Sample records for target material properties

  1. Hypervelocity penetration against mechanical properties of target materials

    NASA Astrophysics Data System (ADS)

    Kamarudin, Khairul Hasni; Abdullah, Mohamad Faizal; Zaidi, Ahmad Mujahid Ahmad; Nor, Norazman M.; Ismail, Ariffin; Yusof, Mohammed Alias; Hilmi, Ahmad Humaizi

    2018-02-01

    This paper study the mechanical properties behavior of metal plates against hypervelocity penetration caused by shaped charge. Five different materials were used as target specimen fabricated from welded stacks of material plates, namely Rolled Homogeneous Armor (RHA), Hardox-500, mild steel, aluminum and brass. Specimens had undergone an initial monolithic test consist of tensile tests and microstructure observations, followed by series of hydrodynamics penetration blast tests using shape charge mechanism. Results from blast test shows that the least penetrated specimen is RHA (58mm) followed by Hardox-500 (92 mm), mild steel (110 mm), Brass (155 mm) and aluminum 238 mm). Comparing these with the specimen yield strength from the tensile test results shows that Hardox-500 has higher yield strength (Sy) followed by RHA, mild steel, brass and aluminum, which are 1370 MPa, 1320 MPa, 280,221 respectively, which are not inversely proportional to the penetration. However, the ultimate tensile strength (Sut) where the RHA were the highest followed by Hardox-500, mild steel, brass and aluminum, were inversely proportional with the depth of penetration. The penetration results also show consistence relation with energy absorption.

  2. Multi-MW accelerator target material properties under proton irradiation at Brookhaven National Laboratory linear isotope producer

    DOE PAGES

    Simos, N.; Ludewig, H.; Kirk, H.; ...

    2018-05-29

    The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory’s (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest inmore » assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.« less

  3. Multi-MW accelerator target material properties under proton irradiation at Brookhaven National Laboratory linear isotope producer

    NASA Astrophysics Data System (ADS)

    Simos, N.; Ludewig, H.; Kirk, H.; Dooryhee, E.; Ghose, S.; Zhong, Z.; Zhong, H.; Makimura, S.; Yoshimura, K.; Bennett, J. R. J.; Kotsinas, G.; Kotsina, Z.; McDonald, K. T.

    2018-05-01

    The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory's (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest in assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.

  4. Multi-MW accelerator target material properties under proton irradiation at Brookhaven National Laboratory linear isotope producer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simos, N.; Ludewig, H.; Kirk, H.

    The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory’s (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest inmore » assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.« less

  5. Characteristics of W-26% Re Target Material(LCC-0103)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunwoo, A.

    2003-10-07

    The W-26 wt-% Re alloy was selected as a Stanford Linear Collider (SLC) target material for its exceptional physics properties and for the high strength and good ductility at the anticipated target operating temperatures, above the DBTT. After several years of operation, the target failed catastrophically. A detailed microstructural and mechanical characterization of the non-irradiated disk indicates that the material has been PM processed, nonuniformly mechanically worked and stress relieved. As a result, the ductility of the material varies through the thickness of the disk, making it difficult to determine the DBTT. The results of tensile and fatigue properties aremore » reported with the corresponding fractography of the fracture surfaces.« less

  6. Nuclear reactor target assemblies, nuclear reactor configurations, and methods for producing isotopes, modifying materials within target material, and/or characterizing material within a target material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, James J.; Wall, Donald; Wittman, Richard S.

    Target assemblies are provided that can include a uranium-comprising annulus. The assemblies can include target material consisting essentially of non-uranium material within the volume of the annulus. Reactors are disclosed that can include one or more discrete zones configured to receive target material. At least one uranium-comprising annulus can be within one or more of the zones. Methods for producing isotopes within target material are also disclosed, with the methods including providing neutrons to target material within a uranium-comprising annulus. Methods for modifying materials within target material are disclosed as well as are methods for characterizing material within a targetmore » material.« less

  7. Accelerated search for materials with targeted properties by adaptive design

    PubMed Central

    Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-01-01

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set. PMID:27079901

  8. Design of materials with prescribed nonlinear properties

    NASA Astrophysics Data System (ADS)

    Wang, F.; Sigmund, O.; Jensen, J. S.

    2014-09-01

    We systematically design materials using topology optimization to achieve prescribed nonlinear properties under finite deformation. Instead of a formal homogenization procedure, a numerical experiment is proposed to evaluate the material performance in longitudinal and transverse tensile tests under finite deformation, i.e. stress-strain relations and Poissons ratio. By minimizing errors between actual and prescribed properties, materials are tailored to achieve the target. Both two dimensional (2D) truss-based and continuum materials are designed with various prescribed nonlinear properties. The numerical examples illustrate optimized materials with rubber-like behavior and also optimized materials with extreme strain-independent Poissons ratio for axial strain intervals of εi∈[0.00, 0.30].

  9. Hypervelocity penetration against mechanical properties of target materials

    NASA Astrophysics Data System (ADS)

    Ariffin, M. M.; Roslan, M. H.; Ishak, M. T.; Hamid, M. H. A.; Katim, N. I. A.; Hashim, F. R.; Razali, S.

    2018-02-01

    Sustainable development is growing importance issues nowadays and requires the consideration of environmental criteria to develop of all new materials and equipment. A better balance must be found in properties of oils so that the impact on the environment can be minimized. In transformers, a stable liquid, inert, with good electrical and thermal properties is necessary and the liquid must be non-toxic to environment and readily biodegradable. The objective of this research is to make a comparative study of different vegetable oils: palm oil, corn oil, rice bran oil and analyze the dielectric properties such as relative permittivity, dielectric constant and resistivity with variation temperature 30°C-90°C and breakdown voltage with different ageing time 30 days, 90 days and 180 days. The dielectric properties data of the vegetable oils are compared with the transformer oil (mineral oil) and appropriate causes for similarities and different have been discussed.

  10. Chemical hydrogen storage material property guidelines for automotive applications

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  11. Chemical hydrogen storage material property guidelines for automotive applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storagemore » material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.« less

  12. Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Schenkel, Thomas

    2017-11-01

    Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g., hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. The model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.

  13. Material Targets for Scaling All-Spin Logic

    NASA Astrophysics Data System (ADS)

    Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.

    2016-01-01

    All-spin-logic devices are promising candidates to augment and complement beyond-CMOS integrated circuit computing due to nonvolatility, ultralow operating voltages, higher logical efficiency, and high density integration. However, the path to reach lower energy-delay product performance compared to CMOS transistors currently is not clear. We show that scaling and engineering the nanoscale magnetic materials and interfaces is the key to realizing spin-logic devices that can surpass the energy-delay performance of CMOS transistors. With validated stochastic nanomagnetic and vector spin-transport numerical models, we derive the target material and interface properties for the nanomagnets and channels. We identify promising directions for material engineering and discovery focusing on the systematic scaling of magnetic anisotropy (Hk ) and saturation magnetization (Ms ), the use of perpendicular magnetic anisotropy, and the interface spin-mixing conductance of the ferromagnet-spin-channel interface (Gmix ). We provide systematic targets for scaling a spin-logic energy-delay product toward 2 aJ ns, comprehending the stochastic noise for nanomagnets.

  14. Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization

    DOE PAGES

    Barnard, John J.; Schenkel, Thomas

    2017-11-15

    Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g.,more » hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. In conclusion, the model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.« less

  15. Target and Projectile: Material Effects on Crater Excavation and Growth

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Burleson, T.; Cintala, Mark J.

    2010-01-01

    Scaling relationships allow the initial conditions of an impact to be related to the excavation flow and final crater size and have proven useful in understanding the various processes that lead to the formation of a planetary-scale crater. In addition, they can be examined and tested through laboratory experiments in which the initial conditions of the impact are known and ejecta kinematics and final crater morphometry are measured directly. Current scaling relationships are based on a point-source assumption and treat the target material as a continuous medium; however, in planetary-scale impacts, this may not always be the case. Fragments buried in a megaregolith, for instance, could easily approach or exceed the dimensions of the impactor; rubble-pile asteroids could present similar, if not greater, structural complexity. Experiments allow exploration into the effects of target material properties and projectile deformation style on crater excavation and dimensions. This contribution examines two of these properties: (1) the deformation style of the projectile, ductile (aluminum) or brittle (soda-lime glass) and (2) the grain size of the target material, 0.5-1 mm vs. 1-3 mm sand.

  16. Ductility recovery in structural materials for spallation targets by post-irradiation annealing

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Rödig, M.; Ullmaier, H.; Bauer, G. S.

    2005-08-01

    Low temperature irradiation embrittlement is one of the major criteria to determine the lifetime of spallation targets. Embrittlement is especially high at low service temperatures, e.g. 250 °C in liquid-mercury sources. It was the aim of the present study to investigate the effect of post-irradiation annealing on the mechanical properties of irradiated structural materials. The specimens used were obtained from spent target components of operating spallation facilities (Los Alamos Neutron Science Center, LANSCE, and the Spallation Neutron Source at Rutherford-Appleton Laboratory, ISIS). The investigated materials include a nickel-based alloy (IN718), an austenitic stainless steel (AISI 304L), a martensitic stainless steel (DIN 1.4926) and a refractory metal (Ta) which experienced 800 MeV proton irradiation to fluences of several 10 25 p/m 2. The specimens were annealed from 300 °C to 700 °C for 1 to 10 h, respectively, and their mechanical property changes were subsequently investigated at room temperature and 250 °C by tensile testing and fracture surface analysis conducted by scanning electron microscopy (SEM). The results showed that the ductility recovered to a large degree in 304L and DIN 1.4926 materials while their strength remained almost unchanged. Especially for DIN 1.4926, the ductility recovery is remarkable already at 400 °C. Together with its favorable thermo-mechanical properties, this makes martensitic steel a candidate for structural materials of spallation targets.

  17. Optimal Design of Gradient Materials and Bi-Level Optimization of Topology Using Targets (BOTT)

    NASA Astrophysics Data System (ADS)

    Garland, Anthony

    The objective of this research is to understand the fundamental relationships necessary to develop a method to optimize both the topology and the internal gradient material distribution of a single object while meeting constraints and conflicting objectives. Functionally gradient material (FGM) objects possess continuous varying material properties throughout the object, and they allow an engineer to tailor individual regions of an object to have specific mechanical properties by locally modifying the internal material composition. A variety of techniques exists for topology optimization, and several methods exist for FGM optimization, but combining the two together is difficult. Understanding the relationship between topology and material gradient optimization enables the selection of an appropriate model and the development of algorithms, which allow engineers to design high-performance parts that better meet design objectives than optimized homogeneous material objects. For this research effort, topology optimization means finding the optimal connected structure with an optimal shape. FGM optimization means finding the optimal macroscopic material properties within an object. Tailoring the material constitutive matrix as a function of position results in gradient properties. Once, the target macroscopic properties are known, a mesostructure or a particular material nanostructure can be found which gives the target material properties at each macroscopic point. This research demonstrates that topology and gradient materials can both be optimized together for a single part. The algorithms use a discretized model of the domain and gradient based optimization algorithms. In addition, when considering two conflicting objectives the algorithms in this research generate clear 'features' within a single part. This tailoring of material properties within different areas of a single part (automated design of 'features') using computational design tools is a novel benefit

  18. Coating multilayer material with improved tribological properties obtained by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mateescu, A. O.; Mateescu, G.; Balasoiu, M.; Pompilian, G. O.; Lungu, M.

    2017-02-01

    This work is based on the Patent no. RO 128094 B1, granted by the Romanian State Office for Inventions and Trademarks. The goal of the work is to obtain for investigations tribological coatings with multilayer structure with improved tribological properties, deposited by magnetron sputtering process from three materials (sputtering targets). Starting from compound chemical materials (TiC, TiB2 and WC), as sputtering targets, by deposition in argon atmosphere on polished stainless steel, we have obtained, based on the claims of the above patent, thin films of multilayer design with promising results regarding their hardness, elastic modulus, adherence, coefficient of friction and wear resistance. The sputtering process took place in a special sequence in order to ensure better tribological properties to the coating, comparing to those of the individual component materials. The tribological properties, such as the coefficient of friction, are evaluated using the tribometer test.

  19. Molecular modeling of polycarbonate materials: Glass transition and mechanical properties

    NASA Astrophysics Data System (ADS)

    Palczynski, Karol; Wilke, Andreas; Paeschke, Manfred; Dzubiella, Joachim

    2017-09-01

    Linking the experimentally accessible macroscopic properties of thermoplastic polymers to their microscopic static and dynamic properties is a key requirement for targeted material design. Classical molecular dynamics simulations enable us to study the structural and dynamic behavior of molecules on microscopic scales, and statistical physics provides a framework for relating these properties to the macroscopic properties. We take a first step toward creating an automated workflow for the theoretical prediction of thermoplastic material properties by developing an expeditious method for parameterizing a simple yet surprisingly powerful coarse-grained bisphenol-A polycarbonate model which goes beyond previous coarse-grained models and successfully reproduces the thermal expansion behavior, the glass transition temperature as a function of the molecular weight, and several elastic properties.

  20. Assessment of candidates for target window material in accelerator-driven molybdenum-99 production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strons, Philip; Bailey, James; Makarashvili, Vakhtang

    2016-10-01

    NorthStar Medical Technologies is pursuing production of an important medical isotope, Mo-99, through a photo-nuclear reaction of a Mo-100 target using a high-power electron accelerator. The current target utilizes an Inconel 718 window. The purpose of this study was to evaluate other candidate materials for the target window, which separates the high-pressure helium gas inside the target from the vacuum inside the accelerator beamline and is subjected to significant stress. Our initial analysis assessed the properties (density, thermal conductivity, maximum stress, minimum window thickness, maximum temperature, and figure of merit) for a range of materials, from which the three mostmore » promising were chosen: Inconel 718, 250 maraging steel, and standard-grade beryllium. These materials were subjected to further analysis to determine the effects of thermal and mechanical strain versus beam power at varying thicknesses. Both beryllium and the maraging steel were calculated to withstand more than twice as high beam power than Inconel 718.« less

  1. Target materials for exotic ISOL beams

    NASA Astrophysics Data System (ADS)

    Gottberg, A.

    2016-06-01

    The demand for intensity, purity, reliability and availability of short-lived isotopes far from stability is steadily high, and considerably exceeding the supply. In many cases the ISOL (Isotope Separation On-Line) method can provide beams of high intensity and purity. Limitations in terms of accessible chemical species and minimum half-life are driven mainly by chemical reactions and physical processes inside of the thick target. A wide range of materials are in use, ranging from thin metallic foils and liquids to refractory ceramics, while poly-phasic mixed uranium carbides have become the reference target material for most ISOL facilities world-wide. Target material research and development is often complex and especially important post-irradiation analyses are hindered by the high intrinsic radiotoxicity of these materials. However, recent achievements have proven that these investigations are possible if the effort of different facilities is combined, leading to the development of new material matrices that can supply new beams of unprecedented intensity and beam current stability.

  2. Physical property control in core/shell inorganic nanostructures for fluorescence and magnetic targeting applications

    NASA Astrophysics Data System (ADS)

    Roberts, Stephen K.

    Nanomaterials show immense promise for the future in numerous areas of application. Properties that are unique from the bulk material and are tunable allow for innovation in material design. This thesis will focus on controlling the physical properties of core/shell nanostructures to enhance the utility of the materials. The first focus is on the impact of different solvent mixtures during the shell growth phase of SILAR based core/shell quantum dot synthesis is studied. Gaining insight into the mechanism for SILAR growth of core/shell nanoparticles allows improved synthetic yields and precursor binding, providing enhanced control to synthesis of core/shell nanoparticles. The second focus of this thesis is exploring the use of magnetic nanoparticles for magnetic drug targeting for cardiovascular conditions. Magnetic targeting for drug delivery enables increased local drug concentration, while minimizing non-specific interactions. In order to be effective for magnetic targeting, it must be shown that low magnetic strength is sufficient to capture flowing nanoparticles. By demonstrating the binding of a therapeutic agent to the surface at medicinal levels, the viability for use as a nanoparticle drug delivery system is improved.

  3. Quantum-Mechanical Combinatorial Design of Solids having Target Properties

    NASA Astrophysics Data System (ADS)

    Zunger, Alex

    2007-03-01

    (1) One of the most striking aspects of solid state physics is the diversity of structural forms in which crystals appear in Nature. Not only are there many distinct crystal-types, but combinations of two or more crystalline materials (alloys) give rise to various local geometric atomic patters. The already rich repertoire of such forms has recently been significantly enhanced by the advent of artificial crystal growth techniques (MBE, STM- atom positioning, etc.) that can create desired structural forms, such as superlattices and impurity clusters even in defiance of the rules of equilibrium thermodynamics. (2) At the same time, the fields of chemistry of nanostructures and physics of structural phase-transitions have long revealed that different atomic configurations generally lead to different physical properties even without altering the chemical makeup. While the most widely - known illustration of such ``form controls function'' rule is the dramatically different color, conductivity and hardness of the allotropical forms of pure carbon (diamond,graphite, C60), the physics of semiconductor superstructures and nanostructures is full of striking examples of how optical, magnetic and transport properties depend sensitively on atomic configuration. (3) Yet, the history of material research has generally occurred via accidental discoveries of material structures having interesting physical property (semiconductivity, ferromagnetism; superconductivity etc.). This begs the question: can this discovery process be inverted, i.e. can we first articulate a desired target physical property, then search (within a class) for the configuration that has this property? (4) The number of potentially interesting atomic configurations exhibits a combinatorial explosion, so even fast synthesis or fast computations can not survey all. (5) This talk describes the recent steps made by solid state theory + computational physics to address this ``Inverse Design'' (Franceschetti

  4. Surface properties of semi-synthetic enteric coating films: Opportunities to develop bio-based enteric coating films for colon- targeted delivery

    USDA-ARS?s Scientific Manuscript database

    This study investigated the surface properties of the semi-synthetic enteric coating materials for potential colon- targeted bioactive delivery. The enteric coating materials were produced by combining nanoscale resistant starch, pectin, and carboxymethylcellulose. The surface properties of the co...

  5. Intrinsic material properties of cortical bone.

    PubMed

    Lopez Franco, Gloria E; Blank, Robert D; Akhter, Mohammed P

    2011-01-01

    The G171V mutation (high bone mass, HBM) is autosomal dominant and is responsible for high bone mass in humans. Transgenic HBM mice in which the human LRP5 G171V gene is inserted also show a similar phenotype with greater bone mass and biomechanical performance than wild-type mice, as determined by whole bone testing. Whole bone mechanics, however, depend jointly on bone mass, architecture, and intrinsic bone tissue mechanical properties. To determine whether the HBM mutation affects tissue-level biomechanical performance, we performed nano-indentation testing of unembedded cortical bone from HBM mice and their nontransgenic (NTG) littermates. Femora from 17-week-old mice (female, 8 mice/genotype) were subjected to nano-indentation using a Triboscope (Hysitron, Minneapolis, MN, USA). For each femoral specimen, approximately 10 indentations were made on the midshaft anterior surface with a target force of either 3 or 9 mN at a constant loading rate of 400 mN/s. The load-displacement data from each test were used to calculate indentation modulus and hardness for bone tissue. The intrinsic material property that reflected the bone modulus was greater (48%) in the HBM as compared to the NTG mice. Our results of intrinsic properties are consistent with the published structural and material properties of the midshaft femur in HBM and NTG mice. The greater intrinsic modulus in HBM reflects greater bone mineral content as compared to NTG (wild-type, WT) mice. This study suggests that the greater intrinsic property of cortical bone is derived from the greater bone mineral content and BMD, resulting in greater bone strength in HBM as compared to NTG (WT) mice.

  6. Calibrating Nonlinear Soil Material Properties for Seismic Analysis Using Soil Material Properties Intended for Linear Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spears, Robert Edward; Coleman, Justin Leigh

    2015-08-01

    Seismic analysis of nuclear structures is routinely performed using guidance provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998).” This document, which is currently under revision, provides detailed guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear structures. To accommodate the linear analysis, soil material properties are typically developed as shear modulus and damping ratio versus cyclic shear strain amplitude. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain SSI analysis. To accommodate the nonlinear analysis, a more appropriate form of the soil material properties includes shear stressmore » and energy absorbed per cycle versus shear strain. Ideally, nonlinear soil model material properties would be established with soil testing appropriate for the nonlinear constitutive model being used. However, much of the soil testing done for SSI analysis is performed for use with linear analysis techniques. Consequently, a method is described in this paper that uses soil test data intended for linear analysis to develop nonlinear soil material properties. To produce nonlinear material properties that are equivalent to the linear material properties, the linear and nonlinear model hysteresis loops are considered. For equivalent material properties, the shear stress at peak shear strain and energy absorbed per cycle should match when comparing the linear and nonlinear model hysteresis loops. Consequently, nonlinear material properties are selected based on these criteria.« less

  7. Extreme mechanical properties of materials under extreme pressure and temperature conditions (Invited)

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Armentrout, M. M.; Xie, M.; Weinberger, M.; Kaner, R. B.; Tolbert, S. H.

    2010-12-01

    A strong synergy ties together the high-pressure subfields of mineral physics, solid-state physics, and materials engineering. The catalog of studies measuring the mechanical properties of materials subjected to large differential stresses in the diamond anvil cell demonstrates a significant pressure-enhancement of strength across many classes of materials, including elemental solids, salts, oxides, silicates, and borides and nitrides. High pressure techniques—both radial diffraction and laser heating in the diamond anvil cell—can be used to characterize the behavior of ultrahard materials under extreme conditions, and help test hypotheses about how composition, structure, and bonding work together to govern the mechanical properties of materials. The principles that are elucidated by these studies can then be used to help design engineering materials to encourage desired properties. Understanding Earth and planetary interiors requires measuring equations of state of relevant materials, including oxides, silicates, and metals under extreme conditions. If these minerals in the diamond anvil cell have any ability to support a differential stress, the assumption of quasi-hydrostaticity no longer applies, with a resulting non-salubrious effect on attempts to measure equation of state. We illustrate these applications with the results of variety of studies from our laboratory and others’ that have used high-pressure radial diffraction techniques and also laser heating in the diamond anvil cell to characterize the mechanical properties of a variety of ultrahard materials, especially osmium metal, osmium diboride, rhenium diboride, and tungsten tetraboride. We compare ambient condition strength studies such as hardness testing with high-pressure studies, especially radial diffraction under differential stress. In addition, we outline criteria for evaluating mechanical properties of materials at combination high pressures and temperatures. Finally, we synthesize our

  8. Properties of Protein Drug Target Classes

    PubMed Central

    Bull, Simon C.; Doig, Andrew J.

    2015-01-01

    Accurate identification of drug targets is a crucial part of any drug development program. We mined the human proteome to discover properties of proteins that may be important in determining their suitability for pharmaceutical modulation. Data was gathered concerning each protein’s sequence, post-translational modifications, secondary structure, germline variants, expression profile and drug target status. The data was then analysed to determine features for which the target and non-target proteins had significantly different values. This analysis was repeated for subsets of the proteome consisting of all G-protein coupled receptors, ion channels, kinases and proteases, as well as proteins that are implicated in cancer. Machine learning was used to quantify the proteins in each dataset in terms of their potential to serve as a drug target. This was accomplished by first inducing a random forest that could distinguish between its targets and non-targets, and then using the random forest to quantify the drug target likeness of the non-targets. The properties that can best differentiate targets from non-targets were primarily those that are directly related to a protein’s sequence (e.g. secondary structure). Germline variants, expression levels and interactions between proteins had minimal discriminative power. Overall, the best indicators of drug target likeness were found to be the proteins’ hydrophobicities, in vivo half-lives, propensity for being membrane bound and the fraction of non-polar amino acids in their sequences. In terms of predicting potential targets, datasets of proteases, ion channels and cancer proteins were able to induce random forests that were highly capable of distinguishing between targets and non-targets. The non-target proteins predicted to be targets by these random forests comprise the set of the most suitable potential future drug targets, and should therefore be prioritised when building a drug development programme. PMID

  9. Rhenium material properties

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.

    1995-01-01

    Tensile data were obtained from four different types of rhenium at ambient and elevated temperatures. The four types of rhenium included chemical vapor deposition (CVD) and three powder metallurgy (PM) types, i.e., rolled sheet and pressed and sintered bars, with and without hot isostatic pressure (HIP) treatment. Results revealed a wide range of values with ultimate strengths at ambient temperatures varying from 663 MPa for CVD rhenium to 943 MPa for rolled sheet. A similar spread was also obtained for material tested at 1088 K and 1644 K. The wide variance observed with the different materials indicated that the rhenium manufacturing process, material composition and prior handling strongly dictated its properties. In addition to tensile properties, CVD, pressed and sintered material and HIP rhenium successfully completed 100 cycles of low cycle fatigue. Creep data were also obtained showing that CVD and pressed and sintered rhenium could sustain five hours of testing under a tension of 27.5 MPa at 1922 K.

  10. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA s Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar[TM], Teonex[TM], and CPl (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  11. In silico re-identification of properties of drug target proteins.

    PubMed

    Kim, Baeksoo; Jo, Jihoon; Han, Jonghyun; Park, Chungoo; Lee, Hyunju

    2017-05-31

    Computational approaches in the identification of drug targets are expected to reduce time and effort in drug development. Advances in genomics and proteomics provide the opportunity to uncover properties of druggable genomes. Although several studies have been conducted for distinguishing drug targets from non-drug targets, they mainly focus on the sequences and functional roles of proteins. Many other properties of proteins have not been fully investigated. Using the DrugBank (version 3.0) database containing nearly 6,816 drug entries including 760 FDA-approved drugs and 1822 of their targets and human UniProt/Swiss-Prot databases, we defined 1578 non-redundant drug target and 17,575 non-drug target proteins. To select these non-redundant protein datasets, we built four datasets (A, B, C, and D) by considering clustering of paralogous proteins. We first reassessed the widely used properties of drug target proteins. We confirmed and extended that drug target proteins (1) are likely to have more hydrophobic, less polar, less PEST sequences, and more signal peptide sequences higher and (2) are more involved in enzyme catalysis, oxidation and reduction in cellular respiration, and operational genes. In this study, we proposed new properties (essentiality, expression pattern, PTMs, and solvent accessibility) for effectively identifying drug target proteins. We found that (1) drug targetability and protein essentiality are decoupled, (2) druggability of proteins has high expression level and tissue specificity, and (3) functional post-translational modification residues are enriched in drug target proteins. In addition, to predict the drug targetability of proteins, we exploited two machine learning methods (Support Vector Machine and Random Forest). When we predicted drug targets by combining previously known protein properties and proposed new properties, an F-score of 0.8307 was obtained. When the newly proposed properties are integrated, the prediction performance

  12. Perception of the material properties of wood based on vision, audition, and touch.

    PubMed

    Fujisaki, Waka; Tokita, Midori; Kariya, Kenji

    2015-04-01

    Most research on the multimodal perception of material properties has investigated the perception of material properties of two modalities such as vision-touch, vision-audition, audition-touch, and vision-action. Here, we investigated whether the same affective classifications of materials can be found in three different modalities of vision, audition, and touch, using wood as the target object. Fifty participants took part in an experiment involving the three modalities of vision, audition, and touch, in isolation. Twenty-two different wood types including genuine, processed, and fake were perceptually evaluated using a questionnaire consisting of twenty-three items (12 perceptual and 11 affective). The results demonstrated that evaluations of the affective properties of wood were similar in all three modalities. The elements of "expensiveness, sturdiness, rareness, interestingness, and sophisticatedness" and "pleasantness, relaxed feelings, and liked-disliked" were separately grouped for all three senses. Our results suggest that the affective material properties of wood are at least partly represented in a supramodal fashion. Our results also suggest an association between perceptual and affective properties, which will be a useful tool not only in science, but also in applied fields. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. A Monte Carlo studies of the entrance foil material in a target assembly for FDG production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merouani, A.; El Khayati, N.; EL Ghayour, A.

    2015-07-01

    In this work, a Monte Carlo simulation was performed for different entrance foil Materials in the target assembly for [{sup 18}F] FDG production, to investigate the neutron generations in the entrance foil. However, the objective is to study a materials that has the more or less similar mechanical properties as the Havar{sup R} foil with less generation of secondary particles and without affecting, the yield of FDG production. (authors)

  14. Ultrasonic material property determinations

    NASA Technical Reports Server (NTRS)

    Serabian, S.

    1986-01-01

    The use and potential offered by ultrasonic velocity and attenuation measurements to determine and/or monitor material properties is explored. The basis for such unique measurements along with examples of materials from a variety of industries are presented.

  15. 1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization

    PubMed Central

    Li, Xing; Sun, Mei; Wei, Xianlong; Shan, Chongxin

    2018-01-01

    Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced. PMID:29570639

  16. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager' and the L1 Diamond '. The Environmental Effects Group at NASA's Marshall Space Fliglit Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail3-'. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar TM, Teonexm, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  17. Industrial recovered-materials-utilization targets for the textile-mill-products industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1979-01-01

    The Congress, in the National Energy Conservation and Policy Act of 1978 (NECPA), directed the Department of Energy to establish materials recovery targets for the metals and metal products, paper and allied products, rubber, and textile-mill-products industries. The targets were developed to provide incentives for using energy-saving recorded materials and to provied a yardstick for measuring progress and improvement in this endeavor. The NECPA indicates that the targets should represent the maximum technically and economically feasible increase in the use of energy-saving recovered materials that each industry can achieve progressively by January 1, 1987. Materials affected by recovered-materials targets includemore » and are limited to aluminum, copper, lead, zinc, iron, steel, paper and associated products, textile-mill, products, and rubber. Using information gathered from the textile-mill-products industry and from other textile-relaed sources, DOE has developed recovered materials targets for that industry. This report presents those targets and their basis and justification. Following an overview of the textile industry, the chapters are: Textile-Mill-Products Industry Operations; Economic Analysis of the Textile-Mill-Products Industry; Governmental and Regulatory Influence on the US Textile Industry; Current Mill Use of Recovered Materials in the Textile-Mill-Products Industry; Limitations on the Use of Recovered Materials in the US Textile-Mill-Products Industry; Materials-Recovery Targets; and Government and Industry Actions That Could Increase the Use of Recovered Materials.« less

  18. Atomistic methodologies for material properties of 2D materials at the nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen

    Research on two dimensional (2D) materials, such as graphene and MoS2, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. From an engineering point of view, understanding the material properties of 2D materials under various conditions is crucial for tailoring the electrical and mechanical properties of 2D-material-based devices at the nanoscale. Even at the nanoscale, molecular systems typically consist of a vast number of atoms. Molecular dynamics (MD) simulations enable us to understand the properties of assemblies of molecules in terms of their structure and the microscopic interactions between them. From a continuum approach, mechanical properties and thermal properties, such as strain, stress, and heat capacity, are well defined and experimentally measurable. In MD simulations, material systems are considered to be discrete, and only interatomic potential, interatomic forces, and atom positions are directly obtainable. Besides, most of the fracture mechanics concepts, such as stress intensity factors, are not applicable since there is no singularity in MD simulations. However, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at the nanoscale. Therefore, equivalent definition of a physical quantity both in atomic scale and macroscopic scale is necessary in order to understand molecular and continuum scale phenomena concurrently. This work introduces atomistic simulation methodologies, based on interatomic potential and interatomic forces, as a tool to unveil the mechanical properties, thermal properties and fracture mechanical properties of 2D materials at the nanoscale. Among many 2D materials, graphene and MoS2 have attracted intense interest. Therefore, we applied our

  19. Chemical modification of projectile residues and target material in a MEMIN cratering experiment

    NASA Astrophysics Data System (ADS)

    Ebert, Matthias; Hecht, Lutz; Deutsch, Alexander; Kenkmann, Thomas

    2013-01-01

    In the context of the MEMIN project, a hypervelocity cratering experiment has been performed using a sphere of the iron meteorite Campo del Cielo as projectile accelerated to 4.56 km s-1, and a block of Seeberger sandstone as target material. The ejecta, collected in a newly designed catcher, are represented by (1) weakly deformed, (2) highly deformed, and (3) highly shocked material. The latter shows shock-metamorphic features such as planar deformation features (PDF) in quartz, formation of diaplectic quartz glass, partial melting of the sandstone, and partially molten projectile, mixed mechanically and chemically with target melt. During mixing of projectile and target melts, the Fe of the projectile is preferentially partitioned into target melt to a greater degree than Ni and Co yielding a Fe/Ni that is generally higher than Fe/Ni in the projectile. This fractionation results from the differing siderophile properties, specifically from differences in reactivity of Fe, Ni, and Co with oxygen during projectile-target interaction. Projectile matter was also detected in shocked quartz grains. The average Fe/Ni of quartz with PDF (about 20) and of silica glasses (about 24) are in contrast to the average sandstone ratio (about 422), but resembles the Fe/Ni-ratio of the projectile (about 14). We briefly discuss possible reasons of projectile melting and vaporization in the experiment, in which the calculated maximum shock pressure does not exceed 55 GPa.

  20. Property Data Summaries for Advanced Materials

    National Institute of Standards and Technology Data Gateway

    SRD 150 NIST Property Data Summaries for Advanced Materials (Web, free access)   Property Data Summaries are topical collections of property values derived from surveys of published data. Thermal, mechanical, structural, and chemical properties are included in the collections.

  1. Target Housing Material Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert

    2016-02-11

    With gas cooling, heat transfer coefficients are low compared to water. The benefit of gas from a heat transfer point of view is that there is really no upper temperature limit for the coolant, as compared to water, which is limited ultimately by the critical point, and in practice the critical heat flux. In our case with parallel flow channels, water is limited to even lower operating limits by nucleate boiling. So gas can get as hot as the containment material will allow, but to get the density and heat transfer up to something reasonable, we must also increase pressure,more » thus increasing stress on the containment, namely the front and back faces. We are designing to ASME BPVC, which, for most materials allows a maximum stress of UTS/3. So we want the highest possible UTS. For reference, the front face stress in the 12 mm target at 300 psi was about 90 MPa. The inconel 718 allowable stress at 900°C is 1/3 of 517 or 172 MPa. So we are in a very safe place, but the uTS is dropping rapidly with temperature above 900°C. As we increase target diameter, the challenge will be to keep the stress down. We are probably looking at keeping the allowable at or above the present value, and at as high a temperature as possible.« less

  2. Conditioning of material properties by micro rotary swaging

    NASA Astrophysics Data System (ADS)

    Ishkina, Svetlana; Schenck, Christian; Kuhfuss, Bernd

    2018-05-01

    Cold forming initiates a change of the material properties like flow stress and hardness. Due to work hardening and the accompanied loss of formability some intermediate heat treatment may become necessary in multi-stage forming processes. One possibility to avoid this heat treatment is to adjust the forming characteristics in terms of flow stress and formability by rotary swaging. This process is particularly suitable not only for producing of the target geometry but also for modifying of the material properties during the process and thus, rotary swaging can prepare the parts for further forming, such as extrusion. In this contribution, the process chain "rotary swaging - extrusion" for austenite stainless steel AISI304 was investigated. The forming characteristics of the semi-finished products for the extrusion were influenced by the previous swaging process. The conditioning by changing of the microstructure, the work hardening and the geometry of the processed wires was achieved by the process design. For this purpose, the geometry of the swaging dies, the feeding velocity as well as the process kinematics (eccentric swaging) and a stroke following angle Δɸ were varied. In particular, the novel geometry of the swaging dies with extraordinary sloped faces generated a non-symmetric material flow with severe shear deformation and thus an extreme change of the microstructure. The required forming force of the following extrusion process reflected the range of achievable conditioning. The micro rotary swaging process positively improved the formability of AISI304 by work softening.

  3. Collagen/hydroxyapatite composite materials with desired ceramic properties.

    PubMed

    Andronescu, Ecaterina; Voicu, Georgeta; Ficai, Maria; Mohora, Ioana Anita; Trusca, Roxana; Ficai, Anton

    2011-01-01

    Our purpose was to obtain and characterize some collagen/hydroxyapatite (COLL/HA) hybrid composite materials with desired ceramic properties. The ceramic properties of these materials were achieved by combining two drying methods: controlled air drying at 30°C followed by freeze-drying. Through the function of the air drying times, the materials morphology varies from porous materials (when the materials are freeze-dried) up to dense materials (when the materials are air-dried), while the combined drying allows us to obtain an intermediary morphology. The composite materials intended to be used as bone grafts and in a drug delivery system were characterized by XRD, FTIR, SEM, and also by determining the ceramic properties by using the Arthur method. The ceramic properties of these COLL/HA composite materials vary in large range, for instance the density of the materials varies from 0.06 up to 1.5 g/cm(3) while the porosity varies from 96.5% down to 27.5%.

  4. Data analytics and parallel-coordinate materials property charts

    NASA Astrophysics Data System (ADS)

    Rickman, Jeffrey M.

    2018-01-01

    It is often advantageous to display material properties relationships in the form of charts that highlight important correlations and thereby enhance our understanding of materials behavior and facilitate materials selection. Unfortunately, in many cases, these correlations are highly multidimensional in nature, and one typically employs low-dimensional cross-sections of the property space to convey some aspects of these relationships. To overcome some of these difficulties, in this work we employ methods of data analytics in conjunction with a visualization strategy, known as parallel coordinates, to represent better multidimensional materials data and to extract useful relationships among properties. We illustrate the utility of this approach by the construction and systematic analysis of multidimensional materials properties charts for metallic and ceramic systems. These charts simplify the description of high-dimensional geometry, enable dimensional reduction and the identification of significant property correlations and underline distinctions among different materials classes.

  5. Thermal protection materials: Thermophysical property data

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, Donald M.

    1992-01-01

    This publication presents a thermophysical property survey on materials that could potentially be used for future spacecraft thermal protection systems (TPS). This includes data that was reported in the 1960's as well as more current information reported through the 1980's. An attempt was made to cite the manufacturers as well as the data source in the bibliography. This volume represents an attempt to provide in a single source a complete set of thermophysical data on a large variety of materials used in spacecraft TPS analysis. The property data is divided into two categories: ablative and reusable. The ablative materials have been compiled into twelve categories that are descriptive of the material composition. An attempt was made to define the Arrhenius equation for each material although this data may not be available for some materials. In a similar manner, char data may not be available for some of the ablative materials. The reusable materials have been divided into three basic categories: thermal protection materials (such as insulators), adhesives, and structural materials.

  6. Proposed industrial recoverd materials utilization targets for the textile mill products industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-05-01

    Materials recovery targets were established to represent the maximum technically and economically feasible increase in the use of energy-saving materials by January 1, 1987. This report describes targets for the textile industry and describes how those targets were determined. (MCW)

  7. Developing Culturally Targeted Diabetes Educational Materials for Older Russian-Speaking Immigrants.

    PubMed

    Van Son, Catherine R

    2014-07-01

    Older adults who immigrate late in life face many challenges adapting to a new country. Immigrants bring their cultural beliefs and behaviors with them, which can influence their ability to make dietary changes required when they have type 2 diabetes. Culturally targeted patient education materials are needed to improve immigrants' health literacy and abilities to self-manage diabetes. Currently, there is a scarcity of diabetes patient education materials to meet the educational needs of the Russian-speaking immigrant group. The purpose of this article is to describe a project in which culturally targeted diabetes education materials for older Russian-speaking immigrants were designed and developed. Culturally targeted patient education materials are essential if they are to be accepted and used by clients from different ethnic minority populations. The creation of culturally relevant materials requires a team effort and community stakeholder input. The availability of materials on the internet facilitates access and use by health care providers. Culturally targeted education materials are an important component in addressing health literacy in ethnic minority populations. Next steps require that these materials be evaluated to test their impact on diabetes self-management behaviors and clinical outcomes such as adherence, amount of physical activity, and blood glucose levels. © 2014 The Author(s).

  8. Research and development on materials for the SPES target

    NASA Astrophysics Data System (ADS)

    Corradetti, Stefano; Andrighetto, Alberto; Manzolaro, Mattia; Scarpa, Daniele; Vasquez, Jesus; Rossignoli, Massimo; Monetti, Alberto; Calderolla, Michele; Prete, Gianfranco

    2014-03-01

    The SPES project at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro) is focused on the production of radioactive ion beams. The core of the SPES facility is constituted by the target, which will be irradiated with a 40 MeV, 200 µA proton beam in order to produce radioactive species. In order to efficiently produce and release isotopes, the material constituting the target should be able to work under extreme conditions (high vacuum and temperatures up to 2000 °C). Both neutron-rich and proton-rich isotopes will be produced; in the first case, carbon dispersed uranium carbide (UCx) will be used as a target, whereas to produce p-rich isotopes, several types of targets will have to be irradiated. The synthesis and characterization of different types of material will be reported. Moreover, the results of irradiation and isotopes release tests on different uranium carbide target prototypes will be discussed.

  9. Characterization and fabrication of target materials for RIB generation

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Janney, M. A.; Mueller, P. E.; Ortman, W. K.; Rauniyar, R.; Stracener, D. W.; Williams, C. L.

    2001-07-01

    This report discusses two techniques developed at the Oak Ridge National Laboratory (ORNL) that are employed for the fabrication and characterization of targets used in the production of Radioactive Ion Beams (RIBs). First, our method of in-house fabrication of uranium carbide targets is discussed. We have found that remarkably uniform coatings of UC2 can be formed on the microstructure of porous C matrices. The technique has been used to form UC2 layers on highly thermally conductive graphitic foams. Targets fabricated in this fashion have been tested under low-intensity proton bombardment and yields of selected radioactive species are reported. This report also describes an off-line test stand for the investigation of effusive and diffusive transport in RIB target/ion sources. Permeation rates of gases and vapors passing through a high temperature membrane or through an effusive channel constructed from the material under investigation are recorded. Diffusion coefficients and adsorption enthalpies, which characterize the interaction of RIB species with materials of the target/ion source, are extracted from the time profile of the recorded data. Examples of diffusion, effusion, and conductance measurements are provided.

  10. Upgrades to the TPSX Material Properties Database

    NASA Technical Reports Server (NTRS)

    Squire, T. H.; Milos, F. S.; Partridge, Harry (Technical Monitor)

    2001-01-01

    The TPSX Material Properties Database is a web-based tool that serves as a database for properties of advanced thermal protection materials. TPSX provides an easy user interface for retrieving material property information in a variety of forms, both graphical and text. The primary purpose and advantage of TPSX is to maintain a high quality source of often used thermal protection material properties in a convenient, easily accessible form, for distribution to government and aerospace industry communities. Last year a major upgrade to the TPSX web site was completed. This year, through the efforts of researchers at several NASA centers, the Office of the Chief Engineer awarded funds to update and expand the databases in TPSX. The FY01 effort focuses on updating correcting the Ames and Johnson thermal protection materials databases. In this session we will summarize the improvements made to the web site last year, report on the status of the on-going database updates, describe the planned upgrades for FY02 and FY03, and provide a demonstration of TPSX.

  11. Radiological assessment of target materials for accelerator transmutation of waste (ATW) applications

    NASA Astrophysics Data System (ADS)

    Vickers, Linda Diane

    This dissertation issues the first published document of the radiation absorbed dose rate (rad-h-1) to tissue from radioactive spallation products in Ta, W, Pb, Bi, and LBE target materials used in Accelerator Transmutation of Waste (ATW) applications. No previous works have provided an estimate of the absorbed dose rate (rad-h-1) from activated targets for ATW applications. The results of this dissertation are useful for planning the radiological safety assessment to personnel, and for the design, construction, maintenance, and disposition of target materials of high-energy particle accelerators for ATW applications (Charlton, 1996). In addition, this dissertation provides the characterization of target materials of high-energy particle accelerators for the parameters of: (1) spallation neutron yield (neutrons/proton), (2) spallation products yield (nuclides/proton), (3) energy-dependent spallation neutron fluence distribution, (4) spallation neutron flux, (5) identification of radioactive spallation products for consideration in safety of personnel to high radiation dose rates, and (6) identification of the optimum geometrical dimensions for the target applicable to the maximum radial spallation neutron leakage from the target. Pb and Bi target materials yielded the lowest absorbed dose rates (rad-h -1) for a 10-year irradiation/50-year decay scheme, and would be the preferred target materials for consideration of the radiological safety of personnel during ATW operations. A beneficial characteristic of these target materials is that they do not produce radioactive transuranic isotopes, which have very long half-lives and require special handling and disposition requirements. Furthermore, the targets are not considered High-Level Waste (HLW) such as reactor spent fuel for disposal purposes. It is a basic ATW system requirement that the spallation target after it has been expended should be disposable as Class C low-level radioactive waste. Therefore, the disposal

  12. Material properties of viral nanocages explored by atomic force microscopy.

    PubMed

    van Rosmalen, Mariska G M; Roos, Wouter H; Wuite, Gijs J L

    2015-01-01

    Single-particle nanoindentation by atomic force microscopy (AFM) is an emergent technique to characterize the material properties of nano-sized proteinaceous systems. AFM uses a very small tip attached to a cantilever to scan the surface of the substrate. As a result of the sensitive feedback loop of AFM, the force applied by the tip on the substrate during scanning can be controlled and monitored. By accurately controlling this scanning force, topographical maps of fragile substrates can be acquired to study the morphology of the substrate. In addition, mechanical properties of the substrate like stiffness and breaking point can be determined by using the force spectroscopy capability of AFM. Here we discuss basics of AFM operation and how this technique is used to determine the structure and mechanical properties of protein nanocages, in particular viral particles. Knowledge of morphology as well as mechanical properties is essential for understanding viral life cycles, including genome packaging, capsid maturation, and uncoating, but also contributes to the development of diagnostics, vaccines, imaging modalities, and targeted therapeutic devices based on viruslike particles.

  13. Estimating Energy Conversion Efficiency of Thermoelectric Materials: Constant Property Versus Average Property Models

    NASA Astrophysics Data System (ADS)

    Armstrong, Hannah; Boese, Matthew; Carmichael, Cody; Dimich, Hannah; Seay, Dylan; Sheppard, Nathan; Beekman, Matt

    2017-01-01

    Maximum thermoelectric energy conversion efficiencies are calculated using the conventional "constant property" model and the recently proposed "cumulative/average property" model (Kim et al. in Proc Natl Acad Sci USA 112:8205, 2015) for 18 high-performance thermoelectric materials. We find that the constant property model generally predicts higher energy conversion efficiency for nearly all materials and temperature differences studied. Although significant deviations are observed in some cases, on average the constant property model predicts an efficiency that is a factor of 1.16 larger than that predicted by the average property model, with even lower deviations for temperature differences typical of energy harvesting applications. Based on our analysis, we conclude that the conventional dimensionless figure of merit ZT obtained from the constant property model, while not applicable for some materials with strongly temperature-dependent thermoelectric properties, remains a simple yet useful metric for initial evaluation and/or comparison of thermoelectric materials, provided the ZT at the average temperature of projected operation, not the peak ZT, is used.

  14. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, F.; Flach, G.

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data asmore » it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.« less

  15. Characterization of the Surface Properties of MUSES-C/Hayabusa Spacecraft Target Asteroid 25143 Itokawa (1998 SF36)

    NASA Technical Reports Server (NTRS)

    Lederer, S. M.; Domingue, D. L.; Vilas, F.; Abe, M.; Farnham, T. L.; Jarvis, K. S.; Lowry, S. C.; Ohba, Y.; Weissman, P. R.; French, L. M.

    2004-01-01

    Several spacecraft missions have recently targeted asteroids to study their morphologies and physical properties (e.g. Galileo, NEAR Shoemaker), and more are planned. MUSES-C is a Japanese mission designed to rendezvous with a near-Earth asteroid (NEA). The MUSES-C spacecraft, Hayabusa, was launched successfully in May 2003. It will rendezvous with its target asteroid in 2005, and return samples to the Earth in 2007. Its target, 25143 Itokawa (1998 SF36), made a close approach to the Earth in 2001. We collected an extensive ground-based database of broadband photometry obtained during this time, which maximized the phase angle coverage, to characterize this target in preparation for the mission. Our project was designed to capitalize on the broadband UBVRI photometric observations taken with a series of telescopes, instrumentation, and observers. Photometry and spectrophotometry of Itokawa were acquired at Lowell, McDonald, Steward, Palomar, Table Mountain and Kiso Observatories. The photometric data sets were combined to calculate Hapke model parameters of the surface material of Itokawa, and examine the solar-corrected broadband color characteristics of the asteroid. Broadband photometry of an object can be used to: (1) determine its colors and thereby contribute to the understanding of its surface composition and taxonomic class, and (2) infer global physical surface properties of the target body. We present both colors from UBVRI observations of the MUSES-C target Itokawa, and physical properties derived by applying a Hapke model to the broadband BVRI photometry.

  16. Effective media properties of hyperuniform disordered composite materials

    PubMed Central

    Sheng, Xin-Qing

    2017-01-01

    The design challenge of new functional composite materials consisting of multiphase materials has attracted an increasing interest in recent years. In particular, understanding the role of distributions of ordered and disordered particles in a host media is scientifically and technologically important for designing novel materials and devices with superior spectral and angular properties. In this work, the effective medium property of disordered composite materials consisting of hyperuniformly distributed hard particles at different filling fractions is investigated. To accurately extract effective permittivity of a disordered composite material, a full-wave finite element method and the transmission line theory are used. Numerical results show that the theory of hyperuniformity can be conveniently used to design disordered composite materials with good accuracy compared with those materials with randomly dispersed particles. Furthermore, we demonstrate that a Luneburg lens based on the proposed hyperuniform media has superior radiation properties in comparison with previously reported metamaterial designs and it may open up a new avenue in electromagnetic materials-by-design. PMID:28982118

  17. SiC/SiC Cladding Materials Properties Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Mary A.; Katoh, Yutai; Koyanagi, Takaaki

    When a new class of material is considered for a nuclear core structure, the in-pile performance is usually assessed based on multi-physics modeling in coordination with experiments. This report aims to provide data for the mechanical and physical properties and environmental resistance of silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites for use in modeling for their application as accidenttolerant fuel cladding for light water reactors (LWRs). The properties are specific for tube geometry, although many properties can be predicted from planar specimen data. This report presents various properties, including mechanical properties, thermal properties, chemical stability under normal and offnormalmore » operation conditions, hermeticity, and irradiation resistance. Table S.1 summarizes those properties mainly for nuclear-grade SiC/SiC composites fabricated via chemical vapor infiltration (CVI). While most of the important properties are available, this work found that data for the in-pile hydrothermal corrosion resistance of SiC materials and for thermal properties of tube materials are lacking for evaluation of SiC-based cladding for LWR applications.« less

  18. Meteorite Material Model for Structural Properties

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Carlozzi, Alexander A.; Karajeh, Zaid S.; Bryson, Kathryn L.

    2017-01-01

    To assess the threat posed by an asteroid entering Earth's atmosphere, one must predict if, when, and how it fragments during entry. A comprehensive understanding of the asteroid material properties is needed to achieve this objective. At present, the meteorite material found on earth are the only objects from an entering asteroid that can be used as representative material and be tested inside a laboratory setting. Due to complex petrology, it is technically challenging and expensive to obtain reliable material properties by means of laboratory test for a family of meteorites. In order to circumvent this challenge, meteorite unit models are developed to determine the effective material properties including Youngs modulus, compressive and tensile strengths and Poissons ratio, that in turn would help deduce the properties of asteroids. The meteorite unit is a representative volume that accounts for diverse minerals, porosity, cracks and matrix composition. The Youngs Modulus and Poissons Ratio in the meteorite units are calculated by performing several hundreds of Monte-Carlo simulations by randomly distributing the various phases inside these units. Once these values are obtained, cracks are introduced in these meteorite units. The size, orientation and distribution of cracks are derived by extensive CT-scans and visual scans of various meteorites from the same family. Subsequently, simulations are performed to attain stress-strain relations, strength and effective modulus values in the presence of these cracks. The meteorite unit models are presented for H, L and LL ordinary chondrites, as well as for terrestrial basalt. In the case of the latter, data from the simulations is compared with experimental data to validate the methodology. These material models will be subsequently used in fragmentation modeling of full scale asteroids.

  19. "TPSX: Thermal Protection System Expert and Material Property Database"

    NASA Technical Reports Server (NTRS)

    Squire, Thomas H.; Milos, Frank S.; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    The Thermal Protection Branch at NASA Ames Research Center has developed a computer program for storing, organizing, and accessing information about thermal protection materials. The program, called Thermal Protection Systems Expert and Material Property Database, or TPSX, is available for the Microsoft Windows operating system. An "on-line" version is also accessible on the World Wide Web. TPSX is designed to be a high-quality source for TPS material properties presented in a convenient, easily accessible form for use by engineers and researchers in the field of high-speed vehicle design. Data can be displayed and printed in several formats. An information window displays a brief description of the material with properties at standard pressure and temperature. A spread sheet window displays complete, detailed property information. Properties which are a function of temperature and/or pressure can be displayed as graphs. In any display the data can be converted from English to SI units with the click of a button. Two material databases included with TPSX are: 1) materials used and/or developed by the Thermal Protection Branch at NASA Ames Research Center, and 2) a database compiled by NASA Johnson Space Center 9JSC). The Ames database contains over 60 advanced TPS materials including flexible blankets, rigid ceramic tiles, and ultra-high temperature ceramics. The JSC database contains over 130 insulative and structural materials. The Ames database is periodically updated and expanded as required to include newly developed materials and material property refinements.

  20. Modeling and validation of spectral BRDF on material surface of space target

    NASA Astrophysics Data System (ADS)

    Hou, Qingyu; Zhi, Xiyang; Zhang, Huili; Zhang, Wei

    2014-11-01

    The modeling and the validation methods of the spectral BRDF on the material surface of space target were presented. First, the microscopic characteristics of the space targets' material surface were analyzed based on fiber-optic spectrometer using to measure the direction reflectivity of the typical materials surface. To determine the material surface of space target is isotropic, atomic force microscopy was used to measure the material surface structure of space target and obtain Gaussian distribution model of microscopic surface element height. Then, the spectral BRDF model based on that the characteristics of the material surface were isotropic and the surface micro-facet with the Gaussian distribution which we obtained was constructed. The model characterizes smooth and rough surface well for describing the material surface of the space target appropriately. Finally, a spectral BRDF measurement platform in a laboratory was set up, which contains tungsten halogen lamp lighting system, fiber optic spectrometer detection system and measuring mechanical systems with controlling the entire experimental measurement and collecting measurement data by computers automatically. Yellow thermal control material and solar cell were measured with the spectral BRDF, which showed the relationship between the reflection angle and BRDF values at three wavelengths in 380nm, 550nm, 780nm, and the difference between theoretical model values and the measured data was evaluated by relative RMS error. Data analysis shows that the relative RMS error is less than 6%, which verified the correctness of the spectral BRDF model.

  1. Research of footwear lining materials thermoconductive properties

    NASA Astrophysics Data System (ADS)

    Maksudova, U.; Ilkhamova, M.; Mirzayev, N.; Pazilova, D.

    2017-11-01

    Protective properties of footwear are influenced by a number of factors and the most important of them are: design features of the top and the bottom of the footwear, it’s shape, physical and mechanical properties of the components of which they are made. In course of work there were researched thermoconductive properties of different lining membrane materials used for production of high temperature protective footwear. Research results allow to select the appropriate materials by reference to thermoconductive properties during design of protective footwear for extreme conditions to prolong the wearer’s time of comfortable stay in conditions of exposure of elevated temperatures to a stack.

  2. A method for detecting small targets based on cumulative weighted value of target properties

    NASA Astrophysics Data System (ADS)

    Jin, Xing; Sun, Gang; Wang, Wei-hua; Liu, Fang; Chen, Zeng-ping

    2015-03-01

    Laser detection based on the "cat's eye effect" has become the hot research project for its initiative compared to the passivity of sound detection and infrared detection. And the target detection is one of the core technologies in this system. The paper puts forward a method for detecting small targets based on cumulative weighted value of target properties using given data. Firstly, we make a frame difference to the images, then make image processing based on Morphology Principles. Secondly, we segment images, and screen the targets; then find some interesting locations. Finally, comparing to a quantity of frames, we locate the target. We did an exam to 394 true frames, the experimental result shows that the mathod can detect small targets efficiently.

  3. Tin Sulfide Phase Exploration: Dependence of Optoelectronic Properties on Microstructural Growth and Chemical Variations in Thin Film Material

    NASA Astrophysics Data System (ADS)

    Banai, Rona Elinor

    Herzenbergite tin (II) monosulfide (alpha-SnS) is of growing interest as a photovoltaic material because of its interesting optoelectronic properties and Earth abundance. It has several stable phases due to the dual valency of tin. As a layered material, alpha-SnS has the ability to form varying microstructure with differing properties. For this dissertation, films were RF sputtered from a SnS and SnS2 target to produce films with varying microstructure. Growth of high energy phases includin beta-SnS and amorphous SnS2 were possible through sputtering. Films of mixed or strained phase resulted from both targets. Pure phase alpha-SnS was made by annealing amorphous SnS2 films. Microstructure was measured using grazing incidence XRD and field emission SEM. The impact of microstructure was seen for both optical and electronic properties. Films were evaluated using spectroscopic ellipsometry as well as unpolarized UV-Vis transmission and reflection measurements. Optical modeling of the films is sufficient for developing models corresponding to specific microstructure, enabling it to be an inexpensive tool for studying the material. Absorption coefficient and band gap were also derived for these films. Films deposited with the SnS target had resistivity values up to 20,000 O-cm. Annealing of amorphous films deposited from the SnS2 target resulted in alpha-SnS films with much lower resistivity (<50 O-cm) values. This method for producing alpha-SnS offered better control of the phase, microstructure and therefore optoelectronic properties. While SnS films made from either target were typically p-type, sputtering of the SnS2 target with substrate heating resulted in n-type SnSx of a potentially new phase similar to SnS2 but with a 2:3 tin-to-sulfur ratio. Resistivity of those films typically ranged from 1 to 40 O-cm. Both p- and n-type films made from the SnS2 target had high carrier concentration of 10 17 to 1020 cm-3, but films had low Hall mobility such that

  4. Dielectric properties of agricultural materials and their application

    USDA-ARS?s Scientific Manuscript database

    This book is prepared as a comprehensive source of information on dielectric properties of agricultural materials for scientific researchers and engineers involved in practical application of radio-frequency and microwave energy for potential problem solutions. Dielectric properties of materials det...

  5. Metallurgy and properties of plasma spray formed materials

    NASA Technical Reports Server (NTRS)

    Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.

    1992-01-01

    Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.

  6. Preparation and multi-properties determination of radium-containing rocklike material

    NASA Astrophysics Data System (ADS)

    Hong, Changshou; Li, Xiangyang; Zhao, Guoyan; Jiang, Fuliang; Li, Ming; Zhang, Shuai; Wang, Hong; Liu, Kaixuan

    2018-02-01

    The radium-containing rocklike material were fabricated using distilled water, ordinary Portland cement and additives mixed aggregates and admixtures according to certain proportion. The physico-mechanical properties as well as radioactive properties of the prepared rocklike material were measured. Moreover, the properties of typical granite sample were also investigated. It is found on one hand, similarities exist in physical and mechanical properties between the rocklike material and the granite sample, this confirms the validity of the proposed method; on the other hand, the rocklike material generally performs more remarkable radioactive properties compared with the granite sample, while radon diffusive properties in both materials are essentially matching. This study will provide a novel way to prepare reliable radium-containing samples for radon study of underground uranium mine.

