neurons as targets for novel analgesics

    PubMed Central

    Sousa-Valente, J; Andreou, A P; Urban, L; Nagy, I

    2014-01-01

    The last decade has witnessed an explosion in novel findings relating to the molecules involved in mediating the sensation of pain in humans. Transient receptor potential (TRP) ion channels emerged as the greatest group of molecules involved in the transduction of various physical stimuli into neuronal signals in primary sensory neurons, as well as, in the development of pain. Here, we review the role of TRP ion channels in primary sensory neurons in the development of pain associated with peripheral pathologies and possible strategies to translate preclinical data into the development of effective new analgesics. Based on available evidence, we argue that nociception-related TRP channels on primary sensory neurons provide highly valuable targets for the development of novel analgesics and that, in order to reduce possible undesirable side effects, novel analgesics should prevent the translocation from the cytoplasm to the cell membrane and the sensitization of the channels rather than blocking the channel pore or binding sites for exogenous or endogenous activators. LINKED ARTICLES This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24283624

  1. Targeting ion channels for the treatment of gastrointestinal motility disorders

    PubMed Central

    Beyder, Arthur

    2012-01-01

    Gastrointestinal (GI) functional and motility disorders are highly prevalent and responsible for long-term morbidity and sometimes mortality in the affected patients. It is estimated that one in three persons has a GI functional or motility disorder. However, diagnosis and treatment of these widespread conditions remains challenging. This partly stems from the multisystem pathophysiology, including processing abnormalities in the central and peripheral (enteric) nervous systems and motor dysfunction in the GI wall. Interstitial cells of Cajal (ICCs) are central to the generation and propagation of the cyclical electrical activity and smooth muscle cells (SMCs) are responsible for electromechanical coupling. In these and other excitable cells voltage-sensitive ion channels (VSICs) are the main molecular units that generate and regulate electrical activity. Thus, VSICs are potential targets for intervention in GI motility disorders. Research in this area has flourished with advances in the experimental methods in molecular and structural biology and electrophysiology. However, our understanding of the molecular mechanisms responsible for the complex and variable electrical behavior of ICCs and SMCs remains incomplete. In this review, we focus on the slow waves and action potentials in ICCs and SMCs. We describe the constituent VSICs, which include voltage-gated sodium (NaV), calcium (CaV), potassium (KV, KCa), chloride (Cl–) and nonselective ion channels (transient receptor potentials [TRPs]). VSICs have significant structural homology and common functional mechanisms. We outline the approaches and limitations and provide examples of targeting VSICs at the pores, voltage sensors and alternatively spliced sites. Rational drug design can come from an integrated view of the structure and mechanisms of gating and activation by voltage or mechanical stress. PMID:22282704

  2. Ion Channel Modulators in Cystic Fibrosis.

    PubMed

    Gentzsch, Martina; Mall, Marcus A

    2018-05-08

    Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and remains one of the most common life-shortening genetic diseases affecting the lung and other organs. CFTR functions as a cAMP-dependent anion channel that transports chloride and bicarbonate across epithelial surfaces and disruption of these ion transport processes plays a central role in the pathogenesis of CF. These findings provided the rationale for pharmacological modulation of ion transport, either by targeting mutant CFTR or alternative ion channels that can compensate for CFTR dysfunction, as a promising therapeutic approach. High throughput screening has supported the development of CFTR modulator compounds. CFTR correctors are designed to improve defective protein processing, trafficking and cell surface expression, whereas potentiators increase the activity of mutant CFTR at the cell surface. The approval of the first potentiator ivacaftor for the treatment of patients with specific CFTR mutations and, more recently the corrector lumacaftor in combination with ivacaftor for patients homozygous for the common F508del mutation, were major breakthroughs on the path to causal therapies for all patients with CF. In this review, we focus on recent developments and remaining challenges of CFTR-directed therapies, as well as modulators of other ion channels such as alternative chloride channels and the epithelial sodium channel (ENaC) as additional targets in CF lung disease. Further, we discuss how patient-derived precision medicine models may aid the translation of emerging next generation ion channel modulators from the laboratory to the clinic and tailor their use for optimal therapeutic benefits in individual patients with CF. Copyright © 2018. Published by Elsevier Inc.

  3. Ion channels in plants.

    PubMed

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  4. The Control of Male Fertility by Spermatozoan Ion Channels

    PubMed Central

    Lishko, Polina V.; Kirichok, Yuriy; Ren, Dejian; Navarro, Betsy; Chung, Jean-Ju

    2014-01-01

    Ion channels control the sperm ability to fertilize the egg by regulating sperm maturation in the female reproductive tract and by triggering key sperm physiological responses required for successful fertilization such as hyperactivated motility, chemotaxis, and the acrosome reaction. CatSper, a pH-regulated, calcium-selective ion channel, and KSper (Slo3) are core regulators of sperm tail calcium entry and sperm hyperactivated motility. Many other channels had been proposed as regulating sperm activity without direct measurements. With the development of the sperm patch-clamp technique, CatSper and KSper have been confirmed as the primary spermatozoan ion channels. In addition, the voltage-gated proton channel Hv1 has been identified in human sperm tail, and the P2X2 ion channel has been identified in the midpiece of mouse sperm. Mutations and deletions in sperm-specific ion channels affect male fertility in both mice and humans without affecting other physiological functions. The uniqueness of sperm ion channels makes them ideal pharmaceutical targets for contraception. In this review we discuss how ion channels regulate sperm physiology. PMID:22017176

  5. An ion channel library for drug discovery and safety screening on automated platforms.

    PubMed

    Wible, Barbara A; Kuryshev, Yuri A; Smith, Stephen S; Liu, Zhiqi; Brown, Arthur M

    2008-12-01

    Ion channels represent the third largest class of targets in drug discovery after G-protein coupled receptors and kinases. In spite of this ranking, ion channels continue to be under exploited as drug targets compared with the other two groups for several reasons. First, with 400 ion channel genes and an even greater number of functional channels due to mixing and matching of individual subunits, a systematic collection of ion channel-expressing cell lines for drug discovery and safety screening has not been available. Second, the lack of high-throughput functional assays for ion channels has limited their use as drug targets. Now that automated electrophysiology has come of age and provided the technology to assay ion channels at medium to high throughput, we have addressed the need for a library of ion channel cell lines by constructing the Ion Channel Panel (ChanTest Corp., Cleveland, OH). From 400 ion channel genes, a collection of 82 of the most relevant human ion channels for drug discovery, safety, and human disease has been assembled.Each channel has been stably overexpressed in human embryonic kidney 293 or Chinese hamster ovary cells. Cell lines have been selected and validated on automated electrophysiology systems to facilitate cost-effective screening for safe and selective compounds at earlier stages in the drug development process. The screening and validation processes as well as the relative advantages of different screening platforms are discussed.

  6. Channeling effect in polycrystalline deuterium-saturated CVD diamond target bombarded by deuterium ion beam

    NASA Astrophysics Data System (ADS)

    Bagulya, A. V.; Dalkarov, O. D.; Negodaev, M. A.; Rusetskii, A. S.; Chubenko, A. P.; Ralchenko, V. G.; Bolshakov, A. P.

    2015-07-01

    At the ion accelerator HELIS at LPI, the neutron yield is investigated in DD reactions within a strongly textured polycrystalline deuterium-saturated CVD diamond under irradiation by a deuterium ion beam with the energy of less than 30 keV. The measurements of the neutron flux in the beam direction are performed using a multichannel detector based on 3He counters, in dependence on the target angle, β, with respect to the beam axis. A significant anisotropy in the neutron yield is observed. At β = 0° the yield is higher by a factor of 3 as compared to that at β = ±45°. The possible reasons for the anisotropy, including ion channeling, are discussed.

  7. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    PubMed

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  8. Ion channels in glioblastoma.

    PubMed

    Molenaar, Remco J

    2011-01-01

    Glioblastoma is the most common primary brain tumor with the most dismal prognosis. It is characterized by extensive invasion, migration, and angiogenesis. Median survival is only 15 months due to this behavior, rendering focal surgical resection ineffective and adequate radiotherapy impossible. At this moment, several ion channels have been implicated in glioblastoma proliferation, migration, and invasion. This paper summarizes studies on potassium, sodium, chloride, and calcium channels of glioblastoma. It provides an up-to-date overview of the literature that could ultimately lead to new therapeutic targets.

  9. Dynamic ion-ion and water-ion interactions in ion channels.

    PubMed Central

    Wu, J V

    1992-01-01

    The dynamic interactions among ions and water molecules in ion channels are treated based on an assumption that ions at binding sites can be knocked off by both transient entering ions and local water molecules. The theory, when applied to a single-site model K+ channel, provides solutions for super- and subsaturations, flux-ratio exponent (n') greater than 1, osmotic streaming current, activity-dependent reversal potentials, and anomalous mole-fraction behavior. The analysis predicts that: (a) the saturation may but, in general, does not follow the Michaelis-Menten relation; (b) streaming current results from imbalanced water-ion knock-off interactions; (c) n' greater than 1 even for single-site channels, but it is unlikely to exceed 1.4 unless the pore is occupied by one or more ion(s); (d) in the calculation involving two permeant ion species with similar radii, the heavier ions show higher affinity; the ion-ion knock-off dissociation from the site is more effective when two interacting ions are identical. Therefore, the "multi-ion behaviors" found in most ion channels are the consequences of dynamic ion-ion and water-ion interactions. The presence of these interactions does not require two or more binding sites in channels. PMID:1376158

  10. Ion Channels in Glioblastoma

    PubMed Central

    Molenaar, Remco J.

    2011-01-01

    Glioblastoma is the most common primary brain tumor with the most dismal prognosis. It is characterized by extensive invasion, migration, and angiogenesis. Median survival is only 15 months due to this behavior, rendering focal surgical resection ineffective and adequate radiotherapy impossible. At this moment, several ion channels have been implicated in glioblastoma proliferation, migration, and invasion. This paper summarizes studies on potassium, sodium, chloride, and calcium channels of glioblastoma. It provides an up-to-date overview of the literature that could ultimately lead to new therapeutic targets. PMID:22389824

  11. Big Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy

    PubMed Central

    Ge, Lisheng; Hoa, Neil T.; Wilson, Zechariah; Arismendi-Morillo, Gabriel; Kong, Xia-Tang; Tajhya, Rajeev B.; Beeton, Christine; Jadus, Martin R.

    2017-01-01

    The Big Potassium (BK) ion channel is commonly known by a variety of names (Maxi-K, KCNMA1, slo, Stretch-activated potassium channels, KCa1.1). Each name reflects a different physical property displayed by this single ion channel. This transmembrane channel is found on nearly every cell type of the body and has its own distinctive roles for that tissue type. The BKα channel contains the pore that releases potassium ions from intracellular stores. This ion channel is found on the cell membrane, endoplasmic reticulum, Golgi and mitochondria. Complex splicing pathways produce different isoforms. The BKα channels can be phosphorylated, palmitoylated and myristylated. BK is composed of a homo-tetramer that interacts with β and γ chains. These accessory proteins provide a further modulating effect on the functions of BKα channels. BK channels play important roles in cell division and migration. In this review, we will focus on the biology of BK channels, especially its role, and that it has in the immune response towards cancer. Recent proteomic studies have linked BK channels with various proteins. Some of these interactions offer further insight into the role that BK channels have with cancers, especially with brain tumors. This review shows that BK channels have a complex interplay with intracellular components of cancer cells and still have plenty of secrets to be discovered. PMID:25027630

  12. SuperPain—a resource on pain-relieving compounds targeting ion channels

    PubMed Central

    Gohlke, Björn O.; Preissner, Robert; Preissner, Saskia

    2014-01-01

    Pain is more than an unpleasant sensory experience associated with actual or potential tissue damage: it is the most common reason for physician consultation and often dramatically affects quality of life. The management of pain is often difficult and new targets are required for more effective and specific treatment. SuperPain (http://bioinformatics.charite.de/superpain/) is freely available database for pain-stimulating and pain-relieving compounds, which bind or potentially bind to ion channels that are involved in the transmission of pain signals to the central nervous system, such as TRPV1, TRPM8, TRPA1, TREK1, TRESK, hERG, ASIC, P2X and voltage-gated sodium channels. The database consists of ∼8700 ligands, which are characterized by experimentally measured binding affinities. Additionally, 100 000 putative ligands are included. Moreover, the database provides 3D structures of receptors and predicted ligand-binding poses. These binding poses and a structural classification scheme provide hints for the design of new analgesic compounds. A user-friendly graphical interface allows similarity searching, visualization of ligands docked into the receptor, etc. PMID:24271391

  13. SuperPain--a resource on pain-relieving compounds targeting ion channels.

    PubMed

    Gohlke, Björn O; Preissner, Robert; Preissner, Saskia

    2014-01-01

    Pain is more than an unpleasant sensory experience associated with actual or potential tissue damage: it is the most common reason for physician consultation and often dramatically affects quality of life. The management of pain is often difficult and new targets are required for more effective and specific treatment. SuperPain (http://bioinformatics.charite.de/superpain/) is freely available database for pain-stimulating and pain-relieving compounds, which bind or potentially bind to ion channels that are involved in the transmission of pain signals to the central nervous system, such as TRPV1, TRPM8, TRPA1, TREK1, TRESK, hERG, ASIC, P2X and voltage-gated sodium channels. The database consists of ∼8700 ligands, which are characterized by experimentally measured binding affinities. Additionally, 100 000 putative ligands are included. Moreover, the database provides 3D structures of receptors and predicted ligand-binding poses. These binding poses and a structural classification scheme provide hints for the design of new analgesic compounds. A user-friendly graphical interface allows similarity searching, visualization of ligands docked into the receptor, etc.

  14. Investigating ion channel conformational changes using voltage clamp fluorometry.

    PubMed

    Talwar, Sahil; Lynch, Joseph W

    2015-11-01

    Ion channels are membrane proteins whose functions are governed by conformational changes. The widespread distribution of ion channels, coupled with their involvement in most physiological and pathological processes and their importance as therapeutic targets, renders the elucidation of these conformational mechanisms highly compelling from a drug discovery perspective. Thanks to recent advances in structural biology techniques, we now have high-resolution static molecular structures for members of the major ion channel families. However, major questions remain to be resolved about the conformational states that ion channels adopt during activation, drug modulation and desensitization. Patch-clamp electrophysiology has long been used to define ion channel conformational states based on functional criteria. It achieves this by monitoring conformational changes at the channel gate and cannot detect conformational changes occurring in regions distant from the gate. Voltage clamp fluorometry involves labelling cysteines introduced into domains of interest with environmentally sensitive fluorophores and inferring structural rearrangements from voltage or ligand-induced fluorescence changes. Ion channel currents are monitored simultaneously to verify the conformational status. By defining real time conformational changes in domains distant from the gate, this technique provides unexpected new insights into ion channel structure and function. This review aims to summarise the methodology and highlight recent innovative applications of this powerful technique. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Mechanically Activated Ion Channels

    PubMed Central

    Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem

    2015-01-01

    Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  16. Mitochondrial Ion Channels in Cancer Transformation

    PubMed Central

    Madamba, Stephen M.; Damri, Kevin N.; Dejean, Laurent M.; Peixoto, Pablo M.

    2015-01-01

    Cancer transformation involves reprograming of mitochondrial function to avert cell death mechanisms, monopolize energy metabolism, accelerate mitotic proliferation, and promote metastasis. Mitochondrial ion channels have emerged as promising therapeutic targets because of their connection to metabolic and apoptotic functions. This mini review discusses how mitochondrial channels may be associated with cancer transformation and expands on the possible involvement of mitochondrial protein import complexes in pathophysiological process. PMID:26090338

  17. Ion channels of the mammalian urethra

    PubMed Central

    Kyle, Barry D

    2014-01-01

    The mammalian urethra is a muscular tube responsible for ensuring that urine remains in the urinary bladder until urination. In order to prevent involuntary urine leakage, the urethral musculature must be capable of constricting the urethral lumen to an extent that exceeds bladder intravesicular pressure during the urine-filling phase. The main challenge in anti-incontinence treatments involves selectively-controlling the excitability of the smooth muscles in the lower urinary tract. Almost all strategies to battle urinary incontinence involve targeting the bladder and as a result, this tissue has been the focus for the majority of research and development efforts. There is now increasing recognition of the value of targeting the urethral musculature in the treatment and management of urinary incontinence. Newly-identified and characterized ion channels and pathways in the smooth muscle of the urethra provides a range of potential therapeutic targets for the treatment of urinary incontinence. This review provides a summary of the current state of knowledge of the ion channels discovered in urethral smooth muscle cells that regulate their excitability. PMID:25483582

  18. Nerve membrane ion channels as the target site of environmental toxicants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narahashi, T.

    1987-04-01

    There are many environmentally important chemicals which exhibit potent effects on the nervous system. Since nerve excitation takes place in a fraction of a second, electrophysiological methods provide the authors with the most straightforward approach to the study of the mechanisms of action of environmental toxicants on the nervous system. Aquatic animals such as crayfish, lobster, squid, and marine snails represent extremely useful materials for such electrophysiological studies, because much of the authors knowledge of nerve excitation is derived from those animals. Nerve excitation takes place as a result of opening and closing of ion channels of the membrane. Thesemore » functions are independent of metabolic energy, and can be measured most effectively by voltage clamp techniques as applied to the giant axons of the crayfish and the squid. Patch clamp techniques developed during the past 10 years have added a new dimension to the electrophysiological investigation. These techniques allow them to measure the activity of individual ion channels, thereby making it possible to analyze the interaction of toxic molecules directly with single ion channels. Examples are given summarizing electrophysiological studies of environmental neurotoxicants. The abdominal nerve cords and neuromuscular preparations isolated from the crayfish are convenient materials for bioassay of certain environmental toxicants such as pyrethroids, chlorinated hydrocarbons, and other insecticides. Only a small fraction of the flux through the sodium channel, less than 1%, must be modified by pyrethroids for the animal to develop symptoms of poisoning. Such a toxicological application from channel to animal is important is understanding the potent toxic effect.« less

  19. Organic toxins as tools to understand ion channel mechanisms and structure.

    PubMed

    Morales-Lázaro, Sara Luz; Hernández-García, Enrique; Serrano-Flores, Barbara; Rosenbaum, Tamara

    2015-01-01

    Ion channels constitute a varied class of membrane proteins with pivotal roles in cellular physiology and that are fundamental for neuronal signaling, hormone secretion and muscle contractility. Hence, it is not unanticipated that toxins from diverse organisms have evolved to modulate the activity of ion channels. For instance, animals such as cone snails, scorpions, spiders and snakes use toxins to immobilize and capture their prey by affecting ion channel function. This is a beautiful example of an evolutionary process that has led to the development of an injection apparatus from predators and to the existence of toxins with high affinity and specificity for a given target. Toxins have been used in the field of ion channel biophysics for several decades to gain insight into the gating mechanisms and the structure of ion channels. Through the use of these peptides, much has been learned about the ion conduction pathways, voltage-sensing mechanisms, pore sizes, kinetics, inactivation processes, etc. This review examines an assortment of toxins that have been used to study different ion channels and describes some key findings about the structure-function relationships in these proteins through the details of the toxin-ion channel interactions.

  20. Microfabricated Ion Beam Drivers for Magnetized Target Fusion

    NASA Astrophysics Data System (ADS)

    Persaud, Arun; Seidl, Peter; Ji, Qing; Ardanuc, Serhan; Miller, Joseph; Lal, Amit; Schenkel, Thomas

    2015-11-01

    Efficient, low-cost drivers are important for Magnetized Target Fusion (MTF). Ion beams offer a high degree of control to deliver the required mega joules of driver energy for MTF and they can be matched to several types of magnetized fuel targets, including compact toroids and solid targets. We describe an ion beam driver approach based on the MEQALAC concept (Multiple Electrostatic Quadrupole Array Linear Accelerator) with many beamlets in an array of micro-fabricated channels. The channels consist of a lattice of electrostatic quadrupoles (ESQ) for focusing and of radio-frequency (RF) electrodes for ion acceleration. Simulations with particle-in-cell and beam envelope codes predict >10x higher current densities compared to state-of-the-art ion accelerators. This increase results from dividing the total ion beam current up into many beamlets to control space charge forces. Focusing elements can be biased taking advantage of high breakdown electric fields in sub-mm structures formed using MEMS techniques (Micro-Electro-Mechanical Systems). We will present results on ion beam transport and acceleration in MEMS based beamlets. Acknowledgments: This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  1. Using iPSC Models to Probe Regulation of Cardiac Ion Channel Function.

    PubMed

    Bruyneel, Arne A N; McKeithan, Wesley L; Feyen, Dries A M; Mercola, Mark

    2018-05-25

    Cardiovascular disease is the leading contributor to mortality and morbidity. Many deaths of heart failure patients can be attributed to sudden cardiac death due primarily to ventricular arrhythmia. Currently, most anti-arrhythmics modulate ion channel conductivity or β-adrenergic signaling, but these drugs have limited efficacy for some indications, and can potentially be proarrhythmic. Recent studies have shown that mutations in proteins other than cardiac ion channels may confer susceptibility to congenital as well as acquired arrhythmias. Additionally, ion channels themselves are subject to regulation at the levels of channel expression, trafficking and post-translational modification; thus, research into the regulation of ion channels may elucidate disease mechanisms and potential therapeutic targets for future drug development. This review summarizes the current knowledge of the molecular mechanisms of arrhythmia susceptibility and discusses technological advances such as induced pluripotent stem cell-derived cardiomyocytes, gene editing, functional genomics, and physiological screening platforms that provide a new paradigm for discovery of new therapeutic targets to treat congenital and acquired diseases of the heart rhythm.

  2. Population patch clamp electrophysiology: a breakthrough technology for ion channel screening.

    PubMed

    Dale, Tim J; Townsend, Claire; Hollands, Emma C; Trezise, Derek J

    2007-10-01

    Population patch clamp (PPC) is a novel high throughput planar array electrophysiology technique that allows ionic currents to be recorded from populations of cells under voltage clamp. For the drug discovery pharmacologist, PPC promises greater speed and precision than existing methods for screening compounds at voltage-gated ion channel targets. Moreover, certain constitutively active or slow-ligand gated channels that have hitherto proved challenging to screen with planar array electrophysiology (e.g. SK/IK channels) are now more accessible. In this article we review early findings using PPC and provide a perspective on its likely impact on ion channel drug discovery. To support this, we include some new data on ion channel assay duplexing and on modulator assays, approaches that have thus far not been described.

  3. Nanobodies that block gating of the P2X7 ion channel ameliorate inflammation.

    PubMed

    Danquah, Welbeck; Meyer-Schwesinger, Catherine; Rissiek, Björn; Pinto, Carolina; Serracant-Prat, Arnau; Amadi, Miriam; Iacenda, Domenica; Knop, Jan-Hendrik; Hammel, Anna; Bergmann, Philine; Schwarz, Nicole; Assunção, Joana; Rotthier, Wendy; Haag, Friedrich; Tolosa, Eva; Bannas, Peter; Boué-Grabot, Eric; Magnus, Tim; Laeremans, Toon; Stortelers, Catelijne; Koch-Nolte, Friedrich

    2016-11-23

    Ion channels are desirable therapeutic targets, yet ion channel-directed drugs with high selectivity and few side effects are still needed. Unlike small-molecule inhibitors, antibodies are highly selective for target antigens but mostly fail to antagonize ion channel functions. Nanobodies-small, single-domain antibody fragments-may overcome these problems. P2X7 is a ligand-gated ion channel that, upon sensing adenosine 5'-triphosphate released by damaged cells, initiates a proinflammatory signaling cascade, including release of cytokines, such as interleukin-1β (IL-1β). To further explore its function, we generated and characterized nanobodies against mouse P2X7 that effectively blocked (13A7) or potentiated (14D5) gating of the channel. Systemic injection of nanobody 13A7 in mice blocked P2X7 on T cells and macrophages in vivo and ameliorated experimental glomerulonephritis and allergic contact dermatitis. We also generated nanobody Dano1, which specifically inhibited human P2X7. In endotoxin-treated human blood, Dano1 was 1000 times more potent in preventing IL-1β release than small-molecule P2X7 antagonists currently in clinical development. Our results show that nanobody technology can generate potent, specific therapeutics against ion channels, confirm P2X7 as a therapeutic target for inflammatory disorders, and characterize a potent new drug candidate that targets P2X7. Copyright © 2016, American Association for the Advancement of Science.

  4. Mitochondrial Ion Channels/Transporters as Sensors and Regulators of Cellular Redox Signaling

    PubMed Central

    Ryu, Shin-Young; Jhun, Bong Sook; Hurst, Stephen

    2014-01-01

    Abstract Significance: Mitochondrial ion channels/transporters and the electron transport chain (ETC) serve as key sensors and regulators for cellular redox signaling, the production of reactive oxygen species (ROS) and nitrogen species (RNS) in mitochondria, and balancing cell survival and death. Although the functional and pharmacological characteristics of mitochondrial ion transport mechanisms have been extensively studied for several decades, the majority of the molecular identities that are responsible for these channels/transporters have remained a mystery until very recently. Recent Advances: Recent breakthrough studies uncovered the molecular identities of the diverse array of major mitochondrial ion channels/transporters, including the mitochondrial Ca2+ uniporter pore, mitochondrial permeability transition pore, and mitochondrial ATP-sensitive K+ channel. This new information enables us to form detailed molecular and functional characterizations of mitochondrial ion channels/transporters and their roles in mitochondrial redox signaling. Critical Issues: Redox-mediated post-translational modifications of mitochondrial ion channels/transporters and ETC serve as key mechanisms for the spatiotemporal control of mitochondrial ROS/RNS generation. Future Directions: Identification of detailed molecular mechanisms for redox-mediated regulation of mitochondrial ion channels will enable us to find novel therapeutic targets for many diseases that are associated with cellular redox signaling and mitochondrial ion channels/transporters. Antioxid. Redox Signal. 21, 987–1006. PMID:24180309

  5. Transient Receptor Potential Mucolipin 1 (TRPML1) and Two-pore Channels Are Functionally Independent Organellar Ion Channels*

    PubMed Central

    Yamaguchi, Soichiro; Jha, Archana; Li, Qin; Soyombo, Abigail A.; Dickinson, George D.; Churamani, Dev; Brailoiu, Eugen; Patel, Sandip; Muallem, Shmuel

    2011-01-01

    NAADP is a potent second messenger that mobilizes Ca2+ from acidic organelles such as endosomes and lysosomes. The molecular basis for Ca2+ release by NAADP, however, is uncertain. TRP mucolipins (TRPMLs) and two-pore channels (TPCs) are Ca2+-permeable ion channels present within the endolysosomal system. Both have been proposed as targets for NAADP. In the present study, we probed possible physical and functional association of these ion channels. Exogenously expressed TRPML1 showed near complete colocalization with TPC2 and partial colocalization with TPC1. TRPML3 overlap with TPC2 was more modest. TRPML1 and to some extent TRPML3 co-immunoprecipitated with TPC2 but less so with TPC1. Current recording, however, showed that TPC1 and TPC2 did not affect the activity of wild-type TRPML1 or constitutively active TRPML1(V432P). N-terminally truncated TPC2 (TPC2delN), which is targeted to the plasma membrane, also failed to affect TRPML1 and TRPML1(V432P) channel function or TRPML1(V432P)-mediated Ca2+ influx. Whereas overexpression of TPCs enhanced NAADP-mediated Ca2+ signals, overexpression of TRPML1 did not, and the dominant negative TRPML1(D471K) was without affect on endogenous NAADP-mediated Ca2+ signals. Furthermore, the single channel properties of NAADP-activated TPC2delN were not affected by TRPML1. Finally, NAADP-evoked Ca2+ oscillations in pancreatic acinar cells were identical in wild-type and TRPML1−/− cells. We conclude that although TRPML1 and TPCs are present in the same complex, they function as two independent organellar ion channels and that TPCs, not TRPMLs, are the targets for NAADP. PMID:21540176

  6. The Transcription Factors Islet and Lim3 Combinatorially Regulate Ion Channel Gene Expression

    PubMed Central

    Wolfram, Verena; Southall, Tony D.; Günay, Cengiz; Prinz, Astrid A.; Brand, Andrea H.

    2014-01-01

    Expression of appropriate ion channels is essential to allow developing neurons to form functional networks. Our previous studies have identified LIM-homeodomain (HD) transcription factors (TFs), expressed by developing neurons, that are specifically able to regulate ion channel gene expression. In this study, we use the technique of DNA adenine methyltransferase identification (DamID) to identify putative gene targets of four such TFs that are differentially expressed in Drosophila motoneurons. Analysis of targets for Islet (Isl), Lim3, Hb9, and Even-skipped (Eve) identifies both ion channel genes and genes predicted to regulate aspects of dendritic and axonal morphology. Significantly, some ion channel genes are bound by more than one TF, consistent with the possibility of combinatorial regulation. One such gene is Shaker (Sh), which encodes a voltage-dependent fast K+ channel (Kv1.1). DamID reveals that Sh is bound by both Isl and Lim3. We used body wall muscle as a test tissue because in conditions of low Ca2+, the fast K+ current is carried solely by Sh channels (unlike neurons in which a second fast K+ current, Shal, also contributes). Ectopic expression of isl, but not Lim3, is sufficient to reduce both Sh transcript and Sh current level. By contrast, coexpression of both TFs is additive, resulting in a significantly greater reduction in both Sh transcript and current compared with isl expression alone. These observations provide evidence for combinatorial activity of Isl and Lim3 in regulating ion channel gene expression. PMID:24523544

  7. Ion channels versus ion pumps: the principal difference, in principle.

    PubMed

    Gadsby, David C

    2009-05-01

    The incessant traffic of ions across cell membranes is controlled by two kinds of border guards: ion channels and ion pumps. Open channels let selected ions diffuse rapidly down electrical and concentration gradients, whereas ion pumps labour tirelessly to maintain the gradients by consuming energy to slowly move ions thermodynamically uphill. Because of the diametrically opposed tasks and the divergent speeds of channels and pumps, they have traditionally been viewed as completely different entities, as alike as chalk and cheese. But new structural and mechanistic information about both of these classes of molecular machines challenges this comfortable separation and forces its re-evaluation.

  8. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain.

    PubMed

    Bohlen, Christopher J; Chesler, Alexander T; Sharif-Naeini, Reza; Medzihradszky, Katalin F; Zhou, Sharleen; King, David; Sánchez, Elda E; Burlingame, Alma L; Basbaum, Allan I; Julius, David

    2011-11-16

    Natural products that elicit discomfort or pain represent invaluable tools for probing molecular mechanisms underlying pain sensation. Plant-derived irritants have predominated in this regard, but animal venoms have also evolved to avert predators by targeting neurons and receptors whose activation produces noxious sensations. As such, venoms provide a rich and varied source of small molecule and protein pharmacophores that can be exploited to characterize and manipulate key components of the pain-signalling pathway. With this in mind, here we perform an unbiased in vitro screen to identify snake venoms capable of activating somatosensory neurons. Venom from the Texas coral snake (Micrurus tener tener), whose bite produces intense and unremitting pain, excites a large cohort of sensory neurons. The purified active species (MitTx) consists of a heteromeric complex between Kunitz- and phospholipase-A2-like proteins that together function as a potent, persistent and selective agonist for acid-sensing ion channels (ASICs), showing equal or greater efficacy compared with acidic pH. MitTx is highly selective for the ASIC1 subtype at neutral pH; under more acidic conditions (pH < 6.5), MitTx massively potentiates (>100-fold) proton-evoked activation of ASIC2a channels. These observations raise the possibility that ASIC channels function as coincidence detectors for extracellular protons and other, as yet unidentified, endogenous factors. Purified MitTx elicits robust pain-related behaviour in mice by activation of ASIC1 channels on capsaicin-sensitive nerve fibres. These findings reveal a mechanism whereby snake venoms produce pain, and highlight an unexpected contribution of ASIC1 channels to nociception. © 2011 Macmillan Publishers Limited. All rights reserved

  9. Ion channel-transporter interactions

    PubMed Central

    Neverisky, Daniel L.; Abbott, Geoffrey W.

    2016-01-01

    All living cells require membrane proteins that act as conduits for the regulated transport of ions, solutes and other small molecules across the cell membrane. Ion channels provide a pore that permits often rapid, highly selective, and tightly regulated movement of ions down their electrochemical gradient. In contrast, active transporters can move moieties up their electrochemical gradient. The secondary active transporters (such as SLC superfamily solute transporters) achieve this by coupling uphill movement of the substrate to downhill movement of another ion, such as sodium. The primary active transporters (including H+/K+-ATPases and Na+/K+-ATPases) utilize ATP hydrolysis as an energy source to power uphill transport. It is well known that proteins in each of these classes work in concert with members of the other classes to ensure, for example, ion homeostasis, ion secretion, and restoration of ion balance following action potentials. More recently, evidence is emerging of direct physical interaction between true ion channels, and some primary or secondary active transporters. Here, we review the first known members of this new class of macromolecular complexes that we term “chansporters”, explore their biological roles, and discuss the pathophysiological consequences of their disruption. We compare functional and/or physical interactions between the ubiquitous KCNQ1 potassium channel and various active transporters, and examine other newly discovered chansporter complexes that suggest we may be seeing the tip of the iceberg in a newly emerging signaling modality. PMID:27098917

  10. HTS techniques for patch clamp-based ion channel screening - advances and economy.

    PubMed

    Farre, Cecilia; Fertig, Niels

    2012-06-01

    Ten years ago, the first publication appeared showing patch clamp recordings performed on a planar glass chip instead of using a conventional patch clamp pipette. "Going planar" proved to revolutionize ion channel drug screening as we know it, by allowing high quality measurements of ion channels and their effectors at a higher throughput and at the same time de-skilling the highly laborious technique. Over the years, platforms evolved in response to user requirements regarding experimental features, data handling plus storage, and suitable target diversity. This article gives a snapshot image of patch clamp-based ion channel screening with focus on platforms developed to meet requirements of high-throughput screening environments. The commercially available platforms are described, along with their benefits and drawbacks in ion channel drug screening. Automated patch clamp (APC) platforms allow faster investigation of a larger number of ion channel active compounds or cell clones than previously possible. Since patch clamp is the only method allowing direct, real-time measurements of ion channel activity, APC holds the promise of picking up high quality leads, where they otherwise would have been overseen using indirect methods. In addition, drug candidate safety profiling can be performed earlier in the drug discovery process, avoiding late-phase compound withdrawal due to safety liability issues, which is highly costly and inefficient.

  11. An electrostatic potassium channel opener targeting the final voltage sensor transition

    PubMed Central

    Börjesson, Sara I.

    2011-01-01

    Free polyunsaturated fatty acids (PUFAs) modulate the voltage dependence of voltage-gated ion channels. As an important consequence thereof, PUFAs can suppress epileptic seizures and cardiac arrhythmia. However, molecular details for the interaction between PUFA and ion channels are not well understood. In this study, we have localized the site of action for PUFAs on the voltage-gated Shaker K channel by introducing positive charges on the channel surface, which potentiated the PUFA effect. Furthermore, we found that PUFA mainly affects the final voltage sensor movement, which is closely linked to channel opening, and that specific charges at the extracellular end of the voltage sensor are critical for the PUFA effect. Because different voltage-gated K channels have different charge profiles, this implies channel-specific PUFA effects. The identified site and the pharmacological mechanism will potentially be very useful in future drug design of small-molecule compounds specifically targeting neuronal and cardiac excitability. PMID:21624947

  12. Characterization of Membrane Patch-Ion Channel Probes for Scanning Ion Conductance Microscopy.

    PubMed

    Shi, Wenqing; Zeng, Yuhan; Zhu, Cheng; Xiao, Yucheng; Cummins, Theodore R; Hou, Jianghui; Baker, Lane A

    2018-05-01

    Integration of dual-barrel membrane patch-ion channel probes (MP-ICPs) to scanning ion conductance microscopy (SICM) holds promise of providing a revolutionized approach of spatially resolved chemical sensing. A series of experiments are performed to further the understanding of the system and to answer some fundamental questions, in preparation for future developments of this approach. First, MP-ICPs are constructed that contain different types of ion channels including transient receptor potential vanilloid 1 and large conductance Ca2 + -activated K + channels to establish the generalizability of the methods. Next, the capability of the MP-ICP platforms in single ion channel activity measurements is proved. In addition, the interplay between the SICM barrel and the ICP barrel is studied. For ion channels gated by uncharged ligands, channel activity at the ICP barrel is unaffected by the SICM barrel potential; whereas for ion channels that are gated by charged ligands, enhanced channel activity can be obtained by biasing the SICM barrel at potentials with opposite polarity to the charge of the ligand molecules. Finally, a proof-of-principle experiment is performed and site-specific molecular/ionic flux sensing is demonstrated at single-ion-channel level, which show that the MP-ICP platform can be used to quantify local molecular/ionic concentrations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A chimera encoding the fusion of an acetylcholine-binding protein to an ion channel is stabilized in a state close to the desensitized form of ligand-gated ion channels.

    PubMed

    Grutter, Thomas; Prado de Carvalho, Lia; Virginie, Dufresne; Taly, Antoine; Fischer, Markus; Changeux, Jean-Pierre

    2005-03-01

    To understand the mechanism of allosteric coupling between the ligand-binding domain and the ion channel of the Cys-loop ligand-gated ion channels (LGICs), we fused the soluble acetylcholine-binding protein (AChBP), which lacks an ion channel, to either the cationic serotonin type-3A ion channel (5HT(3A)) or the anionic glycine ion channel. Both linear chimeras expressed in HEK-293 cells display high affinity for the nicotinic agonist epibatidine (K(D) = 0.2-0.5 nM), but are not targeted to the cell surface. Only after substituting a ring of three loops located at the putative membrane side of the AChBP three-dimensional structure by the homologous residues of 5HT(3A), the resulting chimera AChBP(ring)/5HT(3A) (i) still displayed on intact cells an apparent high affinity for epibatidine, yet with a fourfold decrease (K(D) = 2.1 nM), (ii) displayed a high proportion of low affinity sites (11 +/- 7 microM) for the resting state stabilizing competitive antagonist alpha-bungarotoxin and (iii) was successfully targeted to the cell surface, as seen by immunofluorescence labelling. The AChBP(ring)/5HT(3A) chimera forms a pentameric structure, as revealed by sucrose gradient sedimentation. However, no whole-cell patch-clamp currents were detectable. Interestingly, binding assays with membrane fragments prepared from cells expressing AChBP(ring)/5HT(3A) showed a decrease in the apparent affinity for the agonists nicotine and epibatidine (5-fold), concomitant with an increase in the proportion of high-affinity sites (48 +/- 1 nM) for alpha-bungarotoxin. These results indicate that fusion of AChBP to an ion channel forms a pentameric receptor exposed to the cell surface and able to convert between discrete allosteric states, but stabilized in a high affinity state for epibatidine that likely corresponds to a desensitized form of LGICs. These artificial chimeras might offer a useful system to investigate signal transduction in LGICs.

  14. Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsch, Sebastian; Ivanov, Ivaylo; Wang, Hailong

    2010-01-01

    The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high-resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential-of-mean-force profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel ismore » open for a sodium ion to transport, but presents a 11 kcal/mol free energy barrier for a chloride ion. Our collective findings identify three distinct contributions to the observed preference for the permeant ions. First, there is a substantial contribution due to a ring of negatively charged glutamate residues (E-2 ) at the narrow intracellular end of the channel. The negative electrostatics of this region and the ability of the glutamate side chains to directly bind cations would strongly favor the passage of sodium ions while hindering translocation of chloride ions. Second, our results imply a significant hydrophobic contribution to selectivity linked to differences in the desolvation penalty for the sodium versus chloride ions in the central hydrophobic region of the pore. This hydrophobic contribution is evidenced by the large free energy barriers experienced by Cl in the middle of the pore for both GLIC and the E-2 A mutant. Finally, there is a distinct contribution arising from the overall negative electrostatics of the channel.« less

  15. Ion channel remodeling in vascular smooth muscle during hypertension: Implications for novel therapeutic approaches

    PubMed Central

    Joseph, Biny K.; Thakali, Keshari M.; Moore, Christopher L.; Rhee, Sung W.

    2013-01-01

    Ion channels are multimeric, transmembrane proteins that selectively mediate ion flux across the plasma membrane in a variety of cells including vascular smooth muscle cells (VSMCs). The dynamic interplay of Ca2+ and K+ channels on the plasma membrane of VSMCs plays a pivotal role in modulating the vascular tone of small arteries and arterioles. The abnormally-elevated arterial tone observed in hypertension thus points to an aberrant expression and function of Ca2+ and K+ channels in the VSMCs. In this short review, we focus on the three well-studied ion channels in VSMCs, namely the L-type Ca2+ (CaV1.2) channels, the voltage-gated K+ (KV) channels, and the large-conductance Ca2+-activated K+ (BK) channels. First, we provide a brief overview on the physiological role of vascular CaV1.2, KV and BK channels in regulating arterial tone. Second, we discuss the current understanding of the expression changes and regulation of CaV1.2, KV and BK channels in the vasculature during hypertension. Third, based on available proof-of-concept studies, we describe the potential therapeutic approaches targeting these vascular ion channels in order to restore blood pressure to normotensive levels. PMID:23376354

  16. Fragile X mental retardation protein controls ion channel expression and activity.

    PubMed

    Ferron, Laurent

    2016-10-15

    Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (K v 3.1 and K v 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Ca v 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  17. Roderick MacKinnon and Ion Channels - Potassium Channels and Sodium

    Science.gov Websites

    very first potassium channel structure, which revealed the way that positively charged potassium ions explain how a fundamental feedback loop worked. Now, with the structure of the voltage-dependent ion channel, based on research carried out at The Rockefeller University, the National Synchrotron Light

  18. United in Diversity: Mechanosensitive Ion Channels in Plants

    PubMed Central

    Hamilton, Eric S.; Schlegel, Angela M.; Haswell, Elizabeth S.

    2015-01-01

    Mechanosensitive (MS) ion channels are a common mechanism for perceiving and responding to mechanical force. This class of mechanoreceptors is capable of transducing membrane tension directly into ion flux. In plant systems, MS ion channels have been proposed to play a wide array of roles, from the perception of touch and gravity to the osmotic homeostasis of intracellular organelles. Three families of plant MS ion channels have been identified: the MscS-like (MSL), Mid1-complementing activity (MCA), and two-pore potassium (TPK) families. Channels from these families vary widely in structure and function, localize to multiple cellular compartments, and conduct chloride, calcium, and/or potassium ions. However, they are still likely to represent only a fraction of the MS ion channel diversity in plant systems. PMID:25494462

  19. Ion Trapping with Fast-Response Ion-Selective Microelectrodes Enhances Detection of Extracellular Ion Channel Gradients

    PubMed Central

    Messerli, Mark A.; Collis, Leon P.; Smith, Peter J.S.

    2009-01-01

    Previously, functional mapping of channels has been achieved by measuring the passage of net charge and of specific ions with electrophysiological and intracellular fluorescence imaging techniques. However, functional mapping of ion channels using extracellular ion-selective microelectrodes has distinct advantages over the former methods. We have developed this method through measurement of extracellular K+ gradients caused by efflux through Ca2+-activated K+ channels expressed in Chinese hamster ovary cells. We report that electrodes constructed with short columns of a mechanically stable K+-selective liquid membrane respond quickly and measure changes in local [K+] consistent with a diffusion model. When used in close proximity to the plasma membrane (<4 μm), the ISMs pose a barrier to simple diffusion, creating an ion trap. The ion trap amplifies the local change in [K+] without dramatically changing the rise or fall time of the [K+] profile. Measurement of extracellular K+ gradients from activated rSlo channels shows that rapid events, 10–55 ms, can be characterized. This method provides a noninvasive means for functional mapping of channel location and density as well as for characterizing the properties of ion channels in the plasma membrane. PMID:19217875

  20. Surface dynamics of voltage-gated ion channels.

    PubMed

    Heine, Martin; Ciuraszkiewicz, Anna; Voigt, Andreas; Heck, Jennifer; Bikbaev, Arthur

    2016-07-03

    Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks.

  1. A complicated complex: Ion channels, voltage sensing, cell membranes and peptide inhibitors.

    PubMed

    Zhang, Alan H; Sharma, Gagan; Undheim, Eivind A B; Jia, Xinying; Mobli, Mehdi

    2018-04-21

    Voltage-gated ion channels (VGICs) are specialised ion channels that have a voltage dependent mode of action, where ion conduction, or gating, is controlled by a voltage-sensing mechanism. VGICs are critical for electrical signalling and are therefore important pharmacological targets. Among these, voltage-gated sodium channels (Na V s) have attracted particular attention as potential analgesic targets. Na V s, however, comprise several structurally similar subtypes with unique localisations and distinct functions, ranging from amplification of action potentials in nociception (e.g. Na V 1.7) to controlling electrical signalling in cardiac function (Na V 1.5). Understanding the structural basis of Na V function is therefore of great significance, both to our knowledge of electrical signalling and in development of subtype and state selective drugs. An important tool in this pursuit has been the use of peptides from animal venoms as selective Na V modulators. In this review, we look at peptides, particularly from spider venoms, that inhibit Na V s by binding to the voltage sensing domain (VSD) of this channel, known as gating modifier toxins (GMT). In the first part of the review, we look at the structural determinants of voltage sensing in VGICs, the gating cycle and the conformational changes that accompany VSD movement. Next, the modulation of the analgesic target Na V 1.7 by GMTs is reviewed to develop bioinformatic tools that, based on sequence information alone, can identify toxins that are likely to inhibit this channel. The same approach is also used to define VSD sequences, other than that from Na V 1.7, which are likely to be sensitive to this class of toxins. The final section of the review focuses on the important role of the cellular membrane in channel modulation and also how the lipid composition affects measurements of peptide-channel interactions both in binding kinetics measurements in solution and in cell-based functional assays. Copyright © 2018

  2. Conductivity noise in transmembrane ion channels due to ion concentration fluctuations via diffusion.

    PubMed

    Mak, D O; Webb, W W

    1997-03-01

    A Green's function approach is developed from first principles to evaluate the power spectral density of conductance fluctuations caused by ion concentration fluctuations via diffusion in an electrolyte system. This is applied to simple geometric models of transmembrane ion channels to obtain an estimate of the magnitude of ion concentration fluctuation noise in the channel current. Pure polypeptide alamethicin forms stable ion channels with multiple conductance states in artificial phospholipid bilayers isolated onto tips of micropipettes with gigaohm seals. In the single-channel current recorded by voltage-clamp techniques, excess noise was found after the background instrumental noise and the intrinsic Johnson and shot noises were removed. The noise que to ion concentration fluctuations via diffusion was isolated by the dependence of the excess current noise on buffer ion concentration. The magnitude of the concentration fluctuation noise derived from experimental data lies within limits estimated using our simple geometric channel models. Variation of the noise magnitude for alamethicin channels in various conductance states agrees with theoretical prediction.

  3. Ion channel pharmacology under flow: automation via well-plate microfluidics.

    PubMed

    Spencer, C Ian; Li, Nianzhen; Chen, Qin; Johnson, Juliette; Nevill, Tanner; Kammonen, Juha; Ionescu-Zanetti, Cristian

    2012-08-01

    Automated patch clamping addresses the need for high-throughput screening of chemical entities that alter ion channel function. As a result, there is considerable utility in the pharmaceutical screening arena for novel platforms that can produce relevant data both rapidly and consistently. Here we present results that were obtained with an innovative microfluidic automated patch clamp system utilizing a well-plate that eliminates the necessity of internal robotic liquid handling. Continuous recording from cell ensembles, rapid solution switching, and a bench-top footprint enable a number of assay formats previously inaccessible to automated systems. An electro-pneumatic interface was employed to drive the laminar flow of solutions in a microfluidic network that delivered cells in suspension to ensemble recording sites. Whole-cell voltage clamp was applied to linear arrays of 20 cells in parallel utilizing a 64-channel voltage clamp amplifier. A number of unique assays requiring sequential compound applications separated by a second or less, such as rapid determination of the agonist EC(50) for a ligand-gated ion channel or the kinetics of desensitization recovery, are enabled by the system. In addition, the system was validated via electrophysiological characterizations of both voltage-gated and ligand-gated ion channel targets: hK(V)2.1 and human Ether-à-go-go-related gene potassium channels, hNa(V)1.7 and 1.8 sodium channels, and (α1) hGABA(A) and (α1) human nicotinic acetylcholine receptor receptors. Our results show that the voltage dependence, kinetics, and interactions of these channels with pharmacological agents were matched to reference data. The results from these IonFlux™ experiments demonstrate that the system provides high-throughput automated electrophysiology with enhanced reliability and consistency, in a user-friendly format.

  4. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.

    PubMed

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F

    2016-09-01

    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Surface dynamics of voltage-gated ion channels

    PubMed Central

    Heine, Martin; Ciuraszkiewicz, Anna; Voigt, Andreas; Heck, Jennifer; Bikbaev, Arthur

    2016-01-01

    ABSTRACT Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks. PMID:26891382

  6. Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses

    PubMed Central

    Ward, John M.; Mäser, Pascal; Schroeder, Julian I.

    2016-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100

  7. Plant ion channels: gene families, physiology, and functional genomics analyses.

    PubMed

    Ward, John M; Mäser, Pascal; Schroeder, Julian I

    2009-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

  8. Regulation of lysosomal ion homeostasis by channels and transporters.

    PubMed

    Xiong, Jian; Zhu, Michael X

    2016-08-01

    Lysosomes are the major organelles that carry out degradation functions. They integrate and digest materials compartmentalized by endocytosis, phagocytosis or autophagy. In addition to more than 60 hydrolases residing in the lysosomes, there are also ion channels and transporters that mediate the flux or transport of H(+), Ca(2+), Na(+), K(+), and Cl(-) across the lysosomal membranes. Defects in ionic exchange can lead to abnormal lysosome morphology, defective vesicle trafficking, impaired autophagy, and diseases such as neurodegeneration and lysosomal storage disorders. The latter are characterized by incomplete lysosomal digestion and accumulation of toxic materials inside enlarged intracellular vacuoles. In addition to degradation, recent studies have revealed the roles of lysosomes in metabolic pathways through kinases such as mechanistic target of rapamycin (mTOR) and transcriptional regulation through calcium signaling molecules such as transcription factor EB (TFEB) and calcineurin. Owing to the development of new approaches including genetically encoded fluorescence probes and whole endolysosomal patch clamp recording techniques, studies on lysosomal ion channels have made remarkable progress in recent years. In this review, we will focus on the current knowledge of lysosome-resident ion channels and transporters, discuss their roles in maintaining lysosomal function, and evaluate how their dysfunction can result in disease.

  9. Chloride channels in cancer: Focus on chloride intracellular channel 1 and 4 (CLIC1 AND CLIC4) proteins in tumor development and as novel therapeutic targets.

    PubMed

    Peretti, Marta; Angelini, Marina; Savalli, Nicoletta; Florio, Tullio; Yuspa, Stuart H; Mazzanti, Michele

    2015-10-01

    In recent decades, growing scientific evidence supports the role of ion channels in the development of different cancers. Both potassium selective pores and chloride permeabilities are considered the most active channels during tumorigenesis. High rate of proliferation, active migration, and invasiveness into non-neoplastic tissues are specific properties of neoplastic transformation. All these actions require partial or total involvement of chloride channel activity. In this context, this class of membrane proteins could represent valuable therapeutic targets for the treatment of resistant tumors. However, this encouraging premise has not so far produced any valid new channel-targeted antitumoral molecule for cancer treatment. Problematic for drug design targeting ion channels is their vital role in normal cells for essential physiological functions. By targeting these membrane proteins involved in pathological conditions, it is inevitable to cause relevant side effects in healthy organs. In light of this, a new protein family, the chloride intracellular channels (CLICs), could be a promising class of therapeutic targets for its intrinsic individualities: CLIC1 and CLIC4, in particular, not only are overexpressed in specific tumor types or their corresponding stroma but also change localization and function from hydrophilic cytosolic to integral transmembrane proteins as active ionic channels or signal transducers during cell cycle progression in certain cases. These changes in intracellular localization, tissue compartments, and channel function, uniquely associated with malignant transformation, may offer a unique target for cancer therapy, likely able to spare normal cells. This article is part of a special issue itled "Membrane Channels and Transporters in Cancers." Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  11. Innovative polymer nanocomposite electrolytes: nanoscale manipulation of ion channels by functionalized graphenes.

    PubMed

    Choi, Bong Gill; Hong, Jinkee; Park, Young Chul; Jung, Doo Hwan; Hong, Won Hi; Hammond, Paula T; Park, Hoseok

    2011-06-28

    The chemistry and structure of ion channels within the polymer electrolytes are of prime importance for studying the transport properties of electrolytes as well as for developing high-performance electrochemical devices. Despite intensive efforts on the synthesis of polymer electrolytes, few studies have demonstrated enhanced target ion conduction while suppressing unfavorable ion or mass transport because the undesirable transport occurs through an identical pathway. Herein, we report an innovative, chemical strategy for the synthesis of polymer electrolytes whose ion-conducting channels are physically and chemically modulated by the ionic (not electronic) conductive, functionalized graphenes and for a fundamental understanding of ion and mass transport occurring in nanoscale ionic clusters. The functionalized graphenes controlled the state of water by means of nanoscale manipulation of the physical geometry and chemical functionality of ionic channels. Furthermore, the confinement of bound water within the reorganized nanochannels of composite membranes was confirmed by the enhanced proton conductivity at high temperature and the low activation energy for ionic conduction through a Grotthus-type mechanism. The selectively facilitated transport behavior of composite membranes such as high proton conductivity and low methanol crossover was attributed to the confined bound water, resulting in high-performance fuel cells.

  12. Secondary electrons induced by fast ions under channeling conditions. II. Screening of fast heavy ions in solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudo, H.; Shima, K.; Seki, S.

    1991-06-01

    Ion-beam shadowing effects have been observed for secondary electrons induced by various ions in the energy range of 1.8--3.8 MeV/amu, under various channeling conditions in Si and GaAs crystals. From a comparison of the energy spectra of electrons induced by ions of equal velocity, we have found reduced shadowing effects for heavy ions (Si, S, and Cl) as compared with light (H, He, C, and O) ions. It is concluded that the reduction results from the screening of the heavy ion's nuclear charge by bound electrons. By analyzing the reduced shadowing effect, the effective nuclear charges for the heavy ionsmore » within the target crystals have been determined.« less

  13. Targeting channels and transporters in protozoan parasite infections

    NASA Astrophysics Data System (ADS)

    Meier, Anna; Erler, Holger; Beitz, Eric

    2018-03-01

    Infectious diseases caused by pathogenic protozoa are among the most significant causes of death in humans. Therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains. Many of the current anti-parasite drugs target soluble enzymes, generate unspecific oxidative stress, or act by an unresolved mechanism within the parasite. In recent years, collections of drug-like compounds derived from large-scale phenotypic screenings, such as the malaria or pathogen box, have been made available to researchers free of charge boosting the identification of novel promising targets. Remarkably, several of the compound hits have been found to inhibit membrane proteins at the periphery of the parasites, i.e. channels and transporters for ions and metabolites. In this review, we will focus on the progress made on targeting channels and transporters at different levels and the potential for use against infections with apicomplexan parasites mainly Plasmodium spp. (malaria) and Toxoplasma gondii (toxoplasmosis), with kinetoplastids Trypanosoma brucei (sleeping sickness), Trypanosoma cruzi (Chagas disease) and Leishmania ssp. (leishmaniasis), and the amoeba Entamoeba histolytica (amoebiasis).

  14. Small Ion Channel Linking Molecular Simulations and Electrophysiology

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrzej

    2017-01-01

    Ion channels are pore-forming protein assemblies that mediate the transport of small ions across cell membranes. Otherwise, membrane bilayers would be almost impermeable to ions incapable to traverse the low dielectric constant, hydrophobic membrane core. Ion channels are ubiquitous to all life forms. In humans and other higher organisms they play the central role in conducting nerve impulses, cardiac functions, muscle contraction and apoptosis. On the other extreme of biological complexity, viral ion channels (viroporins) influence many stages of the virus infection cycle either through regulating virus replication, such as entry, assembly and release or modulating the electrochemical balance in the subcellular compartments of host cells. Ion channels were crucial components of protocells. Their emergence facilitated adaptation of nascent life to different environmental conditions. The earliest ion channels must have been much simpler than most of their modern ancestors. Viral channels are among only a few naturally occurring models to study the structure, function and evolution of primordial channels. Experimental studies of these properties are difficult and often unreliable. In principle, computational methods, and molecular dynamics (MD) simulations in particular, can aid in providing information about both the structure and the function of ion channels. However, MD suffers from its own problems, such as inability to access sufficiently long time scales or limited accuracy of force fields. It is, therefore, essential to determine the reliability of MD simulations. We propose to do so on the basis of two criteria. One is channel stability on time scales that extend for several microseconds or longer. The other is the ability to reproduce the measured ionic conductance as a function of applied voltage. If both the stability and the calculated ionic conductance are satisfactory it will greatly increase our confidence that the structure and the function of a

  15. Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsch, Sebastian M; Ivanov, Ivaylo N; Wang, Hailong

    2011-01-01

    The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential of mean force (PMF) profiles for sodium and chloride ions inside the transmembrane region. Our calculationsmore » reveal that the GLIC channel is open for a sodium ion to transport, but presents a ~10 kcal/mol free energy barrier for a chloride ion, which arises primarily from the unfavorable interactions with a ring of negatively charged glutamate residues (E-2 ) at the intracellular end and a ring of hydrophobic residues (I9 ) in the middle of the transmembrane domain. Our collective findings further suggest that the charge selection mechanism can, to a large extent, be attributed to the narrow intracellular end and a ring of glutamate residues in this position their strong negative electrostatics and ability to bind cations. By contrast, E19 at the extracellular entrance only plays a minor role in ion selectivity of GLIC. In addition to electrostatics, both ion hydration and protein dynamics are found to be crucial for ion conduction as well, which explains why a chloride ion experiences a much greater barrier than a sodium ion in the hydrophobic region of the pore.« less

  16. Ion channel gene expression predicts survival in glioma patients

    PubMed Central

    Wang, Rong; Gurguis, Christopher I.; Gu, Wanjun; Ko, Eun A; Lim, Inja; Bang, Hyoweon; Zhou, Tong; Ko, Jae-Hong

    2015-01-01

    Ion channels are important regulators in cell proliferation, migration, and apoptosis. The malfunction and/or aberrant expression of ion channels may disrupt these important biological processes and influence cancer progression. In this study, we investigate the expression pattern of ion channel genes in glioma. We designate 18 ion channel genes that are differentially expressed in high-grade glioma as a prognostic molecular signature. This ion channel gene expression based signature predicts glioma outcome in three independent validation cohorts. Interestingly, 16 of these 18 genes were down-regulated in high-grade glioma. This signature is independent of traditional clinical, molecular, and histological factors. Resampling tests indicate that the prognostic power of the signature outperforms random gene sets selected from human genome in all the validation cohorts. More importantly, this signature performs better than the random gene signatures selected from glioma-associated genes in two out of three validation datasets. This study implicates ion channels in brain cancer, thus expanding on knowledge of their roles in other cancers. Individualized profiling of ion channel gene expression serves as a superior and independent prognostic tool for glioma patients. PMID:26235283

  17. Ion channel drug discovery and research: the automated Nano-Patch-Clamp technology.

    PubMed

    Brueggemann, A; George, M; Klau, M; Beckler, M; Steindl, J; Behrends, J C; Fertig, N

    2004-01-01

    Unlike the genomics revolution, which was largely enabled by a single technological advance (high throughput sequencing), rapid advancement in proteomics will require a broader effort to increase the throughput of a number of key tools for functional analysis of different types of proteins. In the case of ion channels -a class of (membrane) proteins of great physiological importance and potential as drug targets- the lack of adequate assay technologies is felt particularly strongly. The available, indirect, high throughput screening methods for ion channels clearly generate insufficient information. The best technology to study ion channel function and screen for compound interaction is the patch clamp technique, but patch clamping suffers from low throughput, which is not acceptable for drug screening. A first step towards a solution is presented here. The nano patch clamp technology, which is based on a planar, microstructured glass chip, enables automatic whole cell patch clamp measurements. The Port-a-Patch is an automated electrophysiology workstation, which uses planar patch clamp chips. This approach enables high quality and high content ion channel and compound evaluation on a one-cell-at-a-time basis. The presented automation of the patch process and its scalability to an array format are the prerequisites for any higher throughput electrophysiology instruments.

  18. Laser-guided, intersecting discharge channels for the final beam transport in heavy-ion fusion

    NASA Astrophysics Data System (ADS)

    Niemann, C.; Neff, S.; Tauschwitz, A.; Penache, D.; Birkner, R.; Constantin, C.; Knobloch, R.; Presura, R.; Rosmej, F. B.; Hoffmann, D. H. H.; Yu, S. S.

    2003-06-01

    Ion-beam transport in space charge neutralizing discharge channels has been proposed for the final focus and chamber transport in a heavy-ion fusion reactor. A driver scenario with two-sided target illumination requires a system of two intersecting discharges to transport beams of the same charge from opposite sides towards the fusion target. In this article we report on experiments on the creation of free-standing, intersecting high-current discharge channels. The discharges are initiated in ammonia gas (NH3) in a metallic chamber by two perpendicular CO2-laser beams, which resonantly heat and subsequently rarefy the gas along the laser paths before the breakdown. These low density channels guide the discharges along the predefined paths and also around the 90° angles without any mechanical guiding structures. In this way stable X-, T-, and L-shaped discharges with currents in excess of 40 kA, at pressures of a few mbar were created with a total length of 110 cm. An 11.4 A MeV 58Ni+12 beam from the UNILAC (Universal Linear Accelerator) linear accelerator was used to probe the line-integrated ion-optical properties of the central channel in a T-shaped discharge.

  19. Ion channels in artificial bolaamphiphile membranes deposited on sensor chips: optical detection in an ion-channel-based biosensor

    NASA Astrophysics Data System (ADS)

    Schalkhammer, Thomas G. M.; Weiss-Wichert, Christof; Smetazko, Michaela M.; Valina-Saba, Miriam

    1997-06-01

    Signal amplification using labels should be replaced by a technique monitoring the biochemical binding event directly. The use of a ligand coupled to an artificial gated membrane ion channel is a new promising strategy. Binding of protein- or DNA/RNA-analytes at ligand modified peptide channels results in an on/off-response of the channel current due to channel closure or distortion. The sensor consists of stable transmembrane channels with a ligand bound covalently at the peptide channel entrance, a sensor chip with a photostructurized hydrophobic polymer frame, a hydrophilic ion conducting membrane support, a lipid membrane incorporating the engineered ion channels, and a current amplifier or a sensitive fluorescence monitor. Detection of channel opening or closure can ether be obtained by directly monitoring membrane conductivity or a transient change of pH or ion concentration within the membrane compartment. This change can be induced by electrochemical or optical means and its decay is directly correlated to the permeability of the membrane. The ion concentration in the sub membrane compartment was monitored by incorporation of fluorescent indicator dyes. To obtain the stable sensor membrane the lipid layer had to be attached on a support and the floating of the second lipid membrane on top of the first one had to be prevented. Both problems do not occur using our new circular C44-C76 bolaamphiphilic lipids consisting of a long hydrophobic core region and two hydrophilic heads. Use of maleic ester-head groups enabled us to easily modify the lipids with amines, thioles, alcohols, phosphates, boronic acid as well as fluorescent dyes. The properties of these membranes were studied using LB and fluorescence techniques. Based on this detection principle miniaturized sensor chips with significantly enhanced sensitivity and large multi analyte arrays are under construction.

  20. The Earliest Ion Channels in Protocellular Membranes

    NASA Technical Reports Server (NTRS)

    Mijajlovic, Milan; Pohorille, Andrew; Wilson, Michael; Wei, Chenyu

    2010-01-01

    Cellular membranes with their hydrophobic interior are virtually impermeable to ions. Bulk of ion transport through them is enabled through ion channels. Ion channels of contemporary cells are complex protein molecules which span the membrane creating a cylindrical pore filled with water. Protocells, which are widely regarded as precursors to modern cells, had similarly impermeable membranes, but the set of proteins in their disposal was much simpler and more limited. We have been, therefore, exploring an idea that the first ion channels in protocellular membranes were formed by much smaller peptide molecules that could spontaneously selfassemble into short-lived cylindrical bundles in a membrane. Earlier studies have shown that a group of peptides known as peptaibols is capable of forming ion channels in lipid bilayers when they are exposed to an electric field. Peptaibols are small, non-genetically encoded peptides produced by some fungi as a part of their system of defense against bacteria. They are usually only 14-20 residues long, which is just enough to span the membrane. Their sequence is characterized by the presence of non-standard amino acids which, interestingly, are also expected to have existed on the early earth. In particular, the presence of 2-aminoisobutyric acid (AIB) gives peptaibols strong helix forming propensities. Association of the helices inside membranes leads to the formation of cylindrical bundles, typically containing 4 to 10 monomers. Although peptaibols are excellent candidates for models of the earliest ion channels their structures, which are stabilized only by van der Waals forces and occasional hydrogen bonds between neighboring helices, are not very stable. Although it might properly reflect protobiological reality, it is also a major obstacle in studying channel behavior. For this reason we focused on two members of the peptaibol family, trichotoxin and antiamoebin, which are characterized by a single conductance level. This

  1. The earliest ion channels in protocellular membranes

    NASA Astrophysics Data System (ADS)

    Mijajlovic, Milan; Pohorille, Andrew; Wilson, Michael; Wei, Chenyu

    Cellular membranes with their hydrophobic interior are virtually impermeable to ions. Bulk of ion transport through them is enabled through ion channels. Ion channels of contemporary cells are complex protein molecules which span the membrane creating a cylindrical pore filled with water. Protocells, which are widely regarded as precursors to modern cells, had similarly impermeable membranes, but the set of proteins in their disposal was much simpler and more limited. We have been, therefore, exploring an idea that the first ion channels in protocellular membranes were formed by much smaller peptide molecules that could spontaneously self-assemble into short-lived cylindrical bundles in a membrane. Earlier studies have shown that a group of peptides known as peptaibols is capable of forming ion channels in lipid bilayers when they are exposed to an electric field. Peptaibols are small, non-genetically encoded peptides produced by some fungi as a part of their system of defense against bacteria. They are usually only 14-20 residues long, which is just enough to span the membrane. Their sequence is characterized by the presence of non-standard amino acids which, interestingly, are also expected to have existed on the early earth. In particular, the presence of 2-aminoisobutyric acid (AIB) gives peptaibols strong helix forming propensities. Association of the helices inside membranes leads to the formation of cylindrical bundles, typically containing 4 to 10 monomers. Although peptaibols are excellent candidates for models of the earliest ion channels their struc-tures, which are stabilized only by van der Waals forces and occasional hydrogen bonds between neighboring helices, are not very stable. Although it might properly reflect protobiological real-ity, it is also a major obstacle in studying channel behavior. For this reason we focused on two members of the peptaibol family, trichotoxin and antiamoebin, which are characterized by a single conductance level. This

  2. Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derebe, Mehabaw G.; Sauer, David B.; Zeng, Weizhong

    2015-11-30

    Selective ion conduction across ion channel pores is central to cellular physiology. To understand the underlying principles of ion selectivity in tetrameric cation channels, we engineered a set of cation channel pores based on the nonselective NaK channel and determined their structures to high resolution. These structures showcase an ensemble of selectivity filters with a various number of contiguous ion binding sites ranging from 2 to 4, with each individual site maintaining a geometry and ligand environment virtually identical to that of equivalent sites in K{sup +} channel selectivity filters. Combined with single channel electrophysiology, we show that only themore » channel with four ion binding sites is K{sup +} selective, whereas those with two or three are nonselective and permeate Na{sup +} and K{sup +} equally well. These observations strongly suggest that the number of contiguous ion binding sites in a single file is the key determinant of the channel's selectivity properties and the presence of four sites in K{sup +} channels is essential for highly selective and efficient permeation of K{sup +} ions.« less

  3. Development of therapeutic antibodies to G protein-coupled receptors and ion channels: Opportunities, challenges and their therapeutic potential in respiratory diseases.

    PubMed

    Douthwaite, Julie A; Finch, Donna K; Mustelin, Tomas; Wilkinson, Trevor C I

    2017-01-01

    The development of recombinant antibody therapeutics continues to be a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Therapeutic drug targets such as soluble cytokines, growth factors and single transmembrane spanning receptors have been successfully targeted by recombinant monoclonal antibodies and the development of new product candidates continues. Despite this growth, however, certain classes of important disease targets have remained intractable to therapeutic antibodies due to the complexity of the target molecules. These complex target molecules include G protein-coupled receptors and ion channels which represent a large target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these important regulators of cell function. Given this opportunity, a significant effort has been applied to address the challenges of targeting these complex molecules and a number of targets are linked to the pathophysiology of respiratory diseases. In this review, we provide a summary of the importance of GPCRs and ion channels involved in respiratory disease and discuss advantages offered by antibodies as therapeutics at these targets. We highlight some recent GPCRs and ion channels linked to respiratory disease mechanisms and describe in detail recent progress made in the strategies for discovery of functional antibodies against challenging membrane protein targets such as GPCRs and ion channels. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke?

