Sample records for target particle contamination

  1. Method for remote detection of trace contaminants

    DOEpatents

    Simonson, Robert J.; Hance, Bradley G.

    2003-09-09

    A method for remote detection of trace contaminants in a target area comprises applying sensor particles that preconcentrate the trace contaminant to the target area and detecting the contaminant-sensitive fluorescence from the sensor particles. The sensor particles can have contaminant-sensitive and contaminant-insensitive fluorescent compounds to enable the determination of the amount of trace contaminant present in the target are by relative comparison of the emission of the fluorescent compounds by a local or remote fluorescence detector. The method can be used to remotely detect buried minefields.

  2. Method of decontaminating a contaminated fluid by using photocatalytic particles

    NASA Technical Reports Server (NTRS)

    Cooper, Gerald (Inventor); Ratcliff, Matthew A. (Inventor)

    1994-01-01

    A system for decontaminating the contaminated fluid by using photocatalytic particles. The system includes a reactor tank for holding the contaminated fluid and the photocatalytic particles suspended in the contaminated fluid to form a slurry. Light irradiates the surface of the slurry, thereby activating the photocatalytic properties of the particles. The system also includes stirring blades for continuously agitating the irradiated fluid surface and for maintaining the particles in a suspended state within the fluid. The system also includes a cross flow filter for segregating the fluid (after decomposition) from the semiconductor powder. The cross flow filter is occasionally back flushed to remove any semiconductor powder that might have caked on the filter. The semiconductor powder may be recirculated back to the tank for reuse, or may be stored for future use. A series of such systems may be used to gradually decompose a chemical in the fluid. Preferably, the fluid is pretreated to remove certain metal ions which interfere with the photocatalytic process. Such pretreatment may be accomplished by dispersing semiconductor particles within the fluid, which adsorb ions or photodeposit the metal as the free metal or its insoluble oxide or hydroxide, and then removing the semiconductor particles together with the adsorbed metal ions/oxides/hydroxide/free metal from the fluid. A method of decontaminating a contaminated fluid is also disclosed.

  3. Suppressing NOM access to controlled porous TiO2 particles enhances the decomposition of target water contaminants

    EPA Science Inventory

    Suppressing access of natural organic matter (NOM) to TiO2 is a key to the successful photocatalytic decomposition of a target contaminant in water. This study first demonstrates simply controlling the porous structure of TiO2 can significantly improve the selective oxidation.

  4. Light Obscuration Particle Counter Fuel Contamination Limits

    DTIC Science & Technology

    2015-10-08

    or up to 10 mg/L for product used as a diesel product for ground use (1). At a minimum free water and particulate by color (as specified in the...contamination is frequently used in the hydraulics/hydraulic fluid industry. In 1999 ISO adopted ISO 11171 Hydraulic fluid power — Calibration of automatic...particle counters for liquids, replacing ISO 4402, as an international standard for the calibration of liquid particle counters giving NIST

  5. Methane Bubbles Transport Particles From Contaminated Sediment to a Lake Surface

    NASA Astrophysics Data System (ADS)

    Delwiche, K.; Hemond, H.

    2017-12-01

    Methane bubbling from aquatic sediments has long been known to transport carbon to the atmosphere, but new evidence presented here suggests that methane bubbles also transport particulate matter to a lake surface. This transport pathway is of particular importance in lakes with contaminated sediments, as bubble transport could increase human exposure to toxic metals. The Upper Mystic Lake in Arlington, MA has a documented history of methane bubbling and sediment contamination by arsenic and other heavy metals, and we have conducted laboratory and field studies demonstrating that methane bubbles are capable of transporting sediment particles over depths as great as 15 m in Upper Mystic Lake. Methane bubble traps were used in-situ to capture particles adhered to bubble interfaces, and to relate particle mass transport to bubble flux. Laboratory studies were conducted in a custom-made 15 m tall water column to quantify the relationship between water column height and the mass of particulate transport. We then couple this particle transport data with historical estimates of ebullition from Upper Mystic Lake to quantify the significance of bubble-mediated particle transport to heavy metal cycling within the lake. Results suggest that methane bubbles can represent a significant pathway for contaminated sediment to reach surface waters even in relatively deep water bodies. Given the frequent co-occurrence of contaminated sediments and high bubble flux rates, and the potential for human exposure to heavy metals, it will be critical to study the significance of this transport pathway for a range of sediment and contaminant types.

  6. How Actuated Particles Effectively Capture Biomolecular Targets

    PubMed Central

    2017-01-01

    Because of their high surface-to-volume ratio and adaptable surface functionalization, particles are widely used in bioanalytical methods to capture molecular targets. In this article, a comprehensive study is reported of the effectiveness of protein capture by actuated magnetic particles. Association rate constants are quantified in experiments as well as in Brownian dynamics simulations for different particle actuation configurations. The data reveal how the association rate depends on the particle velocity, particle density, and particle assembly characteristics. Interestingly, single particles appear to exhibit target depletion zones near their surface, caused by the high density of capture molecules. The depletion effects are even more limiting in cases with high particle densities. The depletion effects are overcome and protein capture rates are enhanced by applying dynamic particle actuation, resulting in an increase in the association rate constants by up to 2 orders of magnitude. PMID:28192952

  7. Interactions between Impacting Particles and Target in Two-Phase Flow

    NASA Astrophysics Data System (ADS)

    Kang, Sang-Wook; Chow, Tze-Show

    1996-11-01

    The time-dependent interaction phenomena between a target and the incident solid particles borne by supersonic gas-jet stream have been numerically analyzed. In particular, the analysis dealt with particles such as aluminum, copper, and uranium ipinging on aluminum, copper, or uranium targets at various impact velocities ranging from 200 m/s to 1,000 m/s. Typical particle sizes were 50 to 100 micrometers. Results show considerable deformation of both the incident particles and the target when the velocity is greater than 500 m/s. Experiments performed on copper particles impacting an aluminum target demonstrate that under certain conditions (such as a supersonic gas jet issuing from a nozzle carrying solid particles) the impacts not only deform but also cause deposition of the particles on the surface. The present analysis shows the plausibility of such behavior when the particles impact the target at high velocities.

  8. Cooled particle accelerator target

    DOEpatents

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  9. Influencing factors on particle-bound contaminant transport in the Elbe estuary

    NASA Astrophysics Data System (ADS)

    Kleisinger, Carmen; Haase, Holger; Schubert, Birgit

    2016-04-01

    Particulate matter, i.e. suspended particulate matter and sediments in rivers and estuaries, often are contaminated with trace metals and selected organic contaminants and are mainly associated with fine-grained fractions. Transport processes and fate of particles in estuaries are influenced by several factors, e.g. freshwater discharge, tide, flow velocity and dredging activities (Kappenberg et al., 2007). Understanding the transport processes in estuaries may help to achieve the objectives of the Water Framework Directive and the Marine Strategy Framework Directive. The German Federal Institute of Hydrology (BfG) operates for more than 20 years five monitoring sites in the Elbe estuary in order to monitor the development of particle-bound contaminant concentrations over time and to understand their transport mechanisms. Results of the monitoring revealed freshwater discharge as an important influencing factor on the transport of contaminated particulate matter (Ackermann et al., 2007). The bidirectional transport of marine and fluvial water and particulate matter in estuaries results in a turbidity zone where large amounts of particulate matter are temporarily retained and thus in a delayed transport of particulate matter towards the sea. The extent and the location of the turbidity zone as well as the ratio of highly contaminated fluvial and less contaminated marine sediments at a given location are mainly influenced by the freshwater discharge (Kowalewska et al., 2011). Furthermore, at high freshwater discharge conditions the highly contaminated particulate matter from fluvial origin are transported downstream the estuary, whereas at low freshwater discharges, upstream transport of less contaminated marine sediments prevails. Hence, residence times of particulate matter in the estuary are difficult to estimate. Furthermore, sedimentation areas with flow reduced conditions, e.g. wadden areas or branches of the Elbe estuary, may act as sinks for particle bound