  7. Properties of aircraft tire materials

    NASA Technical Reports Server (NTRS)

    Dodge, Richard N.; Clark, Samuel K.

    1988-01-01

    A summary is presented of measured elastomeric composite response suitable for linear structural and thermoelastic analysis in aircraft tires. Both real and loss properties are presented for a variety of operating conditions including the effects of temperature and frequency. Suitable micro-mechanics models are used for predictions of these properties for other material combinations and the applicability of laminate theory is discussed relative to measured values.

  8. Martensitic/ferritic steels as container materials for liquid mercury target of ESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Y.

    1996-06-01

    In the previous report, the suitability of steels as the ESS liquid mercury target container material was discussed on the basis of the existing database on conventional austenitic and martensitic/ferritic steels, especially on their representatives, solution annealed 316 stainless steel (SA 316) and Sandvik HT-9 martensitic steel (HT-9). Compared to solution annealed austenitic stainless steels, martensitic/ferritic steels have superior properties in terms of strength, thermal conductivity, thermal expansion, mercury corrosion resistance, void swelling and irradiation creep resistance. The main limitation for conventional martensitic/ferritic steels (CMFS) is embrittlement after low temperature ({le}380{degrees}C) irradiation. The ductile-brittle transition temperature (DBTT) can increase asmore » much as 250 to 300{degrees}C and the upper-shelf energy (USE), at the same time, reduce more than 50%. This makes the application temperature range of CMFS is likely between 300{degrees}C to 500{degrees}C. For the present target design concept, the temperature at the container will be likely controlled in a temperature range between 180{degrees}C to 330{degrees}C. Hence, CMFS seem to be difficult to apply. However, solution annealed austenitic stainless steels are also difficult to apply as the maximum stress level at the container will be higher than the design stress. The solution to the problem is very likely to use advanced low-activation martensitic/ferritic steels (LAMS) developed by the fusion materials community though the present database on the materials is still very limited.« less

  9. Size-Dependent Materials Properties Toward a Universal Equation

    PubMed Central

    2010-01-01

    Due to the lack of experimental values concerning some material properties at the nanoscale, it is interesting to evaluate this theoretically. Through a “top–down” approach, a universal equation is developed here which is particularly helpful when experiments are difficult to lead on a specific material property. It only requires the knowledge of the surface area to volume ratio of the nanomaterial, its size as well as the statistic (Fermi–Dirac or Bose–Einstein) followed by the particles involved in the considered material property. Comparison between different existing theoretical models and the proposed equation is done. PMID:20596422

  10. Distributed databases for materials study of thermo-kinetic properties

    NASA Astrophysics Data System (ADS)

    Toher, Cormac

    2015-03-01

    High-throughput computational materials science provides researchers with the opportunity to rapidly generate large databases of materials properties. To rapidly add thermal properties to the AFLOWLIB consortium and Materials Project repositories, we have implemented an automated quasi-harmonic Debye model, the Automatic GIBBS Library (AGL). This enables us to screen thousands of materials for thermal conductivity, bulk modulus, thermal expansion and related properties. The search and sort functions of the online database can then be used to identify suitable materials for more in-depth study using more precise computational or experimental techniques. AFLOW-AGL source code is public domain and will soon be released within the GNU-GPL license.

  11. Investigation of Effective Material Properties of Stony Meteorites

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Carlozzi, Alex; Bryson, Kathryn

    2016-01-01

    To assess the threat posed by an asteroid entering Earth's atmosphere, one must predict if, when, and how it fragments during entry. A comprehensive understanding of the Asteroid material properties is needed to achieve this objective. At present, the meteorite material found on Earth are the only objects from an entering asteroid that can be used as representative material and be tested inside a laboratory setting. Therefore, unit cell models are developed to determine the effective material properties of stony meteorites and in turn deduce the properties of asteroids. The unit cell is representative volume that accounts for diverse minerals, porosity, and matrix composition inside a meteorite. The various classes under investigation includes H-class, L-class, and LL-class chondrites. The effective mechanical properties such as Young's Modulus and Poisson's Ratio of the unit cell are calculated by performing several hundreds of Monte-Carlo simulations. Terrestrial analogs such as Basalt and Gabbro are being used to validate the unit cell methodology.

  12. Characterization of temperature-dependent optical material properties of polymer powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laumer, Tobias; SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen; CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen

    2015-05-22

    In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystallinemore » thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.« less

  13. Radiation effects in structural materials of spallation targets

    NASA Astrophysics Data System (ADS)

    Jung, P.

    2002-02-01

    Effects of radiation damage by protons and neutrons in structural materials of spallation neutron sources are reviewed. Effects of atomic displacements, defect mobility and transmutation products, especially hydrogen and helium, on physical and mechanical properties are discussed. The most promising candidate materials (austenitic stainless steels, ferritic/martensitic steels and refractory alloys) are compared, and needed investigations are identified.

  14. Laser Irradiated Foam Targets: Absorption and Radiative Properties

    NASA Astrophysics Data System (ADS)

    Salvadori, Martina; Luigi Andreoli, Pier; Cipriani, Mattia; Consoli, Fabrizio; Cristofari, Giuseppe; De Angelis, Riccardo; di Giorgio, Giorgio; Giulietti, Danilo; Ingenito, Francesco; Gus'kov, Sergey Yu.; Rupasov, Alexander A.

    2018-01-01

    An experimental campaign to characterize the laser radiation absorption of foam targets and the subsequent emission of radiation from the produced plasma was carried out in the ABC facility of the ENEA Research Center in Frascati (Rome). Different targets have been used: plastic in solid or foam state and aluminum targets. The activated different diagnostics allowed to evaluate the plasma temperature, the density distribution, the fast particle spectrum and the yield of the X-Ray radiation emitted by the plasma for the different targets. These results confirm the foam homogenization action on laser-plasma interaction, mainly attributable to the volume absorption of the laser radiation propagating in such structured materials. These results were compared with simulation absorption models of the laser propagating into a foam target.

  15. The flexural properties of endodontic post materials.

    PubMed

    Stewardson, Dominic A; Shortall, Adrian C; Marquis, Peter M; Lumley, Philip J

    2010-08-01

    To measure the flexural strengths and moduli of endodontic post materials and to assess the effect on the calculated flexural properties of varying the diameter/length (D/L) ratio of three-point bend test samples. Three-point bend testing of samples of 2mm diameter metal and fiber-reinforced composite (FRC) rods was carried out and the mechanical properties calculated at support widths of 16 mm, 32 mm and 64 mm. Weibull analysis was performed on the strength data. The flexural strengths of all the FRC post materials exceeded the yield strengths of the gold and stainless steel samples; the flexural strengths of two FRC materials were comparable with the yield strength of titanium. Stainless steel recorded the highest flexural modulus while the titanium and the two carbon fiber materials exhibited similar values just exceeding that of gold. The remaining glass fiber materials were of lower modulus within the range of 41-57 GPa. Weibull modulus values for the FRC materials ranged from 16.77 to 30.09. Decreasing the L/D ratio produced a marked decrease in flexural modulus for all materials. The flexural strengths of FRC endodontic post materials as new generally exceed the yield strengths of metals from which endodontic posts are made. The high Weibull modulus values suggest good clinical reliability of FRC posts. The flexural modulus values of the tested posts were from 2-6 times (FRC) to 4-10 times (metal) that of dentin. Valid measurement of flexural properties of endodontic post materials requires that test samples have appropriate L/D ratios. Copyright 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Preliminary Mark-18A (Mk-18A) Target Material Recovery Program Product Acceptance Criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Sharon M.; Patton, Bradley D.

    2016-09-01

    The Mk-18A Target Material Recovery Program (MTMRP) was established in 2015 to preserve the unique materials, e.g. 244Pu, in 65 previously irradiated Mk-18A targets for future use. This program utilizes existing capabilities at SRS and Savannah River National Laboratory (SRNL) to process targets, recover materials from them, and to package the recovered materials for shipping to ORNL. It also utilizes existing capabilities at ORNL to receive and store the recovered materials, and to provide any additional processing of the recovered materials or residuals required to prepare them for future beneficial use. The MTMRP is presently preparing for the processing ofmore » these valuable targets which is expected to begin in ~2019. As part of the preparations for operations, this report documents the preliminary acceptance criteria for the plutonium and heavy curium materials to be recovered from the Mk-18A targets at SRNL for transport and storage at ORNL. These acceptance criteria were developed based on preliminary concepts developed for processing, transporting, and storing the recovered Mk-18A materials. They will need to be refined as these concepts are developed in more detail.« less

  17. Dielectric Characteristics of Microstructural Changes and Property Evolution in Engineered Materials

    NASA Astrophysics Data System (ADS)

    Clifford, Jallisa Janet

    Heterogeneous materials are increasingly used in a wide range of applications such as aerospace, civil infrastructure, fuel cells and many others. The ability to take properties from two or more materials to create a material with properties engineered to needs is always very attractive. Hence heterogeneous materials are evolving into more complex formulations in multiple disciplines. Design of microstructure at multiple scales control the global functional properties of these materials and their structures. However, local microstructural changes do not directly cause a proportional change to the global properties (such as strength and stiffness). Instead, local changes follow an evolution process including significant interactions. Therefore, in order to understand property evolution of engineered materials, microstructural changes need to be effectively captured. Characterizing these changes and representing them by material variables will enable us to further improve our material level understanding. In this work, we will demonstrate how microstructural features of heterogeneous materials can be described quantitatively using broadband dielectric spectroscopy (BbDS). The frequency dependent dielectric properties can capture the change in material microstructure and represent these changes in terms of material variables, such as complex permittivity. These changes in terms of material properties can then be linked to a number of different conditions, such as increasing damage due to impact or fatigue. Two different broadband dielectric spectroscopy scanning modes are presented: bulk measurements and continuous scanning to measure dielectric property change as a function of position across the specimen. In this study, we will focus on ceramic materials and fiber reinforced polymer matrix composites as test bed material systems. In the first part of the thesis, we will present how different micro-structural design of porous ceramic materials can be captured

  18. Thermal properties of granulated materials.

    NASA Technical Reports Server (NTRS)

    Wechsler, A. E.; Glaser, P. E.; Fountain, J. A.

    1972-01-01

    Review of the thermophysical properties of granular materials or silicates believed to simulate the lunar surface layer. Emphasis is placed on thermal conductivity data and the effects of material and environmental variables on the thermal conductivity. There are three basic mechanisms of heat transfer in particulate materials: conduction by the gas contained in the void spaces between the particles; conduction within the solid particles and across the interparticle contacts; and thermal radiation within the particles, across the void spaces between particle surfaces, and between void spaces themselves. Gas and solid conduction, thermal radiation, and the interaction between conduction and radiation are considered.

  19. Food and Natural Materials Target Mechanisms to Effectively Regulate Allergic Responses.

    PubMed

    Shin, Hee Soon; Shon, Dong-Hwa

    2015-01-01

    An immune hypersensitivity disorder called allergy is caused by diverse allergens entering the body via skin contact, injection, ingestion, and/or inhalation. These allergic responses may develop into allergic disorders, including inflammations such as atopic dermatitis, asthma, anaphylaxis, food allergies, and allergic rhinitis. Several drugs have been developed to treat these allergic disorders; however, long-term intake of these drugs could have adverse effects. As an alternative to these medicines, food and natural materials that ameliorate allergic disorder symptoms without producing any side effects can be consumed. Food and natural materials can effectively regulate successive allergic responses in an allergic chain-reaction mechanism in the following ways: [1] Inhibition of allergen permeation via paracellular diffusion into epithelial cells, [2] suppression of type 2 T-helper (Th) cell-related cytokine production by regulating Th1/Th2 balance, [3] inhibition of pathogenic effector CD4(+) T cell differentiation by inducing regulatory T cells (Treg), and [4] inhibition of degranulation in mast cells. The immunomodulatory effects of food and natural materials on each target mechanism were scientifically verified and shown to alleviate allergic disorder symptoms. Furthermore, consumption of certain food and natural materials such as fenugreek, skullcap, chitin/chitosan, and cheonggukjang as anti-allergics have merits such as safety (no adverse side effects), multiple suppressive effects (as a mixture would contain various components that are active against allergic responses), and ease of consumption when required. These merits and anti-allergic properties of food and natural materials help control various allergic disorders.

  20. Crossmodal association of auditory and visual material properties in infants.

    PubMed

    Ujiie, Yuta; Yamashita, Wakayo; Fujisaki, Waka; Kanazawa, So; Yamaguchi, Masami K

    2018-06-18

    The human perceptual system enables us to extract visual properties of an object's material from auditory information. In monkeys, the neural basis underlying such multisensory association develops through experience of exposure to a material; material information could be processed in the posterior inferior temporal cortex, progressively from the high-order visual areas. In humans, however, the development of this neural representation remains poorly understood. Here, we demonstrated for the first time the presence of a mapping of the auditory material property with visual material ("Metal" and "Wood") in the right temporal region in preverbal 4- to 8-month-old infants, using near-infrared spectroscopy (NIRS). Furthermore, we found that infants acquired the audio-visual mapping for a property of the "Metal" material later than for the "Wood" material, since infants form the visual property of "Metal" material after approximately 6 months of age. These findings indicate that multisensory processing of material information induces the activation of brain areas related to sound symbolism. Our findings also indicate that the material's familiarity might facilitate the development of multisensory processing during the first year of life.

  1. Anisotropic local physical properties of human dental enamel in comparison to properties of some common dental filling materials.

    PubMed

    Raue, Lars; Hartmann, Christiane D; Rödiger, Matthias; Bürgers, Ralf; Gersdorff, Nikolaus

    2014-11-01

    A major aspect in evaluating the quality of dental materials is their physical properties. Their properties should be a best fit of the ones of dental hard tissues. Manufacturers give data sheets for each material. The properties listed are characterized by a specific value. This assumes (but does not prove) that there is no direction dependence of the properties. However, dental enamel has direction-dependent properties which additionally vary with location in the tooth. The aim of this paper is to show the local direction dependence of physical properties like the elastic modulus or the thermal expansion in dental hard tissues. With this knowledge the 'perfect filling/dental material' could be characterized. Enamel sections of ∼400-500 μm thickness have been cut with a diamond saw from labial/buccal to palatal/lingual (canine, premolar and molar) and parallel to labial (incisor). Crystallite arrangements have been measured in over 400 data points on all types of teeth with x-ray scattering techniques, known from materials science. X-ray scattering measurements show impressively that dental enamel has a strong direction dependence of its physical properties which also varies with location within the tooth. Dental materials possess only little or no property direction dependence. Therefore, a mismatch was found between enamel and dental materials properties. Since dental materials should possess equal (direction depending) properties, worthwhile properties could be characterized by transferring the directional properties of enamel into a property 'wish list' which future dental materials should fulfil. Hereby the 'perfect dental material' can be characterized.

  2. Determination of orthotropic material properties by modal analysis

    NASA Astrophysics Data System (ADS)

    Lai, Junpeng

    The methodology for determination of orthotropic material properties in plane stress condition will be presented. It is applied to orthotropic laminated plates like printed wiring boards. The first part of the thesis will focus on theories and methodologies. The static beam model and vibratory plate model is presented. The methods are validated by operating a series of test on aluminum. In the static tests, deflection and two directions of strain are measured, thus four of the properties will be identified: Ex, Ey, nuxy, nuyx. Moving on to dynamic test, the first ten modes' resonance frequencies are obtained. The technique of modal analysis is adopted. The measured data is processed by FFT and analyzed by curve fitting to extract natural frequencies and mode shapes. With the last material property to be determined, a finite element method using ANSYS is applied. Along with the identified material properties in static tests, and proper initial guess of the unknown shear modulus, an iterative process creates finite element model and conducts modal analysis with the updating model. When the modal analysis result produced by ANSYS matches the natural frequencies acquired by dynamic test, the process will halt. Then we obtained the last material property in plane stress condition.

  3. Spectral reflectance properties of carbon-bearing materials

    NASA Technical Reports Server (NTRS)

    Cloutis, Edward A.; Gaffey, Michael J.; Moslow, Thomas F.

    1994-01-01

    The 0.3-2.6 micrometers spectral reflectance properties of carbon polymorphs (graphite, carbon black, diamond), carbides (silicon carbide, cementite), and macromolecular organic-bearing materials (coal, coal tar extract, oil sand, oil shale) are found to vary from sample to sample and among groups. The carbon polymorphs are readily distinguishable on the basis of their visible-near infrared spectral slopes and shapes. The spectra of macromolecular organic-bearing materials show increases in reflectance toward longer wavelengths, exceeding the reflectance rise of more carbon-rich materials. Reflectance spectra of carbonaceous materials are affected by the crystal structure, composition, and degree of order/disorder of the samples. The characteristic spectral properties can potentially be exploited to identify individual carbonaceous grains in meteorites (as separates or in situ) or to conduct remote sensing geothermometry and identification of carbonaceous phases on asteroids.

  4. Important physical properties of peat materials

    Treesearch

    D.H. Boelter

    1968-01-01

    Peat materials from 12 bogs in northern Minnesota, U.S.A., showed significant differences in physical properties. It is pointed out that 1) these properties can be related to the hydrology of organic soils only if the soils represent undisturbed field conditions, and 2) volumetric expressions of water content are necessary to correctly evaluate the amount of water in a...

  5. Effects of Coal Gangue on Cement Grouting Material Properties

    NASA Astrophysics Data System (ADS)

    Liu, J. Y.; Chen, H. X.

    2018-05-01

    The coal gangue is one of the most abundant industrial solid wastes and pollute source of air and water. The use of coal gangue in the production of cement grouting material comforms to the basic state policy of environment protection and the circular using of natural resources. Through coal gangue processing experiment, coal gangue cement grouting materials making test, properties detection of properties and theoretical analysis, the paper studied the effects of coal gangue on the properties of cement grouting materials. It is found that at the range of 600 to 700 °C, the fluidity and the compressive and flexural strengths of the cement grouting materials increase with the rising up of the calcination temperatures of coal gangue. The optimum calcination temperature is around 700 °C. The part substitution of cement by the calcined coal gangue in the cement grouting material will improve the mechanical properties of the cement grouting material, even thought it will decrease its fluidity. The best substitution amount of cement by coal gangue is about 30%. The fluidity and the long term strength of the ordinary silicate cement grouting material is obviously higher than that of the sulphoaluminate cement one as well as that of the silicate-sulphoaluminate complex cement one.

  6. Shear properties of pultruded fiber reinforced polymer composite materials

    NASA Astrophysics Data System (ADS)

    Seo, J. H.; Kim, S. H.; Ok, D. M.; An, D. J.; Yoon, S. J.

    2018-06-01

    This paper focuses on the mechanical properties of PFRP composite materials. Especially, relationship between shear property and the other mechanical properties of PFRP composite materials is investigated through comparison between experimental and theoretical results. The shear property of PFRP composite specimen is calculated from the theoretical equations which were suggested in previous studies. In addition, comparison between the shear property determined by the tensile test and the shear property calculated from theoretical equations is conducted and discussed. It was found that the theoretically predicted shear modulus of elasticity considering contiguity is close to the shear modulus of elasticity obtained by the 45° off-axis tensile test.

  7. Target Fabrication Technology and New Functional Materials for Laser Fusion and Laser-Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Nagai, Keiji; Norimatsu, Takayoshi; Izawa, Yasukazu

    Target fabrication technique is a key issue of laser fusion. We present a comprehensive, up-to-data compilation of laser fusion target fabrication and relating new materials. To achieve highly efficient laser implosion, organic and inorganic highly spherical millimeter-sized capsules and cryogenic hydrogen layers inside should be uniform in diameter and thickness within sub-micrometer ˜ nanometer error. Porous structured targets and molecular cluster targets are required for laser-plasma experiments and applications. Various technologies and new materials concerning above purposes are summarized including fast-ignition targets, equation-of-state measurement targets, high energy ion generation targets, etc.

  8. On the vibration properties of composite materials and structures

    NASA Astrophysics Data System (ADS)

    Lu, Y. P.; Neilson, H. C.; Roscoe, A. J.

    1993-01-01

    In recent years, there has been a widespread assumption that composite materials and structures offer enhanced vibration and acoustic properties. This assumption has to be evaluated or validated. The objective of this article is to address the subject of vibration characteristics and the related force transmissibility properties of composite structures. For a given composite beam made of Hercules AS4/3501-6 graphite/epoxy with a layered structure sequence of (0,0,30,-30)(sub 6S), resonance frequencies, structural damping, responses, impedances, and force transmissibility properties are determined, discussed, and compared with those of a steel beam. This article proposes a procedure to evaluate the vibration properties of individual composites. The criterion defined for performance comparison between composite materials and conventional materials is also discussed.

  9. Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation

    NASA Technical Reports Server (NTRS)

    Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.

  10. Shell-binary nanoparticle materials with variable electrical and electro-mechanical properties.

    PubMed

    Zhang, P; Bousack, H; Dai, Y; Offenhäusser, A; Mayer, D

    2018-01-18

    Nanoparticle (NP) materials with the capability to adjust their electrical and electro-mechanical properties facilitate applications in strain sensing technology. Traditional NP materials based on single component NPs lack a systematic and effective means of tuning their electrical and electro-mechanical properties. Here, we report on a new type of shell-binary NP material fabricated by self-assembly with either homogeneous or heterogeneous arrangements of NPs. Variable electrical and electro-mechanical properties were obtained for both materials. We show that the electrical and electro-mechanical properties of these shell-binary NP materials are highly tunable and strongly affected by the NP species as well as their corresponding volume fraction ratio. The conductivity and the gauge factor of these shell-binary NP materials can be altered by about five and two orders of magnitude, respectively. These shell-binary NP materials with different arrangements of NPs also demonstrate different volume fraction dependent electro-mechanical properties. The shell-binary NP materials with a heterogeneous arrangement of NPs exhibit a peaking of the sensitivity at medium mixing ratios, which arises from the aggregation induced local strain enhancement. Studies on the electron transport regimes and micro-morphologies of these shell-binary NP materials revealed the different mechanisms accounting for the variable electrical and electro-mechanical properties. A model based on effective medium theory is used to describe the electrical and electro-mechanical properties of such shell-binary nanomaterials and shows an excellent match with experiment data. These shell-binary NP materials possess great potential applications in high-performance strain sensing technology due to their variable electrical and electro-mechanical properties.

  11. Composition and methods of preparation of target material for producing radionuclides

    DOEpatents

    Seropeghin, Yurii D; Zhuikov, Boris L

    2013-05-28

    A composition suitable for use as a target containing antimony to be irradiated by accelerated charged particles (e.g., by protons to produce tin-117m) comprises an intermetallic compound of antimony and titanium which is synthesized at high-temperature, for example, in an arc furnace. The formed material is powdered and melted in an induction furnace, or heated at high gas pressure in gas static camera. The obtained product has a density, temperature stability, and heat conductivity sufficient to provide an appropriate target material.

  12. The design and modeling of periodic materials with novel properties

    NASA Astrophysics Data System (ADS)

    Berger, Jonathan Bernard

    Cellular materials are ubiquitous in our world being found in natural and engineered systems as structural materials, sound and energy absorbers, heat insulators and more. Stochastic foams made of polymers, metals and even ceramics find wide use due to their novel properties when compared to monolithic materials. Properties of these so called hybrid materials, those that combine materials or materials and space, are derived from the localization of thermomechanical stresses and strains on the mesoscale as a function of cell topology. The effects of localization can only be generalized in stochastic materials arising from their inherent potential complexity, possessing variations in local chemistry, microstructural inhomogeneity and topological variations. Ordered cellular materials on the other hand, such as lattices and honeycombs, make for much easier study, often requiring analysis of only a single unit-cell. Theoretical bounds predict that hybrid materials have the potential to push design envelopes offering lighter stiffer and stronger materials. Hybrid materials can achieve very low and even negative coefficients of thermal expansion (CTE) while retaining a relatively high stiffness -- properties completely unmatched by monolithic materials. In the first chapter of this thesis a two-dimensional lattice is detailed that possess near maximum stiffness, relative to the tightest theoretical bound, and low, zero and even appreciably negative thermal expansion. Its CTE and stiffness are given in closed form as a function of geometric parameters and the material properties. This result is confirmed with finite elements (FE) and experiment. In the second chapter the compressive stiffness of three-dimensional ordered foams, both closed and open cell, are predicted with FE and the results placed in property space in terms of stiffness and density. A novel structure is identified that effectively achieves theoretical bounds for Young's, shear and bulk modulus

  13. Properties of five toughened matrix composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Dow, Marvin B.

    1992-01-01

    The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.

  14. Mechanical properties of composite materials

    NASA Technical Reports Server (NTRS)

    Thornton, H. Richard; Cornwell, L. R.

    1993-01-01

    A composite material incorporates high strength, high modulus fibers in a matrix (polymer, metal, or ceramic). The fibers may be oriented in a manner to give varying in-plane properties (longitudinal, transverse-stress, strain, and modulus of elasticity). The lay-up of the composite laminates is such that a center line of symmetry and no bending moment exist through the thickness. The laminates are tabbed, with either aluminum or fiberglass, and are ready for tensile testing. The determination of the tensile properties of resin matrix composites, reinforced by continuous fibers, is outlined in ASTM standard D 3039, Tensile Properties of Oriented Fiber Composites. The tabbed flat tensile coupons are placed into the grips of a tensile machine and load-deformation curves plotted. The load-deformation data are translated into stress-strain curves for determination of mechanical properties (ultimate tensile strength and modulus of elasticity).

  15. Proposed industrial recovered materials utilization targets for the metals and metal products industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1979-05-01

    Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recyclingmore » flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)« less

  16. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, Humphrey J.; Stoner, Robert J.

    1998-01-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined.

  17. Thermal Property Parameter Estimation of TPS Materials

    NASA Technical Reports Server (NTRS)

    Maddren, Jesse

    1998-01-01

    Accurate knowledge of the thermophysical properties of TPS (thermal protection system) materials is necessary for pre-flight design and post-flight data analysis. Thermal properties, such as thermal conductivity and the volumetric specific heat, can be estimated from transient temperature measurements using non-linear parameter estimation methods. Property values are derived by minimizing a functional of the differences between measured and calculated temperatures. High temperature thermal response testing of TPS materials is usually done in arc-jet or radiant heating facilities which provide a quasi one-dimensional heating environment. Last year, under the NASA-ASEE-Stanford Fellowship Program, my work focused on developing a radiant heating apparatus. This year, I have worked on increasing the fidelity of the experimental measurements, optimizing the experimental procedures and interpreting the data.

  18. Analysis of speckle and material properties in laider tracer

    NASA Astrophysics Data System (ADS)

    Ross, Jacob W.; Rigling, Brian D.; Watson, Edward A.

    2017-04-01

    The SAL simulation tool Laider Tracer models speckle: the random variation in intensity of an incident light beam across a rough surface. Within Laider Tracer, the speckle field is modeled as a 2-D array of jointly Gaussian random variables projected via ray tracing onto the scene of interest. Originally, all materials in Laider Tracer were treated as ideal diffuse scatterers, for which the far-field return computed uses the Lambertian Bidirectional Reflectance Distribution Function (BRDF). As presented here, we implement material properties into Laider Tracer via the Non-conventional Exploitation Factors Data System: a database of properties for thousands of different materials sampled at various wavelengths and incident angles. We verify the intensity behavior as a function of incident angle after material properties are added to the simulation.

  19. Hydrodynamic and material properties experiments using pulsed power techniques

    NASA Astrophysics Data System (ADS)

    Reinovsky, R. E.; Trainor, R. J.

    2000-04-01

    Within the last five years, a new approach to the exploration of dynamic material properties and advanced hydrodynamics at extreme conditions has joined the traditional techniques of high velocity guns and explosives. This new application uses electromagnetic energy to accelerate solid density material to produce shocks in a cylindrical target. The principal tool for producing high energy density environments is the high precision, magnetically imploded, near-solid density cylindrical liner. The most attractive pulsed power system for driving such experiments is an ultrahigh current, low impedance, microsecond time scale source that is economical both to build and to operate. Two families of pulsed power systems can be applied to drive such experiments. The 25-MJ Atlas capacitor bank system currently under construction at Los Alamos is the first system of its scale specifically designed to drive high precision solid liners. Delivering 30 MA, Atlas will provide liner velocities 12-15 km/sec and kinetic energies of 1-2 MJ/cm with extensive diagnostics and excellent reproducibility. Explosive flux compressor technology provides access to currents exceeding 100 MA producing liner velocities above 25 km/sec and kinetic energies of 5-20 MJ/cm in single shot operations

  20. Comparative study on stiffness properties of WOODCAST and conventional casting materials.

    PubMed

    Pirhonen, Eija; Pärssinen, Antti; Pelto, Mika

    2013-08-01

    Plaster-of-Paris and synthetic materials (e.g. fibreglass) have been in clinical use as casting materials for decades. An innovative casting material, WOODCAST, brings interesting alternatives to the traditional materials. The aim of this study was to compare the stiffness properties of the WOODCAST material to traditional casting materials. In immobilization by casting, materials with variable stiffness properties are required. Ring stiffness of cylindrical samples correlates well with cast rigidity. For load-bearing structures, the use of the WOODCAST Splint is recommended as equally high stiffness was obtained with the WOODCAST Splint as was with fibreglass. The WOODCAST 2 mm product is optimal for structures where some elasticity is required, and WOODCAST Ribbon can be used in any WOODCAST structure where further reinforcement is needed. The results show that WOODCAST material can be used in replacing traditional casting materials used in extremity immobilization. The mechanical properties of casting material play an important role in safe and effective fracture immobilization. Stiffness properties of the WOODCAST casting material and conventional materials - fibreglass and plaster-of-Paris - were analysed in this study. The WOODCAST Splint appears to compare favorably with traditional materials such as Scotchcast.

  1. Synthesis and electronic properties of nanophase semiconductor materials

    NASA Astrophysics Data System (ADS)

    Sailor, Michael J.

    1993-05-01

    The objective of the research effort is to understand and learn to control the morphologic and electronic properties of electrodeposited nanophase semiconductors. The initial work has focused on electrodeposition of nanophase CdSe, using a sequential monolayer deposition technique that we are developing. We are currently extending the synthesis phase of this project into silicon, silicon carbide, and phosphor materials. This work also encompasses studying semiconductor electrodeposition into materials with restricted dimensions, such as microporous alumina and porous silicon membranes. By growing films with very small grain sizes, we hope to produce and study materials that display unusual electronic or luminescent effects. We are primarily interested in the electronic properties of the II-VI and group IV materials, for potential applications in nanoscale electronics and optical detector technologies. The phosphors are being studied for their potential as efficient high-resolution display materials.

  2. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  3. A BRDF statistical model applying to space target materials modeling

    NASA Astrophysics Data System (ADS)

    Liu, Chenghao; Li, Zhi; Xu, Can; Tian, Qichen

    2017-10-01

    In order to solve the problem of poor effect in modeling the large density BRDF measured data with five-parameter semi-empirical model, a refined statistical model of BRDF which is suitable for multi-class space target material modeling were proposed. The refined model improved the Torrance-Sparrow model while having the modeling advantages of five-parameter model. Compared with the existing empirical model, the model contains six simple parameters, which can approximate the roughness distribution of the material surface, can approximate the intensity of the Fresnel reflectance phenomenon and the attenuation of the reflected light's brightness with the azimuth angle changes. The model is able to achieve parameter inversion quickly with no extra loss of accuracy. The genetic algorithm was used to invert the parameters of 11 different samples in the space target commonly used materials, and the fitting errors of all materials were below 6%, which were much lower than those of five-parameter model. The effect of the refined model is verified by comparing the fitting results of the three samples at different incident zenith angles in 0° azimuth angle. Finally, the three-dimensional modeling visualizations of these samples in the upper hemisphere space was given, in which the strength of the optical scattering of different materials could be clearly shown. It proved the good describing ability of the refined model at the material characterization as well.

  4. Interdisciplinary research on the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several investigations concerning the properties and processing of brittle ceramic materials as related to design considerations are briefly described. Surface characterization techniques, fractography, high purity materials, creep properties, impact and thermal shock resistance, and reaction bonding are discussed.

  5. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, H.J.; Stoner, R.J.

    1998-12-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined. 14 figs.

  6. Application for managing model-based material properties for simulation-based engineering

    DOEpatents

    Hoffman, Edward L [Alameda, CA

    2009-03-03

    An application for generating a property set associated with a constitutive model of a material includes a first program module adapted to receive test data associated with the material and to extract loading conditions from the test data. A material model driver is adapted to receive the loading conditions and a property set and operable in response to the loading conditions and the property set to generate a model response for the material. A numerical optimization module is adapted to receive the test data and the model response and operable in response to the test data and the model response to generate the property set.

  7. Material Modeling of Stony Meteorites for Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Agrawal, P.

    2016-12-01

    To assess the threat posed by an asteroid entering Earth's atmosphere, one must predict if, when, and how it fragments during entry. A comprehensive understanding of the asteroid material properties is needed to achieve this objective. At present, the meteorite material found on earth are the only objects (other than synthetic meteorites) from an entering asteroid that can be used as representative material and be tested inside a laboratory setting. Due to limited number of meteorites available for testing it is difficult to develop a material model that can be purely based on statistics from the test data. Therefore, we are developing computational models to determine the effective material properties of stony meteorites and in turn deduce the properties of asteroids. The internal structure of meteorites are very complex. They consists of several minerals that include the silica based materials such as Olivine, Pyroxene, Feldspar that are found in terrestrial rocks, as well as Fe-Ni based minerals such as Kamacite, Troilite and Taenite that are unique to meteorites. Each of these minerals have different densities and mechanical properties. In addition, the meteorites have different phases that can be summarized as chondrules, metal and matrix. The meteorites have varying degree of porosity and pre-cracked structure. In order to account for diverse petrology of the meteorites a unique methodology is developed the form of unit cell model. The unit cell is representative volume that accounts for diverse minerals, porosity, and matrix composition inside a meteorite. All the minerals and phases inside these unit cells are randomly distributed. Several hundreds of Monte-Carlo simulations are performed to generate the effective mechanical properties such as Young's Modulus and Poisson's Ratio of the unit cell. Stress-strain curves as well as strength estimates are generated based on the unit cell models. These estimates will used as material models for full scale

  8. Stochasticity in materials structure, properties, and processing—A review

    NASA Astrophysics Data System (ADS)

    Hull, Robert; Keblinski, Pawel; Lewis, Dan; Maniatty, Antoinette; Meunier, Vincent; Oberai, Assad A.; Picu, Catalin R.; Samuel, Johnson; Shephard, Mark S.; Tomozawa, Minoru; Vashishth, Deepak; Zhang, Shengbai

    2018-03-01

    We review the concept of stochasticity—i.e., unpredictable or uncontrolled fluctuations in structure, chemistry, or kinetic processes—in materials. We first define six broad classes of stochasticity: equilibrium (thermodynamic) fluctuations; structural/compositional fluctuations; kinetic fluctuations; frustration and degeneracy; imprecision in measurements; and stochasticity in modeling and simulation. In this review, we focus on the first four classes that are inherent to materials phenomena. We next develop a mathematical framework for describing materials stochasticity and then show how it can be broadly applied to these four materials-related stochastic classes. In subsequent sections, we describe structural and compositional fluctuations at small length scales that modify material properties and behavior at larger length scales; systems with engineered fluctuations, concentrating primarily on composite materials; systems in which stochasticity is developed through nucleation and kinetic phenomena; and configurations in which constraints in a given system prevent it from attaining its ground state and cause it to attain several, equally likely (degenerate) states. We next describe how stochasticity in these processes results in variations in physical properties and how these variations are then accentuated by—or amplify—stochasticity in processing and manufacturing procedures. In summary, the origins of materials stochasticity, the degree to which it can be predicted and/or controlled, and the possibility of using stochastic descriptions of materials structure, properties, and processing as a new degree of freedom in materials design are described.

  9. Materials used to simulate physical properties of human skin.

    PubMed

    Dąbrowska, A K; Rotaru, G-M; Derler, S; Spano, F; Camenzind, M; Annaheim, S; Stämpfli, R; Schmid, M; Rossi, R M

    2016-02-01

    For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. ESTEC wiring test programme materials related properties

    NASA Technical Reports Server (NTRS)

    Judd, M. D.

    1994-01-01

    Electrical wires are considered as EEE parts and are covered within the ESA SCC specification series (ESA SCC 3901/XXX). This specification defines the principal properties of the wires including insulation/lay-up and electrical properties. Some additional space related materials requirements are also included, requirements such as outgassing and silver plating thickness. If a project has additional materials requirements over and above those covered by the relevant SCC specification, then additional testing is required. This is especially true for crewed spacecraft. The following topics are discussed in this context: additional requirements for manned spacecraft; flammability; arc tracking; thermal decomposition; microbial surface growth; and ageing.

  11. Target design for materials processing very far from equilibrium

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Schenkel, Thomas

    2016-10-01

    Local heating and electronic excitations can trigger phase transitions or novel material states that can be stabilized by rapid quenching. An example on the few nanometer scale are phase transitions induced by the passage of swift heavy ions in solids where nitrogen-vacancy color centers form locally in diamonds when ions heat the diamond matrix to warm dense matter conditions at 0.5 eV. We optimize mask geometries for target materials such as silicon and diamond to induce phase transitions by intense ion pulses (e. g. from NDCX-II or from laser-plasma acceleration). The goal is to rapidly heat a solid target volumetrically and to trigger a phase transition or local lattice reconstruction followed by rapid cooling. The stabilized phase can then be studied ex situ. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of crystal targets with micro-structured masks. A simple analytical model, that includes ion heating and radial, diffusive cooling, was developed that agrees closely with the HYDRA simulations. The model gives scaling laws that can guide the design of targets over a wide range of parameters including those for NDCX-II and the proposed BELLA-i. This work was performed under the auspices of the U.S. DOE under contracts DE-AC52-07NA27344 (LLNL), DE-AC02-05CH11231 (LBNL) and was supported by the US DOE Office of Science, Fusion Energy Sciences. LLNL-ABS-697271.

  12. Material properties of Pacific hake, Humboldt squid, and two species of myctophids in the California Current.

    PubMed

    Becker, Kaylyn N; Warren, Joseph D

    2015-05-01

    Material properties of the flesh from three fish species (Merluccius productus, Symbolophorus californiensis, and Diaphus theta), and several body parts of the Humboldt squid (Dosidicus gigas) collected from the California Current ecosystem were measured. The density contrast relative to seawater varied within and among taxa for fish flesh (0.9919-1.036), squid soft body parts (mantle, arms, tentacle, braincase, eyes; 1.009-1.057), and squid hard body parts (beak and pen; 1.085-1.459). Effects of animal length and environmental conditions on nekton density contrast were investigated. The sound speed contrast relative to seawater varied within and among taxa for fish flesh (0.986-1.027) and Humboldt squid mantle and braincase (0.937-1.028). Material properties in this study are similar to values from previous studies on species with similar life histories. In general, the sound speed and density of soft body parts of fish and squid were 1%-3% and 1%-6%, respectively, greater than the surrounding seawater. Hard parts of the squid were significantly more dense (6%-46%) than seawater. The material properties reported here can be used to improve target strength estimates from acoustic scattering models, which could increase the accuracy of biomass estimates from acoustic surveys for these nekton.

  13. Materials thermal and thermoradiative properties/characterization technology

    NASA Technical Reports Server (NTRS)

    Dewitt, D. P.; Ho, C. Y.

    1989-01-01

    Reliable properties data on well characterized materials are necessary for design of experiments and interpretation of experimental results. The activities of CINDAS to provide data bases and predict properties are discussed. An understanding of emissivity behavior is important in order to select appropriate methods for non-contact temperature determination. Related technical issues are identified and recommendations are offered.

  14. Silk/nano-material hybrid: properties and functions

    NASA Astrophysics Data System (ADS)

    Steven, Eden; Lebedev, Victor; Laukhina, Elena; Laukhin, Vladimir; Alamo, Rufina G.; Rovira, Concepcio; Veciana, Jaume; Brooks, James S.

    2014-03-01

    Silk continues to emerge as a material of interest in electronics. In this work, the interaction between silk and conducting nano-materials are investigated. Simple fabrication methods, physical, electronic, thermal, and actuation properties are reported for spider silk / carbon nanotube (CNT-SS) and Bombyx mori / (BEDT-TTF)-based organic molecular conductor hybrids (ET-S). The CNT-SS fibers are produced via water and shear assisted method, resulting in fibers that are tough, custom-shapeable, flexible, and electrically conducting. For ET-S bilayer films, a layer transfer technique is developed to deposit linked crystallites of (BEDT-TTF)2I3 molecular conductor onto silk films, generating highly piezoresistive semi-transparent films. In both cases, the hybridization allows us to gain additional functions by harnessing the water-dependent properties of silk materials, for example, as humidity sensor and electrical current- or water-driven actuators. SEM, TEM, FT-IR, and resistance measurements under varying temperature, strain, and relative humidity reveal the synergistic interactions between the bio- and nano-materials. E.S. is supported by NSF-DMR 1005293.

  15. A Statistics-Based Material Property Analysis to Support TPS Characterization

    NASA Technical Reports Server (NTRS)

    Copeland, Sean R.; Cozmuta, Ioana; Alonso, Juan J.

    2012-01-01

    Accurate characterization of entry capsule heat shield material properties is a critical component in modeling and simulating Thermal Protection System (TPS) response in a prescribed aerothermal environment. The thermal decomposition of the TPS material during the pyrolysis and charring processes is poorly characterized and typically results in large uncertainties in material properties as inputs for ablation models. These material property uncertainties contribute to large design margins on flight systems and cloud re- construction efforts for data collected during flight and ground testing, making revision to existing models for entry systems more challenging. The analysis presented in this work quantifies how material property uncertainties propagate through an ablation model and guides an experimental test regimen aimed at reducing these uncertainties and characterizing the dependencies between properties in the virgin and charred states for a Phenolic Impregnated Carbon Ablator (PICA) based TPS. A sensitivity analysis identifies how the high-fidelity model behaves in the expected flight environment, while a Monte Carlo based uncertainty propagation strategy is used to quantify the expected spread in the in-depth temperature response of the TPS. An examination of how perturbations to the input probability density functions affect output temperature statistics is accomplished using a Kriging response surface of the high-fidelity model. Simulations are based on capsule configuration and aerothermal environments expected during the Mars Science Laboratory (MSL) entry sequence. We identify and rank primary sources of uncertainty from material properties in a flight-relevant environment, show the dependence on spatial orientation and in-depth location on those uncertainty contributors, and quantify how sensitive the expected results are.

  16. MOlecular MAterials Property Prediction Package (MOMAP) 1.0: a software package for predicting the luminescent properties and mobility of organic functional materials

    NASA Astrophysics Data System (ADS)

    Niu, Yingli; Li, Wenqiang; Peng, Qian; Geng, Hua; Yi, Yuanping; Wang, Linjun; Nan, Guangjun; Wang, Dong; Shuai, Zhigang

    2018-04-01

    MOlecular MAterials Property Prediction Package (MOMAP) is a software toolkit for molecular materials property prediction. It focuses on luminescent properties and charge mobility properties. This article contains a brief descriptive introduction of key features, theoretical models and algorithms of the software, together with examples that illustrate the performance. First, we present the theoretical models and algorithms for molecular luminescent properties calculation, which includes the excited-state radiative/non-radiative decay rate constant and the optical spectra. Then, a multi-scale simulation approach and its algorithm for the molecular charge mobility are described. This approach is based on hopping model and combines with Kinetic Monte Carlo and molecular dynamics simulations, and it is especially applicable for describing a large category of organic semiconductors, whose inter-molecular electronic coupling is much smaller than intra-molecular charge reorganisation energy.

  17. Excitons in scintillator materials: Optical properties and electron-energy loss spectra of NaI, LaBr 3, BaI 2, and SrI 2

    DOE PAGES

    Schleife, Andre; Zhang, Xiao; Li, Qi; ...

    2016-11-03

    In this paper, materials for scintillator radiation detectors need to fulfill a diverse set of requirements such as radiation hardness and highly specific response to incoming radiation, rendering them a target of current materials design efforts. Even though they are amenable to cutting-edge theoretical spectroscopy techniques, surprisingly many fundamental properties of scintillator materials are still unknown or not well explored. In this work, we use first-principles approaches to thoroughly study the optical properties of four scintillator materials: NaI, LaBr 3, BaI 2, and SrI 2. By solving the Bethe–Salpeter equation for the optical polarization function we study the influence ofmore » excitonic effects on dielectric and electron-energy loss functions. This work sheds light into fundamental optical properties of these four scintillator materials and lays the ground-work for future work that is geared toward accurate modeling and computational materials design of advanced radiation detectors with unprecedented energy resolution.« less

  18. Multispectral infrared target detection: phenomenology and modeling

    NASA Astrophysics Data System (ADS)

    Cederquist, Jack N.; Rogne, Timothy J.; Schwartz, Craig R.

    1993-10-01

    Many targets of interest provide only very small signature differences from the clutter background. The ability to detect these small difference targets should be improved by using data which is diverse in space, time, wavelength or some other observable. Target materials often differ from background materials in the variation of their reflectance or emittance with wavelength. A multispectral sensor is therefore considered as a means to improve detection of small signal targets. If this sensor operates in the thermal infrared, it will not need solar illumination and will be useful at night as well as during the day. An understanding of the phenomenology of the spectral properties of materials and an ability to model and simulate target and clutter signatures is needed to understand potential target detection performance from multispectral infrared sensor data. Spectral variations in material emittance are due to vibrational energy transitions in molecular bonds. The spectral emittances of many materials of interest have been measured. Examples are vegetation, soil, construction and road materials, and paints. A multispectral infrared signature model has been developed which includes target and background temperature and emissivity, sky, sun, cloud and background irradiance, multiple reflection effects, path radiance, and atmospheric attenuation. This model can be used to predict multispectral infrared signatures for small signal targets.

  19. Beyond local effective material properties for metamaterials

    NASA Astrophysics Data System (ADS)

    Mnasri, K.; Khrabustovskyi, A.; Stohrer, C.; Plum, M.; Rockstuhl, C.

    2018-02-01

    To discuss the properties of metamaterials on physical grounds and to consider them in applications, effective material parameters are usually introduced and assigned to a given metamaterial. In most cases, only weak spatial dispersion is considered. It allows to assign local material properties, e.g., a permittivity and a permeability. However, this turned out to be insufficient. To solve this problem, we study here the effective properties of metamaterials with constitutive relations beyond a local response and take strong spatial dispersion into account. This research requires two contributions. First, bulk properties in terms of eigenmodes need to be studied. We particularly investigate the isofrequency surfaces of their dispersion relation are investigated and compared to those of an actual metamaterial. The significant improvement to effectively describe it provides evidence for the necessity to use nonlocal material laws in the effective description of metamaterials. Second, to be able to capitalize on such constitutive relations, also interface conditions need to be known. They are derived in this contribution for our form of the nonlocality using a generalized (weak) formulation of Maxwell's equations. Based on such interface conditions, Fresnel expressions are obtained that predict the amplitude of the reflected and transmitted plane wave upon illuminating a slab of such a nonlocal metamaterial. This all together offers the necessary means for the in-depth analysis of metamaterials characterized by strong spatial dispersion. The general formulation we choose here renders our approach applicable to a wide class of metamaterials.

  20. Properties of Extruded PS-212 Type Self-Lubricating Materials

    NASA Technical Reports Server (NTRS)

    Waters, W. J.; Sliney, H. E.; Soltis, R. F.

    1993-01-01

    Research has been underway at the NASA Lewis Research Center since the 1960's to develop high temperature, self-lubricating materials. The bulk of the research has been done in-house by a team of researchers from the Materials Division. A series of self-lubricating solid material systems has been developed over the years. One of the most promising is the composite material system referred to as PS-212 or PM-212. This material is a powder metallurgy product composed of metal bonded chromium carbide and two solid lubricating materials known to be self-lubricating over a wide temperature range. NASA feels this material has a wide potential in industrial applications. Simplified processing of this material would enhance its commercial potential. Processing changes have the potential to reduce processing costs, but tribological and physical properties must not be adversely affected. Extrusion processing has been employed in this investigation as a consolidation process for PM-212/PS-212. It has been successful in that high density bars of EX-212 (extruded PM-212) can readily be fabricated. Friction and strength data indicate these properties have been maintained or improved over the P.M. version. A range of extrusion temperatures have been investigated and tensile, friction, wear, and microstructural data have been obtained. Results indicate extrusion temperatures are not critical from a densification standpoint, but other properties are temperature dependent.

  1. Novel characterization method for fibrous materials using non-contact acoustics: material properties revealed by ultrasonic perturbations.

    PubMed

    Periyaswamy, Thamizhisai; Balasubramanian, Karthikeyan; Pastore, Christopher

    2015-02-01

    Fibrous materials are unique hierarchical complex structures exhibiting a range of mechanical, thermal, optical and electrical properties. The inherent discontinuity at micro and macro levels, heterogeneity and multi-scale porosity differentiates fibrous materials from other engineering materials that are typically continuum in nature. These structural complexities greatly influence the techniques and modalities that can be applied to characterize fibrous materials. Typically, the material response to an applied external force is measured and used as a characteristic number of the specimen. In general, a range of equipment is in use to obtain these numbers to signify the material properties. Nevertheless, obtaining these numbers for materials like fiber ensembles is often time consuming, destructive, and requires multiple modalities. It is hypothesized that the material response to an applied acoustic frequency would provide a robust alternative characterization mode for rapid and non-destructive material analysis. This research proposes applying air-coupled ultrasonic acoustics to characterize fibrous materials. Ultrasonic frequency waves transmitted through fibrous assemblies were feature extracted to understand the correlation between the applied frequency and the material properties. Mechanical and thermal characteristics were analyzed using ultrasonic features such as time of flight, signal velocity, power and the rate of attenuation of signal amplitude. Subsequently, these temporal and spectral characteristics were mapped with the standard low-stress mechanical and thermal properties via an empirical artificial intelligence engine. A high correlation of >0.92 (S.D. 0.06) was observed between the ultrasonic features and the standard measurements. The proposed ultrasonic technique can be used toward rapid characterization of dynamic behavior of flexible fibrous assemblies. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. AGC 2 Irradiated Material Properties Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbaugh, David Thomas

    2017-05-01

    The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. , Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core componentsmore » within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less

  3. Material Property Characterization of Potential Nanocarbon Metal-Matrix Composite: An Investigational Study

    NASA Astrophysics Data System (ADS)

    Zavala, Mitchel

    Metal-matrix composites (MMCs) are engineered combinations of two or more materials. Tailored properties are achieved by systematic combinations of different constituents. Specialized design and synthesis procedures allow unique sets of material properties in composites. Covetics are a new type of metal-matrix nano-composite (MMnC) material. These materials are formed from FCC metals which are super-saturated with up to 10 wt. % of activated nano-carbon powder. The idea is that the nano-carbon particles will enhance the material properties of the base metal matrix, however most of the physical and mechanical properties of covetics have not been well characterized. The foci of this study are to optimize the covetic casting synthesis process under controlled conditions, to understand and analyze the microstructures of the synthesized copper and aluminum covetic, to provide a thorough analysis of the chemical composition of the synthesized covetic materials, and to characterize physical and mechanical properties of both of these materials using meticulously prepared samples and test procedures.

  4. Characterisation and properties of alkali activated pozzolanic materials

    NASA Astrophysics Data System (ADS)

    Bordeian, Georgeta Simona

    Many of the waste materials produced from modem heavy industries are pozzalans, which develop cementitious properties when finely divided in the presence of free lime. This property allows a potential industrial use for this waste as a cement replacement material in concrete. An example of such a waste material is blast furnace slag from the smelting of iron and steel. The US produces 26 million tons of blast furnace slag annually. Most of the slag is slowly cooled in air and it makes a poor pozzolan. Only 1.6 million tons of the slag is available in the granulated form, which is suitable as a cementitious and pozzolanic admixture. Most European countries are well endowed with coal-fired power stations and this produces fly and bottom ash, flue gas desulphurisation (FGD) gypsum. However, less than 25% of the total ash from power stations has found an industrial use mainly in cement and concrete industry. This creates a massive waste-disposal problem. Disposal of unused fly ash in open tips and ponds, for example, creates pollution problems since the drainage of effluents from the ash in the deposit ponds threaten water supplies by polluting the ground water with traces of toxic chemicals.Recent research has concentrated on the alkali activation of waste pozzolanic materials, especially ground blast furnace slag. This thesis has investigated the alkali activation of low calcium fly ashes. These form very poor pozzolans and the alkali activation of the fly ash offers the opportunity for the large scale use of fly ash. Water glass was selected as a suitable activator for the fly ash. A comprehensive series of tests have been carried out to gain information on the effect of different parameters, such as proportion and composition of the constituent materials, curing conditions and casting methods, in developing high performance construction materials. Laboratory investigations were carried out to determine the following characteristics of alkali activated materials

  5. Method and apparatus for assessing material properties of sheet-like materials

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.

    2002-01-01

    Apparatus for producing an indication of a material property of a sheet-like material according to the present invention may comprise an excitation source for vibrating the sheet-like material to produce at least one traveling wave therein. A light source configured to produce an object wavefront and a reference wavefront directs the object wavefront toward the sheet-like material to produce a modulated object wavefront. A modulator operatively associated with the reference wavefront modulates the reference wavefront in synchronization with the traveling wave on the sheet-like material to produce a modulated reference wavefront. A sensing medium positioned to receive the modulated object wavefront and the modulated reference wavefront produces an image of the traveling wave in the sheet-like material, the image of the anti-symmetric traveling wave being related to a displacement amplitude of the anti-symmetric traveling wave over a two-dimensional area of the vibrating sheet-like material. A detector detects the image of the traveling wave in the sheet-like material.

  6. A Retrieval System for Radioactive Target Materials at the NIF

    NASA Astrophysics Data System (ADS)

    Krieger, M.; Shibata, K.; Fallica, J.; Henchen, R.; Pogozelski, E.; Padalino, S.; Sangster, T. C.; Suny Collaboration; Laboratory Collaboration

    2011-10-01

    Currently, solid radioactive material collection from the NIF target chamber is performed via the DIM. The retrieval process takes several hours to complete. To decrease this time for short lived radioisotopes, the Target Materials Retrieval System (TMRS) is being designed to move a radioactive sample from the target chamber to the counting station in less than 50 seconds, using a closed-loop helium filled RaPToRS system. The TMRS consists of three components: the retrieval apparatus, RaPToRS and the counting station. Starting at 0.5 meters from TCC, the sample will move from the vacuum chamber, travel through 60 meters of 10 centimeter diameter RaPToRS tubes, reaching speeds of 10 m/s. The sample will then arrive at the counting station, where it be robotically placed in front of a gamma ray detector. The use of helium will decrease background gamma radiation produced by activated N2 normally found in a pressurized air system. This work was supported in part by the US Department of Energy through the LLE.

  7. Thermal Expansion Properties of Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Green, E. F.

    1969-01-01

    Thermal expansion properties of materials used in aerospace systems are compiled into a single handbook. The data, derived from experimental measurements supplemented by information from literature sources, are presented in charts and tables arranged in two sections, covering cryogenic and elevated temperatures.

  8. Materials for n-type organic electronics: synthesis and properties of fluoroarene-thiophene semiconductors

    NASA Astrophysics Data System (ADS)

    Facchetti, Antonio; Yoon, Myung-Han; Katz, Howard E.; Marks, Tobin J.

    2003-11-01

    Recent progress in the field of organic electronics is due to a fruitful combination of both innovative molecular design and promising low-cost material/device assembly. Targeting the first strategy, we present here the general synthesis of fluoroarene-containing thiophene-based semiconductors and the study of their properties with respect to the corresponding fluorine-free hole-transporting analogues. The new compounds have been characterized by elemental analysis, mass spectrometry, and 1H- and 19F NMR. The dramatic influence of fluorine substitution and molecular architecture has been investigated by solution/film optical absorption, fluorescence emission, and cyclic voltammetry. Single crystal data for all of the oligomers have been obtained and will be presented. Film microstructure and morphology of this new class of materials have been studied by XRD and SEM. Particular emphasis will be posed on the solution-processable oligomers and polymers.

  9. Adjustment of Part Properties for an Elastomeric Laser Sintering Material

    NASA Astrophysics Data System (ADS)

    Wegner, A.; Ünlü, T.

    2018-03-01

    Laser sintering of polymers is gaining more and more importance within the field of small series productions. Polyamide 12 is predominantly used, although a variety of other materials are also available for the laser sintering process. For example, elastomeric, rubberlike materials offer very different part property profiles. Those make the production of flexible parts like, e.g., sealings, flexible tubes or shoe soles possible because they offer high part ductility and low hardness. At the chair for manufacturing technology, a new elastomeric laser sintering material has been developed and then commercialized by a spin-off from university. The aim of the presented study was the analysis of the new material's properties. Proof was found that Shore hardness can be modified by varying the parameter settings. Therefore, the correlation between process parameters, energy input, Shore hardness and other part properties like mechanical properties were analyzed. Based on these results, suitable parameter settings were established which lead to the possibility of producing parts with different Shore hardnesses.

  10. Exploratory investigation of the HIPPO gas-jet target fluid dynamic properties

    NASA Astrophysics Data System (ADS)

    Meisel, Zach; Shi, Ke; Jemcov, Aleksandar; Couder, Manoel

    2016-08-01

    In order to optimize the performance of gas-jet targets for future nuclear reaction measurements, a detailed understanding of the dependence of the gas-jet properties on experiment design parameters is required. Common methods of gas-jet characterization rely on measuring the effective thickness using nuclear elastic scattering and energy loss techniques; however, these tests are time intensive and limit the range of design modifications which can be explored to improve the properties of the jet as a nuclear reaction target. Thus, a more rapid jet-characterization method is desired. We performed the first steps towards characterizing the gas-jet density distribution of the HIPPO gas-jet target at the University of Notre Dame's Nuclear Science Laboratory by reproducing results from 20Ne(α,α)20Ne elastic scattering measurements with computational fluid dynamics (CFD) simulations performed with the state-of-the-art CFD software ANSYS Fluent. We find a strong sensitivity to experimental design parameters of the gas-jet target, such as the jet nozzle geometry and ambient pressure of the target chamber. We argue that improved predictive power will require moving to three-dimensional simulations and additional benchmarking with experimental data.

  11. Use of material dielectric properties in agricultural applications

    USDA-ARS?s Scientific Manuscript database

    The use of dielectric properties of materials for applications in agriculture are reviewed, and research findings on use of dielectric heating of materials and on sensing of product moisture content and other quality factors are discussed. Dielectric heating applications, include treatment of seed...

  12. Managing genetic material to protect intellectual property rights.

    PubMed

    Jong, S C; Cypess, R H

    1998-02-01

    One of the most important policy instruments for the promotion of further biotechnology development is intellectual property right (IPR) protection. However, one cannot improve upon a biotechnological invention without physical access to the germplasm, making exchanges of genetic material necessary. A formal transfer agreement, which addresses the key issues of ownership, access, use, and equitable benefit-sharing, is a powerful legal instrument for intellectual property. Other restrictions are generally imposed as a result of national and international safety regulations. Forming strategic alliances, such as joint ventures, collaborative research agreements, joint research and development agreements, and manufacturing and distribution alliances to exploit the economic value of genetic material, provides scientists with the mechanisms they need to bring their research material and products to the marketplace.