    PubMed Central

    Leng, Tiandong; Shi, Yejie; Xiong, Zhi-Gang; Sun, Dandan

    2014-01-01

    Ischemic brain injury results from complicated cellular mechanisms. The present therapy for acute ischemic stroke is limited to thrombolysis with the recombinant tissue plasminogen activator (rtPA) and mechanical recanalization. Therefore, a better understanding of ischemic brain injury is needed for the development of more effective therapies. Disruption of ionic homeostasis plays an important role in cell death following cerebral ischemia. Glutamate receptor-mediated ionic imbalance and neurotoxicity have been well established in cerebral ischemia after stroke. However, non-NMDA receptor-dependent mechanisms, involving acid-sensing ion channel 1a (ASIC1a), transient receptor potential melastatin 7 (TRPM7), and Na+/H+ exchanger isoform 1 (NHE1), have recently emerged as important players in the dysregulation of ionic homeostasis in the CNS under ischemic conditions. These H+-sensitive channels and/or exchangers are expressed in the majority of cell types of the neurovascular unit. Sustained activation of these proteins causes excessive influx of cations, such as Ca2+, Na+, and Zn2+, and leads to ischemic reperfusion brain injury. In this review, we summarize recent pre-clinical experimental research findings on how these channels/exchangers are regulated in both in vitro and in vivo models of cerebral ischemia. The blockade or transgenic knockdown of these proteins was shown to be neuroprotective in these ischemia models. Taken together, these non-NMDA receptor-dependent mechanisms may serve as novel therapeutic targets for stroke intervention. PMID:24467911

  5. High-throughput electrophysiological assays for voltage gated ion channels using SyncroPatch 768PE.

    PubMed

    Li, Tianbo; Lu, Gang; Chiang, Eugene Y; Chernov-Rogan, Tania; Grogan, Jane L; Chen, Jun

    2017-01-01

    Ion channels regulate a variety of physiological processes and represent an important class of drug target. Among the many methods of studying ion channel function, patch clamp electrophysiology is considered the gold standard by providing the ultimate precision and flexibility. However, its utility in ion channel drug discovery is impeded by low throughput. Additionally, characterization of endogenous ion channels in primary cells remains technical challenging. In recent years, many automated patch clamp (APC) platforms have been developed to overcome these challenges, albeit with varying throughput, data quality and success rate. In this study, we utilized SyncroPatch 768PE, one of the latest generation APC platforms which conducts parallel recording from two-384 modules with giga-seal data quality, to push these 2 boundaries. By optimizing various cell patching parameters and a two-step voltage protocol, we developed a high throughput APC assay for the voltage-gated sodium channel Nav1.7. By testing a group of Nav1.7 reference compounds' IC50, this assay was proved to be highly consistent with manual patch clamp (R > 0.9). In a pilot screening of 10,000 compounds, the success rate, defined by > 500 MΩ seal resistance and >500 pA peak current, was 79%. The assay was robust with daily throughput ~ 6,000 data points and Z' factor 0.72. Using the same platform, we also successfully recorded endogenous voltage-gated potassium channel Kv1.3 in primary T cells. Together, our data suggest that SyncroPatch 768PE provides a powerful platform for ion channel research and drug discovery.

  6. A role for ion channels in perivascular glioma invasion

    PubMed Central

    Thompson, Emily G.

    2017-01-01

    Malignant gliomas are devastating tumors, frequently killing those diagnosed in little over a year. The profuse infiltration of glioma cells into healthy tissue surrounding the main tumor mass is one of the major obstacles limiting the improvement of patient survival. Migration along the abluminal side of blood vessels is one of the salient features of glioma cell invasion. Invading glioma cells are attracted to the vascular network, in part by the neuro-peptide bradykinin, where glioma cells actively modify the gliovascular interface and undergo volumetric alterations to navigate the confined space. Critical to these volume modifications is a proposed hydrodynamic model that involves the flux of ions in and out of the cell, followed by osmotically obligated water. Ion and water channels expressed by the glioma cell are essential in this model of invasion and make opportune therapeutic targets. Lastly, there is growing evidence that vascular-associated glioma cells are able to control the vascular tone, presumably to free up space for invasion and growth. The unique mechanisms that enable perivascular glioma invasion may offer critical targets for therapeutic intervention in this devastating disease. Indeed, a chloride channel-blocking peptide has already been successfully tested in human clinical trials. PMID:27424110

  7. Demystifying Mechanosensitive Piezo Ion Channels.

    PubMed

    Xu, X Z Shawn

    2016-06-01

    Mechanosensitive channels mediate touch, hearing, proprioception, and blood pressure regulation. Piezo proteins, including Piezo1 and Piezo2, represent a new class of mechanosensitive channels that have been reported to play key roles in most, if not all, of these modalities. The structural architecture and molecular mechanisms by which Piezos act as mechanosensitive channels, however, remain mysterious. Two new studies have now provided critical insights into the atomic structure and molecular basis of the ion permeation and mechano-gating properties of the Piezo1 channel.

  8. Transportation behavior of alkali ions through a cell membrane ion channel. A quantum chemical description of a simplified isolated model.

    PubMed

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans

    2012-08-01

    Quantum chemical model calculations were carried out for modeling the ion transport through an isolated ion channel of a cell membrane. An isolated part of a natural ion channel was modeled. The model channel was a calixarene derivative, hydrated sodium and potassium ions were the models of the transported ion. The electrostatic potential of the channel and the energy of the channel-ion system were calculated as a function of the alkali ion position. Both attractive and repulsive ion-channel interactions were found. The calculations - namely the dependence of the system energy and the atomic charges of the water molecules with respect to the position of the alkali ion in the channel - revealed the molecular-structural background of the potassium selectivity of this artificial ion channel. It was concluded that the studied ion channel mimics real biological ion channel quite well.

  9. Large fraction of crystal directions leads to ion channeling

    NASA Astrophysics Data System (ADS)

    Nordlund, K.; Djurabekova, F.; Hobler, G.

    2016-12-01

    It is well established that when energetic ions are moving in crystals, they may penetrate much deeper if they happen to be directed in some specific crystal directions. This `channeling' effect is utilized for instance in certain ion beam analysis methods and has been described by analytical theories and atomistic computer simulations. However, there have been very few systematic studies of channeling in directions other than the principal low-index ones. We present here a molecular dynamics-based approach to calculate ion channeling systematically over all crystal directions, providing ion `channeling maps' that easily show in which directions channeling is expected. The results show that channeling effects can be quite significant even at energies below 1 keV, and that in many cases, significant planar channeling occurs also in a wide range of crystal directions between the low-index principal ones. In all of the cases studied, a large fraction (˜20 -60 % ) of all crystal directions show channeling. A practical implication of this is that modern experiments on randomly oriented nanostructures will have a large probability of channeling. It also means that when ion irradiations are carried out on polycrystalline samples, channeling effects on the results cannot a priori be assumed to be negligible. The maps allow for easy selection of good `nonchanneling' directions in experiments or alternatively finding wide channels for beneficial uses of channeling. We implement channeling theory to also give the fraction of channeling directions in a manner directly comparable to the simulations. The comparison shows good qualitative agreement. In particular, channeling theory is very good at predicting which channels are active at a given energy. This is true down to sub-keV energies, provided the penetration depth is not too small.

  10. Effects of protein-protein interactions and ligand binding on the ion permeation in KCNQ1 potassium channel.

    PubMed

    Jalily Hasani, Horia; Ganesan, Aravindhan; Ahmed, Marawan; Barakat, Khaled H

    2018-01-01

    The voltage-gated KCNQ1 potassium ion channel interacts with the type I transmembrane protein minK (KCNE1) to generate the slow delayed rectifier (IKs) current in the heart. Mutations in these transmembrane proteins have been linked with several heart-related issues, including long QT syndromes (LQTS), congenital atrial fibrillation, and short QT syndrome. Off-target interactions of several drugs with that of KCNQ1/KCNE1 ion channel complex have been known to cause fatal cardiac irregularities. Thus, KCNQ1/KCNE1 remains an important avenue for drug-design and discovery research. In this work, we present the structural and mechanistic details of potassium ion permeation through an open KCNQ1 structural model using the combined molecular dynamics and steered molecular dynamics simulations. We discuss the processes and key residues involved in the permeation of a potassium ion through the KCNQ1 ion channel, and how the ion permeation is affected by (i) the KCNQ1-KCNE1 interactions and (ii) the binding of chromanol 293B ligand and its derivatives into the complex. The results reveal that interactions between KCNQ1 with KCNE1 causes a pore constriction in the former, which in-turn forms small energetic barriers in the ion-permeation pathway. These findings correlate with the previous experimental reports that interactions of KCNE1 dramatically slows the activation of KCNQ1. Upon ligand-binding onto the complex, the energy-barriers along ion permeation path are more pronounced, as expected, therefore, requiring higher force in our steered-MD simulations. Nevertheless, pulling the ion when a weak blocker is bound to the channel does not necessitate high force in SMD. This indicates that our SMD simulations have been able to discern between strong and week blockers and reveal their influence on potassium ion permeation. The findings presented here will have some implications in understanding the potential off-target interactions of the drugs with the KCNQ1/KCNE1 channel

  11. Chloride channels as drug targets

    PubMed Central

    Verkman, Alan S.; Galietta, Luis J. V.

    2013-01-01

    Chloride channels represent a relatively under-explored target class for drug discovery as elucidation of their identity and physiological roles has lagged behind that of many other drug targets. Chloride channels are involved in a wide range of biological functions, including epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contraction and acidification of intracellular organelles. Mutations in several chloride channels cause human diseases, including cystic fibrosis, macular degeneration, myotonia, kidney stones, renal salt wasting and hyperekplexia. Chloride-channel modulators have potential applications in the treatment of some of these disorders, as well as in secretory diarrhoeas, polycystic kidney disease, osteoporosis and hypertension. Modulators of GABAA (γ-aminobutyric acid A) receptor chloride channels are in clinical use and several small-molecule chloride-channel modulators are in preclinical development and clinical trials. Here, we discuss the broad opportunities that remain in chloride-channel-based drug discovery. PMID:19153558

  12. The Origins of Transmembrane Ion Channels

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Even though membrane proteins that mediate transport of ions and small molecules across cell walls are among the largest and least understood biopolymers in contemporary cells, it is still possible to shed light on their origins and early evolution. The central observation is that transmembrane portions of most ion channels are simply bundles of -helices. By combining results of experimental and computer simulation studies on synthetic models and natural channels, mostly of non-genomic origin, we show that the emergence of -helical channels was protobiologically plausible, and did not require highly specific amino acid sequences. Despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. Specifically, we explain how the antiamoebin channels, which are made of identical helices, 16 amino acids in length, achieve efficiency comparable to that of highly evolved channels. We further show that antiamoebin channels are extremely flexible, compared to modern, genetically coded channels. On the basis of our results, we propose that channels evolved further towards high structural complexity because they needed to acquire stable rigid structures and mechanisms for precise regulation rather than improve efficiency. In general, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during evolution.

  13. Selectivity and permeation of alkali metal ions in K+-channels.

    PubMed

    Furini, Simone; Domene, Carmen

    2011-06-24

    Ion conduction in K(+)-channels is usually described in terms of concerted movements of K(+) progressing in a single file through a narrow pore. Permeation is driven by an incoming ion knocking on those ions already inside the protein. A fine-tuned balance between high-affinity binding and electrostatic repulsive forces between permeant ions is needed to achieve efficient conduction. While K(+)-channels are known to be highly selective for K(+) over Na(+), some K(+) channels conduct Na(+) in the absence of K(+). Other ions are known to permeate K(+)-channels with a more moderate preference and unusual conduction features. We describe an extensive computational study on ion conduction in K(+)-channels rendering free energy profiles for the translocation of three different alkali ions and some of their mixtures. The free energy maps for Rb(+) translocation show at atomic level why experimental Rb(+) conductance is slightly lower than that of K(+). In contrast to K(+) or Rb(+), external Na(+) block K(+) currents, and the sites where Na(+) transport is hindered are characterized. Translocation of K(+)/Na(+) mixtures is energetically unfavorable owing to the absence of equally spaced ion-binding sites for Na(+), excluding Na(+) from a channel already loaded with K(+). Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Rediscovering sperm ion channels with the patch-clamp technique

    PubMed Central

    Kirichok, Yuriy; Lishko, Polina V.

    2011-01-01

    Upon ejaculation, mammalian spermatozoa have to undergo a sequence of physiological transformations within the female reproductive tract that will allow them to reach and fertilize the egg. These include initiation of motility, hyperactivation of motility and perhaps chemotaxis toward the egg, and culminate in the acrosome reaction that permits sperm to penetrate the protective vestments of the egg. These physiological responses are triggered through the activation of sperm ion channels that cause elevations of sperm intracellular pH and Ca2+ in response to certain cues within the female reproductive tract. Despite their key role in sperm physiology and their absolute requirement for the process of fertilization, sperm ion channels remain poorly understood due to the extreme difficulty in application of the patch-clamp technique to spermatozoa. This review covers the topic of sperm ion channels in the following order: first, we discuss how the intracellular Ca2+ and pH signaling mediated by sperm ion channels controls sperm behavior during the process of fertilization. Then, we briefly cover the history of the methodology to study sperm ion channels, which culminated in the recent development of a reproducible whole-cell patch-clamp technique for mouse and human cells. We further discuss the main approaches used to patch-clamp mature mouse and human spermatozoa. Finally, we focus on the newly discovered sperm ion channels CatSper, KSper (Slo3) and HSper (Hv1), identified by the sperm patch-clamp technique. We conclude that the patch-clamp technique has markedly improved and shifted our understanding of the sperm ion channels, in addition to revealing significant species-specific differences in these channels. This method is critical for identification of the molecular mechanisms that control sperm behavior within the female reproductive tract and make fertilization possible. PMID:21642646

  15. An evolutionarily conserved gene family encodes proton-selective ion channels.

    PubMed

    Tu, Yu-Hsiang; Cooper, Alexander J; Teng, Bochuan; Chang, Rui B; Artiga, Daniel J; Turner, Heather N; Mulhall, Eric M; Ye, Wenlei; Smith, Andrew D; Liman, Emily R

    2018-03-02

    Ion channels form the basis for cellular electrical signaling. Despite the scores of genetically identified ion channels selective for other monatomic ions, only one type of proton-selective ion channel has been found in eukaryotic cells. By comparative transcriptome analysis of mouse taste receptor cells, we identified Otopetrin1 (OTOP1), a protein required for development of gravity-sensing otoconia in the vestibular system, as forming a proton-selective ion channel. We found that murine OTOP1 is enriched in acid-detecting taste receptor cells and is required for their zinc-sensitive proton conductance. Two related murine genes, Otop2 and Otop3 , and a Drosophila ortholog also encode proton channels. Evolutionary conservation of the gene family and its widespread tissue distribution suggest a broad role for proton channels in physiology and pathophysiology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Global versus local mechanisms of temperature sensing in ion channels.

    PubMed

    Arrigoni, Cristina; Minor, Daniel L

    2018-05-01

    Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNa V ) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.

  17. Dual role of K ATP channel C-terminal motif in membrane targeting and metabolic regulation.

    PubMed

    Kline, Crystal F; Kurata, Harley T; Hund, Thomas J; Cunha, Shane R; Koval, Olha M; Wright, Patrick J; Christensen, Matthew; Anderson, Mark E; Nichols, Colin G; Mohler, Peter J

    2009-09-29

    The coordinated sorting of ion channels to specific plasma membrane domains is necessary for excitable cell physiology. K(ATP) channels, assembled from pore-forming (Kir6.x) and regulatory sulfonylurea receptor subunits, are critical electrical transducers of the metabolic state of excitable tissues, including skeletal and smooth muscle, heart, brain, kidney, and pancreas. Here we show that the C-terminal domain of Kir6.2 contains a motif conferring membrane targeting in primary excitable cells. Kir6.2 lacking this motif displays aberrant channel targeting due to loss of association with the membrane adapter ankyrin-B (AnkB). Moreover, we demonstrate that this Kir6.2 C-terminal AnkB-binding motif (ABM) serves a dual role in K(ATP) channel trafficking and membrane metabolic regulation and dysfunction in these pathways results in human excitable cell disease. Thus, the K(ATP) channel ABM serves as a previously unrecognized bifunctional touch-point for grading K(ATP) channel gating and membrane targeting and may play a fundamental role in controlling excitable cell metabolic regulation.

  18. ModFossa: A library for modeling ion channels using Python.

    PubMed

    Ferneyhough, Gareth B; Thibealut, Corey M; Dascalu, Sergiu M; Harris, Frederick C

    2016-06-01

    The creation and simulation of ion channel models using continuous-time Markov processes is a powerful and well-used tool in the field of electrophysiology and ion channel research. While several software packages exist for the purpose of ion channel modeling, most are GUI based, and none are available as a Python library. In an attempt to provide an easy-to-use, yet powerful Markov model-based ion channel simulator, we have developed ModFossa, a Python library supporting easy model creation and stimulus definition, complete with a fast numerical solver, and attractive vector graphics plotting.

  19. Regulation of Ion Channels by Pyridine Nucleotides

    PubMed Central

    Kilfoil, Peter J.; Tipparaju, Srinivas M.; Barski, Oleg A.; Bhatnagar, Aruni

    2014-01-01

    Recent research suggests that in addition to their role as soluble electron carriers, pyridine nucleotides [NAD(P)(H)] also regulate ion transport mechanisms. This mode of regulation seems to have been conserved through evolution. Several bacterial ion–transporting proteins or their auxiliary subunits possess nucleotide-binding domains. In eukaryotes, the Kv1 and Kv4 channels interact with pyridine nucleotide–binding β-subunits that belong to the aldo-keto reductase superfamily. Binding of NADP+ to Kvβ removes N-type inactivation of Kv currents, whereas NADPH stabilizes channel inactivation. Pyridine nucleotides also regulate Slo channels by interacting with their cytosolic regulator of potassium conductance domains that show high sequence homology to the bacterial TrkA family of K+ transporters. These nucleotides also have been shown to modify the activity of the plasma membrane KATP channels, the cystic fibrosis transmembrane conductance regulator, the transient receptor potential M2 channel, and the intracellular ryanodine receptor calcium release channels. In addition, pyridine nucleotides also modulate the voltage-gated sodium channel by supporting the activity of its ancillary subunit—the glycerol-3-phosphate dehydrogenase-like protein. Moreover, the NADP+ metabolite, NAADP+, regulates intracellular calcium homeostasis via the 2-pore channel, ryanodine receptor, or transient receptor potential M2 channels. Regulation of ion channels by pyridine nucleotides may be required for integrating cell ion transport to energetics and for sensing oxygen levels or metabolite availability. This mechanism also may be an important component of hypoxic pulmonary vasoconstriction, memory, and circadian rhythms, and disruption of this regulatory axis may be linked to dysregulation of calcium homeostasis and cardiac arrhythmias. PMID:23410881

  20. Trails of Kilovolt Ions Created by Subsurface Channeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redinger, Alex; Standop, Sebastian; Michely, Thomas

    2010-02-19

    Using scanning tunneling microscopy, we observe the damage trails produced by keV noble-gas ions incident at glancing angles onto Pt(111). Surface vacancies and adatoms aligned along the ion trajectory constitute the ion trails. Atomistic simulations reveal that these straight trails are produced by nuclear (elastic) collisions with surface layer atoms during subsurface channeling of the projectiles. In a small energy window around 5 keV, Xe{sup +} ions create vacancy grooves that mark the ion trajectory with atomic precision. The asymmetry of the adatom production on the two sides of the projectile path is traced back to the asymmetry of themore » ion's subsurface channel.« less

  1. Computational membrane biophysics: From ion channel interactions with drugs to cellular function.

    PubMed

    Miranda, Williams E; Ngo, Van A; Perissinotti, Laura L; Noskov, Sergei Yu

    2017-11-01

    The rapid development of experimental and computational techniques has changed fundamentally our understanding of cellular-membrane transport. The advent of powerful computers and refined force-fields for proteins, ions, and lipids has expanded the applicability of Molecular Dynamics (MD) simulations. A myriad of cellular responses is modulated through the binding of endogenous and exogenous ligands (e.g. neurotransmitters and drugs, respectively) to ion channels. Deciphering the thermodynamics and kinetics of the ligand binding processes to these membrane proteins is at the heart of modern drug development. The ever-increasing computational power has already provided insightful data on the thermodynamics and kinetics of drug-target interactions, free energies of solvation, and partitioning into lipid bilayers for drugs. This review aims to provide a brief summary about modeling approaches to map out crucial binding pathways with intermediate conformations and free-energy surfaces for drug-ion channel binding mechanisms that are responsible for multiple effects on cellular functions. We will discuss post-processing analysis of simulation-generated data, which are then transformed to kinetic models to better understand the molecular underpinning of the experimental observables under the influence of drugs or mutations in ion channels. This review highlights crucial mathematical frameworks and perspectives on bridging different well-established computational techniques to connect the dynamics and timescales from all-atom MD and free energy simulations of ion channels to the physiology of action potentials in cellular models. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ion Permeation and Mechanotransduction Mechanisms of Mechanosensitive Piezo Channels.

    PubMed

    Zhao, Qiancheng; Wu, Kun; Geng, Jie; Chi, Shaopeng; Wang, Yanfeng; Zhi, Peng; Zhang, Mingmin; Xiao, Bailong

    2016-03-16

    Piezo proteins have been proposed as the long-sought-after mechanosensitive cation channels in mammals that play critical roles in various mechanotransduction processes. However, the molecular bases that underlie their ion permeation and mechanotransduction have remained functionally undefined. Here we report our finding of the miniature pore-forming module of Piezo1 that resembles the pore architecture of other trimeric channels and encodes the essential pore properties. We further identified specific residues within the pore module that determine unitary conductance, pore blockage and ion selectivity for divalent and monovalent cations and anions. The non-pore-containing region of Piezo1 confers mechanosensitivity to mechano-insensitive trimeric acid-sensing ion channels, demonstrating that Piezo1 channels possess intrinsic mechanotransduction modules separate from their pore modules. In conclusion, this is the first report on the bona fide pore module and mechanotransduction components of Piezo channels, which define their ion-conducting properties and gating by mechanical stimuli, respectively. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Mapping the function of neuronal ion channels in model and experiment

    PubMed Central

    Podlaski, William F; Seeholzer, Alexander; Groschner, Lukas N; Miesenböck, Gero; Ranjan, Rajnish; Vogels, Tim P

    2017-01-01

    Ion channel models are the building blocks of computational neuron models. Their biological fidelity is therefore crucial for the interpretation of simulations. However, the number of published models, and the lack of standardization, make the comparison of ion channel models with one another and with experimental data difficult. Here, we present a framework for the automated large-scale classification of ion channel models. Using annotated metadata and responses to a set of voltage-clamp protocols, we assigned 2378 models of voltage- and calcium-gated ion channels coded in NEURON to 211 clusters. The IonChannelGenealogy (ICGenealogy) web interface provides an interactive resource for the categorization of new and existing models and experimental recordings. It enables quantitative comparisons of simulated and/or measured ion channel kinetics, and facilitates field-wide standardization of experimentally-constrained modeling. DOI: http://dx.doi.org/10.7554/eLife.22152.001 PMID:28267430

  4. The function and regulation of acid‐sensing ion channels (ASICs) and the epithelial Na+ channel (ENaC): IUPHAR Review 19

    PubMed Central

    Boscardin, Emilie; Alijevic, Omar; Hummler, Edith

    2016-01-01

    Acid‐sensing ion channels (ASICs) and the epithelial Na+ channel (ENaC) are both members of the ENaC/degenerin family of amiloride‐sensitive Na+ channels. ASICs act as proton sensors in the nervous system where they contribute, besides other roles, to fear behaviour, learning and pain sensation. ENaC mediates Na+ reabsorption across epithelia of the distal kidney and colon and of the airways. ENaC is a clinically used drug target in the context of hypertension and cystic fibrosis, while ASIC is an interesting potential target. Following a brief introduction, here we will review selected aspects of ASIC and ENaC function. We discuss the origin and nature of pH changes in the brain and the involvement of ASICs in synaptic signalling. We expose how in the peripheral nervous system, ASICs cover together with other ion channels a wide pH range as proton sensors. We introduce the mechanisms of aldosterone‐dependent ENaC regulation and the evidence for an aldosterone‐independent control of ENaC activity, such as regulation by dietary K+. We then provide an overview of the regulation of ENaC by proteases, a topic of increasing interest over the past few years. In spite of the profound differences in the physiological and pathological roles of ASICs and ENaC, these channels share many basic functional and structural properties. It is likely that further research will identify physiological contexts in which ASICs and ENaC have similar or overlapping roles. PMID:27278329

  5. Improved Ion-Channel Biosensors

    NASA Technical Reports Server (NTRS)

    Nadeau, Jay; White, Victor; Dougherty, Dennis; Maurer, Joshua

    2004-01-01

    An effort is underway to develop improved biosensors of a type based on ion channels in biomimetic membranes. These sensors are microfabricated from silicon and other materials compatible with silicon. As described, these sensors offer a number of advantages over prior sensors of this type.

  6. Micro- and nanofabrication methods for ion channel reconstitution in bilayer lipid membranes

    NASA Astrophysics Data System (ADS)

    Tadaki, Daisuke; Yamaura, Daichi; Arata, Kohei; Ohori, Takeshi; Ma, Teng; Yamamoto, Hideaki; Niwano, Michio; Hirano-Iwata, Ayumi

    2018-03-01

    The self-assembled bilayer lipid membrane (BLM) forms the basic structure of the cell membrane and serves as a major barrier against ion movement. Ion channel proteins function as gated pores that permit ion permeation across the BLM. The reconstitution of ion channel proteins in artificially formed BLMs represents a well-defined system for investigating channel functions and screening drug effects on ion channels. In this review, we will discuss our recent microfabrication approaches to the formation of stable BLMs containing ion channel proteins as a potential platform for next-generation drug screening systems. BLMs formed in a microaperture having a tapered edge exhibited highly stable properties, such as a lifetime of ∼65 h and tolerance to solution changes even after the incorporation of the human ether-a-go-go-related gene (hERG) channel. We also explore a new method of efficiently incorporating human ion channels into BLMs by centrifugation. Our approaches to the formation of stable BLMs and efficient channel incorporation markedly improve the experimental efficiency of BLM reconstitution systems, leading to the realization of a BLM-based high-throughput platform for functional assays of various ion channels.

  7. In-Depth Study of the Interaction, Sensitivity, and Gating Modulation by PUFAs on K+ Channels; Interaction and New Targets

    PubMed Central

    Moreno, Cristina; de la Cruz, Alicia; Valenzuela, Carmen

    2016-01-01

    Voltage gated potassium channels (KV) are membrane proteins that allow selective flow of K+ ions in a voltage-dependent manner. These channels play an important role in several excitable cells as neurons, cardiomyocytes, and vascular smooth muscle. Over the last 20 years, it has been shown that omega-3 polyunsaturated fatty acids (PUFAs) enhance or decrease the activity of several cardiac KV channels. PUFAs-dependent modulation of potassium ion channels has been reported to be cardioprotective. However, the precise cellular mechanism underlying the cardiovascular benefits remained unclear in part because new PUFAs targets and signaling pathways continue being discovered. In this review, we will focus on recent data available concerning the following aspects of the KV channel modulation by PUFAs: (i) the exact residues involved in PUFAs-KV channels interaction; (ii) the structural PUFAs determinants important for their effects on KV channels; (iii) the mechanism of the gating modulation of KV channels and, finally, (iv) the PUFAs modulation of a few new targets present in smooth muscle cells (SMC), KCa1.1, K2P, and KATP channels, involved in vascular relaxation. PMID:27933000

  8. Use of planar array electrophysiology for the development of robust ion channel cell lines.

    PubMed

    Clare, Jeffrey J; Chen, Mao Xiang; Downie, David L; Trezise, Derek J; Powell, Andrew J

    2009-01-01

    The tractability of ion channels as drug targets has been significantly improved by the advent of planar array electrophysiology platforms which have dramatically increased the capacity for electrophysiological profiling of lead series compounds. However, the data quality and through-put obtained with these platforms is critically dependent on the robustness of the expression reagent being used. The generation of high quality, recombinant cell lines is therefore a key step in the early phase of ion channel drug discovery and this can present significant challenges due to the diversity and organisational complexity of many channel types. This article focuses on several complex and difficult to express ion channels and illustrates how improved stable cell lines can be obtained by integration of planar array electrophysiology systems into the cell line generation process per se. By embedding this approach at multiple stages (e.g., during development of the expression strategy, during screening and validation of clonal lines, and during characterisation of the final cell line), the cycle time and success rate in obtaining robust expression of complex multi-subunit channels can be significantly improved. We also review how recent advances in this technology (e.g., population patch clamp) have further widened the versatility and applicability of this approach.

  9. Conductance of Ion Channels - Theory vs. Experiment

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan

    2013-01-01

    Transmembrane ion channels mediate a number of essential physiological processes in a cell ranging from regulating osmotic pressure to transmission of neural signals. Kinetics and selectivity of ion transport is of critical importance to a cell and, not surprisingly, it is a subject of numerous experimental and theoretical studies. In this presentation we will analyze in detail computer simulations of two simple channels from fungi - antiamoebin and trichotoxin. Each of these channels is made of an alpha-helical bundle of small, nongenomically synthesized peptides containing a number of rare amino acids and exhibits strong antimicrobial activity. We will focus on calculating ionic conductance defined as the ratio of ionic current through the channel to applied voltage. From molecular dynamics simulations, conductance can be calculated in at least two ways, each involving different approximations. Specifically, the current, given as the number of charges transferred through the channel per unit of time, can be obtained from the number of events in which ions cross the channel during the simulation. This method works well for large currents (high conductance values and/or applied voltages). If the number of crossing events is small, reliable estimates of current are difficult to achieve. Alternatively, conductance can be estimated assuming that ion transport can be well approximated as diffusion in the external potential given by the free energy profile. Then, the current can be calculated by solving the one-dimensional diffusion equation in this external potential and applied voltage (the generalized Nernst-Planck equation). To do so three ingredients are needed: the free energy profile, the position-dependent diffusion coefficient and the diffusive flux of ions into the channel. All these quantities can be obtained from molecular dynamics simulations. An important advantage of this method is that it can be used equally well to estimating large and small currents

  10. Structural basis for potentiation by alcohols and anaesthetics in a ligand-gated ion channel

    PubMed Central

    Sauguet, Ludovic; Howard, Rebecca J.; Malherbe, Laurie; Lee, Ui S.; Corringer, Pierre-Jean; Harris, R. Adron; Delarue, Marc

    2014-01-01

    Ethanol alters nerve signalling by interacting with proteins in the central nervous system, particularly pentameric ligand-gated ion channels. A recent series of mutagenesis experiments on Gloeobacter violaceus ligand-gated ion channel, a prokaryotic member of this family, identified a single-site variant that is potentiated by pharmacologically relevant concentrations of ethanol. Here we determine crystal structures of the ethanol-sensitized variant in the absence and presence of ethanol and related modulators, which bind in a transmembrane cavity between channel subunits and may stabilize the open form of the channel. Structural and mutagenesis studies defined overlapping mechanisms of potentiation by alcohols and anaesthetics via the inter-subunit cavity. Furthermore, homology modelling show this cavity to be conserved in human ethanol-sensitive glycine and GABA(A) receptors, and to involve residues previously shown to influence alcohol and anaesthetic action on these proteins. These results suggest a common structural basis for ethanol potentiation of an important class of targets for neurological actions of ethanol. PMID:23591864

  11. Non-Equilibrium Dynamics Contribute to Ion Selectivity in the KcsA Channel

    PubMed Central

    Haas, Stephan; Farley, Robert A.

    2014-01-01

    The ability of biological ion channels to conduct selected ions across cell membranes is critical for the survival of both animal and bacterial cells. Numerous investigations of ion selectivity have been conducted over more than 50 years, yet the mechanisms whereby the channels select certain ions and reject others are not well understood. Here we report a new application of Jarzynski’s Equality to investigate the mechanism of ion selectivity using non-equilibrium molecular dynamics simulations of Na+ and K+ ions moving through the KcsA channel. The simulations show that the selectivity filter of KcsA adapts and responds to the presence of the ions with structural rearrangements that are different for Na+ and K+. These structural rearrangements facilitate entry of K+ ions into the selectivity filter and permeation through the channel, and rejection of Na+ ions. A mechanistic model of ion selectivity by this channel based on the results of the simulations relates the structural rearrangement of the selectivity filter to the differential dehydration of ions and multiple-ion occupancy and describes a mechanism to efficiently select and conduct K+. Estimates of the K+/Na+ selectivity ratio and steady state ion conductance for KcsA from the simulations are in good quantitative agreement with experimental measurements. This model also accurately describes experimental observations of channel block by cytoplasmic Na+ ions, the “punch through” relief of channel block by cytoplasmic positive voltages, and is consistent with the knock-on mechanism of ion permeation. PMID:24465882

  12. QPatch: the missing link between HTS and ion channel drug discovery.

    PubMed

    Mathes, Chris; Friis, Søren; Finley, Michael; Liu, Yi

    2009-01-01

    The conventional patch clamp has long been considered the best approach for studying ion channel function and pharmacology. However, its low throughput has been a major hurdle to overcome for ion channel drug discovery. The recent emergence of higher throughput, automated patch clamp technology begins to break this bottleneck by providing medicinal chemists with high-quality, information-rich data in a more timely fashion. As such, these technologies have the potential to bridge a critical missing link between high-throughput primary screening and meaningful ion channel drug discovery programs. One of these technologies, the QPatch automated patch clamp system developed by Sophion Bioscience, records whole-cell ion channel currents from 16 or 48 individual cells in a parallel fashion. Here, we review the general applicability of the QPatch to studying a wide variety of ion channel types (voltage-/ligand-gated cationic/anionic channels) in various expression systems. The success rate of gigaseals, formation of the whole-cell configuration and usable cells ranged from 40-80%, depending on a number of factors including the cell line used, ion channel expressed, assay development or optimization time and expression level in these studies. We present detailed analyses of the QPatch features and results in case studies in which secondary screening assays were successfully developed for a voltage-gated calcium channel and a ligand-gated TRP channel. The increase in throughput compared to conventional patch clamp with the same cells was approximately 10-fold. We conclude that the QPatch, combining high data quality and speed with user friendliness and suitability for a wide array of ion channels, resides on the cutting edge of automated patch clamp technology and plays a pivotal role in expediting ion channel drug discovery.

  13. Elucidating ligand binding and channel gating mechanisms in pentameric ligand-gated ion channels by atomistic simulations.

    PubMed

    Comitani, Federico; Melis, Claudio; Molteni, Carla

    2015-04-01

    Pentameric ligand-gated ion channels (pLGICs) are important biomolecules that mediate fast synaptic transmission. Their malfunctions are linked to serious neuronal disorders and they are major pharmaceutical targets; in invertebrates, they are involved in insecticide resistance. The complexity of pLGICs and the limited crystallographic information available prevent a detailed understanding of how they function. State-of-the-art computational techniques are therefore crucial to build an accurate picture at the atomic level of the mechanisms which drive the activation of pLGICs, complementing the available experimental data. We have used a series of simulation methods, including homology modelling, ligand-protein docking, density functional theory, molecular dynamics and metadynamics, a powerful scheme for accelerating rare events, with the guidance of mutagenesis electrophysiology experiments, to explore ligand-binding mechanisms, the effects of mutations and the potential role of a proline molecular switch for the gating of the ion channels. Results for the insect RDL receptor, the GABAC receptor, the 5-HT3 receptor and the nicotinic acetylcholine receptor will be reviewed.

  14. Theoretical studies of defect formation and target heating by intense pulsed ion beams

    NASA Astrophysics Data System (ADS)

    Barnard, J. J.; Schenkel, T.; Persaud, A.; Seidl, P. A.; Friedman, A.; Grote, D. P.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I.

    2015-11-01

    We present results of three studies related to experiments on NDCX-II, the Neutralized Drift Compression Experiment, a short-pulse (~ 1ns), high-current (~ 70A) linear accelerator for 1.2 MeV ions at LBNL. These include: (a) Coupled transverse and longitudinal envelope calculations of the final non-neutral ion beam transport, followed by neutralized drift and final focus, for a number of focus and drift lengths and with a series of ion species (Z =1-19). Predicted target fluences were obtained and target temperatures in the 1 eV range estimated. (b) HYDRA simulations of the target response for Li and He ions and for Al and Au targets at various ion fluences (up to 1012 ions/pulse/mm2) and pulse durations, benchmarking temperature estimates from the envelope calculations. (c) Crystal-Trim simulations of ion channeling through single-crystal lattices, with comparisons to ion transmission data as a function of orientation angle of the crystal foil and for different ion intensities and ion species. This work was performed under the auspices of the U.S. DOE under contracts DE-AC52-07NA27344 (LLNL), DE-AC02-05CH11231 (LBNL) and DE-AC02-76CH0307 (PPPL) and was supported by the US DOE Office of Science, Fusion Energy Sciences. LLNL-ABS-67521.

  15. Fabrication of monolithic microfluidic channels in diamond with ion beam lithography

    NASA Astrophysics Data System (ADS)

    Picollo, F.; Battiato, A.; Boarino, L.; Ditalia Tchernij, S.; Enrico, E.; Forneris, J.; Gilardino, A.; Jakšić, M.; Sardi, F.; Skukan, N.; Tengattini, A.; Olivero, P.; Re, A.; Vittone, E.

    2017-08-01

    In the present work, we report on the monolithic fabrication by means of ion beam lithography of hollow micro-channels within a diamond substrate, to be employed for microfluidic applications. The fabrication strategy takes advantage of ion beam induced damage to convert diamond into graphite, which is characterized by a higher reactivity to oxidative etching with respect to the chemically inert pristine structure. This phase transition occurs in sub-superficial layers thanks to the peculiar damage profile of MeV ions, which mostly damage the target material at their end of range. The structures were obtained by irradiating commercial CVD diamond samples with a micrometric collimated C+ ion beam at three different energies (4 MeV, 3.5 MeV and 3 MeV) at a total fluence of 2 × 1016 cm-2. The chosen multiple-energy implantation strategy allows to obtain a thick box-like highly damaged region ranging from 1.6 μm to 2.1 μm below the sample surface. High-temperature annealing was performed to both promote the graphitization of the ion-induced amorphous layer and to recover the pristine crystalline structure in the cap layer. Finally, the graphite was removed by ozone etching, obtaining monolithic microfluidic structures. These prototypal microfluidic devices were tested injecting aqueous solutions and the evidence of the passage of fluids through the channels was confirmed by confocal fluorescent microscopy.

  16. A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.

    PubMed

    Chen, Duan

    2016-08-01

    In this work, we propose a new Poisson-Nernst-Planck (PNP) model with ion-water interactions for biological charge transport in ion channels. Due to narrow geometries of these membrane proteins, ion-water interaction is critical for both dielectric property of water molecules in channel pore and transport dynamics of mobile ions. We model the ion-water interaction energy based on realistic experimental observations in an efficient mean-field approach. Variation of a total energy functional of the biological system yields a new PNP-type continuum model. Numerical simulations show that the proposed model with ion-water interaction energy has the new features that quantitatively describe dielectric properties of water molecules in narrow pores and are possible to model the selectivity of some ion channels.

  17. Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel

    PubMed Central

    Sauguet, Ludovic; Fourati, Zeineb; Prangé, Thierry; Delarue, Marc; Colloc'h, Nathalie

    2016-01-01

    GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and “locally-closed” (inactive) conformations of GLIC. Major binding sites of xenon, which differ between the two conformations, were identified in three distinct regions that all belong to the trans-membrane domain of GLIC: 1) in an intra-subunit cavity, 2) at the interface between adjacent subunits, and 3) in the pore. The pore site is unique to the locally-closed form where the binding of xenon effectively seals the channel. A putative mechanism of the inhibition of GLIC by xenon is proposed, which might be extended to other pentameric cationic ligand-gated ion channels. PMID:26910105

  18. Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel.

    PubMed

    Sauguet, Ludovic; Fourati, Zeineb; Prangé, Thierry; Delarue, Marc; Colloc'h, Nathalie

    2016-01-01

    GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and "locally-closed" (inactive) conformations of GLIC. Major binding sites of xenon, which differ between the two conformations, were identified in three distinct regions that all belong to the trans-membrane domain of GLIC: 1) in an intra-subunit cavity, 2) at the interface between adjacent subunits, and 3) in the pore. The pore site is unique to the locally-closed form where the binding of xenon effectively seals the channel. A putative mechanism of the inhibition of GLIC by xenon is proposed, which might be extended to other pentameric cationic ligand-gated ion channels.

  19. Channeling technique to make nanoscale ion beams

    NASA Astrophysics Data System (ADS)

    Biryukov, V. M.; Bellucci, S.; Guidi, V.

    2005-04-01

    Particle channeling in a bent crystal lattice has led to an efficient instrument for beam steering at accelerators [Biryukov et al., Crystal Channeling and its Application at High Energy Accelerators, Springer, Berlin, 1997], demonstrated from MeV to TeV energies. In particular, crystal focusing of high-energy protons to micron size has been demonstrated at IHEP with the results well in match with Lindhard (critical angle) prediction. Channeling in crystal microstructures has been proposed as a unique source of a microbeam of high-energy particles [Bellucci et al., Phys. Rev. ST Accel. Beams 6 (2003) 033502]. Channeling in nanostructures (single-wall and multi-wall nanotubes) offers the opportunities to produce ion beams on nanoscale. Particles channeled in a nanotube (with typical diameter of about 1 nm) are trapped in two dimensions and can be steered (deflected, focused) with the efficiency similar to that of crystal channeling or better. This technique has been a subject of computer simulations, with experimental efforts under way in several high-energy labs, including IHEP. We present the theoretical outlook for making channeling-based nanoscale ion beams and report the experience with crystal-focused microscale proton beams.

  20. Streaming potentials in gramicidin channels measured with ion-selective microelectrodes.

    PubMed Central

    Tripathi, S; Hladky, S B

    1998-01-01

    Streaming potentials have been measured for gramicidin channels with a new method employing ion-selective microelectrodes. It is shown that ideally ion-selective electrodes placed at the membrane surface record the true streaming potential. Using this method for ion concentrations below 100 mM, approximately seven water molecules are transported whenever a sodium, potassium, or cesium ion, passes through the channel. This new method confirms earlier measurements (Rosenberg, P.A., and A. Finkelstein. 1978. Interaction of ions and water in gramicidin A channels. J. Gen. Physiol. 72:327-340) in which the streaming potentials were calculated as the difference between electrical potentials measured in the presence of gramicidin and in the presence of the ion carriers valinomycin and nonactin. PMID:9635745

  1. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.

    PubMed

    Tu, Bin; Chen, Minxin; Xie, Yan; Zhang, Linbo; Eisenberg, Bob; Lu, Benzhuo

    2013-09-15

    A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can

  2. Stimulation of TRPC5 cationic channels by low micromolar concentrations of lead ions (Pb{sup 2+})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukumar, Piruthivi; Beech, David J., E-mail: d.j.beech@leeds.ac.uk

    2010-02-26

    Lead toxicity is long-recognised but continues to be a major public health problem. Its effects are wide-ranging and include induction of hyper-anxiety states. In general it is thought to act by interfering with Ca{sup 2+} signalling but specific targets are not clearly identified. Transient receptor potential canonical 5 (TRPC5) is a Ca{sup 2+}-permeable ion channel that is linked positively to innate fear responses and unusual amongst ion channels in being stimulated by trivalent lanthanides, which include gadolinium. Here we show investigation of the effect of lead, which is a divalent ion (Pb{sup 2+}). Intracellular Ca{sup 2+} and whole-cell patch-clamp recordingsmore » were performed on HEK 293 cells conditionally over-expressing TRPC5 or other TRP channels. Extracellular application of Pb{sup 2+} stimulated TRPC5 at concentrations greater than 1 {mu}M. Control cells without TRPC5 showed little or no response to Pb{sup 2+} and expression of other TRP channels (TRPM2 or TRPM3) revealed partial inhibition by 10 {mu}M Pb{sup 2+}. The stimulatory effect on TRPC5 depended on an extracellular residue (E543) near the ion pore: similar to gadolinium action, E543Q TRPC5 was resistant to Pb{sup 2+} but showed normal stimulation by the receptor agonist sphingosine-1-phosphate. The study shows that Pb{sup 2+} is a relatively potent stimulator of the TRPC5 channel, generating the hypothesis that a function of the channel is to sense metal ion poisoning.« less

  3. Functional ion channels in human pulmonary artery smooth muscle cells: Voltage-dependent cation channels

    PubMed Central

    Firth, Amy L.; Remillard, Carmelle V.; Platoshyn, Oleksandr; Fantozzi, Ivana; Ko, Eun A.; Yuan, Jason X.-J.

    2011-01-01

    The activity of voltage-gated ion channels is critical for the maintenance of cellular membrane potential and generation of action potentials. In turn, membrane potential regulates cellular ion homeostasis, triggering the opening and closing of ion channels in the plasma membrane and, thus, enabling ion transport across the membrane. Such transmembrane ion fluxes are important for excitation–contraction coupling in pulmonary artery smooth muscle cells (PASMC). Families of voltage-dependent cation channels known to be present in PASMC include voltage-gated K+ (Kv) channels, voltage-dependent Ca2+-activated K+ (Kca) channels, L- and T- type voltage-dependent Ca2+ channels, voltage-gated Na+ channels and voltage-gated proton channels. When cells are dialyzed with Ca2+-free K+- solutions, depolarization elicits four components of 4-aminopyridine (4-AP)-sensitive Kvcurrents based on the kinetics of current activation and inactivation. In cell-attached membrane patches, depolarization elicits a wide range of single-channel K+ currents, with conductances ranging between 6 and 290 pS. Macroscopic 4-AP-sensitive Kv currents and iberiotoxin-sensitive Kca currents are also observed. Transcripts of (a) two Na+ channel α-subunit genes (SCN5A and SCN6A), (b) six Ca2+ channel α–subunit genes (α1A, α1B, α1X, α1D, α1Eand α1G) and many regulatory subunits (α2δ1, β1-4, and γ6), (c) 22 Kv channel α–subunit genes (Kv1.1 - Kv1.7, Kv1.10, Kv2.1, Kv3.1, Kv3.3, Kv3.4, Kv4.1, Kv4.2, Kv5.1, Kv 6.1-Kv6.3, Kv9.1, Kv9.3, Kv10.1 and Kv11.1) and three Kv channel β-subunit genes (Kvβ1-3) and (d) four Kca channel α–subunit genes (Sloα1 and SK2-SK4) and four Kca channel β-subunit genes (Kcaβ1-4) have been detected in PASMC. Tetrodotoxin-sensitive and rapidly inactivating Na+ currents have been recorded with properties similar to those in cardiac myocytes. In the presence of 20 mM external Ca2+, membrane depolarization from a holding potential of -100 mV elicits a rapidly

  4. Calculating tracer currents through narrow ion channels: Beyond the independent particle model.

    PubMed

    Coalson, Rob D; Jasnow, David

    2018-06-01

    Discrete state models of single-file ion permeation through a narrow ion channel pore are employed to analyze the ratio of forward to backward tracer current. Conditions under which the well-known Ussing formula for this ratio hold are explored in systems where ions do not move independently through the channel. Building detailed balance into the rate constants for the model in such a way that under equilibrium conditions (equal rate of forward vs. backward permeation events) the Nernst Equation is satisfied, it is found that in a model where only one ion can occupy the channel at a time, the Ussing formula is always obeyed for any number of binding sites, reservoir concentrations of the ions and electric potential difference across the membrane which the ion channel spans, independent of the internal details of the permeation pathway. However, numerical analysis demonstrates that when multiple ions can occupy the channel at once, the nonequilibrium forward/backward tracer flux ratio deviates from the prediction of the Ussing model. Assuming an appropriate effective potential experienced by ions in the channel, we provide explicit formulae for the rate constants in these models. © 2018 IOP Publishing Ltd.

  5. Distinct regions that control ion selectivity and calcium-dependent activation in the bestrophin ion channel.

    PubMed

    Vaisey, George; Miller, Alexandria N; Long, Stephen B

    2016-11-22

    Cytoplasmic calcium (Ca 2+ ) activates the bestrophin anion channel, allowing chloride ions to flow down their electrochemical gradient. Mutations in bestrophin 1 (BEST1) cause macular degenerative disorders. Previously, we determined an X-ray structure of chicken BEST1 that revealed the architecture of the channel. Here, we present electrophysiological studies of purified wild-type and mutant BEST1 channels and an X-ray structure of a Ca 2+ -independent mutant. From these experiments, we identify regions of BEST1 responsible for Ca 2+ activation and ion selectivity. A "Ca 2+ clasp" within the channel's intracellular region acts as a sensor of cytoplasmic Ca 2+ . Alanine substitutions within a hydrophobic "neck" of the pore, which widen it, cause the channel to be constitutively active, irrespective of Ca 2+ . We conclude that the primary function of the neck is as a "gate" that controls chloride permeation in a Ca 2+ -dependent manner. In contrast to what others have proposed, we find that the neck is not a major contributor to the channel's ion selectivity. We find that mutation of a cytosolic "aperture" of the pore does not perturb the Ca 2+ dependence of the channel or its preference for anions over cations, but its mutation dramatically alters relative permeabilities among anions. The data suggest that the aperture functions as a size-selective filter that permits the passage of small entities such as partially dehydrated chloride ions while excluding larger molecules such as amino acids. Thus, unlike ion channels that have a single "selectivity filter," in bestrophin, distinct regions of the pore govern anion-vs.-cation selectivity and the relative permeabilities among anions.

  6. Ion Channel Gene Expression in Lung Adenocarcinoma: Potential Role in Prognosis and Diagnosis

    PubMed Central

    Ko, Jae-Hong; Gu, Wanjun; Lim, Inja; Bang, Hyoweon; Ko, Eun A.; Zhou, Tong

    2014-01-01

    Ion channels are known to regulate cancer processes at all stages. The roles of ion channels in cancer pathology are extremely diverse. We systematically analyzed the expression patterns of ion channel genes in lung adenocarcinoma. First, we compared the expression of ion channel genes between normal and tumor tissues in patients with lung adenocarcinoma. Thirty-seven ion channel genes were identified as being differentially expressed between the two groups. Next, we investigated the prognostic power of ion channel genes in lung adenocarcinoma. We assigned a risk score to each lung adenocarcinoma patient based on the expression of the differentially expressed ion channel genes. We demonstrated that the risk score effectively predicted overall survival and recurrence-free survival in lung adenocarcinoma. We also found that the risk scores for ever-smokers were higher than those for never-smokers. Multivariate analysis indicated that the risk score was a significant prognostic factor for survival, which is independent of patient age, gender, stage, smoking history, Myc level, and EGFR/KRAS/ALK gene mutation status. Finally, we investigated the difference in ion channel gene expression between the two major subtypes of non-small cell lung cancer: adenocarcinoma and squamous-cell carcinoma. Thirty ion channel genes were identified as being differentially expressed between the two groups. We suggest that ion channel gene expression can be used to improve the subtype classification in non-small cell lung cancer at the molecular level. The findings in this study have been validated in several independent lung cancer cohorts. PMID:24466154

  7. Structure, function and translational relevance of aquaporin dual water and ion channels.

    PubMed

    Yool, Andrea J; Campbell, Ewan M

    2012-01-01

    Aquaporins have been assumed to be selective for water alone, and aquaglyceroporins are accepted as carrying water and small uncharged solutes including glycerol. This review presents an expanded view of aquaporins as channels with more complex mechanisms of regulation and diverse repertoires of substrate permeabilities than were originally appreciated in the early establishment of the field. The role of aquaporins as dual water and gated ion channels is likely to have physiological and potentially translational relevance, and can be evaluated with newly developed molecular and pharmacological tools. Ion channel activity has been shown for Aquaporins -0, -1, and -6, Drosphila Big Brain, and plant Nodulin-26. Although the concept of ion channel function in aquaporins remains controversial, research advances are beginning to define not only the ion channel function but also the detailed molecular mechanisms that govern and mediate the multifunctional capabilities. With regard to physiological relevance, the adaptive benefit of expression of ion channel activity in aquaporins, implied by amino acid sequence conservation of the ion channel gating domains, suggests they provide more than water or glycerol and solute transport. Dual ion and water channels are of interest for understanding the modulation of transmembrane fluid gradients, volume regulation, and possible signal transduction in tissues expressing classes of aquaporins that have the dual function capability. Other aquaporin classes might be found in future work to have ion channel activities, pending identification of the possible signaling pathways that could govern activation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Identification and characterization of a bacterial hydrosulphide ion channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czyzewski, Bryan K.; Wang, Da-Neng

    2012-10-26

    The hydrosulphide ion (HS{sup -}) and its undissociated form, hydrogen sulphide (H{sub 2}S), which are believed to have been critical to the origin of life on Earth, remain important in physiology and cellular signalling. As a major metabolite in anaerobic bacterial growth, hydrogen sulphide is a product of both assimilatory and dissimilatory sulphate reduction. These pathways can reduce various oxidized sulphur compounds including sulphate, sulphite and thiosulphate. The dissimilatory sulphate reduction pathway uses this molecule as the terminal electron acceptor for anaerobic respiration, in which process it produces excess amounts of H{sub 2}S. The reduction of sulphite is a keymore » intermediate step in all sulphate reduction pathways. In Clostridium and Salmonella, an inducible sulphite reductase is directly linked to the regeneration of NAD{sup +}, which has been suggested to have a role in energy production and growth, as well as in the detoxification of sulphite. Above a certain concentration threshold, both H{sub 2}S and HS{sup -} inhibit cell growth by binding the metal centres of enzymes and cytochrome oxidase, necessitating a release mechanism for the export of this toxic metabolite from the cell. Here we report the identification of a hydrosulphide ion channel in the pathogen Clostridium difficile through a combination of genetic, biochemical and functional approaches. The HS{sup -} channel is a member of the formate/nitrite transport family, in which about 50 hydrosulphide ion channels form a third subfamily alongside those for formate (FocA) and for nitrite (NirC). The hydrosulphide ion channel is permeable to formate and nitrite as well as to HS{sup -} ions. Such polyspecificity can be explained by the conserved ion selectivity filter observed in the channel's crystal structure. The channel has a low open probability and is tightly regulated, to avoid decoupling of the membrane proton gradient.« less

  9. Leptin-mediated ion channel regulation: PI3K pathways, physiological role, and therapeutic potential.

    PubMed

    Gavello, Daniela; Carbone, Emilio; Carabelli, Valentina

    2016-07-03

    Leptin is produced by adipose tissue and identified as a "satiety signal," informing the brain when the body has consumed enough food. Specific areas of the hypothalamus express leptin receptors (LEPRs) and are the primary site of leptin action for body weight regulation. In response to leptin, appetite is suppressed and energy expenditure allowed. Beside this hypothalamic action, leptin targets other brain areas in addition to neuroendocrine cells. LEPRs are expressed also in the hippocampus, neocortex, cerebellum, substantia nigra, pancreatic β-cells, and chromaffin cells of the adrenal gland. It is intriguing how leptin is able to activate different ionic conductances, thus affecting excitability, synaptic plasticity and neurotransmitter release, depending on the target cell. Most of the intracellular pathways activated by leptin and directed to ion channels involve PI3K, which in turn phosphorylates different downstream substrates, although parallel pathways involve AMPK and MAPK. In this review we will describe the effects of leptin on BK, KATP, KV, CaV, TRPC, NMDAR and AMPAR channels and clarify the landscape of pathways involved. Given the ability of leptin to influence neuronal excitability and synaptic plasticity by modulating ion channels activity, we also provide a short overview of the growing potentiality of leptin as therapeutic agent for treating neurological disorders.

  10. Voltage gated sodium channels as drug discovery targets

    PubMed Central

    Bagal, Sharan K; Marron, Brian E; Owen, Robert M; Storer, R Ian; Swain, Nigel A

    2015-01-01

    Voltage-gated sodium (NaV) channels are a family of transmembrane ion channel proteins. They function by forming a gated, water-filled pore to help establish and control cell membrane potential via control of the flow of ions between the intracellular and the extracellular environments. Blockade of NaVs has been successfully accomplished in the clinic to enable control of pathological firing patterns that occur in a diverse range of conditions such as chronic pain, epilepsy, and cardiac arrhythmias. First generation sodium channel modulator drugs, despite low inherent subtype selectivity, preferentially act on over-excited cells which reduces undesirable side effects in the clinic. However, the limited therapeutic indices observed with the first generation demanded a new generation of sodium channel inhibitors. The structure, function and the state of the art in sodium channel modulator drug discovery are discussed in this chapter. PMID:26646477

  11. Simulation of charge transport in ion channels and nanopores with anisotropic permittivity

    PubMed Central

    Mashl, R. Jay; Lee, Kyu Il; Jakobsson, Eric; Ravaioli, Umberto

    2010-01-01

    Ion channels are part of nature's solution for regulating biological environments. Every ion channel consists of a chain of amino acids carrying a strong and sharply varying permanent charge, folded in such a way that it creates a nanoscopic aqueous pore spanning the otherwise mostly impermeable membranes of biological cells. These naturally occurring proteins are particularly interesting to device engineers seeking to understand how such nanoscale systems realize device-like functions. Availability of high-resolution structural information from X-ray crystallography, as well as large-scale computational resources, makes it possible to conduct realistic ion channel simulations. In general, a hierarchy of simulation methodologies is needed to study different aspects of a biological system like ion channels. Biology Monte Carlo (BioMOCA), a three-dimensional coarse-grained particle ion channel simulator, offers a powerful and general approach to study ion channel permeation. BioMOCA is based on the Boltzmann Transport Monte Carlo (BTMC) and Particle-Particle-Particle-Mesh (P3M) methodologies developed at the University of Illinois at Urbana-Champaign. In this paper we briefly discuss the various approaches to simulating ion flow in channel systems that are currently being pursued by the biophysics and engineering communities, and present the effect of having anisotropic dielectric constants on ion flow through a number of nanopores with different effective diameters. PMID:20445807

  12. Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs.

    PubMed

    Chun, Kyoung-Yong; Son, Young Jun; Han, Chang-Soo

    2016-04-26

    Biological ion channels have led to much inspiration because of their unique and exquisite operational functions in living cells. Specifically, their extreme and dynamic sensing abilities can be realized by the combination of receptors and nanopores coupled together to construct an ion channel system. In the current study, we demonstrated that artificial ion channel pressure sensors inspired by nature for detecting pressure are highly sensitive and patchable. Our ion channel pressure sensors basically consisted of receptors and nanopore membranes, enabling dynamic current responses to external forces for multiple applications. The ion channel pressure sensors had a sensitivity of ∼5.6 kPa(-1) and a response time of ∼12 ms at a frequency of 1 Hz. The power consumption was recorded as less than a few μW. Moreover, a reliability test showed stability over 10 000 loading-unloading cycles. Additionally, linear regression was performed in terms of temperature, which showed no significant variations, and there were no significant current variations with humidity. The patchable ion channel pressure sensors were then used to detect blood pressure/pulse in humans, and different signals were clearly observed for each person. Additionally, modified ion channel pressure sensors detected complex motions including pressing and folding in a high-pressure range (10-20 kPa).

  13. Physiological and pathological functions of acid-sensing ion channels in the central nervous system

    PubMed Central

    Chu, Xiang-Ping; Xiong, Zhi-Gang

    2012-01-01

    Protons are important signals for neuronal function. In the central nervous system (CNS), proton concentrations change locally when synaptic vesicles release their acidic contents into the synaptic cleft, and globally in ischemia, seizures, traumatic brain injury, and other neurological disorders due to lactic acid accumulation. The finding that protons gate a distinct family of ion channels, the acid-sensing ion channels (ASICs), has shed new light on the mechanism of acid signaling and acidosis-associated neuronal injury. Accumulating evidence has suggested that ASICs play important roles in physiological processes such as synaptic plasticity, learning/memory, fear conditioning, and retinal integrity, and in pathological conditions such as brain ischemia, multiple sclerosis, epileptic seizures, and malignant glioma. Thus, targeting these channels may lead to novel therapeutic interventions for neurological disorders. The goal of this review is to provide an update on recent advances in our understanding of the functions of ASICs in the CNS. PMID:22204324

  14. Redox and Nitric Oxide-Mediated Regulation of Sensory Neuron Ion Channel Function

    PubMed Central

    2015-01-01

    Abstract Significance: Reactive oxygen and nitrogen species (ROS and RNS, respectively) can intimately control neuronal excitability and synaptic strength by regulating the function of many ion channels. In peripheral sensory neurons, such regulation contributes towards the control of somatosensory processing; therefore, understanding the mechanisms of such regulation is necessary for the development of new therapeutic strategies and for the treatment of sensory dysfunctions, such as chronic pain. Recent Advances: Tremendous progress in deciphering nitric oxide (NO) and ROS signaling in the nervous system has been made in recent decades. This includes the recognition of these molecules as important second messengers and the elucidation of their metabolic pathways and cellular targets. Mounting evidence suggests that these targets include many ion channels which can be directly or indirectly modulated by ROS and NO. However, the mechanisms specific to sensory neurons are still poorly understood. This review will therefore summarize recent findings that highlight the complex nature of the signaling pathways involved in redox/NO regulation of sensory neuron ion channels and excitability; references to redox mechanisms described in other neuron types will be made where necessary. Critical Issues: The complexity and interplay within the redox, NO, and other gasotransmitter modulation of protein function are still largely unresolved. Issues of specificity and intracellular localization of these signaling cascades will also be addressed. Future Directions: Since our understanding of ROS and RNS signaling in sensory neurons is limited, there is a multitude of future directions; one of the most important issues for further study is the establishment of the exact roles that these signaling pathways play in pain processing and the translation of this understanding into new therapeutics. Antioxid. Redox Signal. 22, 486–504. PMID:24735331

  15. Voltage-Gated Lipid Ion Channels

    PubMed Central

    Blicher, Andreas; Heimburg, Thomas

    2013-01-01

    Synthetic lipid membranes can display channel-like ion conduction events even in the absence of proteins. We show here that these events are voltage-gated with a quadratic voltage dependence as expected from electrostatic theory of capacitors. To this end, we recorded channel traces and current histograms in patch-experiments on lipid membranes. We derived a theoretical current-voltage relationship for pores in lipid membranes that describes the experimental data very well when assuming an asymmetric membrane. We determined the equilibrium constant between closed and open state and the open probability as a function of voltage. The voltage-dependence of the lipid pores is found comparable to that of protein channels. Lifetime distributions of open and closed events indicate that the channel open distribution does not follow exponential statistics but rather power law behavior for long open times. PMID:23823188

  16. Differential subcellular distribution of ion channels and the diversity of neuronal function.

    PubMed

    Nusser, Zoltan

    2012-06-01

    Following the astonishing molecular diversity of voltage-gated ion channels that was revealed in the past few decades, the ion channel repertoire expressed by neurons has been implicated as the major factor governing their functional heterogeneity. Although the molecular structure of ion channels is a key determinant of their biophysical properties, their subcellular distribution and densities on the surface of nerve cells are just as important for fulfilling functional requirements. Recent results obtained with high resolution quantitative localization techniques revealed complex, subcellular compartment-specific distribution patterns of distinct ion channels. Here I suggest that within a given neuron type every ion channel has a unique cell surface distribution pattern, with the functional consequence that this dramatically increases the computational power of nerve cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Brownian dynamics study of ion transport in the vestibule of membrane channels.

    PubMed

    Li, S C; Hoyles, M; Kuyucak, S; Chung, S H

    1998-01-01

    Brownian dynamics simulations have been carried out to study the transport of ions in a vestibular geometry, which offers a more realistic shape for membrane channels than cylindrical tubes. Specifically, we consider a torus-shaped channel, for which the analytical solution of Poisson's equation is possible. The system is composed of the toroidal channel, with length and radius of the constricted region of 80 A and 4 A, respectively, and two reservoirs containing 50 sodium ions and 50 chloride ions. The positions of each of these ions executing Brownian motion under the influence of a stochastic force and a systematic electric force are determined at discrete time steps of 50 fs for up to 2.5 ns. All of the systematic forces acting on an ion due to the other ions, an external electric field, fixed charges in the channel protein, and the image charges induced at the water-protein boundary are explicitly included in the calculations. We find that the repulsive dielectric force arising from the induced surface charges plays a dominant role in channel dynamics. It expels an ion from the vestibule when it is deliberately put in it. Even in the presence of an applied electric potential of 100 mV, an ion cannot overcome this repulsive force and permeate the channel. Only when dipoles of a favorable orientation are placed along the sides of the transmembrane segment can an ion traverse the channel under the influence of a membrane potential. When the strength of the dipoles is further increased, an ion becomes detained in a potential well, and the driving force provided by the applied field is not sufficient to drive the ion out of the well. The trajectory of an ion navigating across the channel mostly remains close to the central axis of the pore lumen. Finally, we discuss the implications of these findings for the transport of ions across the membrane.

  18. Unraveling the mechanism of selective ion transport in hydrophobic subnanometer channels

    PubMed Central

    Li, Hui; Francisco, Joseph S.; Zeng, Xiao Cheng

    2015-01-01

    Recently reported synthetic organic nanopore (SONP) can mimic a key feature of natural ion channels, i.e., selective ion transport. However, the physical mechanism underlying the K+/Na+ selectivity for the SONPs is dramatically different from that of natural ion channels. To achieve a better understanding of the selective ion transport in hydrophobic subnanometer channels in general and SONPs in particular, we perform a series of ab initio molecular dynamics simulations to investigate the diffusivity of aqua Na+ and K+ ions in two prototype hydrophobic nanochannels: (i) an SONP with radius of 3.2 Å, and (ii) single-walled carbon nanotubes (CNTs) with radii of 3–5 Å (these radii are comparable to those of the biological potassium K+ channels). We find that the hydration shell of aqua Na+ ion is smaller than that of aqua K+ ion but notably more structured and less yielding. The aqua ions do not lower the diffusivity of water molecules in CNTs, but in SONP the diffusivity of aqua ions (Na+ in particular) is strongly suppressed due to the rugged inner surface. Moreover, the aqua Na+ ion requires higher formation energy than aqua K+ ion in the hydrophobic nanochannels. As such, we find that the ion (K+ vs. Na+) selectivity of the (8, 8) CNT is ∼20× higher than that of SONP. Hence, the (8, 8) CNT is likely the most efficient artificial K+ channel due in part to its special interior environment in which Na+ can be fully solvated, whereas K+ cannot. This work provides deeper insights into the physical chemistry behind selective ion transport in nanochannels. PMID:26283377

  19. Unraveling the mechanism of selective ion transport in hydrophobic subnanometer channels.

    PubMed

    Li, Hui; Francisco, Joseph S; Zeng, Xiao Cheng

    2015-09-01

    Recently reported synthetic organic nanopore (SONP) can mimic a key feature of natural ion channels, i.e., selective ion transport. However, the physical mechanism underlying the K(+)/Na(+) selectivity for the SONPs is dramatically different from that of natural ion channels. To achieve a better understanding of the selective ion transport in hydrophobic subnanometer channels in general and SONPs in particular, we perform a series of ab initio molecular dynamics simulations to investigate the diffusivity of aqua Na(+) and K(+) ions in two prototype hydrophobic nanochannels: (i) an SONP with radius of 3.2 Å, and (ii) single-walled carbon nanotubes (CNTs) with radii of 3-5 Å (these radii are comparable to those of the biological potassium K(+) channels). We find that the hydration shell of aqua Na(+) ion is smaller than that of aqua K(+) ion but notably more structured and less yielding. The aqua ions do not lower the diffusivity of water molecules in CNTs, but in SONP the diffusivity of aqua ions (Na(+) in particular) is strongly suppressed due to the rugged inner surface. Moreover, the aqua Na(+) ion requires higher formation energy than aqua K(+) ion in the hydrophobic nanochannels. As such, we find that the ion (K(+) vs. Na(+)) selectivity of the (8, 8) CNT is ∼20× higher than that of SONP. Hence, the (8, 8) CNT is likely the most efficient artificial K(+) channel due in part to its special interior environment in which Na(+) can be fully solvated, whereas K(+) cannot. This work provides deeper insights into the physical chemistry behind selective ion transport in nanochannels.

  20. Resonant coherent excitation of relativistic Ar 17+ ions channeled in a Si crystal

    NASA Astrophysics Data System (ADS)

    Azuma, T.; Ito, T.; Yamazaki, Y.; Komaki, K.; Sano, M.; Torikoshi, M.; Kitagawa, A.; Takada, E.; Murakami, T.

    1998-02-01

    We observed resonant coherent excitation (RCE) of 1s electron to n=2 states in Ar 17+ through measurements of the survived fraction of 390 MeV/u hydrogen-like Ar 17+ channeled in a Si crystal. We adopted a totally depleted Si surface barrier detector as a target crystal as well as a probe of the energy deposition. The charge state of emerged ions was measured by a combination of a charge separation magnet and a 2D-position sensitive detector. We observed the RCE for planar channeled ions by tilting the target Si crystal from the direction of [1 1 0] axis in the (2 2¯ 0) , (0 0 4) , and (1 1¯ 1) planes. Prominent resonances at tilt angles under the resonance condition were observed. Moreover, each resonance profile is split into several lines due to the l· s interaction and the Stark effect originating in the static crystal field. The energy deposition in the crystal gives the information of the amplitude of the ion trajectory. The resonance peak position, intensity and width in the survived fraction of Ar 17+ reflect the position dependent strength of the crystal field, the RCE and the electron loss probabilities. They are in good accord with our calculation of the transition energy and probability.