  10. Non-targeted analysis of unexpected food contaminants using LC-HRMS.

    PubMed

    Kunzelmann, Marco; Winter, Martin; Åberg, Magnus; Hellenäs, Karl-Erik; Rosén, Johan

    2018-03-29

    A non-target analysis method for unexpected contaminants in food is described. Many current methods referred to as "non-target" are capable of detecting hundreds or even thousands of contaminants. However, they will typically still miss all other possible contaminants. Instead, a metabolomics approach might be used to obtain "true non-target" analysis. In the present work, such a method was optimized for improved detection capability at low concentrations. The method was evaluated using 19 chemically diverse model compounds spiked into milk samples to mimic unknown contamination. Other milk samples were used as reference samples. All samples were analyzed with UHPLC-TOF-MS (ultra-high-performance liquid chromatography time-of-flight mass spectrometry), using reversed-phase chromatography and electrospray ionization in positive mode. Data evaluation was performed by the software TracMass 2. No target lists of specific compounds were used to search for the contaminants. Instead, the software was used to sort out all features only occurring in the spiked sample data, i.e., the workflow resembled a metabolomics approach. Procedures for chemical identification of peaks were outside the scope of the study. Method, study design, and settings in the software were optimized to minimize manual evaluation and faulty or irrelevant hits and to maximize hit rate of the spiked compounds. A practical detection limit was established at 25 μg/kg. At this concentration, most compounds (17 out of 19) were detected as intact precursor ions, as fragments or as adducts. Only 2 irrelevant hits, probably natural compounds, were obtained. Limitations and possible practical use of the approach are discussed.

  11. Targeted and Nontargeted α-Particle Therapies.

    PubMed

    McDevitt, Michael R; Sgouros, George; Sofou, Stavroula

    2018-06-04

    α-Particle irradiation of cancerous tissue is increasingly recognized as a potent therapeutic option. We briefly review the physics, radiobiology, and dosimetry of α-particle emitters, as well as the distinguishing features that make them unique for radiopharmaceutical therapy. We also review the emerging clinical role of α-particle therapy in managing cancer and recent studies on in vitro and preclinical α-particle therapy delivered by antibodies, other small molecules, and nanometer-sized particles. In addition to their unique radiopharmaceutical characteristics, the increased availability and improved radiochemistry of α-particle radionuclides have contributed to the growing recent interest in α-particle radiotherapy. Targeted therapy strategies have presented novel possibilities for the use of α-particles in the treatment of cancer. Clinical experience has already demonstrated the safe and effective use of α-particle emitters as potent tumor-selective drugs for the treatment of leukemia and metastatic disease.

  12. Targeted and Nontargeted α-Particle Therapies

    PubMed Central

    McDevitt, Michael R.; Sgouros, George; Sofou, Stavroula

    2018-01-01

    α-Particle irradiation of cancerous tissue is increasingly recognized as a potent therapeutic option. We briefly review the physics, radiobiology, and dosimetry of α-particle emitters, as well as the distinguishing features that make them unique for radiopharmaceutical therapy. We also review the emerging clinical role of α-particle therapy in managing cancer and recent studies on in vitro and preclinical α-particle therapy delivered by antibodies, other small molecules, and nanometer-sized particles. In addition to their unique radiopharmaceutical characteristics, the increased availability and improved radiochemistry of α-particle radionuclides have contributed to the growing recent interest in α-particle radiotherapy. Targeted therapy strategies have presented novel possibilities for the use of α-particles in the treatment of cancer. Clinical experience has already demonstrated the safe and effective use of α-particle emitters as potent tumor-selective drugs for the treatment of leukemia and metastatic disease. PMID:29345977

  13. Actinium-225 in targeted alpha-particle therapeutic applications

    PubMed Central

    Scheinberg, David A.; McDevit, Michael R.

    2017-01-01

    Alpha particle-emitting isotopes are being investigated in radioimmunotherapeutic applications because of their unparalleled cytotoxicity when targeted to cancer and their relative lack of toxicity towards untargeted normal tissue. Actinium-225 has been developed into potent targeting drug constructs and is in clinical use against acute myelogenous leukemia. The key properties of the alpha particles generated by 225Ac are the following: i) limited range in tissue of a few cell diameters; ii) high linear energy transfer leading to dense radiation damage along each alpha track; iii) a 10 day half-life; and iv) four net alpha particles emitted per decay. Targeting 225Ac-drug constructs have potential in the treatment of cancer. PMID:22202153

  14. The influence of human physical activity and contaminated clothing type on particle resuspension.

    PubMed

    McDonagh, A; Byrne, M A

    2014-01-01

    A study was conducted to experimentally quantify the influence of three variables on the level of resuspension of hazardous aerosol particles from clothing. Variables investigated include physical activity level (two levels, low and high), surface type (four different clothing material types), and time i.e. the rate at which particles resuspend. A mixture of three monodisperse tracer-labelled powders, with median diameters of 3, 5, and 10 microns, was used to "contaminate" the samples, and the resuspended particles were analysed in real-time using an Aerodynamic Particle Sizer (APS), and also by Neutron Activation Analysis (NAA). The overall finding was that physical activity resulted in up to 67% of the contamination deposited on clothing being resuspended back into the air. A detailed examination of the influence of physical activity level on resuspension, from NAA, revealed that the average resuspended fraction (RF) of particles at low physical activity was 28 ± 8%, and at high physical activity was 30 ± 7%, while the APS data revealed a tenfold increase in the cumulative mass of airborne particles during high physical activity in comparison to that during low physical activity. The results also suggest that it is not the contaminated clothing's fibre type which influences particle resuspension, but the material's weave pattern (and hence the material's surface texture). Investigation of the time variation in resuspended particle concentrations indicated that the data were separable into two distinct regimes: the first (occurring within the first 1.5 min) having a high, positive rate of change of airborne particle concentration relative to the second regime. The second regime revealed a slower rate of change of particle concentration and remained relatively unchanged for the remainder of each resuspension event. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Removal of 10-nm contaminant particles from Si wafers using CO2 bullet particles.

    PubMed

    Kim, Inho; Hwang, Kwangseok; Lee, Jinwon

    2012-04-11

    Removal of nanometer-sized contaminant particles (CPs) from substrates is essential in successful fabrication of nanoscale devices. The particle beam technique that uses nanometer-sized bullet particles (BPs) moving at supersonic velocity was improved by operating it at room temperature to achieve higher velocity and size uniformity of BPs and was successfully used to remove CPs as small as 10 nm. CO2 BPs were generated by gas-phase nucleation and growth in a supersonic nozzle; appropriate size and velocity of the BPs were obtained by optimizing the nozzle contours and CO2/He mixture fraction. Cleaning efficiency greater than 95% was attained. BP velocity was the most important parameter affecting removal of CPs in the 10-nm size range. Compared to cryogenic Ar or N2 particles, CO2 BPs were more uniform in size and had higher velocity and, therefore, cleaned CPs more effectively.

  16. First passage times for multiple particles with reversible target-binding kinetics

    NASA Astrophysics Data System (ADS)

    Grebenkov, Denis S.

    2017-10-01

    We investigate the first passage problem for multiple particles that diffuse towards a target, partially adsorb there, and then desorb after a finite exponentially distributed residence time. We search for the first time when m particles undergoing such reversible target-binding kinetics are found simultaneously on the target that may trigger an irreversible chemical reaction or a biophysical event. Even if the particles are independent, the finite residence time on the target yields an intricate temporal coupling between particles. We compute analytically the mean first passage time (MFPT) for two independent particles by mapping the original problem to higher-dimensional surface-mediated diffusion and solving the coupled partial differential equations. The respective effects of the adsorption and desorption rates on the MFPT are revealed and discussed.

  17. Target Lagrangian kinematic simulation for particle-laden flows.

    PubMed

    Murray, S; Lightstone, M F; Tullis, S

    2016-09-01

    The target Lagrangian kinematic simulation method was motivated as a stochastic Lagrangian particle model that better synthesizes turbulence structure, relative to stochastic separated flow models. By this method, the trajectories of particles are constructed according to synthetic turbulent-like fields, which conform to a target Lagrangian integral timescale. In addition to recovering the expected Lagrangian properties of fluid tracers, this method is shown to reproduce the crossing trajectories and continuity effects, in agreement with an experimental benchmark.