  13. Oxide Thermoelectric Materials: A Structure-Property Relationship

    NASA Astrophysics Data System (ADS)

    Nag, Abanti; Shubha, V.

    2014-04-01

    Recent demand for thermoelectric materials for power harvesting from automobile and industrial waste heat requires oxide materials because of their potential advantages over intermetallic alloys in terms of chemical and thermal stability at high temperatures. Achievement of thermoelectric figure of merit equivalent to unity ( ZT ≈ 1) for transition-metal oxides necessitates a second look at the fundamental theory on the basis of the structure-property relationship giving rise to electron correlation accompanied by spin fluctuation. Promising transition-metal oxides based on wide-bandgap semiconductors, perovskite and layered oxides have been studied as potential candidate n- and p-type materials. This paper reviews the correlation between the crystal structure and thermoelectric properties of transition-metal oxides. The crystal-site-dependent electronic configuration and spin degeneracy to control the thermopower and electron-phonon interaction leading to polaron hopping to control electrical conductivity is discussed. Crystal structure tailoring leading to phonon scattering at interfaces and nanograin domains to achieve low thermal conductivity is also highlighted.

  14. Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Materials

    NASA Technical Reports Server (NTRS)

    Richards, Bradley; Zhu, Dongming; Ghosn, Louis; Wadley, Haydn

    2015-01-01

    Development work in Environmental Barrier Coatings (EBCs) for Ceramic Matrix Composites (CMCs) has focused considerably on the identification of materials systems and coating architectures to meet application needs. The evolution of these systems has occurred so quickly that modeling efforts and requisite data for modeling lag considerably behind development. Materials property data exists for many systems in the bulk form, but the effects of deposition on the critical properties of strength and fracture behavior are not well studied. We have plasma sprayed bulk samples of baseline EBC materials (silicon, ytterbium disilicate) and tested the mechanical properties of these materials to elicit differences in strength and toughness. We have also endeavored to assess the mixed-mode fracture resistance, Gc, of silicon in a baseline EBC applied to SiCSiC CMC via four point bend test. These results are compared to previously determined properties of the comparable bulk material.

  15. Some functional properties of composite material based on scrap tires

    NASA Astrophysics Data System (ADS)

    Plesuma, Renate; Malers, Laimonis

    2013-09-01

    The utilization of scrap tires still obtains a remarkable importance from the aspect of unloading the environment from non-degradable waste [1]. One of the most prospective ways for scrap tires reuse is a production of composite materials [2] This research must be considered as a continuation of previous investigations [3, 4]. It is devoted to the clarification of some functional properties, which are considered important for the view of practical applications, of the composite material. Some functional properties of the material were investigated, for instance, the compressive stress at different extent of deformation of sample (till 67% of initial thickness) (LVS EN 826) [5] and the resistance to UV radiation (modified method based on LVS EN 14836) [6]. Experiments were realized on the purposefully selected samples. The results were evaluated in the correlation with potential changes of Shore C hardness (Shore scale, ISO 7619-1, ISO 868) [7, 8]. The results showed noticeable resistance of the composite material against the mechanical influence and ultraviolet (UV) radiation. The correlation with the composition of the material, activity of binder, definite technological parameters, and the conditions supported during the production, were determined. It was estimated that selected properties and characteristics of the material are strongly dependent from the composition and technological parameters used in production of the composite material, and from the size of rubber crumb. Obtained results show possibility to attain desirable changes in the composite material properties by changing both the composition and technological parameters of examined material.

  16. Impact of first-principles properties of deuterium-tritium on inertial confinement fusion target designsa)

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militzer, B.

    2015-05-01

    A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium-tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF "path" to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (κQMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of ˜2.5; the lower the adiabat of DT capsules, the more variations in hydro-simulations. The FP-based properties of DT

  17. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X., E-mail: shu@lle.rochester.edu; Goncharov, V. N.; Boehly, T. R.

    2015-05-15

    -based properties of DT are essential for designing ICF ignition targets. Future work on first-principles studies of ICF ablator materials is also discussed.« less

  18. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    DOE PAGES

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; ...

    2015-04-20

    -simulations. The FP-based properties of DT are essential for designing ICF ignition targets. Future work on first-principles studies of ICF ablator materials is also discussed.« less

  19. Near-Infrared Fluorescent Materials for Sensing of Biological Targets

    PubMed Central

    Amiot, Carrie L.; Xu, Shuping; Liang, Song; Pan, Lingyun; Zhao, Julia Xiaojun

    2008-01-01

    Near-infrared fluorescent (NIRF) materials are promising labeling reagents for sensitive determination and imaging of biological targets. In the near-infrared region biological samples have low background fluorescence signals, providing high signal to noise ratio. Meanwhile, near-infrared radiation can penetrate into sample matrices deeply due to low light scattering. Thus, in vivo and in vitro imaging of biological samples can be achieved by employing the NIRF probes. To take full advantage of NIRF materials in the biological and biomedical field, one of the key issues is to develop intense and biocompatible NIRF probes. In this review, a number of NIRF materials are discussed including traditional NIRF dye molecules, newly developed NIRF quantum dots and single-walled carbon nanotubes, as well as rare earth metal compounds. The use of some NIRF materials in various nanostructures is illustrated. The enhancement of NIRF using metal nanostructures is covered as well. The fluorescence mechanism and bioapplications of each type of the NIRF materials are discussed in details. PMID:27879867

  20. Material properties and their influence on the behaviour of tungsten as plasma facing material

    NASA Astrophysics Data System (ADS)

    Wirtz, M.; Uytdenhouwen, I.; Barabash, V.; Escourbiac, F.; Hirai, T.; Linke, J.; Loewenhoff, Th.; Panayotis, S.; Pintsuk, G.

    2017-06-01

    With the aim of a possible improvement of the material specification for tungsten, five different tungsten products by different companies and by different production technologies (forging and rolling) are subject to a materials characterization program. Tungsten produced by forging results in an uniaxial elongated grain shape while rolled products have a plate like grain shape which has an influence on the mechanical properties of the material. The materials were investigated with respect to the following parameters: hardness measurements, microstructural investigations, tensile tests and recrystallisation sensitivity tests at 3 different temperatures. The obtained results show that different production processes have an influence on the resulting anisotropic microstructure and the related material properties of tungsten in the as-received state. Additionally, the recrystallization sensitivity varies between the different products, what could be a result of the different production processes. Additionally, two tungsten products were exposed to thermal shocks. The obtained results show that the improved recrystallisation behaviour has no major impact on the thermal shock performance.

  1. The relationship between target-class and the physicochemical properties of antibacterial drugs

    PubMed Central

    Mugumbate, Grace; Overington, John P.

    2015-01-01

    The discovery of novel mechanism of action (MOA) antibacterials has been associated with the concept that antibacterial drugs occupy a differentiated region of physicochemical space compared to human-targeted drugs. With, in broad terms, antibacterials having higher molecular weight, lower log P and higher polar surface area (PSA). By analysing the physicochemical properties of about 1700 approved drugs listed in the ChEMBL database, we show, that antibacterials for whose targets are riboproteins (i.e., composed of a complex of RNA and protein) fall outside the conventional human ‘drug-like’ chemical space; whereas antibacterials that modulate bacterial protein targets, generally comply with the ‘rule-of-five’ guidelines for classical oral human drugs. Our analysis suggests a strong target-class association for antibacterials—either protein-targeted or riboprotein-targeted. There is much discussion in the literature on the failure of screening approaches to deliver novel antibacterial lead series, and linkage of this poor success rate for antibacterials with the chemical space properties of screening collections. Our analysis suggests that consideration of target-class may be an underappreciated factor in antibacterial lead discovery, and that in fact bacterial protein-targets may well have similar binding site characteristics to human protein targets, and questions the assumption that larger, more polar compounds are a key part of successful future antibacterial discovery. PMID:25975639

  2. Study on Evaluation Methods for Mechanical Properties of Organic Semiconductor Materials

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Yokoyama, T.; Utsumi, Y.; Kanematsu, H.; Masuda, T.

    2013-04-01

    This paper describes the evaluation method of the mechanical properties of the materials constituting organic semiconductor, and the test result of the relation between applied strain and the fracture of thin films. The final target of this work is the improvement of flexibility of organic light emitting diode(OLED), the tensile test of the thin films coated on flexible substrate is conducted, and the vulnerable parts of the constituent material of the OLED is quantitatively understood, further the guideline for designing OLED structure will be obtained. In the present paper, tensile test of an aluminium oxide thin films deposited on a poly-ethylene-tere-phtalate (PET) substrate was carried out under constant conditions, the following results were obtained:(1)Cracking of the aluminium oxide thin films was observed using an optical transparent formula microscope at more than 40 times magnification; (2)Cracking was initiated at a strain of about 3%; (3)the number of cracks increased proportional to the strain, and saturated at about 9% strain; (4)Organic thin films α-NPD caused the same cracking as oxide thin films.

  3. Materials property definition and generation for carbon-carbon and carbon phenolic materials

    NASA Technical Reports Server (NTRS)

    Canfield, A. R.; Mathis, J. R.; Starrett, H. S.; Koenig, J. R.

    1987-01-01

    A data base program to generate statistically significant material-property data for carbon-carbon and carbon phenolic materials to be used in designs of Space Shuttle is described. The program, which will provide data necessary for thermal and stress modeling of Shuttle nozzle and exit cone structures, includes evaluation of tension, compression, shear strength, shear modulus, thermal expansion, thermal conductivity, permeability, and emittance for both materials; the testing of carbon phenolic materials also includes CTE, off-gassing, pyrolysis, and RTG. Materials to be tested will be excised from Space Shuttle inlet, throat, and exit cone billets and modified involute carbon-carbon exit cones; coprocessed blocks, panels, and cylinders will also be tested.

  4. Experimental analysis of electrical properties of composite materials

    NASA Astrophysics Data System (ADS)

    Fiala, L.; Rovnaník, P.; Černý, R.

    2017-02-01

    Dry cement-based composites are electrically non-conductive materials that behave in electric field like dielectrics. However, a relatively low amount of electrically conductive admixture significantly increases the electrical conductivity which extends applicability of such materials in practice. Therefore, they can be used as self-monitoring sensors controlling development of cracks; as sensors monitoring moisture content or when treated by an external electrical voltage as heat sources used for deicing of material's surface layer. Alkali-activated aluminosilicates (AAA), as competing materials to cement-based materials, are intensively investigated in the present due to their superior durability and environmental impact. Whereas the electrical properties of AAA are similar to those cement-based, they can be enhanced in the same way. In both cases, it is crucial to find a reasonable amount of electrically conductive phase to design composites with a sufficient electrical conductivity at an affordable price. In this paper, electrical properties of composites based on AAA binder and electrically conductive admixture represented by carbon nanotubes (CNT) are investigated. Measurements of electrical properties are carried out by means of 2-probes DC technique on nine types of samples; reference sample without the conductive phase and samples with CNT admixture in amount of 0.1 % - 2.5 % by vol. A significant increase of the electrical conductivity starts from the amount of 0.5 % CNT admixture and in case of 2.5 % CNT is about three orders of magnitude higher compared to the reference sample.

  5. Materials Informatics: The Materials ``Gene'' and Big Data

    NASA Astrophysics Data System (ADS)

    Rajan, Krishna

    2015-07-01

    Materials informatics provides the foundations for a new paradigm of materials discovery. It shifts our emphasis from one of solely searching among large volumes of data that may be generated by experiment or computation to one of targeted materials discovery via high-throughput identification of the key factors (i.e., “genes”) and via showing how these factors can be quantitatively integrated by statistical learning methods into design rules (i.e., “gene sequencing”) governing targeted materials functionality. However, a critical challenge in discovering these materials genes is the difficulty in unraveling the complexity of the data associated with numerous factors including noise, uncertainty, and the complex diversity of data that one needs to consider (i.e., Big Data). In this article, we explore one aspect of materials informatics, namely how one can efficiently explore for new knowledge in regimes of structure-property space, especially when no reasonable selection pathways based on theory or clear trends in observations exist among an almost infinite set of possibilities.

  6. Electronic properties of new topological quantum materials

    NASA Astrophysics Data System (ADS)

    Kaminski, Adam

    Topological materials are characterized by the presence of nontrivial quantum electronic states, where often the electron spin is locked to its momentum. This opens up the possibility for developing new devices in which information is processed or stored by means of spin rather than charge. In this talk we will discuss the electronic properties of several of newly discovered topological quantum materials. In WTe2 we have observed a topological transition involving a change of the Fermi surface topology (known as a Lifshitz transition) driven by temperature. The strong temperature-dependence of the chemical potential that is at the heart of this phenomenon is also important for understanding the thermoelectric properties of such semimetals. Both WTe2 and MoTe2 were proposed to host type II Weyl semimetalic state. Indeed our data provides first experimental confirmation of such state in both of these materials. We will also present evidence for a new topological state in PtSn4 where pairs of extended Dirac node arcs rather are present rather than Dirac points, that is so far not understood theoretically. Our research opens up new directions on enhancing topological responsiveness of new quantum materials. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division (ARPES measurements), Center for Emergent Materials, an NSF MRSEC, under Grant DMR-1420451 (theory and data anal.

  7. Machine learning properties of binary wurtzite superlattices

    DOE PAGES

    Pilania, G.; Liu, X. -Y.

    2018-01-12

    The burgeoning paradigm of high-throughput computations and materials informatics brings new opportunities in terms of targeted materials design and discovery. The discovery process can be significantly accelerated and streamlined if one can learn effectively from available knowledge and past data to predict materials properties efficiently. Indeed, a very active area in materials science research is to develop machine learning based methods that can deliver automated and cross-validated predictive models using either already available materials data or new data generated in a targeted manner. In the present paper, we show that fast and accurate predictions of a wide range of propertiesmore » of binary wurtzite superlattices, formed by a diverse set of chemistries, can be made by employing state-of-the-art statistical learning methods trained on quantum mechanical computations in combination with a judiciously chosen numerical representation to encode materials’ similarity. These surrogate learning models then allow for efficient screening of vast chemical spaces by providing instant predictions of the targeted properties. Moreover, the models can be systematically improved in an adaptive manner, incorporate properties computed at different levels of fidelities and are naturally amenable to inverse materials design strategies. Finally, while the learning approach to make predictions for a wide range of properties (including structural, elastic and electronic properties) is demonstrated here for a specific example set containing more than 1200 binary wurtzite superlattices, the adopted framework is equally applicable to other classes of materials as well.« less

  8. Machine learning properties of binary wurtzite superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilania, G.; Liu, X. -Y.

    The burgeoning paradigm of high-throughput computations and materials informatics brings new opportunities in terms of targeted materials design and discovery. The discovery process can be significantly accelerated and streamlined if one can learn effectively from available knowledge and past data to predict materials properties efficiently. Indeed, a very active area in materials science research is to develop machine learning based methods that can deliver automated and cross-validated predictive models using either already available materials data or new data generated in a targeted manner. In the present paper, we show that fast and accurate predictions of a wide range of propertiesmore » of binary wurtzite superlattices, formed by a diverse set of chemistries, can be made by employing state-of-the-art statistical learning methods trained on quantum mechanical computations in combination with a judiciously chosen numerical representation to encode materials’ similarity. These surrogate learning models then allow for efficient screening of vast chemical spaces by providing instant predictions of the targeted properties. Moreover, the models can be systematically improved in an adaptive manner, incorporate properties computed at different levels of fidelities and are naturally amenable to inverse materials design strategies. Finally, while the learning approach to make predictions for a wide range of properties (including structural, elastic and electronic properties) is demonstrated here for a specific example set containing more than 1200 binary wurtzite superlattices, the adopted framework is equally applicable to other classes of materials as well.« less

  9. Electronic and Thermal Properties of Puckered Orthorhombic Materials

    NASA Astrophysics Data System (ADS)

    Fei, Ruixiang

    Puckered orthorhombic crystals, such as black phosphorus and group IV monochalcogenides, are attracting tremendous attention because of their new exotic properties, which are of great interests for fundamental science and novel applications. Unlike those well studied layered hexagonal materials such as graphene and transition metal dichalcogenides, the puckered orthorhombic crystals possess highly asymmetrical in-plane crystal structures. Understanding the unique properties emerginge from their low symmetries is an intriguing and useful process, which gives insight into experimental observation and sheds light on manipulating their properties. In this thesis, we study and predict various properties of orthorhombic materials by using appropriate theoretical techniques such as first-principles calculations, Monte-Carlo simulations, and k · p models. In the first part of the thesis, we deal with the anisotropic electric and thermal properties of a typical puckered orthorhombic crystal, black phosphorus. We first study the electric properties in monolayer and few-layer black phosphorus, where the unique, anisotropic electrical conductance is founded. Furthermore, we find that the anisotropy of the electrical conductance can be rotated by 90° through applying appropriate uniaxial or biaxial strain. Beyond electrical conductance, we, for the first time, predict that the thermal conductance of black phosphorus is also anisotropic and, particularly, the preferred conducting direction is perpendicular to the preferred electrical conducting direction. Within the reasonable estimation regime, the thermoelectric figure of merit (ZT) ultimately reaches 1 at room temperature using only moderate doping. The second part of this thesis focuses on the electronic polarization of non-centrosymmetric puckered materials-group IV monochalcogenide. We propose that monolayer group IV monochalcogenides are a new class of two-dimensional (2D) ferroelectric materials with spontaneous in

  10. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties

    PubMed Central

    Díaz-García, Almudena; Martínez-García, Carmen; Cotes-Palomino, Teresa

    2017-01-01

    Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values. PMID:28772461

  11. Computational methods for 2D materials: discovery, property characterization, and application design.

    PubMed

    Paul, J T; Singh, A K; Dong, Z; Zhuang, H; Revard, B C; Rijal, B; Ashton, M; Linscheid, A; Blonsky, M; Gluhovic, D; Guo, J; Hennig, R G

    2017-11-29

    The discovery of two-dimensional (2D) materials comes at a time when computational methods are mature and can predict novel 2D materials, characterize their properties, and guide the design of 2D materials for applications. This article reviews the recent progress in computational approaches for 2D materials research. We discuss the computational techniques and provide an overview of the ongoing research in the field. We begin with an overview of known 2D materials, common computational methods, and available cyber infrastructures. We then move onto the discovery of novel 2D materials, discussing the stability criteria for 2D materials, computational methods for structure prediction, and interactions of monolayers with electrochemical and gaseous environments. Next, we describe the computational characterization of the 2D materials' electronic, optical, magnetic, and superconducting properties and the response of the properties under applied mechanical strain and electrical fields. From there, we move on to discuss the structure and properties of defects in 2D materials, and describe methods for 2D materials device simulations. We conclude by providing an outlook on the needs and challenges for future developments in the field of computational research for 2D materials.

  12. Intellectual property analysis of holographic materials business

    NASA Astrophysics Data System (ADS)

    Reingand, Nadya; Hunt, David

    2006-02-01

    The paper presents an overview of intellectual property in the field of holographic photosensitive materials and highlights the possibilities offered by patent searching and analysis. Thousands of patent documents relevant to holographic materials have been uncovered by the study. The search was performed in the following databases: U.S. Patent Office, European Patent Office, and Japanese Patent Office for the time frame of 1971 through November 2005. The patent analysis has unveiled trends in patent temporal distribution, leading IP portfolios, companies competition within the holographic materials market and other interesting insights.

  13. Target material dependence of positron generation from high intensity laser-matter interactions

    DOE PAGES

    Williams, G. J.; Barnak, D.; Fiksel, G.; ...

    2016-12-06

    Here, the effective scaling of positron-electron pair production by direct, ultraintense laser-matter interaction is investigated for a range of target materials and thicknesses. An axial magnetic field, acting as a focusing lens, was employed to measure positron signals for targets with atomic numbers as low as copper (Z – 29). The pair production yield was found to be consistent with the Bethe-Heitler mechanism, where the number of positrons emitted into a 1 steradian cone angle from the target rear was found to be proportional to Z 2. The unexpectedly low scaling results from Coulomb collisions that act to stop ormore » scatter positrons into high angles. Monte Carlo simulations support the experimental results, providing a comprehensive power-law scaling relationship for all elemental materials and densities.« less

  14. Interdisciplinary research on the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The advancement of material performance and design methodology as related to brittle materials was investigated. The processing and properties of ceramic materials as related to design requirements was also studied.

  15. Investigating the thermophysical properties of indurated materials on Mars

    NASA Astrophysics Data System (ADS)

    Murphy, Nathaniel William

    Indurated materials have been observed on the surface of Mars at every landing site and inferred from orbital remote-sensing data by the Viking, Mars Global Surveyor, and Mars Odyssey spacecraft. However, indurated materials on Mars are poorly understood because there is no ground truth for the indurated surfaces inferred from thermal remote-sensing data. I adopted two approaches to investigate indurated materials on Mars: (1) remote-sensing analysis of the Isidis basin, which shows some of the highest thermal inertia values derived from TES 1 observations, and (2) laboratory analyses of terrestrial indurated materials. To characterize the surface of the Isidis basin, I combined a variety of remote-sensing datasets, including thermal inertia data derived from TES and MO-THEMIS, TES albedo, THEMIS thermal and visible imaging, and Earth-based radar observations. From these observations I concluded that the thermal inertia values in the Isidis basin are likely the result of variations in the degree of cementation of indurated materials. To examine the thermophysical properties of indurated materials I collected four examples of terrestrial indurated materials. These included two types of gypcrete collected from a gypcrete deposit near Upham Hills, NM, clay-materials from Lunar Lake Playa, NV, and a pyroclastic material from the Bandelier Tuff near Los Alamos, NM. Despite significant differences in their physical properties and origins, all of these materials have thermal inertia values consistent with inferred indurated surfaces on Mars. There are no strong correlations between the thermal and physical properties of the collected samples due to thermal effects of the fabrics of the indurated materials. 1 Thermal Emission Spectrometer onboard the Mars Global Surveyor spacecraft. 2 Thermal Emission Imaging System onboard the Mars Odyssey spacecraft

  16. Measurement of Mechanical Properties of Cantilever Shaped Materials

    PubMed Central

    Finot, Eric; Passian, Ali; Thundat, Thomas

    2008-01-01

    Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM) due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young's modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature variations. When appropriate

  17. Computational methods for 2D materials: discovery, property characterization, and application design

    NASA Astrophysics Data System (ADS)

    Paul, J. T.; Singh, A. K.; Dong, Z.; Zhuang, H.; Revard, B. C.; Rijal, B.; Ashton, M.; Linscheid, A.; Blonsky, M.; Gluhovic, D.; Guo, J.; Hennig, R. G.

    2017-11-01

    The discovery of two-dimensional (2D) materials comes at a time when computational methods are mature and can predict novel 2D materials, characterize their properties, and guide the design of 2D materials for applications. This article reviews the recent progress in computational approaches for 2D materials research. We discuss the computational techniques and provide an overview of the ongoing research in the field. We begin with an overview of known 2D materials, common computational methods, and available cyber infrastructures. We then move onto the discovery of novel 2D materials, discussing the stability criteria for 2D materials, computational methods for structure prediction, and interactions of monolayers with electrochemical and gaseous environments. Next, we describe the computational characterization of the 2D materials’ electronic, optical, magnetic, and superconducting properties and the response of the properties under applied mechanical strain and electrical fields. From there, we move on to discuss the structure and properties of defects in 2D materials, and describe methods for 2D materials device simulations. We conclude by providing an outlook on the needs and challenges for future developments in the field of computational research for 2D materials.

  18. Influence of man-made aluminosilicate raw materials on physical and mechanical properties of building materials.

    NASA Astrophysics Data System (ADS)

    Volodchenko, A. A.; Lesovik, V. S.; Stoletov, A. A.; Glagolev, E. S.; Volodchenko, A. N.; Magomedov, Z. G.

    2018-03-01

    It has been identified that man-made aluminosilicate raw materials represented by clay rock of varied genesis can be used as energy-efficient raw materials to obtain efficient highly-hollow non-autoclaved silicate materials. A technique of structure formation in the conditions of pressureless steam treatment has been offered. Cementing compounds of non- autoclaved silicate materials based on man-made aluminosilicate raw materials possess hydraulic properties that are conditioned by the process of further formation and recrystallization of calcium silicate hydrates, which optimizes the ratio between gellike and crystalline components and densifies the cementing compound structure, which leads to improvement of performance characteristics. Increasing the performance characteristics of the obtained products is possible by changing the molding conditions. For this reason, in order to create high-density material packaging and, as a result, to increase the strength properties of the products, it is reasonable to use higher pressure, under which raw brick is formed, which will facilitate the increase of quality of highly-hollow products.

  19. Characterization of the Dynamic Material Properties of Magnetostrictive Terfenol-D

    NASA Technical Reports Server (NTRS)

    Calkins, Frederick T.; Flatau, Alison B.; Hall, David L.

    1996-01-01

    A major limitation in use of electromagnetic and/or magnetomechanical models for design of Terfenol-D actuators is the lack of reliable material property data for Terfenol-D. In particular data on the performance of Terfenol-D as employed in a transducer, operating under real world dynamic conditions is needed. To provide this information, Terfenol-D rod properties need to be measured under as run prestressed and magnetically biased states. Using a Terfenol-D actuator, the following properties can be measured and/or calculated: mechanical quality factor, speed of sound in the material, the resonant frequency, the anti-resonant frequency, two magnetic permeabilities (one at constant stress and one at constant strain), two Young's moduli (one at constant amplitude applied magnetic field and one at constant amplitude magnetic flux density in the material), the magnetomechanical coupling, and the axial strain coefficient. The development of the material properties measurements and calculations is based on the model of low signal, linear, magnetostriction from Clark, the linear transduction equations for a transducer from Hunt, and a one degree of freedom mechanical model of the transducer. The electrical impedance and admittance mobility loops are used to determine the resonant, anti-resonant, and half power point frequencies. The rest of the material properties indicated above can then be calculated using these frequencies, acceleration from an accelerometer mounted on the actuator arm, and readily measurable transducer and Terfenol-D rod parameters.

  20. Thermophysical properties of lunar materials. I - Thermal radiation properties of lunar materials from the Apollo missions

    NASA Technical Reports Server (NTRS)

    Birkebak, R. C.

    1974-01-01

    The successful landings on the moon of the Apollo flights and the return of samples of lunar surface material has permitted the measurement of the thermophysical properties necessary for heat transfer calculations. The characteristics of the Apollo samples are discussed along with remote sensing results which made it possible to deduce many of the thermophysical properties of the lunar surface. Definitions considered in connection with thermal radiation measurements include the bond albedo, the geometric albedo, the normal albedo, the directional reflectance, the bidirectional reflectance, and the directional emittance. The measurement techniques make use of a directional reflectance apparatus, a bidirectional reflectance apparatus, and a spectral emittance apparatus.

  1. Mechanical Properties of Calcium Fluoride-Based Composite Materials

    PubMed Central

    Kleczewska, Joanna; Pryliński, Mariusz; Podlewska, Magdalena; Sokołowski, Jerzy; Łapińska, Barbara

    2016-01-01

    Aim of the study was to evaluate mechanical properties of light-curing composite materials modified with the addition of calcium fluoride. The study used one experimental light-curing composite material (ECM) and one commercially available flowable light-curing composite material (FA) that were modified with 0.5–5.0 wt% anhydrous calcium fluoride. Morphology of the samples and uniformity of CaF2 distribution were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). Mechanical properties were tested after 24-hour storage of specimens in dry or wet conditions. Stored dry ECM enriched with 0.5–1.0 wt% CaF2 showed higher tensile strength values, while water storage of all modified ECM specimens decreased their tensile strength. The highest Vickers hardness tested after dry storage was observed for 2.5 wt% CaF2 content in ECM. The addition of 2.0–5.0 wt% CaF2 to FA caused significant decrease in tensile strength after dry storage and overall tensile strength decrease of modified FA specimens after water storage. The content of 2.0 wt% CaF2 in FA resulted in the highest Vickers hardness tested after wet storage. Commercially available composite material (FA), unmodified with fluoride addition, demonstrated overall significantly higher mechanical properties. PMID:28004001

  2. Penetration analysis of projectile with inclined concrete target

    NASA Astrophysics Data System (ADS)

    Kim, S. B.; Kim, H. W.; Yoo, Y. H.

    2015-09-01

    This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  3. Characterization of the electromechanical properties of EAP materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrita, Stewart; Bhattachary, Kaushik; Lih, Shyh-Shiuh

    2001-01-01

    Electroactive polymers (EAP) are an emerging class of actuation materials. Their large electrically induced strains (longitudinal or bending), low density, mechanical flexibility, and ease of processing offer advantages over traditional electroactive materials. However, before the capability of these materials can be exploited, their electrical and mechanical behavior must be properly quantified. Two general types of EAP can be identified. The first type is ionic EAP, which requires relatively low voltages (<10V) to achieve large bending deflections. This class usually needs to be hydrated and electrochemical reactions may occur. The second type is Electronic-EAP and it involves electrostrictive and/or Maxwell stresses. This type of materials requires large electric fields (>100MV/m) to achieve longitudinal deformations at the range from 4 - 360%. Some of the difficulties in characterizing EAP include: nonlinear properties, large compliance (large mismatch with metal electrodes), nonhomogeneity resulting from processing, etc. To support the need for reliable data, the authors are developing characterization techniques to quantify the electroactive responses and material properties of EAP materials. The emphasis of the current study is on addressing electromechanical issues related to the ion-exchange type EAP also known as IPMC. The analysis, experiments and test results are discussed in this paper.

  4. Imparting the unique properties of DNA into complex material architectures and functions.

    PubMed

    Xu, Phyllis F; Noh, Hyunwoo; Lee, Ju Hun; Domaille, Dylan W; Nakatsuka, Matthew A; Goodwin, Andrew P; Cha, Jennifer N

    2013-07-01

    While the remarkable chemical and biological properties of DNA have been known for decades, these properties have only been imparted into materials with unprecedented function much more recently. The inimitable ability of DNA to form programmable, complex assemblies through stable, specific, and reversible molecular recognition has allowed the creation of new materials through DNA's ability to control a material's architecture and properties. In this review we discuss recent progress in how DNA has brought unmatched function to materials, focusing specifically on new advances in delivery agents, devices, and sensors.

  5. Heat Transmission Properties of Insulating and Building Materials

    National Institute of Standards and Technology Data Gateway

    SRD 81 NIST Heat Transmission Properties of Insulating and Building Materials (Web, free access)   NIST has accumulated a valuable and comprehensive collection of thermal conductivity data. Version 1.0 of the database includes data for over 2000 measurements, covering several categories of materials including concrete, fiberboard, plastics, thermal insulation, and rubber.

  6. Reflector and Shield Material Properties for Project Prometheus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Nash

    2005-11-02

    This letter provides updated reflector and shield preliminary material property information to support reactor design efforts. The information provided herein supersedes the applicable portions of Revision 1 to the Space Power Program Preliminary Reactor Design Basis (Reference (a)). This letter partially answers the request in Reference (b) to provide unirradiated and irradiated material properties for beryllium, beryllium oxide, isotopically enriched boron carbide ({sup 11}B{sub 4}C) and lithium hydride. With the exception of {sup 11}B{sub 4}C, the information is provided in Attachments 1 and 2. At the time of issuance of this document, {sup 11}B{sub 4}C had not been studied.

  7. Structure and properties of hybrid composite materials

    NASA Astrophysics Data System (ADS)

    Chernyshova, T. A.; Kobeleva, L. I.; Bolotova, L. K.; Katin, I. V.

    2013-03-01

    The structure and interfacial interaction are studied in the hybrid aluminum-matrix composite materials fabricated by reactive casting combined with mechanical mixing of fillers with a metallic melt. The following types of hardening are considered: hardening by ceramic particles and by the phases formed as isolated inclusions or coatings on ceramic particles during in situ reactions. The hardness and tribological properties of the composite materials as functions of their compositions are discussed.

  8. Material Properties Analysis of Structural Members in Pumpkin Balloons

    NASA Technical Reports Server (NTRS)

    Sterling, W. J.

    2003-01-01

    The efficient design, service-life qualification, and reliability predictions for lightweight aerospace structures require careful mechanical properties analysis of candidate structural materials. The demand for high-quality laboratory data is particularly acute when the candidate material or the structural design has little history. The pumpkin-shaped super-pressure balloon presents both challenges. Its design utilizes load members (tendons) extending from apex to base around the gas envelope to achieve a lightweight structure. The candidate tendon material is highly weight-efficient braided HM cord. Previous mechanical properties studies of Zylon have focused on fiber and yarn, and industrial use of the material in tensile applications is limited. For high-performance polymers, a carefully plamed and executed properties analysis scheme is required to ensure the data are relevant to the desired application. Because no directly-applicable testing standard was available, a protocol was developed based on guidelines fiom professional and industry organizations. Due to the liquid-crystalline nature of the polymer, the cord is very stiff, creeps very little, and does not yield. Therefore, the key material property for this application is the breaking strength. The pretension load and gauge length were found to have negligible effect on the measured breaking strength over the ranges investigated. Strain rate was found to have no effect on breaking strength, within the range of rates suggested by the standards organizations. However, at the lower rate more similar to ULDB operations, the strength was reduced. The breaking strength increased when the experiment temperature was decreased from ambient to 183K which is the lowest temperature ULDB is expected to experience. The measured strength under all test conditions was well below that resulting from direct scale-up of fiber strength based on the manufacturers data. This expected result is due to the effects of the

  9. Structure - Property Relationships of Furanyl Thermosetting Polymer Materials Derived from Biobased Feedstocks

    NASA Astrophysics Data System (ADS)

    Hu, Fengshuo

    Biobased thermosetting polymers have drawn significant attention due to their potential positive economic and ecological impacts. New materials should mimic the rigid, phenylic structures of incumbent petroleum-based thermosetting monomers and possess superior thermal and mechanical properties. Furans and triglycerides derived from cellulose, hemicellulose and plant oils are promising candidates for preparing such thermosetting materials. In this work, furanyl diepoxies, diamines and di-vinyl esters were synthesized using biobased furanyl materials, and their thermal and mechanical properties were investigated using multiple techniques. The structure versus property relationship showed that, compared with the prepared phenylic analogues, biobased furanyl thermosetting materials possess improved glassy storage modulus (E '), advanced fracture toughness, superior high-temperature char yield and comparable glass transition temperature (Tg) properties. An additive molar function analysis of the furanyl building block to the physical properties, such as Tg and density, of thermosetting polymers was performed. The molar glass transition function value (Yg) and molar volume increment value (Va,i) of the furanyl building block were obtained. Biobased epoxidized soybean oil (ESO) was modified using different fatty acids at varying molar ratios, and these prepared materials dramatically improved the critical strain energy release rate (G1c) and the critical stress intensity factor (K1c) values of commercial phenylic epoxy resins, without impairing their Tg and E ' properties. Overall, it was demonstrated that biobased furans and triglycerides possess promising potential for use in preparing high-performance thermosetting materials, and the established methodologies in this work can be utilized to direct the preparation of thermosetting materials with thermal and mechanical properties desired for practical applications.

  10. Acoustic properties and durability of liner materials at non-standard atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.; Hsu, J. S.

    1994-01-01

    This report documents the results of an experimental study on how acoustic properties of certain absorbing liner materials are affected by nonstandard atmospheric conditions. This study was motivated by the need to assess risks associated with incorporating acoustic testing capability in wind tunnels with semicryogenic high Reynolds number aerodynamic and/or low pressure capabilities. The study consisted of three phases: 1) measurement of acoustic properties of selected liner materials at subatmospheric pressure conditions, 2) periodic cold soak and high pressure exposure of liner materials for 250 cycles, and 3) determination of the effect of periodic cold soak on the acoustic properties of the liner materials at subatmospheric conditions and the effect on mechanical resiliency. The selected liner materials were Pyrell foam, Fiberglass, and Kevlar. A vacuum facility was used to create the subatmospheric environment in which an impedance tube was placed to measure acoustic properties of the test materials. An automated cryogenic cooling system was used to simulate periodic cold soak and high pressure exposure. It was found that lower ambient pressure reduced the absorption effectiveness of the liner materials to varying degrees. Also no significant change in the acoustic properties occurred after the periodic cold soak. Furthermore, mechanical resiliency tests indicated no noticeable change.

  11. Bismuth-, Tin-, and Lead-Containing Metal-Organic Materials: Synthesis, Structure, Photoluminescence, Second Harmonic Generation, and Ferroelectric Properties

    NASA Astrophysics Data System (ADS)

    Wibowo, Arief Cahyo

    Metal-Organic Materials (MOMs) contain metal moieties and organic ligands that combine to form discrete (e.g. metal-organic polyhedra, spheres or nanoballs, metal-organic polygons) or polymeric structures with one-, two-, or three-dimensional periodicities that can exhibit a variety of properties resulting from the presence of the metal moieties and/or ligand connectors in the structure. To date, MOMs with a range of functional attributes have been prepared, including record-breaking porosity, catalytic properties, molecular magnetism, chemical separations and sensing ability, luminescence and NLO properties, multiferroic, ferroelectric, and switchable molecular dielectric properties. We are interested in synthesizing non-centrosymmetric MOM single crystals possessing one of the ten polar space groups required for non-linear optical properties (such as second harmonic generation) and ferroelectric applications. This thesis is divided into two main parts: materials with optical properties, such as photoluminescence and materials for targeted applications such as second harmonic generation and ferroelectric properties. This thesis starts with an introduction describing material having centrosymmetric, non-polar space groups, single crystals structures and their photoluminescence properties. These crystals exhibit very interesting and rare structures as well as interesting photoluminescence properties. Chapters 2-5 of this thesis focus on photoluminescent properties of new MOMs, and detail the exploratory research involving the comparatively rare bismuth, lead, and tin coordination polymers. Specifically, the formation of single white-light emitting phosphors based on the combination of bismuth or lead with pyridine-2,5-dicarboxylate is discussed (Chapter 2). The observation of a new Bi2O2 layer and a new Bi4O 3 chain in bismuth terephthalate-based coordination polymers is presented in Chapter 3, while the formation of diverse structures of tin-based coordination

  12. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonicationmore » in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.« less

  13. Thermophysical properties study of micro/nanoscale materials

    NASA Astrophysics Data System (ADS)

    Feng, Xuhui

    Thermal transport in low-dimensional structure has attracted tremendous attentions because micro/nanoscale materials play crucial roles in advancing micro/nanoelectronics industry. The thermal properties are essential for understanding of the energy conversion and thermal management. To better investigate micro/nanoscale materials and characterize the thermal transport, pulse laser-assisted thermal relaxation 2 (PLTR2) and transient electrothermal (TET) are both employed to determine thermal property of various forms of materials, including thin films and nanowires. As conducting polymer, Poly(3-hexylthiophene) (P3HT) thin film is studied to understand its thermal properties variation with P3HT weight percentage. 4 P3HT solutions of different weight percentages are compounded to fabricate thin films using spin-coating technique. Experimental results indicate that weight percentage exhibits impact on thermophysical properties. When percentage changes from 2% to 7%, thermal conductivity varies from 1.29 to 1.67 W/m·K and thermal diffusivity decreases from 10-6 to 5×10-7 m2/s. Moreover, PLTR2 technique is applied to characterize the three-dimensional anisotropic thermal properties in spin-coated P3HT thin films. Raman spectra verify that the thin films embrace partially orientated P3HT molecular chains, leading to anisotropic thermal transport. Among all three directions, lowest thermal property is observed along out-of-plane direction. For in-plane characterization, anisotropic ratio is around 2 to 3, indicating that the orientation of the molecular chains has strong impact on the thermal transport along different directions. Titanium dioxide (TiO2) thin film is synthesized by electrospinning features porous structure composed by TiO2 nanowires with random orientations. The porous structure caused significant degradation of thermal properties. Effective thermal diffusivity, conductivity, and density of the films are 1.35˜3.52 × 10-6 m2/s, 0.06˜0.36 W/m·K, and

  14. Thermophysical Properties of Mars' North Polar Layered Deposits and Related Materials from Mars Odyssey THEMIS

    NASA Technical Reports Server (NTRS)

    Vasavada, A. R.; Richardson, M. I.; Byrne, S.; Ivanov, A. B.; Christensen, P. R.

    2003-01-01

    The presence of a thick sequence of horizontal layers of ice-rich material at Mars north pole, dissected by troughs and eroding at its margins, is undoubtedly telling us something about the evolution of Mars climate [1,2] we just don t know what yet. The North Polar Layered Deposits (NPLD) most likely formed as astronomically driven climate variations led to the deposition of conformable, areally extensive layers of ice and dust over the polar region. More recently, the balance seems to have fundamentally shifted to net erosion, as evidenced by the many troughs within the NPLD and the steep, arcuate scarps present near its margins, both of which expose layering. We defined a number of Regions of Interest ROI) for THEMIS to target as part of the Mars Odyssey Participating Scientist program. We use these THEMIS data in order to understand the morphology and color/thermal properties of the NPLD and related materials over relevant (i.e., m to km) spatial scales. We have assembled color mosaics of our ROIs in order to map the distribution of ices, the different layered units, dark material, and underlying basement. The color information from THEMIS is crucial for distinguishing these different units which are less distinct on Mars Orbiter Camera images. We wish to understand the nature of the marginal scarps and their relationship to the dark material. Our next, more ambitious goal is to derive the thermophysical properties of the different geologic materials using THEMIS and Mars Global Surveyor Thermal Emission Spectrometer TES) data.

  15. Method for the unique identification of hyperelastic material properties using full-field measures. Application to the passive myocardium material response.

    PubMed

    Perotti, Luigi E; Ponnaluri, Aditya V S; Krishnamoorthi, Shankarjee; Balzani, Daniel; Ennis, Daniel B; Klug, William S

    2017-11-01

    Quantitative measurement of the material properties (eg, stiffness) of biological tissues is poised to become a powerful diagnostic tool. There are currently several methods in the literature to estimating material stiffness, and we extend this work by formulating a framework that leads to uniquely identified material properties. We design an approach to work with full-field displacement data-ie, we assume the displacement field due to the applied forces is known both on the boundaries and also within the interior of the body of interest-and seek stiffness parameters that lead to balanced internal and external forces in a model. For in vivo applications, the displacement data can be acquired clinically using magnetic resonance imaging while the forces may be computed from pressure measurements, eg, through catheterization. We outline a set of conditions under which the least-square force error objective function is convex, yielding uniquely identified material properties. An important component of our framework is a new numerical strategy to formulate polyconvex material energy laws that are linear in the material properties and provide one optimal description of the available experimental data. An outcome of our approach is the analysis of the reliability of the identified material properties, even for material laws that do not admit unique property identification. Lastly, we evaluate our approach using passive myocardium experimental data at the material point and show its application to identifying myocardial stiffness with an in silico experiment modeling the passive filling of the left ventricle. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Measurement of material mechanical properties in microforming

    NASA Astrophysics Data System (ADS)

    Yun, Wang; Xu, Zhenying; Hui, Huang; Zhou, Jianzhong

    2006-02-01

    As the rapid market need of micro-electro-mechanical systems engineering gives it the wide development and application ranging from mobile phones to medical apparatus, the need of metal micro-parts is increasing gradually. Microforming technology challenges the plastic processing technology. The findings have shown that if the grain size of the specimen remains constant, the flow stress changes with the increasing miniaturization, and also the necking elongation and the uniform elongation etc. It is impossible to get the specimen material properties in conventional tensile test machine, especially in the high precision demand. Therefore, one new measurement method for getting the specimen material-mechanical property with high precision is initiated. With this method, coupled with the high speed of Charge Coupled Device (CCD) camera and high precision of Coordinate Measuring Machine (CMM), the elongation and tensile strain in the gauge length are obtained. The elongation, yield stress and other mechanical properties can be calculated from the relationship between the images and CCD camera movement. This measuring method can be extended into other experiments, such as the alignment of the tool and specimen, micro-drawing process.

  17. Mechanical Properties of Materials with Nanometer Scale Microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations,more » talks and publications completed on this grant during the past 15 years.« less

  18. A polymer dataset for accelerated property prediction and design.

    PubMed

    Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; Sharma, Vinit; Pilania, Ghanshyam; Ramprasad, Rampi

    2016-03-01

    Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. It will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.

  19. Targeting Unique Metabolic Properties of Breast Tumor Initiating Cells

    PubMed Central

    Feng, Weiguo; Gentles, Andrew; Nair, Ramesh V.; Huang, Min; Lin, Yuan; Lee, Cleo Y.; Cai, Shang; Scheeren, Ferenc A.; Kuo, Angera H.; Diehn, Maximilian

    2014-01-01

    Normal stem cells from a variety of tissues display unique metabolic properties compared to their more differentiated progeny. However, relatively little is known about heterogeneity of metabolic properties cancer stem cells, also called tumor initiating cells (TICs). In this study we show that, analogous to some normal stem cells, breast TICs have distinct metabolic properties compared to non-tumorigenic cancer cells (NTCs). Transcriptome profiling using RNA-Seq revealed TICs under-express genes involved in mitochondrial biology and mitochondrial oxidative phosphorylation and metabolic analyses revealed TICs preferentially perform glycolysis over oxidative phosphorylation compared to NTCs. Mechanistic analyses demonstrated that decreased expression and activity of pyruvate dehydrogenase (Pdh), a key regulator of oxidative phosphorylation, play a critical role in promoting the pro-glycolytic phenotype of TICs. Metabolic reprogramming via forced activation of Pdh preferentially eliminates TICs both in vitro and in vivo. Our findings reveal unique metabolic properties of TICs and demonstrate that metabolic reprogramming represents a promising strategy for targeting these cells. PMID:24497069

  20. Gas adsorption properties of hybrid graphene-MOF materials.

    PubMed

    Szczęśniak, Barbara; Choma, Jerzy; Jaroniec, Mietek

    2018-03-15

    Nowadays, hybrid porous materials consisting of metal-organic frameworks (MOFs) and graphene nanosheets become more and more attractive because of their growing applications in adsorption, catalysis and related areas. Incorporation of graphene oxide into MOFs can provide benefits such as increased water resistance and thermal stability as well as enhanced surface area and adsorption properties. Graphene oxide is one of the best additives to other materials owing to its two main virtues: high atomic density and large amount of surface functional groups. Due to its dense array of atoms, graphene oxide can significantly increase dispersion forces in graphene-MOF materials, which is beneficial for adsorption of small molecules. This work presents a concise appraisal of adsorption properties of MOFs and graphene-MOF hybrids toward CO 2 , volatile organic compounds, hydrogen and methane. It shows that the graphene-MOF materials represent an important class of materials with potential applications in adsorption and catalysis. A special emphasis of this article is placed on their adsorption applications for gas capture and storage. A large number of graphene-MOF adsorbents has been so far explored and their appraisal could be beneficial for researchers interested in the development of hybrid adsorbents for adsorption-based applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Wood plastic composites from agro-waste materials: Analysis of mechanical properties.

    PubMed

    Nourbakhsh, Amir; Ashori, Alireza

    2010-04-01

    This article presents the application of agro-waste materials (i.e., corn stalk, reed stalk, and oilseed stalk) in order to evaluate and compare their suitability as reinforcement for thermoplastics as an alternative to wood fibers. The effects of fiber loading and CaCO(3) content on the mechanical properties were also studied. Overall trend shows that with addition of agro-waste materials, tensile and flexural properties of the composites are significantly enhanced. Oilseed fibers showed superior mechanical properties due to their high aspect ratio and chemical characteristics. The order of increment in the mechanical properties of the composites is oilseed stalk >corn stalk>reed stalk at all fiber loadings. The tensile and flexural properties of the composite significantly decreased with increasing CaCO(3) content, due to the reduction of interface bond between the fiber and matrix. It can be concluded from this study that the used agro-waste materials are attractive reinforcements from the standpoint of their mechanical properties. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. The Cryogenic Properties of Several Aluminum-Beryllium Alloys and a Beryllium Oxide Material

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Performance related mechanical properties for two aluminum-beryllium (Al-Be) alloys and one beryllium-oxide (BeO) material were developed at cryogenic temperatures. Basic mechanical properties (Le., ultimate tensile strength, yield strength, percent elongation, and elastic modulus were obtained for the aluminum-beryllium alloy, AlBeMetl62 at cryogenic [-195.5"C (-320 F) and -252.8"C (-423"F)I temperatures. Basic mechanical properties for the Be0 material were obtained at cyrogenic [- 252.8"C (-423"F)] temperatures. Fracture properties were obtained for the investment cast alloy Beralcast 363 at cryogenic [-252.8"C (-423"F)] temperatures. The AlBeMetl62 material was extruded, the Be0 material was hot isostatic pressing (HIP) consolidated, and the Beralcast 363 material was investment cast.

  3. Electromagnetic properties of material coated surfaces

    NASA Technical Reports Server (NTRS)

    Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.

    1989-01-01

    The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.

  4. Millimeter wave and terahertz dielectric properties of biological materials

    NASA Astrophysics Data System (ADS)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  5. Characterizing the temperature dependence of electronic packaging-material properties

    NASA Astrophysics Data System (ADS)

    Fu, Chia-Yu; Ume, Charles

    1995-06-01

    A computer-controlled, temperature-dependent material characterization system has been developed for thermal deformation analysis in electronic packaging applications, especially for printed wiring assembly warpage study. For fiberglass-reinforced epoxy (FR-4 type) material, the Young's moduli decrease to as low as 20-30% of the room-temperature values, while the shear moduli decrease to as low as 60-70% of the room-temperature values. The electrical resistance strain gage technique was used in this research. The test results produced overestimated values in property measurements, and this was shown in a case study. A noncontact strau]n measurement technique (laser extensometer) is now being used to measure these properties. Discrepancies of finite-element warpage predictions using different property values increase as the temperature increases from the stress-free temperature.

  6. Magnetic microgels for drug targeting applications: Physical-chemical properties and cytotoxicity evaluation

    NASA Astrophysics Data System (ADS)

    Turcu, Rodica; Craciunescu, Izabell; Garamus, Vasil M.; Janko, Christina; Lyer, Stefan; Tietze, Rainer; Alexiou, Christoph; Vekas, Ladislau

    2015-04-01

    Magnetoresponsive microgels with high saturation magnetization values have been obtained by a strategy based on the miniemulsion method using high colloidal stability organic carrier ferrofluid as primary material. Hydrophobic nanoparticles Fe3O4/oleic acid are densely packed into well-defined spherical nanoparticle clusters coated with polymers with sizes in the range 40-350 nm. Physical-chemical characteristics of magnetic microgels were investigated by TEM, SAXS, XPS and VSM measurements with the focus on the structure-properties relationship. The impact of magnetic microgels loaded with anticancer drug mitoxantrone (MTO) on the non-adherent human T cell leukemia line Jurkat was investigated in multiparameter flow cytometry. We showed that both MTO and microgel-loaded MTO penetrate into cells and both induce apoptosis and later secondary necrosis in a time- and dose dependent manner. In contrast, microgels without MTO are not cytotoxic in the corresponding concentrations. Our results show that MTO-loaded microgels are promising structures for application in magnetic drug targeting.

  7. Effect of storage time on the viscoelastic properties of elastomeric impression materials.

    PubMed

    Papadogiannis, Dimitris; Lakes, Roderic; Palaghias, George; Papadogiannis, Yiannis

    2012-01-01

    The aim of this study was to evaluate creep and viscoelastic properties of dental impression materials after different storage times. Six commercially available impression materials (one polyether and five silicones) were tested after being stored for 30 min to 2 weeks under both static and dynamic testing. Shear and Young's moduli, dynamic viscosity, loss tangent and other viscoelastic parameters were calculated. Four of the materials were tested 1 h after setting under creep for three hours and recovery was recorder for 50 h. The tested materials showed differences among them, while storage time had significant influence on their properties. Young's modulus E ranged from 1.81 to 12.99 MPa with the polyether material being the stiffest. All of the materials showed linear viscoelastic behavior exhibiting permanent deformation after 50h of creep recovery. As storage time affects the materials' properties, pouring time should be limited in the first 48 h after impression. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  8. Predicting the Highly Nonlinear Mechanical Properties of Polymeric Materials

    NASA Astrophysics Data System (ADS)

    Porter, David

    2009-06-01

    Over the past few years, we have developed models that calculate the highly nonlinear mechanical properties of polymers as a function of temperature, strain and strain rate from their molecular and morphological structure. A review of these models is presented here, with emphasis on combining the fundamental aspects of molecular physics that dictate these properties and the pragmatic need to make realistic predictions for our customers; the designer of new materials and the engineers who use these materials. The models calculate the highly nonlinear mechanical properties of polymers as a function of temperature, strain and strain rate from their molecular structure. The model is based upon the premise that mechanical properties are a direct consequence of energy stored and energy dissipated during deformation of a material. This premise is transformed into a consistent set of structure-property relations for the equation of state, EoS, and the engineering constitutive relations in a polymer by quantifying energy storage and loss at the molecular level of interactions between characteristic groups of atoms in a polymer. These relations are derived from a simple volumetric mean field Lennard-Jones potential function for the potential energy of intermolecular interactions in a polymer. First, properties such as temperature-volume relations and glass transition temperature are calculated directly from the potential function. Then, the `shock' EoS is derived simply by differentiating the potential function with respect to volume, assuming that the molecules cannot relax in the time scales of the deformation. The energy components are then used to predict the dynamic mechanical spectrum of a polymer in terms of temperature and rate. This can be transformed directly into the highly nonlinear stress-strain relations through yield. The constitutive relations are formulated as a set of analytical equations that predict properties directly in terms of a small set of

  9. Thermophysical Properties of Polymer Materials with High Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Lebedev, S. M.; Gefle, O. S.; Dneprovskii, S. N.; Amitov, E. T.

    2015-06-01

    Results of studies on the main thermophysical properties of new thermally conductive polymer materials are presented. It is shown that modification of polymer dielectrics by micron-sized fillers allows thermally conductive materials with thermal conductivity not less than 2 W/(m K) to be produced, which makes it possible to use such materials as cooling elements of various electrical engineering and semiconductor equipment and devices.

  10. Q4 Titanium 6-4 Material Properties Development

    NASA Technical Reports Server (NTRS)

    Cooper, Kenneth; Nettles, Mindy

    2015-01-01

    This task involves development and characterization of selective laser melting (SLM) parameters for additive manufacturing of titanium-6%aluminum-4%vanadium (Ti-6Al-4V or Ti64). SLM is a relatively new manufacturing technology that fabricates complex metal components by fusing thin layers of powder with a high-powered laser beam, utilizing a 3D computer design to direct the energy and form the shape without traditional tools, dies, or molds. There are several metal SLM technologies and materials on the market today, and various efforts to quantify the mechanical properties, however, nothing consolidated or formal to date. Meanwhile, SLM material fatigue properties of Ti64 are currently highly sought after by NASA propulsion designers for rotating turbomachinery components.

  11. Engineering Properties and Correlation Analysis of Fiber Cementitious Materials

    PubMed Central

    Lin, Wei-Ting; Wu, Yuan-Chieh; Cheng, An; Chao, Sao-Jeng; Hsu, Hui-Mi

    2014-01-01

    This study focuses on the effect of the amount of silica fume addition and volume fraction of steel fiber on the engineering properties of cementitious materials. Test variables include dosage of silica fume (5% and 10%), water/cement ratio (0.35 and 0.55) and steel fiber dosage (0.5%, 1.0% and 2.0%). The experimental results included: compressive strength, direct tensile strength, splitting tensile strength, surface abrasion and drop-weight test, which were collected to carry out the analysis of variance to realize the relevancy and significance between material parameters and those mechanical properties. Test results illustrate that the splitting tensile strength, direct tensile strength, strain capacity and ability of crack-arresting increase with increasing steel fiber and silica fume dosages, as well as the optimum mixture of the fiber cementitious materials is 5% replacement silica fume and 2% fiber dosage. In addition, the Pearson correlation coefficient was conducted to evaluate the influence of the material variables and corresponds to the experiment result. PMID:28788256

  12. Effect of Interface Structure on Mechanical Properties of Advanced Composite Materials

    PubMed Central

    Gan, Yong X.

    2009-01-01

    This paper deals with the effect of interface structures on the mechanical properties of fiber reinforced composite materials. First, the background of research, development and applications on hybrid composite materials is introduced. Second, metal/polymer composite bonded structures are discussed. Then, the rationale is given for nanostructuring the interface in composite materials and structures by introducing nanoscale features such as nanopores and nanofibers. The effects of modifying matrices and nano-architecturing interfaces on the mechanical properties of nanocomposite materials are examined. A nonlinear damage model for characterizing the deformation behavior of polymeric nanocomposites is presented and the application of this model to carbon nanotube-reinforced and reactive graphite nanotube-reinforced epoxy composite materials is shown. PMID:20054466

  13. Engineering tumor cell targeting in nanoscale amyloidal materials

    NASA Astrophysics Data System (ADS)

    Unzueta, Ugutz; Seras-Franzoso, Joaquin; Virtudes Céspedes, María; Saccardo, Paolo; Cortés, Francisco; Rueda, Fabián; Garcia-Fruitós, Elena; Ferrer-Miralles, Neus; Mangues, Ramon; Vázquez, Esther; Villaverde, Antonio

    2017-01-01

    Bacterial inclusion bodies are non-toxic, mechanically stable and functional protein amyloids within the nanoscale size range that are able to naturally penetrate into mammalian cells, where they deliver the embedded protein in a functional form. The potential use of inclusion bodies in protein delivery or protein replacement therapies is strongly impaired by the absence of specificity in cell binding and penetration, thus preventing targeting. To address this issue, we have here explored whether the genetic fusion of two tumor-homing peptides, the CXCR4 ligands R9 and T22, to an inclusion body-forming green fluorescent protein (GFP), would keep the interaction potential and the functionality of the fused peptides and then confer CXCR4 specificity in cell binding and further uptake of the materials. The fusion proteins have been well produced in Escherichia coli in their full-length form, keeping the potential for fluorescence emission of the partner GFP. By using specific inhibitors of CXCR4 binding, we have demonstrated that the engineered protein particles are able to penetrate CXCR4+ cells, in a receptor-mediated way, without toxicity or visible cytopathic effects, proving the availability of the peptide ligands on the surface of inclusion bodies. Since no further modification is required upon their purification, the biological production of genetically targeted inclusion bodies opens a plethora of cost-effective possibilities in the tissue-specific intracellular transfer of functional proteins through the use of structurally and functionally tailored soft materials.

  14. The electrical properties and glass transition of some dental materials after temperature exposure.

    PubMed

    Marcinkowska, Agnieszka; Gauza-Wlodarczyk, Marlena; Kubisz, Leszek; Hedzelek, Wieslaw

    2017-10-17

    The physicochemical properties of dental materials will remain stable only when these materials in question are resistant to the changes in the oral cavity. The oral environment is subject to large temperature variations. The aim of the study was the assessment of electrical properties and glass transition of some dental materials after temperature exposure. Composite materials, compomers, materials for temporary prosthetic replacement and resin-based pit and fissure sealants were used in the study. The method used was electric conductivity of materials under changing temperature. The order of materials presenting the best characteristics for insulators was as follows: materials for temporary prosthetic replacement, resin-based pit and fissure sealants, composites, and compomers. Thanks to comparisons made between graphs during I and II heating run, the method could be used to observe changes in the heated material and determine whether the changes observed are reversible or permanent. The graphs also provided temperature values which contain information on glass transition during heating. In the oral cavity the effect of the constant temperature stimulus influences maturity of dental materials and improves their properties. But high temperatures over glass transition temperature can cause irreversible deformation and changes of the materials properties, even in a short time.