  1. Multiple-channel detection of cellular activities by ion-sensitive transistors

    NASA Astrophysics Data System (ADS)

    Machida, Satoru; Shimada, Hideto; Motoyama, Yumi

    2018-04-01

    An ion-sensitive field-effect transistor to record cellular activities was demonstrated. This field-effect transistor (bio transistor) includes cultured cells on the gate insulator instead of gate electrode. The bio transistor converts a change in potential underneath the cells into variation of the drain current when ion channels open. The bio transistor has high detection sensitivity to even minute variations in potential utilizing a subthreshold swing region. To open ion channels, a reagent solution (acetylcholine) was added to a human-originating cell cultured on the bio transistor. The drain current was successfully decreased with the addition of acetylcholine. Moreover, we attempted to detect the opening of ion channels using a multiple-channel measurement circuit containing several bio transistors. As a consequence, the drain current distinctly decreased only after the addition of acetylcholine. We confirmed that this measurement system including bio transistors enables to observation of cellular activities sensitively and simultaneously.

  2. Role of TRP ion channels in cancer and tumorigenesis.

    PubMed

    Shapovalov, George; Ritaine, Abigael; Skryma, Roman; Prevarskaya, Natalia

    2016-05-01

    Transient receptor potential (TRP) channels are recently identified proteins that form a versatile family of ion channels, the majority of which are calcium permeable and exhibit complex regulatory patterns with sensitivity to multiple environmental factors. While this sensitivity has captured early attention, leading to recognition of TRP channels as environmental and chemical sensors, many later studies concentrated on the regulation of intracellular calcium by TRP channels. Due to mutations, dysregulation of ion channel gating or expression levels, normal spatiotemporal patterns of local Ca(2+) distribution become distorted. This causes deregulation of downstream effectors sensitive to changes in Ca(2+) homeostasis that, in turn, promotes pathophysiological cancer hallmarks, such as enhanced survival, proliferation and invasion. These observations give rise to the appreciation of the important contributions that TRP channels make to many cellular processes controlling cell fate and positioning these channels as important players in cancer regulation. This review discusses the accumulated scientific knowledge focused on TRP channel involvement in regulation of cell fate in various transformed tissues.

  3. Molecular Targets for Antiepileptic Drug Development

    PubMed Central

    Meldrum, Brian S.; Rogawski, Michael A.

    2007-01-01

    Summary This review considers how recent advances in the physiology of ion channels and other potential molecular targets, in conjunction with new information on the genetics of idiopathic epilepsies, can be applied to the search for improved antiepileptic drugs (AEDs). Marketed AEDs predominantly target voltage-gated cation channels (the α subunits of voltage-gated Na+ channels and also T-type voltage-gated Ca2+ channels) or influence GABA-mediated inhibition. Recently, α2–δ voltage-gated Ca2+ channel subunits and the SV2A synaptic vesicle protein have been recognized as likely targets. Genetic studies of familial idiopathic epilepsies have identified numerous genes associated with diverse epilepsy syndromes, including genes encoding Na+ channels and GABAA receptors, which are known AED targets. A strategy based on genes associated with epilepsy in animal models and humans suggests other potential AED targets, including various voltage-gated Ca2+ channel subunits and auxiliary proteins, A- or M-type voltage-gated K+ channels, and ionotropic glutamate receptors. Recent progress in ion channel research brought about by molecular cloning of the channel subunit proteins and studies in epilepsy models suggest additional targets, including G-protein-coupled receptors, such as GABAB and metabotropic glutamate receptors; hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits, responsible for hyperpolarization-activated current Ih; connexins, which make up gap junctions; and neurotransmitter transporters, particularly plasma membrane and vesicular transporters for GABA and glutamate. New information from the structural characterization of ion channels, along with better understanding of ion channel function, may allow for more selective targeting. For example, Na+ channels underlying persistent Na+ currents or GABAA receptor isoforms responsible for tonic (extrasynaptic) currents represent attractive targets. The growing understanding of the

  4. Mass-dependent channel electron multiplier operation. [for ion detection

    NASA Technical Reports Server (NTRS)

    Fields, S. A.; Burch, J. L.; Oran, W. A.

    1977-01-01

    The absolute counting efficiency and pulse height distributions of a continuous-channel electron multiplier used in the detection of hydrogen, argon and xenon ions are assessed. The assessment technique, which involves the post-acceleration of 8-eV ion beams to energies from 100 to 4000 eV, provides information on counting efficiency versus post-acceleration voltage characteristics over a wide range of ion mass. The charge pulse height distributions for H2 (+), A (+) and Xe (+) were measured by operating the experimental apparatus in a marginally gain-saturated mode. It was found that gain saturation occurs at lower channel multiplier operating voltages for light ions such as H2 (+) than for the heavier ions A (+) and Xe (+), suggesting that the technique may be used to discriminate between these two classes of ions in electrostatic analyzers.

  5. Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels.

    PubMed

    Amiri, Hasti; Shepard, Kenneth L; Nuckolls, Colin; Hernández Sánchez, Raúl

    2017-02-08

    Here we report on the ion conductance through individual, small diameter single-walled carbon nanotubes. We find that they are mimics of ion channels found in natural systems. We explore the factors governing the ion selectivity and permeation through single-walled carbon nanotubes by considering an electrostatic mechanism built around a simplified version of the Gouy-Chapman theory. We find that the single-walled carbon nanotubes preferentially transported cations and that the cation permeability is size-dependent. The ionic conductance increases as the absolute hydration enthalpy decreases for monovalent cations with similar solid-state radii, hydrated radii, and bulk mobility. Charge screening experiments using either the addition of cationic or anionic polymers, divalent metal cations, or changes in pH reveal the enormous impact of the negatively charged carboxylates at the entrance of the single-walled carbon nanotubes. These observations were modeled in the low-to-medium concentration range (0.1-2.0 M) by an electrostatic mechanism that mimics the behavior observed in many biological ion channel-forming proteins. Moreover, multi-ion conduction in the high concentration range (>2.0 M) further reinforces the similarity between single-walled carbon nanotubes and protein ion channels.

  6. Epithelial Sodium and Acid-Sensing Ion Channels

    NASA Astrophysics Data System (ADS)

    Kellenberger, Stephan

    The epithelial Na+ channel (ENaC) and acid-sensing ion channels (ASICs) are non-voltage-gated Na+ channels that form their own subfamilies within the ENaC/degenerin ion channel family. ASICs are sensors of extracellular pH, and ENaC, whose main function is trans-epithelial Na+ transport, can sense extra- and intra-cellular Na+. In aldosterone-responsive epithelial cells of the kidney, ENaC plays a critical role in the control of sodium balance, blood volume and blood pressure. In airway epithelia, ENaC has a distinct role in controlling fluid reabsorption at the air-liquid interface, thereby determining the rate of mucociliary transport. In taste receptor cells of the tongue, ENaC is involved in salt taste sensation. ASICs have emerged as key sensors for extracellular protons in central and peripheral neurons. Although not all of their physiological and pathological functions are firmly established yet, there is good evidence for a role of ASICs in the brain in learning, expression of fear, and in neurodegeneration after ischaemic stroke. In sensory neurons, ASICs are involved in nociception and mechanosensation. ENaC and ASIC subunits share substantial sequence homology and the conservation of several functional domains. This chapter summarises our current understanding of the physiological functions and of the mechanisms of ion permeation, gating and regulation of ENaC and ASICs.

  7. Ion-binding properties of a K+ channel selectivity filter in different conformations.

    PubMed

    Liu, Shian; Focke, Paul J; Matulef, Kimberly; Bian, Xuelin; Moënne-Loccoz, Pierre; Valiyaveetil, Francis I; Lockless, Steve W

    2015-12-08

    K(+) channels are membrane proteins that selectively conduct K(+) ions across lipid bilayers. Many voltage-gated K(+) (KV) channels contain two gates, one at the bundle crossing on the intracellular side of the membrane and another in the selectivity filter. The gate at the bundle crossing is responsible for channel opening in response to a voltage stimulus, whereas the gate at the selectivity filter is responsible for C-type inactivation. Together, these regions determine when the channel conducts ions. The K(+) channel from Streptomyces lividians (KcsA) undergoes an inactivation process that is functionally similar to KV channels, which has led to its use as a practical system to study inactivation. Crystal structures of KcsA channels with an open intracellular gate revealed a selectivity filter in a constricted conformation similar to the structure observed in closed KcsA containing only Na(+) or low [K(+)]. However, recent work using a semisynthetic channel that is unable to adopt a constricted filter but inactivates like WT channels challenges this idea. In this study, we measured the equilibrium ion-binding properties of channels with conductive, inactivated, and constricted filters using isothermal titration calorimetry (ITC). EPR spectroscopy was used to determine the state of the intracellular gate of the channel, which we found can depend on the presence or absence of a lipid bilayer. Overall, we discovered that K(+) ion binding to channels with an inactivated or conductive selectivity filter is different from K(+) ion binding to channels with a constricted filter, suggesting that the structures of these channels are different.

  8. Study of the interaction of potassium ion channel protein with micelle by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Shantappa, Anil; Talukdar, Keka

    2018-04-01

    Ion channels are proteins forming pore inside the body of all living organisms. This potassium ion channel known as KcsA channel and it is found in the each cell and nervous system. Flow of various ions is regulated by the function of the ion channels. The nerve ion channel protein with protein data bank entry 1BL8, which is basically an ion channel protein in Streptomyces Lividans and which is taken up to form micelle-protein system and the system is analyzed by using molecular dynamics simulation. Firstly, ion channel pore is engineered by CHARMM potential and then Micelle-protein system is subjected to molecular dynamics simulation. For some specific micelle concentration, the protein unfolding is observed.

  9. Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field.

    PubMed

    Moran, Magdalene M; Szallasi, Arpad

    2018-06-01

    Control of chronic pain is frequently inadequate and/or associated with intolerable adverse effects, prompting a frantic search for new therapeutics and new therapeutic targets. Nearly two decades of preclinical and clinical research supports the involvement of transient receptor potential (TRP) channels in temperature perception, nociception and sensitization. Although there has been considerable excitement around the therapeutic potential of this channel family since the cloning and identification of TRPV1 cation channels as the capsaicin receptor more than 20 years ago, only modulators of a few channels have been tested clinically. TRPV1 channel antagonists have suffered from side effects related to the channel's role in temperature sensation; however, high dose formulations of capsaicin have reached the market and shown therapeutic utility. A number of potent, small molecule antagonists of TRPA1 channels have recently advanced into clinical trials for the treatment of inflammatory and neuropathic pain, and TRPM8 antagonists are following closely behind for cold allodynia. TRPV3, TRPV4, TRPM2 and TRPM3 channels have also been of significant interest. This review discusses the preclinical promise and status of novel analgesic agents that target TRP channels and the challenges that these compounds may face in development and clinical practice. This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc. © 2017 The British Pharmacological Society.

  10. Radio-frequency response of single pores and artificial ion channels

    NASA Astrophysics Data System (ADS)

    Kim, H. S.; Ramachandran, S.; Stava, E.; van der Weide, D. W.; Blick, R. H.

    2011-09-01

    Intercellular communication relies on ion channels and pores in cell membranes. These protein-formed channels enable the exchange of ions and small molecules to electrically and/or chemically interact with the cells. Traditionally, recordings on single-ion channels and pores are performed in the dc regime, due to the extremely high impedance of these molecular junctions. This paper is intended as an introduction to radio-frequency (RF) recordings of single-molecule junctions in bilipid membranes. First, we demonstrate how early approaches to using microwave circuitry as readout devices for ion channel formation were realized. The second step will then focus on how to engineer microwave coupling into the high-impedance channel by making use of bio-compatible micro-coaxial lines. We then demonstrate integration of an ultra-broadband microwave circuit for the direct sampling of single α-hemolysin pores in a suspended bilipid membrane. Simultaneous direct current recordings reveal that we can monitor and correlate the RF transmission signal. This enables us to relate the open-close states of the direct current to the RF signal. Altogether, our experiments lay the ground for an RF-readout technique to perform real-time in vitro recordings of pores. The technique thus holds great promise for research and drug screening applications. The possible enhancement of sampling rates of single channels and pores by the large recording bandwidth will allow us to track the passage of single ions.

  11. Turning a Poor Ion Channel into a Good Pump

    NASA Astrophysics Data System (ADS)

    Astumian, Dean

    2003-05-01

    We consider a membrane protein that can exist in two configurations, either one of which acts as a poor ion channel, allowing ions to slowly leak across the membrane from high to low elctrochemical potential. We show that random external fluctuations can provide the energy to turn this poor channel into a good pump that drives ion transport from low to high electrochemical potential. We discuss this result in terms of a gambling analogy, and point to possible implications for fields as far ranging as population biology, economics, and actuarial science.

  12. Artificial transmembrane ion channels from self-assembling peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Ghadiri, M. Reza; Granja, Juan R.; Buehler, Lukas K.

    1994-05-01

    NATURALLY occurring membrane channels and pores are formed from a large family of diverse proteins, peptides and organic secon-dary metabolites whose vital biological functions include control of ion flow, signal transduction, molecular transport and produc-tion of cellular toxins. But despite the availability of a large amount of biochemical information about these molecules1, the design and synthesis of artificial systems that can mimic the bio-logical function of natural compounds remains a formidable task2-12. Here we present a simple strategy for the design of artifi-cial membrane ion channels based on a self-assembled cylindrical β-sheet peptide architecture13. Our systems-essentially stacks of peptide rings-display good channel-mediated ion-transport activ-ity with rates exceeding 107 ions s-1, rivalling the performance of many naturally occurring counterparts. Such molecular assemblies should find use in the design of novel cytotoxic agents, membrane transport vehicles and drug-delivery systems.

  13. TRPP2 ion channels: Critical regulators of organ morphogenesis in health and disease.

    PubMed

    Busch, Tilman; Köttgen, Michael; Hofherr, Alexis

    2017-09-01

    Ion channels control the membrane potential and mediate transport of ions across membranes. Archetypical physiological functions of ion channels include processes such as regulation of neuronal excitability, muscle contraction, or transepithelial ion transport. In that regard, transient receptor potential ion channel polycystin 2 (TRPP2) is remarkable, because it controls complex morphogenetic processes such as the establishment of properly shaped epithelial tubules and left-right-asymmetry of organs. The fascinating question of how an ion channel regulates morphogenesis has since captivated the attention of scientists in different disciplines. Four loosely connected key insights on different levels of biological complexity ranging from protein to whole organism have framed our understanding of TRPP2 physiology: 1) TRPP2 is a non-selective cation channel; 2) TRPP2 is part of a receptor-ion channel complex; 3) TRPP2 localizes to primary cilia; and 4) TRPP2 is required for organ morphogenesis. In this review, we will discuss the current knowledge in these key areas and highlight some of the challenges ahead. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Theory and simulation of ion conduction in the pentameric GLIC channel.

    PubMed

    Zhu, Fangqiang; Hummer, Gerhard

    2012-10-09

    GLIC is a bacterial member of the large family of pentameric ligand-gated ion channels. To study ion conduction through GLIC and other membrane channels, we combine the one-dimensional potential of mean force for ion passage with a Smoluchowski diffusion model, making it possible to calculate single-channel conductance in the regime of low ion concentrations from all-atom molecular dynamics (MD) simulations. We then perform MD simulations to examine sodium ion conduction through the GLIC transmembrane pore in two systems with different bulk ion concentrations. The ion potentials of mean force, calculated from umbrella sampling simulations with Hamiltonian replica exchange, reveal a major barrier at the hydrophobic constriction of the pore. The relevance of this barrier for ion transport is confirmed by a committor function that rises sharply in the barrier region. From the free evolution of Na(+) ions starting at the barrier top, we estimate the effective diffusion coefficient in the barrier region, and subsequently calculate the conductance of the pore. The resulting diffusivity compares well with the position-dependent ion diffusion coefficient obtained from restrained simulations. The ion conductance obtained from the diffusion model agrees with the value determined via a reactive-flux rate calculation. Our results show that the conformation in the GLIC crystal structure, with an estimated conductance of ~1 picosiemens at 140 mM ion concentration, is consistent with a physiologically open state of the channel.

  15. Relevance of Viroporin Ion Channel Activity on Viral Replication and Pathogenesis

    PubMed Central

    Nieto-Torres, Jose L.; Verdiá-Báguena, Carmina; Castaño-Rodriguez, Carlos; Aguilella, Vicente M.; Enjuanes, Luis

    2015-01-01

    Modification of host-cell ionic content is a significant issue for viruses, as several viral proteins displaying ion channel activity, named viroporins, have been identified. Viroporins interact with different cellular membranes and self-assemble forming ion conductive pores. In general, these channels display mild ion selectivity, and, eventually, membrane lipids play key structural and functional roles in the pore. Viroporins stimulate virus production through different mechanisms, and ion channel conductivity has been proved particularly relevant in several cases. Key stages of the viral cycle such as virus uncoating, transport and maturation are ion-influenced processes in many viral species. Besides boosting virus propagation, viroporins have also been associated with pathogenesis. Linking pathogenesis either to the ion conductivity or to other functions of viroporins has been elusive for a long time. This article summarizes novel pathways leading to disease stimulated by viroporin ion conduction, such as inflammasome driven immunopathology. PMID:26151305

  16. Experiments with crystal deflectors for high energy ion beams: Electromagnetic dissociation probability for well channeled ions

    NASA Astrophysics Data System (ADS)

    Scandale, W.; Taratin, A. M.; Kovalenko, A. D.

    2013-01-01

    The paper presents the current status with the use of the crystal defectors for high energy ion beams. The channeling properties of multicharged ions are discussed. The results of the experiments on the deflection and extraction (collimation) of high energy ion beams with bent crystals performed in the accelerator centers are shortly considered. The analysis of the recent collimation experiment with a Pb nuclei of 270GeV/c per charge at the CERN Super Proton Synchrotron showed that the channeling efficiency was as large as about 90%. For Pb ions of the LHC energies a new mechanism, which can reduce the channeling efficiency, appears. The electromagnetic dissociation (ED) becomes possible for well channeled particles. However, the estimations performed in the paper show that the ED probability is small and should not visibly reduce the collimation efficiency. On the other hand, the aligned crystal gives the possibility to study the ED processes of heavy nuclei in the conditions when nuclear interactions are fully suppressed.

  17. Two-pore channels (TPCs): Novel voltage-gated ion channels with pleiotropic functions

    PubMed Central

    Feijóo-Bandín, Sandra; García-Vence, María; García-Rúa, Vanessa; Roselló-Lletí, Esther; Portolés, Manuel; Rivera, Miguel; González-Juanatey, José Ramón; Lago, Francisca

    2017-01-01

    ABSTRACT Two-pore channels (TPC1-3) comprise a subfamily of the eukaryotic voltage-gated ion channels (VGICs) superfamily that are mainly expressed in acidic stores in plants and animals. TPCS are widespread across the animal kingdom, with primates, mice and rats lacking TPC3, and mainly act as Ca+ and Na+ channels, although it was also suggested that they could be permeable to other ions. Nowadays, TPCs have been related to the development of different diseases, including Parkinson´s disease, obesity or myocardial ischemia. Due to this, their study has raised the interest of the scientific community to try to understand their mechanism of action in order to be able to develop an efficient drug that could regulate TPCs activity. In this review, we will provide an updated view regarding TPCs structure, function and activation, as well as their role in different pathophysiological processes. PMID:27440385

  18. Pharmacoperone drugs: targeting misfolded proteins causing lysosomal storage-, ion channels-, and G protein-coupled receptors-associated conformational disorders.

    PubMed

    Hou, Zhi-Shuai; Ulloa-Aguirre, Alfredo; Tao, Ya-Xiong

    2018-06-01

    Conformational diseases are caused by structurally abnormal proteins that cannot fold properly and achieve their native conformation. Misfolded proteins frequently originate from genetic mutations that may lead to loss-of-function diseases involving a variety of structurally diverse proteins including enzymes, ion channels, and membrane receptors. Pharmacoperones are small molecules that cross the cell surface plasma membrane and reach their target proteins within the cell, serving as molecular scaffolds to stabilize the native conformation of misfolded or well-folded but destabilized proteins, to prevent their degradation and promote correct trafficking to their functional site of action. Because of their high specificity toward the target protein, pharmacoperones are currently the focus of intense investigation as therapy for several conformational diseases. Areas covered: This review summarizes data on the mechanisms leading to protein misfolding and the use of pharmacoperone drugs as an experimental approach to rescue function of distinct misfolded/misrouted proteins associated with a variety of diseases, such as lysosomal storage diseases, channelopathies, and G protein-coupled receptor misfolding diseases. Expert commentary: The fact that many misfolded proteins may retain function, offers a unique therapeutic opportunity to cure disease by directly correcting misrouting through administering pharmacoperone drugs thereby rescuing function of disease-causing, conformationally abnormal proteins.

  19. Relevance of quantum mechanics on some aspects of ion channel function

    PubMed Central

    Roy, Sisir

    2010-01-01

    Mathematical modeling of ionic diffusion along K ion channels indicates that such diffusion is oscillatory, at the weak non-Markovian limit. This finding leads us to derive a Schrödinger–Langevin equation for this kind of system within the framework of stochastic quantization. The Planck’s constant is shown to be relevant to the Lagrangian action at the level of a single ion channel. This sheds new light on the issue of applicability of quantum formalism to ion channel dynamics and to the physical constraints of the selectivity filter. PMID:19520314

  20. Voltage-dependent ion channels in the mouse RPE: comparison with Norrie disease mice.

    PubMed

    Wollmann, Guido; Lenzner, Steffen; Berger, Wolfgang; Rosenthal, Rita; Karl, Mike O; Strauss, Olaf

    2006-03-01

    We studied electrophysiological properties of cultured retinal pigment epithelial (RPE) cells from mouse and a mouse model for Norrie disease. Wild-type RPE cells revealed the expression of ion channels known from other species: delayed-rectifier K(+) channels composed of Kv1.3 subunits, inward rectifier K(+) channels, Ca(V)1.3 L-type Ca(2+) channels and outwardly rectifying Cl(-) channels. Expression pattern and the ion channel characteristics current density, blocker sensitivity, kinetics and voltage-dependence were compared in cells from wild-type and Norrie mice. Although no significant differences were observed, our study provides a base for future studies on ion channel function and dysfunction in transgenic mouse models.

  1. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.

    PubMed

    Guo, Wei; Tian, Ye; Jiang, Lei

    2013-12-17

    Both scientists and engineers are interested in the design and fabrication of synthetic nanofluidic architectures that mimic the gating functions of biological ion channels. The effort to build such structures requires interdisciplinary efforts at the intersection of chemistry, materials science, and nanotechnology. Biological ion channels and synthetic nanofluidic devices have some structural and chemical similarities, and therefore, they share some common features in regulating the traverse ionic flow. In the past decade, researchers have identified two asymmetric ion transport phenomena in synthetic nanofluidic structures, the rectified ionic current and the net diffusion current. The rectified ionic current is a diode-like current-voltage response that occurs when switching the voltage bias. This phenomenon indicates a preferential direction of transport in the nanofluidic system. The net diffusion current occurs as a direct product of charge selectivity and is generated from the asymmetric diffusion through charged nanofluidic channels. These new ion transport phenomena and the elaborate structures that occur in biology have inspired us to build functional nanofluidic devices for both fundamental research and practical applications. In this Account, we review our recent progress in the design and fabrication of biomimetic solid-state nanofluidic devices with asymmetric ion transport behavior. We demonstrate the origin of the rectified ionic current and the net diffusion current. We also identify several influential factors and discuss how to build these asymmetric features into nanofluidic systems by controlling (1) nanopore geometry, (2) surface charge distribution, (3) chemical composition, (4) channel wall wettability, (5) environmental pH, (6) electrolyte concentration gradient, and (7) ion mobility. In the case of the first four features, we build these asymmetric features directly into the nanofluidic structures. With the final three, we construct

  2. RNAi-mediated knockdown of the voltage gated sodium ion channel TcNav causes mortality in Tribolium castaneum.

    PubMed

    Abd El Halim, Hesham M; Alshukri, Baida M H; Ahmad, Munawar S; Nakasu, Erich Y T; Awwad, Mohammed H; Salama, Elham M; Gatehouse, Angharad M R; Edwards, Martin G

    2016-07-14

    The voltage-gated sodium ion channel (VGSC) belongs to the largest superfamily of ion channels. Since VGSCs play key roles in physiological processes they are major targets for effective insecticides. RNA interference (RNAi) is widely used to analyse gene function, but recently, it has shown potential to contribute to novel strategies for selectively controlling agricultural insect pests. The current study evaluates the delivery of dsRNA targeted to the sodium ion channel paralytic A (TcNav) gene in Tribolium castaneum as a viable means of controlling this insect pest. Delivery of TcNav dsRNA caused severe developmental arrest with larval mortalities up to 73% post injection of dsRNA. Injected larvae showed significant (p < 0.05) knockdown in gene expression between 30-60%. Expression was also significantly (p < 0.05) reduced in pupae following injection causing 30% and 42% knockdown for early and late pupal stages, respectively. Oral delivery of dsRNA caused dose-dependant mortalities of between 19 and 51.34%; this was accompanied by significant (p < 0.05) knockdown in gene expression following 3 days of continuous feeding. The majority of larvae injected with, or fed, dsRNA died during the final larval stage prior to pupation. This work provides evidence of a viable RNAi-based strategy for insect control.

  3. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

    PubMed

    Behera, Rabindra K; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M; Goulding, Celia W; Theil, Elizabeth C

    2015-09-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.

  4. Fe2+ Substrate Transport through Ferritin Protein Cage Ion Channels Influences Enzyme Activity and Biomineralization

    PubMed Central

    Behera, Rabindra K.; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M.; Goulding, Celia W.; Theil, Elizabeth C.

    2015-01-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3.H2O), by moving cytoplasmic Fe2+ through intracage ion channels to cage-embedded enzyme (2Fe2+/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe2+ movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one – CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650nm (DFP λmax). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe3+-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: 1. narrower interior ion channel openings/pores, 2. increased numbers of ion channel protein-metal binding sites, and 3. a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells. PMID:26202907

  5. A Change in the Ion Selectivity of Ligand-Gated Ion Channels Provides a Mechanism to Switch Behavior.

    PubMed

    Pirri, Jennifer K; Rayes, Diego; Alkema, Mark J

    2015-01-01

    Behavioral output of neural networks depends on a delicate balance between excitatory and inhibitory synaptic connections. However, it is not known whether network formation and stability is constrained by the sign of synaptic connections between neurons within the network. Here we show that switching the sign of a synapse within a neural circuit can reverse the behavioral output. The inhibitory tyramine-gated chloride channel, LGC-55, induces head relaxation and inhibits forward locomotion during the Caenorhabditis elegans escape response. We switched the ion selectivity of an inhibitory LGC-55 anion channel to an excitatory LGC-55 cation channel. The engineered cation channel is properly trafficked in the native neural circuit and results in behavioral responses that are opposite to those produced by activation of the LGC-55 anion channel. Our findings indicate that switches in ion selectivity of ligand-gated ion channels (LGICs) do not affect network connectivity or stability and may provide an evolutionary and a synthetic mechanism to change behavior.

  6. Molecular Dynamics Simulation of the Antiamoebin Ion Channel: Linking Structure and Conductance

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Wei, Chenyu; Bjelkmar, Paer; Wallace, B. A.; Pohorille, Andrew

    2011-01-01

    Molecular dynamics simulations were carried out in order to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistant with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive.The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be non-conducting. The conductance of the hexamer was estimated to be 115+/-34 pS and 74+/-20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K(+) and Cl(-) with their first solvation shells intact. The free energy barrier encountered by K(+) is only 2.2 kcal/mol whereas Cl(-) encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics. keywords: ion channels, peptaibols, channel conductance, molecular dynamics

  7. Calcium channel modulation as a target in chronic pain control

    PubMed Central

    Montagut‐Bordas, Carlota; Dickenson, Anthony H

    2017-01-01

    Neuropathic pain remains poorly treated for large numbers of patients, and little progress has been made in developing novel classes of analgesics. To redress this issue, ziconotide (Prialt™) was developed and approved as a first‐in‐class synthetic version of ω‐conotoxin MVIIA, a peptide blocker of Cav2.2 channels. Unfortunately, the impracticalities of intrathecal delivery, low therapeutic index and severe neurological side effects associated with ziconotide have restricted its use to exceptional circumstances. Ziconotide exhibits no state or use‐dependent block of Cav2.2 channels; activation state‐dependent blockers were hypothesized to circumvent the side effects of state‐independent blockers by selectively targeting high‐frequency firing of nociceptive neurones in chronic pain states, thus alleviating aberrant pain but not affecting normal sensory transduction. Unfortunately, numerous drugs, including state‐dependent calcium channel blockers, have displayed efficacy in preclinical models but have subsequently been disappointing in clinical trials. In recent years, it has become more widely acknowledged that trans‐aetiological sensory profiles exist amongst chronic pain patients and may indicate similar underlying mechanisms and drug sensitivities. Heterogeneity amongst patients, a reliance on stimulus‐evoked endpoints in preclinical studies and a failure to utilize translatable endpoints, all are likely to have contributed to negative clinical trial results. We provide an overview of how electrophysiological and operant‐based assays provide insight into sensory and affective aspects of pain in animal models and how these may relate to chronic pain patients in order to improve the bench‐to‐bedside translation of calcium channel modulators. Linked Articles This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http

  8. Deletion of Tsc2 in Nociceptors Reduces Target Innervation, Ion Channel Expression, and Sensitivity to Heat

    PubMed Central

    Carlin, Dan; Golden, Judith P.; Monk, Kelly R.

    2018-01-01

    Abstract The mechanistic target of rapamycin complex 1 (mTORC1) is known to regulate cellular growth pathways, and its genetic activation is sufficient to enhance regenerative axon growth following injury to the central or peripheral nervous systems. However, excess mTORC1 activation may promote innervation defects, and mTORC1 activity mediates injury-induced hypersensitivity, reducing enthusiasm for the pathway as a therapeutic target. While mTORC1 activity is required for full expression of some pain modalities, the effects of pathway activation on nociceptor phenotypes and sensory behaviors are currently unknown. To address this, we genetically activated mTORC1 in mouse peripheral sensory neurons by conditional deletion of its negative regulator Tuberous Sclerosis Complex 2 (Tsc2). Consistent with the well-known role of mTORC1 in regulating cell size, soma size and axon diameter of C-nociceptors were increased in Tsc2-deleted mice. Glabrous skin and spinal cord innervation by C-fiber neurons were also disrupted. Transcriptional profiling of nociceptors enriched by fluorescence-associated cell sorting (FACS) revealed downregulation of multiple classes of ion channels as well as reduced expression of markers for peptidergic nociceptors in Tsc2-deleted mice. In addition to these changes in innervation and gene expression, Tsc2-deleted mice exhibited reduced noxious heat sensitivity and decreased injury-induced cold hypersensitivity, but normal baseline sensitivity to cold and mechanical stimuli. Together, these data show that excess mTORC1 activity in sensory neurons produces changes in gene expression, neuron morphology and sensory behavior. PMID:29766046

  9. Thermodynamic limitations on the temperature sensitivity of cell-membrane ion channels: Trouble with enthalpy uncertainty

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.

    2018-06-01

    Energy exchange between a thermodynamic ensemble of heat- and cold-activated cell-membrane ion channels and the surrounding heat reservoir is shown to impose fundamental limitations on the performance of such channels as temperature-controlled gates for thermal cell activation. Analysis of unavoidable thermodynamic internal-energy fluctuations caused by energy exchange between the ion channels and the heat bath suggests that the resulting enthalpy uncertainty is too high for a robust ion-current gating by a single ion channel, implying that large ensembles of ion channels are needed for thermal cell activation. We argue, based on this thermodynamic analysis, that, had thermosensitive cell-membrane ion channels operated individually, rather than as large ensembles, robust thermal cell activation would have been impossible because of thermodynamic fluctuations.

  10. Expression and distribution of voltage-gated ion channels in ferret sinoatrial node.

    PubMed

    Brahmajothi, Mulugu V; Morales, Michael J; Campbell, Donald L; Steenbergen, Charles; Strauss, Harold C

    2010-10-01

    Spontaneous diastolic depolarization in the sinoatrial (SA) node enables it to serve as pacemaker of the heart. The variable cell morphology within the SA node predicts that ion channel expression would be heterogeneous and different from that in the atrium. To evaluate ion channel heterogeneity within the SA node, we used fluorescent in situ hybridization to examine ion channel expression in the ferret SA node region and atrial appendage. SA nodal cells were distinguished from surrounding cardiac myocytes by expression of the slow (SA node) and cardiac (surrounding tissue) forms of troponin I. Nerve cells in the sections were identified by detection of GAP-43 and cytoskeletal middle neurofilament. Transcript expression was characterized for the 4 hyperpolarization-activated cation channels, 6 voltage-gated Na(+) channels, 3 voltage-gated Ca(2+) channels, 24 voltage-gated K(+) channel α-subunits, and 3 ancillary subunits. To ensure that transcript expression was representative of protein expression, immunofluorescence was used to verify localization patterns of voltage-dependent K(+) channels. Colocalizations were performed to observe any preferential patterns. Some overlapping and nonoverlapping binding patterns were observed. Measurement of different cation channel transcripts showed heterogeneous expression with many different patterns of expression, attesting to the complexity of electrical activity in the SA node. This study provides insight into the possible role ion channel heterogeneity plays in SA node pacemaker activity.

  11. Acid stress mediated adaptive divergence in ion channel function during embryogenesis in Rana arvalis

    PubMed Central

    Shu, Longfei; Laurila, Anssi; Räsänen, Katja

    2015-01-01

    Ion channels and pumps are responsible for ion flux in cells, and are key mechanisms mediating cellular function. Many environmental stressors, such as salinity and acidification, are known to severely disrupt ionic balance of organisms thereby challenging fitness of natural populations. Although ion channels can have several vital functions during early life-stages (e.g. embryogenesis), it is currently not known i) how developing embryos maintain proper intracellular conditions when exposed to environmental stress and ii) to what extent environmental stress can drive intra-specific divergence in ion channels. Here we studied the moor frog, Rana arvalis, from three divergent populations to investigate the role of different ion channels and pumps for embryonic survival under acid stress (pH 4 vs 7.5) and whether populations adapted to contrasting acidities differ in the relative role of different ion channel/pumps. We found that ion channels that mediate Ca2+ influx are essential for embryonic survival under acidic pH, and, intriguingly, that populations differ in calcium channel function. Our results suggest that adaptive divergence in embryonic acid stress tolerance of amphibians may in part be mediated by Ca2+ balance. We suggest that ion flux may mediate adaptive divergence of natural populations at early life-stages in the face of environmental stress. PMID:26381453

  12. Obtaining spheroplasts of armored dinoflagellates and first single-channel recordings of their ion channels using patch-clamping.

    PubMed

    Pozdnyakov, Ilya; Matantseva, Olga; Negulyaev, Yuri; Skarlato, Sergei

    2014-09-05

    Ion channels are tightly involved in various aspects of cell physiology, including cell signaling, proliferation, motility, endo- and exo-cytosis. They may be involved in toxin production and release by marine dinoflagellates, as well as harmful algal bloom proliferation. So far, the patch-clamp technique, which is the most powerful method to study the activity of ion channels, has not been applied to dinoflagellate cells, due to their complex cellulose-containing cell coverings. In this paper, we describe a new approach to overcome this problem, based on the preparation of spheroplasts from armored bloom-forming dinoflagellate Prorocentrum minimum. We treated the cells of P. minimum with a cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB), and found out that it could also induce ecdysis and arrest cell shape maintenance in these microalgae. Treatment with 100-250 µM DCB led to an acceptable 10% yield of P. minimum spheroplasts and was independent of the incubation time in the range of 1-5 days. We show that such spheroplasts are suitable for patch-clamping in the cell-attached mode and can form 1-10 GOhm patch contact with a glass micropipette, allowing recording of ion channel activity. The first single-channel recordings of dinoflagellate ion channels are presented.

  13. Obtaining Spheroplasts of Armored Dinoflagellates and First Single-Channel Recordings of Their Ion Channels Using Patch-Clamping

    PubMed Central

    Pozdnyakov, Ilya; Matantseva, Olga; Negulyaev, Yuri; Skarlato, Sergei

    2014-01-01

    Ion channels are tightly involved in various aspects of cell physiology, including cell signaling, proliferation, motility, endo- and exo-cytosis. They may be involved in toxin production and release by marine dinoflagellates, as well as harmful algal bloom proliferation. So far, the patch-clamp technique, which is the most powerful method to study the activity of ion channels, has not been applied to dinoflagellate cells, due to their complex cellulose-containing cell coverings. In this paper, we describe a new approach to overcome this problem, based on the preparation of spheroplasts from armored bloom-forming dinoflagellate Prorocentrum minimum. We treated the cells of P. minimum with a cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB), and found out that it could also induce ecdysis and arrest cell shape maintenance in these microalgae. Treatment with 100–250 µM DCB led to an acceptable 10% yield of P. minimum spheroplasts and was independent of the incubation time in the range of 1–5 days. We show that such spheroplasts are suitable for patch-clamping in the cell-attached mode and can form 1–10 GOhm patch contact with a glass micropipette, allowing recording of ion channel activity. The first single-channel recordings of dinoflagellate ion channels are presented. PMID:25199048

  14. Optimized Ion Energy Profiles for Heavy Ion Direct Drive Targets

    NASA Astrophysics Data System (ADS)

    Hay, Michael J.; Barnard, John J.; Perkins, L. John; Logan, B. Grant

    2009-11-01

    Recent 1-D implosion calculations [1] have characterized pure-DT targets delivering gains of 50-90 with less than 0.5 MJ of heavy ion direct drive. With a payload fraction of 1/3, these low-aspect ratio targets operate near the peak of rocket efficiency and achieve ˜10% overall coupling efficiencies (vs. the 15-20% efficiencies analytically predicted for less stable, higher-aspect ratio targets). In Ref. 1, the ion energy is ramped directly from a 50 MeV foot pulse to a 500 MeV main pulse. In this paper, we instead tune the ion energy throughout the drive to closely match the beam deposition with the inward progress of the ablation front. We will present the ion energy and intensity time histories that maximize drive efficiency and gain for a single target at constant integrated drive energy. [1] L. J. Perkins, B. G. Logan, J. J. Barnard, and M. J. Hay. ``High Efficiency High Gain Heavy Ion Direct Drive Targets,'' Bulletin of the American Physical Society, vol. 54: DPP, Nov. 2009.

  15. Gender Representation on Gender-Targeted Television Channels: A Comparison of Female- and Male-Targeted TV Channels in the Netherlands.

    PubMed

    Daalmans, Serena; Kleemans, Mariska; Sadza, Anne

    2017-01-01

    The current study investigated the differences in the representation of gender on male- and female-targeted channels with regard to recognition (i.e., the actual presence of men and women) and respect (i.e., the nature of that representation or portrayal). To this end, the presence of men and women on two female- and two male-targeted Dutch channels ( N  = 115 programs, N  = 1091 persons) were compared via content analysis. The expectation that men's channels would portray a less equal and more traditional image of gender than women's channels was generally supported by the results. Regardless of genre as well as country of origin of the program, women were underrepresented on men's channels, while gender distribution on women's channels was more equal. The representation of women in terms of age and occupation was more stereotypical on men's channels than on women's channels, whereas men were represented in more contra-stereotypical ways (e.g., performing household tasks) on women's channels. Since television viewing contributes to the learning and maintenance of stereotyped perceptions, the results imply that it is important to strengthen viewers' defenses against the effects of gender stereotyping when watching gendered television channels, for instance through media literacy programs in schools.

  16. Evolutionary origins of mechanosensitive ion channels.

    PubMed

    Martinac, Boris; Kloda, Anna

    2003-01-01

    According to the recent revision, the universal phylogenetic tree is composed of three domains: Eukarya (eukaryotes), Bacteria (eubacteria) and Archaea (archaebacteria). Mechanosensitive (MS) ion channels have been documented in cells belonging to all three domains suggesting their very early appearance during evolution of life on Earth. The channels show great diversity in conductance, selectivity and voltage dependence, while sharing the property of being gated by mechanical stimuli exerted on cell membranes. In prokaryotes, MS channels were first documented in Bacteria followed by their discovery in Archaea. The finding of MS channels in archaeal cells helped to recognize and establish the evolutionary relationship between bacterial and archaeal MS channels and to show that this relationship extends to eukaryotic Fungi (Schizosaccharomyces pombe) and Plants (Arabidopsis thaliana). Similar to their bacterial and archaeal homologues, MS channels in eukaryotic cell-walled Fungi and Plants may serve in protecting the cellular plasma membrane from excessive dilation and rupture that may occur during osmotic stress. This review summarizes briefly some of the recent developments in the MS channel research field that may ultimately lead to elucidation of the biophysical and evolutionary principles underlying the mechanosensory transduction in living cells.

  17. Ion channels for mechanotransduction in the crayfish stretch receptor.

    PubMed

    Rydqvist, Bo

    2007-01-01

    Mechanosensitivity is found in almost every cell in all organisms from bacteria to vertebrates and covers a wide spectrum of function from osmosensing to mechanical sensing in the specialized receptors, such as the hair cells of the cochlea. The molecular substrate for such mechanosensitivity is thought to be mechanosensitive ion channels (MSCs). Because most development regarding the molecular aspects of the MSC has been made in nonsensory or sensory systems, which have not been accessible to recordings from ion channels, it is important to focus on the mechanosensitivity of sensory organs where their functional importance is undisputed. The stretch receptor organ (SRO) of the crustaceans is a suitable preparation for such studies. Each organ contains two receptors: one slowly and one rapidly adapting receptor neurons. The primary mechanosensitivity is generated by two types of MSC of hitherto unknown molecular type located in the neuronal dendrites, which are inserted into a receptor muscle fiber. In addition to the MSCs, the neurons contain voltage-gated Na(+) channels, which seem to be differently located in the slowly and rapidly adapting neurons. At least three types of voltage-gated K(+) channels are present in the sensory neurons, the location of which is not known. The spatial distribution of ion channels and the kinetics of the channels, together with the viscoelastic properties of the receptor muscles, determine the overall transducer properties and impulse firing of the two receptor neurons, including their typical adaptive characteristics. © 2007, Elsevier Inc. All right reserved.

  18. Lipid microdomains and the regulation of ion channel function

    PubMed Central

    Dart, Caroline

    2010-01-01

    Many types of ion channel localize to cholesterol and sphingolipid-enriched regions of the plasma membrane known as lipid microdomains or ‘rafts’. The precise physiological role of these unique lipid microenvironments remains elusive due largely to difficulties associated with studying these potentially extremely small and dynamic domains. Nevertheless, increasing evidence suggests that membrane rafts regulate channel function in a number of different ways. Raft-enriched lipids such as cholesterol and sphingolipids exert effects on channel activity either through direct protein–lipid interactions or by influencing the physical properties of the bilayer. Rafts also appear to selectively recruit interacting signalling molecules to generate subcellular compartments that may be important for efficient and selective signal transduction. Direct interaction with raft-associated scaffold proteins such as caveolin can also influence channel function by altering gating kinetics or by affecting trafficking and surface expression. Selective association of ion channels with specific lipid microenvironments within the membrane is thus likely to be an important and fundamental regulatory aspect of channel physiology. This brief review highlights some of the existing evidence for raft modulation of channel function. PMID:20519314

  19. Ion channels to inactivate neurons in Drosophila.

    PubMed

    Hodge, James J L

    2009-01-01

    Ion channels are the determinants of excitability; therefore, manipulation of their levels and properties provides an opportunity for the investigator to modulate neuronal and circuit function. There are a number of ways to suppress electrical activity in Drosophila neurons, for instance, over-expression of potassium channels (i.e. Shaker Kv1, Shaw Kv3, Kir2.1 and DORK) that are open at resting membrane potential. This will result in increased potassium efflux and membrane hyperpolarisation setting resting membrane potential below the threshold required to fire action potentials. Alternatively over-expression of other channels, pumps or co-transporters that result in a hyperpolarised membrane potential will also prevent firing. Lastly, neurons can be inactivated by, disrupting or reducing the level of functional voltage-gated sodium (Nav1 paralytic) or calcium (Cav2 cacophony) channels that mediate the depolarisation phase of action potentials. Similarly, strategies involving the opposite channel manipulation should allow net depolarisation and hyperexcitation in a given neuron. These changes in ion channel expression can be brought about by the versatile transgenic (i.e. Gal4/UAS based) systems available in Drosophila allowing fine temporal and spatial control of (channel) transgene expression. These systems are making it possible to electrically inactivate (or hyperexcite) any neuron or neural circuit in the fly brain, and much like an exquisite lesion experiment, potentially elucidate whatever interesting behaviour or phenotype each network mediates. These techniques are now being used in Drosophila to reprogram electrical activity of well-defined circuits and bring about robust and easily quantifiable changes in behaviour, allowing different models and hypotheses to be rapidly tested.

  20. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy.

    PubMed

    Yamamura, Hisao; Suzuki, Yoshiaki; Imaizumi, Yuji

    2015-05-01

    Ion channels play pivotal roles in a wide variety of cellular functions; therefore, their physiological characteristics, pharmacological responses, and molecular structures have been extensively investigated. However, the mobility of an ion channel itself in the cell membrane has not been examined in as much detail. A total internal reflection fluorescence (TIRF) microscope allows fluorophores to be imaged in a restricted region within an evanescent field of less than 200 nm from the interface of the coverslip and plasma membrane in living cells. Thus the TIRF microscope is useful for selectively visualizing the plasmalemmal surface and subplasmalemmal zone. In this review, we focused on a single-molecule analysis of the dynamic movement of ion channels in the plasma membrane using TIRF microscopy. We also described two single-molecule imaging techniques under TIRF microscopy: fluorescence resonance energy transfer (FRET) for the identification of molecules that interact with ion channels, and subunit counting for the determination of subunit stoichiometry in a functional channel. TIRF imaging can also be used to analyze spatiotemporal Ca(2+) events in the subplasmalemma. Single-molecule analyses of ion channels and localized Ca(2+) signals based on TIRF imaging provide beneficial pharmacological and physiological information concerning the functions of ion channels. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  1. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    PubMed

    Pollak, Julia; Rai, Karan G; Funk, Cory C; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D; Paddison, Patrick J; Ramirez, Jan-Marino; Rostomily, Robert C

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  2. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy

    PubMed Central

    Pollak, Julia; Rai, Karan G.; Funk, Cory C.; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D.; Paddison, Patrick J.; Ramirez, Jan-Marino; Rostomily, Robert C.

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance. PMID:28264064

  3. The T1R2/T1R3 sweet receptor and TRPM5 ion channel taste targets with therapeutic potential.

    PubMed

    Sprous, Dennis; Palmer, Kyle R

    2010-01-01

    Taste signaling is a critical determinant of ingestive behaviors and thereby linked to obesity and related metabolic dysfunctions. Recent evidence of taste signaling pathways in the gut suggests the link to be more direct, raising the possibility that taste receptor systems could be regarded as therapeutic targets. T1R2/T1R3, the G protein coupled receptor that mediates sweet taste, and the TRPM5 ion channel have been the focus of discovery programs seeking novel compounds that could be useful in modifying taste. We review in this chapter the hypothesis of gastrointestinal taste signaling and discuss the potential for T1R2/T1R3 and TRPM5 as targets of therapeutic intervention in obesity and diabetes. Critical to the development of a drug discovery program is the creation of libraries that enhance the likelihood of identifying novel compounds that modulate the target of interest. We advocate a computer-based chemoinformatic approach for assembling natural and synthetic compound libraries as well as for supporting optimization of structure activity relationships. Strategies for discovering modulators of T1R2/T1R3 and TRPM5 using methods of chemoinformatics are presented herein. Copyright 2010 Elsevier Inc. All rights reserved.

  4. ω-Conotoxin GVIA Mimetics that Bind and Inhibit Neuronal Cav2.2 Ion Channels

    PubMed Central

    Tranberg, Charlotte Elisabet; Yang, Aijun; Vette, Irina; McArthur, Jeffrey R.; Baell, Jonathan B.; Lewis, Richard J.; Tuck, Kellie L.; Duggan, Peter J.

    2012-01-01

    The neuronal voltage-gated N-type calcium channel (Cav2.2) is a validated target for the treatment of neuropathic pain. A small library of anthranilamide-derived ω-Conotoxin GVIA mimetics bearing the diphenylmethylpiperazine moiety were prepared and tested using three experimental measures of calcium channel blockade. These consisted of a 125I-ω-conotoxin GVIA displacement assay, a fluorescence-based calcium response assay with SH-SY5Y neuroblastoma cells, and a whole-cell patch clamp electrophysiology assay with HEK293 cells stably expressing human Cav2.2 channels. A subset of compounds were active in all three assays. This is the first time that compounds designed to be mimics of ω-conotoxin GVIA and found to be active in the 125I-ω-conotoxin GVIA displacement assay have also been shown to block functional ion channels in a dose-dependent manner. PMID:23170089

  5. Calibration of the low-energy channel Thomson parabola of the LMJ-PETAL diagnostic SEPAGE with protons and carbon ions.

    PubMed

    Ducret, J-E; Batani, D; Boutoux, G; Chancé, A; Gastineau, B; Guillard, J-C; Harrault, F; Jakubowska, K; Lantuejoul-Thfoin, I; Leboeuf, D; Loiseau, D; Lotode, A; Pès, C; Rabhi, N; Saïd, A; Semsoum, A; Serani, L; Thomas, B; Toussaint, J-C; Vauzour, B

    2018-02-01

    The SEPAGE diagnostic will detect charged particles (electrons, protons, and ions) accelerated in the interaction of the PETAL (PETawatt Aquitaine Laser) laser with its targets on the LMJ (Laser MegaJoule)-PETAL laser facility. SEPAGE will be equipped with a proton-radiography front detector and two Thomson parabolas (TP), corresponding to different ranges of the particle energy spectra: Above 0.1 MeV for electrons and protons in the low-energy channel, with a separation capability between protons and 12 C 6+ up to 20 MeV proton energy and above 8 MeV for the high-energy channel, with a separation capability between protons and 12 C 6+ up to 200 MeV proton kinetic energy. This paper presents the calibration of the SEPAGE's low-energy channel TP at the Tandem facility of Orsay (France) with proton beams between 3 and 22 MeV and carbon-ion beams from 5.8 to 84 MeV. The magnetic and electric fields' integrals were determined with an accuracy of 10 -3 by combining the deflections measured at different energies with different target thicknesses and materials, providing different in-target energy losses of the beam particles and hence different detected energies for given beam energies.

  6. Calibration of the low-energy channel Thomson parabola of the LMJ-PETAL diagnostic SEPAGE with protons and carbon ions

    NASA Astrophysics Data System (ADS)

    Ducret, J.-E.; Batani, D.; Boutoux, G.; Chancé, A.; Gastineau, B.; Guillard, J.-C.; Harrault, F.; Jakubowska, K.; Lantuejoul-Thfoin, I.; Leboeuf, D.; Loiseau, D.; Lotode, A.; Pès, C.; Rabhi, N.; Saïd, A.; Semsoum, A.; Serani, L.; Thomas, B.; Toussaint, J.-C.; Vauzour, B.

    2018-02-01

    The SEPAGE diagnostic will detect charged particles (electrons, protons, and ions) accelerated in the interaction of the PETAL (PETawatt Aquitaine Laser) laser with its targets on the LMJ (Laser MegaJoule)-PETAL laser facility. SEPAGE will be equipped with a proton-radiography front detector and two Thomson parabolas (TP), corresponding to different ranges of the particle energy spectra: Above 0.1 MeV for electrons and protons in the low-energy channel, with a separation capability between protons and 12C6+ up to 20 MeV proton energy and above 8 MeV for the high-energy channel, with a separation capability between protons and 12C6+ up to 200 MeV proton kinetic energy. This paper presents the calibration of the SEPAGE's low-energy channel TP at the Tandem facility of Orsay (France) with proton beams between 3 and 22 MeV and carbon-ion beams from 5.8 to 84 MeV. The magnetic and electric fields' integrals were determined with an accuracy of 10-3 by combining the deflections measured at different energies with different target thicknesses and materials, providing different in-target energy losses of the beam particles and hence different detected energies for given beam energies.

  7. Combining molecular dynamics and an electrodiffusion model to calculate ion channel conductance

    NASA Astrophysics Data System (ADS)

    Wilson, Michael A.; Nguyen, Thuy Hien; Pohorille, Andrew

    2014-12-01

    Establishing the relation between the structures and functions of protein ion channels, which are protein assemblies that facilitate transmembrane ion transport through water-filled pores, is at the forefront of biological and medical sciences. A reliable way to determine whether our understanding of this relation is satisfactory is to reproduce the measured ionic conductance over a broad range of applied voltages. This can be done in molecular dynamics simulations by way of applying an external electric field to the system and counting the number of ions that traverse the channel per unit time. Since this approach is computationally very expensive we develop a markedly more efficient alternative in which molecular dynamics is combined with an electrodiffusion equation. This alternative approach applies if steady-state ion transport through channels can be described with sufficient accuracy by the one-dimensional diffusion equation in the potential given by the free energy profile and applied voltage. The theory refers only to line densities of ions in the channel and, therefore, avoids ambiguities related to determining the surface area of the channel near its endpoints or other procedures connecting the line and bulk ion densities. We apply the theory to a simple, model system based on the trichotoxin channel. We test the assumptions of the electrodiffusion equation, and determine the precision and consistency of the calculated conductance. We demonstrate that it is possible to calculate current/voltage dependence and accurately reconstruct the underlying (equilibrium) free energy profile, all from molecular dynamics simulations at a single voltage. The approach developed here applies to other channels that satisfy the conditions of the electrodiffusion equation.

  8. On the estimation of cooperativity in ion channel kinetics: activation free energy and kinetic mechanism of Shaker K+ channel.

    PubMed

    Banerjee, Kinshuk; Das, Biswajit; Gangopadhyay, Gautam

    2013-04-28

    In this paper, we have explored generic criteria of cooperative behavior in ion channel kinetics treating it on the same footing with multistate receptor-ligand binding in a compact theoretical framework. We have shown that the characterization of cooperativity of ion channels in terms of the Hill coefficient violates the standard Hill criteria defined for allosteric cooperativity of ligand binding. To resolve the issue, an alternative measure of cooperativity is proposed here in terms of the cooperativity index that sets a unified criteria for both the systems. More importantly, for ion channel this index can be very useful to describe the cooperative kinetics as it can be readily determined from the experimentally measured ionic current combined with theoretical modelling. We have analyzed the correlation between the voltage value and slope of the voltage-activation curve at the half-activation point and consequently determined the standard free energy of activation of the ion channel using two well-established mechanisms of cooperativity, namely, Koshland-Nemethy-Filmer (KNF) and Monod-Wyman-Changeux (MWC) models. Comparison of the theoretical results for both the models with appropriate experimental data of mutational perturbation of Shaker K(+) channel supports the experimental fact that the KNF model is more suitable to describe the cooperative behavior of this class of ion channels, whereas the performance of the MWC model is unsatisfactory. We have also estimated the mechanistic performance through standard free energy of channel activation for both the models and proposed a possible functional disadvantage in the MWC scheme.

  9. Tuning the ion selectivity of two-pore channels

    PubMed Central

    Guo, Jiangtao; Zeng, Weizhong; Jiang, Youxing

    2017-01-01

    Organellar two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in plants and animals. Interestingly, plant and animal TPCs share high sequence similarity in the filter region, yet exhibit drastically different ion selectivity. Plant TPC1 functions as a nonselective cation channel on the vacuole membrane, whereas mammalian TPC channels have been shown to be endo/lysosomal Na+-selective or Ca2+-release channels. In this study, we performed systematic characterization of the ion selectivity of TPC1 from Arabidopsis thaliana (AtTPC1) and compared its selectivity with the selectivity of human TPC2 (HsTPC2). We demonstrate that AtTPC1 is selective for Ca2+ over Na+, but nonselective among monovalent cations (Li+, Na+, and K+). Our results also confirm that HsTPC2 is a Na+-selective channel activated by phosphatidylinositol 3,5-bisphosphate. Guided by our recent structure of AtTPC1, we converted AtTPC1 to a Na+-selective channel by mimicking the selectivity filter of HsTPC2 and identified key residues in the TPC filters that differentiate the selectivity between AtTPC1 and HsTPC2. Furthermore, the structure of the Na+-selective AtTPC1 mutant elucidates the structural basis for Na+ selectivity in mammalian TPCs. PMID:28096396

  10. Tuning the ion selectivity of two-pore channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jiangtao; Zeng, Weizhong; Jiang, Youxing

    Organellar two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in plants and animals. Interestingly, plant and animal TPCs share high sequence similarity in the filter region, yet exhibit drastically different ion selectivity. Plant TPC1 functions as a nonselective cation channel on the vacuole membrane, whereas mammalian TPC channels have been shown to be endo/lysosomal Na+-selective or Ca2+-release channels. In this study, we performed systematic characterization of the ion selectivity of TPC1 from Arabidopsis thaliana (AtTPC1) and compared its selectivity with the selectivity of human TPC2 (HsTPC2). We demonstrate thatmore » AtTPC1 is selective for Ca2+ over Na+, but nonselective among monovalent cations (Li+, Na+, and K+). Our results also confirm that HsTPC2 is a Na+-selective channel activated by phosphatidylinositol 3,5-bisphosphate. Guided by our recent structure of AtTPC1, we converted AtTPC1 to a Na+-selective channel by mimicking the selectivity filter of HsTPC2 and identified key residues in the TPC filters that differentiate the selectivity between AtTPC1 and HsTPC2. Furthermore, the structure of the Na+-selective AtTPC1 mutant elucidates the structural basis for Na+ selectivity in mammalian TPCs.« less

  11. Pungent products from garlic activate the sensory ion channel TRPA1

    PubMed Central

    Bautista, Diana M.; Movahed, Pouya; Hinman, Andrew; Axelsson, Helena E.; Sterner, Olov; Högestätt, Edward D.; Julius, David; Jordt, Sven-Eric; Zygmunt, Peter M.

    2005-01-01

    Garlic belongs to the Allium family of plants that produce organosulfur compounds, such as allicin and diallyl disulfide (DADS), which account for their pungency and spicy aroma. Many health benefits have been ascribed to Allium extracts, including hypotensive and vasorelaxant activities. However, the molecular mechanisms underlying these effects remain unknown. Intriguingly, allicin and DADS share structural similarities with allyl isothiocyanate, the pungent ingredient in wasabi and other mustard plants that induces pain and inflammation by activating TRPA1, an excitatory ion channel on primary sensory neurons of the pain pathway. Here we show that allicin and DADS excite an allyl isothiocyanate-sensitive subpopulation of sensory neurons and induce vasodilation by activating capsaicin-sensitive perivascular sensory nerve endings. Moreover, allicin and DADS activate the cloned TRPA1 channel when expressed in heterologous systems. These and other results suggest that garlic excites sensory neurons primarily through activation of TRPA1. Thus different plant genera, including Allium and Brassica, have developed evolutionary convergent strategies that target TRPA1 channels on sensory nerve endings to achieve chemical deterrence. PMID:16103371

  12. Disease-associated changes in the expression of ion channels, ion receptors, ion exchangers and Ca{sup 2+}-handling proteins in heart hypertrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zwadlo, Carolin; Borlak, Juergen

    2005-09-15

    The molecular pathology of cardiac hypertrophy is multifactorial with transcript regulation of ion channels, ion exchangers and Ca{sup 2+}-handling proteins being speculative. We therefore investigated disease-associated changes in gene expression of various ion channels and their receptors as well as ion exchangers, cytoskeletal proteins and Ca{sup 2+}-handling proteins in normotensive and spontaneously hypertensive (SHR) rats. We also compared experimental findings with results from hypertrophic human hearts, previously published (Borlak, J., and Thum, T., 2003. Hallmarks of ion channel gene expression in end-stage heart failure. FASEB J. 17, 1592-1608). We observed significant (P < 0.05) induction in transcript level of ATP-drivenmore » ion exchangers (Atp1A1, NCX-1, SERCA2a), ion channels (L-type Ca{sup 2+}-channel, K{sub ir}3.4, Na{sub v}1.5) and RyR-2 in hypertrophic hearts, while gene expression was repressed in diseased human hearts. Further, the genes coding for calreticulin and calmodulin, PMCA 1 and 4 as well as {alpha}-skeletal actin were significantly (P < 0.05) changed in hypertrophic human heart, but were unchanged in hypertrophic left ventricles of the rat heart. Notably, transcript level of {alpha}- and {beta}-MHC, calsequestrin, K{sub ir}6.1 (in the right ventricle only), phospholamban as well as troponin T were repressed in both diseased human and rat hearts. Our study enabled an identification of disease-associated candidate genes. Their regulation is likely to be the result of an imbalance between pressure load/stretch force and vascular tonus and the observed changes may provide a rational for the rhythm disturbances observed in patients with cardiac hypertrophy.« less

  13. Toxic β-Amyloid (Aβ) Alzheimer's Ion Channels: From Structure to Function and Design

    NASA Astrophysics Data System (ADS)

    Nussinov, Ruth

    2012-02-01

    Full-length amyloid beta peptides (Aβ1-40/42) form neuritic amyloid plaques in Alzheimer's disease (AD) patients and are implicated in AD pathology. Recent biophysical and cell biological studies suggest a direct mechanism of amyloid beta toxicity -- ion channel mediated loss of calcium homeostasis. Truncated amyloid beta fragments (Aβ11-42 and Aβ17-42), commonly termed as non-amyloidogenic are also found in amyloid plaques of Alzheimer's disease (AD) and in the preamyloid lesions of Down's syndrome (DS), a model system for early onset AD study. Very little is known about the structure and activity of these smaller peptides although they could be key AD and DS pathological agents. Using complementary techniques of explicit solvent molecular dynamics (MD) simulations, atomic force microscopy (AFM), channel conductance measurements, cell calcium uptake assays, neurite degeneration and cell death assays, we have shown that non-amyloidogenic Aβ9-42 and Aβ17-42 peptides form ion channels with loosely attached subunits and elicit single channel conductances. The subunits appear mobile suggesting insertion of small oligomers, followed by dynamic channel assembly and dissociation. These channels allow calcium uptake in APP-deficient cells and cause neurite degeneration in human cortical neurons. Channel conductance, calcium uptake and neurite degeneration are selectively inhibited by zinc, a blocker of amyloid ion channel activity. Thus truncated Aβ fragments could account for undefined roles played by full length Aβs and provide a novel mechanism of AD and DS pathology. The emerging picture from our large-scale simulations is that toxic ion channels formed by β-sheets are highly polymorphic, and spontaneously break into loosely interacting dynamic units (though still maintaining ion channel structures as imaged with AFM), that associate and dissociate leading to toxic ion flux. This sharply contrasts intact conventional gated ion channels that consist of tightly

  14. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, Motoyuki; Gouaux, Eric

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure ofmore » the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.« less

  15. Finite element simulation of the gating mechanism of mechanosensitive ion channels

    NASA Astrophysics Data System (ADS)

    Bavi, Navid; Qin, Qinghua; Martinac, Boris

    2013-08-01

    In order to eliminate limitations of existing experimental or computational methods (such as patch-clamp technique or molecular dynamic analysis) a finite element (FE) model for multi length-scale and time-scale investigation on the gating mechanism of mechanosensitive (MS) ion channels has been established. Gating force value (from typical patch clamping values) needed to activate Prokaryotic MS ion channels was applied as tensional force to the FE model of the lipid bilayer. Making use of the FE results, we have discussed the effects of the geometrical and the material properties of the Escherichia coli MscL mechanosensitive ion channel opening in relation to the membrane's Young's modulus (which will vary depending on the cell type or cholesterol density in an artificial membrane surrounding the MscL ion channel). The FE model has shown that when the cell membrane stiffens the required channel activation force increases considerably. This is in agreement with experimental results taken from the literature. In addition, the present study quantifies the relationship between the membrane stress distribution around a `hole' for modeling purposes and the stress concentration in the place transmembrane proteins attached to the hole by applying an appropriate mesh refinement as well as well defining contact condition in these areas.

  16. Relativistic-electron-beam/target interaction in plasma channels

    NASA Astrophysics Data System (ADS)

    Halbleib, J. A., Sr.; Wright, T. P.

    1980-08-01

    A model describing the transport of relativistic electron beams in plasma channels and their subsequent interaction with solid targets is developed and applied to single-beam and multiple-beam configurations. For single beams the targets consist of planar tantalum foils and, in some cases, cusp fields on the transmission side of the foils are employed to improve beam/target coupling efficiency. In the multi-beam configurations, several beams are arranged in wagon-wheel fashion so as to converge upon cylindrical targets, consisting of either hollow tantalum or solid graphite cylinders, located at the hub. For 0.3-cm beam radii that are less than or equal to the channel radii, mean specific power depositions up to about 17 TW/g per MA of injected beam current are obtained for single beams; 12-beam results are typically an order-of-magnitude less. The corresponding enhancements are up to five times the collisional stopping power for either single or multiple beams. Substantial improvement is predicted for the multi-beam interaction should future channel technology permit transport at higher current densities in smaller channels.

  17. Kinetic modeling of ion conduction in KcsA potassium channel.

    PubMed

    Mafé, Salvador; Pellicer, Julio; Cervera, Javier

    2005-05-22

    KcsA constitutes a potassium channel of known structure that shows both high conduction rates and selectivity among monovalent cations. A kinetic model for ion conduction through this channel that assumes rapid ion transport within the filter has recently been presented by Nelson. In a recent, brief communication, we used the model to provide preliminary explanations to the experimental current-voltage J-V and conductance-concentration g-S curves obtained for a series of monovalent ions (K(+),Tl(+), and Rb(+)). We did not assume rapid ion transport in the calculations, since ion transport within the selectivity filter could be rate limiting for ions other than native K(+). This previous work is now significantly extended to the following experimental problems. First, the outward rectification of the J-V curves in K(+) symmetrical solutions is analyzed using a generalized kinetic model. Second, the J-V and g-S curves for NH(4) (+) are obtained and compared with those of other ions (the NH(4) (+) J-V curve is qualitatively different from those of Rb(+) and Tl(+)). Third, the effects of Na(+) block on K(+) and Rb(+) currents through single KcsA channels are studied and the different blocking behavior is related to the values of the translocation rate constants characteristic of ion transport within the filter. Finally, the significantly decreased K(+) conductance caused by mutation of the wild-type channel is also explained in terms of this rate constant. In order to keep the number of model parameters to a minimum, we do not allow the electrical distance (an empirical parameter of kinetic models that controls the exponential voltage dependence of the dissociation rate) to vary with the ionic species. Without introducing the relatively high number of adjustable parameters of more comprehensive site-based models, we show that ion association to the filter is rate controlling at low concentrations, but ion dissociation from the filter and ion transport within the filter

  18. Automated Electrophysiology Makes the Pace for Cardiac Ion Channel Safety Screening

    PubMed Central

    Möller, Clemens; Witchel, Harry

    2011-01-01

    The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry’s need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and torsades de pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the “gold-standard” for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive) for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions. This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology – much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening. PMID:22131974

  19. Homeostasis or channelopathy? Acquired cell type-specific ion channel changes in temporal lobe epilepsy and their antiepileptic potential

    PubMed Central

    Wolfart, Jakob; Laker, Debora

    2015-01-01

    Neurons continuously adapt the expression and functionality of their ion channels. For example, exposed to chronic excitotoxicity, neurons homeostatically downscale their intrinsic excitability. In contrast, the “acquired channelopathy” hypothesis suggests that proepileptic channel characteristics develop during epilepsy. We review cell type-specific channel alterations under different epileptic conditions and discuss the potential of channels that undergo homeostatic adaptations, as targets for antiepileptic drugs (AEDs). Most of the relevant studies have been performed on temporal lobe epilepsy (TLE), a widespread AED-refractory, focal epilepsy. The TLE patients, who undergo epilepsy surgery, frequently display hippocampal sclerosis (HS), which is associated with degeneration of cornu ammonis subfield 1 pyramidal cells (CA1 PCs). Although the resected human tissue offers insights, controlled data largely stem from animal models simulating different aspects of TLE and other epilepsies. Most of the cell type-specific information is available for CA1 PCs and dentate gyrus granule cells (DG GCs). Between these two cell types, a dichotomy can be observed: while DG GCs acquire properties decreasing the intrinsic excitability (in TLE models and patients with HS), CA1 PCs develop channel characteristics increasing intrinsic excitability (in TLE models without HS only). However, thorough examination of data on these and other cell types reveals the coexistence of protective and permissive intrinsic plasticity within neurons. These mechanisms appear differentially regulated, depending on the cell type and seizure condition. Interestingly, the same channel molecules that are upregulated in DG GCs during HS-related TLE, appear as promising targets for future AEDs and gene therapies. Hence, GCs provide an example of homeostatic ion channel adaptation which can serve as a primer when designing novel anti-epileptic strategies. PMID:26124723

  20. Roles of Ion Channels in the Environmental Responses of Plants

    NASA Astrophysics Data System (ADS)

    Furuichi, Takuya; Kawano, Tomonori; Tatsumi, Hitoshi; Sokabe, Masahiro

    When plant cells are exposed to environmental stresses or perceive internal signal molecules involved in growth and development, ion channels are transiently activated to convert these stimuli into intracellular signals. Among the ions taken up by plant cells, Ca2+ plays an essential role as an intracellular second messenger in plants; the cytoplasmic free Ca2+ concentration ([Ca2+]c) is therefore strictly regulated. Signal transduction pathways mediated by changes in [Ca2+]c - termed Ca2+ signaling - are initiated by the activation of Ca2+-permeable channels in many cases. To date, a large body of electrophysiological and recent molecular biological studies have revealed that plants possess Ca2+ channels belonging to distinct types with different gating mechanisms, and a variety of genes for Ca2+-permeable channels have been isolated and functionally characterized. Topics in this chapter focus on long-distance signal translocation in plants and the characteristics of a variety of plant Ca2+-permeable channels including voltage-dependent Ca2+-permeable channels, cyclic nucleotide-gated cation channels, ionotropic glutamate receptors and mechanosensitive channels. We discuss their roles in environmental responses and in the regulation of growth and development.