  18. Deposit Structure for Particle-laden Droplets Targeted by Electrospray

    NASA Astrophysics Data System (ADS)

    Ghafouri, Aref; Singler, Timothy; Yong, Xin; Chiarot, Paul

    2017-11-01

    A hybrid printing technique that combines electrospray atomization with inkjet printing provides unique capabilities for exploring transport creating nanoparticle deposits with controlled structures. In this research, we use electrospray to deliver dry nanoparticles to the interface of particle-laden sessile droplets. Upon evaporation of the target sessile droplet, the particles at the interface are mapped to the underlying substrate. Particle locations in the final deposit were observed separately by tagging the particles dispersed inside the droplet and at its interface with different fluorophores. As expected, surfactant-free particles inside the target droplet were transported to its (pinned) contact line, creating a ``coffee ring'' morphology in the final deposit. The transport and final location of the interfacial particles was highly dependent on the presence of surfactant in the electrosprayed solution. If surfactant was present, the interfacial particles were transported to the apex of the target droplet, forming a dense region at the center of the final deposit. If the electrosprayed solution was surfactant-free, the transport of the interfacial particles was arrested and they were distributed uniformly across the final deposit. Similar deposit morphologies were found when experimenting with various surfactants, including Tween and sodium dodecyl sulfate. These results highlight the important of Marangoni flow in governing the final deposit structure for hybrid printing. This research supported by the National Science Foundation (Award 1538090).

  19. Multifunctional particles for melanoma-targeted drug delivery.

    PubMed

    Wadajkar, Aniket S; Bhavsar, Zarna; Ko, Cheng-Yu; Koppolu, Bhanuprasanth; Cui, Weina; Tang, Liping; Nguyen, Kytai T

    2012-08-01

    New magnetic-based core-shell particles (MBCSPs) were developed to target skin cancer cells while delivering chemotherapeutic drugs in a controlled fashion. MBCSPs consist of a thermo-responsive shell of poly(N-isopropylacrylamide-acrylamide-allylamine) and a core of poly(lactic-co-glycolic acid) (PLGA) embedded with magnetite nanoparticles. To target melanoma cancer cells, MBCSPs were conjugated with Gly-Arg-Gly-Asp-Ser (GRGDS) peptides that specifically bind to the α(5)β(3) receptors of melanoma cells. MBCSPs consist of unique multifunctional and controlled drug delivery characteristics. Specially, they can provide dual drug release mechanisms (a sustained release of drugs through degradation of PLGA core and a controlled release in response to changes in temperature via thermo-responsive polymer shell), and dual targeting mechanisms (magnetic localization and receptor-mediated targeting). Results from in vitro studies indicate that GRGDS-conjugated MBCSPs have an average diameter of 296 nm and exhibit no cytotoxicity towards human dermal fibroblasts up to 500 μg ml(-1). Further, a sustained release of curcumin from the core and a temperature-dependent release of doxorubicin from the shell of MBCSPs were observed. The particles also produced a dark contrast signal in magnetic resonance imaging. Finally, the particles were accumulated at the tumor site in a B16F10 melanoma orthotopic mouse model, especially in the presence of a magnet. Results indicate great potential of MBCSPs as a platform technology to target, treat and monitor melanoma for targeted drug delivery to reduce side effects of chemotherapeutic reagents. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. A fast ellipse extended target PHD filter using box-particle implementation

    NASA Astrophysics Data System (ADS)

    Zhang, Yongquan; Ji, Hongbing; Hu, Qi

    2018-01-01

    This paper presents a box-particle implementation of the ellipse extended target probability hypothesis density (ET-PHD) filter, called the ellipse extended target box particle PHD (EET-BP-PHD) filter, where the extended targets are described as a Poisson model developed by Gilholm et al. and the term "box" is here equivalent to the term "interval" used in interval analysis. The proposed EET-BP-PHD filter is capable of dynamically tracking multiple ellipse extended targets and estimating the target states and the number of targets, in the presence of clutter measurements, false alarms and missed detections. To derive the PHD recursion of the EET-BP-PHD filter, a suitable measurement likelihood is defined for a given partitioning cell, and the main implementation steps are presented along with the necessary box approximations and manipulations. The limitations and capabilities of the proposed EET-BP-PHD filter are illustrated by simulation examples. The simulation results show that a box-particle implementation of the ET-PHD filter can avoid the high number of particles and reduce computational burden, compared to a particle implementation of that for extended target tracking.

  1. Target-specific copper hybrid T7 phage particles.

    PubMed

    Dasa, Siva Sai Krishna; Jin, Qiaoling; Chen, Chin-Tu; Chen, Liaohai

    2012-12-18

    Target-specific nanoparticles have attracted significant attention recently, and have greatly impacted life and physical sciences as new agents for imaging, diagnosis, and therapy, as well as building blocks for the assembly of novel complex materials. While most of these particles are synthesized by chemical conjugation of an affinity reagent to polymer or inorganic nanoparticles, we are promoting the use of phage particles as a carrier to host organic or inorganic functional components, as well as to display the affinity reagent on the phage surface, taking advantage of the fact that some phages host well-established vectors for protein expression. An affinity reagent can be structured in a desired geometry on the surface of phage particles, and more importantly, the number of the affinity reagent molecules per phage particle can be precisely controlled. We previously have reported the use of the T7 phage capsid as a template for synthesizing target-specific metal nanoparticles. In this study herein, we reported the synthesis of nanoparticles using an intact T7 phage as a scaffold from which to extend 415 copies of a peptide that contains a hexahistidine (6His) motif for capture of copper ions and staging the conversion of copper ions to copper metal, and a cyclic Arginine-Glycine-Aspartic Acid (RGD4C) motif for targeting integrin and cancer cells. We demonstrated that the recombinant phage could load copper ions under low bulk copper concentrations without interfering with its target specificity. Further reduction of copper ions to copper metal rendered a very stable copper hybrid T7 phage, which prevents the detachment of copper from phage particles and maintains the phage structural integrity even under harsh conditions. Cancer cells (MCF-7) can selectively uptake copper hybrid T7 phage particles through ligand-mediated transmembrane transportation, whereas normal control cells (MCF-12F) uptake 1000-fold less. We further demonstrated that copper hybrid T7

  2. Self assembly, mobilization, and flotation of crude oil contaminated sand particles as granular shells on gas bubbles in water.

    PubMed

    Tansel, Berrin; Boglaienko, Daria

    2017-01-01

    Contaminant fate and transport studies and models include transport mechanisms for colloidal particles and dissolved ions which can be easily moved with water currents. However, mobilization of much larger contaminated granular particles (i.e., sand) in sediments have not been considered as a possible mechanism due to the relatively larger size of sand particles and their high bulk density. We conducted experiments to demonstrate that oil contaminated granular particles (which exhibit hydrophobic characteristics) can attach on gas bubbles to form granular shells and transfer from the sediment phase to the water column. The interactions and conditions necessary for the oil contaminated granular particles to self assemble as tightly packed granular shells on the gas bubbles which transfer from sediment phase to the water column were evaluated both experimentally and theoretically for South Louisiana crude oil and quartz sand particles. Analyses showed that buoyancy forces can be adequate to move the granular shell forming around the air bubbles if the bubble radius is above 0.001mm for the sand particles with 0.28mm diameter. Relatively high magnitude of the Hamaker constant for the oil film between sand and air (5.81×10 -20 J for air-oil-sand) indicates that air bubbles have high affinity to attach on the oil film that is on the sand particles in comparison to attaching to the sand particles without the oil film in water (1.60×10 -20 J for air-water-sand). The mobilization mechanism of the contaminated granular particles with gas bubbles can occur in natural environments resulting in transfer of granular particles from sediments to the water column. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A survey of particle contamination in electronic devices

    NASA Technical Reports Server (NTRS)

    Adolphsen, J. W.; Kagdis, W. A.; Timmins, A. R.