  15. Research on spatial-variant property of bistatic ISAR imaging plane of space target

    NASA Astrophysics Data System (ADS)

    Guo, Bao-Feng; Wang, Jun-Ling; Gao, Mei-Guo

    2015-04-01

    The imaging plane of inverse synthetic aperture radar (ISAR) is the projection plane of the target. When taking an image using the range-Doppler theory, the imaging plane may have a spatial-variant property, which causes the change of scatter’s projection position and results in migration through resolution cells. In this study, we focus on the spatial-variant property of the imaging plane of a three-axis-stabilized space target. The innovative contributions are as follows. 1) The target motion model in orbit is provided based on a two-body model. 2) The instantaneous imaging plane is determined by the method of vector analysis. 3) Three Euler angles are introduced to describe the spatial-variant property of the imaging plane, and the image quality is analyzed. The simulation results confirm the analysis of the spatial-variant property. The research in this study is significant for the selection of the imaging segment, and provides the evidence for the following data processing and compensation algorithm. Project supported by the National Natural Science Foundation of China (Grant No. 61401024), the Shanghai Aerospace Science and Technology Innovation Foundation, China (Grant No. SAST201240), and the Basic Research Foundation of Beijing Institute of Technology (Grant No. 20140542001).

  16. About Influence of Ionic Beams of Metals of IVB-VIB Groups on Structure and Properties of a Target at Various Modes of Irradiation

    NASA Astrophysics Data System (ADS)

    Kurbatova, E. I.; Klimanov, V. A.; Ksenofontov, A. I.; Fridlyander, I. N.

    2006-08-01

    A complex of special properties of materials and a threshold of their working temperatures which is frequently limited 500-550°C define the level of modern technological development and, first of all, for nuclear-industrial plants. The alloys on the basis of iron are the most widespread kind of constructional materials, and therefore an increase of their special properties (high-temperature strength, corrosion stability, durability and other characteristics) is of great value. The ionic beams with a low energy (300-1,500 eV) which can change the structure and the properties of a target, in particular iron and its alloys were used for the solution of these problems in the present work. In this work theoretical and experimental results of the research of the process of impact interaction of the ionic beams with iron are also given. The properties of a iron surface with the help of modern methods of physical and chemical analyse are investigated. The opportunities to produce new surface properties of iron using the ionic beams are shown. On the basis of the results obtained the supplementary work directions are analyzed.

  17. New Targets for New Accelerators

    NASA Astrophysics Data System (ADS)

    Frentz, Bryce; Manukyan, Khachatur; Aprahamian, Ani

    2013-10-01

    New accelerators, such as the 5 MV Sta Ana accelerator at the University of Notre Dame, will produce more powerful beams up to 100's of μAmps. These accelerators require a complete rethinking of target preparation since the high intensity of such beams would melt conventional targets. Traditionally, accelerator targets are made with a tantalum backing because of its high atomic mass. However, tantalum is brittle, a poor conductor, and, if produced commercially, often contains impurities (e.g. fluorine) that produce undesirable background and reaction products. Tungsten, despite its brittle structure and poor conductivity, has a high atomic mass and lacks impurities, making it a more desirable backing. In conjunction with tungsten's properties, copper is robust and a far superior thermal conductor. We describe a new method of reactive joining that we developed for creating targets that use the advantageous properties of both tungsten and copper. This process involved placing a reactive mixture between tungsten and copper and applying a load force. The mixture is then ignited, and while under pressure, the system produces conditions to join the materials. We present our investigation to optimize the process of reactive joining, as well as some of the final target's properties. This work was supported by the National Science Foundation under Grant PHY-1068192.

  18. Material modeling of biofilm mechanical properties.

    PubMed

    Laspidou, C S; Spyrou, L A; Aravas, N; Rittmann, B E

    2014-05-01

    A biofilm material model and a procedure for numerical integration are developed in this article. They enable calculation of a composite Young's modulus that varies in the biofilm and evolves with deformation. The biofilm-material model makes it possible to introduce a modeling example, produced by the Unified Multi-Component Cellular Automaton model, into the general-purpose finite-element code ABAQUS. Compressive, tensile, and shear loads are imposed, and the way the biofilm mechanical properties evolve is assessed. Results show that the local values of Young's modulus increase under compressive loading, since compression results in the voids "closing," thus making the material stiffer. For the opposite reason, biofilm stiffness decreases when tensile loads are imposed. Furthermore, the biofilm is more compliant in shear than in compression or tension due to the how the elastic shear modulus relates to Young's modulus. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Tribological properties of epoxy composite materials for marine and river transport

    NASA Astrophysics Data System (ADS)

    Buketov, A. V.; Maruschak, P. O.; Brailo, N. V.; Akimov, A. V.; Kobelnik, O. S.; Panin, S. V.

    2016-11-01

    Tribological properties of epoxy composites filled with thermoplastics and dispersed particles under sea water environment were analyzed. It has been revealed that the composition, sliding friction conditions, as well as the marine environment, substantially affect the tribological properties of the materials. The improvement of tribological properties of epoxycomposite thermosetting plastics after their filling with thermoplastic polyamide PA-6 granules under friction in sea water environment has been proved. The recommendations on applying the developed material in friction parts for marine and river transport were formulated.

  20. Effect of mechanical properties on erosion resistance of ductile materials

    NASA Astrophysics Data System (ADS)

    Levin, Boris Feliksovih

    Solid particle erosion (SPE) resistance of ductile Fe, Ni, and Co-based alloys as well as commercially pure Ni and Cu was studied. A model for SPE behavior of ductile materials is presented. The model incorporates the mechanical properties of the materials at the deformation conditions associated with SPE process, as well as the evolution of these properties during the erosion induced deformation. An erosion parameter was formulated based on consideration of the energy loss during erosion, and incorporates the material's hardness and toughness at high strain rates. The erosion model predicts that materials combining high hardness and toughness can exhibit good erosion resistance. To measure mechanical properties of materials, high strain rate compression tests using Hopkinson bar technique were conducted at strain rates similar to those during erosion. From these tests, failure strength and strain during erosion were estimated and used to calculate toughness of the materials. The proposed erosion parameter shows good correlation with experimentally measured erosion rates for all tested materials. To analyze subsurface deformation during erosion, microhardness and nanoindentation tests were performed on the cross-sections of the eroded materials and the size of the plastically deformed zone and the increase in materials hardness due to erosion were determined. A nanoindentation method was developed to estimate the restitution coefficient within plastically deformed regions of the eroded samples which provides a measure of the rebounding ability of a material during particle impact. An increase in hardness near the eroded surface led to an increase in restitution coefficient. Also, the stress rates imposed below the eroded surface were comparable to those measured during high strain-rate compression tests (10sp3-10sp4 ssp{-1}). A new parameter, "area under the microhardness curve" was developed that represents the ability of a material to absorb impact energy. By

  1. Systems and methods for predicting materials properties

    DOEpatents

    Ceder, Gerbrand; Fischer, Chris; Tibbetts, Kevin; Morgan, Dane; Curtarolo, Stefano

    2007-11-06

    Systems and methods for predicting features of materials of interest. Reference data are analyzed to deduce relationships between the input data sets and output data sets. Reference data includes measured values and/or computed values. The deduced relationships can be specified as equations, correspondences, and/or algorithmic processes that produce appropriate output data when suitable input data is used. In some instances, the output data set is a subset of the input data set, and computational results may be refined by optionally iterating the computational procedure. To deduce features of a new material of interest, a computed or measured input property of the material is provided to an equation, correspondence, or algorithmic procedure previously deduced, and an output is obtained. In some instances, the output is iteratively refined. In some instances, new features deduced for the material of interest are added to a database of input and output data for known materials.

  2. Development of material formula and structure property indicators for low cold-resistant characterization of Cables’ Material

    NASA Astrophysics Data System (ADS)

    Sun, W.; Cai, Y. G.; Feng, Y. M.; Li, Y. L.; Zhou, H. Y.; Zhou, Y.

    2018-01-01

    Alpine regions account for about 27.9% of total land area in China. Northeast China, Inner Mongolia, Northwest China and other regions are located in alpine regions, wherein the above regions are rich in energy. However, the low-temperature impact embrittlement temperature of traditional PVC cable materials is between -15°C and -20°C, which is far lower than actual operation requirements. Cable insulation and sheath are always damaged during cable laying in alpine regions. Therefore, it is urgent to develop low-temperature-resistant cables applicable to low-temperature environment in alpine regions, and safe and stable operation of power grids in the alpine regions can be guaranteed. In the paper, cold-resistant PVC formula systems were mainly trial-manufactured and studied. Appropriate production technologies and formulas were determined through selecting raw materials and modified materials. The low-temperature impact embrittlement temperature was adjusted below -50°C under the precondition that PVC cable materials met national standard property requirements. Cold-resistant PVC cable materials were prepared, which were characterized by excellent physical and mechanical properties, and sound extrusion process, and cold-resistant PVC cable materials can meet production requirements of low-temperature-resistant cables. Meanwhile, the prepared cold-resistant cable material was used for extruding finished product cables and trial-manufacturing sample cables. Type tests of low temperature elongation ratio, 15min withstand voltage, etc. were completed for 35kV and lower sample cables in Mohe Low-temperature Test Site. All properties were consistent with standard requirements.

  3. Mechanical properties of nanostructure of biological materials

    NASA Astrophysics Data System (ADS)

    Ji, Baohua; Gao, Huajian

    2004-09-01

    Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

  4. Measurement and testing of the acoustic properties of materials: a review

    NASA Astrophysics Data System (ADS)

    Zeqiri, Bajram; Scholl, Werner; Robinson, Stephen P.

    2010-04-01

    A review is presented of methods of measurement for a range of key acoustic properties of materials, spanning three application areas: airborne sound, underwater acoustics and ultrasound. The acoustic properties considered, primarily transmission loss (damping) and echo-reduction, are specifically important to the end application of any material. The state-of-the-art in measurement and likely future challenges are described in detail.

  5. From properties to materials: An efficient and simple approach

    NASA Astrophysics Data System (ADS)

    Huwig, Kai; Fan, Chencheng; Springborg, Michael

    2017-12-01

    We present an inverse-design method, the poor man's materials optimization, that is designed to identify materials within a very large class with optimized values for a pre-chosen property. The method combines an efficient genetic-algorithm-based optimization, an automatic approach for generating modified molecules, a simple approach for calculating the property of interest, and a mathematical formulation of the quantity whose value shall be optimized. In order to illustrate the performance of our approach, we study the properties of organic molecules related to those used in dye-sensitized solar cells, whereby we, for the sake of proof of principle, consider benzene as a simple test system. Using a genetic algorithm, the substituents attached to the organic backbone are varied and the best performing molecules are identified. We consider several properties to describe the performance of organic molecules, including the HOMO-LUMO gap, the sunlight absorption, the spatial distance of the orbitals, and the reorganisation energy. The results show that our method is able to identify a large number of good candidate structures within a short time. In some cases, chemical/physical intuition can be used to rationalize the substitution pattern of the best structures, although this is not always possible. The present investigations provide a solid foundation for dealing with more complex and technically relevant systems such as porphyrins. Furthermore, our "properties first, materials second" approach is not limited to solar-energy harvesting but can be applied to many other fields, as briefly is discussed in the paper.

  6. From properties to materials: An efficient and simple approach.

    PubMed

    Huwig, Kai; Fan, Chencheng; Springborg, Michael

    2017-12-21

    We present an inverse-design method, the poor man's materials optimization, that is designed to identify materials within a very large class with optimized values for a pre-chosen property. The method combines an efficient genetic-algorithm-based optimization, an automatic approach for generating modified molecules, a simple approach for calculating the property of interest, and a mathematical formulation of the quantity whose value shall be optimized. In order to illustrate the performance of our approach, we study the properties of organic molecules related to those used in dye-sensitized solar cells, whereby we, for the sake of proof of principle, consider benzene as a simple test system. Using a genetic algorithm, the substituents attached to the organic backbone are varied and the best performing molecules are identified. We consider several properties to describe the performance of organic molecules, including the HOMO-LUMO gap, the sunlight absorption, the spatial distance of the orbitals, and the reorganisation energy. The results show that our method is able to identify a large number of good candidate structures within a short time. In some cases, chemical/physical intuition can be used to rationalize the substitution pattern of the best structures, although this is not always possible. The present investigations provide a solid foundation for dealing with more complex and technically relevant systems such as porphyrins. Furthermore, our "properties first, materials second" approach is not limited to solar-energy harvesting but can be applied to many other fields, as briefly is discussed in the paper.

  7. Computational prediction of new auxetic materials.

    PubMed

    Dagdelen, John; Montoya, Joseph; de Jong, Maarten; Persson, Kristin

    2017-08-22

    Auxetics comprise a rare family of materials that manifest negative Poisson's ratio, which causes an expansion instead of contraction under tension. Most known homogeneously auxetic materials are porous foams or artificial macrostructures and there are few examples of inorganic materials that exhibit this behavior as polycrystalline solids. It is now possible to accelerate the discovery of materials with target properties, such as auxetics, using high-throughput computations, open databases, and efficient search algorithms. Candidates exhibiting features correlating with auxetic behavior were chosen from the set of more than 67 000 materials in the Materials Project database. Poisson's ratios were derived from the calculated elastic tensor of each material in this reduced set of compounds. We report that this strategy results in the prediction of three previously unidentified homogeneously auxetic materials as well as a number of compounds with a near-zero homogeneous Poisson's ratio, which are here denoted "anepirretic materials".There are very few inorganic materials with auxetic homogenous Poisson's ratio in polycrystalline form. Here authors develop an approach to screening materials databases for target properties such as negative Poisson's ratio by using stability and structural motifs to predict new instances of homogenous auxetic behavior as well as a number of materials with near-zero Poisson's ratio.

  8. Mechanical properties of porous and cellular materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sieradzki, K.; Green, D.J.; Gibson, L.J.

    1991-01-01

    This symposium successfully brought scientists together from a wide variety of disciplines to focus on the mechanical behavior of porous and cellular solids composed of metals, ceramics, polymers, or biological materials. For cellular materials, papers ranged from processing techniques through microstructure-mechanical property relationships to design. In an overview talk, Mike Ashby (Cambridge Univ.) showed how porous cellular materials can be more efficient than dense materials in designs that require minimum weight. He indicated that many biological materials have been able to accomplish such efficiency but there exists an opportunity to design even more efficient, manmade materials controlling microstructures at differentmore » scale levels. In the area of processing, James Aubert (Sandia National Laboratories) discussed techiques for manipulating polymersolvent phase equilibria to control the microstructure of microcellular foams. Other papers on processing discussed the production of cellular ceramics by CVD, HIPing and sol- gel techniques. Papers on the mechanical behavior of cellular materials considered various ceramics microcellular polymers, conventional polymer foams and apples. There were also contributions that considered optimum design procedures for cellular materials. Steven Cowin (City Univ. of New York) discussed procedures to match the discrete microstructural aspects of cellular materials with the continuum mechanics approach to their elastic behavior.« less

  9. Emergent Properties and Toxicological Considerations for Nanohybrid Materials in Aquatic Systems

    PubMed Central

    Saleh, Navid B.; Afrooz, A. R. M. Nabiul; Bisesi, Joseph H.; Aich, Nirupam; Plazas-Tuttle, Jaime; Sabo-Attwood, Tara

    2014-01-01

    Conjugation of multiple nanomaterials has become the focus of recent materials development. This new material class is commonly known as nanohybrids or “horizon nanomaterials”. Conjugation of metal/metal oxides with carbonaceous nanomaterials and overcoating or doping of one metal with another have been pursued to enhance material performance and/or incorporate multifunctionality into nano-enabled devices and processes. Nanohybrids are already at use in commercialized energy, electronics and medical products, which warrant immediate attention for their safety evaluation. These conjugated ensembles likely present a new set of physicochemical properties that are unique to their individual component attributes, hence increasing uncertainty in their risk evaluation. Established toxicological testing strategies and enumerated underlying mechanisms will thus need to be re-evaluated for the assessment of these horizon materials. This review will present a critical discussion on the altered physicochemical properties of nanohybrids and analyze the validity of existing nanotoxicology data against these unique properties. The article will also propose strategies to evaluate the conjugate materials’ safety to help undertake future toxicological research on the nanohybrid material class. PMID:28344229

  10. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    ERIC Educational Resources Information Center

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2012-01-01

    Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…

  11. Detection and recognition of targets by using signal polarization properties

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Volodymyr I.; Peralta-Fabi, Ricardo; Popov, Anatoly V.; Babakov, Mikhail F.

    1999-08-01

    The quality of radar target recognition can be enhanced by exploiting its polarization signatures. A specialized X-band polarimetric radar was used for target recognition in experimental investigations. The following polarization characteristics connected to the object geometrical properties were investigated: the amplitudes of the polarization matrix elements; an anisotropy coefficient; depolarization coefficient; asymmetry coefficient; the energy of a backscattering signal; object shape factor. A large quantity of polarimetric radar data was measured and processed to form a database of different object and different weather conditions. The histograms of polarization signatures were approximated by a Nakagami distribution, then used for real- time target recognition. The Neyman-Pearson criterion was used for the target detection, and the criterion of the maximum of a posterior probability was used for recognition problem. Some results of experimental verification of pattern recognition and detection of objects with different electrophysical and geometrical characteristics urban in clutter are presented in this paper.

  12. Comparative study of mechanical properties of direct core build-up materials

    PubMed Central

    Kumar, Girish; Shivrayan, Amit

    2015-01-01

    Background and Objectives: The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. Materials and Methods: All the materials were manipulated according to the manufacturer's recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Results: Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Conclusions: Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success. PMID:25684905

  13. Flexural Behavior of HPFRCC Members with Inhomogeneous Material Properties.

    PubMed

    Shin, Kyung-Joon; Jang, Kyu-Hyeon; Choi, Young-Cheol; Lee, Seong-Cheol

    2015-04-21

    In this paper, the flexural behavior of High-performance Fiber-Reinforced Cementitious Composite (HPFRCC) has been investigated, especially focusing on the localization of cracks, which significantly governs the flexural behavior of HPFRCC members. From four points bending tests with HPFRCC members, it was observed that almost evenly distributed cracks formed gradually, followed by a localized crack that determined the failure of the members. In order to investigate the effect of a localized crack on the flexural behavior of HPFRCC members, an analytical procedure has been developed with the consideration of intrinsic inhomogeneous material properties of HPFRCC such as cracking and ultimate tensile strengths. From the comparison, while the predictions with homogeneous material properties overestimated flexural strength and ductility of HPFRCC members, it was found that the analysis results considering localization effect with inhomogeneous material properties showed good agreement with the test results, not only the flexural strength and ductility but also the crack widths. The test results and the developed analysis procedure presented in this paper can be usefully applied for the prediction of flexural behaviors of HPFRCC members by considering the effect of localized cracking behavior.

  14. Effect of Target Density on Microstructural, Electrical, and Optical Properties of Indium Tin Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Zhu, Guisheng; Zhi, Li; Yang, Huijuan; Xu, Huarui; Yu, Aibing

    2012-09-01

    In this paper, indium tin oxide (ITO) targets with different densities were used to deposit ITO thin films. The thin films were deposited from these targets at room temperature and annealed at 750°C. Microstructural, electrical, and optical properties of the as-prepared films were studied. It was found that the target density had no effect on the properties or deposition rate of radiofrequency (RF)-sputtered ITO thin films, different from the findings for direct current (DC)-sputtered films. Therefore, when using RF sputtering, the target does not require a high density and may be reused.

  15. Temperature dependence of nonlinear optical properties in Li doped nano-carbon bowl material

    NASA Astrophysics Data System (ADS)

    Li, Wei-qi; Zhou, Xin; Chang, Ying; Quan Tian, Wei; Sun, Xiu-Dong

    2013-04-01

    The mechanism for change of nonlinear optical (NLO) properties with temperature is proposed for a nonlinear optical material, Li doped curved nano-carbon bowl. Four stable conformations of Li doped corannulene were located and their electronic properties were investigated in detail. The NLO response of those Li doped conformations varies with relative position of doping agent on the curved carbon surface of corannulene. Conversion among those Li doped conformations, which could be controlled by temperature, changes the NLO response of bulk material. Thus, conformation change of alkali metal doped carbon nano-material with temperature rationalizes the variation of NLO properties of those materials.

  16. Characterization of Viscoelastic Properties of Polymeric Materials Through Nanoindentation

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Bandorawalla, T.; Herring, H. M.; Gates, T. S.

    2003-01-01

    Nanoindentation is used to determine the dynamic viscoelastic properties of six polymer materials. It is shown that varying the harmonic frequency of the nanoindentation does not have any significant effect on the measured storage and loss moduli of the polymers. Agreement is found between these results and data from DMA testing of the same materials. Varying the harmonic amplitude of the nanoindentation does not have a significant effect on the measured properties of the high performance resins, however, the storage modulus of the polyethylene decreases as the harmonic amplitude increases. Measured storage and loss moduli are also shown to depend on the density of the polyethylene.

  17. On Structure and Properties of Amorphous Materials

    PubMed Central

    Stachurski, Zbigniew H.

    2011-01-01

    Mechanical, optical, magnetic and electronic properties of amorphous materials hold great promise towards current and emergent technologies. We distinguish at least four categories of amorphous (glassy) materials: (i) metallic; (ii) thin films; (iii) organic and inorganic thermoplastics; and (iv) amorphous permanent networks. Some fundamental questions about the atomic arrangements remain unresolved. This paper focuses on the models of atomic arrangements in amorphous materials. The earliest ideas of Bernal on the structure of liquids were followed by experiments and computer models for the packing of spheres. Modern approach is to carry out computer simulations with prediction that can be tested by experiments. A geometrical concept of an ideal amorphous solid is presented as a novel contribution to the understanding of atomic arrangements in amorphous solids. PMID:28824158

  18. Fabrication of nanoscale to macroscale nickel-multiwall carbon nanotube hybrid materials with tunable material properties

    NASA Astrophysics Data System (ADS)

    Abdalla, Ahmed M.; Majdi, Tahereh; Ghosh, Suvojit; Puri, Ishwar K.

    2016-12-01

    To utilize their superior properties, multiwall carbon nanotubes (MWNTs) must be manipulated and aligned end-to-end. We describe a nondestructive method to magnetize MWNTs and provide a means to remotely manipulate them through the electroless deposition of magnetic nickel nanoparticles on their surfaces. The noncovalent bonds between Ni nanoparticles and MWNTs produce a Ni-MWNT hybrid material (NiCH) that is electrically conductive and has an enhanced magnetic susceptibility and elastic modulus. Our experiments show that MWNTs can be plated with Ni for Ni:MWNT weight ratios of γ = 1, 7, 14 and 30, to control the material properties. The phase, atom-level, and morphological information from x-ray diffraction, energy dispersive x-ray spectroscopy, scanning electron microscopy, transmission electron microscopy, dark field STEM, and atomic force microscopy clarify the plating process and reveal the mechanical properties of the synthesized material. Ni metalizes at the surface of the Pd catalyst, forming a continuous wavy layer that encapsulates the MWNT surfaces. Subsequently, Ni acts as an autocatalyst, allowing the plating to continue even after the original Pd catalyst has been completely covered. Raising γ increases the coating layer thickness from 10 to 150 nm, which influences the NiCH magnetic properties and tunes its elastic modulus from 12.5 to 58.7 GPa. The NiCH was used to fabricate Ni-MWNT macrostructures and tune their morphologies by changing the direction of an applied magnetic field. Leveraging the hydrophilic Ni-MWNT outer surface, a water-based conductive ink was created and used to print a conductive path that had an electrical resistivity of 5.9 Ω m, illustrating the potential of this material for printing electronic circuits.

  19. Macro-architectured cellular materials: Properties, characteristic modes, and prediction methods

    NASA Astrophysics Data System (ADS)

    Ma, Zheng-Dong

    2017-12-01

    Macro-architectured cellular (MAC) material is defined as a class of engineered materials having configurable cells of relatively large (i.e., visible) size that can be architecturally designed to achieve various desired material properties. Two types of novel MAC materials, negative Poisson's ratio material and biomimetic tendon reinforced material, were introduced in this study. To estimate the effective material properties for structural analyses and to optimally design such materials, a set of suitable homogenization methods was developed that provided an effective means for the multiscale modeling of MAC materials. First, a strain-based homogenization method was developed using an approach that separated the strain field into a homogenized strain field and a strain variation field in the local cellular domain superposed on the homogenized strain field. The principle of virtual displacements for the relationship between the strain variation field and the homogenized strain field was then used to condense the strain variation field onto the homogenized strain field. The new method was then extended to a stress-based homogenization process based on the principle of virtual forces and further applied to address the discrete systems represented by the beam or frame structures of the aforementioned MAC materials. The characteristic modes and the stress recovery process used to predict the stress distribution inside the cellular domain and thus determine the material strengths and failures at the local level are also discussed.

  20. Design, crystal growth, and physical properties of low-temperature thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Fuccillo, Michael K.

    Thermoelectric materials serve as the foundation for two important modern technologies, namely 1) solid-state cooling, which enables small-area refrigeration without vibrations or moving parts, and 2) thermoelectric power generation, which has important implications for waste heat recovery and improved sources of alternative energy. Although the overall field of thermoelectrics research has been active for decades, and several consumer and industrial products have already been commercialized, the design and synthesis of new thermoelectrics that outperform long-standing state of the art materials has proven extremely challenging. This is particularly true for low-temperature refrigeration applications, which is the focus of this work; however, scientific advances in this area generally support power generation as well. In order to achieve more efficient materials for virtually all thermoelectric applications, improved materials design principles must be developed and synthetic procedures must be better understood. We aim to contribute to these goals by studying two classes of materials, namely 1) the tetradymites Bi2TeSe 2 and Bi2Te2Se, which are close relatives of state of the art thermoelectric cooling materials, and 2) Kondo insulating (-like) FeSb2 and FeSi, which possess anomalously enhanced low-temperature thermoelectric properties that arise from exotic electronic and magnetic properties. The organization of this dissertation is as follows: Chapter 1 is a brief perspective on solid-state chemistry. Chapter 2 presents experimental methods for synthesizing and characterizing thermoelectric materials. In Chapter 3, two original research projects are discussed: first, work on the tetradymite Bi2TeSe2 doped with Sb to achieve an n- to p-type transition, and second, the tetradymite Bi2Te2Se with chemical defects through two different methods. Chapter 4 gives the magnetic and transport properties of FeSb 2--RuSb2 alloys, a family of compounds exemplifying what we

  1. Tendon material properties vary and are interdependent among turkey hindlimb muscles.

    PubMed

    Matson, Andrew; Konow, Nicolai; Miller, Samuel; Konow, Pernille P; Roberts, Thomas J

    2012-10-15

    The material properties of a tendon affect its ability to store and return elastic energy, resist damage, provide mechanical feedback and amplify or attenuate muscle power. While the structural properties of a tendon are known to respond to a variety of stimuli, the extent to which material properties vary among individual muscles remains unclear. We studied the tendons of six different muscles in the hindlimb of Eastern wild turkeys to determine whether there was variation in elastic modulus, ultimate tensile strength and resilience. A hydraulic testing machine was used to measure tendon force during quasi-static lengthening, and a stress-strain curve was constructed. There was substantial variation in tendon material properties among different muscles. Average elastic modulus differed significantly between some tendons, and values for the six different tendons varied nearly twofold, from 829±140 to 1479±106 MPa. Tendons were stretched to failure, and the stress at failure, or ultimate tensile stress, was taken as a lower-limit estimate of tendon strength. Breaking tests for four of the tendons revealed significant variation in ultimate tensile stress, ranging from 66.83±14.34 to 112.37±9.39 MPa. Resilience, or the fraction of energy returned in cyclic length changes was generally high, and one of the four tendons tested was significantly different in resilience from the other tendons (range: 90.65±0.83 to 94.02±0.71%). An analysis of correlation between material properties revealed a positive relationship between ultimate tensile strength and elastic modulus (r(2)=0.79). Specifically, stiffer tendons were stronger, and we suggest that this correlation results from a constrained value of breaking strain, which did not vary significantly among tendons. This finding suggests an interdependence of material properties that may have a structural basis and may explain some adaptive responses observed in studies of tendon plasticity.

  2. Means for ultrasonic testing when material properties vary

    DOEpatents

    Beller, Laurence S.

    1979-01-01

    A device is provided for maintaining constant sensitivity in an ultrasonic testing device, despite varying attenuation due to the properties of the material being tested. The device includes a sensor transducer for transmitting and receiving a test signal and a monitor transducer positioned so as to receive ultrasonic energy transmitted through the material to be tested. The received signal of the monitor transducer is utilized in analyzing data obtained from the sensor transducer.

  3. Mechanical properties of direct core build-up materials.

    PubMed

    Combe, E C; Shaglouf, A M; Watts, D C; Wilson, N H

    1999-05-01

    This work was undertaken to measure mechanical properties of a diverse group of materials used for direct core build-ups, including a high copper amalgam, a silver cermet cement, a VLC resin composite and two composites specifically developed for this application. Compressive strength, elastic modulus, diametral tensile strength and flexural strength and modulus were measured for each material as a function of time up to 3 months, using standard specification tests designed for the materials. All the materials were found to meet the minimum specification requirements except in terms of flexural strength for the amalgam after 1 h and the silver cermet at all time intervals. There proved to be no obvious superior material in all respects for core build-ups, and the need exists for a specification to be established specifically for this application.

  4. Crash Padding Research : Vol. I. Material Mechanical Properties.

    DOT National Transportation Integrated Search

    1986-08-01

    The dynamic mechanical properties of Uniroyal Ensolite AAC, a viscoelastic closed-cell foam rubber, are investigated by means of materials tests. Sufficient test data is presented to form a basis for one-dimensional (uniform compression) empirical co...

  5. Shaped Charge Liner Materials: Resources, Processes, Properties, Costs, and Applications

    DTIC Science & Technology

    1991-02-01

    SUBTITLE 5. FUNDING NUMBERS Shaped Charge Liner Materials: Resources, Processes, Properties, Costs, and Applications 2 6. AUTHOC Steven M. Buc 7...summaries of the mineral availability, Cq prmarymetal refinement processeb, material costs in raw form and as finished shaped charge liners , relevant... liner materials. 94-11479 gI 14, SUBJECT TERMS iSt NUMBER OF PAGIS 13chrg wrhad :xplosively formed penetrators material R. PRCE COEV" processing

  6. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties.

    PubMed

    Bootsma, Katherine; Fitzgerald, Martha M; Free, Brandon; Dimbath, Elizabeth; Conjerti, Joe; Reese, Greg; Konkolewicz, Dominik; Berberich, Jason A; Sparks, Jessica L

    2017-06-01

    Interpenetrating network (IPN) hydrogel materials are recognized for their unique mechanical properties. While IPN elasticity and toughness properties have been explored in previous studies, the factors that impact the time-dependent stress relaxation behavior of IPN materials are not well understood. Time-dependent (i.e. viscoelastic) mechanical behavior is a critical design parameter in the development of materials for a variety of applications, such as medical simulation devices, flexible substrate materials, cellular mechanobiology substrates, or regenerative medicine applications. This study reports a novel technique for 3D printing alginate-polyacrylamide IPN gels with tunable elastic and viscoelastic properties. The viscoelastic stress relaxation behavior of the 3D printed alginate-polyacrylamide IPN hydrogels was influenced most strongly by varying the concentration of the acrylamide cross-linker (MBAA), while the elastic modulus was affected most by varying the concentration of total monomer material. The material properties of our 3D printed IPN constructs were consistent with those reported in the biomechanics literature for soft tissues such as skeletal muscle, cardiac muscle, skin and subcutaneous tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Image Statistics and the Representation of Material Properties in the Visual Cortex.

    PubMed

    Baumgartner, Elisabeth; Gegenfurtner, Karl R

    2016-01-01

    We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images.

  8. Properties of Two Carbon Composite Materials Using LTM25 Epoxy Resin

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Shah, C. H.; Postyn, A. S.

    1996-01-01

    In this report, the properties of two carbon-epoxy prepreg materials are presented. The epoxy resin used in these two materials can yield lower manufacturing costs due to its low initial cure temperature, and the capability of being cured using vacuum pressure only. The two materials selected for this study are MR50/LTM25, and CFS003/LTM25 with Amoco T300 fiber; both prepregs are manufactured by The Advanced Composites Group. MR50/LTM25 is a unidirectional prepreg tape using Mitsubishi MR50 carbon fiber impregnated with LTM25 epoxy resin. CRS003/LTM25 is a 2 by 2 twill fabric using Amoco T300 fiber and impregnated with LTM25 epoxy resin. Among the properties presented in this report are strength, stiffness, bolt bearing, and damage tolerance. Many of these properties were obtained at three environmental conditions: cold temperature/dry (CTD), room temperature/dry (RTD), and elevated temperature/wet (ETW). A few properties were obtained at room temperature/wet (RTW), and elevated temperature/dry (ETD). The cold and elevated temperatures used for testing were -125 F and 180 F, respectively. In addition, several properties related to processing are presented.

  9. Bulk and Thin film Properties of Nanoparticle-based Ionic Materials

    NASA Astrophysics Data System (ADS)

    Fang, Jason

    2008-03-01

    Nanoparticle-based ionic materials (NIMS) offer exciting opportunities for research at the forefront of science and engineering. NIMS are hybrid particles comprised of a charged oligomeric corona attached to hard, inorganic nanoparticle cores. Because of their hybrid nature, physical properties --rheological, optical, electrical, thermal - of NIMS can be tailored over an unusually wide range by varying geometric and chemical characteristics of the core and canopy and thermodynamic variables such as temperature and volume fraction. On one end of the spectrum are materials with a high core content, which display properties similar to crystalline solids, stiff waxes, and gels. At the opposite extreme are systems that spontaneously form particle-based fluids characterized by transport properties remarkably similar to simple liquids. In this poster I will present our efforts to synthesize NIMS and discuss their bulk and surface properties. In particular I will discuss our work on preparing smart surfaces using NIMS.

  10. Deciphering chemical order/disorder and material properties at the single-atom level.

    PubMed

    Yang, Yongsoo; Chen, Chien-Chun; Scott, M C; Ophus, Colin; Xu, Rui; Pryor, Alan; Wu, Li; Sun, Fan; Theis, Wolfgang; Zhou, Jihan; Eisenbach, Markus; Kent, Paul R C; Sabirianov, Renat F; Zeng, Hao; Ercius, Peter; Miao, Jianwei

    2017-02-01

    Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level.

  11. Deciphering chemical order/disorder and material properties at the single-atom level

    DOE PAGES

    Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.; ...

    2017-02-01

    Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less

  12. Material Property Characterization of AS4/VRM-34 Textile Laminates

    NASA Technical Reports Server (NTRS)

    Grenoble, Ray W.; Johnston, William M

    2013-01-01

    Several material properties (modulus, strengths, and fracture toughness) of a textile composite have been evaluated to provide input data to analytical models of Pultruded Rod Stiffened Efficient Unitized Structure (PRSEUS). The material system is based on warp-knitted preforms of AS4 carbon fibers and VRM-34 epoxy resin, which have been processed via resin infusion and oven curing. Tensile, compressive, shear, and fracture toughness properties have been measured at ambient and elevated temperatures. All specimens were tested in as-fabricated (dry) condition. Specimens were tested with and without through-thickness stitching.

  13. Spallation Neutron Source Materials Studies

    NASA Astrophysics Data System (ADS)

    Sommer, W. F.

    1998-04-01

    Operation of accelerator facilities such as Los Alamos Neutron Science Center (LANSCE), ISIS at Rutherford Appleton Laboratory, the Swiss Institute Neutron Source (SINQ) at Paul Scherrer Institute, and others has provided valuable information on materials performance in high energy particle beams and high energy neutron environments. The Accelerator Production of Tritium (APT) project is sponsoring an extensive series of tests on the effect of spallation neutron source environments to physical and mechanical properties of candidate materials such as nickel-based alloys, stainless steel alloys, aluminum alloys and solid target materials such as tungsten. Measurements of corrosion rates of these candidate materials during irradiation and while in contact with flowing coolant water are being made. The APT tests use the irradiation facility in the beam stop area of the LANSCE accelerator using 800 MeV protons as well as the neutron flux-spectrum generated as these protons interact with targets. The initial irradiations were completed in summer 1997, exposing materials to a fluence approaching 4-6 x 10^21 protons/cm^2. Sample retrieval is now underway. Mechanical properties measurements are being conducted at several laboratories. Studies on components used in service have also been initiated.

  14. Statistical distribution of mechanical properties for three graphite-epoxy material systems

    NASA Technical Reports Server (NTRS)

    Reese, C.; Sorem, J., Jr.

    1981-01-01

    Graphite-epoxy composites are playing an increasing role as viable alternative materials in structural applications necessitating thorough investigation into the predictability and reproducibility of their material strength properties. This investigation was concerned with tension, compression, and short beam shear coupon testing of large samples from three different material suppliers to determine their statistical strength behavior. Statistical results indicate that a two Parameter Weibull distribution model provides better overall characterization of material behavior for the graphite-epoxy systems tested than does the standard Normal distribution model that is employed for most design work. While either a Weibull or Normal distribution model provides adequate predictions for average strength values, the Weibull model provides better characterization in the lower tail region where the predictions are of maximum design interest. The two sets of the same material were found to have essentially the same material properties, and indicate that repeatability can be achieved.

  15. On the thermoelastic analysis of solar cell arrays and related material properties

    NASA Technical Reports Server (NTRS)

    Salama, M. A.; Bouquet, F. L.

    1976-01-01

    Accurate prediction of failure of solar cell arrays requires accuracy in the computation of thermally induced stresses. This was accomplished by using the finite element technique. Improved procedures for stress calculation were introduced together with failure criteria capable of describing a wide range of ductile and brittle material behavior. The stress distribution and associated failure mechanisms in the N-interconnect junction of two solar cell designs were then studied. In such stress and failure analysis, it is essential to know the thermomechanical properties of the materials involved. Measurements were made of properties of materials suitable for the design of lightweight arrays: microsheet-0211 glass material for the solar cell filter, and Kapton-H, Kapton F, Teflon, Tedlar, and Mica Ply PG-402 for lightweight substrates. The temperature-dependence of the thermal coefficient of expansion for these materials was determined together with other properties such as the elastic moduli, Poisson's ratio, and the stress-strain behavior up to failure.

  16. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation.

    PubMed

    Song, F; Koo, H; Ren, D

    2015-08-01

    Adhesion of microbes, such as bacteria and fungi, to surfaces and the subsequent formation of biofilms cause multidrug-tolerant infections in humans and fouling of medical devices. To address these challenges, it is important to understand how material properties affect microbe-surface interactions and engineer better nonfouling materials. Here we review the recent progresses in this field and discuss the main challenges and opportunities. In particular, we focus on bacterial biofilms and review the effects of surface energy, charge, topography, and stiffness of substratum material on bacterial adhesion. We summarize how these surface properties influence oral biofilm formation, and we discuss the important findings from nondental systems that have potential applications in dental medicine. © International & American Associations for Dental Research 2015.

  17. Thermoelastic analysis of solar cell arrays and their material properties

    NASA Technical Reports Server (NTRS)

    Salama, M. A.; Rowe, W. M.; Yasui, R. K.

    1973-01-01

    A thermoelastic stress analysis procedure is reported for predicting the thermally induced stresses and failures in silicon solar cell arrays. A prerequisite for the analysis is the characterization of the temperature-dependent thermal and mechanical properties of the solar cell materials. Extensive material property testing was carried out in the temperature range -200 to +200 C for the filter glass, P- and N-type silicon, interconnector metals, solder, and several candidate silicone rubber adhesives. The analysis procedure is applied to several solar cell array design configurations. Results of the analysis indicate the optimum design configuration, with respect to compatible materials, effect of the solder coating, and effect of the interconnector geometry. Good agreement was found between results of the analysis and the test program.

  18. Applicable research in practice: understanding the hydrophilic and flow property measurements of impression materials.

    PubMed

    Perry, Ronald D; Goldberg, Jeffrey A; Benchimol, Jacques; Orfanidis, John

    2006-10-01

    The flow properties and hydrophilicity of an impression material are key factors that affect its performance. This article details in vitro studies comparing these properties in 1 polyether and several vinyl polysiloxane light-body impression materials. The first series of studies examined the materials' flow properties used in a "shark fin" measurement procedure to determine which exhibited superior flow characteristics. The second series of studies reviewed the hydrophilic properties of the materials. Video analysis was used to record contact angle measurements at the early- and late-stage working times. Results showed 1 polyether material to be more hydrophilic. Applying this knowledge to practice, the authors present a clinical case in which a polyether's superior flow and quality of detail were used to make impressions for a patient receiving 8 single-unit zirconia crowns.

  19. Antimicrobial properties of conventional restorative filling materials and advances in antimicrobial properties of composite resins and glass ionomer cements-A literature review.

    PubMed

    Farrugia, Cher; Camilleri, Josette

    2015-04-01

    It has been reported that complete caries removal from cavities during restoration of teeth is difficult. Furthermore with the tissue saving approach it is expected that more of the saved affected tissue will possibly harbor more residual bacteria. Antimicrobial restorative filling materials would be ideal to prevent the spread of caries after completion of tooth restoration, thus preventing recurrent decay and eventually restoration failure. This paper reviews the literature on the antimicrobial properties of dental restorative filling materials. Pubmed searches on the antibacterial properties of restorative materials were carried out. Keywords were chosen to assess antibacterial properties of conventional filling materials. Methods of introducing antimicrobial agents in restorative materials were also reviewed together with the methodology used to assess antimicrobial activity. 174 articles from 1983 till 2014 were included. Adhesive materials have decreased antimicrobial activity when compared to amalgams and zinc oxides. Several techniques have been employed in order to increase the antimicrobial activity of restorative materials. Although antimicrobial activity of restorative materials is important, the introduction of antimicrobial agents/techniques should not be at the expense of other material properties. Environmental changes within a material may affect the bacterial response to the antimicrobial. Bacterial adhesion to the restorative materials should be assessed. Long term assessment of antimicrobial activity is important and is clinically relevant. The use of antimicrobial dental materials is important unless such characteristics are gained to the detriment of other material properties. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Study made of dielectric properties of promising materials for cryogenic capacitors

    NASA Technical Reports Server (NTRS)

    Mathes, K. N.; Minnich, S. H.

    1967-01-01

    Experimental investigations were conducted to determine dielectric properties of promising materials for cryogenic capacitors to be used in energy storage and pulse applications. The three classes of materials investigated were inorganic bonded ferroelectric materials, anodic coatings on metal foils, and polar low temperature liquids.

  1. Material variability and repetitive member allowable property adjustments in forest products engineering

    Treesearch

    Steve Verrill; David Kretschmann

    2008-01-01

    It has been argued that repetitive member allowable property adjustments should be larger for high-variability material than for low-variability material. We report analytic calculations and simulations that suggest that the order of such adjustments should be reversed. That is, given the manner in which allowable properties are currently calculated, as the coefficient...

  2. Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-03-01

    This is a reference guide to common methodologies and protocols for measuring critical performance properties of advanced hydrogen storage materials. It helps users to communicate clearly the relevant performance properties of new materials as they are discovered and tested.

  3. Moisture effect on mechanical properties of polymeric composite materials

    NASA Astrophysics Data System (ADS)

    Airale, A. G.; Carello, M.; Ferraris, A.; Sisca, L.

    2016-05-01

    The influence of moisture on the mechanical properties of fibre-reinforced polymer matrix composites (PMCs) was investigated. Four materials had been take into account considering: both 2×2-Twill woven carbon fibre or glass fibre, thermosetting matrix (Epoxy Resin) or thermoplastic matrix (Polyphenylene Sulfide). The specimens were submitted for 1800 hours to a hygrothermic test to evaluate moisture absorption on the basis of the Fick's law and finally tested to verify the mechanical properties (ultimate tensile strength). The results showed that the absorbed moisture decreases those properties of composites which were dominated by the matrix or the interface, while was not detectable the influence of water on the considered fibre. An important result is that the diffusion coefficient is highest for glass/PPS and lowest for carbon/epoxy composite material. The results give useful suggestions for the design of vehicle components that are exposed to environmental conditions (rain, snow and humidity).

  4. Experimental evaluation of the thermal properties of two tissue equivalent phantom materials.

    PubMed

    Craciunescu, O I; Howle, L E; Clegg, S T

    1999-01-01

    Tissue equivalent radio frequency (RF) phantoms provide a means for measuring the power deposition of various hyperthermia therapy applicators. Temperature measurements made in phantoms are used to verify the accuracy of various numerical approaches for computing the power and/or temperature distributions. For the numerical simulations to be accurate, the electrical and thermal properties of the materials that form the phantom should be accurately characterized. This paper reports on the experimentally measured thermal properties of two commonly used phantom materials, i.e. a rigid material with the electrical properties of human fat, and a low concentration polymer gel with the electrical properties of human muscle. Particularities of the two samples required the design of alternative measuring techniques for the specific heat and thermal conductivity. For the specific heat, a calorimeter method is used. For the thermal diffusivity, a method derived from the standard guarded comparative-longitudinal heat flow technique was used for both materials. For the 'muscle'-like material, the thermal conductivity, density and specific heat at constant pressure were measured as: k = 0.31 +/- 0.001 W(mK)(-1), p = 1026 +/- 7 kgm(-3), and c(p) = 4584 +/- 107 J(kgK)(-1). For the 'fat'-like material, the literature reports on the density and specific heat such that only the thermal conductivity was measured as k = 0.55 W(mK)(-1).

  5. Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts

    NASA Astrophysics Data System (ADS)

    van der Bogert, C. H.; Hiesinger, H.; Dundas, C. M.; Krüger, T.; McEwen, A. S.; Zanetti, M.; Robinson, M. S.

    2017-12-01

    Recent work on dating Copernican-aged craters, using Lunar Reconnaissance Orbiter (LRO) Camera data, re-encountered a curious discrepancy in crater size-frequency distribution (CSFD) measurements that was observed, but not understood, during the Apollo era. For example, at Tycho, Copernicus, and Aristarchus craters, CSFDs of impact melt deposits give significantly younger relative and absolute model ages (AMAs) than impact ejecta blankets, although these two units formed during one impact event, and would ideally yield coeval ages at the resolution of the CSFD technique. We investigated the effects of contrasting target properties on CSFDs and their resultant relative and absolute model ages for coeval lunar impact melt and ejecta units. We counted craters with diameters through the transition from strength- to gravity-scaling on two large impact melt deposits at Tycho and King craters, and we used pi-group scaling calculations to model the effects of differing target properties on final crater diameters for five different theoretical lunar targets. The new CSFD for the large King Crater melt pond bridges the gap between the discrepant CSFDs within a single geologic unit. Thus, the observed trends in the impact melt CSFDs support the occurrence of target property effects, rather than self-secondary and/or field secondary contamination. The CSFDs generated from the pi-group scaling calculations show that targets with higher density and effective strength yield smaller crater diameters than weaker targets, such that the relative ages of the former are lower relative to the latter. Consequently, coeval impact melt and ejecta units will have discrepant apparent ages. Target property differences also affect the resulting slope of the CSFD, with stronger targets exhibiting shallower slopes, so that the final crater diameters may differ more greatly at smaller diameters. Besides their application to age dating, the CSFDs may provide additional information about the

  6. Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts

    USGS Publications Warehouse

    Van der Bogert, Carolyn H.; Hiesinger, Harald; Dundas, Colin M.; Kruger, T.; McEwen, Alfred S.; Zanetti, Michael; Robinson, Mark S.

    2017-01-01

    Recent work on dating Copernican-aged craters, using Lunar Reconnaissance Orbiter (LRO) Camera data, re-encountered a curious discrepancy in crater size-frequency distribution (CSFD) measurements that was observed, but not understood, during the Apollo era. For example, at Tycho, Copernicus, and Aristarchus craters, CSFDs of impact melt deposits give significantly younger relative and absolute model ages (AMAs) than impact ejecta blankets, although these two units formed during one impact event, and would ideally yield coeval ages at the resolution of the CSFD technique. We investigated the effects of contrasting target properties on CSFDs and their resultant relative and absolute model ages for coeval lunar impact melt and ejecta units. We counted craters with diameters through the transition from strength- to gravity-scaling on two large impact melt deposits at Tycho and King craters, and we used pi-group scaling calculations to model the effects of differing target properties on final crater diameters for five different theoretical lunar targets. The new CSFD for the large King Crater melt pond bridges the gap between the discrepant CSFDs within a single geologic unit. Thus, the observed trends in the impact melt CSFDs support the occurrence of target property effects, rather than self-secondary and/or field secondary contamination. The CSFDs generated from the pi-group scaling calculations show that targets with higher density and effective strength yield smaller crater diameters than weaker targets, such that the relative ages of the former are lower relative to the latter. Consequently, coeval impact melt and ejecta units will have discrepant apparent ages. Target property differences also affect the resulting slope of the CSFD, with stronger targets exhibiting shallower slopes, so that the final crater diameters may differ more greatly at smaller diameters. Besides their application to age dating, the CSFDs may provide additional information about the

  7. Preparation and properties on hollow nano-structured smoke material

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-cui; Dai, Meng-yan; Fang, Guo-feng; Shi, Wei-dong; Cheng, Xiang; Liu, Hai-feng; Zhang, Tong

    2013-09-01

    In recent years, the weapon systems of laser guidance and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. Notwithstanding, military smoke, as a rapid and effective passive jamming means, can effectively counteract the attack of enemy precision-guided weapons by scattering and absorbability. Conventional smoke has good attenuation capability only to visible light (0.4-0.76 μm), but hardly any effect to other electromagnetic wave band. The weapon systems of laser guidance and IR imaging guidance usually work in broad band, including near IR (1-3 μm), middle IR (3-5 μm), far IR (8-14 μm), and so on. Accordingly, exploiting and using new efficient obscurant materials, which is one of the important factors that develop smoke technology, have become a focus and attracted more interests around the world. Then nano-structured materials that are developing very quickly have turned into our new choice. Hollow nano-structured materials (HNSM) have many special properties because of their nano-size wall-thickness and sub-micron grain-size. After a lot of HNSM were synthesized in this paper, their physical and chemical properties, including grain size, phase composition, microstructure, optical properties and resistivity were tested and analysed. Then the experimental results of the optical properties showed that HNSM exhibit excellent wave-absorbing ability in ultraviolet, visible and infrared regions. On the basis of the physicochemmical properties, HNSM are firstly applied in smoke technology field. And the obscuration performance of HNSM smoke was tested in smoke chamber. The testing waveband included 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. Then the main parameters were obtained, including the attenuation rate, the transmission rate, the mass extinction coefficient, the efficiency obscuring time, and the sedimentation rate, etc. The main parameters of HNSM smoke were

  8. Biomimetic and bioinspired nanoparticles for targeted drug delivery.

    PubMed

    Gagliardi, Mariacristina

    2017-03-01

    In drug targeting, the urgent need for more effective and less iatrogenic therapies is pushing toward a complete revision of carrier setup. After the era of 'articles used as homing systems', novel prototypes are now emerging. Newly conceived carriers are endowed with better biocompatibility, biodistribution and targeting properties. The biomimetic approach bestows such improved functional properties. Exploiting biological molecules, organisms and cells, or taking inspiration from them, drug vector performances are now rapidly progressing toward the perfect carrier. Following this direction, researchers have refined carrier properties, achieving significant results. The present review summarizes recent advances in biomimetic and bioinspired drug vectors, derived from biologicals or obtained by processing synthetic materials with a biomimetic approach.

  9. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas

    PubMed Central

    Dorronsoro, Carlos; de la Hoz, Andrés; Marcos, Susana

    2016-01-01

    Objective To validate a new method for reconstructing corneal biomechanical properties from air puff corneal deformation images using hydrogel polymer model corneas and porcine corneas. Methods Air puff deformation imaging was performed on model eyes with artificial corneas made out of three different hydrogel materials with three different thicknesses and on porcine eyes, at constant intraocular pressure of 15 mmHg. The cornea air puff deformation was modeled using finite elements, and hyperelastic material parameters were determined through inverse modeling, minimizing the difference between the simulated and the measured central deformation amplitude and central-peripheral deformation ratio parameters. Uniaxial tensile tests were performed on the model cornea materials as well as on corneal strips, and the results were compared to stress-strain simulations assuming the reconstructed material parameters. Results The measured and simulated spatial and temporal profiles of the air puff deformation tests were in good agreement (< 7% average discrepancy). The simulated stress-strain curves of the studied hydrogel corneal materials fitted well the experimental stress-strain curves from uniaxial extensiometry, particularly in the 0–0.4 range. Equivalent Young´s moduli of the reconstructed material properties from air-puff were 0.31, 0.58 and 0.48 MPa for the three polymer materials respectively which differed < 1% from those obtained from extensiometry. The simulations of the same material but different thickness resulted in similar reconstructed material properties. The air-puff reconstructed average equivalent Young´s modulus of the porcine corneas was 1.3 MPa, within 18% of that obtained from extensiometry. Conclusions Air puff corneal deformation imaging with inverse finite element modeling can retrieve material properties of model hydrogel polymer corneas and real corneas, which are in good correspondence with those obtained from uniaxial extensiometry

  10. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas.

    PubMed

    Bekesi, Nandor; Dorronsoro, Carlos; de la Hoz, Andrés; Marcos, Susana

    2016-01-01

    To validate a new method for reconstructing corneal biomechanical properties from air puff corneal deformation images using hydrogel polymer model corneas and porcine corneas. Air puff deformation imaging was performed on model eyes with artificial corneas made out of three different hydrogel materials with three different thicknesses and on porcine eyes, at constant intraocular pressure of 15 mmHg. The cornea air puff deformation was modeled using finite elements, and hyperelastic material parameters were determined through inverse modeling, minimizing the difference between the simulated and the measured central deformation amplitude and central-peripheral deformation ratio parameters. Uniaxial tensile tests were performed on the model cornea materials as well as on corneal strips, and the results were compared to stress-strain simulations assuming the reconstructed material parameters. The measured and simulated spatial and temporal profiles of the air puff deformation tests were in good agreement (< 7% average discrepancy). The simulated stress-strain curves of the studied hydrogel corneal materials fitted well the experimental stress-strain curves from uniaxial extensiometry, particularly in the 0-0.4 range. Equivalent Young´s moduli of the reconstructed material properties from air-puff were 0.31, 0.58 and 0.48 MPa for the three polymer materials respectively which differed < 1% from those obtained from extensiometry. The simulations of the same material but different thickness resulted in similar reconstructed material properties. The air-puff reconstructed average equivalent Young´s modulus of the porcine corneas was 1.3 MPa, within 18% of that obtained from extensiometry. Air puff corneal deformation imaging with inverse finite element modeling can retrieve material properties of model hydrogel polymer corneas and real corneas, which are in good correspondence with those obtained from uniaxial extensiometry, suggesting that this is a promising technique

  11. Natural material-decorated mesoporous silica nanoparticle container for multifunctional membrane-controlled targeted drug delivery

    PubMed Central

    Hu, Yan; Ke, Lei; Chen, Hao; Zhuo, Ma; Yang, Xinzhou; Zhao, Dan; Zeng, Suying; Xiao, Xincai

    2017-01-01

    To avoid the side effects caused by nonspecific targeting, premature release, weak selectivity, and poor therapeutic efficacy of current nanoparticle-based systems used for drug delivery, we fabricated natural material-decorated nanoparticles as a multifunctional, membrane-controlled targeted drug delivery system. The nanocomposite material coated with a membrane was biocompatible and integrated both specific tumor targeting and responsiveness to stimulation, which improved transmission efficacy and controlled drug release. Mesoporous silica nanoparticles (MSNs), which are known for their biocompatibility and high drug-loading capacity, were selected as a model drug container and carrier. The membrane was established by the polyelectrolyte composite method from chitosan (CS) which was sensitive to the acidic tumor microenvironment, folic acid-modified CS which recognizes the folate receptor expressed on the tumor cell surface, and a CD44 receptor-targeted polysaccharide hyaluronic acid. We characterized the structure of the nanocomposite as well as the drug release behavior under the control of the pH-sensitive membrane switch and evaluated the antitumor efficacy of the system in vitro. Our results provide a basis for the design and fabrication of novel membrane-controlled nanoparticles with improved tumor-targeting therapy. PMID:29200852

  12. An analysis of health promotion materials for Dutch truck drivers: Off target and too complex?

    PubMed

    Boeijinga, Anniek; Hoeken, Hans; Sanders, José

    2017-01-01

    Despite various health promotion initiatives, unfavorable figures regarding Dutch truck drivers' eating behaviors, exercise behaviors, and absenteeism have not improved. The aim was to obtain a better understanding of the low level of effectiveness of current health interventions for Dutch truck drivers by examining to what extent these are tailored to the target group's particular mindset (focus of content) and health literacy skills (presentation of content). The article analyzes 21 health promotion materials for Dutch truck drivers using a two-step approach: (a) an analysis of the materials' focus, guided by the Health Action Process Approach; and (b) an argumentation analysis, guided by pragma-dialectics. The corpus analysis revealed: (a) a predominant focus on the motivation phase; and (b) in line with the aim of motivating the target group, a consistent use of pragmatic arguments, which were typically presented in an implicit way. The results indicate that existing health promotion materials for Dutch truck drivers are not sufficiently tailored to the target group's mindset and health literacy skills. Recommendations are offered to develop more tailored/effective health interventions targeting this high-risk, underserved occupational group.

  13. PROPERTIES OF 42 SOLAR-TYPE KEPLER TARGETS FROM THE ASTEROSEISMIC MODELING PORTAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalfe, T. S.; Mathur, S.; Creevey, O. L.

    2014-10-01

    Recently the number of main-sequence and subgiant stars exhibiting solar-like oscillations that are resolved into individual mode frequencies has increased dramatically. While only a few such data sets were available for detailed modeling just a decade ago, the Kepler mission has produced suitable observations for hundreds of new targets. This rapid expansion in observational capacity has been accompanied by a shift in analysis and modeling strategies to yield uniform sets of derived stellar properties more quickly and easily. We use previously published asteroseismic and spectroscopic data sets to provide a uniform analysis of 42 solar-type Kepler targets from the Asteroseismicmore » Modeling Portal. We find that fitting the individual frequencies typically doubles the precision of the asteroseismic radius, mass, and age compared to grid-based modeling of the global oscillation properties, and improves the precision of the radius and mass by about a factor of three over empirical scaling relations. We demonstrate the utility of the derived properties with several applications.« less

  14. Image Statistics and the Representation of Material Properties in the Visual Cortex

    PubMed Central

    Baumgartner, Elisabeth; Gegenfurtner, Karl R.