  1. Chasing the open-state structure of pentameric ligand-gated ion channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Gutierrez, Giovanni; Wang, Yuhang; Cymes, Gisela D.

    Remarkable advances have been made toward the structural characterization of ion channels in the last two decades. However, the unambiguous assignment of well-defined functional states to the obtained structural models has proved challenging. In the case of the superfamily of nicotinic-receptor channels (also referred to as pentameric ligand-gated ion channels [pLGICs]), for example, two different types of model of the open-channel conformation have been proposed on the basis of structures solved to resolutions better than 4.0 Å. At the level of the transmembrane pore, the open-state models of the proton-gated pLGIC fromGloeobacter violaceus(GLIC) and the invertebrate glutamate-gated Cl –channel (GluCl)more » are very similar to each other, but that of the glycine receptor (GlyR) is considerably wider. Indeed, the mean distances between the axis of ion permeation and the Cα atoms at the narrowest constriction of the pore (position -2') differ by ~2 Å in these two classes of model, a large difference when it comes to understanding the physicochemical bases of ion conduction and charge selectivity. Here, we take advantage of the extreme open-channel stabilizing effect of mutations at pore-facing position 9'. We find that the I9'A mutation slows down entry into desensitization of GLIC to the extent that macroscopic currents decay only slightly by the end of pH 4.5 solution applications to the extracellular side for several minutes. We crystallize (at pH 4.5) two variants of GLIC carrying this mutation and solve their structures to resolutions of 3.12 Å and 3.36 Å. Furthermore, we perform all-atom molecular dynamics simulations of ion permeation and picrotoxinin block, using the different open-channel structural models. On the basis of these results, we favor the notion that the open-channel structure of pLGICs from animals is much closer to that of the narrow models (of GLIC and GluCl) than it is to that of the GlyR.« less

  2. Functional Annotation of Ion Channel Structures by Molecular Simulation.

    PubMed

    Trick, Jemma L; Chelvaniththilan, Sivapalan; Klesse, Gianni; Aryal, Prafulla; Wallace, E Jayne; Tucker, Stephen J; Sansom, Mark S P

    2016-12-06

    Ion channels play key roles in cell membranes, and recent advances are yielding an increasing number of structures. However, their functional relevance is often unclear and better tools are required for their functional annotation. In sub-nanometer pores such as ion channels, hydrophobic gating has been shown to promote dewetting to produce a functionally closed (i.e., non-conductive) state. Using the serotonin receptor (5-HT 3 R) structure as an example, we demonstrate the use of molecular dynamics to aid the functional annotation of channel structures via simulation of the behavior of water within the pore. Three increasingly complex simulation analyses are described: water equilibrium densities; single-ion free-energy profiles; and computational electrophysiology. All three approaches correctly predict the 5-HT 3 R crystal structure to represent a functionally closed (i.e., non-conductive) state. We also illustrate the application of water equilibrium density simulations to annotate different conformational states of a glycine receptor. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy.

    PubMed

    Jaffrès, Paul-Alain; Gajate, Consuelo; Bouchet, Ana Maria; Couthon-Gourvès, Hélène; Chantôme, Aurélie; Potier-Cartereau, Marie; Besson, Pierre; Bougnoux, Philippe; Mollinedo, Faustino; Vandier, Christophe

    2016-09-01

    Synthetic alkyl lipids, such as the ether lipids edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) and ohmline (1-O-hexadecyl-2-O-methyl-rac-glycero-3-β-lactose), are forming a class of antitumor agents that target cell membranes to induce apoptosis and to decrease cell migration/invasion, leading to the inhibition of tumor and metastasis development. In this review, we present the structure-activity relationship of edelfosine and ohmline, and we point out differences and similarities between these two amphiphilic compounds. We also discuss the mechanisms of action of these synthetic alkyl ether lipids (involving, among other structures and molecules, membrane domains, Fas/CD95 death receptor signaling, and ion channels), and highlight a key role for lipid rafts in the underlying process. The reorganization of lipid raft membrane domains induced by these alkyl lipids affects the function of death receptors and ion channels, thus leading to apoptosis and/or inhibition of cancer cell migration. The possible therapeutic use of these alkyl lipids and the clinical perspectives for these lipids in prevention or/and treatment of tumor development and metastasis are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels.

    PubMed

    Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; De Maria, Michela; Manocchio, Laura; Medoro, Alessandro; Taglialatela, Maurizio

    2015-01-01

    Voltage-gated ion channels (VGICs) are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGICs in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na(+), Ca(2+) and K(+) voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided into two main regions: the Pore Module (PM) and the Voltage-Sensing Module (VSM). The PM (helices S5 and S6 and intervening linker) is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1-S4), undergoes the first conformational changes in response to membrane voltage variations. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters and to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins

  5. Margatoxin-bound quantum dots as a novel inhibitor of the voltage-gated ion channel Kv1.3.

    PubMed

    Schwartz, Austin B; Kapur, Anshika; Wang, Wentao; Huang, Zhenbo; Fardone, Erminia; Palui, Goutam; Mattoussi, Hedi; Fadool, Debra Ann

    2017-02-01

    Venom-derived ion channel inhibitors have strong channel selectivity, potency, and stability; however, tracking delivery to their target can be challenging. Herein, we utilized luminescent quantum dots (QDs) conjugated to margatoxin (MgTx) as a traceable vehicle to target a voltage-dependent potassium channel, Kv1.3, which has a select distribution and well-characterized role in immunity, glucose metabolism, and sensory ability. We screened both unconjugated (MgTx) and conjugated MgTx (QD-MgTx) for their ability to inhibit Shaker channels Kv1.1 to Kv1.7 using patch-clamp electrophysiology in HEK293 cells. Our data indicate that MgTx inhibits 79% of the outward current in Kv1.3-transfected cells and that the QD-MgTx conjugate is able to achieve a similar level of block, albeit a slightly reduced efficacy (66%) and at a slower time course (50% block by 10.9 ± 1.1 min, MgTx; vs. 15.3 ± 1.2 min, QD-MgTx). Like the unbound peptide, the QD-MgTx conjugate inhibits both Kv1.3 and Kv1.2 at a 1 nM concentration, whereas it does not inhibit other screened Shaker channels. We tested the ability of QD-MgTx to inhibit native Kv1.3 expressed in the mouse olfactory bulb (OB). In brain slices of the OB, the conjugate acted similarly to MgTx to inhibit Kv1.3, causing an increased action potential firing frequency attributed to decreased intraburst duration rather than interspike interval. Our data demonstrate a retention of known biophysical properties associated with block of the vestibule of Kv1.3 by QD-MgTx conjugate compared to that of MgTx, inferring QDs could provide a useful tool to deliver ion channel inhibitors to targeted tissues in vivo. © 2016 International Society for Neurochemistry.

  6. Charging the quantum capacitance of graphene with a single biological ion channel.

    PubMed

    Wang, Yung Yu; Pham, Ted D; Zand, Katayoun; Li, Jinfeng; Burke, Peter J

    2014-05-27

    The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents.

  7. Charging the Quantum Capacitance of Graphene with a Single Biological Ion Channel

    PubMed Central

    2015-01-01

    The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents. PMID:24754625

  8. Atypical pharmacology of schistosome TRPA1-like ion channels.

    PubMed

    Bais, Swarna; Berry, Corbett T; Liu, Xiaohong; Ruthel, Gordon; Freedman, Bruce D; Greenberg, Robert M

    2018-05-01

    Parasitic flatworms of the genus Schistosoma cause schistosomiasis, a neglected tropical disease estimated to affect over 200 million people worldwide. Praziquantel is the only antischistosomal currently available for treatment, and there is an urgent need for new therapeutics. Ion channels play key roles in physiology and are targets for many anthelmintics, yet only a few representatives have been characterized in any detail in schistosomes and other parasitic helminths. The transient receptor potential (TRP) channel superfamily comprises a diverse family of non-selective cation channels that play key roles in sensory transduction and a wide range of other functions. TRP channels fall into several subfamilies. Members of both the TRPA and TRPV subfamilies transduce nociceptive and inflammatory signals in mammals, and often also respond to chemical and thermal signals. We previously showed that although schistosomes contain no genes predicted to encode TRPV channels, TRPV1-selective activators such as capsaicin and resiniferatoxin elicit dramatic hyperactivity in adult worms and schistosomula. Surprisingly, this response requires expression of a S. mansoni TRPA1-like orthologue (SmTRPA). Here, we show that capsaicin induces a rise in intracellular Ca2+ in mammalian cells expressing either SmTRPA or a S. haematobium TRPA1 orthologue (ShTRPA). We also test SmTRPA and ShTRPA responses to various TRPV1 and TRPA1 modulators. Interestingly, in contrast to SmTRPA, ShTRPA is not activated by the TRPA1 activator AITC (allyl isothiocyanate), nor do S. haematobium adult worms respond to this compound, a potentially intriguing species difference. Notably, 4-hydroxynonenal (4-HNE), a host-derived, inflammatory product that directly activates mammalian TRPA1, also activates both SmTRPA and ShTRPA. Our results point to parasite TRPA1-like channels which exhibit atypical, mixed TRPA1/TRPV1-like pharmacology, and which may also function to transduce endogenous host signals.

  9. Comparative Study of the Energetics of Ion Permeation in Kv1.2 and KcsA Potassium Channels

    PubMed Central

    Baştuğ, Turgut; Kuyucak, Serdar

    2011-01-01

    Biological ion channels rely on a multi-ion transport mechanism for fast yet selective permeation of ions. The crystal structure of the KcsA potassium channel provided the first microscopic picture of this process. A similar mechanism is assumed to operate in all potassium channels, but the validity of this assumption has not been well investigated. Here, we examine the energetics of ion permeation in Shaker Kv1.2 and KcsA channels, which exemplify the six-transmembrane voltage-gated and two-transmembrane inward-rectifier channels. We study the feasibility of binding a third ion to the filter and the concerted motion of ions in the channel by constructing the potential of mean force for K+ ions in various configurations. For both channels, we find that a pair of K+ ions can move almost freely within the filter, but a relatively large free-energy barrier hinders the K+ ion from stepping outside the filter. We discuss the effect of the CMAP dihedral energy correction that was recently incorporated into the CHARMM force field on ion permeation dynamics. PMID:21281577

  10. Dielectric Self-Energy in Poisson-Boltzmann and Poisson-Nernst-Planck Models of Ion Channels

    PubMed Central

    Corry, Ben; Kuyucak, Serdar; Chung, Shin-Ho

    2003-01-01

    We demonstrated previously that the two continuum theories widely used in modeling biological ion channels give unreliable results when the radius of the conduit is less than two Debye lengths. The reason for this failure is the neglect of surface charges on the protein wall induced by permeating ions. Here we attempt to improve the accuracy of the Poisson-Boltzmann and Poisson-Nernst-Planck theories, when applied to channel-like environments, by including a specific dielectric self-energy term to overcome spurious shielding effects inherent in these theories. By comparing results with Brownian dynamics simulations, we show that the inclusion of an additional term in the equations yields significant qualitative improvements. The modified theories perform well in very wide and very narrow channels, but are less successful at intermediate sizes. The situation is worse in multi-ion channels because of the inability of the continuum theories to handle the ion-to-ion interactions correctly. Thus, further work is required if these continuum theories are to be reliably salvaged for quantitative studies of biological ion channels in all situations. PMID:12770869

  11. Coulomb interaction rules timescales in potassium ion channel tunneling

    NASA Astrophysics Data System (ADS)

    De March, N.; Prado, S. D.; Brunnet, L. G.

    2018-06-01

    Assuming the selectivity filter of KcsA potassium ion channel may exhibit quantum coherence, we extend a previous model by Vaziri and Plenio (2010 New J. Phys. 12 085001) to take into account Coulomb repulsion between potassium ions. We show that typical ion transit timescales are determined by this interaction, which imposes optimal input/output parameter ranges. Also, as observed in other examples of quantum tunneling in biological systems, the addition of moderate noise helps coherent ion transport.

  12. Ion Conduction through the hERG Potassium Channel

    PubMed Central

    Cavalli, Andrea; Recanatini, Maurizio

    2012-01-01

    The inward rectifier voltage-gated potassium channel hERG is of primary importance for the regulation of the membrane potential of cardiomyocytes. Unlike most voltage-gated K+-channels, hERG shows a low elementary conductance at physiological voltage and potassium concentration. To investigate the molecular features underlying this unusual behavior, we simulated the ion conduction through the selectivity filter at a fully atomistic level by means of molecular dynamics-based methods, using a homology-derived model. According to our calculations, permeation of potassium ions can occur along two pathways, one involving site vacancies inside the filter (showing an energy barrier of about 6 kcal mol−1), and the other characterized by the presence of a knock-on intermediate (about 8 kcal mol−1). These barriers are indeed in accordance with a low conductance behavior, and can be explained in terms of a series of distinctive structural features displayed by the hERG ion permeation pathway. PMID:23133669

  13. Calcium channel modulation as a target in chronic pain control.

    PubMed

    Patel, Ryan; Montagut-Bordas, Carlota; Dickenson, Anthony H

    2018-06-01

    Neuropathic pain remains poorly treated for large numbers of patients, and little progress has been made in developing novel classes of analgesics. To redress this issue, ziconotide (Prialt™) was developed and approved as a first-in-class synthetic version of ω-conotoxin MVIIA, a peptide blocker of Ca v 2.2 channels. Unfortunately, the impracticalities of intrathecal delivery, low therapeutic index and severe neurological side effects associated with ziconotide have restricted its use to exceptional circumstances. Ziconotide exhibits no state or use-dependent block of Ca v 2.2 channels; activation state-dependent blockers were hypothesized to circumvent the side effects of state-independent blockers by selectively targeting high-frequency firing of nociceptive neurones in chronic pain states, thus alleviating aberrant pain but not affecting normal sensory transduction. Unfortunately, numerous drugs, including state-dependent calcium channel blockers, have displayed efficacy in preclinical models but have subsequently been disappointing in clinical trials. In recent years, it has become more widely acknowledged that trans-aetiological sensory profiles exist amongst chronic pain patients and may indicate similar underlying mechanisms and drug sensitivities. Heterogeneity amongst patients, a reliance on stimulus-evoked endpoints in preclinical studies and a failure to utilize translatable endpoints, all are likely to have contributed to negative clinical trial results. We provide an overview of how electrophysiological and operant-based assays provide insight into sensory and affective aspects of pain in animal models and how these may relate to chronic pain patients in order to improve the bench-to-bedside translation of calcium channel modulators. This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175

  14. Promotion of Water Channels for Enhanced Ion Transport in 14 nm Diameter Carbon Nanotubes.

    PubMed

    Sheng, Jiadong; Zhu, Qi; Zeng, Xian; Yang, Zhaohui; Zhang, Xiaohua

    2017-03-29

    Ion transport plays an important role in solar-to-electricity conversion, drug delivery, and a variety of biological processes. Carbon nanotube (CNT) is a promising material as an ion transporter in the applications of the mimicking of natural ion channels, desalination, and energy harvesting. Here, we demonstrate a unique, enhanced ion transport through a vertically aligned multiwall CNT membrane after the application of an electric potential across CNT membranes. Interestingly, electrowetting arising from the application of an electric potential is critical for the enhancement of overall ion transport rate through CNT membranes. The wettability of a liquid with high surface tension on the interior channel walls of CNTs increases during an electric potential treatment and promotes the formation of water channels in CNTs. The formation of water channels in CNTs induces an increase in overall ion diffusion through CNT membranes. This phenomenon is also related to a decrease in the charge transfer resistance of CNTs (R ct ) after an electric potential is applied. Correspondingly, the enhanced ion flow rate gives rise to an enhancement in the capacitive performance of CNT based membranes. Our observations might have profound impact on the development of CNT based energy storage devices as well as artificial ion channels.

  15. Structure of a CLC chloride ion channel by cryo-electron microscopy

    PubMed Central

    Park, Eunyong; Campbell, Ernest B.; MacKinnon, Roderick

    2017-01-01

    CLC proteins transport chloride (Cl−) ions across cellular membranes to regulate muscle excitability, electrolyte movement across epithelia, and acidification of intracellular organelles. Some CLC proteins are channels that conduct Cl− ions passively, whereas others are secondary active transporters that exchange two Cl− ions for one H+. The structural basis underlying these distinctive transport mechanisms is puzzling because CLC channels and transporters are expected to share the same architecture based on sequence homology. To solve this puzzle we determined the structure of a mammalian CLC channel (CLC-K) using cryo-electron microscopy. A conserved loop in the Cl− transport pathway shows a structure markedly different from that of CLC transporters. Consequently, the cytosolic constriction for Cl− passage is widened in CLC-K such that the kinetic barrier previously postulated for Cl−/H+ transporter function would be reduced. Thus, reduction of a kinetic barrier in CLC channels enables fast flow of Cl− down its electrochemical gradient. PMID:28002411

  16. Divalent ions are potential permeating blockers of the non-selective NaK ion channel: combined QM and MD based investigations.

    PubMed

    Sadhu, Biswajit; Sundararajan, Mahesh; Bandyopadhyay, Tusar

    2017-10-18

    The bacterial NaK ion channel is distinctly different from other known ion channels due to its inherent non-selective feature. One of the unexplored and rather interesting features is its ability to permeate divalent metal ions (such as Ca 2+ and Ba 2+ ) and not monovalent alkali metal ions. Several intriguing questions about the energetics and structural aspects still remain unanswered. For instance, what causes Ca 2+ to permeate as well as block the selectivity filter (SF) of the NaK ion channel and act as a "permeating blocker"? How and at what energetic cost does another chemical congener, Sr 2+ , as well as Ba 2+ , a potent blocker of the K + ion channel, permeate through the SF of the NaK ion channel? Finally, how do their translocation energetics differ from those of monovalent ions such as K + ? Here, in an attempt to address these outstanding issues, we elucidate the structure, binding and selectivity of divalent ions (Ca 2+ , Sr 2+ and Ba 2+ ) as they permeate through the SF of the NaK ion channel using all-atom molecular dynamics simulations and density functional theory based calculations. We unveil mechanistic insight into this translocation event using well-tempered metadynamics simulations in a polarizable environment using the mean-field model of water and incorporating electronic continuum corrections for ions via charge rescaling. The results show that, akin to K + coordination, Sr 2+ and Ba 2+ bind at the SF in a very similar fashion and remain octa-coordinated at all sites. Interestingly, differing from its local hydration structure, Ca 2+ interacts with eight carbonyls to remain at the middle of the S3 site. Furthermore, the binding of divalent metals at SF binding sites is more favorable than the binding of K + . However, their permeation through the extracellular entrance faces a considerably higher energetic barrier compared to that for K + , which eventually manifests their inherent blocking feature.

  17. Development of spiral wave in a regular network of excitatory neurons due to stochastic poisoning of ion channels

    NASA Astrophysics Data System (ADS)

    Wu, Xinyi; Ma, Jun; Li, Fan; Jia, Ya

    2013-12-01

    Some experimental evidences show that spiral wave could be observed in the cortex of brain, and the propagation of this spiral wave plays an important role in signal communication as a pacemaker. The profile of spiral wave generated in a numerical way is often perfect while the observed profile in experiments is not perfect and smooth. In this paper, formation and development of spiral wave in a regular network of Morris-Lecar neurons, which neurons are placed on nodes uniformly in a two-dimensional array and each node is coupled with nearest-neighbor type, are investigated by considering the effect of stochastic ion channels poisoning and channel noise. The formation and selection of spiral wave could be detected as follows. (1) External forcing currents with diversity are imposed on neurons in the network of excitatory neurons with nearest-neighbor connection, a target-like wave emerges and its potential mechanism is discussed; (2) artificial defects and local poisoned area are selected in the network to induce new wave to interact with the target wave; (3) spiral wave can be induced to occupy the network when the target wave is blocked by the artificial defects or poisoned area with regular border lines; (4) the stochastic poisoning effect is introduced by randomly modifying the border lines (areas) of specific regions in the network. It is found that spiral wave can be also developed to occupy the network under appropriate poisoning ratio. The process of growth for the poisoned area of ion channels poisoning is measured, the effect of channels noise is also investigated. It is confirmed that perfect spiral wave emerges in the network under gradient poisoning even if the channel noise is considered.

  18. Saturation of conductance in single ion channels: the blocking effect of the near reaction field.

    PubMed

    Nadler, Boaz; Schuss, Zeev; Hollerbach, Uwe; Eisenberg, R S

    2004-11-01

    The ionic current flowing through a protein channel in the membrane of a biological cell depends on the concentration of the permeant ion, as well as on many other variables. As the concentration increases, the rate of arrival of bath ions to the channel's entrance increases, and typically so does the net current. This concentration dependence is part of traditional diffusion and rate models that predict Michaelis-Menten current-concentration relations for a single ion channel. Such models, however, neglect other effects of bath concentrations on the net current. The net current depends not only on the entrance rate of ions into the channel, but also on forces acting on ions inside the channel. These forces, in turn, depend not only on the applied potential and charge distribution of the channel, but also on the long-range Coulombic interactions with the surrounding bath ions. In this paper, we study the effects of bath concentrations on the average force on an ion in a single ion channel. We show that the force of the reaction field on a discrete ion inside a channel embedded in an uncharged lipid membrane contains a blocking (shielding) term that is proportional to the square root of the ionic bath concentration. We then show that different blocking strengths yield different behavior of the current-concentration and conductance-concentration curves. Our theory shows that at low concentrations, when the blocking force is weak, conductance grows linearly with concentration, as in traditional models, e.g., Michaelis-Menten formulations. As the concentration increases to a range of moderate shielding, conductance grows as the square root of concentration, whereas at high concentrations, with high shielding, conductance may actually decrease with increasing concentrations: the conductance-concentration curve can invert. Therefore, electrostatic interactions between bath ions and the single ion inside the channel can explain the different regimes of conductance

  19. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording.

    PubMed

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco

    2016-05-19

    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.

  20. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording

    PubMed Central

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter. PMID:27213382

  1. Neuronal and Cardiovascular Potassium Channels as Therapeutic Drug Targets

    PubMed Central

    Humphries, Edward S. A.

    2015-01-01

    Potassium (K+) channels, with their diversity, often tissue-defined distribution, and critical role in controlling cellular excitability, have long held promise of being important drug targets for the treatment of dysrhythmias in the heart and abnormal neuronal activity within the brain. With the exception of drugs that target one particular class, ATP-sensitive K+ (KATP) channels, very few selective K+ channel activators or inhibitors are currently licensed for clinical use in cardiovascular and neurological disease. Here we review what a range of human genetic disorders have told us about the role of specific K+ channel subunits, explore the potential of activators and inhibitors of specific channel populations as a therapeutic strategy, and discuss possible reasons for the difficulty in designing clinically relevant K+ channel modulators. PMID:26303307

  2. Optical Waveguide Lightmode Spectroscopic Techniques for Investigating Membrane-Bound Ion Channel Activities

    PubMed Central

    Székács, Inna; Kaszás, Nóra; Gróf, Pál; Erdélyi, Katalin; Szendrő, István; Mihalik, Balázs; Pataki, Ágnes; Antoni, Ferenc A.; Madarász, Emilia

    2013-01-01

    Optical waveguide lightmode spectroscopic (OWLS) techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE) membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET) mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na+ and organic cations through gramicidin channels and detecting the Cl–-channel functions of the (α5β2γ2) GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline. PMID:24339925

  3. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels

    PubMed Central

    Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.

    2015-01-01

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261

  4. Robust ion current oscillations under a steady electric field: An ion channel analog.

    PubMed

    Yan, Yu; Wang, Yunshan; Senapati, Satyajyoti; Schiffbauer, Jarrod; Yossifon, Gilad; Chang, Hsueh-Chia

    2016-08-01

    We demonstrate a nonlinear, nonequilibrium field-driven ion flux phenomenon, which unlike Teorell's nonlinear multiple field theory, requires only the application of one field: robust autonomous current-mass flux oscillations across a porous monolith coupled to a capillary with a long air bubble, which mimics a hydrophobic protein in an ion channel. The oscillations are driven by the hysteretic wetting dynamics of the meniscus when electro-osmotic flow and pressure driven backflow, due to bubble expansion, compete to approach zero mass flux within the monolith. Delayed rupture of the film around the advancing bubble cuts off the electric field and switches the monolith mass flow from the former to the latter. The meniscus then recedes and repairs the rupture to sustain an oscillation for a range of applied fields. This generic mechanism shares many analogs with current oscillations in cell membrane ion channel. At sufficiently high voltage, the system undergoes a state transition characterized by appearance of the ubiquitous 1/f power spectrum.

  5. Ion channel signaling influences cellular proliferation and phagocyte activity during axolotl tail regeneration.

    PubMed

    Franklin, Brandon M; Voss, S Randal; Osborn, Jeffrey L

    2017-08-01

    Little is known about the potential for ion channels to regulate cellular behaviors during tissue regeneration. Here, we utilized an amphibian tail regeneration assay coupled with a chemical genetic screen to identify ion channel antagonists that altered critical cellular processes during regeneration. Inhibition of multiple ion channels either partially (anoctamin1/Tmem16a, anoctamin2/Tmem16b, K V 2.1, K V 2.2, L-type Ca V channels and H/K ATPases) or completely (GlyR, GABA A R, K V 1.5 and SERCA pumps) inhibited tail regeneration. Partial inhibition of tail regeneration by blocking the calcium activated chloride channels, anoctamin1&2, was associated with a reduction of cellular proliferation in tail muscle and mesenchymal regions. Inhibition of anoctamin 1/2 also altered the post-amputation transcriptional response of p44/42 MAPK signaling pathway genes, including decreased expression of erk1/erk2. We also found that complete inhibition via voltage gated K + channel blockade was associated with diminished phagocyte recruitment to the amputation site. The identification of H + pumps as required for axolotl tail regeneration supports findings in Xenopus and Planaria models, and more generally, the conservation of ion channels as regulators of tissue regeneration. This study provides a preliminary framework for an in-depth investigation of the mechanistic role of ion channels and their potential involvement in regulating cellular proliferation and other processes essential to wound healing, appendage regeneration, and tissue repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Potassium Channels Mediate Killing by Human Natural Killer Cells

    NASA Astrophysics Data System (ADS)

    Schlichter, Lyanne; Sidell, Neil; Hagiwara, Susumu

    1986-01-01

    Human natural killer (NK) cells in peripheral blood spontaneously recognize and kill a wide variety of target cells. It has been suggested that ion channels are involved in the killing process because there is a Ca-dependent stage and because killing by presensitized cytotoxic T lymphocytes, which in many respects resembles NK killing, is associated with changes in K and Na transport in the target cell. However, no direct evidence exists for ion channels in NK cells or in their target cells. Using the whole-cell variation of the patch-clamp technique, we found a voltage-dependent potassium (K+) current in NK cells. The K+ current was reduced in a dose-dependent manner by the K-channel blockers 4-aminopyridine and quinidine and by the traditional Ca-channel blockers verapamil and Cd2+. We tested the effects of ion-channel blockers on killing of two commonly used target cell lines: K562, which is derived from a human myeloid leukemia, and U937, which is derived from a human histiocytic leukemia. Killing of K562 target cells, determined in a standard 51Cr-release assay, was inhibited in a dose-dependent manner by verapamil, quinidine, Cd2+, and 4-aminopyridine at concentrations comparable to those that blocked the K+ current in NK cells. In K562 target cells only a voltage-dependent Na+ current was found and it was blocked by concentrations of tetrodotoxin that had no effect on killing. Killing of U937 target cells was also inhibited by the two ion-channel blockers tested, quinidine and verapamil. In this cell line only a small K+ current was found that was similar to the one in NK cells. We could not find any evidence of a Ca2+ current in target cells or in NK cells; therefore, our results cannot explain the Ca dependence of killing. Our findings show that there are K channels in NK cells and that these channels play a necessary role in the killing process. In contrast, the endogenous channel type in the target cell is probably not a factor in determining target cell

  7. Monitoring ion-channel function in real time through quantum decoherence

    PubMed Central

    Hall, Liam T.; Hill, Charles D.; Cole, Jared H.; Städler, Brigitte; Caruso, Frank; Mulvaney, Paul; Wrachtrup, Jörg; Hollenberg, Lloyd C. L.

    2010-01-01

    In drug discovery, there is a clear and urgent need for detection of cell-membrane ion-channel operation with wide-field capability. Existing techniques are generally invasive or require specialized nanostructures. We show that quantum nanotechnology could provide a solution. The nitrogen-vacancy (NV) center in nanodiamond is of great interest as a single-atom quantum probe for nanoscale processes. However, until now nothing was known about the quantum behavior of a NV probe in a complex biological environment. We explore the quantum dynamics of a NV probe in proximity to the ion channel, lipid bilayer, and surrounding aqueous environment. Our theoretical results indicate that real-time detection of ion-channel operation at millisecond resolution is possible by directly monitoring the quantum decoherence of the NV probe. With the potential to scan and scale up to an array-based system, this conclusion may have wide-ranging implications for nanoscale biology and drug discovery. PMID:20937908

  8. Monitoring ion-channel function in real time through quantum decoherence.

    PubMed

    Hall, Liam T; Hill, Charles D; Cole, Jared H; Städler, Brigitte; Caruso, Frank; Mulvaney, Paul; Wrachtrup, Jörg; Hollenberg, Lloyd C L

    2010-11-02

    In drug discovery, there is a clear and urgent need for detection of cell-membrane ion-channel operation with wide-field capability. Existing techniques are generally invasive or require specialized nanostructures. We show that quantum nanotechnology could provide a solution. The nitrogen-vacancy (NV) center in nanodiamond is of great interest as a single-atom quantum probe for nanoscale processes. However, until now nothing was known about the quantum behavior of a NV probe in a complex biological environment. We explore the quantum dynamics of a NV probe in proximity to the ion channel, lipid bilayer, and surrounding aqueous environment. Our theoretical results indicate that real-time detection of ion-channel operation at millisecond resolution is possible by directly monitoring the quantum decoherence of the NV probe. With the potential to scan and scale up to an array-based system, this conclusion may have wide-ranging implications for nanoscale biology and drug discovery.

  9. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels.

    PubMed

    Elinder, Fredrik; Liin, Sara I

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (Na V ), potassium (K V ), calcium (Ca V ), and proton (H V ) channels, as well as calcium-activated potassium (K Ca ), and transient receptor potential (TRP) channels. Some effects of fatty acids appear to be channel specific, whereas others seem to be more general. Common features for the fatty acids to act on the ion channels are at least two double bonds in cis geometry and a charged carboxyl group. In total we identify and label five different sites for the PUFAs. PUFA site 1 : The intracellular cavity. Binding of PUFA reduces the current, sometimes as a time-dependent block, inducing an apparent inactivation. PUFA site 2 : The extracellular entrance to the pore. Binding leads to a block of the channel. PUFA site 3 : The intracellular gate. Binding to this site can bend the gate open and increase the current. PUFA site 4 : The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor domain. Binding to this site leads to an opening of the channel via an electrostatic attraction between the negatively charged PUFA and the positively charged voltage sensor. PUFA site 5 : The interface between the extracellular leaflet of the lipid bilayer and the pore domain. Binding to this site affects slow inactivation. This mapping of functional PUFA sites can form the basis for physiological and pharmacological modifications of voltage-gated ion channels.

  10. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels

    PubMed Central

    Elinder, Fredrik; Liin, Sara I.

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (NaV), potassium (KV), calcium (CaV), and proton (HV) channels, as well as calcium-activated potassium (KCa), and transient receptor potential (TRP) channels. Some effects of fatty acids appear to be channel specific, whereas others seem to be more general. Common features for the fatty acids to act on the ion channels are at least two double bonds in cis geometry and a charged carboxyl group. In total we identify and label five different sites for the PUFAs. PUFA site 1: The intracellular cavity. Binding of PUFA reduces the current, sometimes as a time-dependent block, inducing an apparent inactivation. PUFA site 2: The extracellular entrance to the pore. Binding leads to a block of the channel. PUFA site 3: The intracellular gate. Binding to this site can bend the gate open and increase the current. PUFA site 4: The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor domain. Binding to this site leads to an opening of the channel via an electrostatic attraction between the negatively charged PUFA and the positively charged voltage sensor. PUFA site 5: The interface between the extracellular leaflet of the lipid bilayer and the pore domain. Binding to this site affects slow inactivation. This mapping of functional PUFA sites can form the basis for physiological and pharmacological modifications of voltage-gated ion channels. PMID:28220076

  11. Ion channel recordings on an injection-molded polymer chip.

    PubMed

    Tanzi, Simone; Matteucci, Marco; Christiansen, Thomas Lehrmann; Friis, Søren; Christensen, Mette Thylstrup; Garnaes, Joergen; Wilson, Sandra; Kutchinsky, Jonatan; Taboryski, Rafael

    2013-12-21

    In this paper, we demonstrate recordings of the ion channel activity across the cell membrane in a biological cell by employing the so-called patch clamping technique on an injection-molded polymer microfluidic device. The findings will allow direct recordings of ion channel activity to be made using the cheapest materials and production platform to date and with the potential for very high throughput. The employment of cornered apertures for cell capture allowed the fabrication of devices without through holes and via a scheme comprising master origination by dry etching in a silicon substrate, electroplating in nickel and injection molding of the final part. The most critical device parameters were identified as the length of the patching capillary and the very low surface roughness on the inside of the capillary. The cross-sectional shape of the orifice was found to be less critical, as both rectangular and semicircular profiles seemed to have almost the same ability to form tight seals with cells with negligible leak currents. The devices were functionally tested using human embryonic kidney cells expressing voltage-gated sodium channels (Nav1.7) and benchmarked against a commercial state-of-the-art system for automated ion channel recordings. These experiments considered current-voltage (IV) relationships for activation and inactivation of the Nav1.7 channels and their sensitivity to a local anesthetic, lidocaine. Both IVs and lidocaine dose-response curves obtained from the injection-molded polymer device were in good agreement with data obtained from the commercial system.

  12. Three homologous subunits form a high affinity peptide-gated ion channel in Hydra.

    PubMed

    Dürrnagel, Stefan; Kuhn, Anne; Tsiairis, Charisios D; Williamson, Michael; Kalbacher, Hubert; Grimmelikhuijzen, Cornelis J P; Holstein, Thomas W; Gründer, Stefan

    2010-04-16

    Recently, three ion channel subunits of the degenerin (DEG)/epithelial Na(+) channel (ENaC) gene family have been cloned from the freshwater polyp Hydra magnipapillata, the Hydra Na(+) channels (HyNaCs) 2-4. Two of them, HyNaC2 and HyNaC3, co-assemble to form an ion channel that is gated by the neuropeptides Hydra-RFamides I and II. The HyNaC2/3 channel is so far the only cloned ionotropic receptor from cnidarians and, together with the related ionotropic receptor FMRFamide-activated Na(+) channel (FaNaC) from snails, the only known peptide-gated ionotropic receptor. The HyNaC2/3 channel has pore properties, like a low Na(+) selectivity and a low amiloride affinity, that are different from other channels of the DEG/ENaC gene family, suggesting that a component of the native Hydra channel might still be lacking. Here, we report the cloning of a new ion channel subunit from Hydra, HyNaC5. The new subunit is closely related to HyNaC2 and -3 and co-localizes with HyNaC2 and -3 to the base of the tentacles. Coexpression in Xenopus oocytes of HyNaC5 with HyNaC2 and -3 largely increases current amplitude after peptide stimulation and affinity of the channel to Hydra-RFamides I and II. Moreover, the HyNaC2/3/5 channel has altered pore properties and amiloride affinity, more similarly to other DEG/ENaC channels. Collectively, our results suggest that the three homologous subunits HyNaC2, -3, and -5 form a peptide-gated ion channel in Hydra that could contribute to fast synaptic transmission.

  13. A Component-Based FPGA Design Framework for Neuronal Ion Channel Dynamics Simulations

    PubMed Central

    Mak, Terrence S. T.; Rachmuth, Guy; Lam, Kai-Pui; Poon, Chi-Sang

    2008-01-01

    Neuron-machine interfaces such as dynamic clamp and brain-implantable neuroprosthetic devices require real-time simulations of neuronal ion channel dynamics. Field Programmable Gate Array (FPGA) has emerged as a high-speed digital platform ideal for such application-specific computations. We propose an efficient and flexible component-based FPGA design framework for neuronal ion channel dynamics simulations, which overcomes certain limitations of the recently proposed memory-based approach. A parallel processing strategy is used to minimize computational delay, and a hardware-efficient factoring approach for calculating exponential and division functions in neuronal ion channel models is used to conserve resource consumption. Performances of the various FPGA design approaches are compared theoretically and experimentally in corresponding implementations of the AMPA and NMDA synaptic ion channel models. Our results suggest that the component-based design framework provides a more memory economic solution as well as more efficient logic utilization for large word lengths, whereas the memory-based approach may be suitable for time-critical applications where a higher throughput rate is desired. PMID:17190033

  14. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile☆

    PubMed Central

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-01-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. PMID:23707769

  15. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: a study to assess the drug's cardiac ion channel profile.

    PubMed

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K; Lukacs, Peter; Gawali, Vaibhavkumar S; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licensed as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Resonant coherent excitation of 390 MeV/u Ar ions planar channeled in Si crystals

    NASA Astrophysics Data System (ADS)

    Komaki, K.; Azuma, T.; Ito, T.; Takabayashi, Y.; Yamazaki, Y.; Sano, M.; Torikoshi, M.; Kitagawa, A.; Takada, E.; Murakami, T.

    1998-12-01

    Resonant coherent excitation of the 1s electron to n=2 states in a hydrogen-like ion was studied through measurements of the survived fraction of 390 MeV/u Ar17+ planar channeled in a Si crystal. Adopting a totally depleted Si surface barrier detector as a target crystal, the charge state of the individual emerged ion was measured in coincidence with the energy deposition in the target. By changing the incident direction along the (2 overline2 0), (0 0 4), and (1 overline1 1) planes, a series of clear resonances were observed as the decrease in the survived charge fraction due to higher electron loss probability for the excited state. Each resonance profile reflects energy splitting of the n=2 manifold originated from l-s interaction and Stark effect due to the crystal field. From the correlation between the energy loss and survived charge fraction, transition energy as a function of the ion trajectory amplitude is deduced which is in good agreement with calculated results.

  17. Progress in Development of Improved Ion-Channel Biosensors

    NASA Technical Reports Server (NTRS)

    Nadeau, Jay L.; White, Victor E.; Maurer, Joshua A.; Dougherty, Dennis A.

    2008-01-01

    Further improvements have recently been made in the development of the devices described in Improved Ion-Channel Biosensors (NPO-30710), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 30. As discussed in more detail in that article, these sensors offer advantages of greater stability, greater lifetime, and individual electrical addressability, relative to prior ion-channel biosensors. In order to give meaning to a brief description of the recent improvements, it is necessary to recapitulate a substantial portion of the text of the cited previous article. The figure depicts one sensor that incorporates the recent improvements, and can be helpful in understanding the recapitulated text, which follows: These sensors are microfabricated from silicon and other materials compatible with silicon. Typically, the sensors are fabricated in arrays in silicon wafers on glass plates. Each sensor in the array can be individually electrically addressed, without interference with its neighbors. Each sensor includes a well covered by a thin layer of silicon nitride, in which is made a pinhole for the formation of a lipid bilayer membrane. In one stage of fabrication, the lower half of the well is filled with agarose, which is allowed to harden. Then the upper half of the well is filled with a liquid electrolyte (which thereafter remains liquid) and a lipid bilayer is painted over the pinhole. The liquid contains a protein that forms an ion channel on top of the hardened agarose. The combination of enclosure in the well and support by the hardened agarose provides the stability needed to keep the membrane functional for times as long as days or even weeks. An electrode above the well, another electrode below the well, and all the materials between the electrodes together constitute a capacitor. What is measured is the capacitive transient current in response to an applied voltage pulse. One notable feature of this sensor, in comparison with prior such sensors, is a

  18. Cellular defibrillation: interaction of micro-scale electric fields with voltage-gated ion channels.

    PubMed

    Kargol, Armin; Malkinski, Leszek; Eskandari, Rahmatollah; Carter, Maya; Livingston, Daniel

    2015-09-01

    We study the effect of micro-scale electric fields on voltage-gated ion channels in mammalian cell membranes. Such micro- and nano-scale electric fields mimic the effects of multiferroic nanoparticles that were recently proposed [1] as a novel way of controlling the function of voltage-sensing biomolecules such as ion channels. This article describes experimental procedures and initial results that reveal the effect of the electric field, in close proximity of cells, on the ion transport through voltage-gated ion channels. We present two configurations of the whole-cell patch-clamping apparatus that were used to detect the effect of external stimulation on ionic currents and discuss preliminary results that indicate modulation of the ionic currents consistent with the applied stimulus.

  19. Ion channel electrophysiology via integrated planar patch-clamp chip with on-demand drug exchange.

    PubMed

    Chen, Chang-Yu; Tu, Ting-Yuan; Jong, De-Shien; Wo, Andrew M

    2011-06-01

    Planar patch clamp has revolutionized characterization of ion channel behavior in drug discovery primarily via advancement in high throughput. Lab use of planar technology, however, addresses different requirements and suffers from inflexibility to enable wide range of interrogation via a single cell. This work presents integration of planar patch clamp with microfluidics, achieving multiple solution exchanges for tailor-specific measurement and allowing rapid replacement of the cell-contacting aperture. Studies via endogenously expressed ion channels in HEK 293T cells were commenced to characterize the device. Results reveal the microfluidic concentration generator produces distinct solution/drug combination/concentrations on-demand. Volume-regulated chloride channel and voltage-gated potassium channels in HEK 293T cells immersed in generated solutions under various osmolarities or drug concentrations show unique channel signature under specific condition. Excitation and blockage of ion channels in a single cell was demonstrated via serial solution exchange. Robustness of the reversible bonding and ease of glass substrate replacement were proven via repeated usage of the integrated device. The present approach reveals the capability and flexibility of integrated microfluidic planar patch-clamp system for ion channel assays. Copyright © 2011 Wiley Periodicals, Inc.

  20. Voltage-Gated Ion Channels in Cancer Cell Proliferation

    PubMed Central

    Rao, Vidhya R.; Perez-Neut, Mathew; Kaja, Simon; Gentile, Saverio

    2015-01-01

    Changes of the electrical charges across the surface cell membrane are absolutely necessary to maintain cellular homeostasis in physiological as well as in pathological conditions. The opening of ion channels alter the charge distribution across the surface membrane as they allow the diffusion of ions such as K+, Ca++, Cl−, Na+. Traditionally, voltage-gated ion channels (VGIC) are known to play fundamental roles in controlling rapid bioelectrical signaling including action potential and/or contraction. However, several investigations have revealed that these classes of proteins can also contribute significantly to cell mitotic biochemical signaling, cell cycle progression, as well as cell volume regulation. All these functions are critically important for cancer cell proliferation. Interestingly, a variety of distinct VGICs are expressed in different cancer cell types, including metastasis but not in the tissues from which these tumors were generated. Given the increasing evidence suggesting that VGIC play a major role in cancer cell biology, in this review we discuss the role of distinct VGIC in cancer cell proliferation and possible therapeutic potential of VIGC pharmacological manipulation. PMID:26010603

  1. Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jinn-Liang, E-mail: jinnliu@mail.nhcue.edu.tw; Eisenberg, Bob, E-mail: beisenbe@rush.edu

    2014-12-14

    A Poisson-Nernst-Planck-Fermi (PNPF) theory is developed for studying ionic transport through biological ion channels. Our goal is to deal with the finite size of particle using a Fermi like distribution without calculating the forces between the particles, because they are both expensive and tricky to compute. We include the steric effect of ions and water molecules with nonuniform sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of water molecules in an inhomogeneous aqueous electrolyte. Including the finite volume of water and the voids between particles is an important new part ofmore » the theory presented here. Fermi like distributions of all particle species are derived from the volume exclusion of classical particles. Volume exclusion and the resulting saturation phenomena are especially important to describe the binding and permeation mechanisms of ions in a narrow channel pore. The Gibbs free energy of the Fermi distribution reduces to that of a Boltzmann distribution when these effects are not considered. The classical Gibbs entropy is extended to a new entropy form — called Gibbs-Fermi entropy — that describes mixing configurations of all finite size particles and voids in a thermodynamic system where microstates do not have equal probabilities. The PNPF model describes the dynamic flow of ions, water molecules, as well as voids with electric fields and protein charges. The model also provides a quantitative mean-field description of the charge/space competition mechanism of particles within the highly charged and crowded channel pore. The PNPF results are in good accord with experimental currents recorded in a 10{sup 8}-fold range of Ca{sup 2+} concentrations. The results illustrate the anomalous mole fraction effect, a signature of L-type calcium channels. Moreover, numerical results concerning water density, dielectric permittivity, void volume, and steric energy provide

  2. IBiSA_Tools: A Computational Toolkit for Ion-Binding State Analysis in Molecular Dynamics Trajectories of Ion Channels.

    PubMed

    Kasahara, Kota; Kinoshita, Kengo

    2016-01-01

    Ion conduction mechanisms of ion channels are a long-standing conundrum. Although the molecular dynamics (MD) method has been extensively used to simulate ion conduction dynamics at the atomic level, analysis and interpretation of MD results are not straightforward due to complexity of the dynamics. In our previous reports, we proposed an analytical method called ion-binding state analysis to scrutinize and summarize ion conduction mechanisms by taking advantage of a variety of analytical protocols, e.g., the complex network analysis, sequence alignment, and hierarchical clustering. This approach effectively revealed the ion conduction mechanisms and their dependence on the conditions, i.e., ion concentration and membrane voltage. Here, we present an easy-to-use computational toolkit for ion-binding state analysis, called IBiSA_tools. This toolkit consists of a C++ program and a series of Python and R scripts. From the trajectory file of MD simulations and a structure file, users can generate several images and statistics of ion conduction processes. A complex network named ion-binding state graph is generated in a standard graph format (graph modeling language; GML), which can be visualized by standard network analyzers such as Cytoscape. As a tutorial, a trajectory of a 50 ns MD simulation of the Kv1.2 channel is also distributed with the toolkit. Users can trace the entire process of ion-binding state analysis step by step. The novel method for analysis of ion conduction mechanisms of ion channels can be easily used by means of IBiSA_tools. This software is distributed under an open source license at the following URL: http://www.ritsumei.ac.jp/~ktkshr/ibisa_tools/.

  3. Atomistic Modeling of Ion Conduction through the Voltage-Sensing Domain of the Shaker K+ Ion Channel.

    PubMed

    Wood, Mona L; Freites, J Alfredo; Tombola, Francesco; Tobias, Douglas J

    2017-04-20

    Voltage-sensing domains (VSDs) sense changes in the membrane electrostatic potential and, through conformational changes, regulate a specific function. The VSDs of wild-type voltage-dependent K + , Na + , and Ca 2+ channels do not conduct ions, but they can become ion-permeable through pathological mutations in the VSD. Relatively little is known about the underlying mechanisms of conduction through VSDs. The most detailed studies have been performed on Shaker K + channel variants in which ion conduction through the VSD is manifested in electrophysiology experiments as a voltage-dependent inward current, the so-called omega current, which appears when the VSDs are in their resting state conformation. Only monovalent cations appear to permeate the Shaker VSD via a pathway that is believed to be, at least in part, the same as that followed by the S4 basic side chains during voltage-dependent activation. We performed μs-time scale atomistic molecular dynamics simulations of a cation-conducting variant of the Shaker VSD under applied electric fields in an experimentally validated resting-state conformation, embedded in a lipid bilayer surrounded by solutions containing guanidinium chloride or potassium chloride. Our simulations provide insights into the Shaker VSD permeation pathway, the protein-ion interactions that control permeation kinetics, and the mechanism of voltage-dependent activation of voltage-gated ion channels.

  4. Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics.

    PubMed

    Beattie, Kylie A; Hill, Adam P; Bardenet, Rémi; Cui, Yi; Vandenberg, Jamie I; Gavaghan, David J; de Boer, Teun P; Mirams, Gary R

    2018-03-24

    Ion current kinetics are commonly represented by current-voltage relationships, time constant-voltage relationships and subsequently mathematical models fitted to these. These experiments take substantial time, which means they are rarely performed in the same cell. Rather than traditional square-wave voltage clamps, we fitted a model to the current evoked by a novel sum-of-sinusoids voltage clamp that was only 8 s long. Short protocols that can be performed multiple times within a single cell will offer many new opportunities to measure how ion current kinetics are affected by changing conditions. The new model predicts the current under traditional square-wave protocols well, with better predictions of underlying currents than literature models. The current under a novel physiologically relevant series of action potential clamps is predicted extremely well. The short sinusoidal protocols allow a model to be fully fitted to individual cells, allowing us to examine cell-cell variability in current kinetics for the first time. Understanding the roles of ion currents is crucial to predict the action of pharmaceuticals and mutations in different scenarios, and thereby to guide clinical interventions in the heart, brain and other electrophysiological systems. Our ability to predict how ion currents contribute to cellular electrophysiology is in turn critically dependent on our characterisation of ion channel kinetics - the voltage-dependent rates of transition between open, closed and inactivated channel states. We present a new method for rapidly exploring and characterising ion channel kinetics, applying it to the hERG potassium channel as an example, with the aim of generating a quantitatively predictive representation of the ion current. We fitted a mathematical model to currents evoked by a novel 8 second sinusoidal voltage clamp in CHO cells overexpressing hERG1a. The model was then used to predict over 5 minutes of recordings in the same cell in response to

  5. Targeting mechanisms of high voltage-activated Ca2+ channels.

    PubMed

    Herlitze, Stefan; Xie, Mian; Han, Jing; Hümmer, Alexander; Melnik-Martinez, Katya V; Moreno, Rosa L; Mark, Melanie D

    2003-12-01

    Functional voltage-dependent Ca2+ channel complexes are assembled by three to four subunits: alpha1, beta, alpha2delta subunits (C. Leveque et al., 1994, J. Biol Chem. 269, 6306-6312; M. W. McEnery et al., 1991, Proc. Natl. Acad. Sci. U.S.A. 88, 11095-11099) and at least in muscle cells also y subunits (B. M. Curtis and W. A. Catterall, 1984, Biochemistry 23, 2113-2118). Ca2+ channels mediate the voltage-dependent Ca2+ influx in subcellular compartments, triggering such diverse processes as neurotransmitter release, dendritic action potentials, excitation-contraction, and excitation-transcription coupling. The targeting of biophysically defined Ca2+ channel complexes to the correct subcellular structures is, thus, critical to proper cell and physiological functioning. Despite their importance, surprisingly little is known about the targeting mechanisms by which Ca2+ channel complexes are transported to their site of function. Here we summarize what we know about the targeting of Ca2+ channel complexes through the cell to the plasma membrane and subcellular structures.

  6. High throughput ion-channel pharmacology: planar-array-based voltage clamp.

    PubMed

    Kiss, Laszlo; Bennett, Paul B; Uebele, Victor N; Koblan, Kenneth S; Kane, Stefanie A; Neagle, Brad; Schroeder, Kirk

    2003-02-01

    Technological advances often drive major breakthroughs in biology. Examples include PCR, automated DNA sequencing, confocal/single photon microscopy, AFM, and voltage/patch-clamp methods. The patch-clamp method, first described nearly 30 years ago, was a major technical achievement that permitted voltage-clamp analysis (membrane potential control) of ion channels in most cells and revealed a role for channels in unimagined areas. Because of the high information content, voltage clamp is the best way to study ion-channel function; however, throughput is too low for drug screening. Here we describe a novel breakthrough planar-array-based HT patch-clamp technology developed by Essen Instruments capable of voltage-clamping thousands of cells per day. This technology provides greater than two orders of magnitude increase in throughput compared with the traditional voltage-clamp techniques. We have applied this method to study the hERG K(+) channel and to determine the pharmacological profile of QT prolonging drugs.

  7. Emergence of ion channel modal gating from independent subunit kinetics.

    PubMed

    Bicknell, Brendan A; Goodhill, Geoffrey J

    2016-09-06

    Many ion channels exhibit a slow stochastic switching between distinct modes of gating activity. This feature of channel behavior has pronounced implications for the dynamics of ionic currents and the signaling pathways that they regulate. A canonical example is the inositol 1,4,5-trisphosphate receptor (IP3R) channel, whose regulation of intracellular Ca(2+) concentration is essential for numerous cellular processes. However, the underlying biophysical mechanisms that give rise to modal gating in this and most other channels remain unknown. Although ion channels are composed of protein subunits, previous mathematical models of modal gating are coarse grained at the level of whole-channel states, limiting further dialogue between theory and experiment. Here we propose an origin for modal gating, by modeling the kinetics of ligand binding and conformational change in the IP3R at the subunit level. We find good agreement with experimental data over a wide range of ligand concentrations, accounting for equilibrium channel properties, transient responses to changing ligand conditions, and modal gating statistics. We show how this can be understood within a simple analytical framework and confirm our results with stochastic simulations. The model assumes that channel subunits are independent, demonstrating that cooperative binding or concerted conformational changes are not required for modal gating. Moreover, the model embodies a generally applicable principle: If a timescale separation exists in the kinetics of individual subunits, then modal gating can arise as an emergent property of channel behavior.

  8. Trafficking Mechanisms Underlying Neuronal Voltage-gated Ion Channel Localization at the Axon Initial Segment

    PubMed Central

    Vacher, Helene; Trimmer, James S.

    2012-01-01

    Summary Voltage-gated ion channels are diverse and fundamental determinants of neuronal intrinsic excitability. Voltage-gated K+ (Kv) and Na+ (Nav) channels play complex yet fundamentally important roles in determining intrinsic excitability. The Kv and Nav channels located at the axon initial segment (AIS) play a unique and especially important role in generating neuronal output in the form of anterograde axonal and backpropagating action potentials, Aberrant intrinsic excitability in individual neurons within networks contributes to synchronous neuronal activity leading to seizures. Mutations in ion channel genes gives rise to a variety of seizure-related “Channelopathies”, and many of the ion channel subunits associated with epilepsy mutations are localized at the AIS, making this a hotspot for epileptogenesis. Here we review the cellular mechanisms that underlie the trafficking of Kv and Nav channels found at the AIS, and how Kv and Nav channel mutations associated with epilepsy can alter these processes. PMID:23216576

  9. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles

    PubMed Central

    Tykocki, Nathan R.; Boerman, Erika M.; Jackson, William F.

    2017-01-01

    Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body’s tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. PMID:28333380

  10. Existence of efficient divalent metal ion-catalyzed and inefficient divalent metal ion-independent channels in reactions catalyzed by a hammerhead ribozyme

    PubMed Central

    Zhou, Jing-Min; Zhou, De-Min; Takagi, Yasuomi; Kasai, Yasuhiro; Inoue, Atsushi; Baba, Tadashi; Taira, Kazunari

    2002-01-01

    The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ions from 0.3 to 3 mM, addition of the ribozyme to the reaction mixture under single-turnover conditions enhances the reaction with the product reaching a fixed maximum level. Further addition of the ribozyme inhibits the reaction, demonstrating that a certain number of divalent metal ions is required for proper folding and also for catalysis. At extremely high concentrations, monovalent ions, such as Na+ ions, can also serve as cofactors in hammerhead ribozyme-catalyzed reactions. However, the catalytic efficiency of monovalent ions is extremely low and, thus, high concentrations are required. Furthermore, addition of monovalent ions to divalent metal ion-catalyzed hammerhead reactions inhibits the divalent metal ion-catalyzed reactions, suggesting that the more desirable divalent metal ion–ribozyme complexes are converted to less desirable monovalent metal ion–ribozyme complexes via removal of divalent metal ions, which serve as a structural support in the ribozyme complex. Even though two channels appear to exist, namely an efficient divalent metal ion-catalyzed channel and an inefficient monovalent metal ion-catalyzed channel, it is clear that, under physiological conditions, hammerhead ribozymes are metalloenzymes that act via the significantly more efficient divalent metal ion-dependent channel. Moreover, the observed kinetic data are consistent with Lilley’s and DeRose’s two-phase folding model that was based on ground state structure analyses. PMID:12034824

  11. Hepatitis E virus ORF3 is a functional ion channel required for release of infectious particles.

    PubMed

    Ding, Qiang; Heller, Brigitte; Capuccino, Juan M V; Song, Bokai; Nimgaonkar, Ila; Hrebikova, Gabriela; Contreras, Jorge E; Ploss, Alexander

    2017-01-31

    Hepatitis E virus (HEV) is the leading cause of enterically transmitted viral hepatitis globally. Of HEV's three ORFs, the function of ORF3 has remained elusive. Here, we demonstrate that via homophilic interactions ORF3 forms multimeric complexes associated with intracellular endoplasmic reticulum (ER)-derived membranes. HEV ORF3 shares several structural features with class I viroporins, and the function of HEV ORF3 can be maintained by replacing it with the well-characterized viroporin influenza A virus (IAV) matrix-2 protein. ORF3's ion channel function is further evidenced by its ability to mediate ionic currents when expressed in Xenopus laevis oocytes. Furthermore, we identified several positions in ORF3 critical for its formation of multimeric complexes, ion channel activity, and, ultimately, release of infectious particles. Collectively, our data demonstrate a previously undescribed function of HEV ORF3 as a viroporin, which may serve as an attractive target in developing direct-acting antivirals.

  12. Beyond voltage-gated ion channels: Voltage-operated membrane proteins and cellular processes.

    PubMed

    Zhang, Jianping; Chen, Xingjuan; Xue, Yucong; Gamper, Nikita; Zhang, Xuan

    2018-04-18

    Voltage-gated ion channels were believed to be the only voltage-sensitive proteins in excitable (and some non-excitable) cells for a long time. Emerging evidence indicates that the voltage-operated model is shared by some other transmembrane proteins expressed in both excitable and non-excitable cells. In this review, we summarize current knowledge about voltage-operated proteins, which are not classic voltage-gated ion channels as well as the voltage-dependent processes in cells for which single voltage-sensitive proteins have yet to be identified. Particularly, we will focus on the following. (1) Voltage-sensitive phosphoinositide phosphatases (VSP) with four transmembrane segments homologous to the voltage sensor domain (VSD) of voltage-gated ion channels; VSPs are the first family of proteins, other than the voltage-gated ion channels, for which there is sufficient evidence for the existence of the VSD domain; (2) Voltage-gated proton channels comprising of a single voltage-sensing domain and lacking an identified pore domain; (3) G protein coupled receptors (GPCRs) that mediate the depolarization-evoked potentiation of Ca 2+ mobilization; (4) Plasma membrane (PM) depolarization-induced but Ca 2+ -independent exocytosis in neurons. (5) Voltage-dependent metabolism of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P 2 , PIP 2 ) in the PM. These recent discoveries expand our understanding of voltage-operated processes within cellular membranes. © 2018 Wiley Periodicals, Inc.

  13. Simple Ion Channels: From Structure to Electrophysiology and Back

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrzej

    2018-01-01

    A reliable way to establish whether our understanding of a channel is satisfactory is to reproduce its measured ionic conductance over a broad range of applied voltages in computer simulations. In molecular dynamics (MD), this can be done by way of applying an external electric field to the system and counting the number of ions that traverse the channel per unit time. Since this approach is computationally very expensive, we have developed a markedly more efficient alternative in which MD is combined with the electrodiffusion (ED) equation. In this approach, the assumptions of the ED equation can be rigorously tested, and the precision and consistency of the calculated conductance can be determined. We have demonstrated that the full current/voltage dependence and the underlying free energy profile for a simple channel can be reliably calculated from equilibrium or non-equilibrium MD simulations at a single voltage. To carry out MD simulations, a structural model of a channel has to be assumed, which is an important constraint, considering that high-resolution structures are available for only very few simple channels. If the comparison of calculated ionic conductance with electrophysiological data is satisfactory, it greatly increases our confidence that the structure and the function are described sufficiently accurately. We examined the validity of the ED for several channels embedded in phospholipid membranes - four naturally occurring channels: trichotoxin, alamethicin, p7 from hepatitis C virus (HCV) and Vpu from the HIV-1 virus, and a synthetic, hexameric channel, formed by a 21-residue peptide that contains only leucine and serine. All these channels mediate transport of potassium and chloride ions. It was found that the ED equation is satisfactory for these systems. In some of them experimental and calculated electrophysiological properties are in good agreement, whereas in others there are strong indications that the structural models are incorrect.

  14. Stabilized finite element methods to simulate the conductances of ion channels

    NASA Astrophysics Data System (ADS)

    Tu, Bin; Xie, Yan; Zhang, Linbo; Lu, Benzhuo

    2015-03-01

    We have previously developed a finite element simulator, ichannel, to simulate ion transport through three-dimensional ion channel systems via solving the Poisson-Nernst-Planck equations (PNP) and Size-modified Poisson-Nernst-Planck equations (SMPNP), and succeeded in simulating some ion channel systems. However, the iterative solution between the coupled Poisson equation and the Nernst-Planck equations has difficulty converging for some large systems. One reason we found is that the NP equations are advection-dominated diffusion equations, which causes troubles in the usual FE solution. The stabilized schemes have been applied to compute fluids flow in various research fields. However, they have not been studied in the simulation of ion transport through three-dimensional models based on experimentally determined ion channel structures. In this paper, two stabilized techniques, the SUPG and the Pseudo Residual-Free Bubble function (PRFB) are introduced to enhance the numerical robustness and convergence performance of the finite element algorithm in ichannel. The conductances of the voltage dependent anion channel (VDAC) and the anthrax toxin protective antigen pore (PA) are simulated to validate the stabilization techniques. Those two stabilized schemes give reasonable results for the two proteins, with decent agreement with both experimental data and Brownian dynamics (BD) simulations. For a variety of numerical tests, it is found that the simulator effectively avoids previous numerical instability after introducing the stabilization methods. Comparison based on our test data set between the two stabilized schemes indicates both SUPG and PRFB have similar performance (the latter is slightly more accurate and stable), while SUPG is relatively more convenient to implement.

  15. Never at rest: insights into the conformational dynamics of ion channels from cryo-electron microscopy.

    PubMed

    Lau, Carus; Hunter, Mark J; Stewart, Alastair; Perozo, Eduardo; Vandenberg, Jamie I

    2018-04-01

    The tightly regulated opening and closure of ion channels underlies the electrical signals that are vital for a wide range of physiological processes. Two decades ago the first atomic level view of ion channel structures led to a detailed understanding of ion selectivity and conduction. In recent years, spectacular developments in the field of cryo-electron microscopy have resulted in cryo-EM superseding crystallography as the technique of choice for determining near-atomic resolution structures of ion channels. Here, we will review the recent developments in cryo-EM and its specific application to the study of ion channel gating. We will highlight the advantages and disadvantages of the current technology and where the field is likely to head in the next few years. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  16. Ion-imprinted nanoparticles for the concurrent estimation of Pb(II) and Cu(II) ions over a two channel surface plasmon resonance-based fiber optic platform

    NASA Astrophysics Data System (ADS)

    Shrivastav, Anand Mohan; Gupta, Banshi D.

    2018-01-01

    We report the design, fabrication, and characterization of an optical fiber sensor based on the surface plasmon resonance (SPR) technique for the simultaneous determination of lead (Pb) and copper (Cu) metal ions in aqueous samples. Two cascade channels over a single optical fiber are fabricated by removing cladding from two well-separated regions of the fiber. SPR working as a transducing mechanism for the sensor is realized by coating thin films of copper and silver over unclad cores of channel I and channel II, respectively. Ion-imprinted nanoparticles for both ions are separately synthesized and coated over the metal-coated unclad cores of the fiber as the recognition layers for sensor fabrication. A first channel having layer of Pb(II) ion-imprinted nanoparticles detects Pb(II) ions and a second channel having layer of Cu(II) ion-imprinted nanoparticles are used for the detection of Cu(II) ions. Both channels are characterized using the wavelength interrogation method. The sensor operates in the range between 0 to 1000 μg/L and 0 to 1000 mg/L for Pb(II) and Cu(II) ions, respectively. These ranges cover water resources and the human body for these ions. The sensitivities of channel I and channel II are found to be 8.19×104 nm/(μg/L) and 4.07×105 nm/(mg/L) near the lowest concentration of Pb(II) and Cu(II) ions, respectively. The sensor can detect concentrations of Pb(II) and Cu(II) ions as low as 4.06 × 10-12 g/L and 8.18 × 10-10 g/L, respectively, which are the least among the reported values in the literature. Further, the probe is simple, cost effective, highly selective, and applicable for online monitoring and remote sensing.

  17. Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels

    PubMed Central

    Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; De Maria, Michela; Manocchio, Laura; Medoro, Alessandro; Taglialatela, Maurizio

    2015-01-01

    Voltage-gated ion channels (VGICs) are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGICs in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na+, Ca2+ and K+ voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided into two main regions: the Pore Module (PM) and the Voltage-Sensing Module (VSM). The PM (helices S5 and S6 and intervening linker) is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1–S4), undergoes the first conformational changes in response to membrane voltage variations. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters and to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins

  18. Molecular dynamics and brownian dynamics investigation of ion permeation and anesthetic halothane effects on a proton-gated ion channel.

    PubMed

    Cheng, Mary Hongying; Coalson, Rob D; Tang, Pei

    2010-11-24

    Bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC) is activated to cation permeation upon lowering the solution pH. Its function can be modulated by anesthetic halothane. In the present work, we integrate molecular dynamics (MD) and Brownian dynamics (BD) simulations to elucidate the ion conduction, charge selectivity, and halothane modulation mechanisms in GLIC, based on recently resolved X-ray crystal structures of the open-channel GLIC. MD calculations of the potential of mean force (PMF) for a Na(+) revealed two energy barriers in the extracellular domain (R109 and K38) and at the hydrophobic gate of transmembrane domain (I233), respectively. An energy well for Na(+) was near the intracellular entrance: the depth of this energy well was modulated strongly by the protonation state of E222. The energy barrier for Cl(-) was found to be 3-4 times higher than that for Na(+). Ion permeation characteristics were determined through BD simulations using a hybrid MD/continuum electrostatics approach to evaluate the energy profiles governing the ion movement. The resultant channel conductance and a near-zero permeability ratio (P(Cl)/P(Na)) were comparable to experimental data. On the basis of these calculations, we suggest that a ring of five E222 residues may act as an electrostatic gate. In addition, the hydrophobic gate region may play a role in charge selectivity due to a higher dehydration energy barrier for Cl(-) ions. The effect of halothane on the Na(+) PMF was also evaluated. Halothane was found to perturb salt bridges in GLIC that may be crucial for channel gating and open-channel stability, but had no significant impact on the single ion PMF profiles.

  19. Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target.

    PubMed

    Gilbert, Hamish T J; Hodson, Nathan; Baird, Pauline; Richardson, Stephen M; Hoyland, Judith A

    2016-11-17

    The aetiology of intervertebral disc (IVD) degeneration remains poorly understood. Painful IVD degeneration is associated with an acidic intradiscal pH but the response of NP cells to this aberrant microenvironmental factor remains to be fully characterised. The aim here was to address the hypothesis that acidic pH, similar to that found in degenerate IVDs, leads to the altered cell/functional phenotype observed during IVD degeneration, and to investigate the involvement of acid-sensing ion channel (ASIC) -3 in the response. Human NP cells were treated with a range of pH, from that of a non-degenerate (pH 7.4 and 7.1) through to mildly degenerate (pH 6.8) and severely degenerate IVD (pH 6.5 and 6.2). Increasing acidity of pH caused a decrease in cell proliferation and viability, a shift towards matrix catabolism and increased expression of proinflammatory cytokines and pain-related factors. Acidic pH resulted in an increase in ASIC-3 expression. Importantly, inhibition of ASIC-3 prevented the acidic pH induced proinflammatory and pain-related phenotype in NP cells. Acidic pH causes a catabolic and degenerate phenotype in NP cells which is inhibited by blocking ASIC-3 activity, suggesting that this may be a useful therapeutic target for treatment of IVD degeneration.

  20. Validity of the Electrodiffusion Model for Calculating Conductance of Simple Ion Channels.

    PubMed

    Pohorille, Andrew; Wilson, Michael A; Wei, Chenyu

    2017-04-20

    We examine the validity and utility of the electrodiffusion (ED) equation, i.e., the generalized Nernst-Planck equation, to characterize, in combination with molecular dynamics, the electrophysiological behavior of simple ion channels. As models, we consider three systems-two naturally occurring channels formed by α-helical bundles of peptaibols, trichotoxin, and alamethicin, and a synthetic, hexameric channel, formed by a peptide that contains only leucine and serine. All these channels mediate transport of potassium and chloride ions. Starting with equilibrium properties, such as the potential of mean force experienced by an ion traversing the channel and diffusivity, obtained from molecular dynamics simulations, the ED equation can be used to determine the full current-voltage dependence with modest or no additional effort. The potential of mean force can be obtained not only from equilibrium simulations, but also, with comparable accuracy, from nonequilibrium simulations at a single voltage. The main assumptions underlying the ED equation appear to hold well for the channels and voltages studied here. To expand the utility of the ED equation, we examine what are the necessary and sufficient conditions for Ohmic and nonrectifying behavior and relate deviations from this behavior to the shape of the ionic potential of mean force.