    1976-01-01

    The experiences are given of a number of National Aeronautics and Space Administration (NASA) and Space and Missile System Organization (SAMSO) contractors with particle contamination, and the methods used for its prevention and detection, evaluates the bases for the different schemes, assesses their effectiveness, and identifies the problems associated with each. It recommends specific short-range tests or approaches appropriate to individual part-type categories and recommends that specific tasks be initiated to refine techniques and to resolve technical and application facets of promising solutions.

  4. Cesium separation from contaminated milk using magnetic particles containing crystalline silicotitantes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunez, L.; Kaminski, M.; Chemical Engineering

    2000-11-01

    The Chernobyl nuclear reactor disaster in 1986 contaminated vast regions of prime grazing land. Subsequently, milk produced in the region has been contaminated with small amounts of the long-lived fission product cesium-137, and the Ukraine is seeking to deploy a simple separation process that will remove the Cs and preserve the nutritional value of the milk. Tiny magnetic particles containing crystalline silicotitanates (CST) have been manufactured and tested to this end. The results show that partitioning efficiency is optimized with low ratios of particle mass to volume. To achieve 90% Cs decontamination in a single-stage process, <3 g of magneticmore » CST per l milk is sufficient with a 30-min mixing time. A two-stage process would utilize <0.4 g/l per stage. The modeling of the magnetic CST system described herein can be achieved rather simply which is important for deployment in the affected Ukraine region.« less

  5. Shock effects in particle beam fusion targets

    NASA Astrophysics Data System (ADS)

    Sweeney, M. A.; Perry, F. C.; Asay, J. R.; Widner, M. M.

    1982-04-01

    At Sandia National Laboratorics we are assessing the response of fusion target materials to shock loading with the particle beam accelerators HYDRA and PROTO I and the gas gun facility. Nonlinear shock-accelerated unstable growth of fabriction irregularities has been demonstrated, and jetting is found to occur in imploding targets because of asymmetric beam deposition. Cylindrical ion targets display an instability due either to beam or target nonuniformity. However, the data suggest targets with aspect ratios of 30 may implode stably. The first time- and space-resolved measurements of shock-induced vaporization have been made. A homogeneous mixed phase EOS model cannot adequately explain the results because of the kinetic effects of vapor formation and expansion.

  6. Cleaning Genesis Solar Wind Collectors with Ultrapure Water: Residual Contaminant Particle Analysis

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Wentworth, S. J.; Rodriquez, M. C.; Calaway, M. J.

    2008-01-01

    Additional experience has been gained in removing contaminant particles from the surface of Genesis solar wind collectors fragments by using megasonically activated ultrapure water (UPW)[1]. The curatorial facility has cleaned six of the eight array collector material types to date: silicon (Si), sapphire (SAP), silicon-on-sapphire (SOS), diamond-like carbon-on-silicon (DOS), gold-on-sapphire (AuOS), and germanium (Ge). Here we make estimates of cleaning effectiveness using image analysis of particle size distributions and an SEM/EDS reconnaissance of particle chemistry on the surface of UPW-cleaned silicon fragments (Fig. 1). Other particle removal techniques are reported by [2] and initial assessment of molecular film removal is reported by [3].

  7. General classification of ``hot`` particles from the nearest Chernobyl contaminated areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shabalev, S.I.; Burakov, B.E.; Anderson, E.B.

    1997-12-31

    The morphology and composition both chemical and radionuclide of the main types of the solid-phase hot particles formed following the accident on the Chernobyl NPP have been studied by SEM, electron microprobe and gamma-spectrometry methods. Differences in many isotopes including: {sup 106}Ru, {sup 134}Cs, {sup 137}Cs dependent upon the hot particle matrix chemical composition was observed. The classification of hot particles based upon the chemical composition of their matrices has been done. It includes three main types: (1) fuel particles with UO{sub x} matrix; (2) fuel-constructional particles with Zr-U-O matrix, (3) hot particles with metallic inclusions of Fe-Cr-Ni. Moreover, theremore » are more rare types of hot particles with silicate or metal matrices. It was shown that only metallic inclusions of Fe-Cr-Ni are concentrators of {sup 106}Ru, which caused this nuclides assimilation in the molten stainless steel during the initial stages of the accident. Soils contamination of non-radioactive lead oxide particles in the Chernobyl NPP region were noticed. It was supposed that part of metallic lead, dropped from helicopters into burning reactor during first days of accident, was evaporated and oxidized accompanying solid oxide particles formation.« less

  8. Multisensor fusion for 3D target tracking using track-before-detect particle filter

    NASA Astrophysics Data System (ADS)

    Moshtagh, Nima; Romberg, Paul M.; Chan, Moses W.

    2015-05-01

    This work presents a novel fusion mechanism for estimating the three-dimensional trajectory of a moving target using images collected by multiple imaging sensors. The proposed projective particle filter avoids the explicit target detection prior to fusion. In projective particle filter, particles that represent the posterior density (of target state in a high-dimensional space) are projected onto the lower-dimensional observation space. Measurements are generated directly in the observation space (image plane) and a marginal (sensor) likelihood is computed. The particles states and their weights are updated using the joint likelihood computed from all the sensors. The 3D state estimate of target (system track) is then generated from the states of the particles. This approach is similar to track-before-detect particle filters that are known to perform well in tracking dim and stealthy targets in image collections. Our approach extends the track-before-detect approach to 3D tracking using the projective particle filter. The performance of this measurement-level fusion method is compared with that of a track-level fusion algorithm using the projective particle filter. In the track-level fusion algorithm, the 2D sensor tracks are generated separately and transmitted to a fusion center, where they are treated as measurements to the state estimator. The 2D sensor tracks are then fused to reconstruct the system track. A realistic synthetic scenario with a boosting target was generated, and used to study the performance of the fusion mechanisms.

  9. Real-time measurements of airborne biologic particles using fluorescent particle counter to evaluate microbial contamination: results of a comparative study in an operating theater.

    PubMed

    Dai, Chunyang; Zhang, Yan; Ma, Xiaoling; Yin, Meiling; Zheng, Haiyang; Gu, Xuejun; Xie, Shaoqing; Jia, Hengmin; Zhang, Liang; Zhang, Weijun

    2015-01-01

    Airborne bacterial contamination poses a risk for surgical site infection, and routine surveillance of airborne bacteria is important. Traditional methods for detecting airborne bacteria are time consuming and strenuous. Measurement of biologic particle concentrations using a fluorescent particle counter is a novel method for evaluating air quality. The current study was to determine whether the number of biologic particles detected by the fluorescent particle counter can be used to indicate airborne bacterial counts in operating rooms. The study was performed in an operating theater at a university hospital in Hefei, China. The number of airborne biologic particles every minute was quantified using a fluorescent particle counter. Microbiologic air sampling was performed every 30 minutes using an Andersen air sampler (Pusong Electronic Instruments, Changzhou, China). Correlations between the 2 different methods were analyzed by Pearson correlation coefficients. A significant correlation was observed between biologic particle and bacterial counts (Pearson correlation coefficient = 0.76), and the counting results from 2 methods both increased substantially between operations, corresponding with human movements in the operating room. Fluorescent particle counters show potential as important tools for monitoring bacterial contamination in operating theatres. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  10. The contribution of particles washed from rooftops to contaminant loading to urban streams.