    2016-01-01

    We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images. PMID:27582714

  15. Multi-modality gellan gum-based tissue-mimicking phantom with targeted mechanical, electrical, and thermal properties.

    PubMed

    Chen, Roland K; Shih, A J

    2013-08-21

    This study develops a new class of gellan gum-based tissue-mimicking phantom material and a model to predict and control the elastic modulus, thermal conductivity, and electrical conductivity by adjusting the mass fractions of gellan gum, propylene glycol, and sodium chloride, respectively. One of the advantages of gellan gum is its gelling efficiency allowing highly regulable mechanical properties (elastic modulus, toughness, etc). An experiment was performed on 16 gellan gum-based tissue-mimicking phantoms and a regression model was fit to quantitatively predict three material properties (elastic modulus, thermal conductivity, and electrical conductivity) based on the phantom material's composition. Based on these material properties and the regression model developed, tissue-mimicking phantoms of porcine spinal cord and liver were formulated. These gellan gum tissue-mimicking phantoms have the mechanical, thermal, and electrical properties approximately equivalent to those of the spinal cord and the liver.

  16. Tendon material properties vary and are interdependent among turkey hindlimb muscles

    PubMed Central

    Matson, Andrew; Konow, Nicolai; Miller, Samuel; Konow, Pernille P.; Roberts, Thomas J.

    2012-01-01

    SUMMARY The material properties of a tendon affect its ability to store and return elastic energy, resist damage, provide mechanical feedback and amplify or attenuate muscle power. While the structural properties of a tendon are known to respond to a variety of stimuli, the extent to which material properties vary among individual muscles remains unclear. We studied the tendons of six different muscles in the hindlimb of Eastern wild turkeys to determine whether there was variation in elastic modulus, ultimate tensile strength and resilience. A hydraulic testing machine was used to measure tendon force during quasi-static lengthening, and a stress–strain curve was constructed. There was substantial variation in tendon material properties among different muscles. Average elastic modulus differed significantly between some tendons, and values for the six different tendons varied nearly twofold, from 829±140 to 1479±106 MPa. Tendons were stretched to failure, and the stress at failure, or ultimate tensile stress, was taken as a lower-limit estimate of tendon strength. Breaking tests for four of the tendons revealed significant variation in ultimate tensile stress, ranging from 66.83±14.34 to 112.37±9.39 MPa. Resilience, or the fraction of energy returned in cyclic length changes was generally high, and one of the four tendons tested was significantly different in resilience from the other tendons (range: 90.65±0.83 to 94.02±0.71%). An analysis of correlation between material properties revealed a positive relationship between ultimate tensile strength and elastic modulus (r2=0.79). Specifically, stiffer tendons were stronger, and we suggest that this correlation results from a constrained value of breaking strain, which did not vary significantly among tendons. This finding suggests an interdependence of material properties that may have a structural basis and may explain some adaptive responses observed in studies of tendon plasticity. PMID:22771746

  17. Measurements of the frame acoustic properties of porous and granular materials

    NASA Astrophysics Data System (ADS)

    Park, Junhong

    2005-12-01

    For porous and granular materials, the dynamic characteristics of the solid component (frame) are important design factors that significantly affect the material's acoustic properties. The primary goal of this study was to present an experimental method for measuring the vibration characteristics of this frame. The experimental setup was designed to induce controlled vibration of the solid component while minimizing the influence from coupling between vibrations of the fluid and the solid component. The Biot theory was used to verify this assumption, taking the two dilatational wave propagations and interactions into account. The experimental method was applied to measure the dynamic properties of glass spheres, lightweight microspheres, acoustic foams, and fiberglass. A continuous variation of the frame vibration characteristics with frequency similar to that of typical viscoelastic materials was measured. The vibration amplitude had minimal effects on the dynamic characteristics of the porous material compared to those of the granular material. For the granular material, materials comprised of larger particles and those under larger vibration amplitudes exhibited lower frame wave speeds and larger decay rates.

  18. Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability

    NASA Astrophysics Data System (ADS)

    French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.

    2010-10-01

    Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.

  19. Quantitative ultrasonic evaluation of mechanical properties of engineering materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Current progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength properties of engineering materials is reviewed. Even where conventional NDE techniques have shown that a part is free of overt defects, advanced NDE techniques should be available to confirm the material properties assumed in the part's design. There are many instances where metallic, composite, or ceramic parts may be free of critical defects while still being susceptible to failure under design loads due to inadequate or degraded mechanical strength. This must be considered in any failure prevention scheme that relies on fracture analysis. This review will discuss the availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions.

  20. Physical Properties of Synthetic Resin Materials

    NASA Technical Reports Server (NTRS)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  1. All-optical technique for measuring thermal properties of materials at static high pressure

    NASA Astrophysics Data System (ADS)

    Pangilinan, G. I.; Ladouceur, H. D.; Russell, T. P.

    2000-10-01

    The development and implementation of an all-optical technique for measuring thermal transport properties of materials at high pressure in a gem anvil cell are reported. Thermal transport properties are determined by propagating a thermal wave in a material subjected to high pressures, and measuring the temperature as a function of time using an optical sensor embedded downstream in the material. Optical beams are used to deposit energy and to measure the sensor temperature and replace the resistive heat source and the thermocouples of previous methods. This overcomes the problems introduced with pressure-induced resistance changes and the spatial limitations inherent in previous high-pressure experimentation. Consistent with the heat conduction equation, the material's specific heat, thermal conductivity, and thermal diffusivity (κ) determine the sensor's temperature rise and its temporal profile. The all-optical technique described focuses on room-temperature thermal properties but can easily be applied to a wide temperature range (77-600 K). Measurements of thermal transport properties at pressure up to 2.0 GPa are reported, although extension to much higher pressures are feasible. The thermal properties of NaCl, a commonly used material for high-pressure experiments are measured and shown to be consistent with those obtained using the traditional methods.

  2. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Tong, Ruijie; Song, Yanling; Xiong, Fang; Li, Jiman; Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei; Wu, Jiang

    2017-04-01

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  3. Synthesis, structure, and optoelectronic properties of II-IV-V 2 materials

    DOE PAGES

    Martinez, Aaron D.; Fioretti, Angela N.; Toberer, Eric S.; ...

    2017-03-07

    II-IV-V 2 materials offer the promise of enhanced functionality in optoelectronic devices due to their rich ternary chemistry. In this review, we consider the potential for new optoelectronic devices based on nitride, phosphide, and arsenide II-IV-V 2 materials. As ternary analogs to the III-V materials, these compounds share many of the attractive features that have made the III-Vs the basis of modern optoelectronic devices (e.g. high mobility, strong optical absorption). Control of cation order parameter in the II-IV-V 2 materials can produce significant changes in optoelectronic properties at fixed chemical composition, including decoupling band gap from lattice parameter. Recent progressmore » has begun to resolve outstanding questions concerning the structure, dopability, and optical properties of the II-IV-V 2 materials. Furthermore, remaining research challenges include growth optimization and integration into heterostructures and devices.« less

  4. Effect of the material properties on the crumpling of a thin sheet.

    PubMed

    Habibi, Mehdi; Adda-Bedia, Mokhtar; Bonn, Daniel

    2017-06-07

    While simple at first glance, the dense packing of sheets is a complex phenomenon that depends on material parameters and the packing protocol. We study the effect of plasticity on the crumpling of sheets of different materials by performing isotropic compaction experiments on sheets of different sizes and elasto-plastic properties. First, we quantify the material properties using a dimensionless foldability index. Then, the compaction force required to crumple a sheet into a ball as well as the average number of layers inside the ball are measured. For each material, both quantities exhibit a power-law dependence on the diameter of the crumpled ball. We experimentally establish the power-law exponents and find that both depend nonlinearly on the foldability index. However the exponents that characterize the mechanical response and morphology of the crumpled materials are related linearly. A simple scaling argument explains this in terms of the buckling of the sheets, and recovers the relation between the crumpling force and the morphology of the crumpled structure. Our results suggest a new approach to tailor the mechanical response of the crumpled objects by carefully selecting their material properties.

  5. Teaching Acoustic Properties of Materials in Secondary School: Testing Sound Insulators

    ERIC Educational Resources Information Center

    Hernandez, M. I.; Couso, D.; Pinto, R.

    2011-01-01

    Teaching the acoustic properties of materials is a good way to teach physics concepts, extending them into the technological arena related to materials science. This article describes an innovative approach for teaching sound and acoustics in combination with sound insulating materials in secondary school (15-16-year-old students). Concerning the…

  6. Analysis of the optimal laminated target made up of discrete set of materials

    NASA Technical Reports Server (NTRS)

    Aptukov, Valery N.; Belousov, Valentin L.

    1991-01-01

    A new class of problems was analyzed to estimate an optimal structure of laminated targets fabricated from the specified set of homogeneous materials. An approximate description of the perforation process is based on the model of radial hole extension. The problem is solved by using the needle-type variation technique. The desired optimization conditions and quantitative/qualitative estimations of optimal targets were obtained and are discussed using specific examples.

  7. Dental Glass Ionomer Cements as Permanent Filling Materials? —Properties, Limitations Future Trends

    PubMed Central

    Lohbauer, Ulrich

    2009-01-01

    Glass ionomer cements (GICs) are clinically attractive dental materials that have certain unique properties that make them useful as restorative and luting materials. This includes adhesion to moist tooth structures and base metals, anticariogenic properties due to release of fluoride, thermal compatibility with tooth enamel, biocompatibility and low toxicity. The use of GICs in a mechanically loaded situation, however, has been hampered by their low mechanical performance. Poor mechanical properties, such as low fracture strength, toughness and wear, limit their extensive use in dentistry as a filling material in stress-bearing applications. In the posterior dental region, glass ionomer cements are mostly used as a temporary filling material. The requirement to strengthen those cements has lead to an ever increasing research effort into reinforcement or strengthening concepts.

  8. Prediction of threshold pain skin temperature from thermal properties of materials in contact.

    PubMed

    Stoll, A M; Chianta, M A; Piergallini, J R

    1982-12-01

    Aerospace design engineers have long sought concrete data with respect to the thermal safety of materials in contact with human skin. A series of studies on this subject has been completed and some of the results have been reported earlier. In these studies over 2,000 observations were made of pain threshold during contact with materials at elevated temperatures. Six materials were used representing the full range of thermal properties from good conductors to good insulators. Previous reports gave methods for determining the maximum permissible temperatures for any material in safe contact with bare skin for 1-5 s solely from a knowledge of its thermal properties. This report presents the comparison of the theoretical and experimental contact temperatures at pain threshold and provides a method for deriving the skin temperature productive of threshold pain from the thermal properties of any material within the range of those studies. Ratios reflecting the heat transfer coefficient associated with the materials in contact are related to their thermal properties so that the skin temperature at pain threshold may be determined from that calculated from heat transfer theory. Tabular and graphical representation of these data permits interpolation within the range of properties so that any material of known thermal conductivity, density and specific heat may be assessed with respect to its effect on the skin temperature during contact to the end point of pain. These data, in conjunction with those already reported, constitute a system for the complete assessment of the thermal aspects of practically any material suitable for construction and manufacturing applications with respect to safe contact with human skin.

  9. Do encapsulated heat storage materials really retain their original thermal properties?

    PubMed

    Chaiyasat, Preeyaporn; Noppalit, Sayrung; Okubo, Masayoshi; Chaiyasat, Amorn

    2015-01-14

    The encapsulation of Rubitherm®27 (RT27), which is one of the most common commercially supplied heat storage materials, by polystyrene (PS), polydivinyl benzene (PDVB) and polymethyl methacrylate (PMMA) was carried out using conventional radical microsuspension polymerization. The products were purified to remove free RT27 and free polymer particles without RT27. In the cases of PS and PDVB microcapsules, the latent heats of melting and crystallization for RT27 ( and , J/g-RT27) were clearly decreased by the encapsulation. On the other hand, those of the PMMA microcapsules were the same as pure RT27. A supercooling phenomenon was observed not only for PS and PDVB but also for the PMMA microcapsules. These results indicate that the thermal properties of the heat storage materials encapsulated depend on the type of polymer shells, i.e., encapsulation by polymer shell changes the thermal properties of RT27. This is quite different from the idea of other groups in the world, in which they discussed the thermal properties based on the ΔHm and ΔHc values expressed in J/g-capsule, assuming that the thermal properties of the heat storage materials are not changed by the encapsulation. Hereafter, this report should raise an alarm concerning the "wrong" common knowledge behind developing the encapsulation technology of heat storage materials.

  10. Materials properties numerical database system established and operational at CINDAS/Purdue University

    NASA Technical Reports Server (NTRS)

    Ho, C. Y.; Li, H. H.

    1989-01-01

    A computerized comprehensive numerical database system on the mechanical, thermophysical, electronic, electrical, magnetic, optical, and other properties of various types of technologically important materials such as metals, alloys, composites, dielectrics, polymers, and ceramics has been established and operational at the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) of Purdue University. This is an on-line, interactive, menu-driven, user-friendly database system. Users can easily search, retrieve, and manipulate the data from the database system without learning special query language, special commands, standardized names of materials, properties, variables, etc. It enables both the direct mode of search/retrieval of data for specified materials, properties, independent variables, etc., and the inverted mode of search/retrieval of candidate materials that meet a set of specified requirements (which is the computer-aided materials selection). It enables also tabular and graphical displays and on-line data manipulations such as units conversion, variables transformation, statistical analysis, etc., of the retrieved data. The development, content, accessibility, etc., of the database system are presented and discussed.

  11. A quantitative property-property relationship for the internal diffusion coefficients of organic compounds in solid materials.

    PubMed

    Huang, L; Fantke, P; Ernstoff, A; Jolliet, O

    2017-11-01

    Indoor releases of organic chemicals encapsulated in solid materials are major contributors to human exposures and are directly related to the internal diffusion coefficient in solid materials. Existing correlations to estimate the diffusion coefficient are only valid for a limited number of chemical-material combinations. This paper develops and evaluates a quantitative property-property relationship (QPPR) to predict diffusion coefficients for a wide range of organic chemicals and materials. We first compiled a training dataset of 1103 measured diffusion coefficients for 158 chemicals in 32 consolidated material types. Following a detailed analysis of the temperature influence, we developed a multiple linear regression model to predict diffusion coefficients as a function of chemical molecular weight (MW), temperature, and material type (adjusted R 2 of .93). The internal validations showed the model to be robust, stable and not a result of chance correlation. The external validation against two separate prediction datasets demonstrated the model has good predicting ability within its applicability domain (Rext2>.8), namely MW between 30 and 1178 g/mol and temperature between 4 and 180°C. By covering a much wider range of organic chemicals and materials, this QPPR facilitates high-throughput estimates of human exposures for chemicals encapsulated in solid materials. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Electronic, Vibrational and Thermoelectric Properties of Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Wickramaratne, Darshana

    The discovery of graphene's unique electronic and thermal properties has motivated the search for new two-dimensional materials. Examples of these materials include the layered two-dimensional transition metal dichalcogenides (TMDC) and metal mono-chalcogenides. The properties of the TMDCs (eg. MoS 2, WS2, TaS2, TaSe2) and the metal mono-chalcogenides (eg. GaSe, InSe, SnS) are diverse - ranging from semiconducting, semi-metallic and metallic. Many of these materials exhibit strongly correlated phenomena and exotic collective states such as exciton condensates, charge density waves, Lifshitz transitions and superconductivity. These properties change as the film thickness is reduced down to a few monolayers. We use first-principles simulations to discuss changes in the electronic and the vibrational properties of these materials as the film thickness evolves from a single atomic monolayer to the bulk limit. In the semiconducting TMDCs (MoS2, MoSe2, WS2 and WSe2) and monochalcogenides (GaS, GaSe, InS and InSe) we show confining these materials to their monolayer limit introduces large band degeneracies or non-parabolic features in the electronic structure. These changes in the electronic structure results in increases in the density of states and the number of conducting modes. Our first-principles simulations combined with a Landauer approach show these changes can lead to large enhancements up to an order of magnitude in the thermoelectric performance of these materials when compared to their bulk structure. Few monolayers of the TMDCs can be misoriented with respect to each other due to the weak van-der-Waals (vdW) force at the interface of two monolayers. Misorientation of the bilayer semiconducting TMDCs increases the interlayer van-der-Waals gap distance, reduces the interlayer coupling and leads to an increase in the magnitude of the indirect bandgap by up to 100 meV compared to the registered bilayer. In the semi-metallic and metallic TMDC compounds (TiSe2, Ta

  13. An ab initio electronic transport database for inorganic materials.

    PubMed

    Ricci, Francesco; Chen, Wei; Aydemir, Umut; Snyder, G Jeffrey; Rignanese, Gian-Marco; Jain, Anubhav; Hautier, Geoffroy

    2017-07-04

    Electronic transport in materials is governed by a series of tensorial properties such as conductivity, Seebeck coefficient, and effective mass. These quantities are paramount to the understanding of materials in many fields from thermoelectrics to electronics and photovoltaics. Transport properties can be calculated from a material's band structure using the Boltzmann transport theory framework. We present here the largest computational database of electronic transport properties based on a large set of 48,000 materials originating from the Materials Project database. Our results were obtained through the interpolation approach developed in the BoltzTraP software, assuming a constant relaxation time. We present the workflow to generate the data, the data validation procedure, and the database structure. Our aim is to target the large community of scientists developing materials selection strategies and performing studies involving transport properties.

  14. From Tomography to Material Properties of Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Mansour, Nagi N.; Panerai, Francesco; Ferguson, Joseph C.; Borner, Arnaud; Barnhardt, Michael; Wright, Michael

    2017-01-01

    A NASA Ames Research Center (ARC) effort, under the Entry Systems Modeling (ESM) project, aims at developing micro-tomography (micro-CT) experiments and simulations for studying materials used in hypersonic entry systems. X-ray micro-tomography allows for non-destructive 3D imaging of a materials micro-structure at the sub-micron scale, providing fiber-scale representations of porous thermal protection systems (TPS) materials. The technique has also allowed for In-situ experiments that can resolve response phenomena under realistic environmental conditions such as high temperature, mechanical loads, and oxidizing atmospheres. Simulation tools have been developed at the NASA Ames Research Center to determine material properties and material response from the high-fidelity tomographic representations of the porous materials with the goal of informing macroscopic TPS response models and guiding future TPS design.

  15. Comparative study of the physical properties of core materials.

    PubMed

    Saygili, Gülbin; Mahmali, Sevil M

    2002-08-01

    This study was undertaken to measure physical properties of materials used for direct core buildups, including high-copper amalgam, visible light-cured resin composite, autocured titanium-containing composite, polyacid-modified composite, resin-modified glass-ionomer, and silver cermet cement. Compressive strength, diametral tensile strength, and flexural strength of six core materials of various material classes were measured for each material as a function of time up to 3 months at different storage conditions, using a standard specification test designed for the materials. Three different storage conditions (dry, humid, wet) at 37 degrees C were chosen. Materials were manipulated according to manufacturers' instructions for use as cores. Mean compressive, diametral tensile, and flexural strengths with associated standard deviations were calculated for each material. Multiple comparison and Newman-Keuls tests discerned many differences among materials. All materials were found to meet the minimum specification requirements, except in terms of flexural strength for amalgam after 1 hour and the silver cermet at all time intervals.

  16. Cryogenic Properties of Inorganic Insulation Materials for ITER Magnets: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, N.J.

    1994-12-01

    Results of a literature search on the cryogenic properties of candidate inorganic insulators for the ITER TF magnets are reported. The materials investigated include: Al{sub 2}O{sub 3}, AlN, MgO, porcelain, SiO{sub 2}, MgAl{sub 2}O{sub 4}, ZrO{sub 2}, and mica. A graphical presentation is given of mechanical, elastic, electrical, and thermal properties between 4 and 300 K. A companion report reviews the low temperature irradiation resistance of these materials.

  17. Mechanical properties of low dimensional materials

    NASA Astrophysics Data System (ADS)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  18. A Triaxial Applicator for the Measurement of the Electromagnetic Properties of Materials

    PubMed Central

    2018-01-01

    The design, analysis, and fabrication of a prototype triaxial applicator is described. The applicator provides both reflected and transmitted signals that can be used to characterize the electromagnetic properties of materials in situ. A method for calibrating the probe is outlined and validated using simulated data. Fabrication of the probe is discussed, and measured data for typical absorbing materials and for the probe situated in air are presented. The simulations and measurements suggest that the probe should be useful for measuring the properties of common radar absorbing materials under usual in situ conditions. PMID:29382122

  19. Chemical properties and colors of fermenting materials in salmon fish sauce production.

    PubMed

    Nakano, Mitsutoshi; Sagane, Yoshimasa; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Watanabe, Toshihiro; Takano, Katsumi; Sato, Hiroaki

    2018-02-01

    This data article reports the chemical properties (moisture, pH, salinity, and soluble solid content) and colors of fermenting materials in salmon fish sauce products. The fish sauce was produced by mixing salt with differing proportions of raw salmon materials and fermenting for three months; the salmon materials comprised flesh, viscera, an inedible portion, and soft roe. Chemical properties and colors of the unrefined fish sauce ( moromi ), and the refined fish sauce, were analyzed at one, two, and three months following the start of fermentation. Data determined for all products are provided in table format.

  20. Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review.

    PubMed

    Lavoine, Nathalie; Desloges, Isabelle; Dufresne, Alain; Bras, Julien

    2012-10-01

    Interest in microfibrillated cellulose (MFC) has been increasing exponentially. During the last decade, this bio-based nanomaterial was essentially used in nanocomposites for its reinforcement property. Its nano-scale dimensions and its ability to form a strong entangled nanoporous network, however, have encouraged the emergence of new high-value applications. In previous years, its mode of production has completely changed, as many forms of optimization have been developed. New sources, new mechanical processes, and new pre- and post-treatments are currently under development to reduce the high energy consumption and produce new types of MFC materials on an industrial scale. The nanoscale characterization possibilities of different MFC materials are thus increasing intensively. Therefore, it is critical to review such MFC materials and their properties. Moreover, very recent studies have proved the significant barrier properties of MFC. Hence, it is proposed to focus on the barrier properties of MFC used in films, in nanocomposites, or in paper coating. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. On the uniqueness of measuring elastoplastic properties from indentation: The indistinguishable mystical materials

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Ogasawara, Nagahisa; Zhao, Manhong; Chiba, Norimasa

    2007-08-01

    Indentation is widely used to extract material elastoplastic properties from the measured force-displacement curves. One of the most well-established indentation techniques utilizes dual (or plural) sharp indenters (which have different apex angles) to deduce key parameters such as the elastic modulus, yield stress, and work-hardening exponent for materials that obey the power-law constitutive relationship. However, the uniqueness of such analysis is not yet systematically studied or challenged. Here we show the existence of "mystical materials", which have distinct elastoplastic properties yet they yield almost identical indentation behaviors, even when the indenter angle is varied in a large range. These mystical materials are, therefore, indistinguishable by many existing indentation analyses unless extreme (and often impractical) indenter angles are used. Explicit procedures of deriving these mystical materials are established, and the general characteristics of the mystical materials are discussed. In many cases, for a given indenter angle range, a material would have infinite numbers of mystical siblings, and the existence maps of the mystical materials are also obtained. Furthermore, we propose two alternative techniques to effectively distinguish these mystical materials. The study in this paper addresses the important question of the uniqueness of indentation test, as well as providing useful guidelines to properly use the indentation technique to measure material elastoplastic properties.

  2. Physical properties of a new sonically placed composite resin restorative material.

    PubMed

    Ibarra, Emily T; Lien, Wen; Casey, Jeffery; Dixon, Sara A; Vandewalle, Kraig S

    2015-01-01

    A new nanohybrid composite activated by sonic energy has been recently introduced as a single-step, bulk-fill restorative material. The purpose of this study was to compare the physical properties of this new composite to various other composite restorative materials marketed for posterior or bulk-fill placement. The following physical properties were examined: depth of cure, volumetric shrinkage, flexural strength, flexural modulus, fracture toughness, and percent porosity. A mean and standard deviation were determined per group. One-way ANOVA and Tukey's post hoc tests were performed per property (α = 0.05). Percent porosity was evaluated with a Kruskal-Wallis/Mann-Whitney test (α = 0.005). Significant differences were found between groups (P < 0.001) per test type. Compared to the other composite restorative materials, the new nanohybrid composite showed low shrinkage and percent porosity, moderate fracture toughness and flexural modulus, and high flexural strength. However, it also demonstrated a relatively reduced depth of cure compared to the other composites.

  3. From the experience of development of composite materials with desired properties

    NASA Astrophysics Data System (ADS)

    Garkina, I. A.; Danilov, A. M.

    2017-04-01

    Using the experience in the development of composite materials with desired properties is given the algorithm of construction materials synthesis on the basis of their representation in the form of a complex system. The possibility of creation of a composite and implementation of the technical task originally are defined at a stage of cognitive modeling. On the basis of development of the cognitive map hierarchical structures of criteria of quality are defined; according to them for each allocated large-scale level the corresponding block diagrams of system are specified. On the basis of the solution of problems of one-criteria optimization with use of the found optimum values formalization of a multi-criteria task and its decision is carried out (the optimum organization and properties of system are defined). The emphasis is on methodological aspects of mathematical modeling (construction of a generalized and partial models to optimize the properties and structure of materials, including those based on the concept of systemic homeostasis).

  4. Systematic analysis of nonlinear ground motion and temporal changes of material properties produced by small and medium earthquakes

    NASA Astrophysics Data System (ADS)

    Wu, C.; Peng, Z.; Ben-Zion, Y.

    2009-12-01

    Recent studies based on spectral ratio analysis have found clear temporal changes of material properties in the shallow crust and around active fault zones during large earthquakes with peak ground acceleration (PGA) larger than 100-200 gals (e.g., Sawazaki et al., GRL, 2006; Rubenstein et al., JGR, 2007; Wu et al., GJI, 2009). The temporal evolution of properties is generally characterized by a clear drop of resonant frequency and increased damping, followed by logarithmic recoveries with time. The shift in resonant frequency and damping are considered two hallmarks of nonlinear response associated with increasing material damage. However, an existing damage can produce similar changes in resonance curves with increasing wave amplitude, even in cases when the material damage does not increase (Lyakhovsky et al., GJI, 2009). In such cases the recovery of resonance properties with reduced source amplitude should be essentially instantaneous. It is important to distinguish with in situ seismic data nonlinear wave propagation effects that reflect fixed vs. evolving material damage. Here we systematically analyze temporal changes of material properties and nonlinear response associated with small and medium earthquakes, using seismic data recorded by the Japanese Strong Motion Network KIK-Net, a temporary 10-station PASSCAL seismic network along the North Anatolian Fault in Turkey, and the borehole and surface stations around the Parkfield section of the San Andreas fault. We compute the spectral ratios of windowed records from a pair of target and reference stations, and apply the sliding-window to the entire seismic records including the pre-event noise, P and S waves, and the early and late S-coda waves. We choose small and medium events to reduce the effects from additional material damage and use small sliding-window size to capture the subtle changes in the spectral ratios. The spectral ratio traces from windows within certain PGA ranges are then stacked to

  5. A FEM-based method to determine the complex material properties of piezoelectric disks.

    PubMed

    Pérez, N; Carbonari, R C; Andrade, M A B; Buiochi, F; Adamowski, J C

    2014-08-01

    Numerical simulations allow modeling piezoelectric devices and ultrasonic transducers. However, the accuracy in the results is limited by the precise knowledge of the elastic, dielectric and piezoelectric properties of the piezoelectric material. To introduce the energy losses, these properties can be represented by complex numbers, where the real part of the model essentially determines the resonance frequencies and the imaginary part determines the amplitude of each resonant mode. In this work, a method based on the Finite Element Method (FEM) is modified to obtain the imaginary material properties of piezoelectric disks. The material properties are determined from the electrical impedance curve of the disk, which is measured by an impedance analyzer. The method consists in obtaining the material properties that minimize the error between experimental and numerical impedance curves over a wide range of frequencies. The proposed methodology starts with a sensitivity analysis of each parameter, determining the influence of each parameter over a set of resonant modes. Sensitivity results are used to implement a preliminary algorithm approaching the solution in order to avoid the search to be trapped into a local minimum. The method is applied to determine the material properties of a Pz27 disk sample from Ferroperm. The obtained properties are used to calculate the electrical impedance curve of the disk with a Finite Element algorithm, which is compared with the experimental electrical impedance curve. Additionally, the results were validated by comparing the numerical displacement profile with the displacements measured by a laser Doppler vibrometer. The comparison between the numerical and experimental results shows excellent agreement for both electrical impedance curve and for the displacement profile over the disk surface. The agreement between numerical and experimental displacement profiles shows that, although only the electrical impedance curve is

  6. Material properties of zooplankton and nekton from the California current

    NASA Astrophysics Data System (ADS)

    Becker, Kaylyn

    contrast were investigated. The sound speed contrast (h) was measured for Pacific hake flesh, myctophid flesh, Humboldt squid mantle, and Humboldt squid braincase. Sound speed varied within and between nekton taxa. The material properties reported in this study can be used to improve target strength estimates from acoustic scattering models which would increase the accuracy of biomass estimates from acoustic surveys for these zooplankton and nekton.

  7. Determination of replicate composite bone material properties using modal analysis.

    PubMed

    Leuridan, Steven; Goossens, Quentin; Pastrav, Leonard; Roosen, Jorg; Mulier, Michiel; Denis, Kathleen; Desmet, Wim; Sloten, Jos Vander

    2017-02-01

    Replicate composite bones are used extensively for in vitro testing of new orthopedic devices. Contrary to tests with cadaveric bone material, which inherently exhibits large variability, they offer a standardized alternative with limited variability. Accurate knowledge of the composite's material properties is important when interpreting in vitro test results and when using them in FE models of biomechanical constructs. The cortical bone analogue material properties of three different fourth-generation composite bone models were determined by updating FE bone models using experimental and numerical modal analyses results. The influence of the cortical bone analogue material model (isotropic or transversely isotropic) and the inter- and intra-specimen variability were assessed. Isotropic cortical bone analogue material models failed to represent the experimental behavior in a satisfactory way even after updating the elastic material constants. When transversely isotropic material models were used, the updating procedure resulted in a reduction of the longitudinal Young's modulus from 16.00GPa before updating to an average of 13.96 GPa after updating. The shear modulus was increased from 3.30GPa to an average value of 3.92GPa. The transverse Young's modulus was lowered from an initial value of 10.00GPa to 9.89GPa. Low inter- and intra-specimen variability was found. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Influence of roll levelling on material properties and postforming springback

    NASA Astrophysics Data System (ADS)

    Galdos, Lander; Mendiguren, Joseba; de Argandoña, Eneko Saenz; Otegi, Nagore; Silvestre, Elena

    2018-05-01

    Roll levelling is commonly used in cut to length and blanking lines to flatten initial coils and produce residual stress free precuts. Roll straightener is also used to remove coil-set when progressive dies are used and the starting raw material is a coil. Industrial evidences have proved that roll leveler or straightener tuning is crucial to get a robust process and to obtain repetitive springback values after stamping. This is more relevant when using Advanced High Strength Steels and aluminum coils. However, the mechanisms affecting this material behavior are unknown and how the levelling technology affects the material properties has not been yet reported. In this paper, the influence the roll levelling process has on the final properties of a 6xxx aluminum alloy is studied. For that, as received coils have been relevelled using two different leveler set-ups and tensile tests have been performed using both initial and final material states. Aiming to quantify the effect of the material hardening on a real forming process, a new tangential bending prototype has been developed. As received and levelled precuts have been bent and the forming torques and the postforming angles have been compared.

  9. Perspective: Interactive material property databases through aggregation of literature data

    NASA Astrophysics Data System (ADS)

    Seshadri, Ram; Sparks, Taylor D.

    2016-05-01

    Searchable, interactive, databases of material properties, particularly those relating to functional materials (magnetics, thermoelectrics, photovoltaics, etc.) are curiously missing from discussions of machine-learning and other data-driven methods for advancing new materials discovery. Here we discuss the manual aggregation of experimental data from the published literature for the creation of interactive databases that allow the original experimental data as well additional metadata to be visualized in an interactive manner. The databases described involve materials for thermoelectric energy conversion, and for the electrodes of Li-ion batteries. The data can be subject to machine-learning, accelerating the discovery of new materials.

  10. PHASE I MATERIALS PROPERTY DATABASE DEVELOPMENT FOR ASME CODES AND STANDARDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Weiju; Lin, Lianshan

    2013-01-01

    To support the ASME Boiler and Pressure Vessel Codes and Standard (BPVC) in modern information era, development of a web-based materials property database is initiated under the supervision of ASME Committee on Materials. To achieve efficiency, the project heavily draws upon experience from development of the Gen IV Materials Handbook and the Nuclear System Materials Handbook. The effort is divided into two phases. Phase I is planned to deliver a materials data file warehouse that offers a depository for various files containing raw data and background information, and Phase II will provide a relational digital database that provides advanced featuresmore » facilitating digital data processing and management. Population of the database will start with materials property data for nuclear applications and expand to data covering the entire ASME Code and Standards including the piping codes as the database structure is continuously optimized. The ultimate goal of the effort is to establish a sound cyber infrastructure that support ASME Codes and Standards development and maintenance.« less

  11. Aging and the Haptic Perception of Material Properties.

    PubMed

    Norman, J Farley; Adkins, Olivia C; Hoyng, Stevie C; Dowell, Catherine J; Pedersen, Lauren E; Gilliam, Ashley N

    2016-12-01

    The ability of 26 younger (mean age was 22.5 years) and older adults (mean age was 72.6 years) to haptically perceive material properties was evaluated. The participants manually explored (for 5 seconds) 42 surfaces twice and placed each of these 84 experimental stimuli into one of seven categories: paper, plastic, metal, wood, stone, fabric, and fur/leather. In general, the participants were best able to identify fur/leather and wood materials; in contrast, recognition performance was worst for stone and paper. Despite similar overall patterns of performance for younger and older participants, the younger adults' recognition accuracies were 26.5% higher. The participants' tactile acuities (assessed by tactile grating orientation discrimination) affected their ability to identify surface material. In particular, the Pearson r correlation coefficient relating the participants' grating orientation thresholds and their material identification performance was -0.8: The higher the participants' thresholds, the lower the material recognition ability. While older adults are able to effectively perceive the solid shape of environmental objects using the sense of touch, their ability to perceive surface materials is significantly compromised.

  12. Space structures insulating material's thermophysical and radiation properties estimation

    NASA Astrophysics Data System (ADS)

    Nenarokomov, A. V.; Alifanov, O. M.; Titov, D. M.

    2007-11-01

    In many practical situations in aerospace technology it is impossible to measure directly such properties of analyzed materials (for example, composites) as thermal and radiation characteristics. The only way that can often be used to overcome these difficulties is indirect measurements. This type of measurement is usually formulated as the solution of inverse heat transfer problems. Such problems are ill-posed in mathematical sense and their main feature shows itself in the solution instabilities. That is why special regularizing methods are needed to solve them. The experimental methods of identification of the mathematical models of heat transfer based on solving the inverse problems are one of the modern effective solving manners. The objective of this paper is to estimate thermal and radiation properties of advanced materials using the approach based on inverse methods.

  13. Establishment of Low Energy Building materials and Equipment Database Based on Property Information

    NASA Astrophysics Data System (ADS)

    Kim, Yumin; Shin, Hyery; eon Lee, Seung

    2018-03-01

    The purpose of this study is to provide reliable service of materials information portal through the establishment of public big data by collecting and integrating scattered low energy building materials and equipment data. There were few cases of low energy building materials database in Korea have provided material properties as factors influencing material pricing. The framework of the database was defined referred with Korea On-line E-procurement system. More than 45,000 data were gathered by the specification of entities and with the gathered data, price prediction models for chillers were suggested. To improve the usability of the prediction model, detailed properties should be analysed for each item.

  14. Mechanical properties in crumple-formed paper derived materials subjected to compression.

    PubMed

    Hanaor, D A H; Flores Johnson, E A; Wang, S; Quach, S; Dela-Torre, K N; Gan, Y; Shen, L

    2017-06-01

    The crumpling of precursor materials to form dense three dimensional geometries offers an attractive route towards the utilisation of minor-value waste materials. Crumple-forming results in a mesostructured system in which mechanical properties of the material are governed by complex cross-scale deformation mechanisms. Here we investigate the physical and mechanical properties of dense compacted structures fabricated by the confined uniaxial compression of a cellulose tissue to yield crumpled mesostructuring. A total of 25 specimens of various densities were tested under compression. Crumple formed specimens exhibited densities in the range 0.8-1.3 g cm -3 , and showed high strength to weight characteristics, achieving ultimate compressive strength values of up to 200 MPa under both quasi-static and high strain rate loading conditions and deformation energy that compares well to engineering materials of similar density. The materials fabricated in this work and their mechanical attributes demonstrate the potential of crumple-forming approaches in the fabrication of novel energy-absorbing materials from low-cost precursors such as recycled paper. Stiffness and toughness of the materials exhibit density dependence suggesting this forming technique further allows controllable impact energy dissipation rates in dynamic applications.

  15. Prediction of nonlinear optical properties of organic materials. General theoretical considerations

    NASA Technical Reports Server (NTRS)

    Cardelino, B.; Moore, C.; Zutaut, S.

    1993-01-01

    The prediction of nonlinear optical properties of organic materials is geared to assist materials scientists in the selection of good candidate molecules. A brief summary of the quantum mechanical methods used for estimating hyperpolarizabilities will be presented. The advantages and limitations of each technique will be discussed. Particular attention will be given to the finite-field method for calculating first and second order hyperpolarizabilities, since this method is better suited for large molecules. Corrections for dynamic fields and bulk effects will be discussed in detail, focusing on solvent effects, conformational isomerization, core effects, dispersion, and hydrogen bonding. Several results will be compared with data obtained from third-harmonic-generation (THG) and dc-induced second harmonic generation (EFISH) measurements. These comparisons will demonstrate the qualitative ability of the method to predict the relative strengths of hyperpolarizabilities of a class of compounds. The future application of molecular mechanics, as well as other techniques, in the study of bulk properties and solid state defects will be addressed. The relationship between large values for nonlinear optical properties and large conjugation lengths is well known, and is particularly important for third-order processes. For this reason, the materials with the largest observed nonresonant third-order properties are conjugated polymers. An example of this type of polymer is polydiacetylene. One of the problems in dealing with polydiacetylene is that substituents which may enhance its nonlinear properties may ultimately prevent it from polymerizing. A model which attempts to predict the likelihood of solid-state polymerization is considered, along with the implications of the assumptions that are used. Calculations of the third-order optical properties and their relationship to first-order properties and energy gaps will be discussed. The relationship between monomeric and

  16. Optimization on microwave absorbing properties of carbon nanotubes and magnetic oxide composite materials

    NASA Astrophysics Data System (ADS)

    Mingdong, Chen; Huangzhong, Yu; Xiaohua, Jie; Yigang, Lu

    2018-03-01

    Based on the physical principle of interaction between electromagnetic field and the electromagnetic medium, the relationship between microwave absorbing coefficient (MAC) and the electromagnetic parameters of materials was established. With the composite materials of nickel ferrite (NiFe2O4), carbon nanotubes (CNTs) and paraffin as an example, optimization on absorbing properties of CNTs/magnetic oxide composite materials was studied at the frequency range of 2-18 GHz, and a conclusion is drawn that the MAC is the biggest at the same frequency, when the CNTs is 10 wt% in the composite materials. Through study on the relationship between complex permeability and MAC, another interesting conclusion is drawn that MAC is obviously affected by the real part of complex permeability, and increasing real part of complex permeability is beneficial for improving absorbing properties. The conclusion of this paper can provide a useful reference for the optimization research on the microwave absorbing properties of CNTs/ferrite composite materials.

  17. Dynamical and Physical Properties of 65803 Didymos, the AIDA Mission Target

    NASA Astrophysics Data System (ADS)

    Campo Bagatin, A.; Richardson, D. C.; Tsiganis, K.; Cheng, A. F.; Michel, P.

    2017-09-01

    The near-Earth asteroid (NEA) 65803 Didymos is a binary system and is the target of the proposed Asteroid Impact & Deflection Assessment (AIDA) mission, which combines an orbiter (Asteroid Impact Mission, AIM, or the reduced-scope AIM Deflection Demonstration, AIM-D2) [1, 2] and a kinetic impactor experiment (Double Asteroid Redirection Test, DART) planned to impact the secondary of the Didymos binary system in October, 2022 [3]. The Dynamical and Physical Properties of Didymos Working Group supports the AIDA mission by addressing questions related to understanding the dynamical state of the system and inferring the physical properties of the components

  18. High-efficiency-release targets for use at ISOL facilities: computational design

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Alton, G. D.

    1999-12-01

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat-removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated-vitreous-carbon fiber (RVCF) or carbon-bonded-carbon fiber (CBCF) to form highly permeable composite target matrices. Computational studies that simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected targets and thermal analyses of temperature distributions within a prototype target/heat-sink system subjected to primary ion beam irradiation are presented in this report.

  19. Thermal Convection on an Irradiated Target

    NASA Astrophysics Data System (ADS)

    Mehmedagic, Igbal; Thangam, Siva

    2016-11-01

    The present work involves the computational modeling of metallic targets subject to steady and high intensity heat flux. The ablation and associated fluid dynamics when metallic surfaces are exposed to high intensity laser fluence at normal atmospheric conditions is modelled. The incident energy from the laser is partly absorbed and partly reflected by the surface during ablation and subsequent vaporization of the melt. Computational findings based on effective representation and prediction of the heat transfer, melting and vaporization of the targeting material as well as plume formation and expansion are presented and discussed in the context of various ablation mechanisms, variable thermo-physical and optical properties, plume expansion and surface geometry. The energy distribution during the process between the bulk and vapor phase strongly depends on optical and thermodynamic properties of the irradiated material, radiation wavelength, and laser intensity. The relevance of the findings to various manufacturing processes as well as for the development of protective shields is discussed. Funded in part by U. S. Army ARDEC, Picatinny Arsenal, NJ.

  20. Novel polymeric materials from vegetable oils and vinyl monomers: preparation, properties, and applications.

    PubMed

    Lu, Yongshang; Larock, Richard C

    2009-01-01

    Veggie-based products: Vegetable-oil-based polymeric materials, prepared by free radical, cationic, and olefin metathesis polymerizations, range from soft rubbers to ductile or rigid plastics, and to high-performance biocomposites and nanocomposites. They display a wide range of thermophysical and mechanical properties and may find promising applications as alternatives to petroleum-based polymers.Vegetable oils are considered to be among the most promising renewable raw materials for polymers, because of their ready availability, inherent biodegradability, and their many versatile applications. Research on and development of vegetable oil based polymeric materials, including thermosetting resins, biocomposites, and nanocomposites, have attracted increasing attention in recent years. This Minireview focuses on the latest developments in the preparation, properties, and applications of vegetable oil based polymeric materials obtained by free radical, cationic, and olefin metathesis polymerizations. The novel vegetable oil based polymeric materials obtained range from soft rubbery materials to ductile or rigid plastics and to high-performance biocomposites and nanocomposites. These vegetable oil based polymeric materials display a wide range of thermophysical and mechanical properties and should find useful applications as alternatives to their petroleum-based counterparts.

  1. Compatibility of materials with liquid metal targets for SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiStefano, J.R.; Pawel, S.J.; DeVan, J.H.

    1996-06-01

    Several heavy liquid metals are candidates as the target in a spallation neutron source: Hg, Pb, Bi, and Pb-Bi eutectic. Systems with these liquid metals have been used in the past and a data-base on compatibility already exists. Two major compatibility issues have been identified when selecting a container material for these liquid metals: temperature gradient mass transfer and liquid metal embrittlement or LME. Temperature gradient mass transfer refers to dissolution of material from the high temperature portions of a system and its deposition in the lower temperature areas. Solution and deposition rate constants along with temperature, {Delta}T, and velocitymore » are usually the most important parameters. For most candidate materials mass transfer corrosion has been found to be proportionately worse in Bi compared with Hg and Pb. For temperatures to {approx}550{degrees}C, ferritic/martensitic steels have been satisfactory in Pb or Hg systems and the maximum temperature can be extended to {approx}650{degrees}C with additions of inhibitors to the liquid metal, e.g. Mg, Ti, Zr. Above {approx}600{degrees}C, austenitic stainless steels have been reported to be unsatisfactory, largely because of the mass transfer of nickel. Blockage of flow from deposition of material is usually the life-limiting effect of this type of corrosion. However, mass transfer corrosion at lower temperatures has not been studied. At low temperatures (usually < 150{degrees}C), LME has been reported for some liquid metal/container alloy combinations. Liquid metal embrittlement, like hydrogen embrittlement, results in brittle fracture of a normally ductile material.« less

  2. Experimental Investigation of Stiffness Characteristics and Damping Properties of a Metallic Rubber Material

    NASA Astrophysics Data System (ADS)

    Lu, Ch. Zh.; Li, Jingyuan; Zhou, Bangyang; Li, Shuang

    2017-09-01

    The static stiffness and dynamic damping properties of a metallic rubber material (MR) were investigated, which exhibited a nonlinear deformation behavior. Its static stiffness is analyzed and discussed. The effects of structural parameters of MR and experimental conditions on its shock absorption capacity were examined by dynamic tests. Results revealed excellent elastic and damping properties of the material. Its stiffness increased with density, but decreased with thickness. The damping property of MR varied with its density, thickness, loading frequency, and amplitude.

  3. Preparation of silicon target material by adding Al-B master alloy in directional solidification

    NASA Astrophysics Data System (ADS)

    Li, Pengting; Wang, Kai; Ren, Shiqiang; Jiang, Dachuan; Tan, Yi

    2017-03-01

    The silicon target material was prepared by adding Al-6B master alloy in directional solidification. The microstructure was characterized and the resistivity was studied in this work. The results showed that the purity of the silicon target material was more than 99.999% (5N). The resistivity was ranges from 0.002 to 0.030 Ω·cm along the ingot height. It was revealed that the particles of AlB2 in Al-6B master alloy would react spontaneously and generate clusters of [B] and [Al] in molten silicon at 1723 K. After directional solidification, the content of B and Al were increasing gradually with the increase of solidified fraction. The measured values of B were in good agreement with the curve of the Scheil equation below 80% of the ingot height. The mean concentration of B was about 17.20 ppmw and the mean concentration of Al was about 8.07 ppmw after directional solidification. The measured values of Al were fitting well with the curve of values which the effective segregation coefficient was 0.00378. It was observed that B co-doped Al in directional solidification polysilicon could regulate resistivity mutually. This work provides the theoretical basis and technical support for industrial production of the silicon target material.

  4. Synthesis and hydrophobic adsorption properties of microporous/mesoporous hybrid materials.

    PubMed

    Hu, Qin; Li, Jinjun; Qiao, Shizhang; Hao, Zhengping; Tian, Hua; Ma, Chunyan; He, Chi

    2009-05-30

    Hybrid materials of silicalite-1 (Sil-1)-coated SBA-15 particles (MSs) have been successfully synthesized by crystallization process under hydrothermal conditions. These MSs materials were characterized by X-ray diffraction, nitrogen adsorption/desorption and TEM techniques, which illustrated that the silicalite-1-coated SBA-15 particles were successfully prepared and had large pore volume and hierarchical pore size distribution. Further experimental studies indicated that longer crystallization time under basic condition caused the mesostructure of SBA-15 materials to collapse destructively and higher calcination temperature tended to disrupt the long-range mesoscopic order while they had little influence on the phase of microcrystalline silicalite-1 zeolite. The resultant MSs materials were investigated by estimating dynamic adsorption capacity under dry and wet conditions to evaluate their adsorptive and hydrophobic properties. The hydrophobicity index (HI) value followed the sequence of silicalite-1>MSs>SBA-15, which revealed that the SBA-15 particles coated with the silicalite-1 seeds enhanced the surface hydrophobicity, and also were consistent with FTIR results. Our studies show that MSs materials combined the advantages of the ordered mesoporous material (high adsorptive capacity, large pore volume) and silicalite-1 zeolite (super-hydrophobic property, high hydrothermal stability), and the presence of micropores directly led to an increase in the dynamic adsorption capacity of benzene under dry and wet conditions.

  5. New multifunction materials with both electrorheological performance and luminescence property

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Xing; Shang, Yan-Li; Jia, Yun-Ling; Dong, Xiang-Yu; Ren, Jing; Li, Jun-Ran

    2017-02-01

    Novel multifunctional materials, the composites AlOOH-NaYFTb5 and AlOOH-NaYFTb10, containing AlO(OH) and β-NaYF4:5%Tb3+, have been synthesized via a facile hydrothermal route and a simple grinding method. The boehmite [AlO(OH)], yttrium nitrate [Y(NO3)3·6H2O], terbium nitrate, [Tb(NO3)3·6H2O], sodium citrate (Na3C6H5O7·2H2O) and sodium fluoride (NaF) were used as starting materials. The composition, electrorheological (ER) performance, and luminescence property of the functional materials were studied. Our results show that the composites not only have good electrorheological (ER) performance, but also have good optics property. The relative shear stress τ r ( τ r = τ E/ τ 0, τ E and τ 0 are the shear stresses at the electric field strength E = 4 and 0 kV/mm, respectively) values of the suspension (25 wt.%) of AlOOHNaYFTb5 material in silicone oil are all larger than 50 in a shear rate ranging from 0.06 to 26 s-1, the τr value reaches 1333 at a shear rate of 0.06 s-1. The material with such high ER activity and favorable luminescence performance is advantageous in its application as a multifunctional material.

  6. Superhydrophobic Silicon Nanocrystal-Silica Aerogel Hybrid Materials: Synthesis, Properties, and Sensing Application.

    PubMed

    Kehrle, Julian; Purkait, Tapas K; Kaiser, Simon; Raftopoulos, Konstantinos N; Winnacker, Malte; Ludwig, Theresa; Aghajamali, Maryam; Hanzlik, Marianne; Rodewald, Katia; Helbich, Tobias; Papadakis, Christine M; Veinot, Jonathan G C; Rieger, Bernhard

    2018-04-24

    Silicon nanocrystals (SiNCs) are abundant and exhibit exquisitely tailorable optoelectronic properties. The incorporation of SiNCs into highly porous and lightweight substrates such as aerogels leads to hybrid materials possessing the attractive features of both materials. This study describes the covalent deposition of SiNCs on and intercalation into silica aerogels, explores the properties, and demonstrates a prototype sensing application of the composite material. SiNCs of different sizes were functionalized with triethoxyvinylsilane (TEVS) via a radical grafting approach and subsequently used for the synthesis of photoluminescent silica hybrids. The resulting SiNC-containing aerogels possess high porosities, SiNC-based size-dependent photoluminescence, transparency, and a superhydrophobic macroscopic surface. The materials were used to examine the photoluminescence response toward low concentrations of 3-nitrotoluene (270 μM), demonstrating their potential as a sensing platform for high-energy materials.

  7. Electrical and Thermal Transport Property Studies of High-Temperature Thermoelectric Materials.

    DTIC Science & Technology

    1985-06-01

    THERMAL TRANSPORT PROPERTY STUDIES OF HIGH-TEMPERATURE THERMOELECTRIC MATERIALS: INTERIM TECHNICAL REPORT FOR THE PERIOD MAY 15, 1984 TO MAY 15, 1985 J. L...transport property data base has been expanded oy continued measurements in several systems under study, and a theoretical model for thermoelectric ...6.0 REFERENCES . . . . . . . . . . . . 6.1 APPENDIX A - THERMOELECTRIC PROPERTY DATA . . . . . . . A. I 1l FIGURES 3.1 Dimensionless Figure of Merit

  8. Measurement of mechanical and thermophysical properties of dimensionally stable materials for space applications

    NASA Technical Reports Server (NTRS)

    Rawal, Suraj P.; Misra, Mohan S.

    1992-01-01

    Mechanical, thermal, and physical property test data was generated for as-fabricated advanced composite materials at room temperature (RT), -150 and 250 F. The results are documented of mechanical and thermophysical property tests of IM7/PEEK and discontinuous SiC/Al (particulate (p) and whisker (w) reinforced) composites which were tested at three different temperatures to determine the effect of temperature on material properties. The specific material systems tested were IM7/PEEK (0)8, (0, + or - 45, 90)s, (+ or - 30, 04)s, 25 vol. pct. (v/o) SiCp/Al, and 25 v/o SiCw/Al. RT material property results of IM7/PEEK were in good agreement with the predicted values, providing a measure of consolidation integrity attained during fabrication. Results of mechanical property tests indicated that modulus values at each test temperature were identical, whereas the strength (e.g., tensile, compressive, flexural, and shear) values were the same at -150 F, and RT, and gradually decreased as the test temperature was increased to 250 F. Similar trends in the strength values was also observed in discontinuous SiC/Al composites. These results indicate that the effect of temperature was more pronounced on the strength values than modulus values.

  9. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties

    NASA Astrophysics Data System (ADS)

    Xie, Tian; Grossman, Jeffrey C.

    2018-04-01

    The use of machine learning methods for accelerating the design of crystalline materials usually requires manually constructed feature vectors or complex transformation of atom coordinates to input the crystal structure, which either constrains the model to certain crystal types or makes it difficult to provide chemical insights. Here, we develop a crystal graph convolutional neural networks framework to directly learn material properties from the connection of atoms in the crystal, providing a universal and interpretable representation of crystalline materials. Our method provides a highly accurate prediction of density functional theory calculated properties for eight different properties of crystals with various structure types and compositions after being trained with 1 04 data points. Further, our framework is interpretable because one can extract the contributions from local chemical environments to global properties. Using an example of perovskites, we show how this information can be utilized to discover empirical rules for materials design.

  10. Properties of the "Orgamax" osteoplastic material made of a demineralized allograft bone

    NASA Astrophysics Data System (ADS)

    Podorognaya, V. T.; Kirilova, I. A.; Sharkeev, Yu. P.; Uvarkin, P. V.; Zhelezny, P. A.; Zheleznaya, A. P.; Akimova, S. E.; Novoselov, V. P.; Tupikova, L. N.

    2016-08-01

    We investigated properties of the "Orgamax" osteoplastic material, which was produced from a demineralized bone, in the treatment of extensive caries, in particular chronic pulpitis of the permanent teeth with unformed roots in children. The "Orgamax" osteoplastic material consists of demineralized bone chips, a collagen additive, and antibiotics. The surface morphology of the "Orgamax" osteoplastic material is macroporous, with the maximum pore size of 250 µm, whereas the surface morphology of the major component of "Orgamax", demineralized bone chips, is microporous, with a pore size of 10-20 µm. Material "Orgamax" is used in the treatment of complicated caries, particularly chronic pulpitis of permanent teeth with unformed roots in children. "Orgamax" filling a formed cavity exhibits antimicrobial properties, eliminates inflammation in the dental pulp, and, due to its osteoconductive and osteoinductive properties, undergoes gradual resorption, stimulates regeneration, and provides replacement of the defect with newly formed tissue. The dental pulp viability is completely restored, which ensures the complete formation of tooth roots with root apex closure in the long-term period.

  11. Advanced Materials From Fungal Mycelium: Fabrication and Tuning of Physical Properties

    NASA Astrophysics Data System (ADS)

    Haneef, Muhammad; Ceseracciu, Luca; Canale, Claudio; Bayer, Ilker S.; Heredia-Guerrero, José A.; Athanassiou, Athanassia

    2017-01-01

    In this work is presented a new category of self-growing, fibrous, natural composite materials with controlled physical properties that can be produced in large quantities and over wide areas, based on mycelium, the main body of fungi. Mycelia from two types of edible, medicinal fungi, Ganoderma lucidum and Pleurotus ostreatus, have been carefully cultivated, being fed by two bio-substrates: cellulose and cellulose/potato-dextrose, the second being easier to digest by mycelium due to presence of simple sugars in its composition. After specific growing times the mycelia have been processed in order to cease their growth. Depending on their feeding substrate, the final fibrous structures showed different relative concentrations in polysaccharides, lipids, proteins and chitin. Such differences are reflected as alterations in morphology and mechanical properties. The materials grown on cellulose contained more chitin and showed higher Young’s modulus and lower elongation than those grown on dextrose-containing substrates, indicating that the mycelium materials get stiffer when their feeding substrate is harder to digest. All the developed fibrous materials were hydrophobic with water contact angles higher than 120°. The possibility of tailoring mycelium materials’ properties by properly choosing their nutrient substrates paves the way for their use in various scale applications.

  12. Properties and Performance Attributes of Novel Co-extruded Polyolefin Battery Separator Materials. Part 2; Electrical Properties

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.

    2013-01-01

    As NASA prepares for its next era of manned spaceflight missions, advanced energy storage technologies are being developed and evaluated to address and enhance future mission needs and technical requirements. Cell-level components for advanced lithium-ion batteries possessing higher energy, more reliable performance and enhanced, inherent safety characteristics have been under development within the NASA infrastructure. A key component for safe and reliable cell performance is the cell separator, which separates the two energetic electrodes and functions to inhibit the occurrence of an internal short circuit but preserves an ionic current. Recently, a new generation of co-extruded separator films has been developed by ExxonMobil Chemical and introduced into their battery separator product portfolio. Several grades of this new separator material were evaluated with respect to dynamic mechanical properties and safety-related performance attributes, and the results of these evaluations were previously reported in "Part 1: Mechanical Properties" of this publication. This current paper presents safety-related performance results for these novel materials obtained by employing a complementary experimental methodology, which involved the analysis of separator impedance characteristics as a function of temperature. The experimental results from this study are discussed with respect to potential cell safety enhancement for future aerospace as well as for terrestrial energy storage needs, and they are compared with pertinent mechanical properties of these materials, as well as with current state-of-the practice separator materials.

  13. Is Seismically Determined Q an Intrinsic Material Property?

    NASA Astrophysics Data System (ADS)

    Langston, C. A.

    2003-12-01

    The seismic quality factor, Q, has a well-defined physical meaning as an intrinsic material property associated with a visco-elastic or a non-linear stress-strain constitutive relation for a material. Measurement of Q from seismic waves, however, involves interpreting seismic wave amplitude and phase as deviations from some ideal elastic wave propagation model. Thus, assumptions in the elastic wave propagation model become the basis for attributing anelastic properties to the earth continuum. Scientifically, the resulting Q model derived from seismic data is no more than a hypothesis that needs to be verified by other independent experiments concerning the continuum constitutive law and through careful examination of the truth of the assumptions in the wave propagation model. A case in point concerns the anelasticity of Mississippi embayment sediments in the central U.S. that has important implications for evaluation of earthquake strong ground motions. Previous body wave analyses using converted Sp phases have suggested that Qs is ~30 in the sediments based on simple ray theory assumptions. However, detailed modeling of 1D heterogeneity in the sediments shows that Qs cannot be resolved by the Sp data. An independent experiment concerning the amplitude decay of surface waves propagating in the sediments shows that Qs must be generally greater than 80 but is also subject to scattering attenuation. Apparent Q effects seen in direct P and S waves can also be produced by wave tunneling mechanisms in relatively simple 1D heterogeneity. Heterogeneity is a general geophysical attribute of the earth as shown by many high-resolution data sets and should be used as the first litmus test on assumptions made in seismic Q studies before a Q model can be interpreted as an intrinsic material property.