  1. Peptides and genes coding for scorpion toxins that affect ion-channels.

    PubMed

    Possani, L D; Merino, E; Corona, M; Bolivar, F; Becerril, B

    2000-01-01

    Most scorpion toxins are ligand peptides that recognize and bind to integral membrane proteins known as ion-channels. To date there are at least 202 distinct sequences described, obtained from 30 different species of scorpions, 27 from the family Buthidae and three from the family Scorpionidae. Toxins that recognize potassium and chloride channels are usually from 29 to 41 amino acids long, stabilized by three or four disulfide bridges, whereas those that recognize sodium channels are longer, 60 to 76 amino acid residues, compacted by four disulfide bridges. Toxins specific for calcium channels are scarcely known and have variable amino acid lengths. The entire repertoire of toxins, independently of their specificity, was analyzed together by computational programs and a phylogenetic tree was built showing two separate branches. The K(+) and Cl(-) channel specific toxins are clustered into 14 subfamilies, whereas those of Na(+) and Ca(2+) specific toxins comprise at least 12 subfamilies. There are clear similarities among them, both in terms of primary sequence and the main three-dimensional folding pattern. A dense core formed by a short alpha helix segment and several antiparallel beta-sheet stretches, maintained by disulfide pairing, seems to be a common structural feature present in all toxins. The physiological function of these peptides is manifested by a blockage of ion passage through the channels or by a modification of the gating mechanism that controls opening and closing of the ion pore.

  2. Structure-function study on a de novo synthetic hydrophobic ion channel.

    PubMed Central

    Qi, Z; Sokabe, M; Donowaki, K; Ishida, H

    1999-01-01

    Ion conduction properties of a de novo synthesized channel, formed from cyclic octa-peptides consisting of four alternate L-alanine (Ala) and N'-acylated 3-aminobenzoic acid (Aba) moieties, were studied in bilayer membranes. The single-channel conductance was 9 pS in symmetrical 500 mM KCl. The channel favored permeation of cations over anions with a permeability ratio (PCl-/PK+) of 0.15. The selectivity sequence among monovalent cations based on permeability ratio (PX+/PK+) fell into an order: NH4+(1.4) > Cs+(1. 1) >/= K+(1.0) > Na+(0.4) >> Li+(0). The conductance-activity relationship of the channel in K+ solutions followed simple Michaelis-Menten kinetics with a half-maximal saturating activity of 8 mM and a maximal conductance of 9 pS. The permeability ratio PNa+/PK+ remained constant ( approximately 0.40) under biionic concentrations from 10 to 500 mM. These results suggests that the channel is a one-ion channel. The pore diameter probed by a set of organic cations was approximately 6 A. The single-channel current was blocked by Ca2+ in a dose-dependent manner that followed a single-site titration curve with a voltage-dependent dissociation constant of 0.6 mM at 100 mV. The electric distance of the binding site for Ca2+ was 0.07 from both entrances of the channel, indicating the presence of two symmetrical binding sites in each vicinity of the channel entrance. Correlations between conduction properties and structural aspects of the channel are discussed in terms of a three-barrier and two-binding-site (3B2S) model of Eyring rate theory. All available structural information supported an idea that the channel was formed from a tail-to-tail associated dimer of the molecule, the pore of which was lined with hydrophobic acyl chains. This is the first report to have made a systematic analysis of ion permeation through a hydrophobic pore. PMID:9929469

  3. Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel

    NASA Technical Reports Server (NTRS)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    The tension-dependent activity of mechanosensory calcium-selective cation channels in excised plasmalemmal patches from onion bulb scale epidermis is modulated by pH in the physiologically meaningful range between 4.5 and 7.2. It is rapidly lowered by lowering pH and rapidly raised by raising pH. Channel activity is effectively inhibited by low levels of aluminium ions and activity can be partially restored by washing for a few minutes. We suggest that under normal conditions the sensitivity of the mechanosensory channels to pH of the wall free space plays important roles in regulation of plant activities such as growth. We further suggest that, when levels of acid and aluminium ions in the soil solution are high, they might inhibit similar sensory channels in cells of the root tip, thus contributing critically to the acid soil syndrome.

  4. Acid-sensing ion channels: trafficking and synaptic function.

    PubMed

    Zha, Xiang-ming

    2013-01-02

    Extracellular acidification occurs in the brain with elevated neural activity, increased metabolism, and neuronal injury. This reduction in pH can have profound effects on brain function because pH regulates essentially every single biochemical reaction. Therefore, it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs), to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system. In recent years, a growing body of literature has shown that acidosis, through activating ASICs, contributes to multiple diseases, including ischemia, multiple sclerosis, and seizures. In addition, ASICs play a key role in fear and anxiety related psychiatric disorders. Several recent reviews have summarized the importance and therapeutic potential of ASICs in neurological diseases, as well as the structure-function relationship of ASICs. However, there is little focused coverage on either the basic biology of ASICs or their contribution to neural plasticity. This review will center on these topics, with an emphasis on the synaptic role of ASICs and molecular mechanisms regulating the spatial distribution and function of these ion channels.

  5. Immunohistochemical and in situ mRNA hybridisation techniques to determine the distribution of ion channels in human brain: a study of neuronal voltage-dependent calcium channels.

    PubMed

    McCormack, A L; Day, N C; Craig, P J; Smith, W; Beattie, R E; Volsen, S G

    1997-08-01

    The molecular, structural and functional characterisation of ion channels in the CNS forms an area of intense investigation in current brain research. For strategic and logistical reasons, rodents have historically been the species of choice for these studies. The examination of human CNS tissues generally presents the investigator with specific challenges that are often less problematic in animal studies, e.g. post-mortem delay/agonal status, and thus both the experimental design and techniques must be manipulated accordingly. Since much pharmaceutical interest is currently focused on neuronal ion channels, the examination of their expression in human brain material is of particular importance. We describe here the details of methods that we have developed and used successfully in the study of the expression of voltage-dependent calcium channels (VDCCs) in human CNS tissues. Presynaptic neuronal VDCCs control neurotransmitter release and are important new drug targets. They are composed of three subunits, alpha 1, beta and alpha 2/delta and multiple gene classes of each protein have been identified. Little is known, however, about the distribution of neuronal VDCCs in the human central nervous system, although initial studies have been performed in rat and rabbit.

  6. Anesthetic Binding in a Pentameric Ligand-Gated Ion Channel: GLIC

    PubMed Central

    Chen, Qiang; Cheng, Mary Hongying; Xu, Yan; Tang, Pei

    2010-01-01

    Cys-loop receptors are molecular targets of general anesthetics, but the knowledge of anesthetic binding to these proteins remains limited. Here we investigate anesthetic binding to the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC), a structural homolog of cys-loop receptors, using an experimental and computational hybrid approach. Tryptophan fluorescence quenching experiments showed halothane and thiopental binding at three tryptophan-associated sites in the extracellular (EC) domain, transmembrane (TM) domain, and EC-TM interface of GLIC. An additional binding site at the EC-TM interface was predicted by docking analysis and validated by quenching experiments on the N200W GLIC mutant. The binding affinities (KD) of 2.3 ± 0.1 mM and 0.10 ± 0.01 mM were derived from the fluorescence quenching data of halothane and thiopental, respectively. Docking these anesthetics to the original GLIC crystal structure and the structures relaxed by molecular dynamics simulations revealed intrasubunit sites for most halothane binding and intersubunit sites for thiopental binding. Tryptophans were within reach of both intra- and intersubunit binding sites. Multiple molecular dynamics simulations on GLIC in the presence of halothane at different sites suggested that anesthetic binding at the EC-TM interface disrupted the critical interactions for channel gating, altered motion of the TM23 linker, and destabilized the open-channel conformation that can lead to inhibition of GLIC channel current. The study has not only provided insights into anesthetic binding in GLIC, but also demonstrated a successful fusion of experiments and computations for understanding anesthetic actions in complex proteins. PMID:20858424

  7. Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel.

    PubMed

    Malvezzi, Mattia; Chalat, Madhavan; Janjusevic, Radmila; Picollo, Alessandra; Terashima, Hiroyuki; Menon, Anant K; Accardi, Alessio

    2013-01-01

    Phospholipid (PL) scramblases disrupt the lipid asymmetry of the plasma membrane, externalizing phosphatidylserine to trigger blood coagulation and mark apoptotic cells. Recently, members of the TMEM16 family of Ca(2+)-gated channels have been shown to be involved in Ca(2+)-dependent scrambling. It is however controversial whether they are scramblases or channels regulating scrambling. Here we show that purified afTMEM16, from Aspergillus fumigatus, is a dual-function protein: it is a Ca(2+)-gated channel, with characteristics of other TMEM16 homologues, and a Ca(2+)-dependent scramblase, with the expected properties of mammalian PL scramblases. Remarkably, we find that a single Ca(2+) site regulates separate transmembrane pathways for ions and lipids. Two other purified TMEM16-channel homologues do not mediate scrambling, suggesting that the family diverged into channels and channel/scramblases. We propose that the spatial separation of the ion and lipid pathways underlies the evolutionary divergence of the TMEM16 family, and that other homologues, such as TMEM16F, might also be dual-function channel/scramblases.

  8. TMEM150C/Tentonin3 Is a Regulator of Mechano-gated Ion Channels.

    PubMed

    Anderson, Evan O; Schneider, Eve R; Matson, Jon D; Gracheva, Elena O; Bagriantsev, Sviatoslav N

    2018-04-17

    Neuronal mechano-sensitivity relies on mechano-gated ion channels, but pathways regulating their activity remain poorly understood. TMEM150C was proposed to mediate mechano-activated current in proprioceptive neurons. Here, we studied functional interaction of TMEM150C with mechano-gated ion channels from different classes (Piezo2, Piezo1, and the potassium channel TREK-1) using two independent methods of mechanical stimulation. We found that TMEM150C significantly prolongs the duration of the mechano-current produced by all three channels, decreases apparent activation threshold in Piezo2, and induces persistent current in Piezo1. We also show that TMEM150C is co-expressed with Piezo2 in trigeminal neurons, expanding its role beyond proprioceptors. Finally, we cloned TMEM150C from the trigeminal neurons of the tactile-foraging domestic duck and showed that it functions similarly to the mouse ortholog, demonstrating evolutionary conservation among vertebrates. Our studies reveal TMEM150C as a general regulator of mechano-gated ion channels from different classes. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Ion channel profile of TRPM8 cold receptors reveals a novel role of TASK-3 potassium channels in thermosensation

    PubMed Central

    Morenilla-Palao, Cruz; Luis, Enoch; Fernández-Peña, Carlos; Quintero, Eva; Weaver, Janelle L.; Bayliss, Douglas A.; Viana, Félix

    2017-01-01

    Summary Animals sense cold ambient temperatures through the activation of peripheral thermoreceptors that express TRPM8, a cold- and menthol-activated ion channel. These receptors can discriminate a very wide range of temperatures from innocuous to noxious. The molecular mechanism responsible for the variable sensitivity of individual cold receptors to temperature is unclear. To address this question, we performed a detailed ion channel expression analysis of cold sensitive neurons, combining BAC transgenesis with a molecular profiling approach in FACS purified TRPM8 neurons. We found that TASK-3 leak potassium channels are highly enriched in a subpopulation of these sensory neurons. The thermal threshold of TRPM8 cold neurons is decreased during TASK-3 blockade and in mice lacking TASK-3 and, most importantly, these mice display hypersensitivity to cold. Our results demonstrate a novel role of TASK-3 channels in thermosensation, showing that a channel-based combinatorial strategy in TRPM8 cold thermoreceptors leads to molecular specialization and functional diversity. PMID:25199828

  10. Creating Lithium-Ion Electrolytes with Biomimetic Ionic Channels in Metal-Organic Frameworks.

    PubMed

    Shen, Li; Wu, Hao Bin; Liu, Fang; Brosmer, Jonathan L; Shen, Gurong; Wang, Xiaofeng; Zink, Jeffrey I; Xiao, Qiangfeng; Cai, Mei; Wang, Ge; Lu, Yunfeng; Dunn, Bruce

    2018-06-01

    Solid-state electrolytes are the key to the development of lithium-based batteries with dramatically improved energy density and safety. Inspired by ionic channels in biological systems, a novel class of pseudo solid-state electrolytes with biomimetic ionic channels is reported herein. This is achieved by complexing the anions of an electrolyte to the open metal sites of metal-organic frameworks (MOFs), which transforms the MOF scaffolds into ionic-channel analogs with lithium-ion conduction and low activation energy. This work suggests the emergence of a new class of pseudo solid-state lithium-ion conducting electrolytes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fractional Poisson-Nernst-Planck Model for Ion Channels I: Basic Formulations and Algorithms.

    PubMed

    Chen, Duan

    2017-11-01

    In this work, we propose a fractional Poisson-Nernst-Planck model to describe ion permeation in gated ion channels. Due to the intrinsic conformational changes, crowdedness in narrow channel pores, binding and trapping introduced by functioning units of channel proteins, ionic transport in the channel exhibits a power-law-like anomalous diffusion dynamics. We start from continuous-time random walk model for a single ion and use a long-tailed density distribution function for the particle jump waiting time, to derive the fractional Fokker-Planck equation. Then, it is generalized to the macroscopic fractional Poisson-Nernst-Planck model for ionic concentrations. Necessary computational algorithms are designed to implement numerical simulations for the proposed model, and the dynamics of gating current is investigated. Numerical simulations show that the fractional PNP model provides a more qualitatively reasonable match to the profile of gating currents from experimental observations. Meanwhile, the proposed model motivates new challenges in terms of mathematical modeling and computations.

  12. Overcharging below the nanoscale: Multivalent cations reverse the ion selectivity of a biological channel

    NASA Astrophysics Data System (ADS)

    García-Giménez, Elena; Alcaraz, Antonio; Aguilella, Vicente M.

    2010-02-01

    We report charge inversion within a nanoscopic biological protein ion channel in salts of multivalent ions. The presence of positive divalent and trivalent counterions reverses the cationic selectivity of the OmpF channel, a general diffusion porin located in the outer membrane of E. coli. We discuss the conditions under which charge inversion can be inferred from the change in sign of the measured quantity, the channel zero current potential. By comparing experimental results in protein channels whose charge has been modified after site-directed mutagenesis, the predictions of current theories of charge inversion are critically examined. It is emphasized that charge inversion does not necessarily increase with the bare surface charge density of the interface and that even this concept of surface charge density may become meaningless in some biological ion channels. Thus, any theory based on electrostatic correlations or chemical binding should explicitly take into account the particular structure of the charged interface.

  13. Second-order Poisson Nernst-Planck solver for ion channel transport

    PubMed Central

    Zheng, Qiong; Chen, Duan; Wei, Guo-Wei

    2010-01-01

    The Poisson Nernst-Planck (PNP) theory is a simplified continuum model for a wide variety of chemical, physical and biological applications. Its ability of providing quantitative explanation and increasingly qualitative predictions of experimental measurements has earned itself much recognition in the research community. Numerous computational algorithms have been constructed for the solution of the PNP equations. However, in the realistic ion-channel context, no second order convergent PNP algorithm has ever been reported in the literature, due to many numerical obstacles, including discontinuous coefficients, singular charges, geometric singularities, and nonlinear couplings. The present work introduces a number of numerical algorithms to overcome the abovementioned numerical challenges and constructs the first second-order convergent PNP solver in the ion-channel context. First, a Dirichlet to Neumann mapping (DNM) algorithm is designed to alleviate the charge singularity due to the protein structure. Additionally, the matched interface and boundary (MIB) method is reformulated for solving the PNP equations. The MIB method systematically enforces the interface jump conditions and achieves the second order accuracy in the presence of complex geometry and geometric singularities of molecular surfaces. Moreover, two iterative schemes are utilized to deal with the coupled nonlinear equations. Furthermore, extensive and rigorous numerical validations are carried out over a number of geometries, including a sphere, two proteins and an ion channel, to examine the numerical accuracy and convergence order of the present numerical algorithms. Finally, application is considered to a real transmembrane protein, the Gramicidin A channel protein. The performance of the proposed numerical techniques is tested against a number of factors, including mesh sizes, diffusion coefficient profiles, iterative schemes, ion concentrations, and applied voltages. Numerical predictions are

  14. Robustness, Death of Spiral Wave in the Network of Neurons under Partial Ion Channel Block

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Huang, Long; Wang, Chun-Ni; Pu, Zhong-Sheng

    2013-02-01

    The development of spiral wave in a two-dimensional square array due to partial ion channel block (Potassium, Sodium) is investigated, the dynamics of the node is described by Hodgkin—Huxley neuron and these neurons are coupled with nearest neighbor connection. The parameter ratio xNa (and xK), which defines the ratio of working ion channel number of sodium (potassium) to the total ion channel number of sodium (and potassium), is used to measure the shift conductance induced by channel block. The distribution of statistical variable R in the two-parameter phase space (parameter ratio vs. poisoning area) is extensively calculated to mark the parameter region for transition of spiral wave induced by partial ion channel block, the area with smaller factors of synchronization R is associated the parameter region that spiral wave keeps alive and robust to the channel poisoning. Spiral wave keeps alive when the poisoned area (potassium or sodium) and degree of intoxication are small, distinct transition (death, several spiral waves coexist or multi-arm spiral wave emergence) occurs under moderate ratio xNa (and xK) when the size of blocked area exceeds certain thresholds. Breakup of spiral wave occurs and multi-arm of spiral waves are observed when the channel noise is considered.

  15. Moving Fe2+ from ferritin ion channels to catalytic OH centers depends on conserved protein cage carboxylates.

    PubMed

    Behera, Rabindra K; Theil, Elizabeth C

    2014-06-03

    Ferritin biominerals are protein-caged metabolic iron concentrates used for iron-protein cofactors and oxidant protection (Fe(2+) and O2 sequestration). Fe(2+) passage through ion channels in the protein cages, like membrane ion channels, required for ferritin biomineral synthesis, is followed by Fe(2+) substrate movement to ferritin enzyme (Fox) sites. Fe(2+) and O2 substrates are coupled via a diferric peroxo (DFP) intermediate, λmax 650 nm, which decays to [Fe(3+)-O-Fe(3+)] precursors of caged ferritin biominerals. Structural studies show multiple conformations for conserved, carboxylate residues E136 and E57, which are between ferritin ion channel exits and enzymatic sites, suggesting functional connections. Here we show that E136 and E57 are required for ferritin enzyme activity and thus are functional links between ferritin ion channels and enzymatic sites. DFP formation (Kcat and kcat/Km), DFP decay, and protein-caged hydrated ferric oxide accumulation decreased in ferritin E57A and E136A; saturation required higher Fe(2+) concentrations. Divalent cations (both ion channel and intracage binding) selectively inhibit ferritin enzyme activity (block Fe(2+) access), Mn(2+) < Co(2+) < Cu(2+) < Zn(2+), reflecting metal ion-protein binding stabilities. Fe(2+)-Cys126 binding in ferritin ion channels, observed as Cu(2+)-S-Cys126 charge-transfer bands in ferritin E130D UV-vis spectra and resistance to Cu(2+) inhibition in ferritin C126S, was unpredicted. Identifying E57 and E136 links in Fe(2+) movement from ferritin ion channels to ferritin enzyme sites completes a bucket brigade that moves external Fe(2+) into ferritin enzymatic sites. The results clarify Fe(2+) transport within ferritin and model molecular links between membrane ion channels and cytoplasmic destinations.

  16. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery

    PubMed Central

    Imbrici, Paola; Liantonio, Antonella; Camerino, Giulia M.; De Bellis, Michela; Camerino, Claudia; Mele, Antonietta; Giustino, Arcangela; Pierno, Sabata; De Luca, Annamaria; Tricarico, Domenico; Desaphy, Jean-Francois; Conte, Diana

    2016-01-01

    In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets. PMID:27242528

  17. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery.

    PubMed

    Imbrici, Paola; Liantonio, Antonella; Camerino, Giulia M; De Bellis, Michela; Camerino, Claudia; Mele, Antonietta; Giustino, Arcangela; Pierno, Sabata; De Luca, Annamaria; Tricarico, Domenico; Desaphy, Jean-Francois; Conte, Diana

    2016-01-01

    In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.

  18. Bayesian Statistical Inference in Ion-Channel Models with Exact Missed Event Correction.

    PubMed

    Epstein, Michael; Calderhead, Ben; Girolami, Mark A; Sivilotti, Lucia G

    2016-07-26

    The stochastic behavior of single ion channels is most often described as an aggregated continuous-time Markov process with discrete states. For ligand-gated channels each state can represent a different conformation of the channel protein or a different number of bound ligands. Single-channel recordings show only whether the channel is open or shut: states of equal conductance are aggregated, so transitions between them have to be inferred indirectly. The requirement to filter noise from the raw signal further complicates the modeling process, as it limits the time resolution of the data. The consequence of the reduced bandwidth is that openings or shuttings that are shorter than the resolution cannot be observed; these are known as missed events. Postulated models fitted using filtered data must therefore explicitly account for missed events to avoid bias in the estimation of rate parameters and therefore assess parameter identifiability accurately. In this article, we present the first, to our knowledge, Bayesian modeling of ion-channels with exact missed events correction. Bayesian analysis represents uncertain knowledge of the true value of model parameters by considering these parameters as random variables. This allows us to gain a full appreciation of parameter identifiability and uncertainty when estimating values for model parameters. However, Bayesian inference is particularly challenging in this context as the correction for missed events increases the computational complexity of the model likelihood. Nonetheless, we successfully implemented a two-step Markov chain Monte Carlo method that we called "BICME", which performs Bayesian inference in models of realistic complexity. The method is demonstrated on synthetic and real single-channel data from muscle nicotinic acetylcholine channels. We show that parameter uncertainty can be characterized more accurately than with maximum-likelihood methods. Our code for performing inference in these ion channel

  19. Reversible ion transportation switch by a ligand-gated synthetic supramolecular ion channel.

    PubMed

    Muraoka, Takahiro; Endo, Takahiro; Tabata, Kazuhito V; Noji, Hiroyuki; Nagatoishi, Satoru; Tsumoto, Kouhei; Li, Rui; Kinbara, Kazushi

    2014-11-05

    Inspired by the regulation of cellular activities found in the ion channel proteins, here we developed membrane-embedded synthetic chiral receptors 1 and 2 with different terminal structures, where receptor 1 has hydrophobic triisopropylsilyl (TIPS) groups and receptor 2 has hydrophilic hydroxy groups. The receptors have ligand-binding units that interact with cationic amphiphiles such as 2-phenethylamine (PA). Conductance study revealed that the receptors hardly show ion transportation at the ligand-free state. After ligand binding involving a conformational change, receptor 1 bearing TIPS termini displays a significant current enhancement due to ion transportation. The current substantially diminishes upon addition of β-cyclodextrin (βCD) that scavenges the ligand from the receptor. Importantly, the receptor again turns into the conductive state by the second addition of PA, and the activation/deactivation of the ion transportation can be repeated. In contrast, receptor 2 bearing the hydroxy terminal groups hardly exhibits ion transportation, suggesting the importance of terminal TIPS groups of 1 that likely anchor the receptor in the membrane.

  20. Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea.

    PubMed

    Sulk, Mathias; Seeliger, Stephan; Aubert, Jerome; Schwab, Verena D; Cevikbas, Ferda; Rivier, Michel; Nowak, Pawel; Voegel, Johannes J; Buddenkotte, Jörg; Steinhoff, Martin

    2012-04-01

    Rosacea is a frequent chronic inflammatory skin disease of unknown etiology. Because early rosacea reveals all characteristics of neurogenic inflammation, a central role of sensory nerves in its pathophysiology has been discussed. Neuroinflammatory mediators and their receptors involved in rosacea are poorly defined. Good candidates may be transient receptor potential (TRP) ion channels of vanilloid type (TRPV), which can be activated by many trigger factors of rosacea. Interestingly, TRPV2, TRPV3, and TRPV4 are expressed by both neuronal and non-neuronal cells. Here, we analyzed the expression and distribution of TRPV receptors in the various subtypes of rosacea on non-neuronal cells using immunohistochemistry, morphometry, double immunoflourescence, and quantitative real-time PCR (qRT-PCR) as compared with healthy skin and lupus erythematosus. Our results show that dermal immunolabeling of TRPV2 and TRPV3 and gene expression of TRPV1 is significantly increased in erythematotelangiectatic rosacea (ETR). Papulopustular rosacea (PPR) displayed an enhanced immunoreactivity for TRPV2, TRPV4, and also of TRPV2 gene expression. In phymatous rosacea (PhR)-affected skin, dermal immunostaining of TRPV3 and TRPV4 and gene expression of TRPV1 and TRPV3 was enhanced, whereas epidermal TRPV2 staining was decreased. Thus, dysregulation of TRPV channels also expressed by non-neuronal cells may be critically involved in the initiation and/or development of rosacea. TRP ion channels may be targets for the treatment of rosacea.

  1. Distribution and Expression of Non-Neuronal Transient Receptor Potential (TRPV) Ion Channels in Rosacea

    PubMed Central

    Sulk, Mathias; Seeliger, Stephan; Aubert, Jerome; Schwab, Verena D.; Cevikbas, Ferda; Rivier, Michel; Nowak, Pawel; Voegel, Johannes J.; Buddenkotte, Jörg; Steinhoff, Martin

    2011-01-01

    Rosacea is a frequent chronic inflammatory skin disease of unknown etiology. Because early rosacea reveals all characteristics of neurogenic inflammation, a central role of sensory nerves in its pathophysiology has been discussed. Neuroinflammatory mediators and their receptors involved in rosacea are poorly defined. Good candidates may be transient receptor potential (TRP) ion channels of vanilloid type (TRPV), which can be activated by many trigger factors of rosacea. Interestingly, TRPV2, TRPV3, and TRPV4 are expressed by both neuronal and non-neuronal cells. Here, we analyzed the expression and distribution of TRPV receptors in the various subtypes of rosacea on non-neuronal cells using immunohistochemistry, morphometry, double immunoflourescence, and quantitative real-time PCR (qRT-PCR) as compared with healthy skin and lupus erythematosus. Our results show that dermal immunolabeling of TRPV2 and TRPV3 and gene expression of TRPV1 is significantly increased in erythematotelangiectatic rosacea (ETR). Papulopustular rosacea (PPR) displayed an enhanced immunoreactivity for TRPV2, TRPV4, and also of TRPV2 gene expression. In phymatous rosacea (PhR)-affected skin, dermal immunostaining of TRPV3 and TRPV4 and gene expression of TRPV1 and TRPV3 was enhanced, whereas epidermal TRPV2 staining was decreased. Thus, dysregulation of TRPV channels also expressed by non-neuronal cells may be critically involved in the initiation and/or development of rosacea. TRP ion channels may be targets for the treatment of rosacea. PMID:22189789

  2. Simultaneous optical and electrical recording of a single ion-channel.

    PubMed

    Ide, Toru; Takeuchi, Yuko; Aoki, Takaaki; Yanagida, Toshio

    2002-10-01

    In recent years, the single-molecule imaging technique has proven to be a valuable tool in solving many basic problems in biophysics. The technique used to measure single-molecule functions was initially developed to study electrophysiological properties of channel proteins. However, the technology to visualize single channels at work has not received as much attention. In this study, we have for the first time, simultaneously measured the optical and electrical properties of single-channel proteins. The large conductance calcium-activated potassium channel (BK-channel) labeled with fluorescent dye molecules was incorporated into a planar bilayer membrane and the fluorescent image captured with a total internal reflection fluorescence microscope simultaneously with single-channel current recording. This innovative technology will greatly advance the study of channel proteins as well as signal transduction processes that involve ion permeation processes.

  3. Probing pore constriction in a ligand-gated ion channel by trapping a metal ion in the pore upon agonist dissociation.

    PubMed

    Pittel, Ilya; Witt-Kehati, Dvora; Degani-Katzav, Nurit; Paas, Yoav

    2010-08-20

    Eukaryotic pentameric ligand-gated ion channels (pLGICs) are receptors activated by neurotransmitters to rapidly transport ions across cell membranes, down their electrochemical gradients. Recent crystal structures of two prokaryotic pLGICs were interpreted to imply that the extracellular side of the transmembrane pore constricts to close the channel (Hilf, R. J., and Dutzler, R. (2009) Nature 457, 115-118; Bocquet, N., Nury, H., Baaden, M., Le Poupon, C., Changeux, J. P., Delarue, M., and Corringer, P. J. (2009) Nature 457, 111-114). Here, we utilized a eukaryotic acetylcholine (ACh)-serotonin chimeric pLGIC that was engineered with histidines to coordinate a metal ion within the channel pore, at its cytoplasmic side. In a previous study, the access of Zn(2+) ions to the engineered histidines had been explored when the channel was either at rest (closed) or active (open) (Paas, Y., Gibor, G., Grailhe, R., Savatier-Duclert, N., Dufresne, V., Sunesen, M., de Carvalho, L. P., Changeux, J. P., and Attali, B. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 15877-15882). In this study, the interactions of Zn(2+) with the pore were probed upon agonist (ACh) dissociation that triggers the transition of the receptor from the active conformation to the resting conformation (i.e. during deactivation). Application of Zn(2+) onto ACh-bound open receptors obstructed their pore and prevented ionic flow. Removing ACh from its extracellular binding sites to trigger deactivation while Zn(2+) is still bound led to tight trapping of Zn(2+) within the pore. Together with single-channel recordings, made to explore single pore-blocking events, we show that dissociation of ACh causes the gate to shut on a Zn(2+) ion that effectively acts as a "foot in the door." We infer that, upon deactivation, the cytoplasmic side of the pore of the ACh-serotonin receptor chimera constricts to close the channel.

  4. Molecular dynamics study of ion transport through an open model of voltage-gated sodium channel.

    PubMed

    Li, Yang; Sun, Ruining; Liu, Huihui; Gong, Haipeng

    2017-05-01

    Voltage-gated sodium (Na V ) channels are critical in the signal transduction of excitable cells. In this work, we modeled the open conformation for the pore domain of a prokaryotic Na V channel (Na V Rh), and used molecular dynamics simulations to track the translocation of dozens of Na + ions through the channel in the presence of a physiological transmembrane ion concentration gradient and a transmembrane electrical field that was closer to the physiological one than previous studies. Channel conductance was then estimated from simulations on the wide-type and DEKA mutant of Na V Rh. Interestingly, the conductivity predicted from the DEKA mutant agrees well with experimental measurement on eukaryotic Na V 1.4 channel. Moreover, the wide-type and DEKA mutant of Na V Rh exhibited markedly distinct ion permeation patterns, which thus implies the mechanistic difference between prokaryotic and eukaryotic Na V channels. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Method of detecting luminescent target ions with modified magnetic microspheres

    DOEpatents

    Shkrob, Ilya A; Kaminski, Michael D

    2014-05-13

    This invention provides methods of using modified magnetic microspheres to extract target ions from a sample in order to detect their presence in a microfluidic environment. In one or more embodiments, the microspheres are modified with molecules on the surface that allow the target ions in the sample to form complexes with specific ligand molecules on the microsphere surface. In one or more embodiments, the microspheres are modified with molecules that sequester the target ions from the sample, but specific ligand molecules in solution subsequently re-extract the target ions from the microspheres into the solution, where the complexes form independent of the microsphere surface. Once the complexes form, they are exposed to an excitation wavelength light source suitable for exciting the target ion to emit a luminescent signal pattern. Detection of the luminescent signal pattern allows for determination of the presence of the target ions in the sample.

  6. Electrogenic transport and K+ ion channel expression by the human endolymphatic sac epithelium

    PubMed Central

    Kim, Sung Huhn; Kim, Bo Gyung; Kim, Jin Young; Roh, Kyung Jin; Suh, Michelle J.; Jung, JinSei; Moon, In Seok; Moon, Sung K.; Choi, Jae Young

    2015-01-01

    The endolymphatic sac (ES) is a cystic organ that is a part of the inner ear and is connected to the cochlea and vestibule. The ES is thought to be involved in inner ear ion homeostasis and fluid volume regulation for the maintenance of hearing and balance function. Many ion channels, transporters, and exchangers have been identified in the ES luminal epithelium, mainly in animal studies, but there has been no functional study investigating ion transport using human ES tissue. We designed the first functional experiments on electrogenic transport in human ES and investigated the contribution of K+ channels in the electrogenic transport, which has been rarely identified, even in animal studies, using electrophysiological/pharmacological and molecular biological methods. As a result, we identified functional and molecular evidence for the essential participation of K+ channels in the electrogenic transport of human ES epithelium. The identified K+ channels involved in the electrogenic transport were KCNN2, KCNJ14, KCNK2, and KCNK6, and the K+ transports via those channels are thought to play an important role in the maintenance of the unique ionic milieu of the inner ear fluid. PMID:26655723

  7. All-d-Enantiomer of β-Amyloid Peptide Forms Ion Channels in Lipid Bilayers

    PubMed Central

    2012-01-01

    Alzheimer’s disease (AD) is the most common type of senile dementia in aging populations. Amyloid β (Aβ)-mediated dysregulation of ionic homeostasis is the prevailing underlying mechanism leading to synaptic degeneration and neuronal death. Aβ-dependent ionic dysregulation most likely occurs either directly via unregulated ionic transport through the membrane or indirectly via Aβ binding to cell membrane receptors and subsequent opening of existing ion channels or transporters. Receptor binding is expected to involve a high degree of stereospecificity. Here, we investigated whether an Aβ peptide enantiomer, whose entire sequence consists of d-amino acids, can form ion-conducting channels; these channels can directly mediate Aβ effects even in the absence of receptor–peptide interactions. Using complementary approaches of planar lipid bilayer (PLB) electrophysiological recordings and molecular dynamics (MD) simulations, we show that the d-Aβ isomer exhibits ion conductance behavior in the bilayer indistinguishable from that described earlier for the l-Aβ isomer. The d isomer forms channel-like pores with heterogeneous ionic conductance similar to the l-Aβ isomer channels, and the d-isomer channel conductance is blocked by Zn2+, a known blocker of l-Aβ isomer channels. MD simulations further verify formation of β-barrel-like Aβ channels with d- and l-isomers, illustrating that both d- and l-Aβ barrels can conduct cations. The calculated values of the single-channel conductance are approximately in the range of the experimental values. These findings are in agreement with amyloids forming Ca2+ leaking, unregulated channels in AD, and suggest that Aβ toxicity is mediated through a receptor-independent, nonstereoselective mechanism. PMID:22423218

  8. In-Situ RBS Channelling Studies Of Ion Implanted Semiconductors And Insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendler, E.

    2011-06-01

    The experimental set-up at the ion beam facility in Jena allows the performance of Rutherford backscattering spectrometry (RBS) in channeling configuration at any temperature between 15 K and room temperature without changing the environment or the temperature of the sample. Doing RBS channeling studies at 15 K increases the sensitivity to defects, because the influence of lattice vibrations is reduced. Thus, the very early processes of ion induced damage formation can be studied and the cross section of damage formation per ion in virgin material, P, can be determined. At 15 K ion-beam induced damage formation itself can be investigated,more » because the occurrence of thermal effects can be widely excluded. In AlAs, GaN, and ZnO the cross section P measured at 15 K can be used to estimate the displacement energy for the heavier component, which is in reasonable agreement with other experiments or theoretical calculations. For a given ion species (here Ar ions) the measured cross section P exhibits a quadratic dependence P{proportional_to}P{sub SRIM}{sup 2} with P{sub SRIM} being the value calculated with SRIM using established displacement energies from other sources. From these results the displacement energy of AlN can be estimated to about 40 eV. Applying the computer code DICADA to calculate the depth distribution of displaced lattice atoms from the channeling spectra, indirect information about the type of defects produced during ion implantation at 15 K can be obtained. In some materials like GaN or ZnO the results indicate the formation of extended defects most probably dislocation loops and thus suggest an athermal mobility of defect at 15 K.« less

  9. Crystal structure of the ATP-gated P2X[subscript 4] ion channel in the closed state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawate, Toshimitsu; Michel, Jennifer Carlisle; Birdsong, William T.

    2009-08-13

    P2X receptors are cation-selective ion channels gated by extracellular ATP, and are implicated in diverse physiological processes, from synaptic transmission to inflammation to the sensing of taste and pain. Because P2X receptors are not related to other ion channel proteins of known structure, there is at present no molecular foundation for mechanisms of ligand-gating, allosteric modulation and ion permeation. Here we present crystal structures of the zebrafish P2X{sub 4} receptor in its closed, resting state. The chalice-shaped, trimeric receptor is knit together by subunit-subunit contacts implicated in ion channel gating and receptor assembly. Extracellular domains, rich in {beta}-strands, have largemore » acidic patches that may attract cations, through fenestrations, to vestibules near the ion channel. In the transmembrane pore, the 'gate' is defined by an {approx}8 {angstrom} slab of protein. We define the location of three non-canonical, intersubunit ATP-binding sites, and suggest that ATP binding promotes subunit rearrangement and ion channel opening.« less

  10. Ferritin ion channel disorder inhibits Fe(II)/O2 reactivity at distant sites.

    PubMed

    Tosha, Takehiko; Behera, Rabindra K; Theil, Elizabeth C

    2012-11-05

    Ferritins, a complex, mineralized, protein nanocage family essential for life, provide iron concentrates and oxidant protection. Protein-based ion channels and Fe(II)/O(2) catalysis initiate conversion of thousands of Fe atoms to caged, ferritin Fe(2)O(3)·H(2)O minerals. The ion channels consist of six helical segments, contributed by 3 of 12 or 24 polypeptide subunits, around the 3-fold cage axes. The channel structure guides entering Fe(II) ions toward multiple, catalytic, diiron sites buried inside ferritin protein helices, ~20 Å away from channel internal exits. The catalytic product, Fe(III)-O(H)-Fe(III), is a mineral precursor; mineral nucleation begins inside the protein cage with mineral growth in the central protein cavity (5-8 nm diameter). Amino acid substitutions that changed ionic or hydrophobic channel interactions R72D, D122R, and L134P increased ion channel structural disorder (protein crystallographic analyses) and increased Fe(II) exit [chelated Fe(II) after ferric mineral reduction/dissolution]. Since substitutions of some channel carboxylate residues diminished ferritin catalysis with no effect on Fe(II) exit, such as E130A and D127A, we investigated catalysis in ferritins with altered Fe(II) exit, R72D, D122R and L134P. The results indicate that simply changing the ionic properties of the channels, as in the R72D variant, need not change the forward catalytic rate. However, both D122R and L134P, which had dramatic effects on ferritin catalysis, also caused larger effects on channel structure and order, contrasting with R72D. All three amino acid substitutions, however, decreased the stability of the catalytic intermediate, diferric peroxo, even though overall ferritin cage structure is very stable, resisting 80 °C and 6 M urea. The localized structural changes in ferritin subdomains that affect ferritin function over long distances illustrate new properties of the protein cage in natural ferritin function and for applied ferritin uses.

  11. Hydrophobic Gating of Ion Permeation in Magnesium Channel CorA.

    PubMed

    Neale, Chris; Chakrabarti, Nilmadhab; Pomorski, Pawel; Pai, Emil F; Pomès, Régis

    2015-07-01

    Ion channels catalyze ionic permeation across membranes via water-filled pores. To understand how changes in intracellular magnesium concentration regulate the influx of Mg2+ into cells, we examine early events in the relaxation of Mg2+ channel CorA toward its open state using massively-repeated molecular dynamics simulations conducted either with or without regulatory ions. The pore of CorA contains a 2-nm-long hydrophobic bottleneck which remained dehydrated in most simulations. However, rapid hydration or "wetting" events concurrent with small-amplitude fluctuations in pore diameter occurred spontaneously and reversibly. In the absence of regulatory ions, wetting transitions are more likely and include a wet state that is significantly more stable and more hydrated. The free energy profile for Mg2+ permeation presents a barrier whose magnitude is anticorrelated to pore diameter and the extent of hydrophobic hydration. These findings support an allosteric mechanism whereby wetting of a hydrophobic gate couples changes in intracellular magnesium concentration to the onset of ionic conduction.

  12. Acid-sensing ion channels in pain and disease

    PubMed Central

    Wemmie, John A.; Taugher, Rebecca J.; Kreple, Collin J.

    2015-01-01

    Why do neurons sense extracellular acid? In large part, this question has driven increasing investigation on acid-sensing ion channels (ASICs) in the CNS and the peripheral nervous system for the past two decades. Significant progress has been made in understanding the structure and function of ASICs at the molecular level. Studies aimed at clarifying their physiological importance have suggested roles for ASICs in pain, neurological and psychiatric disease. This Review highlights recent findings linking these channels to physiology and disease. In addition, it discusses some of the implications for therapy and points out questions that remain unanswered. PMID:23783197

  13. Acid-sensing ion channels in pain and disease.

    PubMed

    Wemmie, John A; Taugher, Rebecca J; Kreple, Collin J

    2013-07-01

    Why do neurons sense extracellular acid? In large part, this question has driven increasing investigation on acid-sensing ion channels (ASICs) in the CNS and the peripheral nervous system for the past two decades. Significant progress has been made in understanding the structure and function of ASICs at the molecular level. Studies aimed at clarifying their physiological importance have suggested roles for ASICs in pain, neurological and psychiatric disease. This Review highlights recent findings linking these channels to physiology and disease. In addition, it discusses some of the implications for therapy and points out questions that remain unanswered.

  14. Laser-driven collimated tens-GeV monoenergetic protons from mass-limited target plus preformed channel

    NASA Astrophysics Data System (ADS)

    Zheng, F. L.; Wu, S. Z.; Wu, H. C.; Zhou, C. T.; Cai, H. B.; Yu, M. Y.; Tajima, T.; Yan, X. Q.; He, X. T.

    2013-01-01

    Proton acceleration by ultra-intense laser pulse irradiating a target with cross-section smaller than the laser spot size and connected to a parabolic density channel is investigated. The target splits the laser into two parallel propagating parts, which snowplow the back-side plasma electrons along their paths, creating two adjacent parallel wakes and an intense return current in the gap between them. The radiation-pressure pre-accelerated target protons trapped in the wake fields now undergo acceleration as well as collimation by the quasistatic wake electrostatic and magnetic fields. Particle-in-cell simulations show that stable long-distance acceleration can be realized, and a 30 fs monoenergetic ion beam of >10 GeV peak energy and <2° divergence can be produced by a circularly polarized laser pulse at an intensity of about 1022 W/cm2.

  15. Ion conduction in the KcsA potassium channel analyzed with a minimal kinetic model.

    PubMed

    Mafé, Salvador; Pellicer, Julio

    2005-02-01

    We use a model by Nelson to study the current-voltage and conductance-concentration curves of bacterial potassium channel KcsA without assuming rapid ion translocation. Ion association to the channel filter is rate controlling at low concentrations, but dissociation and transport in the filter can limit conduction at high concentration for ions other than K+. The absolute values of the effective rate constants are tentative but the relative changes in these constants needed to qualitatively explain the experiments should be of significance.

  16. Ubiquitin ligase Nedd4-2 modulates Kv1.3 current amplitude and ion channel protein targeting

    PubMed Central

    Velez, Patricio; Schwartz, Austin B.; Iyer, Subashini R.; Warrington, Anthony

    2016-01-01

    Voltage-dependent potassium channels (Kv) go beyond the stabilization of the resting potential and regulate biochemical pathways, regulate intracellular signaling, and detect energy homeostasis. Because targeted deletion and pharmacological block of the Kv1.3 channel protein produce marked changes in metabolism, resistance to diet-induced obesity, and changes in olfactory structure and function, this investigation explored Nedd4-2-mediated ubiquitination and degradation to regulate Kv1.3 channel density. Heterologous coexpression of Nedd4-2 ligase and Kv1.3 in HEK 293 cells reduced Kv1.3 current density without modulation of kinetic properties as measured by patch-clamp electrophysiology. Modulation of current density was dependent on ligase activity and was lost through point mutation of cysteine 938 in the catalytic site of the ligase (Nedd4-2CS). Incorporation of adaptor protein Grb10 relieved Nedd4-2-induced current suppression as did application of the proteasome inhibitor Mg-132. SDS-PAGE and immunoprecipitation strategies demonstrated a channel/adaptor/ligase signalplex. Pixel immunodensity was reduced for Kv1.3 in the presence of Nedd4-2, which was eliminated upon additional incorporation of Grb10. We confirmed Nedd4-2/Grb10 coimmunoprecipitation and observed an increased immunodensity for Nedd4-2 in the presence of Kv1.3 plus Grb10, regardless of whether the catalytic site was active. Kv1.3/Nedd4-2 were reciprocally coimmunoprecipated, whereby mutation of the COOH-terminal, SH3-recognition (493–498), or ubiquitination sites on Kv1.3 (lysines 467, 476, 498) retained coimmunoprecipitation, while the latter prevented the reduction in channel density. A model is presented for which an atypical interaction outside the canonical PY motif may permit channel/ligase interaction to lead to protein degradation and reduced current density, which can involve Nedd4-2/Grb10 interactions to disrupt Kv1.3 loss of current density. PMID:27146988

  17. Moving Fe2+ from ferritin ion channels to catalytic OH centers depends on conserved protein cage carboxylates

    PubMed Central

    Behera, Rabindra K.; Theil, Elizabeth C.

    2014-01-01

    Ferritin biominerals are protein-caged metabolic iron concentrates used for iron–protein cofactors and oxidant protection (Fe2+ and O2 sequestration). Fe2+ passage through ion channels in the protein cages, like membrane ion channels, required for ferritin biomineral synthesis, is followed by Fe2+ substrate movement to ferritin enzyme (Fox) sites. Fe2+ and O2 substrates are coupled via a diferric peroxo (DFP) intermediate, λmax 650 nm, which decays to [Fe3+–O–Fe3+] precursors of caged ferritin biominerals. Structural studies show multiple conformations for conserved, carboxylate residues E136 and E57, which are between ferritin ion channel exits and enzymatic sites, suggesting functional connections. Here we show that E136 and E57 are required for ferritin enzyme activity and thus are functional links between ferritin ion channels and enzymatic sites. DFP formation (Kcat and kcat/Km), DFP decay, and protein-caged hydrated ferric oxide accumulation decreased in ferritin E57A and E136A; saturation required higher Fe2+ concentrations. Divalent cations (both ion channel and intracage binding) selectively inhibit ferritin enzyme activity (block Fe2+ access), Mn2+ << Co2+ < Cu2+ < Zn2+, reflecting metal ion–protein binding stabilities. Fe2+–Cys126 binding in ferritin ion channels, observed as Cu2+–S–Cys126 charge-transfer bands in ferritin E130D UV-vis spectra and resistance to Cu2+ inhibition in ferritin C126S, was unpredicted. Identifying E57 and E136 links in Fe2+ movement from ferritin ion channels to ferritin enzyme sites completes a bucket brigade that moves external Fe2+ into ferritin enzymatic sites. The results clarify Fe2+ transport within ferritin and model molecular links between membrane ion channels and cytoplasmic destinations. PMID:24843174

  18. A Secondary Structural Transition in the C-helix Promotes Gating of Cyclic Nucleotide-regulated Ion Channels*

    PubMed Central

    Puljung, Michael C.; Zagotta, William N.

    2013-01-01

    Cyclic nucleotide-regulated ion channels bind second messengers like cAMP to a C-terminal domain, consisting of a β-roll, followed by two α-helices (B- and C-helices). We monitored the cAMP-dependent changes in the structure of the C-helix of a C-terminal fragment of HCN2 channels using transition metal ion FRET between fluorophores on the C-helix and metal ions bound between histidine pairs on the same helix. cAMP induced a change in the dimensions of the C-helix and an increase in the metal binding affinity of the histidine pair. cAMP also caused an increase in the distance between a fluorophore on the C-helix and metal ions bound to the B-helix. Stabilizing the C-helix of intact CNGA1 channels by metal binding to a pair of histidines promoted channel opening. These data suggest that ordering of the C-helix is part of the gating conformational change in cyclic nucleotide-regulated channels. PMID:23525108

  19. Free-energy relationships in ion channels activated by voltage and ligand

    PubMed Central

    Chowdhury, Sandipan

    2013-01-01

    Many ion channels are modulated by multiple stimuli, which allow them to integrate a variety of cellular signals and precisely respond to physiological needs. Understanding how these different signaling pathways interact has been a challenge in part because of the complexity of underlying models. In this study, we analyzed the energetic relationships in polymodal ion channels using linkage principles. We first show that in proteins dually modulated by voltage and ligand, the net free-energy change can be obtained by measuring the charge-voltage (Q-V) relationship in zero ligand condition and the ligand binding curve at highly depolarizing membrane voltages. Next, we show that the voltage-dependent changes in ligand occupancy of the protein can be directly obtained by measuring the Q-V curves at multiple ligand concentrations. When a single reference ligand binding curve is available, this relationship allows us to reconstruct ligand binding curves at different voltages. More significantly, we establish that the shift of the Q-V curve between zero and saturating ligand concentration is a direct estimate of the interaction energy between the ligand- and voltage-dependent pathway. These free-energy relationships were tested by numerical simulations of a detailed gating model of the BK channel. Furthermore, as a proof of principle, we estimate the interaction energy between the ligand binding and voltage-dependent pathways for HCN2 channels whose ligand binding curves at various voltages are available. These emerging principles will be useful for high-throughput mutagenesis studies aimed at identifying interaction pathways between various regulatory domains in a polymodal ion channel. PMID:23250866

  20. A family of fluoride-specific ion channels with dual-topology architecture.

    PubMed

    Stockbridge, Randy B; Robertson, Janice L; Kolmakova-Partensky, Ludmila; Miller, Christopher

    2013-08-27

    Fluoride ion, ubiquitous in soil, water, and marine environments, is a chronic threat to microorganisms. Many prokaryotes, archea, unicellular eukaryotes, and plants use a recently discovered family of F(-) exporter proteins to lower cytoplasmic F(-) levels to counteract the anion's toxicity. We show here that these 'Fluc' proteins, purified and reconstituted in liposomes and planar phospholipid bilayers, form constitutively open anion channels with extreme selectivity for F(-) over Cl(-). The active channel is a dimer of identical or homologous subunits arranged in antiparallel transmembrane orientation. This dual-topology assembly has not previously been seen in ion channels but is known in multidrug transporters of the SMR family, and is suggestive of an evolutionary antecedent of the inverted repeats found within the subunits of many membrane transport proteins. DOI:http://dx.doi.org/10.7554/eLife.01084.001.

  1. A family of fluoride-specific ion channels with dual-topology architecture

    PubMed Central

    Stockbridge, Randy B; Robertson, Janice L; Kolmakova-Partensky, Ludmila; Miller, Christopher

    2013-01-01

    Fluoride ion, ubiquitous in soil, water, and marine environments, is a chronic threat to microorganisms. Many prokaryotes, archea, unicellular eukaryotes, and plants use a recently discovered family of F− exporter proteins to lower cytoplasmic F− levels to counteract the anion’s toxicity. We show here that these ‘Fluc’ proteins, purified and reconstituted in liposomes and planar phospholipid bilayers, form constitutively open anion channels with extreme selectivity for F− over Cl−. The active channel is a dimer of identical or homologous subunits arranged in antiparallel transmembrane orientation. This dual-topology assembly has not previously been seen in ion channels but is known in multidrug transporters of the SMR family, and is suggestive of an evolutionary antecedent of the inverted repeats found within the subunits of many membrane transport proteins. DOI: http://dx.doi.org/10.7554/eLife.01084.001 PMID:23991286

  2. Soft Wall Ion Channel in Continuum Representation with Application to Modeling Ion Currents in α-Hemolysin

    PubMed Central

    Simakov, Nikolay A.

    2010-01-01

    A soft repulsion (SR) model of short range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson-Nernst-Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced: the first is parameterized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard – Jones potential. We have further designed an energy based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interaction were tested by computing current-voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of choice of some space-dependent diffusion coefficient distributions on the predicted current-voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson-Boltzman and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM. PMID:21028776

  3. Activation of the mechanosensitive ion channel MscL by mechanical stimulation of supported Droplet-Hydrogel bilayers

    PubMed Central

    Rosholm, Kadla R.; Baker, Matthew A. B.; Ridone, Pietro; Nakayama, Yoshitaka; Rohde, Paul R.; Cuello, Luis G.; Lee, Lawrence K.; Martinac, Boris

    2017-01-01

    The droplet on hydrogel bilayer (DHB) is a novel platform for investigating the function of ion channels. Advantages of this setup include tight control of all bilayer components, which is compelling for the investigation of mechanosensitive (MS) ion channels, since they are highly sensitive to their lipid environment. However, the activation of MS ion channels in planar supported lipid bilayers, such as the DHB, has not yet been established. Here we present the activation of the large conductance MS channel of E. coli, (MscL), in DHBs. By selectively stretching the droplet monolayer with nanolitre injections of buffer, we induced quantifiable DHB tension, which could be related to channel activity. The MscL activity response revealed that the droplet monolayer tension equilibrated over time, likely by insertion of lipid from solution. Our study thus establishes a method to controllably activate MS channels in DHBs and thereby advances studies of MS channels in this novel platform. PMID:28345591

  4. Ion channels in key marine invertebrates; their diversity and potential for applications in biotechnology.

    PubMed

    Brown, Euan R; Piscopo, Stefania

    2011-01-01

    Of the intra-membrane proteins, the class that comprises voltage and ligand-gated ion channels represents the major substrate whereby signals pass between and within cells in all organisms. It has been presumed that vertebrate and particularly mammalian ion channels represent the apex of evolutionary complexity and diversity and much effort has been focused on understanding their function. However, the recent availability of cheap high throughput genome sequencing has massively broadened and deepened the quality of information across phylogeny and is radically changing this view. Here we review current knowledge on such channels in key marine invertebrates where physiological evidence is backed up by molecular sequences and expression/functional studies. As marine invertebrates represent a much greater range of phyla than terrestrial vertebrates and invertebrates together, we argue that these animals represent a highly divergent, though relatively underused source of channel novelty. As ion channels are exquisitely selective sensors for voltage and ligands, their potential and actual applications in biotechnology are manifold. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baconguis, Isabelle; Gouaux, Eric

    2012-07-29

    Acid-sensing ion channels (ASICs) are voltage-independent, amiloride-sensitive channels involved in diverse physiological processes ranging from nociception to taste. Despite the importance of ASICs in physiology, we know little about the mechanism of channel activation. Here we show that psalmotoxin activates non-selective and Na +-selective currents in chicken ASIC1a at pH7.25 and 5.5, respectively. Crystal structures of ASIC1a–psalmotoxin complexes map the toxin binding site to the extracellular domain and show how toxin binding triggers an expansion of the extracellular vestibule and stabilization of the open channel pore. At pH7.25 the pore is approximately 10Å in diameter, whereas at pH5.5 the poremore » is largely hydrophobic and elliptical in cross-section with dimensions of approximately 5 by 7Å, consistent with a barrier mechanism for ion selectivity. These studies define mechanisms for activation of ASICs, illuminate the basis for dynamic ion selectivity and provide the blueprints for new therapeutic agents.« less

  6. Human Digital Meissner Corpuscles Display Immunoreactivity for the Multifunctional Ion Channels Trpc6 and Trpv4.

    PubMed

    Alonso-González, Paula; Cabo, Roberto; San José, Isabel; Gago, Angel; Suazo, Iván C; García-Suárez, Olivia; Cobo, Juan; Vega, José A

    2017-06-01

    Ion channels are at the basis of the sensory processes including mechanosensing. Some members of the transient receptor potential (TRP) ion channel superfamily have been proposed as mechanosensors, but their putative role in mechanotransduction is controversial. Among them there are TRP canonical 6 (TRPC6) and TRP vanilloid 4 (TRPV4) ion channels, which are known to cooperate in mechanical hyperalgesia. Here, we investigated the occurrence, distribution, and possible colocalization of TRPC6 and TRPV4 in human digital Meissner sensory corpuscles using immunohistochemistry and double immunofluorescence (associate with markers for specific corpuscular constituents). TRPC6 immunoreactivity was restricted to the axon of Meissner corpuscles, whereas TRPV4 was detected in the axon but also in the lamellar cells. Moreover, axonal colocalization of TRPV4 and TRPC6 was found in the digital Meissner corpuscles. Present results demonstrate for the first time the occurrence and colocalization of two ion channels candidates to mechanosensors in human cutaneous mechanoreceptors. The functional significance of these ion channels in that place remains to be clarified, but should be related to different properties of mechanosensitivity. Anat Rec, 300:1022-1031, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Ionic blockade of the rat connexin40 gap junction channel by large tetraalkylammonium ions.

    PubMed

    Musa, H; Gough, J D; Lees, W J; Veenstra, R D

    2001-12-01

    The rat connexin40 gap junction channel is permeable to monovalent cations including tetramethylammonium and tetraethylammonium ions. Larger tetraalkyammonium (TAA(+)) ions beginning with tetrabutylammonium (TBA(+)) reduced KCl junctional currents disproportionately. Ionic blockade by tetrapentylammonium (TPeA(+)) and tetrahexylammonium (THxA(+)) ions were concentration- and voltage-dependent and occurred only when TAA(+) ions were on the same side as net K(+) efflux across the junction, indicative of block of the ionic permeation pathway. The voltage-dependent dissociation constants (K(m)(V(j))) were lower for THxA(+) than TPeA(+), consistent with steric effects within the pore. The K(m)-V(j) relationships for TPeA(+) and THxA(+) were fit with different reaction rate models for a symmetrical (homotypic) connexin gap junction channel and were described by either a one- or two-site model that assumed each ion traversed the entire V(j) field. Bilateral addition of TPeA(+) ions confirmed a common site of interaction within the pore that possessed identical K(m)(V(j)) values for cis-trans concentrations of TPeA(+) ions as indicated by the modeled I-V relations and rapid channel block that precluded unitary current measurements. The TAA(+) block of K(+) currents and bilateral TPeA(+) interactions did not alter V(j)-gating of Cx40 gap junctions. N-octyl-tributylammonium and -triethylammonium also blocked rCx40 channels with higher affinity and faster kinetics than TBA(+) or TPeA(+), indicative of a hydrophobic site within the pore near the site of block.

  8. The role of transient receptor potential vanilloid type-2 ion channels in innate and adaptive immune responses

    PubMed Central

    Santoni, Giorgio; Farfariello, Valerio; Liberati, Sonia; Morelli, Maria B.; Nabissi, Massimo; Santoni, Matteo; Amantini, Consuelo

    2013-01-01

    The transient receptor potential vanilloid type-2 (TRPV2), belonging to the transient receptor potential channel family, is a specialized ion channel expressed in human and other mammalian immune cells. This channel has been found to be expressed in CD34+ hematopoietic stem cells, where its cytosolic Ca2+ activity is crucial for stem/progenitor cell cycle progression, growth, and differentiation. In innate immune cells, TRPV2 is expressed in granulocytes, macrophages, and monocytes where it stimulates fMet-Leu-Phe migration, zymosan-, immunoglobulin G-, and complement-mediated phagocytosis, and lipopolysaccharide-induced tumor necrosis factor-alpha and interleukin-6 production. In mast cells, activation of TRPV2 allows intracellular Ca2+ ions flux, thus stimulating protein kinase A-dependent degranulation. In addition, TRPV2 is highly expressed in CD56+ natural killer cells. TRPV2 orchestrates Ca2+ signal in T cell activation, proliferation, and effector functions. Moreover, messenger RNA for TRPV2 are expressed in CD4+ and CD8+ T lymphocytes. Finally, TRPV2 is expressed in CD19+ B lymphocytes where it regulates Ca2+ release during B cell development and activation. Overall, the specific expression of TRPV2 in immune cells suggests a role in immune-mediated diseases and offers new potential targets for immunomodulation. PMID:23420671

  9. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets

    PubMed Central

    Noujaim, Sami F.; Stuckey, Jeanne A.; Ponce-Balbuena, Daniela; Ferrer-Villada, Tania; López-Izquierdo, Angelica; Pandit, Sandeep; Calvo, Conrado J.; Grzeda, Krzysztof R.; Berenfeld, Omer; Sánchez Chapula, José A.; Jalife, José

    2010-01-01

    Atrial and ventricular tachyarrhythmias can be perpetuated by up-regulation of inward rectifier potassium channels. Thus, it may be beneficial to block inward rectifier channels under conditions in which their function becomes arrhythmogenic (e.g., inherited gain-of-function mutation channelopathies, ischemia, and chronic and vagally mediated atrial fibrillation). We hypothesize that the antimalarial quinoline chloroquine exerts potent antiarrhythmic effects by interacting with the cytoplasmic domains of Kir2.1 (IK1), Kir3.1 (IKACh), or Kir6.2 (IKATP) and reducing inward rectifier potassium currents. In isolated hearts of three different mammalian species, intracoronary chloroquine perfusion reduced fibrillatory frequency (atrial or ventricular), and effectively terminated the arrhythmia with resumption of sinus rhythm. In patch-clamp experiments chloroquine blocked IK1, IKACh, and IKATP. Comparative molecular modeling and ligand docking of chloroquine in the intracellular domains of Kir2.1, Kir3.1, and Kir6.2 suggested that chloroquine blocks or reduces potassium flow by interacting with negatively charged amino acids facing the ion permeation vestibule of the channel in question. These results open a novel path toward discovering antiarrhythmic pharmacophores that target specific residues of the cytoplasmic domain of inward rectifier potassium channels.—Noujaim, S. F., Stuckey, J. A., Ponce-Balbuena, D., Ferrer-Villada, T., López-Izquierdo, A., Pandit, S., Calvo, C. J., Grzeda, K. R., Berenfeld, O., Sánchez Chapula, J. A., Jalife, J. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. PMID:20585026

  10. Band gap engineering by swift heavy ions irradiation induced amorphous nano-channels in LiNbO3

    DOE PAGES

    Sachan, Ritesh; Pakarinen, Olli H.; Liu, Peng; ...

    2015-04-01

    The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization; (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length, and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterizationmore » of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with Se of ions. Energetic Kr ions ( 84Kr 22 with 1.98 GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2x10 10 ions/cm 2, which results in the formation of individual ion tracks with a penetration depth of ~180 μm. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO 3, resulting in increases in track diameter of a factor of ~2 with depth. This diameter increase with electronic stopping power is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.« less

  11. Potassium channels in brain mitochondria.

    PubMed

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify

  12. Hypoxia Sensing in Plants: On a Quest for Ion Channels as Putative Oxygen Sensors.

    PubMed

    Wang, Feifei; Chen, Zhong-Hua; Shabala, Sergey

    2017-07-01

    Over 17 million km2 of land is affected by soil flooding every year, resulting in substantial yield losses and jeopardizing food security across the globe. A key step in resolving this problem and creating stress-tolerant cultivars is an understanding of the mechanisms by which plants sense low-oxygen stress. In this work, we review the current knowledge about the oxygen-sensing and signaling pathway in mammalian and plant systems and postulate the potential role of ion channels as putative oxygen sensors in plant roots. We first discuss the definition and requirements for the oxygen sensor and the difference between sensing and signaling. We then summarize the literature and identify several known candidates for oxygen sensing in the mammalian literature. This includes transient receptor potential (TRP) channels; K+-permeable channels (Kv, BK and TASK); Ca2+ channels (RyR and TPC); and various chemo- and reactive oxygen species (ROS)-dependent oxygen sensors. Identified key oxygen-sensing domains (PAS, GCS, GAF and PHD) in mammalian systems are used to predict the potential plant counterparts in Arabidopsis. Finally, the sequences of known mammalian ion channels with reported roles in oxygen sensing were employed to BLAST the Arabidopsis genome for the candidate genes. Several plasma membrane and tonoplast ion channels (such as TPC, AKT and KCO) and oxygen domain-containing proteins with predicted oxygen-sensing ability were identified and discussed. We propose a testable model for potential roles of ion channels in plant hypoxia sensing. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. A study of small impact parameter ion channeling effects in thin crystals

    NASA Astrophysics Data System (ADS)

    Motapothula, Mallikarjuna Rao; Breese, Mark B. H.

    2018-03-01

    We have recorded channeling patterns produced by 1-2 MeV protons aligned with ⟨1 1 1⟩ axes in 55 nm thick silicon crystals which exhibit characteristic angular structure for deflection angles up to and beyond the axial critical angle, ψ a . Such large angular deflections are produced by ions incident on atomic strings with small impact parameters, resulting in trajectories which pass through several radial rings of atomic strings before exiting the thin crystal. Each ring may focus, steer or scatter the channeled ions in the transverse direction and the resulting characteristic angular structure beyond 0.6 ψ a at different depths can be related to peaks and troughs in the nuclear encounter probability. Such "radial focusing" underlies other axial channeling phenomena in thin crystals including planar channeling of small impact parameter trajectories, peaks around the azimuthal distribution at small tilts and large shoulders in the nuclear encounter probability at tilts beyond ψ a .

  14. Planar MEMS bio-chip for recording ion-channel currents in biological cells

    NASA Astrophysics Data System (ADS)

    Pandey, Santosh; Ferdous, Zannatul; White, Marvin H.

    2003-10-01

    We describe a planar MEMS silicon structure to record ion-channel currents in biological cells. The conventional method of performing an electrophysiological experiment, 'patch-clamping,' employs a glass micropipette. Despite careful treatments of the micropipette tip, such as fire polishing and surface coating, the latter is a source of thermal noise because of its inherent, tapered, conical structure, which gives rise to a large pipette resistance. This pipette resistance, when coupled with the self-capacitance of the biological cell, limits the available bandwidth and processing of fast transient, ion channel current pulses. In this work, we reduce considerably the pipette resistance with a planar micropipette on a silicon chip to permit the resolution of sub-millisecond, ion-channel pulses. We discuss the design topology of the device, describe the fabrication sequence, and highlight important critical issues. The design of an integrated on-chip CMOS instrumentation amplifier is described, which has a low-noise front-end, input-offset cancellation, correlated double sampling (CDS), and an ultra-high gain in the order of 1012V/A.

  15. Increases in reactive oxygen species enhance vascular endothelial cell migration through a mechanism dependent on the transient receptor potential melastatin 4 ion channel.

    PubMed

    Sarmiento, Daniela; Montorfano, Ignacio; Cerda, Oscar; Cáceres, Mónica; Becerra, Alvaro; Cabello-Verrugio, Claudio; Elorza, Alvaro A; Riedel, Claudia; Tapia, Pablo; Velásquez, Luis A; Varela, Diego; Simon, Felipe

    2015-03-01

    A hallmark of severe inflammation is reactive oxygen species (ROS) overproduction induced by increased inflammatory mediators secretion. During systemic inflammation, inflammation mediators circulating in the bloodstream interact with endothelial cells (ECs) raising intracellular oxidative stress at the endothelial monolayer. Oxidative stress mediates several pathological functions, including an exacerbated EC migration. Because cell migration critically depends on calcium channel-mediated Ca(2+) influx, the molecular identification of the calcium channel involved in oxidative stress-modulated EC migration has been the subject of intense investigation. The transient receptor potential melastatin 4 (TRPM4) protein is a ROS-modulated non-selective cationic channel that performs several cell functions, including regulating intracellular Ca(2+) overload and Ca(2+) oscillation. This channel is expressed in multiple tissues, including ECs, and contributes to the migration of certain immune cells. However, whether the TRPM4 ion channel participates in oxidative stress-mediated EC migration is not known. Herein, we investigate whether oxidative stress initiates or enhances EC migration and study the role played by the ROS-modulated TRPM4 ion channel in oxidative stress-mediated EC migration. We demonstrate that oxidative stress enhances, but does not initiate, EC migration in a dose-dependent manner. Notably, we demonstrate that the TRPM4 ion channel is critical in promoting H2O2-enhanced EC migration. These results show that TRPM4 is a novel pharmacological target for the possible treatment of severe inflammation and other oxidative stress-mediated inflammatory diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Chemoselective tarantula toxins report voltage activation of wild-type ion channels in live cells

    PubMed Central

    Tilley, Drew C.; Eum, Kenneth S.; Fletcher-Taylor, Sebastian; Austin, Daniel C.; Dupré, Christophe; Patrón, Lilian A.; Garcia, Rita L.; Lam, Kit; Yarov-Yarovoy, Vladimir; Cohen, Bruce E.; Sack, Jon T.

    2014-01-01

    Electrically excitable cells, such as neurons, exhibit tremendous diversity in their firing patterns, a consequence of the complex collection of ion channels present in any specific cell. Although numerous methods are capable of measuring cellular electrical signals, understanding which types of ion channels give rise to these signals remains a significant challenge. Here, we describe exogenous probes which use a novel mechanism to report activity of voltage-gated channels. We have synthesized chemoselective derivatives of the tarantula toxin guangxitoxin-1E (GxTX), an inhibitory cystine knot peptide that binds selectively to Kv2-type voltage gated potassium channels. We find that voltage activation of Kv2.1 channels triggers GxTX dissociation, and thus GxTX binding dynamically marks Kv2 activation. We identify GxTX residues that can be replaced by thiol- or alkyne-bearing amino acids, without disrupting toxin folding or activity, and chemoselectively ligate fluorophores or affinity probes to these sites. We find that GxTX–fluorophore conjugates colocalize with Kv2.1 clusters in live cells and are released from channels activated by voltage stimuli. Kv2.1 activation can be detected with concentrations of probe that have a trivial impact on cellular currents. Chemoselective GxTX mutants conjugated to dendrimeric beads likewise bind live cells expressing Kv2.1, and the beads are released by channel activation. These optical sensors of conformational change are prototype probes that can indicate when ion channels contribute to electrical signaling. PMID:25331865

  17. Altered ion channel conductance and ionic selectivity induced by large imposed membrane potential pulse.

    PubMed Central

    Chen, W; Lee, R C

    1994-01-01

    The effects of large magnitude transmembrane potential pulses on voltage-gated Na and K channel behavior in frog skeletal muscle membrane were studied using a modified double vaseline-gap voltage clamp. The effects of electroconformational damage to ionic channels were separated from damage to lipid bilayer (electroporation). A 4 ms transmembrane potential pulse of -600 mV resulted in a reduction of both Na and K channel conductivities. The supraphysiologic pulses also reduced ionic selectivity of the K channels against Na+ ions, resulting in a depolarization of the membrane resting potential. However, TTX and TEA binding effects were unaltered. The kinetics of spontaneous reversal of the electroconformational damage of channel proteins was found to be dependent on the magnitude of imposed membrane potential pulse. These results suggest that muscle and nerve dysfunction after electrical shock may be in part caused by electroconformational damage to voltage-gated ion channels. PMID:7948676

  18. Endothelial and Smooth Muscle Cell Ion Channels in Pulmonary Vasoconstriction and Vascular Remodeling

    PubMed Central

    Makino, Ayako; Firth, Amy L.; Yuan, Jason X.-J.