    PubMed

    Van Metre, P C; Mahler, B J

    2003-09-01

    Rooftops are both a source of and a pathway for contaminated runoff in urban environments. To investigate the importance of particle-associated contamination in rooftop runoff, particles washed from asphalt shingle and galvanized metal roofs at sites 12 and 102 m from a major expressway were analyzed for major and trace elements and PAHs. Concentrations and yields from rooftops were compared among locations and roofing material types and to loads monitored during runoff events in the receiving urban stream to evaluate rooftop sources and their potential contribution to stream loading. Concentrations of zinc, lead, pyrene, and chrysene on a mass per mass basis in a majority of rooftop samples exceeded established sediment quality guidelines for probable toxicity of bed sediments to benthic biota. Fallout near the expressway was greater than farther away, as indicated by larger yields of all contaminants investigated, although some concentrations were lower. Metal roofing was a source of cadmium and zinc and asphalt shingles a source of lead. The contribution of rooftop washoff to watershed loading was estimated to range from 6 percent for chromium and arsenic to 55 percent for zinc. Estimated contributions from roofing material to total watershed load were greatest for zinc and lead, contributing about 20 and 18 percent, respectively. The contribution from atmospheric deposition of particles onto rooftops to total watershed loads in stormwater was estimated to be greatest for mercury, contributing about 46 percent.

  11. Particle induced nuclear reaction calculations of Boron target nuclei

    NASA Astrophysics Data System (ADS)

    Tel, Eyyup; Sahan, Muhittin; Sarpün, Ismail Hakki; Kavun, Yusuf; Gök, Ali Armagan; Poyraz, Meltem

    2017-09-01

    Boron is usable element in many areas such as health, industry and energy. Especially, Boron neutron capture therapy (BNCT) is one of the medical applications. Boron target is irradiated with low energy thermal neutrons and at the end of reactions alpha particles occur. After this process recoiling lithium-7 nuclei is composed. In this study, charge particle induced nuclear reactions calculations of Boron target nuclei were investigated in the incident proton and alpha energy range of 5-50 MeV. The excitation functions for 10B target nuclei reactions have been calculated by using PCROSS Programming code. The semi-empirical calculations for (p,α) reactions have been done by using cross section formula with new coefficient obtained by Tel et al. The calculated results were compared with the experimental data from the literature.

  12. Alpha-particle radiotherapy: For large solid tumors diffusion trumps targeting.

    PubMed

    Zhu, Charles; Sempkowski, Michelle; Holleran, Timothy; Linz, Thomas; Bertalan, Thomas; Josefsson, Anders; Bruchertseifer, Frank; Morgenstern, Alfred; Sofou, Stavroula

    2017-06-01

    Diffusion limitations on the penetration of nanocarriers in solid tumors hamper their therapeutic use when labeled with α-particle emitters. This is mostly due to the α-particles' relatively short range (≤100 μm) resulting in partial tumor irradiation and limited killing. To utilize the high therapeutic potential of α-particles against solid tumors, we designed non-targeted, non-internalizing nanometer-sized tunable carriers (pH-tunable liposomes) that are triggered to release, within the slightly acidic tumor interstitium, highly-diffusive forms of the encapsulated α-particle generator Actinium-225 ( 225 Ac) resulting in more homogeneous distributions of the α-particle emitters, improving uniformity in tumor irradiation and increasing killing efficacies. On large multicellular spheroids (400 μm-in-diameter), used as surrogates of the avascular areas of solid tumors, interstitially-releasing liposomes resulted in best growth control independent of HER2 expression followed in performance by (a) the HER2-targeting radiolabeled antibody or (b) the non-responsive liposomes. In an orthotopic human HER2-negative mouse model, interstitially-releasing 225 Ac-loaded liposomes resulted in the longest overall and median survival. This study demonstrates the therapeutic potential of a general strategy to bypass the diffusion-limited transport of radionuclide carriers in solid tumors enabling interstitial release from non-internalizing nanocarriers of highly-diffusing and deeper tumor-penetrating molecular forms of α-particle emitters, independent of cell-targeting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Characteristics of PAH tar oil contaminated soils-Black particles, resins and implications for treatment strategies.

    PubMed

    Trellu, Clément; Miltner, Anja; Gallo, Rosita; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A; Kästner, Matthias

    2017-04-05

    Tar oil contamination is a major environmental concern due to health impacts of polycyclic aromatic hydrocarbons (PAH) and the difficulty of reaching acceptable remediation end-points. Six tar oil-contaminated soils with different industrial histories were compared to investigate contamination characteristics by black particles. Here we provide a simple method tested on 6 soils to visualize and identify large amounts of black particles (BP) as either solid aggregates of resinified and weathered tar oil or various wood/coke/coal-like materials derived from the contamination history. These materials contain 2-10 times higher PAH concentrations than the average soil and were dominantly found in the sand fraction containing 42-86% of the total PAH. The PAH contamination in the different granulometric fractions was directly proportional to the respective total organic carbon content, since the PAH were associated to the carbonaceous particulate materials. Significantly lower (bio)availability of PAH associated to these carbonaceous phases is widely recognized, thus limiting the efficiency of remediation techniques. We provide a conceptual model of the limited mass transfer of PAH from resinated tar oil phases to the water phase and emphasize the options to physically separate BP based on their lower bulk density and slower settling velocity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Emerging Mechanistic Targets in Lung Injury Induced by Combustion-Generated Particles

    PubMed Central

    Fariss, Marc W.; Gilmour, M. Ian; Reilly, Christopher A.; Liedtke, Wolfgang; Ghio, Andrew J.

    2013-01-01

    The mechanism for biological effect following exposure to combustion-generated particles is incompletely defined. The identification of pathways regulating the acute toxicological effects of these particles provides specific targets for therapeutic manipulation in an attempt to impact disease following exposures. Transient receptor potential (TRP) cation channels were identified as “particle sensors” in that their activation was coupled with the initiation of protective responses limiting airway deposition and inflammatory responses, which promote degradation and clearance of the particles. TRPA1, V1, V4, and M8 have a capacity to mediate adverse effects after exposure to combustion-generated particulate matter (PM); relative contributions of each depend upon particle composition, dose, and deposition. Exposure of human bronchial epithelial cells to an organic extract of diesel exhaust particle was followed by TRPV4 mediating Ca++ influx, increased RAS expression, mitogen-activated protein kinase signaling, and matrix metalloproteinase-1 activation. These novel pathways of biological effect can be targeted by compounds that specifically inhibit critical signaling reactions. In addition to TRPs and calcium biochemistry, humic-like substances (HLS) and cell/tissue iron equilibrium were identified as potential mechanistic targets in lung injury after particle exposure. In respiratory epithelial cells, iron sequestration by HLS in wood smoke particle (WSP) was associated with oxidant generation, cell signaling, transcription factor activation, and release of inflammatory mediators. Similar to WSP, cytotoxic insoluble nanosized spherical particles composed of HLS were isolated from cigarette smoke condensate. Therapies that promote bioelimination of HLS and prevent the disruption of iron homeostasis could function to reduce the harmful effects of combustion-generated PM exposure. PMID:23322347

  15. Pb2+ ions mobility perturbation by iron particles during electrokinetic remediation of contaminated soil.

    PubMed

    Zulfiqar, Waqas; Iqbal, Muhammad Asad; Butt, Mehwish Khalid

    2017-02-01

    Electrokinetic (EK) remediation is one of the most useful approaches for de-contamination of soils. However, it is unclear that how and when the electrokinetic remediation gives advantages over other remediation techniques in soil. This study was designed to find the influence of Fe 2+ particles on the mobility of Pb 2+ ions, during electrokinetic remediation, in soil contaminated purposely by lead nitrate Pb(NO 3 ) 2 . Two types of electrokinetic experiments were performed, by using iron and graphite electrodes. The Fe 2+ ions from the iron electrodes, produced due to acidic environment in anode compartment, affected the mobility of lead particles by precipitating as Fe(OH) 2 . Fe 2+ ions enhance the adsorption of lead ions in soil. The results show Fe 2+ ions of lower ionic conductivity decreased mobility of other particles in soil. Electrokinetic remediation for up to 120 h with iron electrodes is shown to be less effective for removal of lead. In contrast, graphite electrodes were 15 times more effective in lead removal from soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Bayesian power spectrum inference with foreground and target contamination treatment

    NASA Astrophysics Data System (ADS)

    Jasche, J.; Lavaux, G.