  14. Thermoelectric transport properties of BaBiTe{sub 3}-based materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yiming; Zhao, Li-Dong, E-mail: zhaolidong@buaa.edu.cn

    BaBiTe{sub 3}, a material with low thermal conductivity, is an inferior thermoelectric material due to the poor electrical properties originated from its narrow band gap. We choose two types of dopants, K and La, trying to optimize its electrical transport properties. The minority carriers, which harm the Seebeck coefficient in this system, are suppressed by La doping. With the increase of both electrical conductivity and Seebeck coefficient, the power factor of 3% La doped BaBiTe{sub 3} reaches 3.7 μW cm{sup −1} K{sup −2} which increased by 40% from undoped BaBiTe{sub 3}. Besides high power factor, the thermal conductivity is alsomore » reduced in it. Eventually, a high ZT value, 0.25 at 473 K, for n-type BaBiTe{sub 3} is achieved in 3% La doped BaBiTe{sub 3}. - Graphical abstract: BaBiTe{sub 3} possesses a low thermal conductivity. However, it is an inferior thermoelectric material due to the poor electrical properties originated from its narrow band gap. A high ZT value of 0.25 at 473 K for n-type BaBiTe{sub 3} can be achieved through optimizing electrical transport properties via La doping. - Highlights: • BaBiTe{sub 3} is an analogue of these promising thermoelectric materials: such as CsBi{sub 4}Te{sub 6} and K{sub 2}Bi{sub 8}Se{sub 13}, etc. • BaBiTe{sub 3} possesses a low thermal conductivity. • La is an effective dopant to enhance electrical transport properties. • A high ZT value of 0.25 at 473 K can be achieved in n-type La-doped BaBiTe{sub 3}.« less

  15. Novel self-healing materials chemistries for targeted applications

    NASA Astrophysics Data System (ADS)

    Wilson, Gerald O.

    Self-healing materials of the type developed by White and co-workers [1] were designed to autonomically heal themselves when damaged, thereby extending the lifetime of various applications in which such material systems are employed. The system was based on urea-formaldehyde microcapsules containing dicyclopentadiene (DCPD) and Grubbs' catalyst particles embedded together in an epoxy matrix. When a crack propagates through the material, it ruptures the microcapsules, releasing DCPD into the crack plane, where it comes in contact and reacts with the catalyst to initiate a ring opening metathesis polymerization (ROMP), bonding the crack and restoring structural continuity. The present work builds on this concept in several ways. Firstly, it expands the scope and versatility of the ROMP self-healing chemistry by incorporation into epoxy vinyl ester matrices. Major technical challenges in this application include protection of the catalyst from deactivation by aggressive curing agents, and optimization of the concentration of healing agents in the matrix. Secondly, new ruthenium catalysts are evaluated for application in ROMP-based self-healing materials. The use of alternative derivatives of Grubbs' catalyst gave rise to self-healing systems with improved healing efficiencies and thermal properties. Evaluation of the stability of these new catalysts to primary amine curing agents used in the curing of common epoxy matrices also led to the discovery and characterization of new ruthenium catalysts which exhibited ROMP initiation kinetics superior to those of first and second generation Grubbs' catalysts. Finally, free radical polymerization was evaluated for application in the development of bio-compatible self-healing materials. [1] White, S. R.; Sottos, N. R.; Geubelle, P. R.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S. Nature 2001, 409, 794.

  16. Systems and methods for the combinatorial synthesis of novel materials

    DOEpatents

    Wu, Xin Di; Wang, Youqi; Goldwasser, Isy

    2000-01-01

    Methods and apparatus for the preparation of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by depositing components of target materials to predefined regions on the substrate, and, in some embodiments, simultaneously reacting the components to form at least two resulting materials. In particular, the present invention provides novel masking systems and methods for applying components of target materials onto a substrate in a combinatorial fashion, thus creating arrays of resulting materials that differ slightly in composition, stoichiometry, and/or thickness. Using the novel masking systems of the present invention, components can be delivered to each site in a uniform distribution, or in a gradient of stoichiometries, thicknesses, compositions, etc. Resulting materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. Once prepared, these resulting materials can be screened sequentially, or in parallel, for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical and other properties.

  17. Radiative transfer modeling of dust-coated Pancam calibration target materials: Laboratory visible/near-infrared spectrogoniometry

    USGS Publications Warehouse

    Johnson, J. R.; Sohl-Dickstein, J.; Grundy, W.M.; Arvidson, R. E.; Bell, J.F.; Christensen, P.R.; Graff, T.; Guinness, E.A.; Kinch, K.; Morris, Robert; Shepard, M.K.

    2006-01-01

    Laboratory visible/near-infrared multispectral observations of Mars Exploration Rover Pancam calibration target materials coated with different thicknesses of Mars spectral analog dust were acquired under variable illumination geometries using the Bloomsburg University Goniometer. The data were fit with a two-layer radiative transfer model that combines a Hapke formulation for the dust with measured values of the substrate interpolated using a He-Torrance approach. We first determined the single-scattering albedo, phase function, opposition effect width, and amplitude for the dust using the entire data set (six coating thicknesses, three substrates, four wavelengths, and phase angles 3??-117??). The dust exhibited single-scattering albedo values similar to other Mars analog soils and to Mars Pathfinder dust and a dominantly forward scattering behavior whose scattering lobe became narrower at longer wavelengths. Opacity values for each dust thickness corresponded well to those predicted from the particles sizes of the Mars analog dust. We then restricted the number of substrates, dust thicknesses, and incidence angles input to the model. The results suggest that the dust properties are best characterized when using substrates whose reflectances are brighter and darker than those of the deposited dust and data that span a wide range of dust thicknesses. The model also determined the dust photometric properties relatively well despite limitations placed on the range of incidence angles. The model presented here will help determine the photometric properties of dust deposited on the MER rovers and to track the multiple episodes of dust deposition and erosion that have occurred at both landing sites. Copyright 2006 by the American Geophysical Union.

  18. Cell attachment properties of Portland cement-based endodontic materials: biological and methodological considerations.

    PubMed

    Ahmed, Hany Mohamed Aly; Luddin, Norhayati; Kannan, Thirumulu Ponnuraj; Mokhtar, Khairani Idah; Ahmad, Azlina

    2014-10-01

    The attachment and spreading of mammalian cells on endodontic biomaterials are an area of active research. The purpose of this review is to discuss the cell attachment properties of Portland cement (PC)-based materials by using scanning electron microscope (SEM). In addition, methodological aspects and technical challenges are discussed. A PubMed electronic search was conducted by using appropriate key words to identify the available investigations on the cell attachment properties of PC-based endodontic materials. After retrieving the full text of related articles, the cross citations were also identified. A total of 23 articles published between January 1993 and October 2013 were identified. This review summarizes the cell attachment properties of commercial and experimental PC-based materials on different cell cultures by using SEM. Methodological procedures, technical challenges, and relevance of SEM in determining the biological profile of PC-based materials are discussed. SEM observations demonstrate that commercial MTA formulations show favorable cell attachment properties, which is consistent with their successful clinical outcomes. The favorable cell attachment properties of PC and its modified formulations support its potential use as a substitute for mineral trioxide aggregate. However, researchers should carefully select cell types for their SEM investigations that would be in contact with the proposed PC-based combinations in the clinical situation. Despite being a technical challenge, SEM provides useful information on the cell attachment properties of PC-based materials; however, other assays for cell proliferation and viability are essential to come up with an accurate in vitro biological profile of any given PC-based formulation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Bone strength in pure bending: bearing of geometric and material properties.

    PubMed

    Winter, Werner

    2008-01-01

    Osteoporosis is characterized by decreasing of bone mass and bone strength with advanced age. For characterization of material properties of dense and cellular bone the volumetric bone mineral density (vBMD) is one of the most important contributing factors to bone strength. Often bending tests of whole bone are used to get information about the state of osteoporosis. In a first step, different types of cellular structures are considered to characterize vBMD and its influence to elastic and plastic material properties. Afterwards, the classical theory of plastic bending is used to describe the non-linear moment-curvature relation of a whole bone. For bending of whole bone with sandwich structure an effective second moment of area can be defined. The shape factor as a pure geometrical value is considered to define bone strength. This factor is discussed for a bone with circular cross section and different thickness of cortical bone. The deduced relations and the decrease of material properties are used to demonstrate the influence of osteoporosis to bone bending strength. It can be shown that the elastic and plastic material properties of bone are related to a relative bone mineral density. Starting from an elastic-plastic bone behavior with an constant yield stress the non-linear moment-curvature relation in bending is related to yielding of the fibres in the cross section. The ultimate moment is characterized by a shape factor depending on the geometry of the cross section and on the change of cortical thickness.

  20. Calcium Phosphate Cement with Antimicrobial Properties and Radiopacity as an Endodontic Material

    PubMed Central

    Shieh, Tzong-Ming; Hsu, Shih-Ming; Chang, Kai-Chi; Lin, Dan-Jae

    2017-01-01

    Calcium phosphate cements (CPCs) have several advantages for use as endodontic materials, and such advantages include ease of use, biocompatibility, potential hydroxyapatite-forming ability, and bond creation between the dentin and appropriate filling materials. However, unlike tricalcium silicate (CS)-based materials, CPCs do not have antibacterial properties. The present study doped a nonwashable CPC with 0.25–1.0 wt % hinokitiol and added 0, 5, and 10 wt % CS. The CPCs with 0.25–0.5 wt % hinokitiol showed appreciable antimicrobial properties without alterations in their working or setting times, mechanical properties, or cytocompatibility. Addition of CS slightly retarded the apatite formation of CPC and the working and setting time was obviously reduced. Moreover, addition of CS dramatically increased the compressive strength of CPC. Doping CS with 5 wt % ZnO provided additional antibacterial effects to the present CPC system. CS and hinokitiol exerted a synergic antibacterial effect, and the CPC with 0.25 wt % hinokitiol and 10 wt % CS (doped with 5 wt % ZnO) had higher antibacterial properties than that of pure CS. The addition of 10 wt % bismuth subgallate doubled the CPC radiopacity. The results demonstrate that hinokitiol and CS can improve the antibacterial properties of CPCs, and they can thus be considered for endodontic applications. PMID:29088119

  1. Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials

    PubMed Central

    Asteris, Panagiotis G.; Roussis, Panayiotis C.; Douvika, Maria G.

    2017-01-01

    This work presents a soft-sensor approach for estimating critical mechanical properties of sandcrete materials. Feed-forward (FF) artificial neural network (ANN) models are employed for building soft-sensors able to predict the 28-day compressive strength and the modulus of elasticity of sandcrete materials. To this end, a new normalization technique for the pre-processing of data is proposed. The comparison of the derived results with the available experimental data demonstrates the capability of FF ANNs to predict with pinpoint accuracy the mechanical properties of sandcrete materials. Furthermore, the proposed normalization technique has been proven effective and robust compared to other normalization techniques available in the literature. PMID:28598400

  2. Material properties from contours: New insights on object perception.

    PubMed

    Pinna, Baingio; Deiana, Katia

    2015-10-01

    In this work we explored phenomenologically the visual complexity of the material attributes on the basis of the contours that define the boundaries of a visual object. The starting point is the rich and pioneering work done by Gestalt psychologists and, more in detail, by Rubin, who first demonstrated that contours contain most of the information related to object perception, like the shape, the color and the depth. In fact, by investigating simple conditions like those used by Gestalt psychologists, mostly consisting of contours only, we demonstrated that the phenomenal complexity of the material attributes emerges through appropriate manipulation of the contours. A phenomenological approach, analogous to the one used by Gestalt psychologists, was used to answer the following questions. What are contours? Which attributes can be phenomenally defined by contours? Are material properties determined only by contours? What is the visual syntactic organization of object attributes? The results of this work support the idea of a visual syntactic organization as a new kind of object formation process useful to understand the language of vision that creates well-formed attribute organizations. The syntax of visual attributes can be considered as a new way to investigate the modular coding and, more generally, the binding among attributes, i.e., the issue of how the brain represents the pairing of shape and material properties. Copyright © 2015. Published by Elsevier Ltd.

  3. Mechanical properties of new dental pulp-capping materials.

    PubMed

    Nielsen, Matthew J; Casey, Jeffery A; VanderWeele, Richard A; Vandewalle, Kraig S

    2016-01-01

    The mechanical properties of pulp-capping materials may affect their resistance to fracture during placement of a final restorative material or while supporting an overlying restoration over time. The purpose of this study was to compare the compressive strength, flexural strength, and flexural modulus of 2 new pulp-capping materials (TheraCal LC and Biodentine), mineral trioxide aggregate (MTA), and calcium hydroxide over time. Specimens were created in molds and tested to failure in a universal testing machine after 15 minutes, 3 hours, and 24 hours. The MTA specimens did not set at 15 minutes. At all time periods, TheraCal LC had the greatest compressive and flexural strengths. After 3 and 24 hours, Biodentine had the greatest flexural modulus. TheraCal LC had greater early strength to potentially resist fracture during immediate placement of a final restorative material. Biodentine had greater stiffness after 3 hours to potentially provide better support of an overlying restoration under function over time.

  4. Synthesis and properties of nanocrystalline Bi-Te based thermoelectric materials for energy application

    NASA Astrophysics Data System (ADS)

    Almohaimeed, Sulaiman

    Thermoelectric phenomenon is the science associated with converting thermal energy into electricity based on the Seebeck effect. Bismuth telluride Bi 2Te3 is currently considered to be the state-of-the art thermoelectric material with high efficiency for low temperature applications and is therefore attractive for energy harvesting processes. Nanostructures thermoelectric materials provide a novel way to enhance thermoelectric properties and are considered to be the efficient building blocks for thermoelectric devices. In this work, n- and p-type bulk nanocrystalline Bismuth telluride thermoelectric materials were prepared by mechanical alloying / ball milling technique. The produced nano-crystalline powder were then consolidated using hot compaction under inert atmosphere. The novel processing of these materials maintained the nanostructure in both n- and p-type. Structural properties of the n- and p-types were characterized using X ray diffraction, scanning electron microscopy and transmission electron microscope. These techniques proved that the average grian size of the milled thermoelectric materials was about 20 nm. Accordingly, a Significant improvement in the figure of merit (ZT) is achieved through significant lattice thermal conductivity reduction and Seebeck coefficient improvement. The maximum ZT value for the n-type nanocrystalline thermoelectric was 1.67 at 373 K while the maximum ZT value for the p-type was 1.78 at the same temperature. These values are considered to be the highest values reported for similar materials. Evaluation of the mechanical properties was also performed through microhardness measurement using Vickers micro-hardness test, which shows an enhancement in mechanical properties for the produced materials.

  5. A general-purpose machine learning framework for predicting properties of inorganic materials

    DOE PAGES

    Ward, Logan; Agrawal, Ankit; Choudhary, Alok; ...

    2016-08-26

    A very active area of materials research is to devise methods that use machine learning to automatically extract predictive models from existing materials data. While prior examples have demonstrated successful models for some applications, many more applications exist where machine learning can make a strong impact. To enable faster development of machine-learning-based models for such applications, we have created a framework capable of being applied to a broad range of materials data. Our method works by using a chemically diverse list of attributes, which we demonstrate are suitable for describing a wide variety of properties, and a novel method formore » partitioning the data set into groups of similar materials to boost the predictive accuracy. In this manuscript, we demonstrate how this new method can be used to predict diverse properties of crystalline and amorphous materials, such as band gap energy and glass-forming ability.« less

  6. A general-purpose machine learning framework for predicting properties of inorganic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Logan; Agrawal, Ankit; Choudhary, Alok

    A very active area of materials research is to devise methods that use machine learning to automatically extract predictive models from existing materials data. While prior examples have demonstrated successful models for some applications, many more applications exist where machine learning can make a strong impact. To enable faster development of machine-learning-based models for such applications, we have created a framework capable of being applied to a broad range of materials data. Our method works by using a chemically diverse list of attributes, which we demonstrate are suitable for describing a wide variety of properties, and a novel method formore » partitioning the data set into groups of similar materials to boost the predictive accuracy. In this manuscript, we demonstrate how this new method can be used to predict diverse properties of crystalline and amorphous materials, such as band gap energy and glass-forming ability.« less

  7. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    DOEpatents

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  8. Material Properties of the Posterior Human Sclera☆

    PubMed Central

    Grytz, Rafael; Fazio, Massimo A.; Girard, Michael J.A.; Libertiaux, Vincent; Bruno, Luigi; Gardiner, Stuart; Girkin, Christopher A.; Downs, J. Crawford

    2013-01-01

    To characterize the material properties of posterior and peripapillary sclera from human donors, and to investigate the macro- and micro-scale strains as potential control mechanisms governing mechanical homeostasis. Posterior scleral shells from 9 human donors aged 57–90 years were subjected to IOP elevations from 5 to 45 mmHg and the resulting full-field displacements were recorded using laser speckle interferometry. Eye-specific finite element models were generated based on experimentally measured scleral shell surface geometry and thickness. Inverse numerical analyses were performed to identify material parameters for each eye by matching experimental deformation measurements to model predictions using a microstructure-based constitutive formulation that incorporates the crimp response and anisotropic architecture of scleral collagen fibrils. The material property fitting produced models that fit both the overall and local deformation responses of posterior scleral shells very well. The nonlinear stiffening of the sclera with increasing IOP was well reproduced by the uncrimping of scleral collagen fibrils, and a circumferentially-aligned ring of collagen fibrils around the scleral canal was predicted in all eyes. Macroscopic in-plane strains were significantly higher in peripapillary region then in the mid-periphery. In contrast, the meso- and micro-scale strains at the collagen network and collagen fibril level were not significantly different between regions. The elastic response of the posterior human sclera can be characterized by the anisotropic architecture and crimp response of scleral collagen fibrils. The similar collagen fibril strains in the peripapillary and mid-peripheral regions support the notion that the scleral collagen architecture including the circumpapillary ring of collagen fibrils evolved to establish optimal load bearing conditions at the collagen fibril level. PMID:23684352

  9. Hydrodynamic & Transport Properties of Dirac Materials in the Quantum Limit

    NASA Astrophysics Data System (ADS)

    Gochan, Matthew; Bedell, Kevin

    Dirac materials are a versatile class of materials in which an abundance of unique physical phenomena can be observed. Such materials are found in all dimensions, with the shared property that their low-energy fermionic excitations behave as massless Dirac fermions and are therefore governed by the Dirac equation. The most popular Dirac material, its two dimensional version in graphene, is the focus of this work. We seek a deeper understanding of the interactions in the quantum limit within graphene. Specifically, we derive hydrodynamic and transport properties, such as the conductivity, viscosity, and spin diffusion, in the low temperature regime where electron-electron scattering is dominant. To conclude, we look at the so-called universal lower bound conjectured by the anti-de Sitter/conformal field theory (AdS/CFT) correspondence for the ratio of shear viscosity to entropy density ratio. The lower bound, given by η / s >= ℏ / (4 πkB) , is supposedly obeyed by all quantum fluids. This leads us to ask whether or not graphene can be considered a quantum fluid and perhaps a ''nearly perfect fluid''(NPF) if this is the case, is it possible to find a violation of this bound at low temperatures.

  10. An ab initio electronic transport database for inorganic materials

    DOE PAGES

    Ricci, Francesco; Chen, Wei; Aydemir, Umut; ...

    2017-07-04

    Electronic transport in materials is governed by a series of tensorial properties such as conductivity, Seebeck coefficient, and effective mass. These quantities are paramount to the understanding of materials in many fields from thermoelectrics to electronics and photovoltaics. Transport properties can be calculated from a material’s band structure using the Boltzmann transport theory framework. We present here the largest computational database of electronic transport properties based on a large set of 48,000 materials originating from the Materials Project database. Our results were obtained through the interpolation approach developed in the BoltzTraP software, assuming a constant relaxation time. We present themore » workflow to generate the data, the data validation procedure, and the database structure. In conclusion, our aim is to target the large community of scientists developing materials selection strategies and performing studies involving transport properties.« less

  11. An ab initio electronic transport database for inorganic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricci, Francesco; Chen, Wei; Aydemir, Umut

    Electronic transport in materials is governed by a series of tensorial properties such as conductivity, Seebeck coefficient, and effective mass. These quantities are paramount to the understanding of materials in many fields from thermoelectrics to electronics and photovoltaics. Transport properties can be calculated from a material’s band structure using the Boltzmann transport theory framework. We present here the largest computational database of electronic transport properties based on a large set of 48,000 materials originating from the Materials Project database. Our results were obtained through the interpolation approach developed in the BoltzTraP software, assuming a constant relaxation time. We present themore » workflow to generate the data, the data validation procedure, and the database structure. In conclusion, our aim is to target the large community of scientists developing materials selection strategies and performing studies involving transport properties.« less

  12. Measurements of Electrical and Electron Emission Properties of Highly Insulating Materials

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Brunson, Jerilyn; Hoffman, Ryan; Abbott, Jonathon; Thomson, Clint; Sim, Alec

    2005-01-01

    Highly insulating materials often acquire significant charges when subjected to fluxes of electrons, ions, or photons. This charge can significantly modify the materials properties of the materials and have profound effects on the functionality of the materials in a variety of applications. These include charging of spacecraft materials due to interactions with the severe space environment, enhanced contamination due to charging in Lunar of Martian environments, high power arching of cables and sources, modification of tethers and ion thrusters for propulsion, and scanning electron microscopy, to name but a few examples. This paper describes new techniques and measurements of the electron emission properties and resistivity of highly insulating materials. Electron yields are a measure of the number of electrons emitted from a material per incident particle (electron, ion or photon). Electron yields depend on incident species, energy and angle, and on the material. They determine the net charge acquired by a material subject to a give incident flu. New pulsed-beam techniques will be described that allow accurate measurement of the yields for uncharged insulators and measurements of how the yields are modified as charge builds up in the insulator. A key parameter in modeling charge dissipation is the resistivity of insulating materials. This determines how charge will accumulate and redistribute across an insulator, as well as the time scale for charge transport and dissipation. Comparison of new long term constant-voltage methods and charge storage methods for measuring resistivity of highly insulating materials will be compared to more commonly used, but less accurate methods.

  13. Computational design of high efficiency release targets for use at ISOL facilities

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Alton, G. D.; Middleton, J. W.

    1999-06-01

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated vitreous carbon fiber (RVCF) or carbon-bonded-carbon-fiber (CBCF) to form highly permeable composite target matrices. Computational studies which simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected targets and thermal analyses of temperature distributions within a prototype target/heat-sink system subjected to primary ion beam irradiation will be presented in this report.

  14. Effects of mechanical properties of thermoplastic materials on the initial force of thermoplastic appliances.

    PubMed

    Kohda, Naohisa; Iijima, Masahiro; Muguruma, Takeshi; Brantley, William A; Ahluwalia, Karamdeep S; Mizoguchi, Itaru

    2013-05-01

    To measure the forces delivered by thermoplastic appliances made from three materials and investigate effects of mechanical properties, material thickness, and amount of activation on orthodontic forces. Three thermoplastic materials, Duran (Scheu Dental), Erkodur (Erkodent Erich Kopp GmbH), and Hardcast (Scheu Dental), with two different thicknesses were selected. Values of elastic modulus and hardness were obtained from nanoindentation measurements at 28°C. A custom-fabricated system with a force sensor was employed to obtain measurements of in vitro force delivered by the thermoplastic appliances for 0.5-mm and 1.0-mm activation for bodily tooth movement. Experimental results were subjected to several statistical analyses. Hardcast had significantly lower elastic modulus and hardness than Duran and Erkodur, whose properties were not significantly different. Appliances fabricated from thicker material (0.75 mm or 0.8 mm) always produced significantly greater force than those fabricated from thinner material (0.4 mm or 0.5 mm). Appliances with 1.0-mm activation produced significantly lower force than those with 0.5-mm activation, except for 0.4-mm thick Hardcast appliances. A strong correlation was found between mechanical properties of the thermoplastic materials and force produced by the appliances. Orthodontic forces delivered by thermoplastic appliances depend on the material, thickness, and amount of activation. Mechanical properties of the polymers obtained by nanoindentation testing are predictive of force delivery by these appliances.

  15. Semiclassical transport properties of IrGa3: a promising thermoelectric material.

    PubMed

    Alvarez Quiceno, Juan Camilo; Dalpian, Gustavo; Fazzio, Adalberto; Osorio-Guillén, Jorge M

    2018-01-09

    IrGa3 is an intermetallic compound which is expected to be a metal, but a study on the electronic properties of this material to confirm its metallic character is not available in the literature. In this work, we report for the first time a first-principles Density Functional Theory and semiclassical Boltzmann theory study of the structural, electronic and transport properties of this material. The inclusion of the spin-orbit coupling term is crucial to calculate accurately the electronic properties of this compound. We have established that IrGa3 is an indirect semiconductor with a narrow gap of 0.07 eV. From semiclassical Boltzmann transport theory, it is inferred that this material, with the appropriate hole concentration, could have a thermoelectric figure of merit at room temperature comparable to other intermetallic compounds such as FeGa3, though the transport properties of IrGa3 are highly anisotropic. . © 2018 IOP Publishing Ltd.

  16. Statistically based material properties: A military handbook-17 perspective

    NASA Technical Reports Server (NTRS)

    Neal, Donald M.; Vangel, Mark G.

    1990-01-01

    The statistical procedures and their importance in obtaining composite material property values in designing structures for aircraft and military combat systems are described. The property value is such that the strength exceeds this value with a prescribed probability with 95 percent confidence in the assertion. The survival probabilities are the 99th percentile and 90th percentile for the A and B basis values respectively. The basis values for strain to failure measurements are defined in a similar manner. The B value is the primary concern.

  17. NDCX-II target experiments and simulations

    DOE PAGES

    Barnard, J. J.; More, R. M.; Terry, M.; ...

    2013-06-13

    The ion accelerator NDCX-II is undergoing commissioning at Lawrence Berkeley National Laboratory (LBNL). Its principal mission is to explore ion-driven High Energy Density Physics (HEDP) relevant to Inertial Fusion Energy (IFE) especially in the Warm Dense Matter (WDM) regime. We have carried out hydrodynamic simulations of beam-heated targets for parameters expected for the initial configuration of NDCX-II. For metal foils of order one micron thick (thin targets), the beam is predicted to heat the target in a timescale comparable to the hydrodynamic expansion time for experiments that infer material properties from measurements of the resulting rarefaction wave. We have alsomore » carried out hydrodynamic simulations of beam heating of metallic foam targets several tens of microns thick (thick targets) in which the ion range is shorter than the areal density of the material. In this case shock waves will form and we derive simple scaling laws for the efficiency of conversion of ion energy into kinetic energy of fluid flow. Geometries with a tamping layer may also be used to study the merging of a tamper shock with the end-of-range shock. As a result, this process can occur in tamped, direct drive IFE targets.« less

  18. Material properties and laser cutting of composites

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Chieh; Cheng, Wing

    Laser (Light Amplification by Stimulated Emission of Radiation) has been used successfully for many material cutting, drilling, metal welding and heat treating applications. However, laser cutting of polymer composites were attempted with varying degrees of success. Because composites are heterogeneous, the energy applied by laser could result in severe resin degradation before fibers were cut. In this study, cutting of glass, Kevlar, and graphite composites were evaluated based on their material properties and laser cutting parameters. A transient heat transfer analysis was used to determine the relative heat affected zones of these composites. Kevlar composites can be cut very well while graphite composites are difficult to cut. Though the cutting process is much more complicated in reality, the analysis provides a semi-quantitative perspective on the characteristics and limitations of laser cutting of different composites.

  19. Three-Dimensional Material Properties of Composites with S2-Glass Fibers or Ductile Hybrid Fabric

    DTIC Science & Technology

    2013-01-13

    RDECOM-TARDEC 6501 E. Eleven Mile Rd. Warren, MI 48397-5000 ABSTRACT Material properties were determined for fiber - reinforced polymers (FRPs) with...Research Development and Engineering Center (TARDEC) funded a research project to determine the mechanical properties of seven fiber reinforced ...Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Material properties were determined for fiber - reinforced

  20. Improvement in Mechanical Properties through Structural Hierarchies in Bio-Inspired Materials

    DTIC Science & Technology

    2011-02-01

    alloys , ceramics and their composites which show improvement in one mechanical property (e.g. stiffness) at the cost of another disparate one (e.g... properties of their base constituents. This is in contrast to many engineering materials, such as metals, alloys , ceramics and their composites which show...mnechanical properties seen in many synthetic nanoma- Collagen (a) Ccellous bone Collagen Collagen Lamella fibr ibi Cortical nBone Osteon C Crystak H I nm

  1. Electrical and Thermal Transport Property Studies of High-Temperature Thermoelectric Materials.

    DTIC Science & Technology

    1984-12-15

    Transport Property Studies of High-Temperature Thermoelectric Mateial 12. PERSONAL AUTHIOR(S) 113. TYPE OF REPORT 13b. TIME COVERED Ai DATE OF REPORtT (Yr...with an ABO(3 perovskite structure. Transport properties have been determined for various doping ele- ments and for different compositions. These data...THERMAL TRANSPORT PROPERTY STUDIES Unannounced [j OF HIGH-TEMPERATURE THERMOELECTRIC MATERIALS Justi±icI iou. CONTRACT F-49620-83-0109 DEF By-- Battelle

  2. Preparation and properties of hybrid materials for high-rise constructions

    NASA Astrophysics Data System (ADS)

    Matseevich, Tatyana

    2018-03-01

    The theme of the research is important because it allows to use hybrid materials as finishing in the high-rise constructions. The aim of the study was the development of producing coloured hybrid materials based on liquid glass, a polyisocyanate, epoxy resin and 2.4-toluylenediisocyanate. The detailed study of the process of stress relaxation at different temperatures in the range of 20-100°C was provided. The study found that the obtained materials are subject to the simplified technology. The materials easy to turn different colors, and dyes (e.g. Sudan blue G) are the catalysts for the curing process of the polymeric precursors. The materials have improved mechanical relaxation properties, possess different color and presentable, can be easily combined with inorganic base (concrete, metal). The limit of compressive strength varies from 32 to 17.5 MPa at a temperature of 20 to 100°C. The values σ∞ are from 20.4 to 7.7 MPa within the temperature range from 20 to 100°C. The physical parameters of materials were evaluated basing on the data of stress relaxation: the initial stress σ0, which occurs at the end of the deformation to a predetermined value; quasi-equilibrium stress σ∞, which persists for a long time relaxation process. Obtained master curves provide prediction relaxation behavior for large durations of relaxation. The study obtained new results. So, the addition of epoxy resin in the composition of the precursor improves the properties of hybrid materials. By the method of IR spectroscopy identified chemical transformations in the course of obtaining the hybrid material. Evaluated mechanical performance of these materials is long-time. Applied modern physically-based memory functions, which perfectly describe the stress relaxation process.

  3. Analysis of Electro-Optic Materials Properties on Guided Wave Devices

    DTIC Science & Technology

    1992-12-16

    AD-A262 787 APPLIED RESEARCH, INC, ANALYSIS OF ELECTRO - OPTIC MATERIALS PROPERTIES ON GUIDED WAVE DEVICES FINAL REPORT DTI 6700 ODYSSEY DR HUNTSVILLE...ALABAMA 35814-1220 s IMAR1893 APPROVED FOR PUKIC RE’.EASE DISTRIBUTION UNLIMlITED Applied Research Inc. ARI/92iR-048Z ANALYSIS OF ELECTRO - OPTIC MATERIALS...uNiT ATTN: Dr. 2aul Ashley-AMSMI-RD-~WS--CM ELEMENT NO 4 NO IAr SSiON No t1I TI TLE iciup SeawIfy 0Mft*G’I Analysis of Electro - optic Materials

  4. Effect of graphite target power density on tribological properties of graphite-like carbon films

    NASA Astrophysics Data System (ADS)

    Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao

    2018-05-01

    In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.

  5. Spatially controlled carbon sponge for targeting internalized radioactive materials in human body.

    PubMed

    Hong, Jin-Yong; Oh, Wan-Kyu; Shin, Keun-Young; Kwon, Oh Seok; Son, Suim; Jang, Jyongsik

    2012-07-01

    Carbon sponge, an adsorbent with spatially controlled structure is demonstrated for targeting internalized radiocesium and other radionuclides in human body. Three dimensionally ordered macroporous (3DOM) carbons derived from inverse opal replicas of colloidal-crystal template exhibit large surface area and high porosity, resulting in highly efficient adsorbents for radionuclides. It is also possible to enhance binding affinity and selectivity to radionuclide targets by decoration of 3DOM carbon surfaces with Prussian blue (PB) nanoparticles, and synthesized PB nanoparticles reveal low toxicity toward macrophage cells with potential advantages over oral administration. It is noteworthy that the maximum (133)Cs adsorption capacity of PB-decorated 3DOM carbons is 40.07 mmol g(-1) which is ca. 30 and 200 times higher than that of commercialized medicine Radiogardase(®) and bulk PB, respectively. Further, adsorption kinetics study indicates that the PB-decorated 3DOM carbons have the homogenous surface for (133)Cs ion adsorption and all sites have equal adsorption energies in terms of ion exchange between the cyano groups of the PB-decorated 3DOM carbons and radionuclides. As a concept of the oral-administrable "carbon sponge", the PB-decorated 3DOM carbons offer useful implications in the separation science of radioactive materials and important insight for designing novel materials for treatment of patients or suspected internal contamination with radioactive materials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Evolution of material properties during free radical photopolymerization

    NASA Astrophysics Data System (ADS)

    Wu, Jiangtao; Zhao, Zeang; Hamel, Craig M.; Mu, Xiaoming; Kuang, Xiao; Guo, Zaoyang; Qi, H. Jerry

    2018-03-01

    Photopolymerization is a widely used polymerization method in many engineering applications such as coating, dental restoration, and 3D printing. It is a complex chemical and physical process, through which a liquid monomer solution is rapidly converted to a solid polymer. In the most common free-radical photopolymerization process, the photoinitiator in the solution is exposed to light and decomposes into active radicals, which attach to monomers to start the polymerization reaction. The activated monomers then attack Cdbnd C double bonds of unsaturated monomers, which leads to the growth of polymer chains. With increases in the polymer chain length and the average molecular weight, polymer chains start to connect and form a network structure, and the liquid polymer solution becomes a dense solid. During this process, the material properties of the cured polymer change dramatically. In this paper, experiments and theoretical modeling are used to investigate the free-radical photopolymerization reaction kinetics, material property evolution and mechanics during the photopolymerization process. The model employs the first order chemical reaction rate equations to calculate the variation of the species concentrations. The degree of monomer conversion is used as an internal variable that dictates the mechanical properties of the cured polymer at different curing states, including volume shrinkage, glass transition temperature, and nonlinear viscoelastic properties. To capture the nonlinear behavior of the cured polymer under low temperature and finite deformation, a multibranch nonlinear viscoelastic model is developed. A phase evolution model is used to describe the mechanics of the coupling between the crosslink network evolution and mechanical loading during the curing process. The comparison of the model and the experimental results indicates that the model can capture property changes during curing. The model is further applied to investigate the internal stress

  7. Investigation of test methods, material properties and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.; Baum, B.

    1977-01-01

    The potentially useful encapsulating materials for Task 3 of the Low-Cost Silicon Solar Array project were studied to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. Materials for study were chosen on the basis of existing knowledge of generic chemical types having high resistance to environmental weathering. The materials varied from rubbers to thermoplastics and presented a broad range of mechanical properties and processing requirements. Basic physical and optical properties were measured on the polymers and were redetermined after exposure to indoor artificial accelerated aging conditions covering four time periods. Strengths and weaknesses of the various materials were revealed and data was accumulated for the development of predictive methodologies. To date, silicone rubbers, fluorocarbons, and acrylic polymers appear to have the most promising combination of characteristics. The fluorocarbons may be used only as films, however, because of their high cost.

  8. Controlling Structure and Properties of High Surface Area Nonwoven Materials via Hydroentangling

    NASA Astrophysics Data System (ADS)

    Luzius, Dennis

    Hydroentangling describes a technique using a series of high-velocity water jets to mechanically interlock and entangle fibers. Over the last decades researchers worked on a fundamental understanding of the process and the factors influencing the properties of the final nonwoven material. Recent studies discovered hydroentangling to be capable to create unique, knot-like structures characterized by high- and low density regions, which are believed to have interesting properties for filtration applications. However, just little is known about the impact of hydroentangling parameters on the properties of filtration media to this day. In this study we report on the effect of various hydroentangling parameters, such as jet spacing, manifold pressure, number of manifolds but also specific energy on the structure and properties of high surface area nonwoven materials. Latter was achieved by different bicomponent fiber technologies and subsequent treatments removing the sacrificial compound from the structure. The highest BET surface area was measured to be 3.5 m2 g-1 and the smallest mean fiber size about 0.5 mum. Hydroentangling with large jet spacing was found to be a parameter significantly enhancing the filtration properties of caustic-treated island-in-the-sea nonwoven materials. Moreover, improved capture efficiencies and reduced pressure drops were achieved by reducing the manifold pressure and therefore specific energy during hydroentangling. Jet spacing but not island count was found to be the dominant factor influencing the structure and properties of island-in-the-sea nonwovens. Contrary to our initial expectations increasing the island count and thus decreasing the fiber size did not result in better filtration properties. Mixed media nonwoven structures made from homocomponent and island-in-the-sea fibers were found to have lower densities, higher air permeabilities and better quality factors compared to island-in-the-sea structures hydroentangled under the

  9. Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.

    2016-01-01

    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.

  10. Supervised target detection in hyperspectral images using one-class Fukunaga-Koontz Transform

    NASA Astrophysics Data System (ADS)

    Binol, Hamidullah; Bal, Abdullah

    2016-05-01

    A novel hyperspectral target detection technique based on Fukunaga-Koontz transform (FKT) is presented. FKT offers significant properties for feature selection and ordering. However, it can only be used to solve multi-pattern classification problems. Target detection may be considered as a two-class classification problem, i.e., target versus background clutter. Nevertheless, background clutter typically contains different types of materials. That's why; target detection techniques are different than classification methods by way of modeling clutter. To avoid the modeling of the background clutter, we have improved one-class FKT (OC-FKT) for target detection. The statistical properties of target training samples are used to define tunnel-like boundary of the target class. Non-target samples are then created synthetically as to be outside of the boundary. Thus, only limited target samples become adequate for training of FKT. The hyperspectral image experiments confirm that the proposed OC-FKT technique provides an effective means for target detection.

  11. Experimental Investigation on Thermal Physical Properties of an Advanced Polyester Material

    NASA Astrophysics Data System (ADS)

    Guangfa, Gao; Shujie, Yuan; Ruiyuan, Huang; Yongchi, Li

    Polyester materials were applied widely in aircraft and space vehicles engineering. Aimed to an advanced polyester material, a series of experiments for thermal physical properties of this material were conducted, and the corresponding performance curves were obtained through statistic analyzing. The experimental results showed good consistency. And then the thermal physical parameters such as thermal expansion coefficient, engineering specific heat and sublimation heat were solved and calculated. This investigation provides an important foundation for the further research on the heat resistance and thermodynamic performance of this material.

  12. Ocean acidification alters the material properties of Mytilus edulis shells

    PubMed Central

    Fitzer, Susan C.; Zhu, Wenzhong; Tanner, K. Elizabeth; Phoenix, Vernon R.; Kamenos, Nicholas A.; Cusack, Maggie

    2015-01-01

    Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. PMID:25540244

  13. Explorations in the application of nanotechnology to improve the mechanical properties of composite materials

    NASA Astrophysics Data System (ADS)

    Yang, Cheng

    2007-12-01

    This thesis presents the research achievements on the design, preparation, characterization, and analysis of a series of composite materials. By studying the interface interaction of the composite materials using nanotechnology, we developed composite materials that achieve satisfactory mechanical properties in two classes of materials. Durable press (DP) natural textiles are important consumer products usually achieved by erosslinking the molecules in the textiles to achieve long-term wrinkle resistance, which, however, also leads to the simultaneous significant drop of mechanical properties. Herein, a series of polymeric nanoparticl es were investigated, the application of as little as ˜0.14 wt% addition of the nanoparticles improved the mechanical property of the DP cotton fabric by 56% in tearing resistance and 100% in abrasion resistance; the loss in recovery angle is negligible. The author also studied the enzyme-triggered DP treatments of silk fabrics, as a green process method. After the treatment of enzymes, excellent DP property was achieved with improved strain property. Injectable calcium phosphate powder containing acrylic bone cements are widely used in orthopedic surgery to fix artificial prostheses. However, the bending strength is still unsatisfactory. The author modified the surface of the strontium (Sr) containing hydroxyapatite (HA) filler powders with acrylolpamidronate in order to improve the overall mechanical performance of the bone cement composites. By adding 0.25 wt% of acrylolpamidronate to the Sr-HA nanopowders, more than 19% of the bending strength and more than 23% compression strength of the Sr-HA bone cement were improved. Biological evaluations revealed that these bone cement composites were biocompatible and bioactive in cell culture. The results obtained in this thesis work show an effective method to significantly enhance the mechanical properties of composite materials. Different from other available methods, by developing a

  14. Mechanical properties of thermal protection system materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul

    2005-06-01

    An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPSmore » materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.« less

  15. New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology.

    PubMed

    Peng, Qing; Dearden, Albert K; Crean, Jared; Han, Liang; Liu, Sheng; Wen, Xiaodong; De, Suvranu

    2014-01-01

    Plenty of new two-dimensional materials including graphyne, graphdiyne, graphone, and graphane have been proposed and unveiled after the discovery of the "wonder material" graphene. Graphyne and graphdiyne are two-dimensional carbon allotropes of graphene with honeycomb structures. Graphone and graphane are hydrogenated derivatives of graphene. The advanced and unique properties of these new materials make them highly promising for applications in next generation nanoelectronics. Here, we briefly review their properties, including structural, mechanical, physical, and chemical properties, as well as their synthesis and applications in nanotechnology. Graphyne is better than graphene in directional electronic properties and charge carriers. With a band gap and magnetism, graphone and graphane show important applications in nanoelectronics and spintronics. Because these materials are close to graphene and will play important roles in carbon-based electronic devices, they deserve further, careful, and thorough studies for nanotechnology applications.

  16. A simple solution to the problem of effective utilisation of the target material for pulsed laser deposition of thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzanyan, A S; Kuzanyan, A A; Petrosyan, V A

    The factors determining the efficiency of the target material utilisation for pulsed laser deposition of films are considered. The target volume is calculated, which is evaporated in the ablation process by the focused laser radiation having a rectangular form. The new device is suggested and developed for obtaining thin films by the method of laser deposition, which is specific in the employment of a simple optical system mounted outside a deposition chamber that comprises two lenses and the diaphragm and focuses the laser beam onto a target in the form of a sector-like spot. Thin films of CuO and YBaCuOmore » were deposited with this device. Several deposition cycles revealed that the target material is consumed uniformly from the entire surface of the target. A maximal spread of the target thickness was not greater than ±2% both prior to deposition and after it. The device designed provides a high coefficient of the target material utilisation efficiency. (laser deposition of thin films)« less

  17. Interdisciplinary research concerning the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The nature and properties of ceramic materials as they relate to solid state physics and metallurgy are studied. Special attention was given to the applications of ceramics to NASA programs and national needs.

  18. Nanoscale defect architectures and their influence on material properties

    NASA Astrophysics Data System (ADS)

    Campbell, Branton

    2006-10-01

    Diffraction studies of long-range order often permit one to unambiguously determine the atomic structure of a crystalline material. Many interesting material properties, however, are dominated by nanoscale crystal defects that can't be characterized in this way. Fortunately, advances in x-ray detector technology, synchrotron x-ray source brightness, and computational power make it possible to apply new methods to old problems. Our research group uses multi-megapixel x-ray cameras to map out large contiguous volumes of reciprocal space, which can then be visually explored using graphics engines originally developed by the video-game industry. Here, I will highlight a few recent examples that include high-temperature superconductors, colossal magnetoresistors and piezoelectric materials.

  19. Material variability and repetitive member factors for the allowable properties of engineered wood products

    Treesearch

    Steve Verrill; David E. Kretschmann

    2009-01-01

    It has been argued that repetitive member allowable property adjustments should be larger for high-variability materials than for low-variability materials. We report analytic calculations and simulations that suggest that the order of such adjustments should be reversed, that is, given the manner in which allowable properties are currently calculated, as the...

  20. Synthesis, characterization, properties, and applications of nanosized ferroelectric, ferromagnetic, or multiferroic materials

    DOE PAGES

    Dhak, Debasis; Hong, Seungbum; Das, Soma; ...

    2015-01-01

    Recently, there has been an enormous increase in research activity in the field of ferroelectrics and ferromagnetics especially in multiferroic materials which possess both ferroelectric and ferromagnetic properties simultaneously. However, the ferroelectric, ferromagnetic, and multiferroic properties should be further improved from the utilitarian and commercial viewpoints. Nanostructural materials are central to the evolution of future electronics and information technologies. Ferroelectrics and ferromagnetics have already been established as a dominant branch in electronics sector because of their diverse applications. The ongoing dimensional downscaling of materials to allow packing of increased numbers of components into integrated circuits provides the momentum for evolutionmore » of nanostructural devices. Nanoscaling of the above materials can result in a modification of their functionality. Furthermore, nanoscaling can be used to form high density arrays of nanodomain nanostructures, which is desirable for miniaturization of devices.« less

  1. Comparison of shrinkage related properties of various patch repair materials

    NASA Astrophysics Data System (ADS)

    Kristiawan, S. A.; Fitrianto, R. S.

    2017-02-01

    A patch repair material has been developed in the form of unsaturated polyester resin (UPR)-mortar. The performance and durability of this material are governed by its compatibility with the concrete being repaired. One of the compatibility issue that should be tackled is the dimensional compatibility as a result of differential shrinkage between the repair material and the concrete substrate. This research aims to evaluate such shrinkage related properties of UPR-mortar and to compare with those of other patch repair materials. The investigation includes the following aspects: free shrinkage, resistance to delamination and cracking. The results indicate that UPR-mortar poses a lower free shrinkage, lower risk of both delamination and cracking tendency in comparison to other repair materials.

  2. Electrostatic levitation technology for thermophysical properties of molten materials

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu

    1993-01-01

    Measurements of thermophysical properties of undercooled liquids often require some kind of levitator which isolates samples from container walls. We introduce in this presentation a high temperature/high vacuum electrostatic levitator (HTHVESL) which promises some unique capabilities for the studies of thermophysical properties of molten materials. Although substantial progress has been made in the past several months, this technology is still in the development stage, therefore, in this presentation we only focus on the present state of the HTHVESL(1) and point out other capabilities which might be realized in the near future.

  3. Electron Correlation and Tranport Properties in Nuclear Fuel Materials

    NASA Astrophysics Data System (ADS)

    Yin, Quan; Haule, Kristjan; Kotliar, Gabriel; Savrasov, Sergey; Pickett, Warren

    2011-03-01

    Using first principle LDA+DMFT method, we conduct a systematic study on the correlated electronic structures and transport properties of select actinide carbides, nitrides, and oxides, many of which are nuclear fuel materials. Our results capture the metal--insulator Mott transition within the studied systems, and the appearance of the Zhang-Rice state in uranium dioxide. More importantly, by understanding the physics underlying their transport properties, we suggest ways to improve the efficiency of currently used fuels. This work is supported by the DOE Nuclear Energy University Program, contract No. 00088708.

  4. Relevant optical properties for direct restorative materials.

    PubMed

    Pecho, Oscar E; Ghinea, Razvan; do Amaral, Erika A Navarro; Cardona, Juan C; Della Bona, Alvaro; Pérez, María M

    2016-05-01

    To evaluate relevant optical properties of esthetic direct restorative materials focusing on whitened and translucent shades. Enamel (E), body (B), dentin (D), translucent (T) and whitened (Wh) shades for E (WhE) and B (WhB) from a restorative system (Filtek Supreme XTE, 3M ESPE) were evaluated. Samples (1 mm thick) were prepared. Spectral reflectance (R%) and color coordinates (L*, a*, b*, C* and h°) were measured against black and white backgrounds, using a spectroradiometer, in a viewing booth, with CIE D65 illuminant and d/0° geometry. Scattering (S) and absorption (K) coefficients and transmittance (T%) were calculated using Kubelka-Munk's equations. Translucency (TP) and opalescence (OP) parameters and whiteness index (W*) were obtained from differences of CIELAB color coordinates. R%, S, K and T% curves from all shades were compared using VAF (Variance Accounting For) coefficient with Cauchy-Schwarz inequality. Color coordinates and optical parameters were statistically analyzed using one-way ANOVA, Tukey's test with Bonferroni correction (α=0.0007). Spectral behavior of R% and S were different for T shades. In addition, T shades showed the lowest R%, S and K values, as well as the highest T%, TP an OP values. In most cases, WhB shades showed different color and optical properties (including TP and W*) than their corresponding B shades. WhE shades showed similar mean W* values and higher mean T% and TP values than E shades. When using whitened or translucent composites, the final color is influenced not only by the intraoral background but also by the color and optical properties of multilayers used in the esthetic restoration. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Morphology and viscoelastic properties of sealing materials based on EPDM rubber.

    PubMed

    Milić, J; Aroguz, A; Budinski-Simendić, J; Radicević, R; Prendzov, S

    2008-12-01

    In this applicative study, the ratio of active and inactive filler loadings was the prime factor for determining the dynamic-mechanical behaviour of ethylene-propylene-diene monomer rubbers. Scanning electron microscopy was used to study the structure of reinforced dense and microcellular elastomeric materials. The effects of filler and blowing agent content on the morphology of composites were investigated. Microcellular samples cured in salt bath show smaller cells and uniform cell size compared with samples cured in hot air. Dynamic-mechanical thermal analysis showed appreciable changes in the viscoelastic properties by increasing active filler content, which could enable tailoring the material properties to suit sealing applications.

  6. Realization of New and Enhanced Materials Properties Through Nanostructural Control

    DTIC Science & Technology

    2007-06-11

    methods have been used to guide the design of novel new organic electroactive materials (e.g., electro - optic binary chromophore organic glasses...These new materials have yielded electro - optic coefficients as high as 450 pm/V (15 times lithium niobate) with auxiliary properties of modest optical... electro - optic activity has been achieved for the first time and theoretical conclusions have been verified by a number of new measurement techniques

  7. Targeted partial surface modification with nano-SiO2@Li2CoPO4F as high-voltage cathode material for LIBs

    NASA Astrophysics Data System (ADS)

    Chang, Caiyun; Huang, Zhipeng; Tian, Runsai; Jiang, Xinyu; Li, Chunsheng; Feng, Jijun

    2017-10-01

    Tuning whole/partial surface modification on cathode material with oxide material is a sought-after method to enhance the electrochemical performance in power storage field. Herein, nano-SiO2 targeted partial surface modified high voltage cathode material Li2CoPO4F has been successfully fabricated via a facile self-assembly process in silica dispersion at ambient temperature. With the aid of polar -OH groups attracted on the surface of SiO2 micelles, the nano-SiO2 preferentially nestle up along the borders and boundaries of Li2CoPO4F particles, where protection should be deployed with emphasis against the undesirable interactions between materials and electrolytes. Compared with pristine Li2CoPO4F, the SiO2 selectively modified Li2CoPO4F cathode materials, especially LCPF-3S, exhibit desirable electrochemical performances with higher discharge capacity, more outstanding cycle stability and favorable rate capability without any additional carbon involved. The greatly enhanced electrochemical properties can be attributed to the improved lithium-ion diffusion kinetics and structure tolerance during repeated lithiation/delithiation process. Such findings reveal a great potential of nano-SiO2 modified Li2CoPO4F as high energy cathode material for lithium ion batteries.

  8. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further

  9. Reactor Materials Program - Baseline Material Property Handbook - Mechanical Properties of 1950's Vintage Stainless Steel Weldment Components, Task Number 89-23-A-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoner, K.J.

    1999-11-05

    The Process Water System (primary coolant) piping of the nuclear production reactors constructed in the 1950''s at Savannah River Site is comprised primarily of Type 304 stainless steel with Type 308 stainless steel weld filler. A program to measure the mechanical properties of archival PWS piping and weld materials (having approximately six years of service at temperatures between 25 and 100 degrees C) has been completed. The results from the mechanical testing has been synthesized to provide a mechanical properties database for structural analyses of the SRS piping.

  10. Proposed industrial recovered materials utilization targets for the metals and metal-products industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1979-05-01

    The introductory chapter provides a discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. It discusses these industries in terms of resource characteristics, industry technology, pollution control requirements, market structure, the economics of recycling, and the issues involved in econometrically estimating scrap supply response behavior. It further presents the methodology established by DOE for the metals, textiles, rubber, and pulp and paper industries. The areas in which government policies might have a significant impact on the utilization of primary and secondary metals and on any recyclingmore » targets between now and 1987 are noted. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33. The profiles include such topics as industry structure, process technology, materials and recycling flow, and future trends. Chapter 4 specifically covers the evaluation of recycling targets for the ferrous, aluminum, copper, zinc, and lead industries. (MCW)« less

  11. Effective Materials Property Information Management for the 21st Century

    NASA Technical Reports Server (NTRS)

    Ren, Weiju; Cebon, David; Arnold, Steve

    2009-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fueled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the need for consistency, quality and traceability of data, as well as control of access to sensitive information such as proprietary data. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single "gold source" of materials information between members of global engineering teams in extended supply chains. Fortunately, material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data "pedigree" traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  12. Effective Materials Property Information Management for the 21st Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Weiju; Cebon, David; Barabash, Oleg M

    2011-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fuelled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the needs for consistency, quality and traceability of data, as well as control of access to proprietary or sensitive information. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive modelsmore » and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single gold source of materials information between members of global engineering teams in extended supply-chains. Fortunately material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data pedigree traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.« less

  13. Material properties of biofilms – key methods for understanding permeability and mechanics

    PubMed Central

    Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina

    2015-01-01

    Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the three-dimensional biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gasses, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms. PMID:25719969

  14. Cryogenic Properties of Aluminum Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum-beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-320 F) and (-252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMetl62 material was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions." O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMetl62 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O30H elongation decreased with decreasing temperature.

  15. Efficiently mapping structure-property relationships of gas adsorption in porous materials: application to Xe adsorption.

    PubMed

    Kaija, A R; Wilmer, C E

    2017-09-08

    Designing better porous materials for gas storage or separations applications frequently leverages known structure-property relationships. Reliable structure-property relationships, however, only reveal themselves when adsorption data on many porous materials are aggregated and compared. Gathering enough data experimentally is prohibitively time consuming, and even approaches based on large-scale computer simulations face challenges. Brute force computational screening approaches that do not efficiently sample the space of porous materials may be ineffective when the number of possible materials is too large. Here we describe a general and efficient computational method for mapping structure-property spaces of porous materials that can be useful for adsorption related applications. We describe an algorithm that generates random porous "pseudomaterials", for which we calculate structural characteristics (e.g., surface area, pore size and void fraction) and also gas adsorption properties via molecular simulations. Here we chose to focus on void fraction and Xe adsorption at 1 bar, 5 bar, and 10 bar. The algorithm then identifies pseudomaterials with rare combinations of void fraction and Xe adsorption and mutates them to generate new pseudomaterials, thereby selectively adding data only to those parts of the structure-property map that are the least explored. Use of this method can help guide the design of new porous materials for gas storage and separations applications in the future.

  16. Electrical properties of materials for high temperature strain gage applications

    NASA Technical Reports Server (NTRS)

    Brittain, John O.

    1989-01-01

    A study was done on the electrical resistance of materials that are potentially useful as resistance strain gages at high temperatures under static strain conditions. Initially a number of binary alloys were investigated. Later, third elements were added to these alloys, all of which were prepared by arc melting. Several transition metals were selected for experimentation, most prepared as thin films. Difficulties with electrical contacts thwarted efforts to extend measurements to the targeted 1000 C, but results obtained did suggest ways of improving the electrical resistance characteristics of certain materials.

  17. Optimal experimental designs for the estimation of thermal properties of composite materials

    NASA Technical Reports Server (NTRS)

    Scott, Elaine P.; Moncman, Deborah A.

    1994-01-01

    Reliable estimation of thermal properties is extremely important in the utilization of new advanced materials, such as composite materials. The accuracy of these estimates can be increased if the experiments are designed carefully. The objectives of this study are to design optimal experiments to be used in the prediction of these thermal properties and to then utilize these designs in the development of an estimation procedure to determine the effective thermal properties (thermal conductivity and volumetric heat capacity). The experiments were optimized by choosing experimental parameters that maximize the temperature derivatives with respect to all of the unknown thermal properties. This procedure has the effect of minimizing the confidence intervals of the resulting thermal property estimates. Both one-dimensional and two-dimensional experimental designs were optimized. A heat flux boundary condition is required in both analyses for the simultaneous estimation of the thermal properties. For the one-dimensional experiment, the parameters optimized were the heating time of the applied heat flux, the temperature sensor location, and the experimental time. In addition to these parameters, the optimal location of the heat flux was also determined for the two-dimensional experiments. Utilizing the optimal one-dimensional experiment, the effective thermal conductivity perpendicular to the fibers and the effective volumetric heat capacity were then estimated for an IM7-Bismaleimide composite material. The estimation procedure used is based on the minimization of a least squares function which incorporates both calculated and measured temperatures and allows for the parameters to be estimated simultaneously.

  18. A study of the effect of selected material properties on the ablation performance of artificial graphite

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1972-01-01

    Eighteen material properties were measured on 45 different, commercially available, artificial graphites. Ablation performance of these same graphites were also measured in a Mach 2 airstream at a stagnation pressure of 5.6 atm. Correlations were developed, where possible, between pairs of the material properties. Multiple regression equations were then formulated relating ablation performance to the various material properties, thus identifying those material properties having the strongest effect on ablation performance. These regression equations reveal that ablation performance in the present test environment depends primarily on maximum grain size, density, ash content, thermal conductivity, and mean pore radius. For optimization of ablation performance, grain size should be small, ash content low, density and thermal conductivity high, and mean pore radius large.

  19. Gap Analysis of Material Properties Data for Ferritic/Martensitic HT-9 Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Neil R.; Serrano De Caro, Magdalena; Rodriguez, Edward A.

    2012-08-28

    The US Department of Energy (DOE), Office of Nuclear Energy (NE), is supporting the development of an ASME Code Case for adoption of 12Cr-1Mo-VW ferritic/martensitic (F/M) steel, commonly known as HT-9, primarily for use in elevated temperature design of liquid-metal fast reactors (LMFR) and components. In 2011, Los Alamos National Laboratory (LANL) nuclear engineering staff began assisting in the development of a small modular reactor (SMR) design concept, previously known as the Hyperion Module, now called the Gen4 Module. LANL staff immediately proposed HT-9 for the reactor vessel and components, as well as fuel clad and ducting, due to itsmore » superior thermal qualities. Although the ASME material Code Case, for adoption of HT-9 as an approved elevated temperature material for LMFR service, is the ultimate goal of this project, there are several key deliverables that must first be successfully accomplished. The most important key deliverable is the research, accumulation, and documentation of specific material parameters; physical, mechanical, and environmental, which becomes the basis for an ASME Code Case. Time-independent tensile and ductility data and time-dependent creep and creep-rupture behavior are some of the material properties required for a successful ASME Code case. Although this report provides a cursory review of the available data, a much more comprehensive study of open-source data would be necessary. This report serves three purposes: (a) provides a list of already existing material data information that could ultimately be made available to the ASME Code, (b) determines the HT-9 material properties data missing from available sources that would be required and (c) estimates the necessary material testing required to close the gap. Ultimately, the gap analysis demonstrates that certain material properties testing will be required to fulfill the necessary information package for an ASME Code Case.« less

  20. Quantifying the risks of solid aerosol geoengineering: the role of fundamental material properties

    NASA Astrophysics Data System (ADS)

    Dykema, J. A.; Keutsch, F. N.; Keith, D.