    2017-01-01

    The pulmonary circulation is a low resistance and low pressure system. Sustained pulmonary vasoconstriction and excessive vascular remodeling often occur under pathophysiological conditions such as in patients with pulmonary hypertension. Pulmonary vasoconstriction is a consequence of smooth muscle contraction. Many factors released from the endothelium contribute to regulating pulmonary vascular tone, while the extracellular matrix in the adventitia is the major determinant of vascular wall compliance. Pulmonary vascular remodeling is characterized by adventitial and medial hypertrophy due to fibroblast and smooth muscle cell proliferation, neointimal proliferation, intimal, and plexiform lesions that obliterate the lumen, muscularization of precapillary arterioles, and in situ thrombosis. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction, while increased release of mitogenic factors, upregulation (or downregulation) of ion channels and transporters, and abnormalities in intracellular signaling cascades are key to the remodeling of the pulmonary vasculature. Changes in the expression, function, and regulation of ion channels in PASMC and pulmonary arterial endothelial cells play an important role in the regulation of vascular tone and development of vascular remodeling. This article will focus on describing the ion channels and transporters that are involved in the regulation of pulmonary vascular function and structure and illustrating the potential pathogenic role of ion channels and transporters in the development of pulmonary vascular disease. PMID:23733654

  19. Ion channels and neuronal hyperexcitability in chemotherapy-induced peripheral neuropathy

    PubMed Central

    Goldstein, Peter A

    2017-01-01

    Cancer is the second leading cause of death worldwide and is a major global health burden. Significant improvements in survival have been achieved, due in part to advances in adjuvant antineoplastic chemotherapy. The most commonly used antineoplastics belong to the taxane, platinum, and vinca alkaloid families. While beneficial, these agents are frequently accompanied by severe side effects, including chemotherapy-induced peripheral neuropathy (CPIN). While CPIN affects both motor and sensory systems, the majority of symptoms are sensory, with pain, tingling, and numbness being the predominant complaints. CPIN not only decreases the quality of life of cancer survivors but also can lead to discontinuation of treatment, thereby adversely affecting survival. Consequently, minimizing the incidence or severity of CPIN is highly desirable, but strategies to prevent and/or treat CIPN have proven elusive. One difficulty in achieving this goal arises from the fact that the molecular and cellular mechanisms that produce CPIN are not fully known; however, one common mechanism appears to be changes in ion channel expression in primary afferent sensory neurons. The processes that underlie chemotherapy-induced changes in ion channel expression and function are poorly understood. Not all antineoplastic agents directly affect ion channel function, suggesting additional pathways may contribute to the development of CPIN Indeed, there are indications that these drugs may mediate their effects through cellular signaling pathways including second messengers and inflammatory cytokines. Here, we focus on ion channelopathies as causal mechanisms for CPIN and review the data from both pre-clinical animal models and from human studies with the aim of facilitating the development of appropriate strategies to prevent and/or treat CPIN. PMID:28580836

  20. Hydrophobic Gating of Ion Permeation in Magnesium Channel CorA

    PubMed Central

    Neale, Chris; Chakrabarti, Nilmadhab; Pomorski, Pawel; Pai, Emil F.; Pomès, Régis

    2015-01-01

    Ion channels catalyze ionic permeation across membranes via water-filled pores. To understand how changes in intracellular magnesium concentration regulate the influx of Mg2+ into cells, we examine early events in the relaxation of Mg2+ channel CorA toward its open state using massively-repeated molecular dynamics simulations conducted either with or without regulatory ions. The pore of CorA contains a 2-nm-long hydrophobic bottleneck which remained dehydrated in most simulations. However, rapid hydration or “wetting” events concurrent with small-amplitude fluctuations in pore diameter occurred spontaneously and reversibly. In the absence of regulatory ions, wetting transitions are more likely and include a wet state that is significantly more stable and more hydrated. The free energy profile for Mg2+ permeation presents a barrier whose magnitude is anticorrelated to pore diameter and the extent of hydrophobic hydration. These findings support an allosteric mechanism whereby wetting of a hydrophobic gate couples changes in intracellular magnesium concentration to the onset of ionic conduction. PMID:26181442

  1. Ion beam inertial confinement target

    DOEpatents

    Bangerter, Roger O.; Meeker, Donald J.

    1985-01-01

    A target for implosion by ion beams composed of a spherical shell of frozen DT surrounded by a low-density, low-Z pusher shell seeded with high-Z material, and a high-density tamper shell. The target has various applications in the inertial confinement technology. For certain applications, if desired, a low-density absorber shell may be positioned intermediate the pusher and tamper shells.

  2. Complex versus simple models: ion-channel cardiac toxicity prediction.

    PubMed

    Mistry, Hitesh B

    2018-01-01

    There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model B net was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the B net model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.

  3. Ion mediated targeting of cells with nanoparticles

    NASA Astrophysics Data System (ADS)

    Maheshwari, Vivek; Fu, Jinlong

    2010-03-01

    In eukaryotic cells, Ca^2+ ions are necessary for intracellular signaling, in activity of mitochondria and a variety of other cellular process that have been linked to cell apoptosis, proteins synthesis and cell-cycle regulation. Here we show that Ca^2+ ions, serving as the bio-compatible interface can be used to target Saccharomyces cerevisiae (SaC, baker's yeast), a model eukaryotic cell, with Au nanoparticles (10 nm). The Ca^2+ ions bind to the carboxylic acid groups in the citrate functionalized Au nanoparticles. This transforms the nanoparticles into micron long 1-D branched chain assemblies due to inter-particle dipole-dipole interaction and inter-particle bonding due to the divalent nature of the Ca^2+ ion. A similar transformation is observed with the use of divalent ions Mg^2+, Cd^2+ and Fe^2+. The 1-D assembly aids the interfacing of ion-nanoparticles on the cell by providing multiple contact points. Further monovalent ions such as Na^+ are also effective for the targeting of the cell with nanoparticles. However Na-Au nanoparticles are limited in their deposition as they exist in solution as single particles. The cells remain alive after the deposition process and their vitality is unaffected by the interfacing with ion-nanoparticles.

  4. 24-channel dual microcontroller-based voltage controller for ion optics remote control

    NASA Astrophysics Data System (ADS)

    Bengtsson, L.

    2018-05-01

    The design of a 24-channel voltage control instrument for Wenzel Elektronik N1130 NIM modules is described. This instrument is remote controlled from a LabVIEW GUI on a host Windows computer and is intended for ion optics control in electron affinity measurements on negative ions at the CERN-ISOLDE facility. Each channel has a resolution of 12 bits and has a normally distributed noise with a standard deviation of <1 mV. The instrument is designed as a standard 2-unit NIM module where the electronic hardware consists of a printed circuit board with two asynchronously operating microcontrollers.

  5. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family

    NASA Astrophysics Data System (ADS)

    Kaufman, I.; Luchinsky, D. G.; Tindjong, R.; McClintock, P. V. E.; Eisenberg, R. S.

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Qf at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Qf=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Qf for the sodium-calcium channels family. An increase of Qf leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Qf(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca2+/Na+ valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  6. X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na(+)-selective channel.

    PubMed

    Baconguis, Isabelle; Bohlen, Christopher J; Goehring, April; Julius, David; Gouaux, Eric

    2014-02-13

    Acid-sensing ion channels (ASICs) detect extracellular protons produced during inflammation or ischemic injury and belong to the superfamily of degenerin/epithelial sodium channels. Here, we determine the cocrystal structure of chicken ASIC1a with MitTx, a pain-inducing toxin from the Texas coral snake, to define the structure of the open state of ASIC1a. In the MitTx-bound open state and in the previously determined low-pH desensitized state, TM2 is a discontinuous α helix in which the Gly-Ala-Ser selectivity filter adopts an extended, belt-like conformation, swapping the cytoplasmic one-third of TM2 with an adjacent subunit. Gly 443 residues of the selectivity filter provide a ring of three carbonyl oxygen atoms with a radius of ∼3.6 Å, presenting an energetic barrier for hydrated ions. The ASIC1a-MitTx complex illuminates the mechanism of MitTx action, defines the structure of the selectivity filter of voltage-independent, sodium-selective ion channels, and captures the open state of an ASIC. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Ion propagation in an aluminum hollow cylinder target laser ion source

    NASA Astrophysics Data System (ADS)

    Saquilayan, Glynnis Mae Q.; Wada, Motoi

    2018-01-01

    Experimental results for the laser produced plasma in an aluminum hollow cylinder target are presented. Observing the plasma formation inside the cylinder, a high-speed camera captured the images of the plasma expanding towards the adjacent walls of target. The optical emission spectrum is obtained for the plasma inside the hollow cylinder and positive singly charged aluminum ions and neutrals are identified from emission spectral lines. Time dependent current signals of the Faraday cup displayed an enlarged signal intensity as the laser power density is increased up to 6.5 GW/cm2. Signal arrival times corresponding to fast ions appeared at the onset of the current waveforms when the laser power density exceeded 4.7 GW/cm2. For the mass analysis of plasma, an accelerating electric field was applied to separate the ions and the time-of-flight measurements showed positive ion signals with an identified peak to have an estimated mass of 350 amu.

  8. Voltage Gated Ion Channel Function: Gating, Conduction, and the Role of Water and Protons

    PubMed Central

    Kariev, Alisher M.; Green, Michael E.

    2012-01-01

    Ion channels, which are found in every biological cell, regulate the concentration of electrolytes, and are responsible for multiple biological functions, including in particular the propagation of nerve impulses. The channels with the latter function are gated (opened) by a voltage signal, which allows Na+ into the cell and K+ out. These channels have several positively charged amino acids on a transmembrane domain of their voltage sensor, and it is generally considered, based primarily on two lines of experimental evidence, that these charges move with respect to the membrane to open the channel. At least three forms of motion, with greatly differing extents and mechanisms of motion, have been proposed. There is a “gating current”, a capacitative current preceding the channel opening, that corresponds to several charges (for one class of channel typically 12–13) crossing the membrane field, which may not require protein physically crossing a large fraction of the membrane. The coupling to the opening of the channel would in these models depend on the motion. The conduction itself is usually assumed to require the “gate” of the channel to be pulled apart to allow ions to enter as a section of the protein partially crosses the membrane, and a selectivity filter at the opposite end of the channel determines the ion which is allowed to pass through. We will here primarily consider K+ channels, although Na+ channels are similar. We propose that the mechanism of gating differs from that which is generally accepted, in that the positively charged residues need not move (there may be some motion, but not as gating current). Instead, protons may constitute the gating current, causing the gate to open; opening consists of only increasing the diameter at the gate from approximately 6 Å to approximately 12 Å. We propose in addition that the gate oscillates rather than simply opens, and the ion experiences a barrier to its motion across the channel that is tuned

  9. Do defects in ion channel glycosylation set the stage for lethal cardiac arrhythmias?

    PubMed

    Fozzard, Harry A; Kyle, John W

    2002-04-30

    Many ion channels are modified by the addition of carbohydrate residues. Fozzard and Kyle discuss evidence that sialic acid residues on glycosylated cardiac sodium and potassium channels may be important for preventing early after-depolarizations that can result in cardiac arrhythmias.

  10. Ion beam sputtering of fluoropolymers. [etching polymer films and target surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Ion beam sputter processing rates as well as pertinent characteristics of etched targets and films are described. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Sputter target and film characteristics documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs are included.

  11. Amphotericin B channels in phospholipid membrane-coated nanoporous silicon surfaces: implications for photovoltaic driving of ions across membranes.

    PubMed

    Yilma, Solomon; Liu, Nangou; Samoylov, Alexander; Lo, Ting; Brinker, C Jeffrey; Vodyanoy, Vitaly

    2007-03-15

    The antimycotic agent amphotericin B (AmB) functions by forming complexes with sterols to form ion channels that cause membrane leakage. When AmB and cholesterol mixed at 2:1 ratio were incorporated into phospholipid bilayer membranes formed on the tip of patch pipettes, ion channel current fluctuations with characteristic open and closed states were observed. These channels were also functional in phospholipid membranes formed on nanoporous silicon surfaces. Electrophysiological studies of AmB-cholesterol mixtures that were incorporated into phospholipid membranes formed on the surface of nanoporous (6.5 nm pore diameter) silicon plates revealed large conductance ion channels ( approximately 300 pS) with distinct open and closed states. Currents through the AmB-cholesterol channels on nanoporous silicon surfaces can be driven by voltage applied via conventional electrical circuits or by photovoltaic electrical potential entirely generated when the nanoporous silicon surface is illuminated with a narrow laser beam. Electrical recordings made during laser illumination of AmB-cholesterol containing membrane-coated nanoporous silicon surfaces revealed very large conductance ion channels with distinct open and closed states. Our findings indicate that nanoporous silicon surfaces can serve as mediums for ion-channel-based biosensors. The photovoltaic properties of nanoporous silicon surfaces show great promise for making such biosensors addressable via optical technologies.

  12. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening.

    PubMed

    Zaydman, Mark A; Silva, Jonathan R; Delaloye, Kelli; Li, Yang; Liang, Hongwu; Larsson, H Peter; Shi, Jingyi; Cui, Jianmin

    2013-08-06

    Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein-protein interaction between the two domains. Here, we show that coupling in Kv7.1 channels requires the lipid phosphatidylinositol 4,5-bisphosphate (PIP2). We found that voltage-sensing domain activation failed to open the pore in the absence of PIP2. This result is due to loss of coupling because PIP2 was also required for pore opening to affect voltage-sensing domain activation. We identified a critical site for PIP2-dependent coupling at the interface between the voltage-sensing domain and the pore domain. This site is actually a conserved lipid-binding site among different K(+) channels, suggesting that lipids play an important role in coupling in many ion channels.

  13. A membrane-embedded pathway delivers general anesthetics to two interacting binding sites in the Gloeobacter violaceus ion channel.

    PubMed

    Arcario, Mark J; Mayne, Christopher G; Tajkhorshid, Emad

    2017-06-09

    General anesthetics exert their effects on the central nervous system by acting on ion channels, most notably pentameric ligand-gated ion channels. Although numerous studies have focused on pentameric ligand-gated ion channels, the details of anesthetic binding and channel modulation are still debated. A better understanding of the anesthetic mechanism of action is necessary for the development of safer and more efficacious drugs. Herein, we present a computational study identifying two anesthetic binding sites in the transmembrane domain of the Gloeobacter violaceus ligand-gated ion channel (GLIC) channel, characterize the putative binding pathway, and observe structural changes associated with channel function. Molecular simulations of desflurane reveal a binding pathway to GLIC via a membrane-embedded tunnel using an intrasubunit protein lumen as the conduit, an observation that explains the Meyer-Overton hypothesis, or why the lipophilicity of an anesthetic and its potency are generally proportional. Moreover, employing high concentrations of ligand led to the identification of a second transmembrane site (TM2) that inhibits dissociation of anesthetic from the TM1 site and is consistent with the high concentrations of anesthetics required to achieve clinical effects. Finally, asymmetric binding patterns of anesthetic to the channel were found to promote an iris-like conformational change that constricts and dehydrates the ion pore, creating a 13.5 kcal/mol barrier to ion translocation. Together with previous studies, the simulations presented herein demonstrate a novel anesthetic binding site in GLIC that is accessed through a membrane-embedded tunnel and interacts with a previously known site, resulting in conformational changes that produce a non-conductive state of the channel. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system

    PubMed Central

    Holzer, Peter

    2011-01-01

    Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca2+ and Mg2+, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential. PMID:21420431

  15. Ion Transport in Confined Geometries below the Nanoscale: Access Resistance Dominates Protein Channel Conductance in Diluted Solutions.

    PubMed

    Alcaraz, Antonio; López, M Lidón; Queralt-Martín, María; Aguilella, Vicente M

    2017-10-24

    Synthetic nanopores and mesoscopic protein channels have common traits like the importance of electrostatic interactions between the permeating ions and the nanochannel. Ion transport at the nanoscale occurs under confinement conditions so that the usual assumptions made in microfluidics are challenged, among others, by interfacial effects such as access resistance (AR). Here, we show that a sound interpretation of electrophysiological measurements in terms of channel ion selective properties requires the consideration of interfacial effects, up to the point that they dominate protein channel conductance in diluted solutions. We measure AR in a large ion channel, the bacterial porin OmpF, by means of single-channel conductance measurements in electrolyte solutions containing varying concentrations of high molecular weight PEG, sterically excluded from the pore. Comparison of experiments performed in charged and neutral planar membranes shows that lipid surface charges modify the ion distribution and determine the value of AR, indicating that lipid molecules are more than passive scaffolds even in the case of large transmembrane proteins. We also found that AR may reach up to 80% of the total channel conductance in diluted solutions, where electrophysiological recordings register essentially the AR of the system and depend marginally on the pore characteristics. These findings may have implications for several low aspect ratio biological channels that perform their physiological function in a low ionic strength and macromolecule crowded environment, just the two conditions enhancing the AR contribution.

  16. Potential Roles of Amiloride-Sensitive Sodium Channels in Cancer Development.

    PubMed

    Xu, Siguang; Liu, Cui; Ma, Yana; Ji, Hong-Long; Li, Xiumin

    2016-01-01

    The ENaC/degenerin ion channel superfamily includes the amiloride-sensitive epithelial sodium channel (ENaC) and acid sensitive ionic channel (ASIC). ENaC is a multimeric ion channel formed by heteromultimeric membrane glycoproteins, which participate in a multitude of biological processes by mediating the transport of sodium (Na(+)) across epithelial tissues such as the kidney, lungs, bladder, and gut. Aberrant ENaC functions contribute to several human disease states including pseudohypoaldosteronism, Liddle syndrome, cystic fibrosis, and salt-sensitive hypertension. Increasing evidence suggests that ion channels not only regulate ion homeostasis and electric signaling in excitable cells but also play important roles in cancer cell behaviors such as proliferation, apoptosis, invasion, and migration. Indeed, ENaCs/ASICs had been reported to be associated with cancer characteristics. Given their cell surface localization and pharmacology, pharmacological strategies to target ENaC/ASIC family members may be promising cancer therapeutics.

  17. A software platform for continuum modeling of ion channels based on unstructured mesh

    NASA Astrophysics Data System (ADS)

    Tu, B.; Bai, S. Y.; Chen, M. X.; Xie, Y.; Zhang, L. B.; Lu, B. Z.

    2014-01-01

    Most traditional continuum molecular modeling adopted finite difference or finite volume methods which were based on a structured mesh (grid). Unstructured meshes were only occasionally used, but an increased number of applications emerge in molecular simulations. To facilitate the continuum modeling of biomolecular systems based on unstructured meshes, we are developing a software platform with tools which are particularly beneficial to those approaches. This work describes the software system specifically for the simulation of a typical, complex molecular procedure: ion transport through a three-dimensional channel system that consists of a protein and a membrane. The platform contains three parts: a meshing tool chain for ion channel systems, a parallel finite element solver for the Poisson-Nernst-Planck equations describing the electrodiffusion process of ion transport, and a visualization program for continuum molecular modeling. The meshing tool chain in the platform, which consists of a set of mesh generation tools, is able to generate high-quality surface and volume meshes for ion channel systems. The parallel finite element solver in our platform is based on the parallel adaptive finite element package PHG which wass developed by one of the authors [1]. As a featured component of the platform, a new visualization program, VCMM, has specifically been developed for continuum molecular modeling with an emphasis on providing useful facilities for unstructured mesh-based methods and for their output analysis and visualization. VCMM provides a graphic user interface and consists of three modules: a molecular module, a meshing module and a numerical module. A demonstration of the platform is provided with a study of two real proteins, the connexin 26 and hemolysin ion channels.

  18. Structures of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels: implications for movement of the C-terminal cysteine-rich domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Nobuhiro; Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602; Yamazaki, Yasuo

    2008-10-01

    The structures of pseudechetoxin and pseudecin suggest that both proteins bind to cyclic nucleotide-gated ion channels in a manner in which the concave surface occludes the pore entrance. Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction by retinal photoreceptors and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins belong to a cysteine-rich secretory protein (CRISP) family containing an N-terminal pathogenesis-related proteins of group 1 (PR-1) domain and a C-terminal cysteine-rich domain (CRD). PsTx and Pdc are highly homologous proteins, but their blocking affinitiesmore » on CNG channels are different: PsTx blocks both the olfactory and retinal channels with ∼15–30-fold higher affinity than Pdc. To gain further insights into their structure and function, the crystal structures of PsTx, Pdc and Zn{sup 2+}-bound Pdc were determined. The structures revealed that most of the amino-acid-residue differences between PsTx and Pdc are located around the concave surface formed between the PR-1 domain and the CRD, suggesting that the concave surface is functionally important for CNG-channel binding and inhibition. A structural comparison in the presence and absence of Zn{sup 2+} ion demonstrated that the concave surface can open and close owing to movement of the CRD upon Zn{sup 2+} binding. The data suggest that PsTx and Pdc occlude the pore entrance and that the dynamic motion of the concave surface facilitates interaction with the CNG channels.« less

  19. Erythrocyte ion channels in regulation of apoptosis.

    PubMed

    Lang, Florian; Birka, Christina; Myssina, Svetlana; Lang, Karl S; Lang, Philipp A; Tanneur, Valerie; Duranton, Christophe; Wieder, Thomas; Huber, Stephan M

    2004-01-01

    Erythrocytes lack mitochondria and nuclei, key organelles in the regulation of apoptosis. Until recently, erythrocytes were thus not considered subject to this type of cell death. However, exposure of erythrocytes to the Ca2+ ionophore ionomycin was shown to induce cell shrinkage, cell membrane blebbing and breakdown of phosphatidylserine asymmetry with subsequent phosphatidylserine exposure at the cell surface, all typical features of apoptosis. Further studies revealed the participation of ion channels in the regulation of erythrocyte "apoptosis." Osmotic shock, oxidative stress and energy depletion all activate a Ca2(+)-permeable non-selective cation channel in the erythrocyte cell membrane. The subsequent increase of Ca2+ concentration stimulates a scramblase leading to breakdown of cell membrane phosphatidylserine asymmetry and activates Ca2+ sensitive K+ (Gardos) channels leading to KCl loss and (further) cell shrinkage. Phosphatidylserine exposure and cell shrinkage are blunted in the nominal absence of extracellular Ca2+, in the presence of the cation channel inhibitors amiloride or ethylisopropylamiloride, at increased extracellular K+ or in the presence of the Gardos channel inhibitors clotrimazole or charybdotoxin. Thus, increase of cytosolic Ca2+ and cellular loss of K+ participate in the triggering of erythrocyte scramblase. Nevertheless, phosphatidylserine exposure is not completely abrogated in the nominal absence of Ca2+, pointing to additional Ca2(+)-independent pathways. One of those is activation of sphingomyelinase with subsequent formation of ceramide which in turn leads to stimulation of erythrocyte scramblase. The exposure of phosphatidylserine at the extracellular face of the cell membrane stimulates phagocytes to engulf the apoptotic erythrocytes. Thus, sustained activation of the cation channels eventually leads to clearance of affected erythrocytes from peripheral blood. Erythropoietin inhibits the non-selective cation channel and thus

  20. Lipid membranes and single ion channel recording for the advanced physics laboratory

    NASA Astrophysics Data System (ADS)

    Klapper, Yvonne; Nienhaus, Karin; Röcker, Carlheinz; Ulrich Nienhaus, G.

    2014-05-01

    We present an easy-to-handle, low-cost, and reliable setup to study various physical phenomena on a nanometer-thin lipid bilayer using the so-called black lipid membrane technique. The apparatus allows us to precisely measure optical and electrical properties of free-standing lipid membranes, to study the formation of single ion channels, and to gain detailed information on the ion conduction properties of these channels using statistical physics and autocorrelation analysis. The experiments are well suited as part of an advanced physics or biophysics laboratory course; they interconnect physics, chemistry, and biology and will be appealing to students of the natural sciences who are interested in quantitative experimentation.

  1. An external sodium ion binding site controls allosteric gating in TRPV1 channels

    PubMed Central

    Jara-Oseguera, Andres; Bae, Chanhyung; Swartz, Kenton J

    2016-01-01

    TRPV1 channels in sensory neurons are integrators of painful stimuli and heat, yet how they integrate diverse stimuli and sense temperature remains elusive. Here, we show that external sodium ions stabilize the TRPV1 channel in a closed state, such that removing the external ion leads to channel activation. In studying the underlying mechanism, we find that the temperature sensors in TRPV1 activate in two steps to favor opening, and that the binding of sodium to an extracellular site exerts allosteric control over temperature-sensor activation and opening of the pore. The binding of a tarantula toxin to the external pore also exerts control over temperature-sensor activation, whereas binding of vanilloids influences temperature-sensitivity by largely affecting the open/closed equilibrium. Our results reveal a fundamental role of the external pore in the allosteric control of TRPV1 channel gating and provide essential constraints for understanding how these channels can be tuned by diverse stimuli. DOI: http://dx.doi.org/10.7554/eLife.13356.001 PMID:26882503

  2. 1,4-Dihydropyridine scaffold in medicinal chemistry, the story so far and perspectives (part 1): action in ion channels and GPCRs.

    PubMed

    Ioan, P; Carosati, E; Micucci, M; Cruciani, G; Broccatelli, F; Zhorov, B S; Chiarini, A; Budriesi, R

    2011-01-01

    Since the pioneering studies of Fleckenstein and co-workers, L-Type Calcium Channel (LTCC) blockers have attracted large interest due to their effectiveness in treating several cardiovascular diseases. Medicinal chemists achieved high potency and tissue selectivity by decorating the 1-4-DHP nucleus, the most studied scaffold among LTCC blockers. Nowadays it is clear that the 1,4-DHP nucleus is a privileged scaffold since, when appropriately substituted, it can selectively modulate diverse receptors, channels and enzymes. Therefore, the 1,4-DHP scaffold could be used to treat various diseases by a single-ligand multi-target approach. In this review, we describe the structure-activity relationships of 1,4-DHPs at ion channels, G-protein coupled receptors, and outline the potential for future therapeutic applications.

  3. Dominant-negative suppression of big brain ion channel activity by mutation of a conserved glutamate in the first transmembrane domain.

    PubMed

    Yool, Andrea J

    2007-01-01

    The neurogenic protein Drosophila big brain (BIB), which is involved in the process of neuroblast determination, and the water channel aquaporin-1 (AQP1) are among a subset of the major intrinsic protein (MIP) channels that have been found to show gated monovalent cation channel activity. A glutamate residue in the first transmembrane (M1) domain is conserved throughout the MIP family. Mutation of this residue to asparagine in BIB (E71N) knocks out ion channel activity, and when coexpressed with BIB wild-type as shown here generates a dominant-negative effect on ion channel function, measured in the Xenopus oocyte expression system using two-electrode voltage clamp. cRNAs for wild-type and mutant BIB or AQP1 channels were injected individually or as mixtures. The magnitude of the BIB ionic conductance response was greatly reduced by coexpression of the mutant E71N subunit, suggesting a dominant-negative mechanism of action. The analogous mutation in AQP1 (E17N) did not impair ion channel activation by cGMP, but did knock out water channel function, although not via a dominant-negative effect. This contrast in sensitivity between BIB and AQP1 to mutation of the M1 glutamate suggests the possibility of interesting structural differences in the molecular basis of the ion permeation between these two classes of channels. The dominant-negative construct of BIB could be a tool for testing a role for BIB ion channels during nervous system development in Drosophila. The neurogenic protein Drosophila big brain (BIB), which is involved in the process of neuroblast determination, and the water channel aquaporin-1 (AQP1) are among a subset of the major intrinsic protein (MIP) channels that have been found to show gated monovalent cation channel activity. A glutamate residue in the first transmembrane (M1) domain is conserved throughout the MIP family. Mutation of this residue to asparagine in BIB (E71N) knocks out ion channel activity, and when coexpressed with BIB wild

  4. On the simple random-walk models of ion-channel gate dynamics reflecting long-term memory.

    PubMed

    Wawrzkiewicz, Agata; Pawelek, Krzysztof; Borys, Przemyslaw; Dworakowska, Beata; Grzywna, Zbigniew J

    2012-06-01

    Several approaches to ion-channel gating modelling have been proposed. Although many models describe the dwell-time distributions correctly, they are incapable of predicting and explaining the long-term correlations between the lengths of adjacent openings and closings of a channel. In this paper we propose two simple random-walk models of the gating dynamics of voltage and Ca(2+)-activated potassium channels which qualitatively reproduce the dwell-time distributions, and describe the experimentally observed long-term memory quite well. Biological interpretation of both models is presented. In particular, the origin of the correlations is associated with fluctuations of channel mass density. The long-term memory effect, as measured by Hurst R/S analysis of experimental single-channel patch-clamp recordings, is close to the behaviour predicted by our models. The flexibility of the models enables their use as templates for other types of ion channel.

  5. Testing the Applicability of Nernst-Planck Theory in Ion Channels: Comparisons with Brownian Dynamics Simulations

    PubMed Central

    Song, Chen; Corry, Ben

    2011-01-01

    The macroscopic Nernst-Planck (NP) theory has often been used for predicting ion channel currents in recent years, but the validity of this theory at the microscopic scale has not been tested. In this study we systematically tested the ability of the NP theory to accurately predict channel currents by combining and comparing the results with those of Brownian dynamics (BD) simulations. To thoroughly test the theory in a range of situations, calculations were made in a series of simplified cylindrical channels with radii ranging from 3 to 15 Å, in a more complex ‘catenary’ channel, and in a realistic model of the mechanosensitive channel MscS. The extensive tests indicate that the NP equation is applicable in narrow ion channels provided that accurate concentrations and potentials can be input as the currents obtained from the combination of BD and NP match well with those obtained directly from BD simulations, although some discrepancies are seen when the ion concentrations are not radially uniform. This finding opens a door to utilising the results of microscopic simulations in continuum theory, something that is likely to be useful in the investigation of a range of biophysical and nano-scale applications and should stimulate further studies in this direction. PMID:21731672

  6. Testing the applicability of Nernst-Planck theory in ion channels: comparisons with Brownian dynamics simulations.

    PubMed

    Song, Chen; Corry, Ben

    2011-01-01

    The macroscopic Nernst-Planck (NP) theory has often been used for predicting ion channel currents in recent years, but the validity of this theory at the microscopic scale has not been tested. In this study we systematically tested the ability of the NP theory to accurately predict channel currents by combining and comparing the results with those of Brownian dynamics (BD) simulations. To thoroughly test the theory in a range of situations, calculations were made in a series of simplified cylindrical channels with radii ranging from 3 to 15 Å, in a more complex 'catenary' channel, and in a realistic model of the mechanosensitive channel MscS. The extensive tests indicate that the NP equation is applicable in narrow ion channels provided that accurate concentrations and potentials can be input as the currents obtained from the combination of BD and NP match well with those obtained directly from BD simulations, although some discrepancies are seen when the ion concentrations are not radially uniform. This finding opens a door to utilising the results of microscopic simulations in continuum theory, something that is likely to be useful in the investigation of a range of biophysical and nano-scale applications and should stimulate further studies in this direction.

  7. Incorporating Born solvation energy into the three-dimensional Poisson-Nernst-Planck model to study ion selectivity in KcsA K+ channels

    NASA Astrophysics Data System (ADS)

    Liu, Xuejiao; Lu, Benzhuo

    2017-12-01

    Potassium channels are much more permeable to potassium than sodium ions, although potassium ions are larger and both carry the same positive charge. This puzzle cannot be solved based on the traditional Poisson-Nernst-Planck (PNP) theory of electrodiffusion because the PNP model treats all ions as point charges, does not incorporate ion size information, and therefore cannot discriminate potassium from sodium ions. The PNP model can qualitatively capture some macroscopic properties of certain channel systems such as current-voltage characteristics, conductance rectification, and inverse membrane potential. However, the traditional PNP model is a continuum mean-field model and has no or underestimates the discrete ion effects, in particular the ion solvation or self-energy (which can be described by Born model). It is known that the dehydration effect (closely related to ion size) is crucial to selective permeation in potassium channels. Therefore, we incorporated Born solvation energy into the PNP model to account for ion hydration and dehydration effects when passing through inhomogeneous dielectric channel environments. A variational approach was adopted to derive a Born-energy-modified PNP (BPNP) model. The model was applied to study a cylindrical nanopore and a realistic KcsA channel, and three-dimensional finite element simulations were performed. The BPNP model can distinguish different ion species by ion radius and predict selectivity for K+ over Na+ in KcsA channels. Furthermore, ion current rectification in the KcsA channel was observed by both the PNP and BPNP models. The I -V curve of the BPNP model for the KcsA channel indicated an inward rectifier effect for K+ (rectification ratio of ˜3 /2 ) but indicated an outward rectifier effect for Na+ (rectification ratio of ˜1 /6 ) .

  8. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels.

    PubMed

    Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L

    2014-01-23

    Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail "neck", are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the "outer ion" site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies, shows that this site forms a previously unknown determinant of CaV high-affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family.

    PubMed

    Kaufman, I; Luchinsky, D G; Tindjong, R; McClintock, P V E; Eisenberg, R S

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Q(f) for the sodium-calcium channels family. An increase of Q(f) leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Q(f)(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca(2+)/Na(+) valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  10. Functionalized Fullerene Targeting Human Voltage-Gated Sodium Channel, hNav1.7.

    PubMed

    Hilder, Tamsyn A; Robinson, Anna; Chung, Shin-Ho

    2017-08-16

    Mutations of hNa v 1.7 that cause its activities to be enhanced contribute to severe neuropathic pain. Only a small number of hNa v 1.7 specific inhibitors have been identified, most of which interact with the voltage-sensing domain of the voltage-activated sodium ion channel. In our previous computational study, we demonstrated that a [Lys 6 ]-C 84 fullerene binds tightly (affinity of 46 nM) to Na v Ab, the voltage-gated sodium channel from the bacterium Arcobacter butzleri. Here, we extend this work and, using molecular dynamics simulations, demonstrate that the same [Lys 6 ]-C 84 fullerene binds strongly (2.7 nM) to the pore of a modeled human sodium ion channel hNa v 1.7. In contrast, the fullerene binds only weakly to a mutated model of hNa v 1.7 (I1399D) (14.5 mM) and a model of the skeletal muscle hNa v 1.4 (3.7 mM). Comparison of one representative sequence from each of the nine human sodium channel isoforms shows that only hNa v 1.7 possesses residues that are critical for binding the fullerene derivative and blocking the channel pore.

  11. Multi-Dielectric Brownian Dynamics and Design-Space-Exploration Studies of Permeation in Ion Channels.

    PubMed

    Siksik, May; Krishnamurthy, Vikram

    2017-09-01

    This paper proposes a multi-dielectric Brownian dynamics simulation framework for design-space-exploration (DSE) studies of ion-channel permeation. The goal of such DSE studies is to estimate the channel modeling-parameters that minimize the mean-squared error between the simulated and expected "permeation characteristics." To address this computational challenge, we use a methodology based on statistical inference that utilizes the knowledge of channel structure to prune the design space. We demonstrate the proposed framework and DSE methodology using a case study based on the KcsA ion channel, in which the design space is successfully reduced from a 6-D space to a 2-D space. Our results show that the channel dielectric map computed using the framework matches with that computed directly using molecular dynamics with an error of 7%. Finally, the scalability and resolution of the model used are explored, and it is shown that the memory requirements needed for DSE remain constant as the number of parameters (degree of heterogeneity) increases.

  12. Temperature sensitivity of ligand-gated ion channels: ryanodine receptor case

    NASA Astrophysics Data System (ADS)

    Iaparov, B. I.; Moskvin, A. S.; Solovyova, O. E.

    2017-11-01

    Temperature influences all biochemical processes, in particular, excitation-contraction coupling(ECC) in cardiac cells. In this work we propose a theoretical explanation of temperature effects on an isolated ryanodine receptor calcium release channel (RyR channel) within the electron-conformational (EC) model. We show that the EC model with an Arrhenius-like temperature dependence of the “internal” and “external” frictions and a specific thermosensitivity of the tunnelling “open ↔ closed” transitions can provide both qualitative and quantitative description of the temperature effects for isolated RyR channels. Interestingly that a small change of the activation energy for the “internal” friction can make an ion channel either heat-inhibited or heat-activated while the “external” friction doesn’t play a key role in temperature sensitivity: neglect of “external” friction doesn’t change the channel’s temperature sensitivity qualitatively.

  13. Targets used in the production of radioactive ion beams at the HRIBF

    NASA Astrophysics Data System (ADS)

    Stracener, D. W.; Alton, G. D.; Auble, R. L.; Beene, J. R.; Mueller, P. E.; Bilheux, J. C.

    2004-03-01

    Radioactive ion beams are produced at the Holifield Radioactive Ion Beam Facility using the Isotope Separation On-Line (ISOL) technique where the atoms are produced in a thick target, transported to an ion source, ionized, and extracted from the ion source to form an ion beam. These radioactive ion beams are then accelerated to energies of a few MeV per nucleon and delivered to experimental stations for use in nuclear physics and nuclear astrophysics experiments. At the heart of this facility is the RIB production target, where the radioactive nuclei are produced using beams of light ions (p, d, 3He, α) to induce nuclear reactions in the target nuclei. Several target materials have been developed and used successfully, including Al 2O 3, HfO 2, SiC, CeS, liquid Ge, liquid Ni, and a low-density matrix of uranium carbide. The details of these targets and some of the target developments that led to the delivery of high-quality radioactive ion beams are discussed in this paper.

  14. Voltage-Gated Potassium Channels Kv1.3--Potentially New Molecular Target in Cancer Diagnostics and Therapy.

    PubMed

    Teisseyre, Andrzej; Gąsiorowska, Justyna; Michalak, Krystyna

    2015-01-01

    Voltage-gated potassium channels, Kv1.3, which were discovered in 1984, are integral membrane proteins which are activated ("open") upon change of the cell membrane potential, enabling a passive flux of potassium ions across the cell membrane. The channels are expressed in many different tissues, both normal and cancer. Since 2005 it has been known that the channels are expressed not only in the plasma membrane, but also in the inner mitochondrial membrane. The activity of Kv1.3 channels plays an important role, among others, in setting the cell resting membrane potential, cell proliferation, apoptosis and volume regulation. For some years, these channels have been considered a potentially new molecular target in both the diagnostics and therapy of some cancer diseases. This review article focuses on: 1) changes of expression of the channels in cancer disorders with special regard to correlations between the channels' expression and stage of the disease, 2) influence of inhibitors of Kv1.3 channels on proliferation and apoptosis of cancer cells, 3) possible future applications of Kv1.3 channels' inhibitors in therapy of some cancer diseases. In the last section, the results of studies performed in our Laboratory of Bioelectricity on the influence of selected biologically active plant-derived compounds from the groups of flavonoids and stilbenes and their natural and synthetic derivatives on the activity of Kv1.3 channels in normal and cancer cells are reviewed. A possible application of some compounds from these groups to support therapy of cancer diseases, such as breast, colon and lymph node cancer, and melanoma or chronic lymphocytic leukemia (B-CLL), is announced.

  15. TPC Proteins Are Phosphoinositide-activated Sodium-selective Ion Channels in Endosomes and Lysosomes

    PubMed Central

    Wang, Xiang; Zhang, Xiaoli; Dong, Xian-ping; Samie, Mohammad; Li, Xinran; Cheng, Xiping; Goschka, Andrew; Shen, Dongbiao; Zhou, Yandong; Harlow, Janice; Zhu, Michael X.; Clapham, David E.; Ren, Dejian; Xu, Haoxing

    2012-01-01

    Summary Mammalian Two-Pore Channels (TPC1, 2; TPCN1, TPCN2) encode ion channels in intracellular endosomes and lysosomes and were proposed to mediate endolysosomal calcium release triggered by the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). By directly recording TPCs in endolysosomes from wild-type and TPC double knockout mice, here we show that, in contrast to previous conclusions, TPCs are in fact sodium-selective channels activated by PI(3,5)P2, and are not activated by NAADP. Moreover, the primary endolysosomal ion is Na+, not K+, as had been previously assumed. These findings suggest that the organellar membrane potential may undergo large regulatory changes, and may explain the specificity of PI(3,5)P2 in regulating the fusogenic potential of intracellular organelles. PMID:23063126

  16. Structure and selectivity in bestrophin ion channels

    DOE PAGES

    Yang, Tingting; Liu, Qun; Kloss, Brian; ...

    2014-09-25

    Human bestrophin 1 (hBest1) is a calcium-activated chloride channel from the retinal pigment epithelium, where it can suffer mutations associated with vitelliform macular degeneration, or Best disease. We describe the structure of a bacterial homolog (KpBest) of hBest1 and functional characterizations of both channels. KpBest is a pentamer that forms a five-helix transmembrane pore, closed by three rings of conserved hydrophobic residues, and has a cytoplasmic cavern with a restricted exit. From electrophysiological analysis of structure-inspired mutations in KpBest and hBest1, we find a subtle control of ion selectivity in the bestrophins, including reversal of anion/cation selectivity, and dramatic activationmore » by mutations at the exit restriction. Lastly, a homology model of hBest1 shows the locations of disease-causing mutations and suggests possible roles in regulation.« less

  17. Acid-Sensing Ion Channel Pharmacology, Past, Present, and Future ….

    PubMed

    Rash, Lachlan D

    2017-01-01

    pH is one of the most strictly controlled parameters in mammalian physiology. An extracellular pH of ~7.4 is crucial for normal physiological processes, and perturbations to this have profound effects on cell function. Acidic microenvironments occur in many physiological and pathological conditions, including inflammation, bone remodeling, ischemia, trauma, and intense synaptic activity. Cells exposed to these conditions respond in different ways, from tumor cells that thrive to neurons that are either suppressed or hyperactivated, often fatally. Acid-sensing ion channels (ASICs) are primary pH sensors in mammals and are expressed widely in neuronal and nonneuronal cells. There are six main subtypes of ASICs in rodents that can form homo- or heteromeric channels resulting in many potential combinations. ASICs are present and activated under all of the conditions mentioned earlier, suggesting that they play an important role in how cells respond to acidosis. Compared to many other ion channel families, ASICs were relatively recently discovered-1997-and there is a substantial lack of potent, subtype-selective ligands that can be used to elucidate their structural and functional properties. In this chapter I cover the history of ASIC channel pharmacology, which began before the proteins were even identified, and describe the current arsenal of tools available, their limitations, and take a glance into the future to predict from where new tools are likely to emerge. © 2017 Elsevier Inc. All rights reserved.

  18. Standardizing the atomic description, axis and centre of biological ion channels.

    PubMed

    Kaats, Adrian J; Galiana, Henrietta L; Nadeau, Jay L

    2007-09-15

    A general representation of the atomic co-ordinates of a biological ion channel is obtained from a definition of channel axis and centre. Through rotation and translation of the channel, its centre becomes the origin of the standard co-ordinate system, and the channel axis becomes the system's z-axis. A method for determining the channel axis and centre based on the concepts of mass centre and mass moment of inertia is presented. The method for determining the channel axis can be directly applied to channels that adhere to two specific conditions regarding their geometry and mass distribution. Specific examples are given for Gramicidin A (GA), and the mammalian potassium channel Kv 1.2. For channels that do not adhere to these conditions, minor modifications of these procedures can be applied in determining the channel axis. Specific examples are given for the outer membrane bacterial porin OmpF, and for the staphylococcal pore-forming toxin alpha-hemolysin (alpha HL). The definitions and procedures presented are made in an effort to establish a standard basis for performing, sharing, and comparing computations in a consistent manner.

  19. Self-proton/ion radiography of laser-produced proton/ion beam from thin foil targets

    NASA Astrophysics Data System (ADS)

    Paudel, Y.; Renard-Le Galloudec, N.; Nicolai, Ph.; d'Humieres, E.; Ya. Faenov, A.; Kantsyrev, V. L.; Safronova, A. S.; Shrestha, I.; Osborne, G. C.; Shlyaptseva, V. V.; Sentoku, Y.

    2012-12-01

    Protons and multicharged ions generated from high-intensity laser interactions with thin foil targets have been studied with a 100 TW laser system. Protons/ions with energies up to 10 MeV are accelerated either from the front or the rear surface of the target material. We have observed for the first time that the protons/ions accelerated from the front surface of the target, in a direction opposite to the laser propagation direction, are turned around and pulled back to the rear surface, in the laser propagation direction. This proton/ion beam is able to create a self-radiograph of the target and glass stalk holding the target itself recorded through the radiochromic film stack. This unique result indicates strong long-living (ns time scale) magnetic fields present in the laser-produced plasma, which are extremely important in energy transport during the intense laser irradiation. The magnetic field from laser main pulse expands rapidly in the preformed plasma to rotate the laser produced protons. Radiation hydrodynamic simulations and ray tracing found that the magnetic field created by the amplified spontaneous emission prepulse is not sufficient to explain the particle trajectories, but the additional field created by the main pulse interaction estimated from particle-in-cell simulation is able to change the particle trajectories.

  20. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system.

    PubMed

    Holzer, Peter

    2011-07-01

    Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Cytokine–Ion Channel Interactions in Pulmonary Inflammation

    PubMed Central

    Hamacher, Jürg; Hadizamani, Yalda; Borgmann, Michèle; Mohaupt, Markus; Männel, Daniela Narcissa; Moehrlen, Ueli; Lucas, Rudolf; Stammberger, Uz

    2018-01-01

    The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research. PMID:29354115

  2. Propofol inhibits carbachol-induced chloride secretion by directly targeting the basolateral K+ channel in rat ileum epithelium.

    PubMed

    Tang, S-H; Wang, H-Y; Sun, H; An, N; Xiao, L; Sun, Q; Zhao, D-B

    2017-02-01

    Propofol is a widely used intravenous general anesthetic. Acetylcholine (ACh) is critical in controlling epithelial ion transport. This study was to investigate the effects of propofol on ACh-evoked secretion in rat ileum epithelium. The Ussing chamber technique was used to investigate the effects of propofol on carbachol (CCh)-evoked short-circuit currents (Isc). Propofol (10 -2 -10 -6  mol/L) attenuated CCh-evoked Isc of rat ileum mucosa in a dose-dependent manner. The inhibitory effect of propofol was only evident after application to the serosal side. Pretreatment with tetrodotoxin (TTX, 0.3 μmol/L, n=5) had no effect on propofol-induced inhibitory effect, whereas serosal application of K + channel inhibitor, glibenclamide, but not, an ATP-sensitive K + channel inhibitor, largely reduced the inhibitory effect of propofol. In addition, pretreatment with either hexamethonium bromide (HB, nicotinic nACh receptor antagonist) or Cl - channel blockers niflumic acid and cystic fibrosis transmembrane conductance regulator (inh)-172 did not produce any effect on the propofol-induced inhibitory effect. Propofol inhibits CCh-induced intestinal secretion by directly targeting basolateral K + channels. © 2016 John Wiley & Sons Ltd.

  3. Targeting of sodium channel blockers into nociceptors to produce long-duration analgesia: a systematic study and review

    PubMed Central

    Roberson, DP; Binshtok, AM; Blasl, F; Bean, BP; Woolf, CJ

    2011-01-01

    BACKGROUND AND PURPOSE We have developed a strategy to target the permanently charged lidocaine derivative lidocaine N-ethyl bromide (QX-314) selectively into nociceptive sensory neurons through the large-pore transient receptor potential cation channel subfamily V (TRPV1) noxious heat detector channel. This involves co-administration of QX-314 and a TRPV1 agonist to produce a long-lasting local analgesia. For potential clinical use we propose using lidocaine as the TRPV1 agonist, because it activates TRPV1 at clinical doses. EXPERIMENTAL APPROACH We conducted experiments in rats to determine optimal concentrations and ratios of lidocaine and QX-314 that produce the greatest degree and duration of pain-selective block when administered nearby the sciatic nerve: reduction in the response to noxious mechanical (pinch) and to radiant heat stimuli, with minimal disruption in motor function (grip strength). KEY RESULTS A combination of 0.5% QX-314 and 2% lidocaine produced 1 h of non-selective sensory and motor block followed by >9 h of pain-selective block, where grip strength was unimpaired. QX-314 at this concentration had no effect by itself, while 2% lidocaine by itself produced 1 h of non-selective block. The combination of 0.5% QX-314 and 2% lidocaine was the best of the many tested, in terms of the duration and selectivity of local analgesia. CONCLUSIONS AND IMPLICATIONS Targeting charged sodium channel blockers into specific sets of axons via activation of differentially expressed large-pore channels provides an opportunity to produce prolonged local analgesia, and represents an example of how exploiting ion channels as a drug delivery port can be used to increase the specificity and efficacy of therapeutics. PMID:21457220

  4. Microfabricated Patch Clamp Electrodes for Improved Ion Channel Protein Measurements

    NASA Astrophysics Data System (ADS)

    Klemic, James; Klemic, Kathryn; Reed, Mark; Sigworth, Frederick

    2002-03-01

    Ion channels are trans-membrane proteins that underlie many cell functions including hormone and neurotransmitter release, muscle contraction and cell signaling cascades. Ion channel proteins are commonly characterized via the patch clamp method in which an extruded glass tube containing ionic solution, manipulated by an expert technician, is brought into contact with a living cell to record ionic current through the cell membrane. Microfabricated planar patch electrodes, micromolded in the silicone elastomer poly-dimethylsiloxane (PDMS) from microlithographically patterned structures, have been developed that improve on this method. Microfabrication techniques allow arrays of patch electrodes to be fabricated, increasing the throughput of the measurement technique. Planar patch electrodes readily allow the automation of cell sealing, further increasing throughput. Microfabricated electrode arrays may be readily integrated with microfluidic structures to allow fast, in situ solution exchange. Miniaturization of the electrode geometry should increase both the signal to noise and the bandwidth of the measurement. Microfabricated patch electrode arrays have been fabricated and measurements have been taken.

  5. Identification of ion-channel modulators that protect against aminoglycoside-induced hair cell death

    PubMed Central

    Kenyon, Emma J.; Kirkwood, Nerissa K.; Kitcher, Siân R.; O’Reilly, Molly; Cantillon, Daire M.; Goodyear, Richard J.; Secker, Abigail; Baxendale, Sarah; Bull, James C.; Waddell, Simon J.; Whitfield, Tanya T.; Ward, Simon E.; Kros, Corné J.; Richardson, Guy P.

    2017-01-01

    Aminoglycoside antibiotics are used to treat life-threatening bacterial infections but can cause deafness due to hair cell death in the inner ear. Compounds have been described that protect zebrafish lateral line hair cells from aminoglycosides, but few are effective in the cochlea. As the aminoglycosides interact with several ion channels, including the mechanoelectrical transducer (MET) channels by which they can enter hair cells, we screened 160 ion-channel modulators, seeking compounds that protect cochlear outer hair cells (OHCs) from aminoglycoside-induced death in vitro. Using zebrafish, 72 compounds were identified that either reduced loading of the MET-channel blocker FM 1-43FX, decreased Texas red–conjugated neomycin labeling, or reduced neomycin-induced hair cell death. After testing these 72 compounds, and 6 structurally similar compounds that failed in zebrafish, 13 were found that protected against gentamicin-induced death of OHCs in mouse cochlear cultures, 6 of which are permeant blockers of the hair cell MET channel. None of these compounds abrogated aminoglycoside antibacterial efficacy. By selecting those without adverse effects at high concentrations, 5 emerged as leads for developing pharmaceutical otoprotectants to alleviate an increasing clinical problem. PMID:29263311

  6. Identification of ion-channel modulators that protect against aminoglycoside-induced hair cell death.

    PubMed

    Kenyon, Emma J; Kirkwood, Nerissa K; Kitcher, Siân R; O'Reilly, Molly; Derudas, Marco; Cantillon, Daire M; Goodyear, Richard J; Secker, Abigail; Baxendale, Sarah; Bull, James C; Waddell, Simon J; Whitfield, Tanya T; Ward, Simon E; Kros, Corné J; Richardson, Guy P

    2017-12-21

    Aminoglycoside antibiotics are used to treat life-threatening bacterial infections but can cause deafness due to hair cell death in the inner ear. Compounds have been described that protect zebrafish lateral line hair cells from aminoglycosides, but few are effective in the cochlea. As the aminoglycosides interact with several ion channels, including the mechanoelectrical transducer (MET) channels by which they can enter hair cells, we screened 160 ion-channel modulators, seeking compounds that protect cochlear outer hair cells (OHCs) from aminoglycoside-induced death in vitro. Using zebrafish, 72 compounds were identified that either reduced loading of the MET-channel blocker FM 1-43FX, decreased Texas red-conjugated neomycin labeling, or reduced neomycin-induced hair cell death. After testing these 72 compounds, and 6 structurally similar compounds that failed in zebrafish, 13 were found that protected against gentamicin-induced death of OHCs in mouse cochlear cultures, 6 of which are permeant blockers of the hair cell MET channel. None of these compounds abrogated aminoglycoside antibacterial efficacy. By selecting those without adverse effects at high concentrations, 5 emerged as leads for developing pharmaceutical otoprotectants to alleviate an increasing clinical problem.

  7. Improvement of Characteristics of Laser Source of Ions Using Two-Element Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaydarov, R. T.

    2006-12-04

    Two-element plasma ions generated from porous (Ho2O3) and solid (PbMg) targets were studied depending on the target density {rho} and on the fraction of light (Mg) component of the target, using a mass-spectrometer. Oxygen ions with maximal charge is observed for small values of {rho}, while the heavy component of the target Ho has maximal charge for larger values of {rho}. The influence of {rho} to the energy spectra and intensity of plasma ions is also investigated. In the case of solid (PbMg) target the increase of the fraction of Mg leads to the widening of the energy spectra ofmore » Pb ions by more than a factor of two, while the intensity of Pb ions of all charge states does not depend on the Mg fraction. These effects are explained by the friction existing between light and heavy ions during their expansion away from the target.« less

  8. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes

    PubMed Central

    Frolova, Sheyda R.; Gaiko, Olga; Tsvelaya, Valeriya A.; Pimenov, Oleg Y.; Agladze, Konstantin I.

    2016-01-01

    The ability of azobenzene trimethylammonium bromide (azoTAB) to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav), calcium (ICav), and potassium (IKv) currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+) and calcium (Ca2+) currents and potentiation of net potassium (K+) currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential. PMID:27015602

  9. Biomimetic heterogeneous multiple ion channels: a honeycomb structure composite film generated by breath figures

    NASA Astrophysics Data System (ADS)

    Han, Keyu; Heng, Liping; Wen, Liping; Jiang, Lei

    2016-06-01

    We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields.We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields. Electronic supplementary information (ESI) available: Pore size distribution histograms of the AAO substrates; SEM images of the side view of pure AAO membranes and top view of the flat PI/AAO composite film; the current-time curves of the flat composite film; the current-voltage characteristics curves of pure AAO nanochannels with different mean pore diameters; CA of the two surfaces of the composite PI/AAO film, the structural formula of the polymer polyimide resin (PI), and solid surface zeta potential. See DOI: 10.1039/c6nr02506d

  10. The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating

    PubMed Central

    Cui, Liying; Aleksandrov, Luba; Hou, Yue-Xian; Gentzsch, Martina; Chen, Jey-Hsin; Riordan, John R; Aleksandrov, Andrei A

    2006-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel employing the ABC transporter structural motif. Deletion of a single residue (Phe508) in the first nucleotide-binding domain (NBD1), which occurs in most patients with cystic fibrosis, impairs both maturation and function of the protein. However, substitution of the Phe508 with small uncharged amino acids, including cysteine, is permissive for maturation. To explore the possible role of the phenylalanine aromatic side chain in channel gating we introduced a cysteine at this position in cysless CFTR, enabling its selective chemical modification by sulfhydryl reagents. Both cysless and wild-type CFTR ion channels have identical mean open times when activated by different nucleotide ligands. Moreover, both channels could be locked in an open state by introducing an ATPase inhibiting mutation (E1371S). However, the introduction of a single cysteine (F508C) prevented the cysless E1371S channel from maintaining the permanently open state, allowing closing to occur. Chemical modification of cysless E1371S/F508C by sulfhydryl reagents was used to probe the role of the side chain in ion channel function. Specifically, benzyl-methanethiosulphonate modification of this variant restored the gating behaviour to that of cysless E1371S containing the wild-type phenylalanine at position 508. This provides the first direct evidence that a specific interaction of the Phe508 aromatic side chain plays a role in determining the residency time in the closed state. Thus, despite the fact that this aromatic side chain is not essential for CFTR folding, it is important in the ion channel function. PMID:16484308

  11. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch

    PubMed Central

    Poole, Kate; Herget, Regina; Lapatsina, Liudmila; Ngo, Ha-Duong; Lewin, Gary R.

    2014-01-01

    In sensory neurons, mechanotransduction is sensitive, fast and requires mechanosensitive ion channels. Here we develop a new method to directly monitor mechanotransduction at defined regions of the cell-substrate interface. We show that molecular-scale (~13 nm) displacements are sufficient to gate mechanosensitive currents in mouse touch receptors. Using neurons from knockout mice, we show that displacement thresholds increase by one order of magnitude in the absence of stomatin-like protein 3 (STOML3). Piezo1 is the founding member of a class of mammalian stretch-activated ion channels, and we show that STOML3, but not other stomatin-domain proteins, brings the activation threshold for Piezo1 and Piezo2 currents down to ~10 nm. Structure–function experiments localize the Piezo modulatory activity of STOML3 to the stomatin domain, and higher-order scaffolds are a prerequisite for function. STOML3 is the first potent modulator of Piezo channels that tunes the sensitivity of mechanically gated channels to detect molecular-scale stimuli relevant for fine touch. PMID:24662763

  12. High temperature ion channels and pores

    NASA Technical Reports Server (NTRS)

    Cheley, Stephen (Inventor); Gu, Li Qun (Inventor); Bayley, Hagan (Inventor); Kang, Xiaofeng (Inventor)

    2011-01-01

    The present invention includes an apparatus, system and method for stochastic sensing of an analyte to a protein pore. The protein pore may be an engineer protein pore, such as an ion channel at temperatures above 55.degree. C. and even as high as near 100.degree. C. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable electrical current signal. Possible signals include change in electrical current. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may also be detected.

  13. Pressure control of a proton beam-irradiated water target through an internal flow channel-induced thermosyphon.

    PubMed

    Hong, Bong Hwan; Jung, In Su

    2017-07-01

    A water target was designed to enhance cooling efficiency using a thermosyphon, which is a system that uses natural convection to induce heat exchange. Two water targets were fabricated: a square target without any flow channel and a target with a flow channel design to induce a thermosyphon mechanism. These two targets had the same internal volume of 8 ml. First, visualization experiments were performed to observe the internal flow by natural convection. Subsequently, an experiment was conducted to compare the cooling performance of both water targets by measuring the temperature and pressure. A 30-MeV proton beam with a beam current of 20 μA was used to irradiate both targets. Consequently, the target with an internal flow channel had a lower mean temperature and a 50% pressure drop compared to the target without a flow channel during proton beam irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Hidden Quantum Processes, Quantum Ion Channels, and 1/ fθ-Type Noise.

    PubMed

    Paris, Alan; Vosoughi, Azadeh; Berman, Stephen A; Atia, George

    2018-07-01

    In this letter, we perform a complete and in-depth analysis of Lorentzian noises, such as those arising from [Formula: see text] and [Formula: see text] channel kinetics, in order to identify the source of [Formula: see text]-type noise in neurological membranes. We prove that the autocovariance of Lorentzian noise depends solely on the eigenvalues (time constants) of the kinetic matrix but that the Lorentzian weighting coefficients depend entirely on the eigenvectors of this matrix. We then show that there are rotations of the kinetic eigenvectors that send any initial weights to any target weights without altering the time constants. In particular, we show there are target weights for which the resulting Lorenztian noise has an approximately [Formula: see text]-type spectrum. We justify these kinetic rotations by introducing a quantum mechanical formulation of membrane stochastics, called hidden quantum activated-measurement models, and prove that these quantum models are probabilistically indistinguishable from the classical hidden Markov models typically used for ion channel stochastics. The quantum dividend obtained by replacing classical with quantum membranes is that rotations of the Lorentzian weights become simple readjustments of the quantum state without any change to the laboratory-determined kinetic and conductance parameters. Moreover, the quantum formalism allows us to model the activation energy of a membrane, and we show that maximizing entropy under constrained activation energy yields the previous [Formula: see text]-type Lorentzian weights, in which the spectral exponent [Formula: see text] is a Lagrange multiplier for the energy constraint. Thus, we provide a plausible neurophysical mechanism by which channel and membrane kinetics can give rise to [Formula: see text]-type noise (something that has been occasionally denied in the literature), as well as a realistic and experimentally testable explanation for the numerical values of the spectral

  15. Structure-activity relationships of pentamidine-affected ion channel trafficking and dofetilide mediated rescue.

    PubMed

    Varkevisser, R; Houtman, M J C; Linder, T; de Git, K C G; Beekman, H D M; Tidwell, R R; Ijzerman, A P; Stary-Weinzinger, A; Vos, M A; van der Heyden, M A G

    2013-07-01

    Drug interference with normal hERG protein trafficking substantially reduces the channel density in the plasma membrane and thereby poses an arrhythmic threat. The chemical substructures important for hERG trafficking inhibition were investigated using pentamidine as a model drug. Furthermore, the relationship between acute ion channel block and correction of trafficking by dofetilide was studied. hERG and K(IR)2.1 trafficking in HEK293 cells was evaluated by Western blot and immunofluorescence microscopy after treatment with pentamidine and six pentamidine analogues, and correction with dofetilide and four dofetilide analogues that displayed different abilities to inhibit IKr . Molecular dynamics simulations were used to address mode, number and type of interactions between hERG and dofetilide analogues. Structural modifications of pentamidine differentially affected plasma membrane levels of hERG and K(IR)2.1. Modification of the phenyl ring or substituents directly attached to it had the largest effect, affirming the importance of these chemical residues in ion channel binding. PA-4 had the mildest effects on both ion channels. Dofetilide corrected pentamidine-induced hERG, but not K(IR)2.1 trafficking defects. Dofetilide analogues that displayed high channel affinity, mediated by pi-pi stacks and hydrophobic interactions, also restored hERG protein levels, whereas analogues with low affinity were ineffective. Drug-induced trafficking defects can be minimized if certain chemical features are avoided or 'synthesized out'; this could influence the design and development of future drugs. Further analysis of such features in hERG trafficking correctors may facilitate the design of a non-blocking corrector for trafficking defective hERG proteins in both congenital and acquired LQTS. © 2013 The British Pharmacological Society.

  16. Investigation of Ion Channel Activities of Gramicidin A in the Presence of Ionic Liquids Using Model Cell Membranes

    PubMed Central

    Ryu, Hyunil; Lee, Hwankyu; Iwata, Seigo; Choi, Sangbaek; Ki Kim, Moon; Kim, Young-Rok; Maruta, Shinsaku; Min Kim, Sun; Jeon, Tae-Joon

    2015-01-01

    Ionic liquids (ILs) are considered to be green solvents because of their non-volatility. Although ILs are relatively safe in the atmospheric environment, they may be toxic in other environments. Our previous research showed that the cytotoxicity of ILs to biological organisms is attributable to interference with cell membranes by IL insertion. However, the effects of ILs on ion channels, which play important roles in cell homeostasis, have not been comprehensively studied to date. In this work, we studied the interactions between ILs and lipid bilayer membranes with gramicidin A ion channels. We used two methods, namely electrical and fluorescence measurements of ions that permeate the membrane. The lifetimes of channels were increased by all the ILs tested in this work via stabilizing the compressed structure of the lipid bilayer and the rate of ion flux through gA channels was decreased by changing the membrane surface charge. The former effect, which increased the rate of ion flux, was dominant at high salt concentrations, whereas the latter, which decreased the rate of ion flux, was dominant at low salt concentrations. The effects of ILs increased with increasing concentration and alkyl chain length. The experimental results were further studied using molecular dynamics simulations. PMID:26189604

  17. A Cytosolic Amphiphilic α-Helix Controls the Activity of the Bile Acid-sensitive Ion Channel (BASIC)*

    PubMed Central

    Schmidt, Axel; Löhrer, Daniel; Alsop, Richard J.; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Wirtz, Monika; Rheinstädter, Maikel C.; Gründer, Stefan; Wiemuth, Dominik

    2016-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the degenerin/epithelial Na+ channel (Deg/ENaC) family of ion channels. It is mainly found in bile duct epithelial cells, the intestinal tract, and the cerebellum and is activated by alterations of its membrane environment. Bile acids, one class of putative physiological activators, exert their effect by changing membrane properties, leading to an opening of the channel. The physiological function of BASIC, however, is unknown. Deg/ENaC channels are characterized by a trimeric subunit composition. Each subunit is composed of two transmembrane segments, which are linked by a large extracellular domain. The termini of the channels protrude into the cytosol. Many Deg/ENaC channels contain regulatory domains and sequence motifs within their cytosolic domains. In this study, we show that BASIC contains an amphiphilic α-helical structure within its N-terminal domain. This α-helix binds to the cytosolic face of the plasma membrane and stabilizes a closed state. Truncation of this domain renders the channel hyperactive. Collectively, we identify a cytoplasmic domain, unique to BASIC, that controls channel activity via membrane interaction. PMID:27679529

  18. A Cytosolic Amphiphilic α-Helix Controls the Activity of the Bile Acid-sensitive Ion Channel (BASIC).

    PubMed

    Schmidt, Axel; Löhrer, Daniel; Alsop, Richard J; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Wirtz, Monika; Rheinstädter, Maikel C; Gründer, Stefan; Wiemuth, Dominik

    2016-11-18

    The bile acid-sensitive ion channel (BASIC) is a member of the degenerin/epithelial Na + channel (Deg/ENaC) family of ion channels. It is mainly found in bile duct epithelial cells, the intestinal tract, and the cerebellum and is activated by alterations of its membrane environment. Bile acids, one class of putative physiological activators, exert their effect by changing membrane properties, leading to an opening of the channel. The physiological function of BASIC, however, is unknown. Deg/ENaC channels are characterized by a trimeric subunit composition. Each subunit is composed of two transmembrane segments, which are linked by a large extracellular domain. The termini of the channels protrude into the cytosol. Many Deg/ENaC channels contain regulatory domains and sequence motifs within their cytosolic domains. In this study, we show that BASIC contains an amphiphilic α-helical structure within its N-terminal domain. This α-helix binds to the cytosolic face of the plasma membrane and stabilizes a closed state. Truncation of this domain renders the channel hyperactive. Collectively, we identify a cytoplasmic domain, unique to BASIC, that controls channel activity via membrane interaction. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The Basal Thermal Sensitivity of the TRPV1 Ion Channel Is Determined by PKCβII

    PubMed Central

    Li, Lin; Hasan, Raquibul

    2014-01-01

    Peripheral nociceptors are excited by the activation of membrane receptors and ion channels. The heat-sensitive TRPV1 ion channel responds to various noxious chemical and thermal stimuli, causing pain and itch. Here, we show that TRPV1 is coexpressed with PKCβII in a subset of mouse sensory neurons and that, in these neurons, TRPV1 binds directly to PKCβII, leading to the activation and translocation of PKCβII. Activated PKCβII, in turn, significantly increases the responsiveness of TRPV1 by phosphorylating Thr705. The heat sensitivity of TRPV1 is almost eliminated by either knocking down PKCβII or mutating Thr705; however, neither of these manipulations affects the potentiation of TRPV1 caused by the activation of PKCε. PKCβII thus acts as an auxiliary subunit of TRPV1 by forming a population-dependent TRPV1 ion channel complex controlling the sensitivity of TRPV1 and setting the threshold for pain and itch. PMID:24920628

  20. On the protein crystal formation as an interface-controlled process with prototype ion-channeling effect.

    PubMed

    Siódmiak, Jacek; Uher, Jan J; Santamaría-Holek, Ivan; Kruszewska, Natalia; Gadomski, Adam

    2007-08-01

    A superdiffusive random-walk action in the depletion zone around a growing protein crystal is considered. It stands for a dynamic boundary condition of the growth process and competes steadily with a quasistatic, curvature-involving (thermodynamic) free boundary condition, both of them contributing to interpret the (mainly late-stage) growth process in terms of a prototype ion-channeling effect. An overall diffusion function contains quantitative signatures of both boundary conditions mentioned and indicates whether the new phase grows as an orderly phase or a converse scenario occurs. This situation can be treated in a quite versatile way both numerically and analytically, within a generalized Smoluchowski framework. This study can help in (1) elucidating some dynamic puzzles of a complex crystal formation vs biomolecular aggregation, also those concerning ion-channel formation, and (2) seeing how ion-channel-type dynamics of non-Markovian nature may set properly the pace of model (dis)ordered protein aggregation.

  1. Origin of heterogeneous spiking patterns from continuously distributed ion channel densities: a computational study in spinal dorsal horn neurons.