    2017-10-01

    This work presents a joint and self-consistent Bayesian treatment of various foreground and target contaminations when inferring cosmological power spectra and three-dimensional density fields from galaxy redshift surveys. This is achieved by introducing additional block-sampling procedures for unknown coefficients of foreground and target contamination templates to the previously presented ARES framework for Bayesian large-scale structure analyses. As a result, the method infers jointly and fully self-consistently three-dimensional density fields, cosmological power spectra, luminosity-dependent galaxy biases, noise levels of the respective galaxy distributions, and coefficients for a set of a priori specified foreground templates. In addition, this fully Bayesian approach permits detailed quantification of correlated uncertainties amongst all inferred quantities and correctly marginalizes over observational systematic effects. We demonstrate the validity and efficiency of our approach in obtaining unbiased estimates of power spectra via applications to realistic mock galaxy observations that are subject to stellar contamination and dust extinction. While simultaneously accounting for galaxy biases and unknown noise levels, our method reliably and robustly infers three-dimensional density fields and corresponding cosmological power spectra from deep galaxy surveys. Furthermore, our approach correctly accounts for joint and correlated uncertainties between unknown coefficients of foreground templates and the amplitudes of the power spectrum. This effect amounts to correlations and anti-correlations of up to 10 per cent across wide ranges in Fourier space.

  17. Viperin targets flavivirus virulence by inducing assembly of non-infectious capsid particles.

    PubMed

    Vonderstein, Kirstin; Nilsson, Emma; Hubel, Philipp; Nygård Skalman, Lars; Upadhyay, Arunkumar; Pasto, Jenny; Pichlmair, Andreas; Lundmark, Richard; Överby, Anna K

    2017-10-18

    Efficient antiviral immunity requires interference with virus replication at multiple layers targeting diverse steps in the viral life cycle. Here we describe a novel flavivirus inhibition mechanism that results in interferon-mediated obstruction of tick-borne encephalitis virus particle assembly, and involves release of malfunctional membrane associated capsid (C) particles. This mechanism is controlled by the activity of the interferon-induced protein viperin, a broad spectrum antiviral interferon stimulated gene. Through analysis of the viperin-interactome, we identified the Golgi Brefeldin A resistant guanine nucleotide exchange factor 1 (GBF1), as the cellular protein targeted by viperin. Viperin-induced antiviral activity as well as C-particle release was stimulated by GBF1 inhibition and knock down, and reduced by elevated levels of GBF1. Our results suggest that viperin targets flavivirus virulence by inducing the secretion of unproductive non-infectious virus particles, by a GBF1-dependent mechanism. This yet undescribed antiviral mechanism allows potential therapeutic intervention. Importance The interferon response can target viral infection on almost every level, however, very little is known about interference of flavivirus assembly. Here we show that interferon, through the action of viperin, can disturb assembly of tick-borne encephalitis virus. The viperin protein is highly induced after viral infection and exhibit broad-spectrum antiviral activity. However, the mechanism of action is still elusive and appear to vary between the different viruses, indicating that cellular targets utilized by several viruses might be involved. In this study we show that viperin induce capsid particle release by interacting and inhibiting the function of the cellular protein Golgi Brefeldin A resistant guanine nucleotide exchange factor 1 (GBF1). GBF1 is a key protein in the cellular secretory pathway and essential in the life cycle of many viruses, also targeted by

  18. Response of gadolinium doped liquid scintillator to charged particles: measurement based on intrinsic U/Th contamination

    NASA Astrophysics Data System (ADS)

    Du, Q.; Lin, S. T.; He, H. T.; Liu, S. K.; Tang, C. J.; Wang, L.; Wong, H. T.; Xing, H. Y.; Yue, Q.; Zhu, J. J.

    2018-04-01

    A measurement is reported for the response to charged particles of a liquid scintillator named EJ-335 doped with 0.5% gadolinium by weight. This liquid scintillator was used as the detection medium in a neutron detector. The measurement is based on the in-situ α-particles from the intrinsic Uranium and Thorium contamination in the scintillator. The β–α and the α–α cascade decays from the U/Th decay chains were used to select α-particles. The contamination levels of U/Th were consequently measured to be (5.54±0.15)× 10‑11 g/g, (1.45±0.01)× 10‑10 g/g and (1.07±0.01)× 10‑11 g/g for 232Th, 238U and 235U, respectively, assuming secular equilibrium. The stopping power of α-particles in the liquid scintillator was simulated by the TRIM software. Then the Birks constant, kB, of the scintillator for α-particles was determined to be (7.28±0.23) mg/(cm2ṡMeV) by Birks' formulation. The response for protons is also presented assuming the kB constant is the same as for α-particles.

  19. Particle contamination effects in EUVL: enhanced theory for the analytical determination of critical particle sizes

    NASA Astrophysics Data System (ADS)

    Brandstetter, Gerd; Govindjee, Sanjay

    2012-03-01

    Existing analytical and numerical methodologies are discussed and then extended in order to calculate critical contamination-particle sizes, which will result in deleterious effects during EUVL E-chucking in the face of an error budget on the image-placement-error (IPE). The enhanced analytical models include a gap dependant clamping pressure formulation, the consideration of a general material law for realistic particle crushing and the influence of frictional contact. We present a discussion of the defects of the classical de-coupled modeling approach where particle crushing and mask/chuck indentation are separated from the global computation of mask bending. To repair this defect we present a new analytic approach based on an exact Hankel transform method which allows a fully coupled solution. This will capture the contribution of the mask indentation to the image-placement-error (estimated IPE increase of 20%). A fully coupled finite element model is used to validate the analytical models and to further investigate the impact of a mask back-side CrN-layer. The models are applied to existing experimental data with good agreement. For a standard material combination, a given IPE tolerance of 1 nm and a 15 kPa closing pressure, we derive bounds for single particles of cylindrical shape (radius × height < 44 μm) and spherical shape (diameter < 12 μm).

  20. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle

    PubMed Central

    Dekempeneer, Yana; Keyaerts, Marleen; Krasniqi, Ahmet; Puttemans, Janik; Muyldermans, Serge; Lahoutte, Tony; D’huyvetter, Matthias; Devoogdt, Nick

    2016-01-01

    ABSTRACT Introduction: The combination of a targeted biomolecule that specifically defines the target and a radionuclide that delivers a cytotoxic payload offers a specific way to destroy cancer cells. Targeted radionuclide therapy (TRNT) aims to deliver cytotoxic radiation to cancer cells and causes minimal toxicity to surrounding healthy tissues. Recent advances using α-particle radiation emphasizes their potential to generate radiation in a highly localized and toxic manner because of their high level of ionization and short range in tissue. Areas covered: We review the importance of targeted alpha therapy (TAT) and focus on nanobodies as potential beneficial vehicles. In recent years, nanobodies have been evaluated intensively as unique antigen-specific vehicles for molecular imaging and TRNT. Expert opinion: We expect that the efficient targeting capacity and fast clearance of nanobodies offer a high potential for TAT. More particularly, we argue that the nanobodies’ pharmacokinetic properties match perfectly with the interesting decay properties of the short-lived α-particle emitting radionuclides Astatine-211 and Bismuth-213 and offer an interesting treatment option particularly for micrometastatic cancer and residual disease. PMID:27145158

  1. Cleaning Surface Particle Contamination with Ultrapure Water (UPW) Megasonic Flow on Genesis Array Collectors

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Calaway, Michael J.; Hittle, J. D.; Rodriquez, M. C.; Stansbery, E. K.; McNamara, K. M.

    2006-01-01

    The hard landing experienced by the Genesis sample return capsule breached the science canister containing the solar wind collectors. This impact into the damp lakebed contaminated collector surfaces with pulverized collector and spacecraft materials and Utah sediment and brine residue. The gold foil, polished aluminum, and bulk metallic glass remained intact, but the solar wind bulk and regime-specific array collectors were jarred loose from their frames and fractured into greater than 10,000 specimens. After a year of investigation and cleaning experimentation, the Genesis Science Team determined that array collectors had 4 classes of contaminants: particles, molecular film, submicron inorganic particulate ("aerosol"), and pre-launch surface contamination. We discuss here use of megasonically energized ultrapure water (UPW) for removing particulate debris from array collector fragments.