    2017-12-01

    Solid aerosols have been considered as an alternative to sulfate aerosols for solar geoengineering due to their optical and chemical properties, which lead to different and possibly more attractive risk profiles. Solid aerosols can achieve higher solar scattering efficiency due to their higher refractive index, and in some cases may also be less effective absorbers of thermal infrared radiation. The optical properties of solid aerosols are however sensitive functions of the detailed physical properties of solid materials in question. The relevant details include the exact crystalline structure of the aerosols, the physical size of the particles, and interactions with background stratospheric molecular and particulate constituents. In this work, we examine the impact of these detailed physical properties on the radiative properties of calcite (CaCO3) solid aerosols. We examine how crystal morphology, size, chemical reactions, and interaction with background stratospheric aerosol may alter the scattering and absorption properties of calcite aerosols for solar and thermal infrared radiation. For example, in small particles, crystal lattice vibrations associated with the particle surface may lead to substantially different infrared absorption properties than bulk materials. We examine the wavelength dependence of absorption by the particles, which may lead to altered patterns of stratospheric radiative heating and equilibrium temperatures. Such temperature changes can lead to dynamical changes, with consequences for both stratospheric composition and tropospheric climate. We identify important uncertainties in the current state of understanding, investigate risks associated with these uncertainties, and survey potential approaches to quantitatively improving our knowledge of the relevant material properties.

  1. An experimental computational system for materials thermal properties determination and its application for spacecraft structures testing

    NASA Astrophysics Data System (ADS)

    Alifanov, O. M.; Budnik, S. A.; Mikhaylov, V. V.; Nenarokomov, A. V.; Titov, D. M.; Yudin, V. M.

    2007-06-01

    An experimental-computational system, which is developed at the Thermal Laboratory, Department Space Systems Engineering, Moscow Aviation Institute (MAI), is presented for investigating the thermal properties of composite materials by methods of inverse heat transfer problems. The system is aimed at investigating the materials in conditions of unsteady contact and/or radiation heating over a wide range of temperature changes and heating rates in a vacuum, air and inert gas medium. The paper considers the hardware components of the system, including the experiment facility and the automated system of control, measurement, data acquisition and processing, as well as the aspects of methodical support of thermal tests. In the next part the conception and realization of a computer code for experimental data processing to estimate the thermal properties of thermal-insulating materials is given. The most promising direction in further development of methods for non-destructive composite materials using the procedure of solving inverse problems is the simultaneous determination of a combination of their thermal and radiation properties. The general method of iterative regularization is concerned with application to the estimation of materials properties (e.g., example: thermal conductivity λ(T) and heat capacity C(T)). Such problems are of great practical importance in the study of material properties used as non-destructive surface shield in objects of space engineering, power engineering, etc. In the third part the results of practical implementation of hardware and software presented in the previous two parts are given for the estimating of thermal properties of thermal-insulating materials. The main purpose of this study is to confirm the feasibility and effectiveness of the methods developed and hardware equipment for determining thermal properties of particular modern high porous materials.

  2. Remote Memory Access Protocol Target Node Intellectual Property

    NASA Technical Reports Server (NTRS)

    Haddad, Omar

    2013-01-01

    The MagnetoSpheric Multiscale (MMS) mission had a requirement to use the Remote Memory Access Protocol (RMAP) over its SpaceWire network. At the time, no known intellectual property (IP) cores were available for purchase. Additionally, MMS preferred to implement the RMAP functionality with control over the low-level details of the design. For example, not all the RMAP standard functionality was needed, and it was desired to implement only the portions of the RMAP protocol that were needed. RMAP functionality had been previously implemented in commercial off-the-shelf (COTS) products, but the IP core was not available for purchase. The RMAP Target IP core is a VHDL (VHSIC Hardware Description Language description of a digital logic design suitable for implementation in an FPGA (field-programmable gate array) or ASIC (application-specific integrated circuit) that parses SpaceWire packets that conform to the RMAP standard. The RMAP packet protocol allows a network host to access and control a target device using address mapping. This capability allows SpaceWire devices to be managed in a standardized way that simplifies the hardware design of the device, as well as the development of the software that controls the device. The RMAP Target IP core has some features that are unique and not specified in the RMAP standard. One such feature is the ability to automatically abort transactions if the back-end logic does not respond to read/write requests within a predefined time. When a request times out, the RMAP Target IP core automatically retracts the request and returns a command response with an appropriate status in the response packet s header. Another such feature is the ability to control the SpaceWire node or router using RMAP transactions in the extended address range. This allows the SpaceWire network host to manage the SpaceWire network elements using RMAP packets, which reduces the number of protocols that the network host needs to support.

  3. Long term monitoring of mechanical properties of FRP repair materials.

    DOT National Transportation Integrated Search

    2013-06-01

    Over the years, Fiber Reinforced Polymer (FRP) composites have gained popularity in transportation infrastructure as a material able to restore and increase the capacity of existing concrete elements. Properties such as a high strength to weight rati...

  4. First-Principles Calculations of Electronic, Optical, and Transport Properties of Materials for Energy Applications

    NASA Astrophysics Data System (ADS)

    Shi, Guangsha

    Solar electricity is a reliable and environmentally friendly method of sustainable energy production and a realistic alternative to conventional fossil fuels. Moreover, thermoelectric energy conversion is a promising technology for solid-state refrigeration and efficient waste-heat recovery. Predicting and optimizing new photovoltaic and thermoelectric materials composed of Earth-abundant elements that exceed the current state of the art, and understanding how nanoscale structuring and ordering improves their energy conversion efficiency pose a challenge for materials scientists. I approach this challenge by developing and applying predictive high-performance computing methods to guide research and development of new materials for energy-conversion applications. Advances in computer-simulation algorithms and high-performance computing resources promise to speed up the development of new compounds with desirable properties and significantly shorten the time delay between the discovery of new materials and their commercial deployment. I present my calculated results on the extraordinary properties of nanostructured semiconductor materials, including strong visible-light absorbance in nanoporous silicon and few-layer SnSe and GeSe. These findings highlight the capability of nanoscale structuring and ordering to improve the performance of Earth-abundant materials compared to their bulk counterparts for solar-cell applications. I also successfully identified the dominant mechanisms contributing to free-carrier absorption in n-type silicon. My findings help evaluate the impact of the energy loss from this absorption mechanism in doped silicon and are thus important for the design of silicon solar cells. In addition, I calculated the thermoelectric transport properties of p-type SnSe, a bulk material with a record thermoelectric figure of merit. I predicted the optimal temperatures and free-carrier concentrations for thermoelectric energy conversion, as well the

  5. Gold nanorods-silicone hybrid material films and their optical limiting property

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Qi, Yanhai; Hao, Xiongwen; Peng, Xue; Li, Dongxiang

    2015-10-01

    As a kind of new optical limiting materials, gold nanoparticles have optical limiting property owing to their optical nonlinearities induced by surface plasmon resonance (SPR). Gold nanorods (GNRs) possess transversal SPR absorption and tunable longitudinal SPR absorption in the visible and near-infrared region, so they can be used as potential optical limiting materials against tunable laser pulses. In this letter, GNRs were prepared using seed-mediated growth method and surface-modified by silica coating to obtain good dispersion in polydimethylsiloxane prepolymers. Then the silicone rubber films doped with GNRs were prepared after vulcanization, whose optical limiting property and optical nonlinearity were investigated. The silicone rubber samples doped with more GNRs were found to exhibit better optical limiting performance.

  6. Ocean acidification alters the material properties of Mytilus edulis shells.

    PubMed

    Fitzer, Susan C; Zhu, Wenzhong; Tanner, K Elizabeth; Phoenix, Vernon R; Kamenos, Nicholas A; Cusack, Maggie

    2015-02-06

    Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency

    NASA Astrophysics Data System (ADS)

    Zeegers, Guido P.; Günthardt, Barbara F.; Zenobi, Renato

    2016-04-01

    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm-2) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements.

  8. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency.

    PubMed

    Zeegers, Guido P; Günthardt, Barbara F; Zenobi, Renato

    2016-04-01

    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm(-2)) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements. Graphical Abstract ᅟ.

  9. A comparison of the mechanical properties of fiberglass cast materials and their clinical relevance.

    PubMed

    Berman, A T; Parks, B G

    1990-01-01

    The mechanical properties of five synthetic fiberglass casting materials were evaluated and compared with the properties of plaster of Paris. Two of the tests were designed to bear clinical relevance and the third to determine intrinsic material properties. The effect of water on strength degradation was also evaluated. It was found that the synthetics as a group are far superior to plaster of Paris in all methods of testing and that, among the synthetics, KCast Tack Free, Deltalite "S", and KCast Improved were the stronger materials. Clinically, the most important results are that the synthetics attain their relatively high strength in a much shorter time frame than does plaster of Paris, and retain 70-90% of their strength after being immersed in water and allowed to dry.

  10. The DARWIN target list: observational properties of the G-type stars

    NASA Astrophysics Data System (ADS)

    Eiroa, C.; Fridlund, M.; Kaltenegger, L.

    2003-10-01

    DARWIN is aimed to search for terrestrial extrasolar planets and to detect biosignatures in the planet atmospheres, which will largely be influenced by the parent stars. This contribution presents a first approach to the knowledge of the observational properties of the DARWIN star candidates of G spectral type: variability, X-ray emission, stellar or planetary companions, photometric properties in the Johnson and Strömgren systems, metallicity, IR emission and rotational velocities. The information has been retrieved from different databases and catalogues. We find that some of the nearby Sun-like targets present activity in the form of variability or X-ray emission. Few of them show far-IR excesses suggesting dusty debris disks around the stars. Further, the metallicity and rotational velocity distributions agree well with the expectations for 'normal' Sun-like stars, with the exception of few stars. This kind of work - which will be refined and extended to other spectral types in the near future - and similar ones, in addition to the expected observational and theoretical progress in the exoplanetary field, will help to ellaborate more sophisticated criteria in order to optimize the final DARWIN target list. In addition, this activity provides useful information for the GENIE scientific goal of detecting and studying exo-zodiacal light.

  11. Material properties that predict preservative uptake for silicone hydrogel contact lenses.

    PubMed

    Green, J Angelo; Phillips, K Scott; Hitchins, Victoria M; Lucas, Anne D; Shoff, Megan E; Hutter, Joseph C; Rorer, Eva M; Eydelman, Malvina B

    2012-11-01

    To assess material properties that affect preservative uptake by silicone hydrogel lenses. We evaluated the water content (using differential scanning calorimetry), effective pore size (using probe penetration), and preservative uptake (using high-performance liquid chromatography with spectrophotometric detection) of silicone and conventional hydrogel soft contact lenses. Lenses grouped similarly based on freezable water content as they did based on total water content. Evaluation of the effective pore size highlighted potential differences between the surface-treated and non-surface-treated materials. The water content of the lens materials and ionic charge are associated with the degree of preservative uptake. The current grouping system for testing contact lens-solution interactions separates all silicone hydrogels from conventional hydrogel contact lenses. However, not all silicone hydrogel lenses interact similarly with the same contact lens solution. Based upon the results of our research, we propose that the same material characteristics used to group conventional hydrogel lenses, water content and ionic charge, can also be used to predict uptake of hydrophilic preservatives for silicone hydrogel lenses. In addition, the hydrophobicity of silicone hydrogel contact lenses, although not investigated here, is a unique contact lens material property that should be evaluated for the uptake of relatively hydrophobic preservatives and tear components.

  12. Effects of skeleton structure on necrosis targeting and clearance properties of radioiodinated dianthrones.

    PubMed

    Zhang, Dongjian; Jiang, Cuihua; Yang, Shengwei; Gao, Meng; Huang, Dejian; Wang, Xiaoning; Shao, Haibo; Feng, Yuanbo; Sun, Ziping; Ni, Yicheng; Zhang, Jian; Yin, Zhiqi

    2016-01-01

    Necrosis avid agents (NAAs) can be used for diagnose of necrosis-related diseases, evaluation of therapeutic responses and targeted therapeutics of tumor. In order to probe into the effects of molecular skeleton structure on necrosis targeting and clearance properties of radioiodinated dianthrones, four dianthrone compounds with the same substituents but different skeletal structures, namely Hypericin (Hyp), protohypericin (ProHyp), emodin dianthrone mesomer (ED-1) and emodin dianthrone raceme (ED-2) were synthesized and radioiodinated. Then radioiodinated dianthrones were evaluated in vitro for their necrosis avidity in A549 lung cancer cells untreated and treated with H2O2. Their biodistribution and pharmacokinetic properties were determined in rat models of induced necrosis. In vitro cell assay revealed that destruction of rigid skeleton structure dramatically reduced their necrosis targeting ability. Animal studies demonstrated that destruction of rigid skeleton structure dramatically reduced the necrotic tissue uptake and speed up the clearance from the most normal tissues for the studied compounds. Among these (131)I-dianthrones, (131)I-Hyp exhibited the highest uptake and persistent retention in necrotic tissues. Hepatic infarction could be clearly visualized by SPECT/CT using (131)I-Hyp as an imaging probe. The results suggest that the skeleton structure of Hyp is the lead structure for further structure optimization of this class of NAAs.

  13. Conceptual design of tetraazaporphyrin- and subtetraazaporphyrin-based functional nanocarbon materials: electronic structures, topologies, optical properties, and methane storage capacities.

    PubMed

    Belosludov, Rodion V; Rhoda, Hannah M; Zhdanov, Ravil K; Belosludov, Vladimir R; Kawazoe, Yoshiyuki; Nemykin, Victor N

    2016-05-11

    A large variety of conceptual three- and fourfold tetraazaporphyrin- and subtetraazaporphyrin-based functional 3D nanocage and nanobarrel structures have been proposed on the basis of in silico design. The designed structures differ in their sizes, topology, porosity, and conjugation properties. The stability of nanocages of Oh symmetry and nanobarrels of D4h symmetry was revealed on the basis of DFT and MD calculations, whereas their optical properties were assessed using a TDDFT approach and a long-range corrected LC-wPBE exchange-correlation functional. It was shown that the electronic structures and vertical excitation energies of the functional nanocage and nanobarrel structures could be easily tuned via their size, topology, and the presence of bridging sp(3) carbon atoms. TDDFT calculations suggest significantly lower excitation energies in fully conjugated nanocages and nanobarrels compared with systems with bridging sp(3) carbon fragments. Based on DFT and TDDFT calculations, the optical properties of the new materials can rival those of known quantum dots and are superior to those of monomeric phthalocyanines and their analogues. The methane gas adsorption properties of the new nanostructures and nanotubes generated by conversion from nanobarrels were studied using an MD simulation approach. The ability to store large quantities of methane (106-216 cm(3) (STP) cm(-3)) was observed in all cases with several compounds being close to or exceeding the DOE target of 180 cm(3) (STP) cm(-3) for material-based methane storage at a pressure of 3.5 MPa and room temperature.

  14. Thermomechanical properties of polymeric materials and related stresses

    NASA Technical Reports Server (NTRS)

    Lee, Sheng Yen

    1990-01-01

    The thermomechanical properties of a number of widely used polymeric materials were determined by thermomechanical analysis and dynamic mechanical analysis. A combined profile of the coefficient of thermal expansion and the modulus change over a wide temperature range obtained by the analyses shows clearly the drastic effect of the glass transition on both the CTE and the modulus of a polymer, and the damaging potential due to such effect.

  15. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1994-01-01

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly.

  16. An empirical model for transient crater growth in granular targets based on direct observations

    NASA Astrophysics Data System (ADS)

    Yamamoto, Satoru; Barnouin-Jha, Olivier S.; Toriumi, Takashi; Sugita, Seiji; Matsui, Takafumi

    2009-09-01

    The present paper describes observations of crater growth up to the time of transient crater formation and presents a new empirical model for transient crater growth as a function of time. Polycarbonate projectiles were impacted vertically into soda-lime glass sphere targets using a single-stage light-gas gun. Using a new technique with a laser sheet illuminating the target [Barnouin-Jha, O.S., Yamamoto, S., Toriumi, T., Sugita, S., Matsui, T., 2007. Non-intrusive measurements of the crater growth. Icarus, 188, 506-521], we measured the temporal change in diameter of crater cavities (diameter growth). The rate of increase in diameter at early times follows a power law relation, but the data at later times (before the end of transient crater formation) deviates from the power law relation. In addition, the power law exponent at early times and the degree of deviation from a power law at later times depend on the target. In order to interpret these features, we proposed to modify Maxwell's Z-model under the assumption that the strength of the excavation flow field decreases exponentially with time. We also derived a diameter growth model as: d(t)∝[1-exp(-βt)]γ, where d(t) is the apparent diameter of the crater cavity at time t after impact, and β and γ are constants. We demonstrated that the diameter growth model could represent well the experimental data for various targets with different target material properties, such as porosity or angle of repose. We also investigated the diameter growth for a dry sand target, which has been used to formulate previous scaling relations. The obtained results showed that the dry sand target has larger degree of deviation from a power law, indicating that the target material properties of the dry sand target have a significant effect on diameter growth, especially at later times. This may suggest that the previously reported scaling relations should be reexamined in order to account for the late-stage behavior with the

  17. Elastomer actuators: systematic improvement in properties by use of composite materials

    NASA Astrophysics Data System (ADS)

    Molberg, Martin; Leterrier, Yves; Plummer, Christopher J. G.; Löwe, Christiane; Opris, Dorina M.; Clemens, Frank; Månson, Jan-Anders E.

    2010-04-01

    Dielectric elastomer actuators (DEAs) have attracted increasing attention over the last few years owing to their outstanding properties, e.g. their large actuation strains, high energy density, and pliability, which have opened up a wide spectrum of potential applications in fields ranging from microengineering to medical prosthetics. There is consequently a huge demand for new elastomer materials with improved properties to enhance the performance of DEAs and to overcome the limitations associated with currently available materials, such as the need for high activation voltages and the poor long-term stability. The electrostatic pressure that activates dielectric elastomers can be increased by higher permittivity of the elastomer and thus may lead to lower activation voltages. This has led us to consider composite elastomeric dielectrics based on thermoplastic elastomers or PDMS, and conductive polyaniline or ceramic (soft doped PZT) powder fillers. The potential of such materials and strategies to counter the adverse effects of increased conductivity and elastic modulus are discussed.

  18. An inverse method for determining the spatially resolved properties of viscoelastic–viscoplastic three-dimensional printed materials

    PubMed Central

    Chen, X.; Ashcroft, I. A.; Wildman, R. D.; Tuck, C. J.

    2015-01-01

    A method using experimental nanoindentation and inverse finite-element analysis (FEA) has been developed that enables the spatial variation of material constitutive properties to be accurately determined. The method was used to measure property variation in a three-dimensional printed (3DP) polymeric material. The accuracy of the method is dependent on the applicability of the constitutive model used in the inverse FEA, hence four potential material models: viscoelastic, viscoelastic–viscoplastic, nonlinear viscoelastic and nonlinear viscoelastic–viscoplastic were evaluated, with the latter enabling the best fit to experimental data. Significant changes in material properties were seen in the depth direction of the 3DP sample, which could be linked to the degree of cross-linking within the material, a feature inherent in a UV-cured layer-by-layer construction method. It is proposed that the method is a powerful tool in the analysis of manufacturing processes with potential spatial property variation that will also enable the accurate prediction of final manufactured part performance. PMID:26730216

  19. An inverse method for determining the spatially resolved properties of viscoelastic-viscoplastic three-dimensional printed materials.

    PubMed

    Chen, X; Ashcroft, I A; Wildman, R D; Tuck, C J

    2015-11-08

    A method using experimental nanoindentation and inverse finite-element analysis (FEA) has been developed that enables the spatial variation of material constitutive properties to be accurately determined. The method was used to measure property variation in a three-dimensional printed (3DP) polymeric material. The accuracy of the method is dependent on the applicability of the constitutive model used in the inverse FEA, hence four potential material models: viscoelastic, viscoelastic-viscoplastic, nonlinear viscoelastic and nonlinear viscoelastic-viscoplastic were evaluated, with the latter enabling the best fit to experimental data. Significant changes in material properties were seen in the depth direction of the 3DP sample, which could be linked to the degree of cross-linking within the material, a feature inherent in a UV-cured layer-by-layer construction method. It is proposed that the method is a powerful tool in the analysis of manufacturing processes with potential spatial property variation that will also enable the accurate prediction of final manufactured part performance.

  20. Effect of Material Ion Exchanges on the Mechanical Stiffness Properties and Shear Deformation of Hydrated Cement Material Chemistry Structure C-S-H Jennit - A Computational Modeling Study

    DTIC Science & Technology

    2014-01-01

    Study Material properties and performance are governed by material molecular chemistry structures and molecular level interactions. Methods to...understand relationships between the material properties and performance and their correlation to the molecular level chemistry and morphology, and thus...find ways of manipulating and adjusting matters at the atomistic level in order to improve material performance are required. A computational material

  1. Emission properties of Ce3+ centers in barium borate glasses prepared from different precursor materials

    NASA Astrophysics Data System (ADS)

    Torimoto, Aya; Masai, Hirokazu; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki; Ohkubo, Takahiro

    2017-10-01

    The photoluminescence (PL) and X-ray induced luminescence properties of Ce-doped barium borate glasses prepared from different precursor materials have been investigated. Oxidation of Ce3+ takes place during the melting process performed using a pre-vitrified non-doped glass. Residual groups originated from the precursor materials, such as fluorine atoms and OH groups, are found to affect the optical and emission properties of the glasses. Moreover, both the PL and the X-ray induced luminescence properties of the glasses depend on the precursor materials used for their synthesis. Based on a thorough analysis of the emission properties, we conclude that the best synthesis conditions involve melting a batch containing Ce(CH3COO)3·H2O, BaCO3, and B2O3 in Ar atmosphere.

  2. Force-Field Prediction of Materials Properties in Metal-Organic Frameworks

    PubMed Central

    2016-01-01

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can be observed when looking at properties sensitive to framework vibrational modes. This observation is more pronounced upon the introduction of framework charges. PMID:28008758

  3. Impact cratering in viscous targets - Laboratory experiments

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Fink, J.; Snyder, D. B.; Gault, D. E.; Guest, J. E.; Schultz, P. H.

    1980-01-01

    To determine the effects of target yield strength and viscosity on the formation and morphology of Martian multilobed, slosh and rampart-type impact craters, 75 experiments in which target properties and impact energies were varied were carried out for high-speed motion picture observation in keeping with the following sequence: (1) projectile initial impact; (2) crater excavation and rise of ejecta plume; (3) formation of a transient central mound which generates a surge of material upon collapse that can partly override the plume deposit; and (4) oscillation of the central mound with progressively smaller surges of material leaving the crater. A dimensional analysis of the experimental results indicates that the dimensions of the central mound are proportional to (1) the energy of the impacting projectile and (2) to the inverse of both the yield strength and viscosity of the target material, and it is determined that extrapolation of these results to large Martian craters requires an effective surface layer viscosity of less than 10 to the 10th poise. These results may also be applicable to impacts on outer planet satellites composed of ice-silicate mixtures.

  4. Controlled Assembly of Lignocellulosic Biomass Components and Properties of Reformed Materials

    DOE PAGES

    Wang, Jing; Boy, Ramiz; Nguyen, Ngoc A.; ...

    2017-07-25

    Reforming whole lignocellulosic biomass into value-added materials has yet to be achieved mainly due to the infusible nature of biomass and its recalcitrance to dissolve in common organic solvents. Recently, the solubility of biomass in ionic liquids (ILs) has been explored to develop all-lignocellulosic materials; however, efficient dissolution and therefore production of value-added materials with desired mechanical properties remain a challenge. This article presents an approach to producing high-performance lignocellulosic films from hybrid poplar wood. An autohydrolysis step that removes ≤50% of the hemicellulose fraction is performed to enhance biomass solvation in 1-ethyl-3-methyl imidazolium acetate ([C2mim][OAc]). The resulting biomass–IL solutionmore » is then cast into free-standing films using different coagulating solvents, yet preserving the polymeric nature of the biomass constituents. Methanol coagulated films exhibit a cocontinuous 3D-network structure with dispersed domains of less than 100 nm. The consolidated films with controllable morphology and structural order demonstrate tensile properties better than those of quasi-isotropic wood. Here, the methods for producing these biomass derivatives have potential for fabricating novel green materials with superior performance from woody and grassy biomass.« less

  5. A polymer dataset for accelerated property prediction and design

    DOE PAGES

    Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; ...

    2016-03-01

    Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate targetmore » of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. As a result, it will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.« less

  6. The effect of target materials on the propagation of atmospheric-pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Ji, Longfei; Yan, Wen; Xia, Yang; Liu, Dongping

    2018-05-01

    The current study is focused on the effect of target materials (quartz plate, copper sheet, and quartz plate with a grounded copper sheet on the back) on the propagation of atmospheric-pressure helium plasma jets. The dynamics of ionization waves (IWs) and the relative amount of reactive oxygen species (OH and O) in the IW front were compared by using spatial and temporal images and relative optical emission spectroscopy. Our measurements show that the targets can significantly affect the propagation and intensity of the IWs. In addition, strong OH emission lines were detected when the IWs impinged upon the damp surface. Numerical simulations have been carried out to explain the experimental observation. The propagation velocity of IWs predicted by the simulation was in good agreement with the experimental results. Simulation results suggest that the density and velocity of IWs mainly depend on the electric field between the high voltage electrode tip and the target. Analysis indicates that the targets could change the electric field distribution between the high voltage electrode and targets and thus affect the dynamics and the density of the IWs, the generation of reactive oxygen species, and the corresponding sterilization efficiency.

  7. Injectable fillers: review of material and properties.

    PubMed

    Attenello, Natalie Huang; Maas, Corey S

    2015-02-01

    With an increasing understanding of the aging process and the rapidly growing interest in minimally invasive treatments, injectable facial fillers have changed the perspective for the treatment and rejuvenation of the aging face. Other than autologous fat and certain preformed implants, the collagen family products were the only Food and Drug Administration approved soft tissue fillers. But the overwhelming interest in soft tissue fillers had led to the increase in research and development of other products including bioengineered nonpermanent implants and permanent alloplastic implants. As multiple injectable soft tissue fillers and biostimulators are continuously becoming available, it is important to understand the biophysical properties inherent in each, as these constitute the clinical characteristics of the product. This article will review the materials and properties of the currently available soft tissue fillers: hyaluronic acid, calcium hydroxylapatite, poly-l-lactic acid, polymethylmethacrylate, and autologous fat (and aspirated tissue including stem cells). Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. Design of materials configurations for enhanced phononic and electronic properties

    NASA Astrophysics Data System (ADS)

    Daraio, Chiara

    The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new

  9. Tissue material properties and computational modelling of the human tibiofemoral joint: a critical review

    PubMed Central

    Akhtar, Riaz; Comerford, Eithne J.; Bates, Karl T.

    2018-01-01

    Understanding how structural and functional alterations of individual tissues impact on whole-joint function is challenging, particularly in humans where direct invasive experimentation is difficult. Finite element (FE) computational models produce quantitative predictions of the mechanical and physiological behaviour of multiple tissues simultaneously, thereby providing a means to study changes that occur through healthy ageing and disease such as osteoarthritis (OA). As a result, significant research investment has been placed in developing such models of the human knee. Previous work has highlighted that model predictions are highly sensitive to the various inputs used to build them, particularly the mathematical definition of material properties of biological tissues. The goal of this systematic review is two-fold. First, we provide a comprehensive summation and evaluation of existing linear elastic material property data for human tibiofemoral joint tissues, tabulating numerical values as a reference resource for future studies. Second, we review efforts to model tibiofemoral joint mechanical behaviour through FE modelling with particular focus on how studies have sourced tissue material properties. The last decade has seen a renaissance in material testing fuelled by development of a variety of new engineering techniques that allow the mechanical behaviour of both soft and hard tissues to be characterised at a spectrum of scales from nano- to bulk tissue level. As a result, there now exists an extremely broad range of published values for human tibiofemoral joint tissues. However, our systematic review highlights gaps and ambiguities that mean quantitative understanding of how tissue material properties alter with age and OA is limited. It is therefore currently challenging to construct FE models of the knee that are truly representative of a specific age or disease-state. Consequently, recent tibiofemoral joint FE models have been highly generic in terms of

  10. Tissue material properties and computational modelling of the human tibiofemoral joint: a critical review.

    PubMed

    Peters, Abby E; Akhtar, Riaz; Comerford, Eithne J; Bates, Karl T

    2018-01-01

    Understanding how structural and functional alterations of individual tissues impact on whole-joint function is challenging, particularly in humans where direct invasive experimentation is difficult. Finite element (FE) computational models produce quantitative predictions of the mechanical and physiological behaviour of multiple tissues simultaneously, thereby providing a means to study changes that occur through healthy ageing and disease such as osteoarthritis (OA). As a result, significant research investment has been placed in developing such models of the human knee. Previous work has highlighted that model predictions are highly sensitive to the various inputs used to build them, particularly the mathematical definition of material properties of biological tissues. The goal of this systematic review is two-fold. First, we provide a comprehensive summation and evaluation of existing linear elastic material property data for human tibiofemoral joint tissues, tabulating numerical values as a reference resource for future studies. Second, we review efforts to model tibiofemoral joint mechanical behaviour through FE modelling with particular focus on how studies have sourced tissue material properties. The last decade has seen a renaissance in material testing fuelled by development of a variety of new engineering techniques that allow the mechanical behaviour of both soft and hard tissues to be characterised at a spectrum of scales from nano- to bulk tissue level. As a result, there now exists an extremely broad range of published values for human tibiofemoral joint tissues. However, our systematic review highlights gaps and ambiguities that mean quantitative understanding of how tissue material properties alter with age and OA is limited. It is therefore currently challenging to construct FE models of the knee that are truly representative of a specific age or disease-state. Consequently, recent tibiofemoral joint FE models have been highly generic in terms of

  11. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  12. Finite amplitude effects on drop levitation for material properties measurement

    NASA Astrophysics Data System (ADS)

    Ansari Hosseinzadeh, Vahideh; Holt, R. Glynn

    2017-05-01

    The method of exciting shape oscillation of drops to extract material properties has a long history, which is most often coupled with the technique of acoustic levitation to achieve non-contact manipulation of the drop sample. We revisit this method with application to the inference of bulk shear viscosity and surface tension. The literature is replete with references to a "10% oscillation amplitude" as a sufficient condition for the application of Lamb's analytical expressions for the shape oscillations of viscous liquids. Our results show that even a 10% oscillation amplitude leads to dynamic effects which render Lamb's results inapplicable. By comparison with samples of known viscosity and surface tension, we illustrate the complicating finite-amplitude effects (mode-splitting and excess dissipation associated with vorticity) that can occur and then show that sufficiently small oscillations allow us to recover the correct material properties using Lamb's formula.

  13. Transport properties of damaged materials. Cementitious barriers partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C.

    2014-11-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, whichmore » can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore

  14. Nickel hydroxides and related materials: a review of their structures, synthesis and properties

    PubMed Central

    Hall, David S.; Lockwood, David J.; Bock, Christina; MacDougall, Barry R.

    2015-01-01

    This review article summarizes the last few decades of research on nickel hydroxide, an important material in physics and chemistry, that has many applications in engineering including, significantly, batteries. First, the structures of the two known polymorphs, denoted as α-Ni(OH)2 and β-Ni(OH)2, are described. The various types of disorder, which are frequently present in nickel hydroxide materials, are discussed including hydration, stacking fault disorder, mechanical stresses and the incorporation of ionic impurities. Several related materials are discussed, including intercalated α-derivatives and basic nickel salts. Next, a number of methods to prepare, or synthesize, nickel hydroxides are summarized, including chemical precipitation, electrochemical precipitation, sol–gel synthesis, chemical ageing, hydrothermal and solvothermal synthesis, electrochemical oxidation, microwave-assisted synthesis, and sonochemical methods. Finally, the known physical properties of the nickel hydroxides are reviewed, including their magnetic, vibrational, optical, electrical and mechanical properties. The last section in this paper is intended to serve as a summary of both the potentially useful properties of these materials and the methods for the identification and characterization of ‘unknown’ nickel hydroxide-based samples. PMID:25663812

  15. Influence of physical activity on tibial bone material properties in laying hens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Navarro, A. B.; McCormack, H. M.; Fleming, R. H.

    Laying hens develop a type of osteoporosis that arises from a loss of structural bone, resulting in high incidence of fractures. In this study, a comparison of bone material properties was made for lines of hens created by divergent selection to have high and low bone strength and housed in either individual cages, with restricted mobility, or in an aviary system, with opportunity for increased mobility. Improvement of bone biomechanics in the high line hens and in aviary housing was mainly due to increased bone mass, thicker cortical bone and more medullary bone. However, bone material properties such as corticalmore » and medullary bone mineral composition and crystallinity as well as collagen maturity did not differ between lines. However, bone material properties of birds from the different type of housing were markedly different. The cortical bone in aviary birds had a lower degree of mineralization and bone mineral was less mature and less organized than in caged birds. Here, these differences can be explained by increased bone turnover rates due to the higher physical activity of aviary birds that stimulates bone formation and bone remodeling. Multivariate statistical analyses shows that both cortical and medullary bone contribute to breaking strengthThe cortical thickness was the single most important contributor while its degree of mineralization and porosity had a smaller contribution. Lastly, bone properties had poorer correlations with mechanical properties in cage birds than in aviary birds presumably due to the greater number of structural defects of cortical bone in cage birds.« less

  16. Influence of physical activity on tibial bone material properties in laying hens

    DOE PAGES

    Rodriguez-Navarro, A. B.; McCormack, H. M.; Fleming, R. H.; ...

    2017-11-03

    Laying hens develop a type of osteoporosis that arises from a loss of structural bone, resulting in high incidence of fractures. In this study, a comparison of bone material properties was made for lines of hens created by divergent selection to have high and low bone strength and housed in either individual cages, with restricted mobility, or in an aviary system, with opportunity for increased mobility. Improvement of bone biomechanics in the high line hens and in aviary housing was mainly due to increased bone mass, thicker cortical bone and more medullary bone. However, bone material properties such as corticalmore » and medullary bone mineral composition and crystallinity as well as collagen maturity did not differ between lines. However, bone material properties of birds from the different type of housing were markedly different. The cortical bone in aviary birds had a lower degree of mineralization and bone mineral was less mature and less organized than in caged birds. Here, these differences can be explained by increased bone turnover rates due to the higher physical activity of aviary birds that stimulates bone formation and bone remodeling. Multivariate statistical analyses shows that both cortical and medullary bone contribute to breaking strengthThe cortical thickness was the single most important contributor while its degree of mineralization and porosity had a smaller contribution. Lastly, bone properties had poorer correlations with mechanical properties in cage birds than in aviary birds presumably due to the greater number of structural defects of cortical bone in cage birds.« less

  17. Correlation of materials properties with the atomic density concept

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Based on the hypothesis that the number of atoms per unit volume, accurately calculable for any substance of known real density and chemical composition, various characterizing parameters (energy levels of electrons interacting among atoms of the same or different kinds, atomic mass, bond intensity) were chosen for study. A multiple exponential equation was derived to express the relationship. Various properties were examined, and correlated with the various parameters. Some of the properties considered were: (1) heat of atomization, (2) boiling point, (3) melting point, (4) shear elastic modulus of cubic crystals, (5) thermal conductivity, and (6) refractive index for transparent substances. The solid elements and alkali halides were the materials studied. It is concluded that the number of different properties can quantitively be described by a common group of parameters for the solid elements, and a wide variety of compounds.

  18. “Smart” Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications

    PubMed Central

    Qiu, Xiaoyun; Hu, Shuwen

    2013-01-01

    Cellulose is the most abundant biomass material in nature, and possesses some promising properties, such as mechanical robustness, hydrophilicity, biocompatibility, and biodegradability. Thus, cellulose has been widely applied in many fields. “Smart” materials based on cellulose have great advantages—especially their intelligent behaviors in reaction to environmental stimuli—and they can be applied to many circumstances, especially as biomaterials. This review aims to present the developments of “smart” materials based on cellulose in the last decade, including the preparations, properties, and applications of these materials. The preparations of “smart” materials based on cellulose by chemical modifications and physical incorporating/blending were reviewed. The responsiveness to pH, temperature, light, electricity, magnetic fields, and mechanical forces, etc. of these “smart” materials in their different forms such as copolymers, nanoparticles, gels, and membranes were also reviewed, and the applications as drug delivery systems, hydrogels, electronic active papers, sensors, shape memory materials and smart membranes, etc. were also described in this review. PMID:28809338

  19. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations

    NASA Astrophysics Data System (ADS)

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-12-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  20. Quantitative description on structure–property relationships of Li-ion battery materials for high-throughput computations

    PubMed Central

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-01-01

    Abstract Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure–property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure–property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure–property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials. PMID:28458737

  1. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations.

    PubMed

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-01-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  2. Corundum ceramic materials modified with silica nanopowders: structure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Kostytsyn, M. A.; Muratov, D. S.; Lysov, D. V.; Chuprunov, K. O.; Yudin, A. G.; Leybo, D. V.

    2016-01-01

    Filtering elements are often used in the metallurgy of rare earth metals. Corundum ceramic is one of the most suitable materials for this purpose. The process of formation and the properties of nanomodified ceramic materials, which are proposed as filtering materials with tunable effective porosity, are described. A silica nanopowder is used as a porosity-increasing agent. Vortex layer apparatus is used for mixing of precursor materials. The obtained results show that nanomodification with the vortex layer apparatus using 0.04 wt. % silica nanopowder as a modifying agent leads to an increase in the compression strength of corundum ceramic by the factor of 1.5.

  3. Friction properties of biological functional materials: PVDF membranes.

    PubMed

    Chen, Long; Di, Changan; Chen, Xuguang; Li, Zhengzhi; Luo, Jia

    2017-01-02

    Touch is produced by sensations that include approaching, sliding, pressing, and temperature. This concept has become a target of research in biotechnology, especially in the field of bionic biology. This study measured sliding and pressing with traditional tactile sensors in order to improve a machine operator's judgment of surface roughness. Based on the theory of acoustic emission, this study combined polyvinylidene fluoride (PVDF) with a sonic transducer to produce tactile sensors that can detect surface roughness. Friction between PVDF films and experimental materials generated tiny acoustic signals that were transferred into electrical signals through a sonic transducer. The characteristics of the acoustic signals for the various materials were then analyzed. The results suggest that this device can effectively distinguish among different objects based on roughness. Tactile sensors designed using this principle and structure function very similarly to the human body in recognizing the surface of an object.

  4. Effect of geometric configuration on the electrocaloric properties of nanoscale ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Hou, Xu; Li, Huiyu; Shimada, Takahiro; Kitamura, Takayuki; Wang, Jie

    2018-03-01

    The electrocaloric properties of ferroelectrics are highly dependent on the domain structure in the materials. For nanoscale ferroelectric materials, the domain structure is greatly influenced by the geometric configuration of the system. Using a real-space phase field model based on the Ginzburg-Landau theory, we investigate the effect of geometric configurations on the electrocaloric properties of nanoscale ferroelectric materials. The ferroelectric hysteresis loops under different temperatures are simulated for the ferroelectric nano-metamaterials with square, honeycomb, and triangular Archimedean geometric configurations. The adiabatic temperature changes (ATCs) for three ferroelectric nano-metamaterials under different electric fields are calculated from the Maxwell relationship based on the hysteresis loops. It is found that the honeycomb specimen exhibits the largest ATC of Δ T = 4.3 °C under a field of 391.8 kV/cm among three geometric configurations, whereas the square specimen has the smallest ATC of Δ T = 2.7 °C under the same electric field. The different electrocaloric properties for three geometric configurations stem from the different domain structures. There are more free surfaces perpendicular to the electric field in the square specimen than the other two specimens, which restrict more polarizations perpendicular to the electric field, resulting in a small ATC. Due to the absence of free surfaces perpendicular to the electric field in the honeycomb specimen, the change of polarization with temperature in the direction of the electric field is more easy and thus leads to a large ATC. The present work suggests a novel approach to obtain the tunable electrocaloric properties in nanoscale ferroelectric materials by designing their geometric configurations.

  5. Synthesis, properties and applications of 2D non-graphene materials.

    PubMed

    Wang, Feng; Wang, Zhenxing; Wang, Qisheng; Wang, Fengmei; Yin, Lei; Xu, Kai; Huang, Yun; He, Jun

    2015-07-24

    As an emerging class of new materials, two-dimensional (2D) non-graphene materials, including layered and non-layered, and their heterostructures are currently attracting increasing interest due to their promising applications in electronics, optoelectronics and clean energy. In contrast to traditional semiconductors, such as Si, Ge and III-V group materials, 2D materials show significant merits of ultrathin thickness, very high surface-to-volume ratio, and high compatibility with flexible devices. Owing to these unique properties, while scaling down to ultrathin thickness, devices based on these materials as well as artificially synthetic heterostructures exhibit novel and surprising functions and performances. In this review, we aim to provide a summary on the state-of-the-art research activities on 2D non-graphene materials. The scope of the review will cover the preparation of layered and non-layered 2D materials, construction of 2D vertical van der Waals and lateral ultrathin heterostructures, and especially focus on the applications in electronics, optoelectronics and clean energy. Moreover, the review is concluded with some perspectives on the future developments in this field.

  6. Design Two-dimensional Materials with Superb Electronic and Optoelectronic Properties: The case of SiS

    NASA Astrophysics Data System (ADS)

    Wei, Su-Huai; Yang, Ji-Hui; Zhang, Yueyu; Yin, Wan-Jian; Gong, X. G.; Yakobson, Boris I.

    Two-dimensional (2D) semiconductors have many unique electronic and optoelectronic properties that is suitable for novel device applications. Most of the current study are focused on group IV or transition metal chalcogenides. In this study, using atomic transmutation and global optimization methods, we identified two group IV-VI 2D materials, Pma2-SiS and silicene sulfide that can overcome shortcomings encountered in conventional 2D semiconducttord. Pma2-SiS is found to be both chemically, energetically, and thermally stable. Most importantly, Pma2-SiS has unique electronic and optoelectronic properties, including direct bandgaps suitable for solar cells, good mobility for nanoelectronics, good flexibility of property tuning by layer thickness and strain appliance, and good air stability as well. Therefore, Pma2-SiS is expected to be a very promising 2D material in the field of 2D electronics and optoelectronics. Silicene sulfide also shows similar properties. We believe that the designing principles and approaches used to identify these materials have great potential to accelerate future finding of new functional materials within the 2D families.

  7. Force-field prediction of materials properties in metal-organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Peter G.; Moosavi, Seyed Mohamad; Witman, Matthew

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can bemore » observed when looking at properties sensitive to framework vibrational modes. As a result, this observation is more pronounced upon the introduction of framework charges.« less

  8. Force-field prediction of materials properties in metal-organic frameworks

    DOE PAGES

    Boyd, Peter G.; Moosavi, Seyed Mohamad; Witman, Matthew; ...

    2016-12-23

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can bemore » observed when looking at properties sensitive to framework vibrational modes. As a result, this observation is more pronounced upon the introduction of framework charges.« less

  9. Effective properties of dispersed phase reinforced composite materials with perfect and imperfect interfaces

    NASA Astrophysics Data System (ADS)

    Han, Ru

    This thesis focuses on the analysis of dispersed phase reinforced composite materials with perfect as well as imperfect interfaces using the Boundary Element Method (BEM). Two problems of interest are considered, namely, to determine the limitations in the use of effective properties and the analysis of failure progression at the inclusion-matrix interface. The effective moduli (effective Young's modulus, effective Poisson's ratio, effective shear modulus, and effective bulk modulus) of composite materials can be determined at the mesoscopic level using three-dimensional parallel BEM simulations. By comparing the mesoscopic BEM results and the macroscopic results based on effective properties, limitations in the effective property approach can be determined. Decohesion is an important failure mode associated with fiber-reinforced composite materials. Analysis of failure progression at the fiber-matrix interface in fiber-reinforced composite materials is considered using a softening decohesion model consistent with thermodynamic concepts. In this model, the initiation of failure is given directly by a failure criterion. Damage is interpreted by the development of a discontinuity of displacement. The formulation describing the potential development of damage is governed by a discrete decohesive constitutive equation. Numerical simulations are performed using the direct boundary element method. Incremental decohesion simulations illustrate the progressive evolution of debonding zones and the propagation of cracks along the interfaces. The effect of decohesion on the macroscopic response of composite materials is also investigated.

  10. Antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles.

    PubMed

    Ginjupalli, Kishore; Alla, Rama Krishna; Tellapragada, Chaitanya; Gupta, Lokendra; Upadhya Perampalli, Nagaraja

    2016-06-01

    Conventional spray and the immersion disinfection of irreversible hydrocolloid impression materials may lead to dimensional changes. The purpose of this in vitro study was to investigate the antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles. The antimicrobial activity and properties of 2 commercially available irreversible hydrocolloid impression materials were evaluated after incorporating varying concentrations of silver nanoparticles. Antimicrobial activity was determined using the disk diffusion method. The gel strength, permanent deformation, flow, and gelation time were measured according to American Dental Association specification #18. Analysis of variance was used to identify the significant differences within and across the groups (α=.05). Adding silver nanoparticles to irreversible hydrocolloid impression materials resulted in superior antimicrobial activity without adversely affecting their properties. Adding silver nanoparticles to Zelgan significantly increased the gel strength compared with the control group, except at 5 wt%. However, the gel strength of Tropicalgin was unaffected except at 5 wt%. An increase in the permanent deformation was found with the incorporation of silver nanoparticles in both Zelgan and Tropicalgin. The flow of Zelgan increased with the incorporation of silver nanoparticles, whereas a decrease in the flow of Tropicalgin was observed at 1 wt% and 2 wt%. An increase in the gelation time of both Zelgan and Tropicalgin was observed with the incorporation of silver nanoparticles. Based on this in vitro study, silver nanoparticles can be incorporated into irreversible hydrocolloid impression materials as antimicrobial agents without adversely affecting their properties. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Geophysical methods for determining the geotechnical engineering properties of earth materials.

    DOT National Transportation Integrated Search

    2010-03-01

    Surface and borehole geophysical methods exist to measure in-situ properties and structural : characteristics of earth materials. Application of such methods has demonstrated cost savings through : reduced design uncertainty and lower investigation c...

  12. Development of a material property database on selected ceramic matrix composite materials

    NASA Technical Reports Server (NTRS)

    Mahanta, Kamala

    1996-01-01

    Ceramic Matrix Composites, with fiber/whisker/particulate reinforcement, possess the attractive properties of ceramics such as high melting temperature, high strength and stiffness at high temperature, low density, excellent environmental resistance, combined with improved toughness and mechanical reliability. These unique properties have made these composites an enabling technology for thermomechanically demanding applications in high temperature, high stress and aggressive environments. On a broader scale, CMC's are anticipated to be applicable in aircraft propulsion, space propulsion, power and structures, in addition to ground based applications. However, it is also true that for any serious commitment of the material toward any of the intended critical thermo-mechanical applications to materialize, vigorous research has to be conducted for a thorough understanding of the mechanical and thermal behavior of CMC's. The high technology of CMC'S is far from being mature. In view of this growing need for CMC data, researchers all over the world have found themselves drawn into the characterization of CMC's such as C/SiC, SiC/SiC, SiC/Al203, SiC/Glass, SiC/C, SiC/Blackglas. A significant amount of data has been generated by the industries, national laboratories and educational institutions in the United States of America. NASA/Marshall Space Flight Center intends to collect the 'pedigreed' CMC data and store those in a CMC database within MAPTIS (Materials and Processes Technical Information System). The task of compilation of the CMC database is a monumental one and requires efforts in various directions. The project started in the form of a summer faculty fellowship in 1994 and has spilled into the months that followed and into the summer faculty fellowship of 1995 and has the prospect of continuing into the future for a healthy growth, which of course depends to a large extent on how fast CMC data are generated. The 10-week long summer fellowship has concentrated

  13. Locating Sensors for Detecting Source-to-Target Patterns of Special Nuclear Material Smuggling: A Spatial Information Theoretic Approach

    PubMed Central

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy. PMID:22163641

  14. Locating sensors for detecting source-to-target patterns of special nuclear material smuggling: a spatial information theoretic approach.

    PubMed

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.

  15. LIQUID TARGET

    DOEpatents

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  16. Modeling Spin Testing Using Location Specific Material Properties

    DTIC Science & Technology

    2012-04-01

    taken to be b. is the antiphase boundary energy (=0.20 J/m2). M is the Taylor factor of fcc (=3). 4. shearing/bowing of tertiary strong pair coupling...crystal orientation can be represented by an isotropic strength knockdown factor of 2/3 based on the reciprocal product of the polycrystal Taylor factor...Tensile and Creep Property Characterization of Potential Brayton Cycle Impeller and Duct Materials" (NASA/TM-2006-204110; Gabb, T; Gayda, J 5 Tresa

  17. Material properties of biofilms—a review of methods for understanding permeability and mechanics

    NASA Astrophysics Data System (ADS)

    Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina

    2015-02-01

    Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the 3D biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gases, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms.

  18. General introduction: Liquid and solid (materials, main properties and applications …)

    NASA Astrophysics Data System (ADS)

    Zabler, Simon

    2014-10-01

    A general introduction about the diversity of foam structures is given with focus onto the structural, mechanical and dynamical properties at hand. Two classes of materials are addressed: liquid and semi-solid foams, on the one hand, solid foams, on the other hand. The latter can be subdivided into metallic, ceramic and organic foams, depending on the nature of the solid skeleton that supports the overall cell structure. Solid foams generally stem from the concept of mechanical light-weight structures, but they can just as well be employed for their large surface area as well as for their acoustic and thermal properties. Modern biomaterials use tailored ceramic or organo-ceramic foams as bone scaffolds, whereas hierarchically micro- and nanoporous structures are being used by chemistry to control catalytic reactions. Future materials design and development is going to rely increasingly on natural and synthetic foam structures and properties, be it food, thermal insulators or car frames, thus giving a promising outlook onto the foam research and development that is about to come. xml:lang="fr"

  19. The target material influence on the current pulse during high power pulsed magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Moens, Filip; Konstantinidis, Stéphanos; Depla, Diederik

    2017-10-01

    The current-time characteristic during high power pulsed magnetron sputtering is measured under identical conditions for seventeen different target materials. Based on physical processes such as gas rarefaction, ion-induced electron emission, and electron impact ionization, two test parameters were derived that significantly correlate with specific features of the current-time characteristic: i) the peak current is correlated to the momentum transfer between the sputtered material and the argon gas, ii) while the observed current plateau after the peak is connected to the metal ionization rate.

  20. The Extraterrestrial Materials Simulation Laboratory

    NASA Technical Reports Server (NTRS)

    Green, J. R.

    2001-01-01

    In contrast to fly-by and orbital missions, in situ missions face an incredible array of challenges in near-target navigation, landing site selection, descent, landing, science operations, sample collection and handling, drilling, anchoring, subsurface descent, communications, and contamination. The wide range of materials characteristics and environments threaten mission safety and success. For example, many physical properties are poorly characterized, including strength, composition, heterogeneity, phase change, texture, thermal properties, terrain features, atmospheric interaction, and stratigraphy. Examples of the range of materials properties include, for example: (1) Comets, with a possible compressive strength ranging from a light fluff to harder than concrete: 10(exp 2) to 10 (exp 8) Pa; (2) Europa, including a possible phase change at the surface, unknown strength and terrain roughness; and (3) Titan, with a completely unknown surface and possible liquid ocean. Additional information is contained in the original extended abstract.

  1. Equilibrium paths analysis of materials with rheological properties by using the chaos theory

    NASA Astrophysics Data System (ADS)

    Bednarek, Paweł; Rządkowski, Jan

    2018-01-01

    The numerical equilibrium path analysis of the material with random rheological properties by using standard procedures and specialist computer programs was not successful. The proper solution for the analysed heuristic model of the material was obtained on the base of chaos theory elements and neural networks. The paper deals with mathematical reasons of used computer programs and also are elaborated the properties of the attractor used in analysis. There are presented results of conducted numerical analysis both in a numerical and in graphical form for the used procedures.

  2. An antibacterial and absorbable silk-based fixation material with impressive mechanical properties and biocompatibility

    NASA Astrophysics Data System (ADS)

    Shi, Chenglong; Pu, Xiaobing; Zheng, Guan; Feng, Xinglong; Yang, Xuan; Zhang, Baoliang; Zhang, Yu; Yin, Qingshui; Xia, Hong

    2016-11-01

    Implant-associated infections and non-absorbing materials are two important reasons for a second surgical procedure to remove internal fixation devices after an orthopedic internal fixation surgery. The objective of this study was to produce an antibacterial and absorbable fixation screw by adding gentamicin to silk-based materials. The antibacterial activity was assessed against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in vitro by plate cultivation and scanning electron microscopy (SEM). We also investigated the properties, such as the mechanical features, swelling properties, biocompatibility and degradation, of gentamicin-loaded silk-based screws (GSS) in vitro. The GSS showed significant bactericidal effects against S. aureus and E. coli. The antibacterial activity remained high even after 4 weeks of immersion in protease solution. In addition, the GSS maintained the remarkable mechanical properties and excellent biocompatibility of pure silk-based screws (PSS). Interestingly, after gentamicin incorporation, the degradation rate and water-absorbing capacity increased and decreased, respectively. These GSS provide both impressive material properties and antibacterial activity and have great potential for use in orthopedic implants to reduce the incidence of second surgeries.

  3. Material Properties of Three Candidate Elastomers for Space Seals Applications

    NASA Technical Reports Server (NTRS)

    Bastrzyk, Marta B.; Daniels, Christopher C.; Oswald, Jay J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2010-01-01

    A next-generation docking system is being developed by the National Aeronautics and Space Administration (NASA) to support Constellation Space Exploration Missions to low Earth orbit (LEO), to the Moon, and to Mars. A number of investigations were carried out to quantify the properties of candidate elastomer materials for use in the main interface seal of the Low Impact Docking System (LIDS). This seal forms the gas pressure seal between two mating spacecraft. Three candidate silicone elastomer compounds were examined: Esterline ELA-SA-401, Parker Hannifin S0383-70, and Parker Hannifin S0899-50. All three materials were characterized as low-outgassing compounds, per ASTM E595, so as to minimize the contamination of optical and solar array systems. Important seal properties such as outgas levels, durometer, tensile strength, elongation to failure, glass transition temperature, permeability, compression set, Yeoh strain energy coefficients, coefficients of friction, coefficients of thermal expansion, thermal conductivity and diffusivity were measured and are reported herein.

  4. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, Juergen; Aaron, A. M.; Bell, Gary L.

    2015-10-20

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panelmore » reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing

  5. Effective Materials Property Information Management for the 21st Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Weiju; Cebon, David; Arnold, Steve

    2010-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in industry, research organizations and government agencies. In part these are fuelled by the demands for higher efficiency in material testing, product design and development and engineering analysis. But equally important, organizations are being driven to employ sophisticated methods and software tools for managing their mission-critical materials information by the needs for consistency, quality and traceability of data, as well as control of access to proprietary or sensitive information. Furthermore the use of increasingly sophisticated nonlinear,more » anisotropic and multi-scale engineering analysis approaches, particularly for composite materials, requires both processing of much larger volumes of test data for development of constitutive models and much more complex materials data input requirements for Computer-Aided Engineering (CAE) software. And finally, the globalization of engineering processes and outsourcing of design and development activities generates much greater needs for sharing a single gold source of materials information between members of global engineering teams in extended supply-chains. Fortunately material property management systems have kept pace with the growing user demands. They have evolved from hard copy archives, through simple electronic databases, to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access control, version control, and quality control; (ii) a wide range of data import, export and analysis capabilities; (iii) mechanisms for ensuring that all data is traceable to its pedigree sources: details of testing programs, published sources, etc; (iv) tools for searching, reporting and viewing the data; and

  6. Classification of soft-shell materials for leisure outdoor jackets by clo defined from thermal properties testing

    NASA Astrophysics Data System (ADS)

    Tesinova, P.; Steklova, P.; Duchacova, T.

    2017-10-01

    Materials for outdoor activities are produced in various combinations and lamination helps to combine two or more components for gaining high comfort properties and lighten the structure. Producers can choose exact suitable material for construction of part or set of so called layered clothing for expected activity. Decreasing the weight of materials when preserving of high quality of water-vapour permeability, wind resistivity and hydrostatic resistivity and other comfort and usage properties is a big task nowadays. This paper is focused on thermal properties as an important parameter for being comfort during outdoor activities. Softshell materials were chosen for testing and computation of clo. Results compared with standardised clo table helps us to classify thermal insulation of the set of fabrics when defining proper clothing category.

  7. Graphene-magnesium nanocomposite: An advanced material for aerospace application

    NASA Astrophysics Data System (ADS)

    Das, D. K.; Sarkar, Jit

    2018-02-01

    This work focuses on the analytical study of mechanical and thermal properties of a nanocomposite that can be obtained by reinforcing graphene in magnesium. The estimated mechanical and thermal properties of graphene-magnesium nanocomposite are much higher than magnesium and other existing alloys used in aerospace materials. We also altered the weight percentage of graphene in the composite and observed mechanical and thermal properties of the composite increase with increase in concentration of graphene reinforcement. The Young’s modulus and thermal conductivity of graphene-magnesium nanocomposite are found to be ≥165 GPa and ≥175 W/mK, respectively. Nanocomposite material with desired properties for targeted applications can also be designed by our analytical modeling technique. This graphene-magnesium nanocomposite can be used for designing improved aerospace structure systems with enhanced properties.

  8. Tooth and bone deformation: structure and material properties by ESPI

    NASA Astrophysics Data System (ADS)

    Zaslansky, Paul; Shahar, Ron; Barak, Meir M.; Friesem, Asher A.; Weiner, Steve

    2006-08-01

    In order to understand complex-hierarchical biomaterials such as bones and teeth, it is necessary to relate their structure and mechanical-properties. We have adapted electronic speckle pattern-correlation interferometry (ESPI) to make measurements of deformation of small water-immersed specimens of teeth and bones. By combining full-field ESPI with precision mechanical loading we mapped sub-micron displacements and determined material-properties of the samples. By gradually and elastically compressing the samples, we compensate for poor S/N-ratios and displacement differences of about 100nm were reliably determined along samples just 2~3mm long. We produced stress-strain curves well within the elastic performance range of these materials under biologically relevant conditions. For human tooth-dentin, Young's modulus in inter-dental areas of the root is 40% higher than on the outer sides. For cubic equine bone samples the compression modulus of axial orientations is about double the modulus of radial and tangential orientations (20 GPa versus 10 GPa respectively). Furthermore, we measured and reproduced a surprisingly low Poisson's ratio, which averaged about 0.1. Thus the non-contact and non-destructive measurements by ESPI produce high sensitivity analyses of mechanical properties of mineralized tissues. This paves the way for mapping deformation-differences of various regions of bones, teeth and other biomaterials.