    PubMed

    Balachandar, Arjun; Prescott, Steven A

    2018-05-01

    Distinct spiking patterns may arise from qualitative differences in ion channel expression (i.e. when different neurons express distinct ion channels) and/or when quantitative differences in expression levels qualitatively alter the spike generation process. We hypothesized that spiking patterns in neurons of the superficial dorsal horn (SDH) of spinal cord reflect both mechanisms. We reproduced SDH neuron spiking patterns by varying densities of K V 1- and A-type potassium conductances. Plotting the spiking patterns that emerge from different density combinations revealed spiking-pattern regions separated by boundaries (bifurcations). This map suggests that certain spiking pattern combinations occur when the distribution of potassium channel densities straddle boundaries, whereas other spiking patterns reflect distinct patterns of ion channel expression. The former mechanism may explain why certain spiking patterns co-occur in genetically identified neuron types. We also present algorithms to predict spiking pattern proportions from ion channel density distributions, and vice versa. Neurons are often classified by spiking pattern. Yet, some neurons exhibit distinct patterns under subtly different test conditions, which suggests that they operate near an abrupt transition, or bifurcation. A set of such neurons may exhibit heterogeneous spiking patterns not because of qualitative differences in which ion channels they express, but rather because quantitative differences in expression levels cause neurons to operate on opposite sides of a bifurcation. Neurons in the spinal dorsal horn, for example, respond to somatic current injection with patterns that include tonic, single, gap, delayed and reluctant spiking. It is unclear whether these patterns reflect five cell populations (defined by distinct ion channel expression patterns), heterogeneity within a single population, or some combination thereof. We reproduced all five spiking patterns in a computational model by

  2. Binding of Capsaicin to the TRPV1 Ion Channel.

    PubMed

    Darré, Leonardo; Domene, Carmen

    2015-12-07

    Transient receptor potential (TRP) ion channels constitute a notable family of cation channels involved in the ability of an organisms to detect noxious mechanical, thermal, and chemical stimuli that give rise to the perception of pain, taste, and changes in temperature. One of the most experimentally studied agonist of TRP channels is capsaicin, which is responsible for the burning sensation produced when chili pepper is in contact with organic tissues. Thus, understanding how this molecule interacts and regulates TRP channels is essential to high impact pharmacological applications, particularly those related to pain treatment. The recent publication of a three-dimensional structure of the vanilloid receptor 1 (TRPV1) in the absence and presence of capsaicin from single particle electron cryomicroscopy experiments provides the opportunity to explore these questions at the atomic level. In the present work, molecular docking and unbiased and biased molecular dynamics simulations were employed to generate a structural model of the capsaicin-channel complex. In addition, the standard free energy of binding was estimated using alchemical transformations coupled with conformational, translational, and orientational restraints on the ligand. Key binding modes consistent with previous experimental data are identified, and subtle but essential dynamical features of the binding site are characterized. These observations shed some light into how TRPV1 interacts with capsaicin, and may help to refine design parameters for new TRPV1 antagonists, and potentially guide further developments of TRP channel modulators.

  3. A linkage analysis toolkit for studying allosteric networks in ion channels

    PubMed Central

    2013-01-01

    A thermodynamic approach to studying allosterically regulated ion channels such as the large-conductance voltage- and Ca2+-dependent (BK) channel is presented, drawing from principles originally introduced to describe linkage phenomena in hemoglobin. In this paper, linkage between a principal channel component and secondary elements is derived from a four-state thermodynamic cycle. One set of parallel legs in the cycle describes the “work function,” or the free energy required to activate the principal component. The second are “lever operations” activating linked elements. The experimental embodiment of this linkage cycle is a plot of work function versus secondary force, whose asymptotes are a function of the parameters (displacements and interaction energies) of an allosteric network. Two essential work functions play a role in evaluating data from voltage-clamp experiments. The first is the conductance Hill energy WH[g], which is a “local” work function for pore activation, and is defined as kT times the Hill transform of the conductance (G-V) curve. The second is the electrical capacitance energy WC[q], representing “global” gating charge displacement, and is equal to the product of total gating charge per channel times the first moment (VM) of normalized capacitance (slope of Q-V curve). Plots of WH[g] and WC[q] versus voltage and Ca2+ potential can be used to measure thermodynamic parameters in a model-independent fashion of the core gating constituents (pore, voltage-sensor, and Ca2+-binding domain) of BK channel. The method is easily generalized for use in studying other allosterically regulated ion channels. The feasibility of performing linkage analysis from patch-clamp data were explored by simulating gating and ionic currents of a 17-particle model BK channel in response to a slow voltage ramp, which yielded interaction energies deviating from their given values in the range of 1.3 to 7.2%. PMID:23250867

  4. Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy.

    PubMed

    Wei, Feng; Yan, Li-Min; Su, Tao; He, Na; Lin, Zhi-Jian; Wang, Jie; Shi, Yi-Wu; Yi, Yong-Hong; Liao, Wei-Ping

    2017-08-01

    Ion channels are crucial in the generation and modulation of excitability in the nervous system and have been implicated in human epilepsy. Forty-one epilepsy-associated ion channel genes and their mutations are systematically reviewed. In this paper, we analyzed the genotypes, functional alterations (funotypes), and phenotypes of these mutations. Eleven genes featured loss-of-function mutations and six had gain-of-function mutations. Nine genes displayed diversified funotypes, among which a distinct funotype-phenotype correlation was found in SCN1A. These data suggest that the funotype is an essential consideration in evaluating the pathogenicity of mutations and a distinct funotype or funotype-phenotype correlation helps to define the pathogenic potential of a gene.

  5. Gasotransmitter Regulation of Ion Channels: A Key Step in O2 Sensing By the Carotid Body

    PubMed Central

    Prabhakar, Nanduri R.

    2014-01-01

    Carotid bodies detect hypoxia in arterial blood, translating this stimulus into physiological responses via the CNS. It is long established that ion channels are critical to this process. More recent evidence indicates that gasotransmitters exert powerful influences on O2 sensing by the carotid body. Here, we review current understanding of hypoxia-dependent production of gasotransmitters, how they regulate ion channels in the carotid body, and how this impacts carotid body function. PMID:24382871

  6. The secret life of ion channels: Kv1.3 potassium channels and proliferation.

    PubMed

    Pérez-García, M Teresa; Cidad, Pilar; López-López, José R

    2018-01-01

    Kv1.3 channels are involved in the switch to proliferation of normally quiescent cells, being implicated in the control of cell cycle in many different cell types and in many different ways. They modulate membrane potential controlling K + fluxes, sense changes in potential, and interact with many signaling molecules through their intracellular domains. From a mechanistic point of view, we can describe the role of Kv1.3 channels in proliferation with at least three different models. In the "membrane potential model," membrane hyperpolarization resulting from Kv1.3 activation provides the driving force for Ca 2+ influx required to activate Ca 2+ -dependent transcription. This model explains most of the data obtained from several cells from the immune system. In the "voltage sensor model," Kv1.3 channels serve mainly as sensors that transduce electrical signals into biochemical cascades, independently of their effect on membrane potential. Kv1.3-dependent proliferation of vascular smooth muscle cells (VSMCs) could fit this model. Finally, in the "channelosome balance model," the master switch determining proliferation may be related to the control of the Kv1.3 to Kv1.5 ratio, as described in glial cells and also in VSMCs. Since the three mechanisms cannot function independently, these models are obviously not exclusive. Nevertheless, they could be exploited differentially in different cells and tissues. This large functional flexibility of Kv1.3 channels surely gives a new perspective on their functions beyond their elementary role as ion channels, although a conclusive picture of the mechanisms involved in Kv1.3 signaling to proliferation is yet to be reached.

  7. Far-field analysis of coupled bulk and boundary layer diffusion toward an ion channel entrance.

    PubMed Central

    Schumaker, M F; Kentler, C J

    1998-01-01

    We present a far-field analysis of ion diffusion toward a channel embedded in a membrane with a fixed charge density. The Smoluchowski equation, which represents the 3D problem, is approximated by a system of coupled three- and two-dimensional diffusions. The 2D diffusion models the quasi-two-dimensional diffusion of ions in a boundary layer in which the electrical potential interaction with the membrane surface charge is important. The 3D diffusion models ion transport in the bulk region outside the boundary layer. Analytical expressions for concentration and flux are developed that are accurate far from the channel entrance. These provide boundary conditions for a numerical solution of the problem. Our results are used to calculate far-field ion flows corresponding to experiments of Bell and Miller (Biophys. J. 45:279, 1984). PMID:9591651

  8. A Unifying Mechanism for Cancer Cell Death through Ion Channel Activation by HAMLET

    PubMed Central

    Storm, Petter; Kjaer Klausen, Thomas; Trulsson, Maria; Ho CS, James; Dosnon, Marion; Westergren, Tomas; Chao, Yinxia; Rydström, Anna; Yang, Henry; Pedersen, Stine Falsig; Svanborg, Catharina

    2013-01-01

    Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na+ and K+ concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET’s broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET’s documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues. PMID:23505537

  9. A unifying mechanism for cancer cell death through ion channel activation by HAMLET.

    PubMed

    Storm, Petter; Klausen, Thomas Kjaer; Trulsson, Maria; Ho C S, James; Dosnon, Marion; Westergren, Tomas; Chao, Yinxia; Rydström, Anna; Yang, Henry; Pedersen, Stine Falsig; Svanborg, Catharina

    2013-01-01

    Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na(+) and K(+) concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.

  10. Novel treatment strategies for smooth muscle disorders: Targeting Kv7 potassium channels.

    PubMed

    Haick, Jennifer M; Byron, Kenneth L

    2016-09-01

    Smooth muscle cells provide crucial contractile functions in visceral, vascular, and lung tissues. The contractile state of smooth muscle is largely determined by their electrical excitability, which is in turn influenced by the activity of potassium channels. The activity of potassium channels sustains smooth muscle cell membrane hyperpolarization, reducing cellular excitability and thereby promoting smooth muscle relaxation. Research over the past decade has indicated an important role for Kv7 (KCNQ) voltage-gated potassium channels in the regulation of the excitability of smooth muscle cells. Expression of multiple Kv7 channel subtypes has been demonstrated in smooth muscle cells from viscera (gastrointestinal, bladder, myometrial), from the systemic and pulmonary vasculature, and from the airways of the lung, from multiple species, including humans. A number of clinically used drugs, some of which were developed to target Kv7 channels in other tissues, have been found to exert robust effects on smooth muscle Kv7 channels. Functional studies have indicated that Kv7 channel activators and inhibitors have the ability to relax and contact smooth muscle preparations, respectively, suggesting a wide range of novel applications for the pharmacological tool set. This review summarizes recent findings regarding the physiological functions of Kv7 channels in smooth muscle, and highlights potential therapeutic applications based on pharmacological targeting of smooth muscle Kv7 channels throughout the body. Published by Elsevier Inc.

  11. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels

    PubMed Central

    Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L.

    2013-01-01

    Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail ‘neck’, are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the ‘outer ion’ site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies shows that this site forms a previously unknown determinant of CaV high affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. PMID:24120938

  12. CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel

    PubMed Central

    James, Zachary M.; Borst, Andrew J.; Haitin, Yoni; Frenz, Brandon; DiMaio, Frank; Zagotta, William N.; Veesler, David

    2017-01-01

    Cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-regulated (HCN) ion channels play crucial physiological roles in phototransduction, olfaction, and cardiac pace making. These channels are characterized by the presence of a carboxyl-terminal cyclic nucleotide-binding domain (CNBD) that connects to the channel pore via a C-linker domain. Although cyclic nucleotide binding has been shown to promote CNG and HCN channel opening, the precise mechanism underlying gating remains poorly understood. Here we used cryoEM to determine the structure of the intact LliK CNG channel isolated from Leptospira licerasiae—which shares sequence similarity to eukaryotic CNG and HCN channels—in the presence of a saturating concentration of cAMP. A short S4–S5 linker connects nearby voltage-sensing and pore domains to produce a non–domain-swapped transmembrane architecture, which appears to be a hallmark of this channel family. We also observe major conformational changes of the LliK C-linkers and CNBDs relative to the crystal structures of isolated C-linker/CNBD fragments and the cryoEM structures of related CNG, HCN, and KCNH channels. The conformation of our LliK structure may represent a functional state of this channel family not captured in previous studies. PMID:28396445

  13. Drosophila TRP channels and animal behavior

    PubMed Central

    Fowler, Melissa A.; Montell, Craig

    2012-01-01

    Multiple classes of cell surface receptors and ion channels participate in the detection of changes in environmental stimuli, and thereby influence animal behavior. Among the many classes of ion channels, Transient Receptor Potential (TRP) cation channels are notable in contributing to virtually every sensory modality, and in controlling a daunting array of behaviors. TRP channels appear to be conserved in all metazoan organisms including worms, insects and humans. Flies encode 13 TRPs, most of which are expressed and function in sensory neurons, and impact behaviors ranging from phototaxis to thermotaxis, gravitaxis, the avoidance of noxious tastants and smells and proprioception. Multiple diseases result from defects in TRPs, and flies provide an excellent animal model for dissecting the mechanisms underlying “TRPopathies.” Drosophila TRPs also function in the sensation of botanically derived insect repellents, and related TRPs in insect pests are potential targets for the development of improved repellents to combat insect-borne diseases. PMID:22877650

  14. Computational Methods of Studying the Binding of Toxins From Venomous Animals to Biological Ion Channels: Theory and Applications

    PubMed Central

    Chen, Rong; Chung, Shin-Ho

    2013-01-01

    The discovery of new drugs that selectively block or modulate ion channels has great potential to provide new treatments for a host of conditions. One promising avenue revolves around modifying or mimicking certain naturally occurring ion channel modulator toxins. This strategy appears to offer the prospect of designing drugs that are both potent and specific. The use of computational modeling is crucial to this endeavor, as it has the potential to provide lower cost alternatives for exploring the effects of new compounds on ion channels. In addition, computational modeling can provide structural information and theoretical understanding that is not easily derivable from experimental results. In this review, we look at the theory and computational methods that are applicable to the study of ion channel modulators. The first section provides an introduction to various theoretical concepts, including force-fields and the statistical mechanics of binding. We then look at various computational techniques available to the researcher, including molecular dynamics, Brownian dynamics, and molecular docking systems. The latter section of the review explores applications of these techniques, concentrating on pore blocker and gating modifier toxins of potassium and sodium channels. After first discussing the structural features of these channels, and their modes of block, we provide an in-depth review of past computational work that has been carried out. Finally, we discuss prospects for future developments in the field. PMID:23589832

  15. Studies of Ion Acceleration from Thin Solid-Density Targets on High-Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Willis, Christopher R.

    Over the past two decades, a number of experiments have been performed demonstrating the acceleration of ions from the interaction of an intense laser pulse with a thin, solid density target. These ions are accelerated by quasi-static electric fields generated by energetic electrons produced at the front of the target, resulting in ion energies up to tens of MeV. These ions have been widely studied for a variety of potential applications ranging from treatment of cancer to the production of neutrons for advanced radiography techniques. However, realization of these applications will require further optimization of the maximum energy, spectrum, or species of the accelerated ions, which has been a primary focus of research to date. This thesis presents two experiments designed to optimize several characteristics of the accelerated ion beam. The first of these experiments took place on the GHOST laser system at the University of Texas at Austin, and was designed to demonstrate reliable acceleration of deuterium ions, as needed for the most efficient methods of neutron generation from accelerated ions. This experiment leveraged cryogenically cooled targets coated in D2 O ice to suppress the protons which typically dominate the accelerated ions, producing as many as 2 x 1010 deuterium ions per 1 J laser shot, exceeding the proton yield by an average ratio of 5:1. The second major experiment in this work was performed on the Scarlet laser system at The Ohio State University, and studied the accelerated ion energy, yield, and spatial distribution as a function of the target thickness. In principle, the peak energy increases with decreasing target thickness, with the thinnest targets accessing additional acceleration mechanisms which provide favorable scaling with the laser intensity. However, laser prepulse characteristics provide a lower bound for the target thickness, yielding an optimum target thickness for ion acceleration which is dependent on the laser system. This

  16. Uncompacted Myelin Lamellae and Nodal Ion Channel Disruption in POEMS Syndrome.

    PubMed

    Hashimoto, Rina; Koike, Haruki; Takahashi, Mie; Ohyama, Ken; Kawagashira, Yuichi; Iijima, Masahiro; Sobue, Gen

    2015-12-01

    To elucidate the significance of uncompacted myelin lamellae (UML) and ion channel disruption at the nodes of Ranvier in the polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes (POEMS) syndrome, we evaluated sural nerve biopsy specimens from 33 patients with POEMS syndrome and from 7 control patients. Uncompacted myelin lamellae distribution was assessed by electron microscopy and immunofluorescence microscopy. In the POEMS patient biopsies, UML were seen more frequently in small versus large myelinated fibers. Paranodes and Schmidt-Lanterman incisures, where normal physiologic UM is located, were frequently associated with UM. Widening of the nodes of Ranvier (i.e. segmental demyelination) was not associated with UML. There was axonal hollowing with neurofilament condensation at Schmidt-Lanterman incisures with abnormal UML, suggesting axonal damage at those sites in the POEMS patient biopsies. Myelin sheath irregularity was conspicuous in large myelinated fibers and was associated with abnormally widened bizarrely shaped Schmidt-Lanterman incisures. Indirect immunofluorescent studies revealed abnormalities of sodium (pan sodium) and potassium (KCNQ2) channels, even at nonwidened nodes of Ranvier. Thus, UML was not apparently associated with segmental demyelination but seemed to be associated with axonal damage. These observations suggest that nodal ion channel disruption may be associated with functional deficits in POEMS syndrome patient nerves.

  17. Structure-activity relationships of pentamidine-affected ion channel trafficking and dofetilide mediated rescue

    PubMed Central

    Varkevisser, R; Houtman, M J C; Linder, T; de Git, K C G; Beekman, H D M; Tidwell, R R; IJzerman, A P; Stary-Weinzinger, A; Vos, M A; van der Heyden, M A G

    2013-01-01

    Background and Purpose Drug interference with normal hERG protein trafficking substantially reduces the channel density in the plasma membrane and thereby poses an arrhythmic threat. The chemical substructures important for hERG trafficking inhibition were investigated using pentamidine as a model drug. Furthermore, the relationship between acute ion channel block and correction of trafficking by dofetilide was studied. Experimental Approach hERG and KIR2.1 trafficking in HEK293 cells was evaluated by Western blot and immunofluorescence microscopy after treatment with pentamidine and six pentamidine analogues, and correction with dofetilide and four dofetilide analogues that displayed different abilities to inhibit IKr. Molecular dynamics simulations were used to address mode, number and type of interactions between hERG and dofetilide analogues. Key Results Structural modifications of pentamidine differentially affected plasma membrane levels of hERG and KIR2.1. Modification of the phenyl ring or substituents directly attached to it had the largest effect, affirming the importance of these chemical residues in ion channel binding. PA-4 had the mildest effects on both ion channels. Dofetilide corrected pentamidine-induced hERG, but not KIR2.1 trafficking defects. Dofetilide analogues that displayed high channel affinity, mediated by pi-pi stacks and hydrophobic interactions, also restored hERG protein levels, whereas analogues with low affinity were ineffective. Conclusions and Implications Drug-induced trafficking defects can be minimized if certain chemical features are avoided or ‘synthesized out’; this could influence the design and development of future drugs. Further analysis of such features in hERG trafficking correctors may facilitate the design of a non-blocking corrector for trafficking defective hERG proteins in both congenital and acquired LQTS. PMID:23586323

  18. Seeking structural specificity: direct modulation of pentameric ligand-gated ion channels by alcohols and general anesthetics.

    PubMed

    Howard, Rebecca J; Trudell, James R; Harris, R Adron

    2014-01-01

    Alcohols and other anesthetic agents dramatically alter neurologic function in a wide range of organisms, yet their molecular sites of action remain poorly characterized. Pentameric ligand-gated ion channels, long implicated in important direct effects of alcohol and anesthetic binding, have recently been illuminated in renewed detail thanks to the determination of atomic-resolution structures of several family members from lower organisms. These structures provide valuable models for understanding and developing anesthetic agents and for allosteric modulation in general. This review surveys progress in this field from function to structure and back again, outlining early evidence for relevant modulation of pentameric ligand-gated ion channels and the development of early structural models for ion channel function and modulation. We highlight insights and challenges provided by recent crystal structures and resulting simulations, as well as opportunities for translation of these newly detailed models back to behavior and therapy.

  19. Seeking Structural Specificity: Direct Modulation of Pentameric Ligand-Gated Ion Channels by Alcohols and General Anesthetics

    PubMed Central

    Trudell, James R.; Harris, R. Adron

    2014-01-01

    Alcohols and other anesthetic agents dramatically alter neurologic function in a wide range of organisms, yet their molecular sites of action remain poorly characterized. Pentameric ligand-gated ion channels, long implicated in important direct effects of alcohol and anesthetic binding, have recently been illuminated in renewed detail thanks to the determination of atomic-resolution structures of several family members from lower organisms. These structures provide valuable models for understanding and developing anesthetic agents and for allosteric modulation in general. This review surveys progress in this field from function to structure and back again, outlining early evidence for relevant modulation of pentameric ligand-gated ion channels and the development of early structural models for ion channel function and modulation. We highlight insights and challenges provided by recent crystal structures and resulting simulations, as well as opportunities for translation of these newly detailed models back to behavior and therapy. PMID:24515646

  20. Modeling the human Nav1.5 sodium channel: structural and mechanistic insights of ion permeation and drug blockade

    PubMed Central

    Ahmed, Marawan; Jalily Hasani, Horia; Ganesan, Aravindhan; Houghton, Michael; Barakat, Khaled

    2017-01-01

    Abnormalities in the human Nav1.5 (hNav1.5) voltage-gated sodium ion channel (VGSC) are associated with a wide range of cardiac problems and diseases in humans. Current structural models of hNav1.5 are still far from complete and, consequently, their ability to study atomistic interactions of this channel is very limited. Here, we report a comprehensive atomistic model of the hNav1.5 ion channel, constructed using homology modeling technique and refined through long molecular dynamics simulations (680 ns) in the lipid membrane bilayer. Our model was comprehensively validated by using reported mutagenesis data, comparisons with previous models, and binding to a panel of known hNav1.5 blockers. The relatively long classical MD simulation was sufficient to observe a natural sodium permeation event across the channel’s selectivity filters to reach the channel’s central cavity, together with the identification of a unique role of the lysine residue. Electrostatic potential calculations revealed the existence of two potential binding sites for the sodium ion at the outer selectivity filters. To obtain further mechanistic insight into the permeation event from the central cavity to the intracellular region of the channel, we further employed “state-of-the-art” steered molecular dynamics (SMD) simulations. Our SMD simulations revealed two different pathways through which a sodium ion can be expelled from the channel. Further, the SMD simulations identified the key residues that are likely to control these processes. Finally, we discuss the potential binding modes of a panel of known hNav1.5 blockers to our structural model of hNav1.5. We believe that the data presented here will enhance our understanding of the structure–property relationships of the hNav1.5 ion channel and the underlying molecular mechanisms in sodium ion permeation and drug interactions. The results presented here could be useful for designing safer drugs that do not block the hNav1.5 channel

  1. Weakening of ion-channel interactions of Na+ and Li+ in acetylcholine-receptor channels of frog skeletal muscle with an increase in agonist concentration.

    PubMed

    Manthey, A A

    1998-05-01

    The possibility that increases in agonist concentration beyond threshold levels may force changes in the character of high-conductance open states of skeletal muscle nicotinic acetylcholine receptor channels (nAChR) was examined by seeing whether differences in several critical ionic properties of nAChR currents could be detected with changes in agonist level. Single- and bi-ionic whole-cell currents of Na+ and Li+ in voltage-clamped frog (Rana pipiens) muscle fibers were measured during local superfusion of endplates with carbamylcholine (carb) at concentrations of 54 microm (low-carb) and 270 microM (high-carb). Three ionic properties that would be affected by changes in the open-state configuration of channel subunits were tested. First, ion-saturation characteristics. Peak Na+ and Li+ currents in low-carb trials showed sublinear dependence on ion concentrations from 0 to 60 mM with Km values of 78 (Na+) and 49 (Li+) mM and a power function slope of 0. 75 on double-log plot. In contrast, the concentration dependence of Na+ and Li+ currents in high-carb tests was linear through the origin with a power function slope of 1.02. Second, Na+/Li+ selectivity. The ratio of peak Na+ and Li+ currents in low-carb tests varied from 1.86 to 2.28 for ion concentrations of from 20 to 60 mM [mean = 2.02 +/- 0.06 (SEM)] whereas the ratio for high-carb trials ranged from only 1.29 to 1.52 [mean = 1.42 +/- 0.40 (SEM)]. Third, competitive interactions of Na+ and Li+ currents. Equimolar mixtures of Na+ and Li+ in low-carb tests produced bi-ionic inward currents which were never larger than the single-ion Na+ current alone, but bi-ionic currents at the high-carb level were always greater than the single-ion Na+ current, approximating the sum of the single-ion Na+ and Li+ currents in most cases. The results are consistent with a decrease in ion-channel binding at the high-carb level and support the possibility of agonist-induced changes in the high-conductance open-state configuration

  2. Piezo1 forms mechanosensitive ion channels in the human MCF-7 breast cancer cell line

    NASA Astrophysics Data System (ADS)

    Li, Chouyang; Rezania, Simin; Kammerer, Sarah; Sokolowski, Armin; Devaney, Trevor; Gorischek, Astrid; Jahn, Stephan; Hackl, Hubert; Groschner, Klaus; Windpassinger, Christian; Malle, Ernst; Bauernhofer, Thomas; Schreibmayer, Wolfgang

    2015-02-01

    Mechanical interaction between cells - specifically distortion of tensional homeostasis-emerged as an important aspect of breast cancer genesis and progression. We investigated the biophysical characteristics of mechanosensitive ion channels (MSCs) in the malignant MCF-7 breast cancer cell line. MSCs turned out to be the most abundant ion channel species and could be activated by negative pressure at the outer side of the cell membrane in a saturable manner. Assessing single channel conductance (GΛ) for different monovalent cations revealed an increase in the succession: Li+ < Na+ < K+ ~Rb+ ~ Cs+. Divalent cations permeated also with the order: Ca2+ < Ba2+. Comparison of biophysical properties enabled us to identify MSCs in MCF-7 as ion channels formed by the Piezo1 protein. Using patch clamp technique no functional MSCs were observed in the benign MCF-10A mammary epithelial cell line. Blocking of MSCs by GsMTx-4 resulted in decreased motility of MCF-7, but not of MCF-10A cells, underscoring a possible role of Piezo1 in invasion and metastatic propagation. The role of Piezo1 in biology and progression of breast cancer is further substantiated by markedly reduced overall survival in patients with increased Piezo1 mRNA levels in the primary tumor.

  3. Low-velocity ion stopping in a dense and low-temperature plasma target

    NASA Astrophysics Data System (ADS)

    Deutsch, Claude; Popoff, Romain

    2007-07-01

    We investigate the stopping specificities involved in the heating of thin foils irradiated by intense ion beams in the 0.3-3 MeV/amu energy range and in close vicinity of the Bragg peak. Considering a swiftly ionized target to eV temperatures before expansion while retaining solid-state density, a typical warm dense matter (WDM) situation thus arises. We stress low Vp stopping through ion diffusion in the given target plasma. This allows to include the case of a strongly magnetized target in a guiding center approximation. We also demonstrate that the ion projectile penetration depth in target is significantly affected by multiple scattering on target electrons. The given plasma target is taken weakly coupled with Maxwell electron either with no magnetic field ( B=0) or strongly magnetized ( B≠0). Dynamical coupling between ion projectiles energy losses and projectiles charge state will also be addressed.

  4. Discrete-state representation of ion permeation coupled to fast gating in a model of ClC chloride channels: comparison to multi-ion continuous space Brownian dynamics simulations.

    PubMed

    Coalson, Rob D; Cheng, Mary Hongying

    2010-01-28

    A discrete-state model of chloride ion motion in a ClC chloride channel is constructed, following a previously developed multi-ion continuous space model of the same system (Cheng, M. H.; Mamonov, A. B.; Dukes, J. W.; Coalson, R. D. J. Phys. Chem. B 2007, 111, 5956) that included a simplistic representation of the fast gate in this channel. The reducibility of the many-body continuous space to the eight discrete-state model considered in the present work is examined in detail by performing three-dimensional Brownian dynamics simulations of each allowed state-to-state transition in order to extract the appropriate rate constant for this process, and then inserting the pairwise rate constants thereby obtained into an appropriate set of kinetic master equations. Experimental properties of interest, including the rate of Cl(-) ion permeation through the open channel and the average rate of closing of the fast gate as a function of bulk Cl(-) ion concentrations in the intracellular and extracellular electrolyte reservoirs are computed. Good agreement is found between the results obtained via the eight discrete-state model versus the multi-ion continuous space model, thereby encouraging continued development of the discrete-state model to include more complex behaviors observed experimentally in these channels.

  5. Coupled-channel analyses on 16O + 147,148,150,152,154Sm heavy-ion fusion reactions

    NASA Astrophysics Data System (ADS)

    Erol, Burcu; Yılmaz, Ahmet Hakan

    2018-02-01

    Heavy-ion collisons are typically characterized by the presence of many open reaction channels. In the energies around the Coulomb barrier, the main processes are elastic scattering, inelastic excitations of low-lying modes and fusion operations of one or two nuclei. The fusion process is generally defined as the effect of one-dimensional barrier penetration model, taking scattering potential as the sum of Coulomb and proximity potential. We have performed heay-ion fusion reactions with coupled-channel (CC) calculations. Coupled-channel formalism is carried out under barrier energy in heavy-ion fusion reactions. In this work fusion cross sections have been calculated and analyzed in detail for the five systems 16O + 147,148,150,152,154sm in the framework of coupled-channel approach (using the codes CCFUS and CCDEF) and Wong Formula. Calculated results are compared with experimental data, CC calculations using code CCFULL and with the cross section datas taken from `nrv'. CCDEF, CCFULL and Wong Formula explains the fusion reactions of heavy-ions very well, while using the scattering potential as WOODS-SAXON volume potential with Akyuz-Winther parameters. It was observed that AW potential parameters are able to reproduce the experimentally observed fusion cross sections reasonably well for these systems. There is a good agreement between the calculated results with the experimental and nrv[8] results.

  6. Poring over two-pore channel pore mutants

    PubMed Central

    Penny, Christopher J.; Patel, Sandip

    2016-01-01

    Two-pore channels are members of the voltage-gated ion channel superfamily. They localise to the endolysosomal system and are likely targets for the Ca2+ mobilising messenger NAADP. In this brief review, we relate mutagenesis of the TPC pore to a recently published homology model and discuss how pore mutants are informing us of TPC function. Molecular physiology of these ubiquitous proteins is thus emerging. PMID:27226934

  7. Absence of ion-binding affinity in the putatively inactivated low-[K+] structure of the KcsA potassium channel.

    PubMed

    Boiteux, Céline; Bernèche, Simon

    2011-01-12

    Potassium channels are membrane proteins that selectively conduct K(+) across cellular membranes. The narrowest part of their pore, the selectivity filter, is responsible for distinguishing K(+) from Na(+), and can also act as a gate through a mechanism known as C-type inactivation. It has been proposed that a conformation of the KcsA channel obtained by crystallization in presence of low concentration of K(+) (PDB 1K4D) could correspond to the C-type inactivated state. Here, we show using molecular mechanics simulations that such conformation has little ion-binding affinity and that ions do not contribute to its stability. The simulations suggest that, in this conformation, the selectivity filter is mostly occupied by water molecules. Whether such ion-free state of the KcsA channel is physiologically accessible and representative of the inactivated state of eukaryotic channels remains unclear. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment.

    PubMed

    Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Lucas, Susana Dias; Gründer, Stefan; Wiemuth, Dominik

    2014-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.

  9. In Touch With the Mechanosensitive Piezo Channels: Structure, Ion Permeation, and Mechanotransduction.

    PubMed

    Geng, J; Zhao, Q; Zhang, T; Xiao, B

    2017-01-01

    Mechanotransduction, the conversion of mechanical forces into biological signals, plays critical roles in various physiological and pathophysiological processes in mammals, such as conscious sensing of touch, pain, and sound, as well as unconscious sensing of blood flow-associated shear stress, urine flow, and bladder distention. Among the various molecules involved in mechanotransduction, mechanosensitive (MS) cation channels have long been postulated to represent one critical class of mechanotransducers that directly and rapidly converts mechanical force into electrochemical signals. Despite the awareness of their functional significance, the molecular identities of MS cation channels in mammals had remained elusive for decades till the groundbreaking finding that the Piezo family of genes, including Piezo1 and Piezo2, constitutes their essential components. Since their identification about 6years ago, tremendous progress has been made in understanding their physiological and pathophysiological importance in mechanotransduction and their structure-function relationships of being the prototypic class of mammalian MS cation channels. On the one hand, Piezo proteins have been demonstrated to serve as physiologically and pathophysiologically important mechanotransducers for most, if not all, mechanotransduction processes. On the other hand, they have been shown to form a remarkable three-bladed, propeller-shaped homotrimeric channel complex comprising a separable ion-conducting pore module and mechanotransduction modules. In this chapter, we review the major advancements, with a particular focus on the structural and biophysical features that enable Piezo proteins to serve as sophisticated MS cation channels for force sensing, transduction, and ion conduction. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Influence of membrane thickness and ion concentration on the properties of the gramicidin a channel. Autocorrelation, spectral power density, relaxation and single-channel studies.

    PubMed

    Kolb, H A; Bamberg, E

    1977-01-04

    The properties of the gramicidin A channel in membranes made from a series of monoglycerides have been studied. In agreement with previous studies, the dissociation rate constant kD of the dimeric channel was found to increase strongly with increasing chain length of the monoglyceride, corresponding to a decrease of the mean life-time of the channel. The value of kD, however, was not strictly correlated with the membrane thickness, as seen from a comparison of membranes with different solvent content. Furthermore, the life-time of the channel increased with the concentration of the permeable ion. This effect was tentatively explained by an electrostatic stabilization of the channel. The single-channel conductance lambda was found to decrease with increasing membrane thickness d, if d was varied by increasing the chain length of the lipid. On the other hand, if d was changed by varying the solvent content of the membranes formed from one and the same lipid, lambda remained constant. These observations were explained by the assumption of local inhomogeneities in the membrane thickness. A striking difference between the lambda values obtained from autocorrelation analysis in the presence of many presence of many channels (lambda a) and those obtained from single-channel experiments (lambda sc) occurred with membranes from longer chain-length monoglycerides. This difference disappeared at low ion concentrations. Electrostatic interactions between channels in local clusters were proposed for an interpretation of these findings.

  11. Evaluation of stochastic differential equation approximation of ion channel gating models.

    PubMed

    Bruce, Ian C

    2009-04-01

    Fox and Lu derived an algorithm based on stochastic differential equations for approximating the kinetics of ion channel gating that is simpler and faster than "exact" algorithms for simulating Markov process models of channel gating. However, the approximation may not be sufficiently accurate to predict statistics of action potential generation in some cases. The objective of this study was to develop a framework for analyzing the inaccuracies and determining their origin. Simulations of a patch of membrane with voltage-gated sodium and potassium channels were performed using an exact algorithm for the kinetics of channel gating and the approximate algorithm of Fox & Lu. The Fox & Lu algorithm assumes that channel gating particle dynamics have a stochastic term that is uncorrelated, zero-mean Gaussian noise, whereas the results of this study demonstrate that in many cases the stochastic term in the Fox & Lu algorithm should be correlated and non-Gaussian noise with a non-zero mean. The results indicate that: (i) the source of the inaccuracy is that the Fox & Lu algorithm does not adequately describe the combined behavior of the multiple activation particles in each sodium and potassium channel, and (ii) the accuracy does not improve with increasing numbers of channels.

  12. Dopamine negatively modulates the NCA ion channels in C. elegans

    PubMed Central

    Topalidou, Irini; Pereira, Laura

    2017-01-01

    The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels. PMID:28968387

  13. Dopamine negatively modulates the NCA ion channels in C. elegans.

    PubMed

    Topalidou, Irini; Cooper, Kirsten; Pereira, Laura; Ailion, Michael

    2017-10-01

    The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels.

  14. Mechanism for phosphoinositide selectivity and activation of TRPV1 ion channels

    PubMed Central

    Ufret-Vincenty, Carmen A.; Klein, Rebecca M.; Collins, Marcus D.; Rosasco, Mario G.; Martinez, Gilbert Q.

    2015-01-01

    Although PI(4,5)P2 is believed to play an essential role in regulating the activity of numerous ion channels and transporters, the mechanisms by which it does so are unknown. Here, we used the ability of the TRPV1 ion channel to discriminate between PI(4,5)P2 and PI(4)P to localize the region of TRPV1 sequence that interacts directly with the phosphoinositide. We identified a point mutation in the proximal C-terminal region after the TRP box, R721A, that inverted the selectivity of TRPV1. Although the R721A mutation produced only a 30% increase in the EC50 for activation by PI(4,5)P2, it decreased the EC50 for activation by PI(4)P by more than two orders of magnitude. We used chemically induced and voltage-activated phosphatases to determine that PI(4)P continued to support TRPV1 activity even after depletion of PI(4,5)P2 from the plasma membrane. Our data cannot be explained by a purely electrostatic mechanism for interaction between the phosphoinositide and the protein, similar to that of the MARCKS (myristoylated alanine-rich C kinase substrate) effector domain or the EGF receptor. Rather, conversion of a PI(4,5)P2-selective channel to a PI(4)P-selective channel indicates that a structured phosphoinositide-binding site mediates the regulation of TRPV1 activity and that the amino acid at position 721 likely interacts directly with the moiety at the 5′ position of the phosphoinositide. PMID:25918361

  15. Energy transduction and signal averaging of fluctuating electric fields by a single protein ion channel.

    PubMed

    Verdia-Baguena, C; Gomez, V; Cervera, J; Ramirez, P; Mafe, S

    2016-12-21

    We demonstrate the electrical rectification and signal averaging of fluctuating signals using a biological nanostructure in aqueous solution: a single protein ion channel inserted in the lipid bilayer characteristic of cell membranes. The conversion of oscillating, zero time-average potentials into directional currents permits charging of a load capacitor to significant steady-state voltages within a few minutes in the case of the outer membrane porin F (OmpF) protein, a bacterial channel of Escherichia coli. The experiments and simulations show signal averaging effects at a more fundamental level than the traditional cell and tissue scales, which are characterized by ensembles of many ion channels operating simultaneously. The results also suggest signal transduction schemes with bio-electronic interfaces and ionic circuits where soft matter nanodiodes can be coupled to conventional electronic elements.

  16. A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Beckstein, Oliver; Sansom, Mark S. P.

    2006-06-01

    The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the 'Cys-loop' superfamily of ligand-gated ion channels which mediate synaptic neurotransmission, and whose other members include receptors for glycine, γ-aminobutyric acid and serotonin. Cryo-electron microscopy has yielded a three-dimensional structure of the nAChR in its closed state. However, the exact nature and location of the channel gate remains uncertain. Although the transmembrane pore is constricted close to its center, it is not completely occluded. Rather, the pore has a central hydrophobic zone of radius about 3 Å. Model calculations suggest that such a constriction may form a hydrophobic gate, preventing movement of ions through a channel. We present a detailed and quantitative simulation study of the hydrophobic gating model of the nicotinic receptor, in order to fully evaluate this hypothesis. We demonstrate that the hydrophobic constriction of the nAChR pore indeed forms a closed gate. Potential of mean force (PMF) calculations reveal that the constriction presents a barrier of height about 10 kT to the permeation of sodium ions, placing an upper bound on the closed channel conductance of 0.3 pS. Thus, a 3 Å radius hydrophobic pore can form a functional barrier to the permeation of a 1 Å radius Na+ ion. Using a united-atom force field for the protein instead of an all-atom one retains the qualitative features but results in differing conductances, showing that the PMF is sensitive to the detailed molecular interactions.

  17. Ion Channel Conformation and Oligomerization Assessment by Site-Directed Spin Labeling and Pulsed-EPR.

    PubMed

    Pliotas, Christos

    2017-01-01

    Mechanosensitive (MS) ion channels are multimeric integral membrane proteins that respond to increased lipid bilayer tension by opening their nonselective pores to release solutes and relieve increased cytoplasmic pressure. These systems undergo major conformational changes during gating and the elucidation of their mechanism requires a deep understanding of the interplay between lipids and proteins. Lipids are responsible for transmitting lateral tension to MS channels and therefore play a key role in obtaining a molecular-detail model for mechanosensation. Site-directed spin labeling combined with electron paramagnetic resonance (EPR) spectroscopy is a powerful spectroscopic tool in the study of proteins. The main bottleneck for its use relates to challenges associated with successful isolation of the protein of interest, introduction of paramagnetic labels on desired sites, and access to specialized instrumentation and expertise. The design of sophisticated experiments, which combine a variety of existing EPR methodologies to address a diversity of specific questions, require knowledge of the limitations and strengths, characteristic of each particular EPR method. This chapter is using the MS ion channels as paradigms and focuses on the application of different EPR techniques to ion channels, in order to investigate oligomerization, conformation, and the effect of lipids on their regulation. The methodology we followed, from the initial strategic selection of mutants and sample preparation, including protein purification, spin labeling, reconstitution into lipid mimics to the complete set-up of the pulsed-EPR experiments, is described in detail. © 2017 Elsevier Inc. All rights reserved.

  18. Structural basis for alcohol modulation of a pentameric ligand-gated ion channel

    PubMed Central

    Howard, Rebecca J.; Murail, Samuel; Ondricek, Kathryn E.; Corringer, Pierre-Jean; Lindahl, Erik; Trudell, James R.; Harris, R. Adron

    2011-01-01

    Despite its long history of use and abuse in human culture, the molecular basis for alcohol action in the brain is poorly understood. The recent determination of the atomic-scale structure of GLIC, a prokaryotic member of the pentameric ligand-gated ion channel (pLGIC) family, provides a unique opportunity to characterize the structural basis for modulation of these channels, many of which are alcohol targets in brain. We observed that GLIC recapitulates bimodal modulation by n-alcohols, similar to some eukaryotic pLGICs: methanol and ethanol weakly potentiated proton-activated currents in GLIC, whereas n-alcohols larger than ethanol inhibited them. Mapping of residues important to alcohol modulation of ionotropic receptors for glycine, γ-aminobutyric acid, and acetylcholine onto GLIC revealed their proximity to transmembrane cavities that may accommodate one or more alcohol molecules. Site-directed mutations in the pore-lining M2 helix allowed the identification of four residues that influence alcohol potentiation, with the direction of their effects reflecting α-helical structure. At one of the potentiation-enhancing residues, decreased side chain volume converted GLIC into a highly ethanol-sensitive channel, comparable to its eukaryotic relatives. Covalent labeling of M2 positions with an alcohol analog, a methanethiosulfonate reagent, further implicated residues at the extracellular end of the helix in alcohol binding. Molecular dynamics simulations elucidated the structural consequences of a potentiation-enhancing mutation and suggested a structural mechanism for alcohol potentiation via interaction with a transmembrane cavity previously termed the “linking tunnel.” These results provide a unique structural model for independent potentiating and inhibitory interactions of n-alcohols with a pLGIC family member. PMID:21730162

  19. A laser microsurgical method of cell wall removal allows detection of large-conductance ion channels in the guard cell plasma membrane

    NASA Technical Reports Server (NTRS)

    Miedema, H.; Henriksen, G. H.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts of Vicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. "Laser-assisted" patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.

  20. Synthetic Ion Channels and DNA Logic Gates as Components of Molecular Robots.

    PubMed

    Kawano, Ryuji

    2018-02-19

    A molecular robot is a next-generation biochemical machine that imitates the actions of microorganisms. It is made of biomaterials such as DNA, proteins, and lipids. Three prerequisites have been proposed for the construction of such a robot: sensors, intelligence, and actuators. This Minireview focuses on recent research on synthetic ion channels and DNA computing technologies, which are viewed as potential candidate components of molecular robots. Synthetic ion channels, which are embedded in artificial cell membranes (lipid bilayers), sense ambient ions or chemicals and import them. These artificial sensors are useful components for molecular robots with bodies consisting of a lipid bilayer because they enable the interface between the inside and outside of the molecular robot to function as gates. After the signal molecules arrive inside the molecular robot, they can operate DNA logic gates, which perform computations. These functions will be integrated into the intelligence and sensor sections of molecular robots. Soon, these molecular machines will be able to be assembled to operate as a mass microrobot and play an active role in environmental monitoring and in vivo diagnosis or therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Ion Selectivity in the KcsA Potassium Channel from the Perspective of the Ion Binding Site

    PubMed Central

    Dixit, Purushottam D.; Merchant, Safir; Asthagiri, D.

    2009-01-01

    To understand the thermodynamic exclusion of Na+ relative to K+ from the S2 site of the selectivity filter, the distribution PX(ɛ) (X = K+ or Na+) of the binding energy (ɛ) of the ion with the channel is analyzed using the potential distribution theorem. By expressing the excess chemical potential of the ion as a sum of mean-field 〈ɛ〉 and fluctuation μexflux,X contributions, we find that selectivity arises from a higher value of μflux,Na+ex relative to μflux,K+ex. To understand the role of site-site interactions on μexflux,X, we decompose PX(ɛ) into n-dependent distributions, where n is the number of ion-coordinating ligands within a distance λ from the ion. For λ comparable to typical ion-oxygen bond distances, investigations building on this multistate model reveal an inverse correlation between favorable ion-site and site-site interactions: the ion-coordination states that most influence the thermodynamics of the ion are also those for which the binding site is energetically less strained and vice versa. This correlation motivates understanding entropic effects in ion binding to the site and leads to the finding that μexflux,X is directly proportional to the average site-site interaction energy, a quantity that is sensitive to the chemical type of the ligand coordinating the ion. Increasing the coordination number around Na+ only partially accounts for the observed magnitude of selectivity; acknowledging the chemical type of the ion-coordinating ligand is essential. PMID:19289040

  2. Ion channel-mediated uptake of cationic vital dyes into live cells: a potential source of error when assessing cell viability.

    PubMed

    Bukhari, Maurish; Burm, Hayley; Samways, Damien S K

    2016-10-01

    Ionic "vital dyes" are commonly used to assess cell viability based on the idea that their permeation is contingent on a loss of membrane integrity. However, the possibility that dye entry is conducted into live cells by endogenous membrane transporters must be recognized and controlled for. Several cation-selective plasma membrane-localized ion channels, including the adenosine 5'-triphosphate (ATP)-gated P2X receptors, have been reported to conduct entry of the DNA-binding fluorescence dye, YO-PRO-1, into live cells. Extracellular ATP often becomes elevated as a result of release from dying cells, and so it is possible that activation of P2X channels on neighboring live cells could lead to exaggerated estimation of cytotoxicity. Here, we screened a number of fluorescent vital dyes for ion channel-mediated uptake in HEK293 cells expressing recombinant P2X2, P2X7, or TRPV1 channels. Our data shows that activation of all three channels caused substantial uptake and nuclear accumulation of YO-PRO-1, 4',6-diamidino-2-phenylindole (DAPI), and Hoechst 33258 into transfected cells and did so well within the time period usually used for incubation of cells with vital dyes. In contrast, channel activation in the presence of propidium iodide and SYTOX Green caused no measurable uptake and accumulation during a 20-min exposure, suggesting that these dyes are not likely to exhibit measurable uptake through these particular ion channels during a conventional cell viability assay. Caution is encouraged when choosing and employing cationic dyes for the purpose of cell viability assessment, particularly when there is a likelihood of cells expressing ion channels permeable to large ions.

  3. Cardiac Mechano-Gated Ion Channels and Arrhythmias

    PubMed Central

    Peyronnet, Remi; Nerbonne, Jeanne M.; Kohl, Peter

    2015-01-01

    Mechanical forces will have been omnipresent since the origin of life, and living organisms have evolved mechanisms to sense, interpret and respond to mechanical stimuli. The cardiovascular system in general, and the heart in particular, are exposed to constantly changing mechanical signals, including stretch, compression, bending, and shear. The heart adjusts its performance to the mechanical environment, modifying electrical, mechanical, metabolic, and structural properties over a range of time scales. Many of the underlying regulatory processes are encoded intra-cardially, and are thus maintained even in heart transplant recipients. Although mechano-sensitivity of heart rhythm has been described in the medical literature for over a century, its molecular mechanisms are incompletely understood. Thanks to modern biophysical and molecular technologies, the roles of mechanical forces in cardiac biology are being explored in more detail, and detailed mechanisms of mechano-transduction have started to emerge. Mechano-gated ion channels are cardiac mechano-receptors. They give rise to mechano-electric feedback, thought to contribute to normal function, disease development, and, potentially, therapeutic interventions. In this review, we focus on acute mechanical effects on cardiac electrophysiology, explore molecular candidates underlying observed responses, and discuss their pharmaceutical regulation. From this, we identify open research questions and highlight emerging technologies that may help in addressing them. Cardiac electrophysiology is acutely affected by the heart’s mechanical environment. Mechano-electric feedback affects excitability, conduction, and electrical load, and remains an underestimated player in arrhythmogenesis. The utility of therapeutic interventions targeting acute mechano-electrical transduction is an open field worthy of further study. PMID:26838316

  4. The KATP channel in migraine pathophysiology: a novel therapeutic target for migraine.

    PubMed

    Al-Karagholi, Mohammad Al-Mahdi; Hansen, Jakob Møller; Severinsen, Johanne; Jansen-Olesen, Inger; Ashina, Messoud

    2017-08-23

    To review the distribution and function of K ATP channels, describe the use of K ATP channels openers in clinical trials and make the case that these channels may play a role in headache and migraine. K ATP channels are widely present in the trigeminovascular system and play an important role in the regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic K ATP channel openers report headache as a prevalent-side effect in non-migraine sufferers, indicating that K ATP channel opening may cause headache, possibly due to vascular mechanisms. Whether K ATP channel openers can provoke migraine in migraine sufferers is not known. We suggest that K ATP channels may play an important role in migraine pathogenesis and could be a potential novel therapeutic anti-migraine target.

  5. Differential distribution of voltage-gated ion channels in cortical neurons: implications for epilepsy.

    PubMed

    Child, Nicholas D; Benarroch, Eduardo E

    2014-03-18

    Neurons contain different functional somatodendritic and axonal domains, each with a characteristic distribution of voltage-gated ion channels, synaptic inputs, and function. The dendritic tree of a cortical pyramidal neuron has 2 distinct domains, the basal and the apical dendrites, both containing dendritic spines; the different domains of the axon are the axonal initial segment (AIS), axon proper (which in myelinated axons includes the node of Ranvier, paranodes, juxtaparanodes, and internodes), and the axon terminals. In the cerebral cortex, the dendritic spines of the pyramidal neurons receive most of the excitatory synapses; distinct populations of γ-aminobutyric acid (GABA)ergic interneurons target specific cellular domains and thus exert different influences on pyramidal neurons. The multiple synaptic inputs reaching the somatodendritic region and generating excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) sum and elicit changes in membrane potential at the AIS, the site of initiation of the action potential.

  6. Conformal SiO2 coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition

    PubMed Central

    Sobel, Nicolas; Lukas, Manuela; Spende, Anne; Stühn, Bernd; Trautmann, Christina

    2015-01-01

    Summary Polycarbonate etched ion-track membranes with about 30 µm long and 50 nm wide cylindrical channels were conformally coated with SiO2 by atomic layer deposition (ALD). The process was performed at 50 °C to avoid thermal damage to the polymer membrane. Analysis of the coated membranes by small angle X-ray scattering (SAXS) reveals a homogeneous, conformal layer of SiO2 in the channels at a deposition rate of 1.7–1.8 Å per ALD cycle. Characterization by infrared and X-ray photoelectron spectroscopy (XPS) confirms the stoichiometric composition of the SiO2 films. Detailed XPS analysis reveals that the mechanism of SiO2 formation is based on subsurface crystal growth. By dissolving the polymer, the silica nanotubes are released from the ion-track membrane. The thickness of the tube wall is well controlled by the ALD process. Because the track-etched channels exhibited diameters in the range of nanometres and lengths in the range of micrometres, cylindrical tubes with an aspect ratio as large as 3000 have been produced. PMID:25821688

  7. Enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target

    NASA Astrophysics Data System (ADS)

    Ji, Yanling; Duan, Tao; Zhou, Weimin; Li, Boyuan; Wu, Fengjuan; Zhang, Zhimeng; Ye, Bin; Wang, Rong; Wu, Chunrong; Tang, Yongjian

    2018-02-01

    An enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target is investigated using two-dimensional particle-in-cell simulations. The target consists of a cone attached to a double-layer hollow channel with a near-critical-density inner layer. The periodic electron beams are generated by the combination of ponderomotive force and longitudinal laser electric field. Then a stable electron propagation is achieved in the double-layer channel over a much longer distance without evident divergency, compared with a normal cone-channel target. Detailed simulations show that the much better long-distance collimation and guidance of energetic electrons is attributed to the much stronger electromagnetic fields at the inner wall surfaces. Furthermore, a continuous electron acceleration is obtained by the more intense laser electric fields and extended electron acceleration length in the channel. Our investigation shows that by employing this advanced target, both the forward-going electron energy flux in the channel and the energy coupling efficiency from laser to electrons are about threefold increased in comparison with the normal case.

  8. Advances in target design for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Callahan, D. A.; Tabak, M.; Bennett, G. R.; Cuneo, M. E.; Vesey, R. A.; Nikroo, A.; Czechowicz, D.; Steinman, D.

    2005-12-01

    Over the past few years, the emphasis in heavy ion target design has moved from the distributed radiator target to the 'hybrid' target because the hybrid target allows a larger beam focal spot than the distributed radiator (~5 mm radius rather than ~2 mm radius). The larger spot relaxes some of the requirements on the driver, but introduces some new target physics issues. Most notable is the use of shine shields and shims in the hohlraum to achieve symmetry rather than achieving symmetry by beam placement. The shim is a thin layer of material placed on or near the capsule surface to block a small amount of excess radiation. While we have been developing this technique for the heavy ion hybrid target, the technique can also be used in any indirect drive target. We have begun testing the concept of a shim to improve symmetry using a double-ended z-pinch hohlraum on the Sandia Z-machine. Experiments using shimmed thin wall capsules have shown that we can reverse the sign of a P2 asymmetry and significantly reduce the size of a P4 asymmetry. These initial experiments demonstrate the concept of a shim as another method for controlling early time asymmetries in ICF capsules.

  9. Expression and purification of native and functional influenza A virus matrix 2 proton selective ion channel.

    PubMed

    Desuzinges Mandon, Elodie; Traversier, Aurélien; Champagne, Anne; Benier, Lorraine; Audebert, Stéphane; Balme, Sébastien; Dejean, Emmanuel; Rosa Calatrava, Manuel; Jawhari, Anass

    2017-03-01

    Influenza A virus displays one of the highest infection rates of all human viruses and therefore represents a severe human health threat associated with an important economical challenge. Influenza matrix protein 2 (M2) is a membrane protein of the viral envelope that forms a proton selective ion channel. Here we report the expression and native isolation of full length active M2 without mutations or fusions. The ability of the influenza virus to efficiently infect MDCK cells was used to express native M2 protein. Using a Calixarene detergents/surfactants based approach; we were able to solubilize most of M2 from the plasma membrane and purify it. The tetrameric form of native M2 was maintained during the protein preparation. Mass spectrometry shows that M2 was phosphorylated in its cytoplasmic tail (serine 64) and newly identifies an acetylation of the highly conserved Lysine 60. ELISA shows that solubilized and purified M2 was specifically recognized by M2 antibody MAB65 and was able to displace the antibody from M2 MDCK membranes. Using a bilayer voltage clamp measurement assay, we demonstrate a pH dependent proton selective ion channel activity. The addition of the M2 ion channel blocker amantadine allows a total inhibition of the channel activity, illustrating therefore the specificity of purified M2 activity. Taken together, this work shows the production and isolation of a tetrameric and functional native M2 ion channel that will pave the way to structural and functional characterization of native M2, conformational antibody development, small molecules compounds screening towards vaccine treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. TRP channels in the skin.

    PubMed

    Tóth, Balázs I; Oláh, Attila; Szöllősi, Attila Gábor; Bíró, Tamás

    2014-05-01

    Emerging evidence suggests that transient receptor potential (TRP) ion channels not only act as 'polymodal cellular sensors' on sensory neurons but are also functionally expressed by a multitude of non-neuronal cell types. This is especially true in the skin, one of the largest organs of the body, where they appear to be critically involved in regulating various cutaneous functions both under physiological and pathophysiological conditions. In this review, we focus on introducing the roles of several cutaneous TRP channels in the regulation of the skin barrier, skin cell proliferation and differentiation, and immune functions. Moreover, we also describe the putative involvement of several TRP channels in the development of certain skin diseases and identify future TRP channel-targeted therapeutic opportunities. © 2013 The British Pharmacological Society.

  11. Peptide-gated ion channels and the simple nervous system of Hydra.

    PubMed

    Gründer, Stefan; Assmann, Marc

    2015-02-15

    Neurons either use electrical or chemical synapses to communicate with each other. Transmitters at chemical synapses are either small molecules or neuropeptides. After binding to their receptors, transmitters elicit postsynaptic potentials, which can either be fast and transient or slow and longer lasting, depending on the type of receptor. Fast transient potentials are mediated by ionotropic receptors and slow long-lasting potentials by metabotropic receptors. Transmitters and receptors are well studied for animals with a complex nervous system such as vertebrates and insects, but much less is known for animals with a simple nervous system like Cnidaria. As cnidarians arose early in animal evolution, nervous systems might have first evolved within this group and the study of neurotransmission in cnidarians might reveal an ancient mechanism of neuronal communication. The simple nervous system of the cnidarian Hydra extensively uses neuropeptides and, recently, we cloned and functionally characterized an ion channel that is directly activated by neuropeptides of the Hydra nervous system. These results demonstrate the existence of peptide-gated ion channels in Hydra, suggesting they mediate fast transmission in its nervous system. As related channels are also present in the genomes of the cnidarian Nematostella, of placozoans and of ctenophores, it should be considered that the early nervous systems of cnidarians and ctenophores have co-opted neuropeptides for fast transmission at chemical synapses. © 2015. Published by The Company of Biologists Ltd.

  12. Hydrogen Sulfide Targets the Cys320/Cys529 Motif in Kv4.2 to Inhibit the Ito Potassium Channels in Cardiomyocytes and Regularizes Fatal Arrhythmia in Myocardial Infarction

    PubMed Central

    Ma, Shan-Feng; Luo, Yan; Ding, Ying-Jiong; Chen, Ying; Pu, Shi-Xin; Wu, Hang-Jing; Wang, Zhong-Feng; Tao, Bei-Bei; Wang, Wen-Wei

    2015-01-01

    Abstract Aims: The mechanisms underlying numerous biological roles of hydrogen sulfide (H2S) remain largely unknown. We have previously reported an inhibitory role of H2S in the L-type calcium channels in cardiomyocytes. This prompts us to examine the mechanisms underlying the potential regulation of H2S on the ion channels. Results: H2S showed a novel inhibitory effect on Ito potassium channels, and this effect was blocked by mutation at the Cys320 and/or Cys529 residues of the Kv4.2 subunit. H2S broke the disulfide bridge between a pair of oxidized cysteine residues; however, it did not modify single cysteine residues. H2S extended action potential duration in epicardial myocytes and regularized fatal arrhythmia in a rat model of myocardial infarction. H2S treatment significantly increased survival by ∼1.4-fold in the critical 2-h time window after myocardial infarction with a protection against ventricular premature beats and fatal arrhythmia. However, H2S did not change the function of other ion channels, including IK1 and INa. Innovation and Conclusion: H2S targets the Cys320/Cys529 motif in Kv4.2 to regulate the Ito potassium channels. H2S also shows a potent regularizing effect against fatal arrhythmia in a rat model of myocardial infarction. The study provides the first piece of evidence for the role of H2S in regulating Ito potassium channels and also the specific motif in an ion channel labile for H2S regulation. Antioxid. Redox Signal. 23, 129–147. PMID:25756524

  13. Equivalence of two approaches for modeling ion permeation through a transmembrane channel with an internal binding site

    NASA Astrophysics Data System (ADS)

    Zhou, Huan-Xiang

    2011-04-01

    Ion permeation through transmembrane channels has traditionally been modeled using two different approaches. In one approach, the translocation of the permeant ion through the channel pore is modeled as continuous diffusion and the rate of ion transport is obtained from solving the steady-state diffusion equation. In the other approach, the translocation of the permeant ion through the pore is modeled as hopping along a discrete set of internal binding sites and the rate of ion transport is obtained from solving a set of steady-state rate equations. In a recent work [Zhou, J. Phys. Chem. Lett. 1, 1973 (2010)], the rate constants for binding to an internal site were further calculated by modeling binding as diffusion-influenced reactions. That work provided the foundation for bridging the two approaches. Here we show that, by representing a binding site as an energy well, the two approaches indeed give the same result for the rate of ion transport.

  14. Structural Sensitivity of a Prokaryotic Pentameric Ligand-gated Ion Channel to Its Membrane Environment*

    PubMed Central

    Labriola, Jonathan M.; Pandhare, Akash; Jansen, Michaela; Blanton, Michael P.; Corringer, Pierre-Jean; Baenziger, John E.

    2013-01-01

    Although the activity of the nicotinic acetylcholine receptor (nAChR) is exquisitely sensitive to its membrane environment, the underlying mechanisms remain poorly defined. The homologous prokaryotic pentameric ligand-gated ion channel, Gloebacter ligand-gated ion channel (GLIC), represents an excellent model for probing the molecular basis of nAChR sensitivity because of its high structural homology, relative ease of expression, and amenability to crystallographic analysis. We show here that membrane-reconstituted GLIC exhibits structural and biophysical properties similar to those of the membrane-reconstituted nAChR, although GLIC is substantially more thermally stable. GLIC, however, does not possess the same exquisite lipid sensitivity. In particular, GLIC does not exhibit the same propensity to adopt an uncoupled conformation where agonist binding is uncoupled from channel gating. Structural comparisons provide insight into the chemical features that may predispose the nAChR to the formation of an uncoupled state. PMID:23463505

  15. Arc-based smoothing of ion beam intensity on targets

    DOE PAGES

    Friedman, Alex

    2012-06-20

    Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this ismore » sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.« less

  16. Site-Directed Spin Labeling Reveals Pentameric Ligand-Gated Ion Channel Gating Motions

    PubMed Central

    Dellisanti, Cosma D.; Ghosh, Borna; Hanson, Susan M.; Raspanti, James M.; Grant, Valerie A.; Diarra, Gaoussou M.; Schuh, Abby M.; Satyshur, Kenneth; Klug, Candice S.; Czajkowski, Cynthia

    2013-01-01

    Pentameric ligand-gated ion channels (pLGICs) are neurotransmitter-activated receptors that mediate fast synaptic transmission. In pLGICs, binding of agonist to the extracellular domain triggers a structural rearrangement that leads to the opening of an ion-conducting pore in the transmembrane domain and, in the continued presence of neurotransmitter, the channels desensitize (close). The flexible loops in each subunit that connect the extracellular binding domain (loops 2, 7, and 9) to the transmembrane channel domain (M2–M3 loop) are essential for coupling ligand binding to channel gating. Comparing the crystal structures of two bacterial pLGIC homologues, ELIC and the proton-activated GLIC, suggests channel gating is associated with rearrangements in these loops, but whether these motions accurately predict the motions in functional lipid-embedded pLGICs is unknown. Here, using site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and functional GLIC channels reconstituted into liposomes, we examined if, and how far, the loops at the ECD/TMD gating interface move during proton-dependent gating transitions from the resting to desensitized state. Loop 9 moves ∼9 Å inward toward the channel lumen in response to proton-induced desensitization. Loop 9 motions were not observed when GLIC was in detergent micelles, suggesting detergent solubilization traps the protein in a nonactivatable state and lipids are required for functional gating transitions. Proton-induced desensitization immobilizes loop 2 with little change in position. Proton-induced motion of the M2–M3 loop was not observed, suggesting its conformation is nearly identical in closed and desensitized states. Our experimentally derived distance measurements of spin-labeled GLIC suggest ELIC is not a good model for the functional resting state of GLIC, and that the crystal structure of GLIC does not correspond to a desensitized state. These findings advance our

  17. Binding site in eag voltage sensor accommodates a variety of ions and is accessible in closed channel.

    PubMed

    Silverman, William R; Bannister, John P A; Papazian, Diane M

    2004-11-01

    In ether-a-go-go K+ channels, voltage-dependent activation is modulated by ion binding to a site located in an extracellular-facing crevice between transmembrane segments S2 and S3 in the voltage sensor. We find that acidic residues D278 in S2 and D327 in S3 are able to coordinate a variety of divalent cations, including Mg2+, Mn2+, and Ni2+, which have qualitatively similar functional effects, but different half-maximal effective concentrations. Our data indicate that ions binding to individual voltage sensors in the tetrameric channel act without cooperativity to modulate activation gating. We have taken advantage of the unique phenotype of Ni2+ in the D274A channel, which contains a mutation of a nonbinding site residue, to demonstrate that ions can access the binding site from the extracellular solution when the voltage sensor is in the resting conformation. Our results are difficult to reconcile with the x-ray structure of the KvAP K+ channel, in which the binding site residues are widely separated, and with the hydrophobic paddle model for voltage-dependent activation, in which the voltage sensor domain, including the S3-S4 loop, is near the cytoplasmic side of the membrane in the closed channel.

  18. K+ channel openers restore verapamil-inhibited lung fluid resolution and transepithelial ion transport

    PubMed Central

    2010-01-01

    Background Lung epithelial Na+ channels (ENaC) are regulated by cell Ca2+ signal, which may contribute to calcium antagonist-induced noncardiogenic lung edema. Although K+ channel modulators regulate ENaC activity in normal lungs, the therapeutical relevance and the underlying mechanisms have not been completely explored. We hypothesized that K+ channel openers may restore calcium channel blocker-inhibited alveolar fluid clearance (AFC) by up-regulating both apical and basolateral ion transport. Methods Verapamil-induced depression of heterologously expressed human αβγ ENaC in Xenopus oocytes, apical and basolateral ion transport in monolayers of human lung epithelial cells (H441), and in vivo alveolar fluid clearance were measured, respectively, using the two-electrode voltage clamp, Ussing chamber, and BSA protein assays. Ca2+ signal in H441 cells was analyzed using Fluo 4AM. Results The rate of in vivo AFC was reduced significantly (40.6 ± 6.3% of control, P < 0.05, n = 12) in mice intratracheally administrated verapamil. KCa3.1 (1-EBIO) and KATP (minoxidil) channel openers significantly recovered AFC. In addition to short-circuit current (Isc) in intact H441 monolayers, both apical and basolateral Isc levels were reduced by verapamil in permeabilized monolayers. Moreover, verapamil significantly altered Ca2+ signal evoked by ionomycin in H441 cells. Depletion of cytosolic Ca2+ in αβγ ENaC-expressing oocytes completely abolished verapamil-induced inhibition. Intriguingly, KV (pyrithione-Na), K Ca3.1 (1-EBIO), and KATP (minoxidil) channel openers almost completely restored the verapamil-induced decrease in Isc levels by diversely up-regulating apical and basolateral Na+ and K+ transport pathways. Conclusions Our observations demonstrate that K+ channel openers are capable of rescuing reduced vectorial Na+ transport across lung epithelial cells with impaired Ca2+ signal. PMID:20507598

  19. Differential association of GABAB receptors with their effector ion channels in Purkinje cells.

    PubMed

    Luján, Rafael; Aguado, Carolina; Ciruela, Francisco; Cózar, Javier; Kleindienst, David; de la Ossa, Luis; Bettler, Bernhard; Wickman, Kevin; Watanabe, Masahiko; Shigemoto, Ryuichi; Fukazawa, Yugo

    2018-04-01

    Metabotropic GABA B receptors mediate slow inhibitory effects presynaptically and postsynaptically through the modulation of different effector signalling pathways. Here, we analysed the distribution of GABA B receptors using highly sensitive SDS-digested freeze-fracture replica labelling in mouse cerebellar Purkinje cells. Immunoreactivity for GABA B1 was observed on presynaptic and, more abundantly, on postsynaptic compartments, showing both scattered and clustered distribution patterns. Quantitative analysis of immunoparticles revealed a somato-dendritic gradient, with the density of immunoparticles increasing 26-fold from somata to dendritic spines. To understand the spatial relationship of GABA B receptors with two key effector ion channels, the G protein-gated inwardly rectifying K + (GIRK/Kir3) channel and the voltage-dependent Ca 2+ channel, biochemical and immunohistochemical approaches were performed. Co-immunoprecipitation analysis demonstrated that GABA B receptors co-assembled with GIRK and Ca V 2.1 channels in the cerebellum. Using double-labelling immunoelectron microscopic techniques, co-clustering between GABA B1 and GIRK2 was detected in dendritic spines, whereas they were mainly segregated in the dendritic shafts. In contrast, co-clustering of GABA B1 and Ca V 2.1 was detected in dendritic shafts but not spines. Presynaptically, although no significant co-clustering of GABA B1 and GIRK2 or Ca V 2.1 channels was detected, inter-cluster distance for GABA B1 and GIRK2 was significantly smaller in the active zone than in the dendritic shafts, and that for GABA B1 and Ca V 2.1 was significantly smaller in the active zone than in the dendritic shafts and spines. Thus, GABA B receptors are associated with GIRK and Ca V 2.1 channels in different subcellular compartments. These data provide a better framework for understanding the different roles played by GABA B receptors and their effector ion channels in the cerebellar network.