  2. The new approach for infrared target tracking based on the particle filter algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Hang; Han, Hong-xia

    2011-08-01

    Target tracking on the complex background in the infrared image sequence is hot research field. It provides the important basis in some fields such as video monitoring, precision, and video compression human-computer interaction. As a typical algorithms in the target tracking framework based on filtering and data connection, the particle filter with non-parameter estimation characteristic have ability to deal with nonlinear and non-Gaussian problems so it were widely used. There are various forms of density in the particle filter algorithm to make it valid when target occlusion occurred or recover tracking back from failure in track procedure, but in order to capture the change of the state space, it need a certain amount of particles to ensure samples is enough, and this number will increase in accompany with dimension and increase exponentially, this led to the increased amount of calculation is presented. In this paper particle filter algorithm and the Mean shift will be combined. Aiming at deficiencies of the classic mean shift Tracking algorithm easily trapped into local minima and Unable to get global optimal under the complex background. From these two perspectives that "adaptive multiple information fusion" and "with particle filter framework combining", we expand the classic Mean Shift tracking framework .Based on the previous perspective, we proposed an improved Mean Shift infrared target tracking algorithm based on multiple information fusion. In the analysis of the infrared characteristics of target basis, Algorithm firstly extracted target gray and edge character and Proposed to guide the above two characteristics by the moving of the target information thus we can get new sports guide grayscale characteristics and motion guide border feature. Then proposes a new adaptive fusion mechanism, used these two new information adaptive to integrate into the Mean Shift tracking framework. Finally we designed a kind of automatic target model updating strategy

  3. Augmenting regional and targeted delivery in the pulmonary acinus using magnetic particles

    PubMed Central

    Ostrovski, Yan; Hofemeier, Philipp; Sznitman, Josué

    2016-01-01

    Background It has been hypothesized that by coupling magnetic particles to inhaled therapeutics, the ability to target specific lung regions (eg, only acinar deposition), or even more so specific points in the lung (eg, tumor targeting), can be substantially improved. Although this method has been proven feasible in seminal in vivo studies, there is still a wide gap in our basic understanding of the transport phenomena of magnetic particles in the pulmonary acinar regions of the lungs, including particle dynamics and deposition characteristics. Methods Here, we present computational fluid dynamics-discrete element method simulations of magnetically loaded microdroplet carriers in an anatomically inspired, space-filling, multi-generation acinar airway tree. Breathing motion is modeled by kinematic sinusoidal displacements of the acinar walls, during which droplets are inhaled and exhaled. Particle dynamics are governed by viscous drag, gravity, and Brownian motion as well as the external magnetic force. In particular, we examined the roles of droplet diameter and volume fraction of magnetic material within the droplets under two different breathing maneuvers. Results and discussion Our results indicate that by using magnetic-loaded droplets, 100% of the particles that enter are deposited in the acinar region. This is consistent across all particle sizes investigated (ie, 0.5–3.0 µm). This is best achieved through a deep inhalation maneuver combined with a breath-hold. Particles are found to penetrate deep into the acinus and disperse well, while the required amount of magnetic material is maintained low (<2.5%). Although particles in the size range of ~90–500 nm typically show the lowest deposition fractions, our results suggest that this feature could be leveraged to augment targeted delivery. PMID:27547034

  4. Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha-particle therapy applications

    PubMed Central

    Miederer, Matthias; Scheinberg, David A.; McDevitt, Michael R.

    2013-01-01

    Alpha particle-emitting isotopes have been proposed as novel cytotoxic agents for augmenting targeted therapy. Properties of alpha particle radiation such as their limited range in tissue of a few cell diameters and their high linear energy transfer leading to dense radiation damage along each alpha track are promising in the treatment of cancer, especially when single cells or clusters of tumor cells are targeted. Actinium-225 (225Ac) is an alpha particle-emitting radionuclide that generates 4 net alpha particle isotopes in a short decay chain to stable 209Bi, and as such can be described as an alpha particle nanogenerator. This article reviews the literature pertaining to the research, development, and utilization of targeted 225Ac to potently and specifically affect cancer. PMID:18514364

  5. Description of a dust particle detection system and measurements of particulate contamination from shock, gate valve, and ion pump under ultrahigh vacuum conditions

    NASA Astrophysics Data System (ADS)

    Dorier, J.-L.; Hilleret, N.

    1998-11-01

    Dust particle contamination is known to be responsible for reduced quality and yield in microelectronic processing. However it may also limit the operation of particle accelerators as a result of beam lifetime reduction or enhanced field emission in radio-frequency accelerating cavities. Intrinsic dust contamination from sources such as valves or ion pumps has not yet been studied due to the inability of commercial particle counters to be able to detect across large cross sections under ultrahigh vacuum (UHV) conditions. This motivated the development of the dust particle detector described here which is able to quantify, in situ, the level of contamination on a representative part of a vacuum vessel. This system operates under UHV conditions and measures flashes of scattered light from free falling dust particles as they cross a thin laser light sheet across a 100 mm diam vacuum vessel. A calibration using microspheres of known diameter has allowed estimation of the particle size from the scattered signal amplitude. Measurements of particulate contamination generated by shocks onto the vessel walls are presented and determination of the height of origin of dust particles from their transit time across the irradiation sheet is discussed. Measurements of dust particle release right to operation of an all-metal gate valve are also presented in the form of time resolved measurements of dust occurrence during the open/close cycles of the valve, as well as histograms of the particle size distribution. A partial self-cleaning effect is witnessed during the first 10 operation cycles following valve installation. The operation of an ion pump has also been investigated and revealed that, in our conditions, particles were released only at pump startup.

  6. Mitochondria and mitochondrial DNA as relevant targets for environmental contaminants.

    PubMed

    Roubicek, Deborah A; Souza-Pinto, Nadja C de

    2017-11-01

    The mitochondrial DNA (mtDNA) is a closed circular molecule that encodes, in humans, 13 polypeptides components of the oxidative phosphorylation complexes. Integrity of the mitochondrial genome is essential for mitochondrial function and cellular homeostasis, and mutations and deletions in the mtDNA lead to oxidative stress, mitochondrial dysfunction and cell death. In vitro and in situ studies suggest that when exposed to certain genotoxins, mtDNA accumulates more damage than nuclear DNA, likely owing to its organization and localization in the mitochondrial matrix, which tends to accumulate lipophilic, positively charged molecules. In that regard, several relevant environmental and occupational contaminants have physical-chemical characteristics that indicate that they might accumulate in mitochondria and target mtDNA. Nonetheless, very little is known so far about mtDNA damage and mitochondrial dysfunction due to environmental exposure, either in model organisms or in humans. In this article, we discuss some of the characteristics of mtDNA which render it a potentially relevant target for damage by environmental contaminants, as well as possible functional consequences of damage/mutation accumulation. In addition, we review the data available in the literature focusing on mitochondrial effects of the most common classes of environmental pollutants. From that, we conclude that several lines of experimental evidence support the idea that mitochondria and mtDNA are susceptible and biologically relevant targets for pollutants, and more studies, including mechanistic ones, are needed to shed more light into the contribution of mitochondrial dysfunction to the environmental and human health effects of chemical exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Particle-free microchip processing

    DOEpatents

    Geller, Anthony S.; Rader, Daniel J.

    1996-01-01

    Method and apparatus for reducing particulate contamination in microchip processing are disclosed. The method and apparatus comprise means to reduce particle velocity toward the wafer before the particles can be deposited on the wafer surface. A reactor using electric fields to reduce particle velocity and prevent particulate contamination is disclosed. A reactor using a porous showerhead to reduce particle velocities and prevent particulate contamination is disclosed.

  8. Particle production of a graphite target system for the intensity frontier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, X.; Kirk, H.; McDonald, K. T.