  9. Sensitivity studies of pediatric material properties on juvenile lumbar spine responses using finite element analysis.

    PubMed

    Jebaseelan, D Davidson; Jebaraj, C; Yoganandan, Narayan; Rajasekaran, S; Kanna, Rishi M

    2012-05-01

    The objective of the study was to determine the sensitivity of material properties of the juvenile spine to its external and internal responses using a finite element model under compression, and flexion-extension bending moments. The methodology included exercising the 8-year-old juvenile lumbar spine using parametric procedures. The model included the vertebral centrum, growth plates, laminae, pedicles, transverse processes and spinous processes; disc annulus and nucleus; and various ligaments. The sensitivity analysis was conducted by varying the modulus of elasticity for various components. The first simulation was done using mean material properties. Additional simulations were done for each component corresponding to low and high material property variations. External displacement/rotation and internal stress-strain responses were determined under compression and flexion-extension bending. Results indicated that, under compression, disc properties were more sensitive than bone properties, implying an elevated role of the disc under this mode. Under flexion-extension moments, ligament properties were more dominant than the other components, suggesting that various ligaments of the juvenile spine play a key role in modulating bending behaviors. Changes in the growth plate stress associated with ligament properties explained the importance of the growth plate in the pediatric spine with potential implications in progressive deformities.

  10. New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology

    PubMed Central

    Peng, Qing; Dearden, Albert K; Crean, Jared; Han, Liang; Liu, Sheng; Wen, Xiaodong; De, Suvranu

    2014-01-01

    Plenty of new two-dimensional materials including graphyne, graphdiyne, graphone, and graphane have been proposed and unveiled after the discovery of the “wonder material” graphene. Graphyne and graphdiyne are two-dimensional carbon allotropes of graphene with honeycomb structures. Graphone and graphane are hydrogenated derivatives of graphene. The advanced and unique properties of these new materials make them highly promising for applications in next generation nanoelectronics. Here, we briefly review their properties, including structural, mechanical, physical, and chemical properties, as well as their synthesis and applications in nanotechnology. Graphyne is better than graphene in directional electronic properties and charge carriers. With a band gap and magnetism, graphone and graphane show important applications in nanoelectronics and spintronics. Because these materials are close to graphene and will play important roles in carbon-based electronic devices, they deserve further, careful, and thorough studies for nanotechnology applications. PMID:24808721

  11. Establishment of gel materials with different mechanical properties by 3D gel printer SWIM-ER

    NASA Astrophysics Data System (ADS)

    Ota, Takafumi; Tase, Taishi; Okada, Koji; Saito, Azusa; Takamatsu, Kyuuichiro; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    A 3D printer is a device which can directly produce objects whose shape is the same as the original 3D digital data. Hydrogels have unique properties such as high water content, low frictional properties, biocompatibility, material permeability and high transparency, which are rare in hard and dry materials. These superior characteristics of gels promise useful medical applications. We have been working on the development of a 3D gel printer, SWIM-ER (Soft and Wet Industrial - Easy Realizer), which can make models of organs and artificial blood vessels with gel material. However, 3D printing has a problem: the mechanical properties of the printed object vary depending on printing conditions, and this matter was investigated with SWIM-ER. In the past, we found that mechanical properties of 3D gel objects depend on the deposition orientation in SWIM-ER. In this study, gels were printed with different laser scanning speeds. The mechanical properties of these gels were investigated by compression tests, water content measurements and SMILS (Scanning Microscopic Light Scattering).

  12. Ab initio theory of point defects in oxide materials: structure, properties, chemical reactivity

    NASA Astrophysics Data System (ADS)

    Pacchioni, Gianfranco

    2000-05-01

    Point defects play a fundamental role in determining the physical and chemical properties of inorganic materials. This holds not only for the bulk properties but also for the surface of oxides where several kinds of point defects exist and exhibit a rich and complex chemistry. A particularly important defect in oxides is the oxygen vacancy. Depending on the electronic structure of the material the nature of oxygen vacancies changes dramatically. In this article we provide a rationalization of the very different electronic structure of neutral and charged oxygen vacancies in SiO 2 and MgO, two oxide materials with completely different electronic structure (from very ionic, MgO, to largely covalent, SiO 2). We used methods of ab initio quantum chemistry, from density functional theory (DFT) to configuration interaction (CI), to determine the ground and excited state properties of these defects. The theoretical results are combined with recent spectroscopic measurements. A series of observable properties has been determined in this way: defect formation energies, hyperfine interactions in electron paramagnetic resonance (EPR) spectra of paramagnetic centers, optical spectra, surface chemical reactivity. The interplay between experimental and theoretical information allows one to unambiguously identify the structure of oxygen vacancies in these binary oxides and on their surfaces.

  13. Microphysical, microchemical and adhesive properties of lunar material. 3: Gas interaction with lunar material

    NASA Technical Reports Server (NTRS)

    Grossman, J. J.; Mukherjee, N. R.; Ryan, J. A.

    1972-01-01

    Knowledge of the reactivity of lunar material surfaces is important for understanding the effects of the lunar or space environment upon this material, particularly its nature, behavior and exposure history in comparison to terrestrial materials. Adsorptive properties are one of the important techniques for such studies. Gas adsorption measurements were made on an Apollo 12 ultrahigh vacuum-stored sample and Apollo 14 and 15 N2-stored samples. Surface area measurements were made on the latter two. Adsorbate gases used were N2, A, O2 and H2O. Krypton was used for the surface area determinations. Runs were made at room and liquid nitrogen temperature in volumetric and gravimetric systems. It was found that the adsorptive/desorptive behavior was in general significantly different from that of terrestrial materials of similar type and form. Specifically (1) the UHV-stored sample exhibited very high initial adsorption indicative of high surface reactivity, and (2) the N2-stored samples at room and liquid nitrogen temperatures showed that more gas was desorbed than introduced during adsorption, indicative of gas release from the samples. The high reactivity is a scribed cosmic ray track and solar wind damage.

  14. The Effects of Fiber Orientation and Volume Fraction of Fiber on Mechanical Properties of Additively Manufactured Composite Material

    NASA Astrophysics Data System (ADS)

    Kuchipudi, Suresh Chandra

    Additive manufacturing (AM) also known as 3D printing has tremendous advancements in recent days with a vast number of applications in industrial, automotive, architecture, consumer projects, fashion, toys, food, art, etc. Composite materials are widely used in structures with weight as a critical factor especially in aerospace industry. Recently, additive manufacturing technology, a rapidly growing innovative technology, has gained lot of importance in making composite materials. The properties of composite materials depend upon the properties of constituent's matrix and fiber. There is lot of research on effect of fiber orientation on mechanical properties of composite materials made using conventional manufacturing methods. It will be interesting and relevant to study the relationship between the fiber orientation and fiber volume with mechanical properties of additively manufactured composite materials. This thesis work presents experimental investigation of mechanical behavior like tensile strength and fatigue life with variation in fiber orientation and fiber volume fraction of 3D printed composite materials. The aim is to study the best combination of volume fraction of fiber and fiber orientation that has better fatigue strength for additive manufactured composite materials. Using this study, we can decide the type of orientation and volume percent for desired properties. This study also finds the range of fatigue limits of 3d printed composite materials.

  15. Hyperspectral target detection analysis of a cluttered scene from a virtual airborne sensor platform using MuSES

    NASA Astrophysics Data System (ADS)

    Packard, Corey D.; Viola, Timothy S.; Klein, Mark D.

    2017-10-01

    The ability to predict spectral electro-optical (EO) signatures for various targets against realistic, cluttered backgrounds is paramount for rigorous signature evaluation. Knowledge of background and target signatures, including plumes, is essential for a variety of scientific and defense-related applications including contrast analysis, camouflage development, automatic target recognition (ATR) algorithm development and scene material classification. The capability to simulate any desired mission scenario with forecast or historical weather is a tremendous asset for defense agencies, serving as a complement to (or substitute for) target and background signature measurement campaigns. In this paper, a systematic process for the physical temperature and visible-through-infrared radiance prediction of several diverse targets in a cluttered natural environment scene is presented. The ability of a virtual airborne sensor platform to detect and differentiate targets from a cluttered background, from a variety of sensor perspectives and across numerous wavelengths in differing atmospheric conditions, is considered. The process described utilizes the thermal and radiance simulation software MuSES and provides a repeatable, accurate approach for analyzing wavelength-dependent background and target (including plume) signatures in multiple band-integrated wavebands (multispectral) or hyperspectrally. The engineering workflow required to combine 3D geometric descriptions, thermal material properties, natural weather boundary conditions, all modes of heat transfer and spectral surface properties is summarized. This procedure includes geometric scene creation, material and optical property attribution, and transient physical temperature prediction. Radiance renderings, based on ray-tracing and the Sandford-Robertson BRDF model, are coupled with MODTRAN for the inclusion of atmospheric effects. This virtual hyperspectral/multispectral radiance prediction methodology has been

  16. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    NASA Technical Reports Server (NTRS)

    Peterson, G.P. (Bud) (Inventor); Hong, Haiping (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  17. Preparation of a Carbon Doped Tissue-Mimicking Material with High Dielectric Properties for Microwave Imaging Application

    PubMed Central

    Lan, Siang-Wen; Weng, Min-Hang; Yang, Ru-Yuan; Chang, Shoou-Jinn; Chung, Yaoh-Sien; Yu, Tsung-Chih; Wu, Chun-Sen

    2016-01-01

    In this paper, the oil-in-gelatin based tissue-mimicking materials (TMMs) doped with carbon based materials including carbon nanotube, graphene ink or lignin were prepared. The volume percent for gelatin based mixtures and oil based mixtures were both around 50%, and the doping amounts were 2 wt %, 4 wt %, and 6 wt %. The effect of doping material and amount on the microwave dielectric properties including dielectric constant and conductivity were investigated over an ultra-wide frequency range from 2 GHz to 20 GHz. The coaxial open-ended reflection technology was used to evaluate the microwave dielectric properties. Six measured values in different locations of each sample were averaged and the standard deviations of all the measured dielectric properties, including dielectric constant and conductivity, were less than one, indicating a good uniformity of the prepared samples. Without doping, the dielectric constant was equal to 23 ± 2 approximately. Results showed with doping of carbon based materials that the dielectric constant and conductivity both increased about 5% to 20%, and the increment was dependent on the doping amount. By proper selection of doping amount of the carbon based materials, the prepared material could map the required dielectric properties of special tissues. The proposed materials were suitable for the phantom used in the microwave medical imaging system. PMID:28773678

  18. Evaluation of some properties of two fiber-reinforced composite materials.

    PubMed

    Lassila, Lippo V J; Tezvergil, Arzu; Lahdenperä, Milla; Alander, Pasi; Shinya, Akiyoshi; Shinya, Akikazu; Vallittu, Pekka K

    2005-08-01

    Water sorption, flexural properties, bonding properties, and elemental composition of photopolymerizable resin-impregnated fiber-reinforced composite (FRC) materials (everStick C&B and BR-100) (FPD) were evaluated in this study. Bar-shaped specimens (2 x 2 x 25 mm) were prepared for water sorption and flexural strength testing. The specimens (n = 6) were polymerized either with a hand light-curing unit for 40 s or, additionally, in a light-curing oven for 20 min and stored in water for 30 days. Water sorption was measured during this time, followed by measurements of flexural strength and modulus. A shear bond strength test was performed to determine the bonding characteristics of polymerized FRC to composite resin luting cement (Panavia-F), (n = 15). The cement was bonded to the FRC substrate and the specimens were thermocycled 5000 times (5-55 degrees C) in water. SEM/EDS were analyzed to evaluate the elemental composition of the glass fibers and the fiber distribution in cross section. ANOVA showed significant differences in water sorption according to brand (p < 0.05). Water sorption of everStick C&B was 1.86 wt% (hand-unit polymerized) and 1.94 wt% (oven polymerized), whereas BR-100 was 1.07 wt% and 1.17 wt%, respectively. The flexural strength of everStick C&B after 30 days' water storage was 559 MPa (hand-unit polymerized) and 796 MPa (oven-polymerized); for BR-100, the values were 547 MPa and 689 MPa, respectively. Mean shear bond strength of composite resin cement to the FRC varied between 20.1 and 23.7 MPa, showing no statistical difference between the materials. SEM/EDS analysis revealed that fibers of both FRC materials consist of the same oxides (SiO2, CaO, and Al2O3) in ratios. The distribution of fibers in the cross section of specimens was more evenly distributed in everStick C&B than in BR-100. The results of this study suggest that there are some differences in the tested properties of the FRC materials.

  19. Dehomogenized Elastic Properties of Heterogeneous Layered Materials in AFM Indentation Experiments.

    PubMed

    Lee, Jia-Jye; Rao, Satish; Kaushik, Gaurav; Azeloglu, Evren U; Costa, Kevin D

    2018-06-05

    Atomic force microscopy (AFM) is used to study mechanical properties of biological materials at submicron length scales. However, such samples are often structurally heterogeneous even at the local level, with different regions having distinct mechanical properties. Physical or chemical disruption can isolate individual structural elements but may alter the properties being measured. Therefore, to determine the micromechanical properties of intact heterogeneous multilayered samples indented by AFM, we propose the Hybrid Eshelby Decomposition (HED) analysis, which combines a modified homogenization theory and finite element modeling to extract layer-specific elastic moduli of composite structures from single indentations, utilizing knowledge of the component distribution to achieve solution uniqueness. Using finite element model-simulated indentation of layered samples with micron-scale thickness dimensions, biologically relevant elastic properties for incompressible soft tissues, and layer-specific heterogeneity of an order of magnitude or less, HED analysis recovered the prescribed modulus values typically within 10% error. Experimental validation using bilayer spin-coated polydimethylsiloxane samples also yielded self-consistent layer-specific modulus values whether arranged as stiff layer on soft substrate or soft layer on stiff substrate. We further examined a biophysical application by characterizing layer-specific microelastic properties of full-thickness mouse aortic wall tissue, demonstrating that the HED-extracted modulus of the tunica media was more than fivefold stiffer than the intima and not significantly different from direct indentation of exposed media tissue. Our results show that the elastic properties of surface and subsurface layers of microscale synthetic and biological samples can be simultaneously extracted from the composite material response to AFM indentation. HED analysis offers a robust approach to studying regional micromechanics of

  20. Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method.

    PubMed

    Miller, Renee; Kolipaka, Arunark; Nash, Martyn P; Young, Alistair A

    2018-03-12

    Magnetic resonance elastography (MRE) has been used to estimate isotropic myocardial stiffness. However, anisotropic stiffness estimates may give insight into structural changes that occur in the myocardium as a result of pathologies such as diastolic heart failure. The virtual fields method (VFM) has been proposed for estimating material stiffness from image data. This study applied the optimised VFM to identify transversely isotropic material properties from both simulated harmonic displacements in a left ventricular (LV) model with a fibre field measured from histology as well as isotropic phantom MRE data. Two material model formulations were implemented, estimating either 3 or 5 material properties. The 3-parameter formulation writes the transversely isotropic constitutive relation in a way that dissociates the bulk modulus from other parameters. Accurate identification of transversely isotropic material properties in the LV model was shown to be dependent on the loading condition applied, amount of Gaussian noise in the signal, and frequency of excitation. Parameter sensitivity values showed that shear moduli are less sensitive to noise than the other parameters. This preliminary investigation showed the feasibility and limitations of using the VFM to identify transversely isotropic material properties from MRE images of a phantom as well as simulated harmonic displacements in an LV geometry. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Mechanical properties and internal fit of 4 CAD-CAM block materials.

    PubMed

    Goujat, Alexis; Abouelleil, Hazem; Colon, Pierre; Jeannin, Christophe; Pradelle, Nelly; Seux, Dominique; Grosgogeat, Brigitte

    2018-03-01

    Recent polymer-based computer-assisted design and computer-assisted manufacturing (CAD-CAM) materials have been commercialized for inlay restorations, a polymer-infiltrated ceramic-network (PICN) and composite resin nanoceramics. Little independent evidence regarding their mechanical properties exists. Internal adaptation is an important factor for the clinical success and longevity of a restoration, and data concerning this parameter for inlays made with these blocks are scarce. The purpose of this in vitro study was to evaluate and compare the mechanical properties (flexural strength, flexural modulus, Vickers hardness, fracture toughness) and the internal adaptation of these recent polymer-based blocks with a lithium disilicate glass-ceramic block. The materials tested in this study were a PICN material (Vita Enamic), 2 composite resin nanoceramics (Lava Ultimate; 3M ESPE and Cerasmart; GCDental Products), and a lithium disilicate glass-ceramic (IPS e.max CAD). Mechanical properties were evaluated according to ISO norm DIS 6872:2013. Bar-shaped specimens (18×3×3 mm) were prepared and submitted to a 3-point bend test using a universal testing machine at a cross-head speed of 0.5 mm/min. In addition, identical cavities were prepared in 60 human mandibular extracted molars (n=15) and optically scanned to receive mesioocclusodistal inlays milled with the 4 materials tested in a CEREC Inlab milling machine. The replica technique and a stereomicroscope (×20) were used to measure the internal fit of the inlays at 9 preselected locations. All data were statistically analyzed using 1-way ANOVA and the post hoc Tukey multiple comparison or Games-Howell test (α=.05). The mean flexural strength of the tested blocks ranged from 148.7 ±9.5 MPa (Vita Enamic) to 216.5 ±28.3 MPa (Cerasmart). The mean flexural modulus ranged from 23.3 ±6.4 GPa (Vita Enamic) to 52.8 ±10.5 GPa (IPS e.max CAD). The mean Vickers hardness ranged from 0.66 ±0.02 GPa (Cerasmart) to 5.98 ±0

  2. Review of - SiC wide-bandgap heterostructure properties as an alternate semiconductor material

    NASA Astrophysics Data System (ADS)

    Rajput Priti, J.; Patankar, Udayan S.; Koel, Ants; Nitnaware, V. N.

    2018-05-01

    Silicon substance (is also known as Quartz) is an abundant in nature and the electrical properties it exhibits, plays a vital role in developing its usage in the field of semiconductor. More than decades we can say that Silicon has shown desirable signs but at the later parts it has shown some research potential for development of alternative material as semiconductor devices. This need has come to light as we started scaling down in size of the Silicon material and up in speed. This semiconductor material started exhibiting several fundamental physical limits that include the minimum gate oxide thickness and the maximum saturation velocity of carriers which determines the operation frequency. Though the alternative semiconductors provide some answers (such as III-V's for high speed devices) for a path to skirt these problems, there also may be some ways to extend the life of silicon itself. Two paths are used as for alternative semiconductors i.e alternative gate dielectrics and silicon-based heterostructures. The SiC material has some strength properties under different conditions and find out the defects available in the material.

  3. The effect of clinically relevant thermocycling on the flexural properties of endodontic post materials.

    PubMed

    Stewardson, Dominic A; Shortall, Adrian C; Marquis, Peter M

    2010-05-01

    It is suggested that fibre-reinforced composite (FRC) posts have lower elastic moduli than metal posts and this will reduce the incidence of root fracture. However, the mechanical properties may be altered in the oral environment. The aims of this study were to determine the effect on the flexural properties of FRC and metal post materials produced by: (1) a thermocycling regime which was clinically relevant and representative of that which would occur during 1 year in the mouth and (2) storage for 1 year at body temperature. Nine FRC and two metal post material samples were sealed in polythene sleeves and thermocycled between 10 degrees C and 50 degrees C for 10,000 cycles. Additional samples were stored dry at 37 degrees C for 1 year. The flexural strength and moduli were determined by three-point bending and compared with untreated control samples. Thermocycling and storage at 37 degrees C for 1 year decreased the mean flexural modulus of all materials. This was statistically significant for 8 of 11 materials after thermocycling, and 4 of 11 materials after storage at 37 degrees C (p<0.05). Thermocycling and storage at 37 degrees C produced a non-significant increase in yield strength for both metal post materials. Thermocycling significantly increased the flexural strength of Postec while it decreased for the other FRC materials. Storage at 37 degrees C increased the flexural strength of three FRC materials (significantly for Postec) while it was decreased among the other materials. Although some of the changes noticed in flexural properties were statistically significant, it is doubtful that they are of sufficient magnitude to affect clinical performance.

  4. 'Own-Label' Versus Branded Commercial Dental Resin Composite Materials: Mechanical And Physical Property Comparisons.

    PubMed

    Shaw, Kathryn; Martins, Ricardo; Hadis, Mohammed Abdul; Burke, Trevor; Palin, William

    2016-09-01

    A majority of dental materials are manufactured by companies who have experience in the field. However, a number of "own label" materials have become available, principally marketed by distributors and other companies with little or no experience in the field. These materials are attractive because of their reduced cost, but they may have no research on which clinicians might base their potential performance. It is therefore the purpose of this work to compare the performance of different batches of a number of "own-label" dental materials with a similar number from manufacturers with experience in the field, using a variety of laboratory test regimes which include filler determination, degree of conversion, flexural strength and flexural modulus, in order to evaluate key material properties. The results indicated that own-label dental resin composites produced similar results to materials from established companies in terms of flexural strength characteristics and degree of conversion. However, a greater batch-to-batch variation in several mechanical and physical properties of the own-label materials was noted. Copyright© 2016 Dennis Barber Ltd.

  5. Electrically charged targets

    DOEpatents

    Goodman, Ronald K.; Hunt, Angus L.

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  6. Understanding Material Property Impacts on Co-Current Flame Spread: Improving Understanding Crucial for Fire Safety

    NASA Technical Reports Server (NTRS)

    Ruff, Gary (Technical Monitor); Rangwala, Ali S.; Buckley, Steven G.; Torero, Jose L.

    2004-01-01

    The prospect of long-term manned space flight brings fresh urgency to the development of an integrated and fundamental approach to the study of material flammability. Currently, NASA uses two tests, the upward flame propagation test and heat and visible smoke release rate test, to assess the flammability properties of materials to be used in space under microgravity conditions. The upward flame propagation test can be considered in the context of the 2-D analysis of Emmons. This solution incorporates material properties by a "mass transfer number", B in the boundary conditions.

  7. Process design of press hardening with gradient material property influence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neugebauer, R.; Professorship for Machine Tools and Forming Technology, TU Chemnitz; Schieck, F.

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steelmore » sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.« less

  8. Process design of press hardening with gradient material property influence

    NASA Astrophysics Data System (ADS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  9. Simulation based estimation of dynamic mechanical properties for viscoelastic materials used for vocal fold models

    NASA Astrophysics Data System (ADS)

    Rupitsch, Stefan J.; Ilg, Jürgen; Sutor, Alexander; Lerch, Reinhard; Döllinger, Michael

    2011-08-01

    In order to obtain a deeper understanding of the human phonation process and the mechanisms generating sound, realistic setups are built up containing artificial vocal folds. Usually, these vocal folds consist of viscoelastic materials (e.g., polyurethane mixtures). Reliable simulation based studies on the setups require the mechanical properties of the utilized viscoelastic materials. The aim of this work is the identification of mechanical material parameters (Young's modulus, Poisson's ratio, and loss factor) for those materials. Therefore, we suggest a low-cost measurement setup, the so-called vibration transmission analyzer (VTA) enabling to analyze the transfer behavior of viscoelastic materials for propagating mechanical waves. With the aid of a mathematical Inverse Method, the material parameters are adjusted in a convenient way so that the simulation results coincide with the measurement results for the transfer behavior. Contrary to other works, we determine frequency dependent functions for the mechanical properties characterizing the viscoelastic material in the frequency range of human speech (100-250 Hz). The results for three different materials clearly show that the Poisson's ratio is close to 0.5 and that the Young's modulus increases with higher frequencies. For a frequency of 400 Hz, the Young's modulus of the investigated viscoelastic materials is approximately 80% higher than for the static case (0 Hz). We verify the identified mechanical properties with experiments on fabricated vocal fold models. Thereby, only small deviations between measurements and simulations occur.

  10. Establishment of a Uniform Format for Data Reporting of Structural Material Properties for Reliability Analysis

    DTIC Science & Technology

    1994-06-30

    tip Opening Displacement (CTOD) Fracture Toughness Measurement". 48 The method has found application in the elastic-plastic fracture mechanics ( EPFM ...68 6.1 Proposed Material Property Database Format and Hierarchy .............. 68 6.2 Sample Application of the Material Property Database...the E 49.05 sub-committee. The relevant quality indicators applicable to the present program are: source of data, statistical basis of data

  11. Computational Modeling of Ablation on an Irradiated Target

    NASA Astrophysics Data System (ADS)

    Mehmedagic, Igbal; Thangam, Siva

    2017-11-01

    Computational modeling of pulsed nanosecond laser interaction with an irradiated metallic target is presented. The model formulation involves ablation of the metallic target irradiated by pulsed high intensity laser at normal atmospheric conditions. Computational findings based on effective representation and prediction of the heat transfer, melting and vaporization of the targeting material as well as plume formation and expansion are presented along with its relevance for the development of protective shields. In this context, the available results for a representative irradiation from 1064 nm laser pulse is used to analyze various ablation mechanisms, variable thermo-physical and optical properties, plume expansion and surface geometry. Funded in part by U. S. Army ARDEC, Picatinny Arsenal, NJ.

  12. DEVELOPMENT AND APPLICATION OF MATERIALS PROPERTIES FOR FLAW STABILITY ANALYSIS IN EXTREME ENVIRONMENT SERVICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sindelar, R; Ps Lam, P; Andrew Duncan, A

    Discovery of aging phenomena in the materials of a structure may arise after its design and construction that impact its structural integrity. This condition can be addressed through a demonstration of integrity with the material-specific degraded conditions. Two case studies of development of fracture and crack growth property data, and their application in development of in-service inspection programs for nuclear structures in the defense complex are presented. The first case study covers the development of fracture toughness properties in the form of J-R curves for rolled plate Type 304 stainless steel with Type 308 stainless steel filler in the applicationmore » to demonstrate the integrity of the reactor tanks of the heavy water production reactors at the Savannah River Site. The fracture properties for the base, weld, and heat-affected zone of the weldments irradiated at low temperatures (110-150 C) up to 6.4 dpa{sub NRT} and 275 appm helium were developed. An expert group provided consensus for application of the irradiated properties for material input to acceptance criteria for ultrasonic examination of the reactor tanks. Dr. Spencer H. Bush played a lead advisory role in this work. The second case study covers the development of fracture toughness for A285 carbon steel in high level radioactive waste tanks. The approach in this case study incorporated a statistical experimental design for material testing to address metallurgical factors important to fracture toughness. Tolerance intervals were constructed to identify the lower bound fracture toughness for material input to flaw disposition through acceptance by analysis.« less

  13. Method and apparatus for implementing material thermal property measurement by flash thermal imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jiangang

    A method and apparatus are provided for implementing measurement of material thermal properties including measurement of thermal effusivity of a coating and/or film or a bulk material of uniform property. The test apparatus includes an infrared camera, a data acquisition and processing computer coupled to the infrared camera for acquiring and processing thermal image data, a flash lamp providing an input of heat onto the surface of a two-layer sample with an enhanced optical filter covering the flash lamp attenuating an entire infrared wavelength range with a series of thermal images is taken of the surface of the two-layer sample.

  14. New point of view on materials development

    NASA Astrophysics Data System (ADS)

    Elistratkin, M. Y.; Lesovik, V. S.; Zagorodnjuk, L. H.; Pospelova, E. A.; Shatalova, S. V.

    2018-03-01

    The paper considers the issue of improving the existing materials and developing new ones from the standpoint of their health and psycho-emotional impact. And not only from the point of view of their safety; the focus should be shifted to their active beneficial effect. The materials properties forming features in accordance with the proposed concept are considered. The targeted formation of material pore space at various scale levels is considered as effective implementation tools using specially created composite binders, in particular, in the production of non-autoclaved aerated concrete.

  15. Method of varying a physical property of a material through its depth

    DOEpatents

    Daniel, Claus

    2015-04-21

    A method is disclosed for varying a mechanical property of a material at two depths. The method involves the application of at least two laser pulses of different durations. The method involves a determination of the density of the material from the surface to each depth, a determination of the heat capacity of the material from the surface to each depth, and a determination of the thermal conductivity of the material from the surface to each depth. Each laser pulse may affect the density, heat capacity, and thermal conductivity of the material, so it may be necessary to re-evaluate those parameters after each laser pulse and prior to the next pulse. The method may be applied to implantation materials to improve osteoblast and osteoclast activity.

  16. Soil hydraulic material properties and layered architecture from time-lapse GPR

    NASA Astrophysics Data System (ADS)

    Jaumann, Stefan; Roth, Kurt

    2018-04-01

    Quantitative knowledge of the subsurface material distribution and its effective soil hydraulic material properties is essential to predict soil water movement. Ground-penetrating radar (GPR) is a noninvasive and nondestructive geophysical measurement method that is suitable to monitor hydraulic processes. Previous studies showed that the GPR signal from a fluctuating groundwater table is sensitive to the soil water characteristic and the hydraulic conductivity function. In this work, we show that the GPR signal originating from both the subsurface architecture and the fluctuating groundwater table is suitable to estimate the position of layers within the subsurface architecture together with the associated effective soil hydraulic material properties with inversion methods. To that end, we parameterize the subsurface architecture, solve the Richards equation, convert the resulting water content to relative permittivity with the complex refractive index model (CRIM), and solve Maxwell's equations numerically. In order to analyze the GPR signal, we implemented a new heuristic algorithm that detects relevant signals in the radargram (events) and extracts the corresponding signal travel time and amplitude. This algorithm is applied to simulated as well as measured radargrams and the detected events are associated automatically. Using events instead of the full wave regularizes the inversion focussing on the relevant measurement signal. For optimization, we use a global-local approach with preconditioning. Starting from an ensemble of initial parameter sets drawn with a Latin hypercube algorithm, we sequentially couple a simulated annealing algorithm with a Levenberg-Marquardt algorithm. The method is applied to synthetic as well as measured data from the ASSESS test site. We show that the method yields reasonable estimates for the position of the layers as well as for the soil hydraulic material properties by comparing the results to references derived from ground

  17. Towards prediction of correlated material properties using quantum Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Wagner, Lucas

    Correlated electron systems offer a richness of physics far beyond noninteracting systems. If we would like to pursue the dream of designer correlated materials, or, even to set a more modest goal, to explain in detail the properties and effective physics of known materials, then accurate simulation methods are required. Using modern computational resources, quantum Monte Carlo (QMC) techniques offer a way to directly simulate electron correlations. I will show some recent results on a few extremely challenging materials including the metal-insulator transition of VO2, the ground state of the doped cuprates, and the pressure dependence of magnetic properties in FeSe. By using a relatively simple implementation of QMC, at least some properties of these materials can be described truly from first principles, without any adjustable parameters. Using the QMC platform, we have developed a way of systematically deriving effective lattice models from the simulation. This procedure is particularly attractive for correlated electron systems because the QMC methods treat the one-body and many-body components of the wave function and Hamiltonian on completely equal footing. I will show some examples of using this downfolding technique and the high accuracy of QMC to connect our intuitive ideas about interacting electron systems with high fidelity simulations. The work in this presentation was supported in part by NSF DMR 1206242, the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program under Award Number FG02-12ER46875, and the Center for Emergent Superconductivity, Department of Energy Frontier Research Center under Grant No. DEAC0298CH1088. Computing resources were provided by a Blue Waters Illinois grant and INCITE PhotSuper and SuperMatSim allocations.

  18. NREL Researchers Create New Materials With Unusual Properties | News | NREL

    Science.gov Websites

    show how such new low-density materials can be made - with unique properties remarkably different from compounds with atomic structures that didn't match, the researchers theorized that mixing two different high manganese telluride (MnTe) that have different crystal structures - the approach known as heterostructural

  19. Learning to Apply Models of Materials While Explaining Their Properties

    ERIC Educational Resources Information Center

    Karpin, Tiia; Juuti, Kalle; Lavonen, Jari

    2014-01-01

    Background: Applying structural models is important to chemistry education at the upper secondary level, but it is considered one of the most difficult topics to learn. Purpose: This study analyses to what extent in designed lessons students learned to apply structural models in explaining the properties and behaviours of various materials.…

  20. Multi-Functional Surface Engineering for Li-Excess Layered Cathode Material Targeting Excellent Electrochemical and Thermal Safety Properties.

    PubMed

    Bian, Xiaofei; Fu, Qiang; Pang, Qiang; Gao, Yu; Wei, Yingjin; Zou, Bo; Du, Fei; Chen, Gang

    2016-02-10

    The Li(Li(0.18)Ni(0.15)Co(0.15)Mn(0.52))O2 cathode material is modified by a Li4M5O12-like heterostructure and a BiOF surface layer. The interfacial heterostructure triggers the layered-to-Li4M5O12 transformation of the material which is different from the layered-to-LiMn2O4 transformation of the pristine Li(Li(0.18)Ni(0.15)Co(0.15)Mn(0.52))O2. This Li4M5O12-like transformation helps the material to keep high working voltage, long cycle life and excellent rate capability. Mass spectrometry, in situ X-ray diffraction and transmission electron microscope show that the Li4M5O12-like phase prohibits oxygen release from the material bulk at elevated temperatures. In addition, the BiOF coating layer protects the material from harmful side reactions with the electrolyte. These advantages significantly improve the electrochemical performance of Li(Li(0.18)Ni(0.15)Co(0.15)Mn(0.52))O2. The material shows a discharge capacity of 292 mAh g(-1) at 0.2 C with capacity retention of 92% after 100 cycles. Moreover, a high discharge capacity of 78 mAh g(-1) could be obtained at 25 C. The exothermic temperature of the fully charged electrode is elevated from 203 to 261 °C with 50% reduction of the total thermal release, highlighting excellent thermal safety of the material.

  1. Thermal and microstructural properties of fine-grained material at the Viking Lander 1 site

    NASA Astrophysics Data System (ADS)

    Paton, M. D.; Harri, A.-M.; Savijärvi, H.; Mäkinen, T.; Hagermann, A.; Kemppinen, O.; Johnston, A.

    2016-06-01

    As Viking Lander 1 touched down on Mars one of its footpads fully penetrated a patch of loose fine-grained drift material. The surrounding landing site, as observed by VL-1, was found to exhibit a complex terrain consisting of a crusted surface with an assortment of rocks, large dune-like drifts and smaller patches of drift material. We use a temperature sensor attached to the buried footpad and covered in fine-grained material to determine the thermal properties of drift material at the VL-1 site. The thermal properties are used to investigate the microstructure of the drift material and understand its relevance to surface-atmosphere interactions. We obtained a thermal inertia value of 103 ± 22 tiu. This value is in the upper range of previous thermal inertia estimates of martian dust as measured from orbit and is significantly lower than the regional thermal inertia of the VL-1 site, of around 283 tiu, obtained from orbit. We estimate a thermal inertia of around 263 ± 29 tiu for the duricrust at the VL-1 site. It was noted the patch of fine-grained regolith around the footpad was about 20-30 K warmer compared to similar material beyond the thermal influence of the lander. An effective diameter of 8 ± 5 μm was calculated for the particles in the drift material. This is larger than atmospheric dust and large compared to previous estimates of the drift material particle diameter. We interpret our results as the presence of a range of particle sizes, <8 μm, in the drift material with the thermal properties being controlled by a small amount of large particles (∼8 μm) and its cohesion being controlled by a large amount of smaller particles. The bulk of the particles in the drift material are therefore likely comparable in size to that of atmospheric dust. The possibility of larger particles being locked into a fine-grained material has implications for understanding the mobilisation of wind blown materials on Mars.

  2. Machine learning properties of materials and molecules with entropy-regularized kernels

    NASA Astrophysics Data System (ADS)

    Ceriotti, Michele; Bartók, Albert; CsáNyi, GáBor; de, Sandip

    Application of machine-learning methods to physics, chemistry and materials science is gaining traction as a strategy to obtain accurate predictions of the properties of matter at a fraction of the typical cost of quantum mechanical electronic structure calculations. In this endeavor, one can leverage general-purpose frameworks for supervised-learning. It is however very important that the input data - for instance the positions of atoms in a molecule or solid - is processed into a form that reflects all the underlying physical symmetries of the problem, and that possesses the regularity properties that are required by machine-learning algorithms. Here we introduce a general strategy to build a representation of this kind. We will start from existing approaches to compare local environments (basically, groups of atoms), and combine them using techniques borrowed from optimal transport theory, discussing the relation between this idea and additive energy decompositions. We will present a few examples demonstrating the potential of this approach as a tool to predict molecular and materials' properties with an accuracy on par with state-of-the-art electronic structure methods. MARVEL NCCR (Swiss National Science Foundation) and ERC StG HBMAP (European Research Council, G.A. 677013).

  3. Effects of material properties and object orientation on precision grip kinematics.

    PubMed

    Paulun, Vivian C; Gegenfurtner, Karl R; Goodale, Melvyn A; Fleming, Roland W

    2016-08-01

    Successfully picking up and handling objects requires taking into account their physical properties (e.g., material) and position relative to the body. Such features are often inferred by sight, but it remains unclear to what extent observers vary their actions depending on the perceived properties. To investigate this, we asked participants to grasp, lift and carry cylinders to a goal location with a precision grip. The cylinders were made of four different materials (Styrofoam, wood, brass and an additional brass cylinder covered with Vaseline) and were presented at six different orientations with respect to the participant (0°, 30°, 60°, 90°, 120°, 150°). Analysis of their grasping kinematics revealed differences in timing and spatial modulation at all stages of the movement that depended on both material and orientation. Object orientation affected the spatial configuration of index finger and thumb during the grasp, but also the timing of handling and transport duration. Material affected the choice of local grasp points and the duration of the movement from the first visual input until release of the object. We find that conditions that make grasping more difficult (orientation with the base pointing toward the participant, high weight and low surface friction) lead to longer durations of individual movement segments and a more careful placement of the fingers on the object.

  4. Mercury target R&D for the Oak Ridge spallation neutron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, J.R.; DiStefano, J.; Farrell, K.

    1996-06-01

    The conceptual design for the Oak Ridge Spallation Neutron Source (ORSNS) incorporates liquid mercury as its reference target material. A flowing liquid target was selected mainly because of the increased power handling capability possible with the convective transport process. The major reasons for choosing mercury as the liquid target material are because it: (1) is a liquid at room temperature, (2) has good heat transport properties, and (3) has a high atomic number and mass density resulting in high neutron yield and source brightness. Since liquid targets are not widely utilized in presently operating accelerator targets and because of themore » challenges posed by the intense, pulsed thermal energy deposition ({approximately}20-100 kJ deposited during each 1-10 {mu}s pulse), considerable R&D is planned for the mercury target concept. The key feasibility issue that will be addressed in early R&D efforts are the effects of the thermal shock environment, which will include development and testing of approaches to mitigate these effects. Materials compatiblity and ES&H issues associated with the use of liquid mercury are also of major importance in early R&D efforts. A brief description of the mercury target design concept, results of initial evaluations of its performance characteristics, identification of its critical issues, and an outline of the R&D program aimed at addressing these issues will be presented.« less

  5. Quantitative property-structural relation modeling on polymeric dielectric materials

    NASA Astrophysics Data System (ADS)

    Wu, Ke

    Nowadays, polymeric materials have attracted more and more attention in dielectric applications. But searching for a material with desired properties is still largely based on trial and error. To facilitate the development of new polymeric materials, heuristic models built using the Quantitative Structure Property Relationships (QSPR) techniques can provide reliable "working solutions". In this thesis, the application of QSPR on polymeric materials is studied from two angles: descriptors and algorithms. A novel set of descriptors, called infinite chain descriptors (ICD), are developed to encode the chemical features of pure polymers. ICD is designed to eliminate the uncertainty of polymer conformations and inconsistency of molecular representation of polymers. Models for the dielectric constant, band gap, dielectric loss tangent and glass transition temperatures of organic polymers are built with high prediction accuracy. Two new algorithms, the physics-enlightened learning method (PELM) and multi-mechanism detection, are designed to deal with two typical challenges in material QSPR. PELM is a meta-algorithm that utilizes the classic physical theory as guidance to construct the candidate learning function. It shows better out-of-domain prediction accuracy compared to the classic machine learning algorithm (support vector machine). Multi-mechanism detection is built based on a cluster-weighted mixing model similar to a Gaussian mixture model. The idea is to separate the data into subsets where each subset can be modeled by a much simpler model. The case study on glass transition temperature shows that this method can provide better overall prediction accuracy even though less data is available for each subset model. In addition, the techniques developed in this work are also applied to polymer nanocomposites (PNC). PNC are new materials with outstanding dielectric properties. As a key factor in determining the dispersion state of nanoparticles in the polymer matrix

  6. Flexural properties and shock-absorbing capabilities of new face guard materials reinforced with fiberglass cloth.

    PubMed

    Abe, Keisuke; Takahashi, Hidekazu; Churei, Hiroshi; Iwasaki, Naohiko; Ueno, Toshiaki

    2013-02-01

     Experimental materials incorporating fiberglass cloth were used to develop a thin and lightweight face guard (FG). This study aims to evaluate the effect of fiberglass reinforcement on the flexural and shock absorption properties compared with conventional thermoplastic materials.  Four commercial 3.2-mm and 1.6-mm medical splint materials (Aquaplast, Polyform, Co-polymer, and Erkodur) and two experimental materials were examined for use in FGs. The experimental materials were prepared by embedding two or four sheets of a plain woven fiberglass cloth on both surfaces of 1.5-mm Aquaplast. The flexural strength and flexural modulus were determined using a three-point bending test. The shock absorption properties were evaluated for a 5200-N impact load using the first peak intensity with a load cell system and the maximum stress with a film sensor system.  The flexural strength (74.6 MPa) and flexural modulus (6.3 GPa) of the experimental material with four sheets were significantly greater than those of the 3.2-mm commercial specimens, except for the flexural strength of one product. The first peak intensity (515 N) and maximum stress (2.2 MPa) of the experimental material with four sheets were significantly lower than those of the commercial 3.2-mm specimens, except for one product for each property. These results suggest that the thickness and weight of the FG can be reduced using the experimental fiber-reinforced material. © 2012 John Wiley & Sons A/S.

  7. Physicochemical properties affect the synthesis, controlled delivery, degradation and pharmacokinetics of inorganic nanoporous materials.

    PubMed

    Yazdi, Iman K; Ziemys, Arturas; Evangelopoulos, Michael; Martinez, Jonathan O; Kojic, Milos; Tasciotti, Ennio

    2015-10-01

    Controlling size, shape and uniformity of porous constructs remains a major focus of the development of porous materials. Over the past two decades, we have seen significant developments in the fabrication of new, porous-ordered structures using a wide range of materials, resulting in properties well beyond their traditional use. Porous materials have been considered appealing, due to attractive properties such as pore size length, morphology and surface chemistry. Furthermore, their utilization within the life sciences and medicine has resulted in significant developments in pharmaceutics and medical diagnosis. This article focuses on various classes of porous materials, providing an overview of principle concepts with regard to design and fabrication, surface chemistry and loading and release kinetics. Furthermore, predictions from a multiscale mathematical model revealed the role pore length and diameter could have on payload release kinetics.

  8. On the relationships between hardness and the elastic and plastic properties of isotropic power-law hardening materials

    NASA Astrophysics Data System (ADS)

    Lan, Hongzhi; Venkatesh, T. A.

    2014-01-01

    A comprehensive understanding of the relationship between the hardness and the elastic and plastic properties for a wide range of materials is obtained by analysing the hardness characteristics (that are predicted by experimentally verified indentation analyses) of over 9000 distinct combinations of material properties that represent isotropic, homogeneous, power-law hardening metallic materials. Finite element analysis has been used to develop the indentation algorithms that provide the relationships between the elastic and plastic properties of the indented material and its indentation hardness. Based on computational analysis and virtual testing, the following observations are made. The hardness (H) of a material tends to increase with an increase in the elastic modulus (E), yield strength (σy) and the strain-hardening exponent (n). Several materials with different combinations of elastic and plastic properties can exhibit identical true hardness (for a particular indenter geometry/apex angle). In general, combinations of materials that exhibit relatively low elastic modulus and high yield strength or strain-hardening exponents and those that exhibit relatively high elastic modulus and low yield strength or strain-hardening exponents exhibit similar hardness properties. Depending on the strain-hardening characteristics of the indented material, (i.e. n = 0 or ?), the ratio H/σy ranges, respectively, from 2.2 to 2.6 or 2 to 20 (for indentations with a cone angle of 70.3°). The materials that have lower σy/E and higher n exhibit higher H/σy ratios. The commonly invoked relationship between hardness and the yield strength, i.e. H ≈ 3σy, is not generally valid or applicable for all power-law hardening materials. The indentation hardness of a power law hardening material can be taken as following the relationship H ≈ (2.1-2.8)σr where σr is the representative stress based on Tabor's representative strain for a wide range of materials.

  9. Learning to apply models of materials while explaining their properties

    NASA Astrophysics Data System (ADS)

    Karpin, Tiia; Juuti, Kalle; Lavonen, Jari

    2014-09-01

    Background:Applying structural models is important to chemistry education at the upper secondary level, but it is considered one of the most difficult topics to learn. Purpose:This study analyses to what extent in designed lessons students learned to apply structural models in explaining the properties and behaviours of various materials. Sample:An experimental group is 27 Finnish upper secondary school students and control group included 18 students from the same school. Design and methods:In quasi-experimental setting, students were guided through predict, observe, explain activities in four practical work situations. It was intended that the structural models would encourage students to learn how to identify and apply appropriate models when predicting and explaining situations. The lessons, organised over a one-week period, began with a teacher's demonstration and continued with student experiments in which they described the properties and behaviours of six household products representing three different materials. Results:Most students in the experimental group learned to apply the models correctly, as demonstrated by post-test scores that were significantly higher than pre-test scores. The control group showed no significant difference between pre- and post-test scores. Conclusions:The findings indicate that the intervention where students engage in predict, observe, explain activities while several materials and models are confronted at the same time, had a positive effect on learning outcomes.

  10. Characterization of sapphire: For its material properties at high temperatures

    NASA Astrophysics Data System (ADS)

    Bal, Harman Singh

    There are numerous needs for sensing, one of which is in pressure sensing for high temperature application such as combustion related process and embedded in aircraft wings for reusable space vehicles. Currently, silicon based MEMS technology is used for pressure sensing. However, due to material properties the sensors have a limited range of approximately 600 °C which is capable of being pushed towards 1000 °C with active cooling. This can introduce reliability issues when you add more parts and high flow rates to remove large amounts of heat. To overcome this challenge, sapphire is investigated for optical based pressure transducers at temperatures approaching 1400 °C. Due to its hardness and chemical inertness, traditional cutting and etching methods used in MEMS technology are not applicable. A method that is being investigated as a possible alternative is laser machining using a picosecond laser. In this research, we study the material property changes that occur from laser machining and quantify the changes with the experimental results obtained by testing sapphire at high-temperature with a standard 4-point bending set-up.

  11. Ultrafast control and monitoring of material properties using terahertz pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowlan, Pamela Renee

    These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying thismore » to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi 2Se 3 to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.« less

  12. The influence of target erosion grade in the optoelectronic properties of AZO coatings growth by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zubizarreta, C.; G-Berasategui, E.; Ciarsolo, I.; Barriga, J.; Gaspar, D.; Martins, R.; Fortunato, E.

    2016-09-01

    Aluminum-doped zinc oxide (AZO) transparent conductor coating has emerged as promising substitute to tin-doped indium oxide (ITO) as electrode in optoelectronic applications such as photovoltaics or light emitting diodes (LEDs). Besides its high transmission in the visible spectral region and low resistivity, AZO presents a main advantage over other candidates such as graphene, carbon nanotubes or silver nanowires; it can be deposited using the technology industrially implemented to manufacture ITO layers, the magnetron sputtering (MS). This is a productive, reliable and green manufacturing technique. But to guarantee the robustness, reproducibility and reliability of the process there are still some issues to be addressed, such as the effect and control of the target state. In this paper a thorough study of the influence of the target erosion grade in developed coatings has been performed. AZO films have been deposited from a ceramic target by RF MS. Structure, optical transmittance and electrical properties of the produced coatings have been analyzed as function of the target erosion grade. No noticeable differences have been found neither in optoelectronic properties nor in the structure of the coatings, indicating that the RF MS is a stable and consistent process through the whole life of the target.

  13. Thermal properties of lauric acid filled in carbon nanotubes as shape-stabilized phase change materials.

    PubMed

    Feng, Yanhui; Wei, Runzhi; Huang, Zhi; Zhang, Xinxin; Wang, Ge

    2018-03-14

    Carbon nanotubes (CNTs) filled with lauric acid (LA) as a kind of shape-stabilized phase change material were prepared and their structures and phase change properties were characterized. The results showed that the melting point and latent heat of LA confined in carbon nanotubes were lower than those of the bulk material, and both decrease as the diameters of CNTs and the filling ratios of LA decrease. Molecular dynamics (MD) simulations indicated that LA molecules form a liquid layer near pore walls and crystallize at the pore center. When the LA filling ratio was reduced to a certain value, all LA molecules were attached to the inner walls of CNTs, hindering their crystallization. A linear relationship between the melting temperature shift and structural properties was obtained based on the modified Gibbs-Thomson equation, which gives a reliable interpretation of the size effect of nanochannels in phase change materials. We also found that the thermal conductivity of the composite CNTs/LA was four times larger than that of pure LA. This study will provide insights into the design of novel composite phase change materials with better thermal properties by the selection of suitable porous materials and tailoring their pore structures.

  14. Emergent material properties of developing epithelial tissues.

    PubMed

    Machado, Pedro F; Duque, Julia; Étienne, Jocelyn; Martinez-Arias, Alfonso; Blanchard, Guy B; Gorfinkiel, Nicole

    2015-11-23

    Force generation and the material properties of cells and tissues are central to morphogenesis but remain difficult to measure in vivo. Insight is often limited to the ratios of mechanical properties obtained through disruptive manipulation, and the appropriate models relating stress and strain are unknown. The Drosophila amnioserosa epithelium progressively contracts over 3 hours of dorsal closure, during which cell apices exhibit area fluctuations driven by medial myosin pulses with periods of 1.5-6 min. Linking these two timescales and understanding how pulsatile contractions drive morphogenetic movements is an urgent challenge. We present a novel framework to measure in a continuous manner the mechanical properties of epithelial cells in the natural context of a tissue undergoing morphogenesis. We show that the relationship between apicomedial myosin fluorescence intensity and strain during fluctuations is consistent with a linear behaviour, although with a lag. We thus used myosin fluorescence intensity as a proxy for active force generation and treated cells as natural experiments of mechanical response under cyclic loading, revealing unambiguous mechanical properties from the hysteresis loop relating stress to strain. Amnioserosa cells can be described as a contractile viscoelastic fluid. We show that their emergent mechanical behaviour can be described by a linear viscoelastic rheology at timescales relevant for tissue morphogenesis. For the first time, we establish relative changes in separate effective mechanical properties in vivo. Over the course of dorsal closure, the tissue solidifies and effective stiffness doubles as net contraction of the tissue commences. Combining our findings with those from previous laser ablation experiments, we show that both apicomedial and junctional stress also increase over time, with the relative increase in apicomedial stress approximately twice that of other obtained measures. Our results show that in an epithelial

  15. Delignified and Densified Cellulose Bulk Materials with Excellent Tensile Properties for Sustainable Engineering.

    PubMed

    Frey, Marion; Widner, Daniel; Segmehl, Jana S; Casdorff, Kirstin; Keplinger, Tobias; Burgert, Ingo

    2018-02-07

    Today's materials research aims at excellent mechanical performance in combination with advanced functionality. In this regard, great progress has been made in tailoring the materials by assembly processes in bottom-up approaches. In the field of wood-derived materials, nanocellulose research has gained increasing attention, and materials with advanced properties were developed. However, there are still unresolved issues concerning upscaling for large-scale applications. Alternatively, the sophisticated hierarchical scaffold of wood can be utilized in a top-down approach to upscale functionalization, and one can profit at the same time from its renewable nature, CO 2 storing capacity, light weight, and good mechanical performance. Nevertheless, for bulk wood materials, a wider multipurpose industrial use is so far impeded by concerns regarding durability, natural heterogeneity as well as limitations in terms of functionalization, processing, and shaping. Here, we present a novel cellulose bulk material concept based on delignification and densification of wood resulting in a high-performance material. A delignification process using hydrogen peroxide and acetic acid was optimized to delignify the entire bulk wooden blocks and to retain the highly beneficial structural directionality of wood. In a subsequent step, these cellulosic blocks were densified in a process combining compression and lateral shear to gain a very compact cellulosic material with entangled fibers while retaining unidirectional fiber orientation. The cellulose bulk materials obtained by different densification protocols were structurally, chemically, and mechanically characterized revealing superior tensile properties compared to native wood. Furthermore, after delignification, the cellulose bulk material can be easily formed into different shapes, and the delignification facilitates functionalization of the bioscaffold.

  16. Synchronous infrared imaging methods to characterize thermal properties of materials

    NASA Astrophysics Data System (ADS)

    Ouyang, Zhong

    1999-11-01

    A fundamental thermal property of a material is its thermal conductivity. The current state-of-the art for measurement of thermal conductivity is inadequate, especially in the case of composite materials. This dissertation addresses the need for a rapid and accurate measurement of thermal conductivity that can provide values for three orthogonal directions in a single measurement. The theoretical approach is based on three-dimensional thermal wave propagation and scattering treatments that have been developed earlier at Wayne State University. The experimental approach makes use of a state-of-the-art focal-plane-array infrared camera, which is used to follow the time- and spatial-progression of the planar heat pulse on both surfaces of the slab. The method has been used to determine the thermal diffusivity of six pure elemental single crystal materials (Cu, Ti, Bi, Al, Ag, Pb). The results are in good agreement (better than 1%) with the diffusivities calculated from the handbook. The diffusivities of some alloys and unidirectional graphite-fiber-reinforced-polymer composite also are determined by this method. As a byproduct of one of the experimental approaches measuring the IR radiation from the heated surface, direct evidence is obtained for the presence of a thermal wave "echo". The theory and confirming measurements in this dissertation represent its first clear confirmation. A second experimental method which is studied in this dissertation, and which may be used to characterize thermal properties of materials, is that of lock-in thermal wave imaging. In this technique, pioneered earlier at Wayne State University, a periodic heat source is applied to the surface of the material, and synchronous, phase-sensitive detection of the IR radiation from that surface is used to determine the effects of thermal wave propagation to subsurface features, and the effects of reflected thermal waves from those features on the observed IR radiation from the surface. The

  17. Microscopic Examination of Cold Spray Cermet Sn+In2O3 Coatings for Sputtering Target Materials

    PubMed Central

    Baszczuk, A.; Rutkowska-Gorczyca, M.; Jasiorski, M.; Małachowska, A.; Posadowski, W.; Znamirowski, Z.

    2017-01-01

    Low-pressure cold spraying is a newly developed technology with high application potential. The aim of this study was to investigate potential application of this technique for producing a new type of transparent conductive oxide films target. Cold spraying technique allows the manufacture of target directly on the backing plate; therefore the proposed sputtering target has a form of Sn+In2O3 coating sprayed onto copper substrate. The microstructure and properties of the feedstock powder prepared using three various methods as well as the deposited ones by low-pressure cold spraying coatings were evaluated, compared, and analysed. Produced cermet Sn+In2O3 targets were employed in first magnetron sputtering process to deposit preliminary, thin, transparent conducting oxide films onto the glass substrates. The resistivity of obtained preliminary films was measured and allows believing that fabrication of TCO (transparent conducting oxide) films using targets produced by cold spraying is possible in the future, after optimization of the deposition conditions. PMID:29109810

  18. Microscopic Examination of Cold Spray Cermet Sn+In2O3 Coatings for Sputtering Target Materials.

    PubMed

    Winnicki, M; Baszczuk, A; Rutkowska-Gorczyca, M; Jasiorski, M; Małachowska, A; Posadowski, W; Znamirowski, Z; Ambroziak, A

    2017-01-01

    Low-pressure cold spraying is a newly developed technology with high application potential. The aim of this study was to investigate potential application of this technique for producing a new type of transparent conductive oxide films target. Cold spraying technique allows the manufacture of target directly on the backing plate; therefore the proposed sputtering target has a form of Sn+In 2 O 3 coating sprayed onto copper substrate. The microstructure and properties of the feedstock powder prepared using three various methods as well as the deposited ones by low-pressure cold spraying coatings were evaluated, compared, and analysed. Produced cermet Sn+In 2 O 3 targets were employed in first magnetron sputtering process to deposit preliminary, thin, transparent conducting oxide films onto the glass substrates. The resistivity of obtained preliminary films was measured and allows believing that fabrication of TCO (transparent conducting oxide) films using targets produced by cold spraying is possible in the future, after optimization of the deposition conditions.

  19. Relationships between chemical structure, mechanical properties and materials processing in nanopatterned organosilicate fins.

    PubMed

    Stan, Gheorghe; Gates, Richard S; Hu, Qichi; Kjoller, Kevin; Prater, Craig; Jit Singh, Kanwal; Mays, Ebony; King, Sean W

    2017-01-01

    The exploitation of nanoscale size effects to create new nanostructured materials necessitates the development of an understanding of relationships between molecular structure, physical properties and material processing at the nanoscale. Numerous metrologies capable of thermal, mechanical, and electrical characterization at the nanoscale have been demonstrated over the past two decades. However, the ability to perform nanoscale molecular/chemical structure characterization has only been recently demonstrated with the advent of atomic-force-microscopy-based infrared spectroscopy (AFM-IR) and related techniques. Therefore, we have combined measurements of chemical structures with AFM-IR and of mechanical properties with contact resonance AFM (CR-AFM) to investigate the fabrication of 20-500 nm wide fin structures in a nanoporous organosilicate material. We show that by combining these two techniques, one can clearly observe variations of chemical structure and mechanical properties that correlate with the fabrication process and the feature size of the organosilicate fins. Specifically, we have observed an inverse correlation between the concentration of terminal organic groups and the stiffness of nanopatterned organosilicate fins. The selective removal of the organic component during etching results in a stiffness increase and reinsertion via chemical silylation results in a stiffness decrease. Examination of this effect as a function of fin width indicates that the loss of terminal organic groups and stiffness increase occur primarily at the exposed surfaces of the fins over a length scale of 10-20 nm. While the observed structure-property relationships are specific to organosilicates, we believe the combined demonstration of AFM-IR with CR-AFM should pave the way for a similar nanoscale characterization of other materials where the understanding of such relationships is essential.

  20. Polymeric materials from renewable resources

    NASA Astrophysics Data System (ADS)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; da Silva, Cristina G.; Castro, Daniele O.; Ramires, Elaine C.; de Oliveira, Fernando; Santos, Rachel P. O.

    2016-05-01

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called "biopolyethylene" (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.