  20. The nonproton ligand of acid-sensing ion channel 3 activates mollusk-specific FaNaC channels via a mechanism independent of the native FMRFamide peptide.

    PubMed

    Yang, Xiao-Na; Niu, You-Ya; Liu, Yan; Yang, Yang; Wang, Jin; Cheng, Xiao-Yang; Liang, Hong; Wang, Heng-Shan; Hu, You-Min; Lu, Xiang-Yang; Zhu, Michael X; Xu, Tian-Le; Tian, Yun; Yu, Ye

    2017-12-29

    The degenerin/epithelial sodium channel (DEG/ENaC) superfamily of ion channels contains subfamilies with diverse functions that are fundamental to many physiological and pathological processes, ranging from synaptic transmission to epileptogenesis. The absence in mammals of some DEG/ENaCs subfamily orthologues such as FMRFamide peptide-activated sodium channels (FaNaCs), which have been identified only in mollusks, indicates that the various subfamilies diverged early in evolution. We recently reported that the nonproton agonist 2-guanidine-4-methylquinazoline (GMQ) activates acid-sensing ion channels (ASICs), a DEG/ENaC subfamily mainly in mammals, in the absence of acidosis. Here, we show that GMQ also could directly activate the mollusk-specific FaNaCs. Differences in ion selectivity and unitary conductance and effects of substitutions at key residues revealed that GMQ and FMRFamide activate FaNaCs via distinct mechanisms. The presence of two activation mechanisms in the FaNaC subfamily diverging early in the evolution of DEG/ENaCs suggested that dual gating is an ancient feature in this superfamily. Notably, the GMQ-gating mode is still preserved in the mammalian ASIC subfamily, whereas FMRFamide-mediated channel gating was lost during evolution. This implied that GMQ activation may be essential for the functions of mammalian DEG/ENaCs. Our findings provide new insights into the evolution of DEG/ENaCs and may facilitate the discovery and characterization of their endogenous agonists. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Cyclic nucleotide- and inositol phosphate-gated ion channels in lobster olfactory receptor neurons.

    PubMed Central

    Hatt, H; Ache, B W

    1994-01-01

    The idea of having two second messenger pathways in olfaction, one mediated by cAMP and the other by inositol 1,4,5-trisphosphate, is supported by evidence that both second messengers directly activate distinct ion channels in the outer dendrite of lobster olfactory receptor neurons. Evidence that both types of second messenger-gated channels can occur in the same patch of membrane suggests that channels of both types can be expressed in one neuron. Evidence of more than one type of inositol phosphate-gated channel in this highly specialized region of the neuron furthers the idea that the output of individual olfactory receptor cells is regulated through multiple effectors and allows that effector diversity may contribute to functional diversity among olfactory receptor cells. Images PMID:7517547

  2. Emodin suppresses the nasopharyngeal carcinoma cells by targeting the chloride channels.

    PubMed

    Ma, Lianshun; Yang, Yaping; Yin, Zizhang; Liu, Mei; Wang, Liwei; Chen, Lixin; Zhu, Linyan; Yang, Haifeng

    2017-06-01

    Emodin is a natural anthraquinone derivative isolated from the Rheum palmatum. Recent studies demonstrated that emodin has anti-cancer activity in different kinds of human cancer cell lines. However, the underlying mechanism has not been very well studied. Our previous studies showed chloride channels is an important target of anti-cancer drugs. Therefore, the purpose of this research was aimed to explore the role of chloride channels involving in the anti-cancer activity of emodin. The proliferation, cell cycle arrest and apoptosis of poorly differentiated human nasopharyngeal carcinoma cells (CNE-2Z) and normal nasopharyngeal epithelial cells (NP69-SV40T) were detected by 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide(MTT)and flow cytometry. The results indicated that emodin inhibited the CNE-2Z cell growth more significantly than NP69-SV40T cells and induced cell cycle arrest and apoptosis in CNE-2Z cells but not in NP69-SV40T cells. Chloride channel blocker 5-nitro-2-(3-phenylprop ylamino)-benzoate (NPPB) or tamoxifen both can prevent the apoptosis of CNE-2Z cells induced by emodin. Optical microscope and atomic force microscope (AFM) demonstrated that emodin can induce apoptotic volume decrease (AVD) and ultrastructure changes in CNE-2Z cell and inhibited by chloride channel blocker. These data could be a further evidence of chloride channel for preventing CNE-2Z cells from apoptosis induced by emodin. Whole cell patch clamp study also demonstrated that emodin can activate chloride channel in CNE-2Z cells but not in NP69-SV40T cells. Furthermore, the activated chloride currents can also be inhibited by chloride channel blockers indicating that chloride channel may be the potential target molecular of emodin exerting its anti-tumor efficiency in CNE-2Z cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. [Application of Brownian dynamics to the description of transmembrane ion flow as exemplified by the chloride channel of glycine receptor].

    PubMed

    Boronovskiĭ, S E; Nartsissov, Ia R

    2009-01-01

    Using the Brownian dynamics of the movement of hydrated ion in a viscous water solution, a mathematical model has been built, which describes the transport of charged particles through a single protein pore in a lipid membrane. The dependences of transmembrane ion currents on ion concentrations in solution have been obtained. It was shown that, if the geometry of a membrane pore is identical to that of the inner part of the glycine receptor channel and there is no ion selectivity, then the values of both chloride and sodium currents are not greater than 0.5 pA at the physiological concentrations of these ions. If local charge heterogeneity caused by charged amino acid residues of transmembrane protein segments is included into the model calculations, the chloride current increases to about 3.7 pA, which exceeds more than seven times the value for sodium ions under the conditions of the complex channel geometry in the range of physiological concentrations of ions in the solution. The model takes changes in the density of charge distribution both inside the channel and near the protein surface into account. The alteration of pore geometry can be also considered as a parameter at the researcher's option. Thus, the model appears as an effective tool for the description of transmembrane currents for other types of membrane channels.

  4. Micro-channel-based high specific power lithium target

    NASA Astrophysics Data System (ADS)

    Mastinu, P.; Martın-Hernández, G.; Praena, J.; Gramegna, F.; Prete, G.; Agostini, P.; Aiello, A.; Phoenix, B.

    2016-11-01

    A micro-channel-based heat sink has been produced and tested. The device has been developed to be used as a Lithium target for the LENOS (Legnaro Neutron Source) facility and for the production of radioisotope. Nevertheless, applications of such device can span on many areas: cooling of electronic devices, diode laser array, automotive applications etc. The target has been tested using a proton beam of 2.8MeV energy and delivering total power shots from 100W to 1500W with beam spots varying from 5mm2 to 19mm2. Since the target has been designed to be used with a thin deposit of lithium and since lithium is a low-melting-point material, we have measured that, for such application, a specific power of about 3kW/cm2 can be delivered to the target, keeping the maximum surface temperature not exceeding 150° C.

  5. How to Connect Cardiac Excitation to the Atomic Interactions of Ion Channels.

    PubMed

    Silva, Jonathan R

    2018-01-23

    Many have worked to create cardiac action potential models that explicitly represent atomic-level details of ion channel structure. Such models have the potential to define new therapeutic directions and to show how nanoscale perturbations to channel function predispose patients to deadly cardiac arrhythmia. However, there have been significant experimental and theoretical barriers that have limited model usefulness. Recently, many of these barriers have come down, suggesting that considerable progress toward creating these long-sought models may be possible in the near term. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel.

    PubMed

    Nelson, Peter Hugo

    2003-12-01

    The potassium channel from Streptomyces lividans (KcsA) is an integral membrane protein with sequence similarity to all known potassium channels, particularly in the selectivity filter region. A recently proposed model for ion channels containing either n or (n-1) single-file ions in their selectivity filters [P. H. Nelson, J. Chem. Phys. 177, 11396 (2002)] is applied to published KcsA channel K+ permeation data that exhibit a high-affinity process at low concentrations and a low-affinity process at high concentrations [M. LeMasurier et al., J. Gen. Physiol. 118, 303 (2001)]. The kinetic model is shown to provide a reasonable first-order explanation for both the high- and low-concentration permeation modes observed experimentally. The low-concentration mode ([K+]<200 mM) has a 200-mV dissociation constant of 56 mM and a conductance of 88 pS. The high-concentration mode ([K+]>200 mM) has a 200-mV dissociation constant of 1100 mM and a conductance of 500 pS. Based on the permeation model, and x-ray analysis [J. H. Morais-Cabral et al., Nature (London) 414, 37 (2001)], it is suggested that the experimentally observed K+ permeation modes correspond to an n=3 mechanism at high concentrations and an n=2 mechanism at low concentrations. The ratio of the electrical dissociation distances for the high- and low-concentration modes is 3:2, also consistent with the proposed n=3 and n=2 modes. Model predictions for K+ channels that exhibit asymmetric current-voltage (I-V) curves are presented, and further validation of the kinetic model via molecular simulation and experiment is discussed. The qualitatively distinct I-V characteristics exhibited experimentally by Tl+, NH+4, and Rb+ ions at 100 mM concentration can also be explained using the model, but more extensive experimental tests are required for quantitative validation of the model predictions.

  7. Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel

    NASA Astrophysics Data System (ADS)

    Nelson, Peter Hugo

    2003-12-01

    The potassium channel from Streptomyces lividans (KcsA) is an integral membrane protein with sequence similarity to all known potassium channels, particularly in the selectivity filter region. A recently proposed model for ion channels containing either n or (n-1) single-file ions in their selectivity filters [P. H. Nelson, J. Chem. Phys. 177, 11396 (2002)] is applied to published KcsA channel K+ permeation data that exhibit a high-affinity process at low concentrations and a low-affinity process at high concentrations [M. LeMasurier et al., J. Gen. Physiol. 118, 303 (2001)]. The kinetic model is shown to provide a reasonable first-order explanation for both the high- and low-concentration permeation modes observed experimentally. The low-concentration mode ([K+]<200 mM) has a 200-mV dissociation constant of 56 mM and a conductance of 88 pS. The high-concentration mode ([K+]>200 mM) has a 200-mV dissociation constant of 1100 mM and a conductance of 500 pS. Based on the permeation model, and x-ray analysis [J. H. Morais-Cabral et al., Nature (London) 414, 37 (2001)], it is suggested that the experimentally observed K+ permeation modes correspond to an n=3 mechanism at high concentrations and an n=2 mechanism at low concentrations. The ratio of the electrical dissociation distances for the high- and low-concentration modes is 3:2, also consistent with the proposed n=3 and n=2 modes. Model predictions for K+ channels that exhibit asymmetric current-voltage (I-V) curves are presented, and further validation of the kinetic model via molecular simulation and experiment is discussed. The qualitatively distinct I-V characteristics exhibited experimentally by Tl+, NH+4, and Rb+ ions at 100 mM concentration can also be explained using the model, but more extensive experimental tests are required for quantitative validation of the model predictions.

  8. Singular perturbation analysis of the steady-state Poisson–Nernst–Planck system: Applications to ion channels

    PubMed Central

    SINGER, A.; GILLESPIE, D.; NORBURY, J.; EISENBERG, R. S.

    2009-01-01

    Ion channels are proteins with a narrow hole down their middle that control a wide range of biological function by controlling the flow of spherical ions from one macroscopic region to another. Ion channels do not change their conformation on the biological time scale once they are open, so they can be described by a combination of Poisson and drift-diffusion (Nernst–Planck) equations called PNP in biophysics. We use singular perturbation techniques to analyse the steady-state PNP system for a channel with a general geometry and a piecewise constant permanent charge profile. We construct an outer solution for the case of a constant permanent charge density in three dimensions that is also a valid solution of the one-dimensional system. The asymptotical current–voltage (I–V ) characteristic curve of the device (obtained by the singular perturbation analysis) is shown to be a very good approximation of the numerical I–V curve (obtained by solving the system numerically). The physical constraint of non-negative concentrations implies a unique solution, i.e., for each given applied potential there corresponds a unique electric current (relaxing this constraint yields non-physical multiple solutions for sufficiently large voltages). PMID:19809600

  9. G-protein-coupled inwardly rectifying potassium channels are targets of alcohol action.

    PubMed

    Lewohl, J M; Wilson, W R; Mayfield, R D; Brozowski, S J; Morrisett, R A; Harris, R A

    1999-12-01

    G-protein-coupled inwardly rectifying potassium channels (GIRKs) are important for regulation of synaptic transmission and neuronal firing rates. Because of their key role in brain function, we asked if these potassium channels are targets of alcohol action. Ethanol enhanced function of cerebellar granule cell GIRKs coupled to GABAB receptors. Enhancement of GIRK function by ethanol was studied in detail using Xenopus oocytes expressing homomeric or heteromeric channels. Function of all GIRK channels was enhanced by intoxicating concentrations of ethanol, but other, related inwardly rectifying potassium channels were not affected. GIRK2/IRK1 chimeras and GIRK2 truncation mutants were used to identify a region of 43 amino acids in the carboxyl (C) terminus that is critical for the action of ethanol on these channels.

  10. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels.

    PubMed

    Sartiani, Laura; Mannaioni, Guido; Masi, Alessio; Novella Romanelli, Maria; Cerbai, Elisabetta

    2017-10-01

    Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Two-Photon Scanning Photochemical Microscopy: Mapping Ligand-Gated Ion Channel Distributions

    NASA Astrophysics Data System (ADS)

    Denk, Winfried

    1994-07-01

    The locations and densities of ionotropic membrane receptors, which are responsible for receiving synaptic transmission throughout the nervous system, are of prime importance in understanding the function of neural circuits. It is shown that the highly localized liberation of "caged" neurotransmitters by two-photon absorption-mediated photoactivation can be used in conjunction with recording the induced whole-cell current to determine the distribution of ligand-gated ion channels. The technique is potentially sensitive enough to detect individual channels with diffraction-limited spatial resolution. Images of the distribution of nicotinic acetylcholine receptors on cultured BC3H1 cells were obtained using a photoactivatable precursor of the nicotinic agonist carbamoylcholine.

  12. Diabetes Mellitus and Ischemic Heart Disease: The Role of Ion Channels

    PubMed Central

    D’Amato, Andrea; Netti, Lucrezia; Pucci, Mariateresa; De Marchis, Marialaura; Volterrani, Maurizio; Mancone, Massimo; Fedele, Francesco

    2018-01-01

    Diabetes mellitus is one the strongest risk factors for cardiovascular disease and, in particular, for ischemic heart disease (IHD). The pathophysiology of myocardial ischemia in diabetic patients is complex and not fully understood: some diabetic patients have mainly coronary stenosis obstructing blood flow to the myocardium; others present with coronary microvascular disease with an absence of plaques in the epicardial vessels. Ion channels acting in the cross-talk between the myocardial energy state and coronary blood flow may play a role in the pathophysiology of IHD in diabetic patients. In particular, some genetic variants for ATP-dependent potassium channels seem to be involved in the determinism of IHD. PMID:29534462

  13. Ion Implantation Doping of Inertial Confinement Fusion Targets

    DOE PAGES

    Shin, S. J.; Lee, J. R. I.; van Buuren, T.; ...

    2017-12-19

    Controlled doping of inertial confinement fusion (ICF) targets is needed to enable nuclear diagnostics of implosions. Here in this study, we demonstrate that ion implantation with a custom-designed carousel holder can be used for azimuthally uniform doping of ICF fuel capsules made from a glow discharge polymer (GDP). Particular emphasis is given to the selection of the initial wall thickness of GDP capsules as well as implantation and postimplantation annealing parameters in order to minimize capsule deformation during a postimplantation thermal treatment step. In contrast to GDP, ion-implanted high-density carbon exhibits excellent thermal stability and ~100% implantation efficiency for themore » entire range of ion doses studied (2 × 10 14 to 1 × 10 16 cm -2) and for annealing temperatures up to 700°C. Lastly, we demonstrate a successful doping of planar Al targets with isotopes of Kr and Xe to doses of ~10 17 cm -2.« less

  14. Ion Implantation Doping of Inertial Confinement Fusion Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, S. J.; Lee, J. R. I.; van Buuren, T.

    Controlled doping of inertial confinement fusion (ICF) targets is needed to enable nuclear diagnostics of implosions. Here in this study, we demonstrate that ion implantation with a custom-designed carousel holder can be used for azimuthally uniform doping of ICF fuel capsules made from a glow discharge polymer (GDP). Particular emphasis is given to the selection of the initial wall thickness of GDP capsules as well as implantation and postimplantation annealing parameters in order to minimize capsule deformation during a postimplantation thermal treatment step. In contrast to GDP, ion-implanted high-density carbon exhibits excellent thermal stability and ~100% implantation efficiency for themore » entire range of ion doses studied (2 × 10 14 to 1 × 10 16 cm -2) and for annealing temperatures up to 700°C. Lastly, we demonstrate a successful doping of planar Al targets with isotopes of Kr and Xe to doses of ~10 17 cm -2.« less

  15. Effect of Multivalent Ions on Electroosmotic Flow in Micro- and Nano-channels

    NASA Astrophysics Data System (ADS)

    Zheng, Zhi; Conlisk, A. Terrence

    2002-11-01

    In this work, the effect of multivalent ions on electroosmotic flow is investigated. Applications in biomedical engineering are numerous, including design of drug delivery systems, rapid molecular analysis and lab-on-a-chip. We specifically consider incorporating Ca^2+ and HPO4^2- and other monovalent ions, such as K^+ and H2PO4^-, into an aqueous NaCl solution. All previous work has been for the case where the mixture contains a pair of ionic species of equal valence. Electrochemical equilibrium considerations are used in determining the boundary conditions. The results can be applied to rectangular channels for which the height is on the nanometer scale up to the micrometer scale. The classical electroosmotic velocity profile is obtained at larger channel heights for fixed electrolyte concentration where an analytic solution for the velocity, potential and mole fractions may be obtained. The theory is valid for an arbitrary number of ionic species.

  16. Acid-sensing ion channels (ASICs) in the taste buds of adult zebrafish.

    PubMed

    Viña, E; Parisi, V; Cabo, R; Laurà, R; López-Velasco, S; López-Muñiz, A; García-Suárez, O; Germanà, A; Vega, J A

    2013-03-01

    In detecting chemical properties of food, different molecules and ion channels are involved including members of the acid-sensing ion channels (ASICs) family. Consistently ASICs are present in sensory cells of taste buds of mammals. In the present study the presence of ASICs (ASIC1, ASIC2, ASIC3 and ASIC4) was investigated in the taste buds of adult zebrafish (zASICs) using Western blot and immunohistochemistry. zASIC1 and zASIC3 were regularly absent from taste buds, whereas faint zASIC2 and robust zASIC4 immunoreactivities were detected in sensory cells. Moreover, zASIC2 also immunolabelled nerves supplying taste buds. The present results demonstrate for the first time the presence of zASICs in taste buds of teleosts, with different patterns to that occurring in mammals, probably due to the function of taste buds in aquatic environment and feeding. Nevertheless, the role of zASICs in taste remains to be demonstrated. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Computational Tools for Interpreting Ion Channel pH-Dependence.

    PubMed

    Sazanavets, Ivan; Warwicker, Jim

    2015-01-01

    Activity in many biological systems is mediated by pH, involving proton titratable groups with pKas in the relevant pH range. Experimental analysis of pH-dependence in proteins focusses on particular sidechains, often with mutagenesis of histidine, due to its pKa near to neutral pH. The key question for algorithms that predict pKas is whether they are sufficiently accurate to effectively narrow the search for molecular determinants of pH-dependence. Through analysis of inwardly rectifying potassium (Kir) channels and acid-sensing ion channels (ASICs), mutational effects on pH-dependence are probed, distinguishing between groups described as pH-coupled or pH-sensor. Whereas mutation can lead to a shift in transition pH between open and closed forms for either type of group, only for pH-sensor groups does mutation modulate the amplitude of the transition. It is shown that a hybrid Finite Difference Poisson-Boltzmann (FDPB) - Debye-Hückel continuum electrostatic model can filter mutation candidates, providing enrichment for key pH-coupled and pH-sensor residues in both ASICs and Kir channels, in comparison with application of FDPB alone.

  18. Ladder-Shaped Ion Channel Ligands: Current State of Knowledge

    PubMed Central

    Shmukler, Yuri B.; Nikishin, Denis A.

    2017-01-01

    Ciguatoxins (CTX) and brevetoxins (BTX) are polycyclic ethereal compounds biosynthesized by the worldwide distributed planktonic and epibenthic dinoflagellates of Gambierdiscus and Karenia genera, correspondingly. Ciguatera, evoked by CTXs, is a type of ichthyosarcotoxism, which involves a variety of gastrointestinal and neurological symptoms, while BTXs cause so-called neurotoxic shellfish poisoning. Both types of toxins are reviewed together because of similar mechanisms of their action. These are the only molecules known to activate voltage-sensitive Na+-channels in mammals through a specific interaction with site 5 of its α-subunit and may compete for it, which results in an increase in neuronal excitability, neurotransmitter release and impairment of synaptic vesicle recycling. Most marine ciguatoxins potentiate Nav channels, but a considerable number of them, such as gambierol and maitotoxin, have been shown to affect another ion channel. Although the extrinsic function of these toxins is probably associated with the function of a feeding deterrent, it was suggested that their intrinsic function is coupled with the regulation of photosynthesis via light-harvesting complex II and thioredoxin. Antagonistic effects of BTXs and brevenal may provide evidence of their participation as positive and negative regulators of this mechanism. PMID:28726749

  19. Computational Tools for Interpreting Ion Channel pH-Dependence

    PubMed Central

    Sazanavets, Ivan; Warwicker, Jim

    2015-01-01

    Activity in many biological systems is mediated by pH, involving proton titratable groups with pKas in the relevant pH range. Experimental analysis of pH-dependence in proteins focusses on particular sidechains, often with mutagenesis of histidine, due to its pKa near to neutral pH. The key question for algorithms that predict pKas is whether they are sufficiently accurate to effectively narrow the search for molecular determinants of pH-dependence. Through analysis of inwardly rectifying potassium (Kir) channels and acid-sensing ion channels (ASICs), mutational effects on pH-dependence are probed, distinguishing between groups described as pH-coupled or pH-sensor. Whereas mutation can lead to a shift in transition pH between open and closed forms for either type of group, only for pH-sensor groups does mutation modulate the amplitude of the transition. It is shown that a hybrid Finite Difference Poisson-Boltzmann (FDPB) – Debye-Hückel continuum electrostatic model can filter mutation candidates, providing enrichment for key pH-coupled and pH-sensor residues in both ASICs and Kir channels, in comparison with application of FDPB alone. PMID:25915903

  20. Ion acoustic wave assisted laser beat wave terahertz generation in a plasma channel

    NASA Astrophysics Data System (ADS)

    Tyagi, Yachna; Tripathi, Deepak; Walia, Keshav; Garg, Deepak

    2018-04-01

    Resonant excitation of terahertz (THz) radiation by non-linear mixing of two lasers in the presence of an electrostatic wave is investigated. The electrostatic wave assists in k matching and contributes to non-linear coupling. In this plasma channel, the electron plasma frequency becomes minimum on the axis. The beat frequency ponderomotive force imparts an oscillating velocity to the electrons. In the presence of an ion-acoustic wave, density perturbation due to the ion-acoustic wave couples with the oscillating velocity of the electrons and give rise to non-linear current that gives rise to an ion-acoustic wave frequency assisted THz radiation field. The normalized field amplitude of ion acoustic wave assisted THz varies inversely for ω/ωp . The field amplitude of ion acoustic wave assisted THz decreases as ω/ωp increases.

  1. Non-synaptic ion channels in insects--basic properties of currents and their modulation in neurons and skeletal muscles.

    PubMed

    Wicher, D; Walther, C; Wicher, C

    2001-08-01

    Insects are favoured objects for studying information processing in restricted neuronal networks, e.g. motor pattern generation or sensory perception. The analysis of the underlying processes requires knowledge of the electrical properties of the cells involved. These properties are determined by the expression pattern of ionic channels and by the regulation of their function, e.g. by neuromodulators. We here review the presently available knowledge on insect non-synaptic ion channels and ionic currents in neurons and skeletal muscles. The first part of this article covers genetic and structural informations, the localization of channels, their electrophysiological and pharmacological properties, and known effects of second messengers and modulators such as neuropeptides or biogenic amines. In a second part we describe in detail modulation of ionic currents in three particularly well investigated preparations, i.e. Drosophila photoreceptor, cockroach DUM (dorsal unpaired median) neuron and locust jumping muscle. Ion channel structures are almost exclusively known for the fruitfly Drosophila, and most of the information on their function has also been obtained in this animal, mainly based on mutational analysis and investigation of heterologously expressed channels. Now the entire genome of Drosophila has been sequenced, it seems almost completely known which types of channel genes--and how many of them--exist in this animal. There is much knowledge of the various types of channels formed by 6-transmembrane--spanning segments (6TM channels) including those where four 6TM domains are joined within one large protein (e.g. classical Na+ channel). In comparison, two TM channels and 4TM (or tandem) channels so far have hardly been explored. There are, however, various well characterized ionic conductances, e.g. for Ca2+, Cl- or K+, in other insect preparations for which the channels are not yet known. In some of the larger insects, i.e. bee, cockroach, locust and moth

  2. Transient Receptor Potential Channels as Targets for Phytochemicals

    PubMed Central

    2015-01-01

    To date, 28 mammalian transient receptor potential (TRP) channels have been cloned and characterized. They are grouped into six subfamilies on the basis of their amino acid sequence homology: TRP Ankyrin (TRPA), TRP Canonical (TRPC), TRP Melastatin (TRPM), TRP Mucolipin (TRPML), TRP Polycystin (TRPP), and TRP Vanilloid (TRPV). Most of the TRP channels are nonselective cation channels expressed on the cell membrane and exhibit variable permeability ratios for Ca2+ versus Na+. They mediate sensory functions (such as vision, nociception, taste transduction, temperature sensation, and pheromone signaling) and homeostatic functions (such as divalent cation flux, hormone release, and osmoregulation). Significant progress has been made in our understanding of the specific roles of these TRP channels and their activation mechanisms. In this Review, the emphasis will be on the activation of TRP channels by phytochemicals that are claimed to exert health benefits. Recent findings complement the anecdotal evidence that some of these phytochemicals have specific receptors and the activation of which is responsible for the physiological effects. Now, the targets for these phytochemicals are being unveiled; a specific hypothesis can be proposed and tested experimentally to infer a scientific validity of the claims of the health benefits. The broader and pressing issues that have to be addressed are related to the quantities of the active ingredients in a given preparation, their bioavailability, metabolism, adverse effects, excretion, and systemic versus local effects. PMID:24926802

  3. Mechanisms involved in the transport of mercuric ions in target tissues

    PubMed Central

    Bridges, Christy C.; Zalups, Rudolfs K.

    2016-01-01

    Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells. PMID:27422290

  4. Mutations in the voltage-sensing domain affect the alternative ion permeation pathway in the TRPM3 channel.

    PubMed

    Held, Katharina; Gruss, Fabian; Aloi, Vincenzo Davide; Janssens, Annelies; Ulens, Chris; Voets, Thomas; Vriens, Joris

    2018-03-31

    Mutagenesis at positively charged amino acids (arginines and lysines) (R1-R4) in the voltage-sensor domain (transmembrane segment (S) 4) of voltage-gated Na + , K + and Ca 2+ channels can lead to an alternative ion permeation pathway distinct from the central pore. Recently, a non-canonical ion permeation pathway was described in TRPM3, a member of the transient receptor potential (TRP) superfamily. The non-canonical pore exists in the native TRPM3 channel and can be activated by co-stimulation of the endogenous agonist pregnenolone sulphate and the antifungal drug clotrimazole or by stimulation of the synthetic agonist CIM0216. Alignment of the voltage sensor of Shaker K + channels with the entire TRPM3 sequence revealed the highest degree of similarity in the putative S4 region of TRPM3, and suggested that only one single gating charge arginine (R2) in the putative S4 region is conserved. Mutagenesis studies in the voltage-sensing domain of TRPM3 revealed several residues in the voltage sensor (S4) as well as in S1 and S3 that are crucial for the occurrence of the non-canonical inward currents. In conclusion, this study provides evidence for the involvement of the voltage-sensing domain of TRPM3 in the formation of an alternative ion permeation pathway. Transient receptor potential (TRP) channels are cationic channels involved in a broad array of functions, including homeostasis, motility and sensory functions. TRP channel subunits consist of six transmembrane segments (S1-S6), and form tetrameric channels with a central pore formed by the region encompassing S5 and S6. Recently, evidence was provided for the existence of an alternative ion permeation pathway in TRPM3, which allows large inward currents upon hyperpolarization independently of the central pore. However, very little knowledge is available concerning the localization of this alternative pathway in the native TRPM3 channel protein. Guided by sequence homology with Shaker K + channels, in which

  5. Macroscopic kinetics of pentameric ligand gated ion channels: comparisons between two prokaryotic channels and one eukaryotic channel.

    PubMed

    Laha, Kurt T; Ghosh, Borna; Czajkowski, Cynthia

    2013-01-01

    Electrochemical signaling in the brain depends on pentameric ligand-gated ion channels (pLGICs). Recently, crystal structures of prokaryotic pLGIC homologues from Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus (GLIC) in presumed closed and open channel states have been solved, which provide insight into the structural mechanisms underlying channel activation. Although structural studies involving both ELIC and GLIC have become numerous, thorough functional characterizations of these channels are still needed to establish a reliable foundation for comparing kinetic properties. Here, we examined the kinetics of ELIC and GLIC current activation, desensitization, and deactivation and compared them to the GABAA receptor, a prototypic eukaryotic pLGIC. Outside-out patch-clamp recordings were performed with HEK-293T cells expressing ELIC, GLIC, or α1β2γ2L GABAA receptors, and ultra-fast ligand application was used. In response to saturating agonist concentrations, we found both ELIC and GLIC current activation were two to three orders of magnitude slower than GABAA receptor current activation. The prokaryotic channels also had slower current desensitization on a timescale of seconds. ELIC and GLIC current deactivation following 25 s pulses of agonist (cysteamine and pH 4.0 buffer, respectively) were relatively fast with time constants of 24.9 ± 5.1 ms and 1.2 ± 0.2 ms, respectively. Surprisingly, ELIC currents evoked by GABA activated very slowly with a time constant of 1.3 ± 0.3 s and deactivated even slower with a time constant of 4.6 ± 1.2 s. We conclude that the prokaryotic pLGICs undergo similar agonist-mediated gating transitions to open and desensitized states as eukaryotic pLGICs, supporting their use as experimental models. Their uncharacteristic slow activation, slow desensitization and rapid deactivation time courses are likely due to differences in specific structural elements, whose future identification may help uncover mechanisms underlying p

  6. Functional Studies of Sodium Channels: From Target to Compound Identification.

    PubMed

    Bertrand, Daniel; Biton, Bruno; Licher, Thomas; Chambard, Jean-Marie; Lanneau, Christophe; Partiseti, Michel; Lefevre, Isabel A

    2016-12-13

    Over the last six decades, voltage-gated sodium (Na v ) channels have attracted a great deal of scientific and pharmaceutical interest, driving fundamental advances in both biology and technology. The structure and physiological function of these channels have been extensively studied; clinical and genetic data have uncovered their implication in diseases such as epilepsy, arrhythmias, and pain, bringing them into focus as current and future drug targets. While different techniques have been established to record the activity of Na v channels, proper determination of their properties still presents serious challenges, depending upon the experimental conditions and the desired subtype of channel to be characterized. The aim of this unit is to review the characteristics of Na v channels, their properties, the cells in which they can be studied, and the currently available techniques. Topics covered include the determination of Na v -channel biophysical properties as well as the use of toxins to discriminate between subtypes using electrophysiological or optical methods. Perspectives on the development of high-throughput screening assays with their advantages and limitations are also discussed to allow a better understanding of the challenges encountered in voltage-gated sodium channel preclinical drug discovery. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  7. Effective pore size and radius of capture for K+ ions in K-channels

    PubMed Central

    Moldenhauer, Hans; Díaz-Franulic, Ignacio; González-Nilo, Fernando; Naranjo, David

    2016-01-01

    Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (rE) in several K-channel crystal structures. rE was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent rE estimates for MthK and Kv1.2/2.1 structures, with rE = 5.3–5.9 Å and rE = 4.5–5.2 Å, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (rC) for two electrophysiological counterparts, the large conductance calcium activated K-channel (rC = 2.2 Å) and the Shaker Kv-channel (rC = 0.8 Å), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between rE and rC, produced consistent size radii of 3.1–3.7 Å and 3.6–4.4 Å for hydrated K+ ions. These hydrated K+ estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively. PMID:26831782

  8. Effective pore size and radius of capture for K(+) ions in K-channels.

    PubMed

    Moldenhauer, Hans; Díaz-Franulic, Ignacio; González-Nilo, Fernando; Naranjo, David

    2016-02-02

    Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (r(E)) in several K-channel crystal structures. r(E) was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent r(E) estimates for MthK and Kv1.2/2.1 structures, with r(E) = 5.3-5.9 Å and r(E) = 4.5-5.2 Å, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (r(C)) for two electrophysiological counterparts, the large conductance calcium activated K-channel (r(C) = 2.2 Å) and the Shaker Kv-channel (r(C) = 0.8 Å), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between r(E) and r(C), produced consistent size radii of 3.1-3.7 Å and 3.6-4.4 Å for hydrated K(+) ions. These hydrated K(+) estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively.

  9. Normal axonal ion channel function in large peripheral nerve fibers following chronic ciguatera sensitization.

    PubMed

    Vucic, Steve; Kiernan, Matthew C

    2008-03-01

    Although the acute clinical effects of ciguatera poisoning, due to ingestion of ciguatoxin, are mediated by activation of transient Na+ channels, the mechanisms underlying ciguatera sensitization remain undefined. Axonal excitability studies were performed by stimulating the median motor and sensory nerves in two patients with ciguatera sensitization. Excitability parameters were all within normal limits, thereby arguing against dysfunction of axonal membrane ion channels in large-diameter fibers in ciguatera sensitization.

  10. Prediction of Thorough QT study results using action potential simulations based on ion channel screens.

    PubMed

    Mirams, Gary R; Davies, Mark R; Brough, Stephen J; Bridgland-Taylor, Matthew H; Cui, Yi; Gavaghan, David J; Abi-Gerges, Najah

    2014-01-01

    Detection of drug-induced pro-arrhythmic risk is a primary concern for pharmaceutical companies and regulators. Increased risk is linked to prolongation of the QT interval on the body surface ECG. Recent studies have shown that multiple ion channel interactions can be required to predict changes in ventricular repolarisation and therefore QT intervals. In this study we attempt to predict the result of the human clinical Thorough QT (TQT) study, using multiple ion channel screening which is available early in drug development. Ion current reduction was measured, in the presence of marketed drugs which have had a TQT study, for channels encoded by hERG, CaV1.2, NaV1.5, KCNQ1/MinK, and Kv4.3/KChIP2.2. The screen was performed on two platforms - IonWorks Quattro (all 5 channels, 34 compounds), and IonWorks Barracuda (hERG & CaV1.2, 26 compounds). Concentration-effect curves were fitted to the resulting data, and used to calculate a percentage reduction in each current at a given concentration. Action potential simulations were then performed using the ten Tusscher and Panfilov (2006), Grandi et al. (2010) and O'Hara et al. (2011) human ventricular action potential models, pacing at 1Hz and running to steady state, for a range of concentrations. We compared simulated action potential duration predictions with the QT prolongation observed in the TQT studies. At the estimated concentrations, simulations tended to underestimate any observed QT prolongation. When considering a wider range of concentrations, and conventional patch clamp rather than screening data for hERG, prolongation of ≥5ms was predicted with up to 79% sensitivity and 100% specificity. This study provides a proof-of-principle for the prediction of human TQT study results using data available early in drug development. We highlight a number of areas that need refinement to improve the method's predictive power, but the results suggest that such approaches will provide a useful tool in cardiac safety

  11. Boosting the signal: Endothelial inward rectifier K+ channels.

    PubMed

    Jackson, William F

    2017-04-01

    Endothelial cells express a diverse array of ion channels including members of the strong inward rectifier family composed of K IR 2 subunits. These two-membrane spanning domain channels are modulated by their lipid environment, and exist in macromolecular signaling complexes with receptors, protein kinases and other ion channels. Inward rectifier K + channel (K IR ) currents display a region of negative slope conductance at membrane potentials positive to the K + equilibrium potential that allows outward current through the channels to be activated by membrane hyperpolarization, permitting K IR to amplify hyperpolarization induced by other K + channels and ion transporters. Increases in extracellular K + concentration activate K IR allowing them to sense extracellular K + concentration and transduce this change into membrane hyperpolarization. These properties position K IR to participate in the mechanism of action of hyperpolarizing vasodilators and contribute to cell-cell conduction of hyperpolarization along the wall of microvessels. The expression of K IR in capillaries in electrically active tissues may allow K IR to sense extracellular K + , contributing to functional hyperemia. Understanding the regulation of expression and function of microvascular endothelial K IR will improve our understanding of the control of blood flow in the microcirculation in health and disease and may provide new targets for the development of therapeutics in the future. © 2016 John Wiley & Sons Ltd.

  12. Structure of the TRPV1 ion channel determined by electron cryo-microscopy.

    PubMed

    Liao, Maofu; Cao, Erhu; Julius, David; Cheng, Yifan

    2013-12-05

    Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4 Å resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane segments 5-6 (S5-S6) and the intervening pore loop, which is flanked by S1-S4 voltage-sensor-like domains. TRPV1 has a wide extracellular 'mouth' with a short selectivity filter. The conserved 'TRP domain' interacts with the S4-S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including amino-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function.

  13. Structure of the TRPV1 ion channel determined by electron cryo-microscopy

    PubMed Central

    Liao, Maofu; Cao, Erhu; Julius, David; Cheng, Yifan

    2014-01-01

    Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here, we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4Å resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane helices S5–S6 and the intervening pore loop, which is flanked by S1–S4 voltage sensor-like domains. TRPV1 has a wide extracellular ‘mouth’ with short selectivity filter. The conserved ‘TRP domain’ interacts with the S4–S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including N-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function. PMID:24305160

  14. Acid-sensing ion channels in mouse olfactory bulb M/T neurons

    PubMed Central

    Li, Ming-Hua; Liu, Selina Qiuying; Inoue, Koichi; Lan, Jinquan; Simon, Roger P.

    2014-01-01

    The olfactory bulb contains the first synaptic relay in the olfactory pathway, the sensory system in which odorants are detected enabling these chemical stimuli to be transformed into electrical signals and, ultimately, the perception of odor. Acid-sensing ion channels (ASICs), a family of proton-gated cation channels, are widely expressed in neurons of the central nervous system. However, no direct electrophysiological and pharmacological characterizations of ASICs in olfactory bulb neurons have been described. Using a combination of whole-cell patch-clamp recordings and biochemical and molecular biological analyses, we demonstrated that functional ASICs exist in mouse olfactory bulb mitral/tufted (M/T) neurons and mainly consist of homomeric ASIC1a and heteromeric ASIC1a/2a channels. ASIC activation depolarized cultured M/T neurons and increased their intracellular calcium concentration. Thus, ASIC activation may play an important role in normal olfactory function. PMID:24821964

  15. Reversal of Ion Charge Selectivity Renders the Pentameric Ligand-Gated Ion Channel GLIC Insensitive to Anesthetics

    PubMed Central

    Tillman, Tommy; Cheng, Mary H.; Chen, Qiang; Tang, Pei; Xu, Yan

    2014-01-01

    Pentameric ligand gated ion channels (pLGICs) are a family of structurally homologous cationic and anionic channels involved in neurotransmission. Cationic members of the pLGIC family are typically inhibited by general anesthetics, while anionic members are potentiated. GLIC is a prokaryotic cationic pLGIC and can be inhibited by clinical concentrations of general anesthetics. The introduction of three mutations, Y221A (Y–3′A), E222P (E–2′P) and N224R (N0′R), at the selectivity filter and one, A237T (A13′T), at the hydrophobic gate, converted GLIC to an anion channel. The mutated GLIC (GLIC4) became insensitive to the anesthetics propofol and etomidate as well as the channel blocker picrotoxin. Molecular dynamics (MD) simulations revealed changes in the structure and dynamics of GLIC4 in comparison to GLIC, particularly in the tilting angles of the pore-lining helix (TM2) that consequently resulted in different pore radius and hydration profiles. Propofol binding to an intra-subunit site of GLIC shifted the tilting angles of TM2 towards closure at the hydrophobic gate region, consistent with propofol inhibition of GLIC. In contrast, the pore of GLIC4 was much more resilient to perturbation from propofol binding. This study underscores the importance of pore dynamics and conformation to anesthetic effects on channel functions. PMID:22978431

  16. Influence of proline position upon the ion channel activity of alamethicin.

    PubMed Central

    Kaduk, C; Duclohier, H; Dathe, M; Wenschuh, H; Beyermann, M; Molle, G; Bienert, M

    1997-01-01

    Alamethicin, a 20-residue peptaibol, induces voltage-dependent ion channels in lipid bilayers according to the barrel-stave model. To study relationships between the proline-14-induced kink region and the channel-forming behavior of the peptide, a set of alamethicin analogs with proline incorporated at positions 11, 12, 13, 14, 15, 16, and 17, respectively, as well as an analog with alanine instead of proline at position 14 were synthesized. Macroscopic conductance experiments show that the voltage dependence of the peptides is conserved although slightly influenced, but the apparent mean number of monomers forming the channels is significantly reduced when proline is not located at position 14. This is confirmed in single-channel experiments. The analogs with proline next to position 14 (i.e., 13, 15, 16) show stable conductance levels, but of reduced number, which follows the order Alam-P14 > Alam-P15 > Alam-P16 > Alam-P13. This reduction in the number of levels is connected with changes in the lifetime of the channels. Analogs with proline at position 11, 12, or 17 produce erratic, extremely short-lived current events that could not be resolved. The changes in functional properties are related to structural properties as probed by circular dichroism. The results indicate that proline at position 14 results in optimal channel activity, whereas channels formed by the analogs bearing proline at different positions are considerably less stable. PMID:9129817

  17. Plant 14-3-3 proteins assist ion channels and pumps.

    PubMed

    de Boer, A H

    2002-08-01

    Turgor pressure is a cellular parameter, important for a range of physiological processes in plants, like cell elongation, gas exchange and gravitropic/phototropic bending. Regulation of turgor pressure involves ion and water transport at the expense of metabolic energy (ATP). The primary pump in the plasma membrane (the H(+)-ATPase) is a key player in turgor regulation since it provides the driving force for ion uptake, followed by water influx through osmosis. Using the phytotoxin fusicoccin (a well-known activator of the ATPase) as a tool, 14-3-3 proteins were identified as regulators of the H(+)-ATPase. Since fusicoccin has a dramatic effect on K(+) accumulation and cellular respiration as well, we studied whether 14-3-3 proteins play a role in the regulation of the mitochondrial F(0)F(1)-ATP synthase and ion channels in the vacuolar and plasma membranes. Besides the plasma membrane H(+)-ATPase, we have identified thus far at least four other transport proteins that are regulated by 14-3-3 proteins. The mechanism of regulation will be described and the possibility that 14-3-3 proteins act as coordinators of ion transporters with varied but interdependent functions will be discussed.

  18. A Close-Coupled, Heavy Ion ICF Target

    NASA Astrophysics Data System (ADS)

    Callahan-Miller, Debra A.; Tabak, Max

    1998-11-01

    A ``close-coupled'' version of the distributed radiator, heavy ion ICF target has produced gain > 130 from 3.1 MJ of ion beam energy. To achieve these results, we reduced the hohlraum dimensions by 27% from our previous designs(M. Tabak, D. Callahan-Miller, D. D.-M. Ho, G. B. Zimmerman, Nuc. Fusion, 38, 509 (1998)) (M. Tabak, D. A. Callahan-Miller, Phys. Plasmas, 5, 1895 (1998).) while driving the same capsule. This reduced the beam energy required from 5.9-6.5 MJ to 3.1 MJ. The smaller hohlraum resulted in a smaller beam spot; elliptically shaped beams with effective radius 1.7 mm were used in this design. In addition to describing this target, we will discuss the effect of the close-coupled hohlraum on the Rayleigh-Taylor instability and scaling this design down to 1.5-2 MJ for an ETF (Engineering Test Facility).

  19. Oxidative Modulation of Voltage-Gated Potassium Channels

    PubMed Central

    Sahoo, Nirakar; Hoshi, Toshinori

    2014-01-01

    Abstract Significance: Voltage-gated K+ channels are a large family of K+-selective ion channel protein complexes that open on membrane depolarization. These K+ channels are expressed in diverse tissues and their function is vital for numerous physiological processes, in particular of neurons and muscle cells. Potentially reversible oxidative regulation of voltage-gated K+ channels by reactive species such as reactive oxygen species (ROS) represents a contributing mechanism of normal cellular plasticity and may play important roles in diverse pathologies including neurodegenerative diseases. Recent Advances: Studies using various protocols of oxidative modification, site-directed mutagenesis, and structural and kinetic modeling provide a broader phenomenology and emerging mechanistic insights. Critical Issues: Physicochemical mechanisms of the functional consequences of oxidative modifications of voltage-gated K+ channels are only beginning to be revealed. In vivo documentation of oxidative modifications of specific amino-acid residues of various voltage-gated K+ channel proteins, including the target specificity issue, is largely absent. Future Directions: High-resolution chemical and proteomic analysis of ion channel proteins with respect to oxidative modification combined with ongoing studies on channel structure and function will provide a better understanding of how the function of voltage-gated K+ channels is tuned by ROS and the corresponding reducing enzymes to meet cellular needs. Antioxid. Redox Signal. 21, 933–952. PMID:24040918

  20. Revealing dynamically-organized receptor ion channel clusters in live cells by a correlated electric recording and super-resolution single-molecule imaging approach.

    PubMed

    Yadav, Rajeev; Lu, H Peter

    2018-03-28

    The N-methyl-d-aspartate (NMDA) receptor ion-channel is activated by the binding of ligands, along with the application of action potential, important for synaptic transmission and memory functions. Despite substantial knowledge of the structure and function, the gating mechanism of the NMDA receptor ion channel for electric on-off signals is still a topic of debate. We investigate the NMDA receptor partition distribution and the associated channel's open-close electric signal trajectories using a combined approach of correlating single-molecule fluorescence photo-bleaching, single-molecule super-resolution imaging, and single-channel electric patch-clamp recording. Identifying the compositions of NMDA receptors, their spatial organization and distributions over live cell membranes, we observe that NMDA receptors are organized inhomogeneously: nearly half of the receptor proteins are individually dispersed; whereas others exist in heterogeneous clusters of around 50 nm in size as well as co-localized within the diffraction limited imaging area. We demonstrate that inhomogeneous interactions and partitions of the NMDA receptors can be a cause of the heterogeneous gating mechanism of NMDA receptors in living cells. Furthermore, comparing the imaging results with the ion-channel electric current recording, we propose that the clustered NMDA receptors may be responsible for the variation in the current amplitude observed in the on-off two-state ion-channel electric signal trajectories. Our findings shed new light on the fundamental structure-function mechanism of NMDA receptors and present a conceptual advancement of the ion-channel mechanism in living cells.

  1. Extraction of highly charged ions from the Berlin Electron Beam Ion Trap for interactions with a gas target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, F.I.; Biedermann, C.; Radtke, R.

    2006-03-15

    Highly charged ions are extracted from the Berlin Electron Beam Ion Trap for investigations of charge exchange with a gas target. The classical over-the-barrier model for slow highly charged ions describes this process, whereby one or more electrons are captured from the target into Rydberg states of the ion. The excited state relaxes via a radiative cascade of the electron to ground energy. The cascade spectra are characteristic of the capture state. We investigate x-ray photons emitted as a result of interactions between Ar{sup 17+} ions at energies {<=}5q keV with Ar atoms. Of particular interest is the velocity dependencemore » of the angular momentum capture state l{sub c}.« less

  2. Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics.

    PubMed

    Cervera, Javier; Alcaraz, Antonio; Mafe, Salvador

    2016-02-04

    Bioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects in small multicellular ensembles, ignoring slow diffusional processes. The spatio-temporal patterns obtained for the local map of cell electric potentials illustrate the normalization of regions with abnormal cell electrical states. The effects of intercellular coupling and blocking of specific channels on the electrical patterns are described. These patterns can regulate the electrically-induced redistribution of charged nanoparticles over small regions of a model tissue. The inclusion of bioelectrical signals provides new insights for the modeling of cancer biophysics because collective multicellular states show electrical coupling mechanisms that are not readily deduced from biochemical descriptions at the individual cell level.

  3. Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics

    PubMed Central

    Cervera, Javier; Alcaraz, Antonio; Mafe, Salvador

    2016-01-01

    Bioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects in small multicellular ensembles, ignoring slow diffusional processes. The spatio-temporal patterns obtained for the local map of cell electric potentials illustrate the normalization of regions with abnormal cell electrical states. The effects of intercellular coupling and blocking of specific channels on the electrical patterns are described. These patterns can regulate the electrically-induced redistribution of charged nanoparticles over small regions of a model tissue. The inclusion of bioelectrical signals provides new insights for the modeling of cancer biophysics because collective multicellular states show electrical coupling mechanisms that are not readily deduced from biochemical descriptions at the individual cell level. PMID:26841954

  4. Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics

    NASA Astrophysics Data System (ADS)

    Cervera, Javier; Alcaraz, Antonio; Mafe, Salvador

    2016-02-01

    Bioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects in small multicellular ensembles, ignoring slow diffusional processes. The spatio-temporal patterns obtained for the local map of cell electric potentials illustrate the normalization of regions with abnormal cell electrical states. The effects of intercellular coupling and blocking of specific channels on the electrical patterns are described. These patterns can regulate the electrically-induced redistribution of charged nanoparticles over small regions of a model tissue. The inclusion of bioelectrical signals provides new insights for the modeling of cancer biophysics because collective multicellular states show electrical coupling mechanisms that are not readily deduced from biochemical descriptions at the individual cell level.

  5. Structure of the TRPA1 ion channel suggests regulatory mechanisms.

    PubMed

    Paulsen, Candice E; Armache, Jean-Paul; Gao, Yuan; Cheng, Yifan; Julius, David

    2015-04-23

    The TRPA1 ion channel (also known as the wasabi receptor) is a detector of noxious chemical agents encountered in our environment or produced endogenously during tissue injury or drug metabolism. These include a broad class of electrophiles that activate the channel through covalent protein modification. TRPA1 antagonists hold potential for treating neurogenic inflammatory conditions provoked or exacerbated by irritant exposure. Despite compelling reasons to understand TRPA1 function, structural mechanisms underlying channel regulation remain obscure. Here we use single-particle electron cryo- microscopy to determine the structure of full-length human TRPA1 to ∼4 Å resolution in the presence of pharmacophores, including a potent antagonist. Several unexpected features are revealed, including an extensive coiled-coil assembly domain stabilized by polyphosphate co-factors and a highly integrated nexus that converges on an unpredicted transient receptor potential (TRP)-like allosteric domain. These findings provide new insights into the mechanisms of TRPA1 regulation, and establish a blueprint for structure-based design of analgesic and anti-inflammatory agents.

  6. Structure of the TRPA1 ion channel suggests regulatory mechanisms

    PubMed Central

    Paulsen, Candice E.; Armache, Jean-Paul; Gao, Yuan; Cheng, Yifan; Julius, David

    2015-01-01

    The TRPA1 ion channel (a.k.a the ‘wasabi receptor’) is a detector of noxious chemical agents encountered in our environment or produced endogenously during tissue injury or drug metabolism. These include a broad class of electrophiles that activate the channel through covalent protein modification. TRPA1 antagonists hold potential for treating neurogenic inflammatory conditions provoked or exacerbated by irritant exposure. Despite compelling reasons to understand TRPA1 function, structural mechanisms underlying channel regulation remain obscure. Here, we use single-particle electron cryo-microscopy to determine the structure of full-length human TRPA1 to ~4Å resolution in the presence of pharmacophores, including a potent antagonist. A number of unexpected features are revealed, including an extensive coiled-coil assembly domain stabilized by polyphosphate co-factors and a highly integrated nexus that converges on an unpredicted TRP-like allosteric domain. These findings provide novel insights into mechanisms of TRPA1 regulation, and establish a blueprint for structure-based design of analgesic and anti-inflammatory agents. PMID:25855297

  7. Receptor for protons: First observations on Acid Sensing Ion Channels.

    PubMed

    Krishtal, Oleg

    2015-07-01

    The history of ASICs began in 1980 with unexpected observation. The concept of highly selective Na(+) current gated by specific receptors for protons was not easily accepted. It took 16 years to get these receptor/channels cloned and start a new stage in their investigation. "The receptor for protons" became ASIC comprising under this name a family of receptor/channels ubiquitous for mammalian nervous system, both peripheral and central. The role of ASICs as putative nociceptors was suggested almost immediately after their discovery. This role subsequently was proven in many forms of pain-related phenomena. Many other functions of ASICs have been also found or primed for speculations both in physiology and in disease. Despite the width of field and strength of efforts, numerous basic questions are to be answered before we understand how the local changes in pH in the nervous tissue transform into electric and messenger signaling via ASICs as transducers. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'. Copyright © 2015. Published by Elsevier Ltd.

  8. Touch, Tension, and Transduction - The Function and Regulation of Piezo Ion Channels.

    PubMed

    Wu, Jason; Lewis, Amanda H; Grandl, Jörg

    2017-01-01

    In 2010, two proteins, Piezo1 and Piezo2, were identified as the long-sought molecular carriers of an excitatory mechanically activated current found in many cells. This discovery has opened the floodgates for studying a vast number of mechanotransduction processes. Over the past 6 years, groundbreaking research has identified Piezos as ion channels that sense light touch, proprioception, and vascular blood flow, ruled out roles for Piezos in several other mechanotransduction processes, and revealed the basic structural and functional properties of the channel. Here, we review these findings and discuss the many aspects of Piezo function that remain mysterious, including how Piezos convert a variety of mechanical stimuli into channel activation and subsequent inactivation, and what molecules and mechanisms modulate Piezo function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Beam production of a laser ion source with a rotating hollow cylinder target for low energy positive and negative ions

    NASA Astrophysics Data System (ADS)

    Saquilayan, G. Q.; Wada, M.

    2017-08-01

    A laser ion source that utilizes a hollow cylinder target is being developed for the production of positive and negative ions. Continuous operation of the laser ion source is possible through the design of a rotating target. Ion extraction through a grounded circular aperture was tested for positive and negative ions up to 1 kV. Time-of-flight measurements for the mass separation of ions were made by placing a Faraday cup at locations 0 and 15 mm from the beam extraction axis. Signals corresponding to slow and massive ions were detected with mass at least 380 amu. Investigation on the beam profile suggests a geometrical optimization of the beam forming system is necessary.

  10. General Anesthetics Have Additive Actions on Three Ligand-Gated Ion Channels

    PubMed Central

    Jenkins, Andrew; Lobo, Ingrid A.; Gong, Diane; Trudell, James R.; Solt, Ken; Harris, R. Adron; Eger, Edmond I

    2008-01-01

    Background The purpose of this study was to determine whether pairs of compounds, including general anesthetics, could simultaneously modulate receptor function in a synergistic manner, thus demonstrating the existence of multiple intra-protein anesthetic binding sites. Methods Using standard electrophysiologic methods, we measured the effects of at least one combination of benzene, isoflurane, halothane, chloroform, flunitrazepam, zinc and pentobarbital on at least one of the following ligand gated ion channels: N-methyl-D-aspartate receptors (NMDARs), glycine receptors (GlyRs) and γ-aminobutyric acid type A receptors (GABAARs). Results All drug-drug-receptor combinations were found to exhibit additive, not synergistic modulation. Isoflurane with benzene additively depressed NMDAR function. Isoflurane with halothane additively enhanced GlyR function, as did isoflurane with zinc. Isoflurane with halothane additively enhanced GABAAR function as did all of the following: halothane with chloroform, pentobarbital with isoflurane, and flunitrazepam with isoflurane. Conclusions The simultaneous allosteric modulation of ligand gated ion channels by general anesthetics is entirely additive. Where pairs of general anesthetic drugs interact synergistically to produce general anesthesia, they must do so on systems more complex than a single receptor. PMID:18633027

  11. Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels

    NASA Astrophysics Data System (ADS)

    Lau, Carus H. Y.; King, Glenn F.; Mobli, Mehdi

    2016-09-01

    Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding to the VSDs of voltage-gated channels and trapping them in a closed or open state. To understand the molecular basis underlying this mode of action, we used nuclear magnetic resonance to delineate the atomic details of the interaction between the VSD of the voltage-gated potassium channel KvAP and the spider-venom peptide VSTx1. Our data reveal that the toxin interacts with residues in an aqueous cleft formed between the extracellular S1-S2 and S3-S4 loops of the VSD whilst maintaining lipid interactions in the gaps formed between the S1-S4 and S2-S3 helices. The resulting network of interactions increases the energetic barrier to the conformational changes required for channel gating, and we propose that this is the mechanism by which gating modifier toxins inhibit voltage-gated ion channels.

  12. Acidosis counteracts itch tachyphylaxis to consecutive pruritogen exposure dependent on acid-sensing ion channel 3.

    PubMed

    Jiang, Yi-Ming; Huang, Chen; Peng, Zhong; Han, Shao-Ling; Li, Wei-Guang; Zhu, Michael Xi; Xu, Tian-Le

    2017-01-01

    Tachyphylaxis of itch refers to a markedly reduced scratching response to consecutive exposures of a pruritogen, a process thought to protect against tissue damage by incessant scratching and to become disrupted in chronic itch. Here, we report that a strong stimulation of the Mas-related G-protein-coupled receptor C11 by its agonist, Ser-Leu-Ile-Gly-Arg-Leu-NH 2 (SL-NH 2 ) or bovine adrenal medulla 8-22 peptide, via subcutaneous injection in mice induces tachyphylaxis to the subsequent application of SL-NH 2 to the same site. Notably, co-application of acid and SL-NH 2 following the initial injection of the pruritogen alone counteracted itch tachyphylaxis by augmenting the scratching behaviors in wild-type but not in acid-sensing ion channel 3-null, animals. Using an activity-dependent silencing strategy, we identified that acid-sensing ion channel 3-mediated itch enhancement mainly occurred via the Mas-related G-protein-coupled receptor C11-responsive sensory neurons. Together, our results indicate that acid-sensing ion channel 3, activated by concomitant acid and certain pruritogens, constitute a novel signaling pathway that counteracts itch tachyphylaxis to successive pruritogenic stimulation, which likely contributes to chronic itch associated with tissue acidosis.

  13. Acidosis counteracts itch tachyphylaxis to consecutive pruritogen exposure dependent on acid-sensing ion channel 3

    PubMed Central

    Jiang, Yi-Ming; Huang, Chen; Peng, Zhong; Han, Shao-Ling; Li, Wei-Guang; Zhu, Michael Xi; Xu, Tian-Le

    2017-01-01

    Tachyphylaxis of itch refers to a markedly reduced scratching response to consecutive exposures of a pruritogen, a process thought to protect against tissue damage by incessant scratching and to become disrupted in chronic itch. Here, we report that a strong stimulation of the Mas-related G-protein-coupled receptor C11 by its agonist, Ser-Leu-Ile-Gly-Arg-Leu-NH2 (SL-NH2) or bovine adrenal medulla 8-22 peptide, via subcutaneous injection in mice induces tachyphylaxis to the subsequent application of SL-NH2 to the same site. Notably, co-application of acid and SL-NH2 following the initial injection of the pruritogen alone counteracted itch tachyphylaxis by augmenting the scratching behaviors in wild-type but not in acid-sensing ion channel 3-null, animals. Using an activity-dependent silencing strategy, we identified that acid-sensing ion channel 3-mediated itch enhancement mainly occurred via the Mas-related G-protein-coupled receptor C11-responsive sensory neurons. Together, our results indicate that acid-sensing ion channel 3, activated by concomitant acid and certain pruritogens, constitute a novel signaling pathway that counteracts itch tachyphylaxis to successive pruritogenic stimulation, which likely contributes to chronic itch associated with tissue acidosis. PMID:28745101

  14. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins.

    PubMed

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-07-02

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel's ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators.

  15. Reduction of perifusate magnesium alters inotropic response of papillary muscle to ion channel modulators.

    PubMed

    Manju, L; Nair, R Renuka

    2005-09-01

    Magnesium has a significant role in the regulation of ion transport. Marginal deficiency of Mg can therefore affect myocardial excitability and contractility. This study was taken up with the objective of examining the inotropic response of the myocardium to variation in extracellular [Mg]o and identifying the ion channels and pumps mediating the inotropic changes. Electrically stimulated rat papillary muscle was used as the experimental model and mechanical changes were recorded using a physiograph. Channel specific antagonists were used to identify the channels mediating the functional changes. Diastolic Ca2+ levels were determined in isolated myocytes by the ratiometric method using the fluorescent indicator Fura2-AM. A negative association was observed between the level of [Mg]o and force of contraction, with a peak at 0.48 mM Mg. The force of contraction in Mg deficient medium (0.48 mM) was 158% of control (1.2 mM Mg) (p < 0.001). Inotropic response to the L-type channel antagonist (verapamil-1 microm) and NaK ATPase inhibitor (Ouabain-0.3 mM) was augmented in Mg deficiency (p < 0.005), indicating activation of the channel and the pump. The response to T-type channel inhibitor (NiCl2-40 microM) was attenuated in Mg deficiency (p < 0.05). The response to the sarcoplasmic reticular Ca pump inhibitor (caffeine-10 mM) and the SR Ca2+ release channel inhibitor (ryanodine-1 microM) were not significantly affected by Mg deficiency. Diastolic level of Ca2+ increased with a decrease in Mg (p < 0.05). The observations of the study lead to the conclusion that the positive inotropic response in Mg deficiency is mediated by an increase in basal Ca2+ combined with Ca-induced-Ca release consequent to Ca2+ influx through L-type Ca channel. Variation in sensitivity to Ca channel blockers and NaK ATPase inhibitor in Mg deficiency can have pharmacological implications.

  16. Thin and thick targets for radioactive ion beam production at SPIRAL1 facility

    NASA Astrophysics Data System (ADS)

    Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Kuchi, V.; Maunoury, L.

    2018-05-01

    The upgrade of the Système de Production d'Ions Radioactifs Accélérés en Ligne (SPIRAL1) facility will deliver its new Radioactive Ion Beams (RIB) by summer 2017. The goal of the upgrade is an improvement of the performances of the installation in terms of isotopes species and ion charge states [1]. Ion beams are produced using the Isotope Separator On Line Method, consisting in an association of a primary beam of stable ions, a hot target and an ion source. The primary beam impinges on the material of the target. Radioactive isotopes are produced by nuclear reactions and propagate up to the source, where they are ionized and accelerated to create a RIB. One advantage of SPIRAL1 driver is the variety of its available primary beams, from carbon to uranium with energies up to 95 MeV/A. Within the SPIRAL1 upgrade, they will be combined with targets made of a large choice of materials, extending in this way the number of possible nuclear reactions (fusion-evaporation, transfer, fragmentation) for producing a wider range of isotopes, up to regions of the nuclide chart still scarcely explored. Depending on the reaction process, on the collision energy and on the primary beam power, thin and thick targets are used. As their functions can be different, their design must cope with specific constraints which will be described. After a presentation of the goals of present and future SPIRAL1 Target Ion Source System, the main target features, studies and designs under progress are presented.

  17. Placing Ion Channels into a Signaling Network of T Cells: From Maturing Thymocytes to Healthy T Lymphocytes or Leukemic T Lymphoblasts

    PubMed Central

    Delgado-Enciso, Iván; Best-Aguilera, Carlos; Rojas-Sotelo, Rocío Monserrat; Pottosin, Igor

    2015-01-01

    T leukemogenesis is a multistep process, where the genetic errors during T cell maturation cause the healthy progenitor to convert into the leukemic precursor that lost its ability to differentiate but possesses high potential for proliferation, self-renewal, and migration. A new misdirecting “leukemogenic” signaling network appears, composed by three types of participants which are encoded by (1) genes implicated in determined stages of T cell development but deregulated by translocations or mutations, (2) genes which normally do not participate in T cell development but are upregulated, and (3) nondifferentially expressed genes which become highly interconnected with genes expressed differentially. It appears that each of three groups may contain genes coding ion channels. In T cells, ion channels are implicated in regulation of cell cycle progression, differentiation, activation, migration, and cell death. In the present review we are going to reveal a relationship between different genetic defects, which drive the T cell neoplasias, with calcium signaling and ion channels. We suggest that changes in regulation of various ion channels in different types of the T leukemias may provide the intracellular ion microenvironment favorable to maintain self-renewal capacity, arrest differentiation, induce proliferation, and enhance motility. PMID:25866806

  18. Activation of mutated TRPA1 ion channel by resveratrol in human prostate cancer associated fibroblasts (CAF).

    PubMed

    Vancauwenberghe, Eric; Noyer, Lucile; Derouiche, Sandra; Lemonnier, Loïc; Gosset, Pierre; Sadofsky, Laura R; Mariot, Pascal; Warnier, Marine; Bokhobza, Alexandre; Slomianny, Christian; Mauroy, Brigitte; Bonnal, Jean-Louis; Dewailly, Etienne; Delcourt, Philippe; Allart, Laurent; Desruelles, Emilie; Prevarskaya, Natalia; Roudbaraki, Morad

    2017-08-01

    Previous studies showed the effects of resveratrol (RES) on several cancer cells, including prostate cancer (PCa) cell apoptosis without taking into consideration the impact of the tumor microenvironment (TME). The TME is composed of cancer cells, endothelial cells, blood cells, and cancer-associated fibroblasts (CAF), the main source of growth factors. The latter cells might modify in the TME the impact of RES on tumor cells via secreted factors. Recent data clearly show the impact of CAF on cancer cells apoptosis resistance via secreted factors. However, the effects of RES on PCa CAF have not been studied so far. We have investigated here for the first time the effects of RES on the physiology of PCa CAF in the context of TME. Using a prostate cancer CAF cell line and primary cultures of CAF from prostate cancers, we show that RES activates the N-terminal mutated Transient Receptor Potential Ankyrin 1 (TRPA1) channel leading to an increase in intracellular calcium concentration and the expression and secretion of growth factors (HGF and VEGF) without inducing apoptosis in these cells. Interestingly, in the present work, we also show that when the prostate cancer cells were co-cultured with CAF, the RES-induced cancer cell apoptosis was reduced by 40%, an apoptosis reduction canceled in the presence of the TRPA1 channel inhibitors. The present work highlights CAF TRPA1 ion channels as a target for RES and the importance of the channel in the epithelial-stromal crosstalk in the TME leading to resistance to the RES-induced apoptosis. © 2017 Wiley Periodicals, Inc.

  19. Dual Ion Species Plasma Expansion from Isotopically Layered Cryogenic Targets

    NASA Astrophysics Data System (ADS)

    Scott, G. G.; Carroll, D. C.; Astbury, S.; Clarke, R. J.; Hernandez-Gomez, C.; King, M.; Alejo, A.; Arteaga, I. Y.; Dance, R. J.; Higginson, A.; Hook, S.; Liao, G.; Liu, H.; Mirfayzi, S. R.; Rusby, D. R.; Selwood, M. P.; Spindloe, C.; Tolley, M. K.; Wagner, F.; Zemaityte, E.; Borghesi, M.; Kar, S.; Li, Y.; Roth, M.; McKenna, P.; Neely, D.

    2018-05-01

    A dual ion species plasma expansion scheme from a novel target structure is introduced, in which a nanometer-thick layer of pure deuterium exists as a buffer species at the target-vacuum interface of a hydrogen plasma. Modeling shows that by controlling the deuterium layer thickness, a composite H+/D+ ion beam can be produced by target normal sheath acceleration (TNSA), with an adjustable ratio of ion densities, as high energy proton acceleration is suppressed by the acceleration of a spectrally peaked deuteron beam. Particle in cell modeling shows that a (4.3 ±0.7 ) MeV per nucleon deuteron beam is accelerated, in a directional cone of half angle 9°. Experimentally, this was investigated using state of the art cryogenic targetry and a spectrally peaked deuteron beam of (3.4 ±0.7 ) MeV per nucleon was measured in a cone of half angle 7°-9°, while maintaining a significant TNSA proton component.

  20. Development of target ion source systems for radioactive beams at GANIL

    NASA Astrophysics Data System (ADS)

    Bajeat, O.; Delahaye, P.; Couratin, C.; Dubois, M.; Franberg-Delahaye, H.; Henares, J. L.; Huguet, Y.; Jardin, P.; Lecesne, N.; Lecomte, P.; Leroy, R.; Maunoury, L.; Osmond, B.; Sjodin, M.

    2013-12-01

    The GANIL facility (Caen, France) is dedicated to the acceleration of heavy ion beams including radioactive beams produced by the Isotope Separation On-Line (ISOL) method at the SPIRAL1 facility. To extend the range of radioactive ion beams available at GANIL, using the ISOL method two projects are underway: SPIRAL1 upgrade and the construction of SPIRAL2. For SPIRAL1, a new target ion source system (TISS) using the VADIS FEBIAD ion source coupled to the SPIRAL1 carbon target will be tested on-line by the end of 2013 and installed in the cave of SPIRAL1 for operation in 2015. The SPIRAL2 project is under construction and is being design for using different production methods as fission, fusion or spallation reactions to cover a large area of the chart of nuclei. It will produce among others neutron rich beams obtained by the fission of uranium induced by fast neutrons. The production target made from uranium carbide and heated at 2000 °C will be associated with several types of ion sources. Developments currently in progress at GANIL for each of these projects are presented.