    2015-05-03

    A solid graphite target system is considered for an intense muon and/or neutrino source in support of physics at the intensity frontier. We previously optimized the geometric parameters of the beam and target to maximize particle production at low energies by incoming protons with kinetic energy of 6.75 GeV and an rms geometric emittance of 5 mm-mrad using the MARS15(2014) code. In this study, we ran MARS15 with ROOT-based geometry and also considered a mercury-jet target as an upgrade option. The optimization was extended to focused proton beams with transverse emittances from 5 to 50 mm-mrad, showing that the particlemore » production decreases slowly with increasing emittance. We also studied beam-dump configurations to suppress the rate of undesirable high-energy secondary particles in the beam.« less

  9. Particle-free microchip processing

    DOEpatents

    Geller, A.S.; Rader, D.J.

    1996-06-04

    Method and apparatus for reducing particulate contamination in microchip processing are disclosed. The method and apparatus comprise means to reduce particle velocity toward the wafer before the particles can be deposited on the wafer surface. A reactor using electric fields to reduce particle velocity and prevent particulate contamination is disclosed. A reactor using a porous showerhead to reduce particle velocities and prevent particulate contamination is disclosed. 5 figs.

  10. Combustion-derived ultrafine particles transport organic toxicants to target respiratory cells.

    PubMed

    Penn, Arthur; Murphy, Gleeson; Barker, Steven; Henk, William; Penn, Lynn

    2005-08-01

    Epidemiologic evidence supports associations between inhalation of fine and ultrafine ambient particulate matter [aerodynamic diameter < or = 2.5 microm (PM2.5)] and increases in cardiovascular/respiratory morbidity and mortality. Less attention has been paid to how the physical and chemical characteristics of these particles may influence their interactions with target cells. Butadiene soot (BDS), produced during combustion of the high-volume petrochemical 1,3-butadiene, is rich in polynuclear aromatic hydrocarbons (PAHs), including known carcinogens. We conducted experiments to characterize BDS with respect to particle size distribution, assembly, PAH composition, elemental content, and interaction with respiratory epithelial cells. Freshly generated, intact BDS is primarily (> 90%) PAH-rich, metals-poor (nickel, chromium, and vanadium concentrations all < 1 ppm) PM2.5, composed of uniformly sized, solid spheres (30-50 nm) in aggregated form. Cells of a human bronchial epithelial cell line (BEAS-2B) exhibit sequential fluorescent responses--a relatively rapid (approximately 30 min), bright but diffuse fluorescence followed by the slower (2-4 hr) appearance of punctate cytoplasmic fluorescence--after BDS is added to medium overlying the cells. The fluorescence is associated with PAH localization in the cells. The ultrafine BDS particles move down through the medium to the cell membrane. Fluorescent PAHs are transferred from the particle surface to the cell membrane, cross the membrane into the cytosol, and appear to accumulate in lipid vesicles. There is no evidence that BDS particles pass into the cells. The results demonstrate that uptake of airborne ultrafine particles by target cells is not necessary for transfer of toxicants from the particles to the cells.

  11. Comparison of particle-tracking and lumped-parameter age-distribution models for evaluating vulnerability of production wells to contamination

    USGS Publications Warehouse

    Eberts, S.M.; Böhlke, J.K.; Kauffman, L.J.; Jurgens, B.C.

    2012-01-01

    Environmental age tracers have been used in various ways to help assess vulnerability of drinking-water production wells to contamination. The most appropriate approach will depend on the information that is available and that which is desired. To understand how the well will respond to changing nonpoint-source contaminant inputs at the water table, some representation of the distribution of groundwater ages in the well is needed. Such information for production wells is sparse and difficult to obtain, especially in areas lacking detailed field studies. In this study, age distributions derived from detailed groundwater-flow models with advective particle tracking were compared with those generated from lumped-parameter models to examine conditions in which estimates from simpler, less resource-intensive lumped-parameter models could be used in place of estimates from particle-tracking models. In each of four contrasting hydrogeologic settings in the USA, particle-tracking and lumped-parameter models yielded roughly similar age distributions and largely indistinguishable contaminant trends when based on similar conceptual models and calibrated to similar tracer data. Although model calibrations and predictions were variably affected by tracer limitations and conceptual ambiguities, results illustrated the importance of full age distributions, rather than apparent tracer ages or model mean ages, for trend analysis and forecasting.

  12. A particle filter for multi-target tracking in track before detect context

    NASA Astrophysics Data System (ADS)

    Amrouche, Naima; Khenchaf, Ali; Berkani, Daoud

    2016-10-01

    The track-before-detect (TBD) approach can be used to track a single target in a highly noisy radar scene. This is because it makes use of unthresholded observations and incorporates a binary target existence variable into its target state estimation process when implemented as a particle filter (PF). This paper proposes the recursive PF-TBD approach to detect multiple targets in low-signal-to noise ratios (SNR). The algorithm's successful performance is demonstrated using a simulated two target example.

  13. Assessment of Methods for Estimating Risk to Birds from Ingestion of Contaminated Grit Particles (Final Report)

    EPA Science Inventory

    The U.S. EPA Ecological Risk Assessment Support Center (ERASC) announced the release of the final report entitled, Assessment of Methods for Estimating Risk to Birds from Ingestion of Contaminated Grit Particles. This report evaluates approaches for estimating the probabi...

  14. Remediating radium contaminated legacy sites: Advances made through machine learning in routine monitoring of "hot" particles.

    PubMed

    Varley, Adam; Tyler, Andrew; Smith, Leslie; Dale, Paul; Davies, Mike

    2015-07-15

    The extensive use of radium during the 20th century for industrial, military and pharmaceutical purposes has led to a large number of contaminated legacy sites across Europe and North America. Sites that pose a high risk to the general public can present expensive and long-term remediation projects. Often the most pragmatic remediation approach is through routine monitoring operating gamma-ray detectors to identify, in real-time, the signal from the most hazardous heterogeneous contamination (hot particles); thus facilitating their removal and safe disposal. However, current detection systems do not fully utilise all spectral information resulting in low detection rates and ultimately an increased risk to the human health. The aim of this study was to establish an optimised detector-algorithm combination. To achieve this, field data was collected using two handheld detectors (sodium iodide and lanthanum bromide) and a number of Monte Carlo simulated hot particles were randomly injected into the field data. This allowed for the detection rate of conventional deterministic (gross counts) and machine learning (neural networks and support vector machines) algorithms to be assessed. The results demonstrated that a Neural Network operated on a sodium iodide detector provided the best detection capability. Compared to deterministic approaches, this optimised detection system could detect a hot particle on average 10cm deeper into the soil column or with half of the activity at the same depth. It was also found that noise presented by internal contamination restricted lanthanum bromide for this application. Copyright © 2015. Published by Elsevier B.V.

  15. Combustion-Derived Ultrafine Particles Transport Organic Toxicants to Target Respiratory Cells

    PubMed Central

    Penn, Arthur; Murphy, Gleeson; Barker, Steven; Henk, William; Penn, Lynn

    2005-01-01

    Epidemiologic evidence supports associations between inhalation of fine and ultrafine ambient particulate matter [aerodynamic diameter ≤ 2.5 μm (PM2.5)] and increases in cardiovascular/respiratory morbidity and mortality. Less attention has been paid to how the physical and chemical characteristics of these particles may influence their interactions with target cells. Butadiene soot (BDS), produced during combustion of the high-volume petrochemical 1,3-butadiene, is rich in polynuclear aromatic hydrocarbons (PAHs), including known carcinogens. We conducted experiments to characterize BDS with respect to particle size distribution, assembly, PAH composition, elemental content, and interaction with respiratory epithelial cells. Freshly generated, intact BDS is primarily (> 90%) PAH-rich, metals-poor (nickel, chromium, and vanadium concentrations all < 1 ppm) PM2.5, composed of uniformly sized, solid spheres (30–50 nm) in aggregated form. Cells of a human bronchial epithelial cell line (BEAS-2B) exhibit sequential fluorescent responses—a relatively rapid (~ 30 min), bright but diffuse fluorescence followed by the slower (2–4 hr) appearance of punctate cytoplasmic fluorescence—after BDS is added to medium overlying the cells. The fluorescence is associated with PAH localization in the cells. The ultrafine BDS particles move down through the medium to the cell membrane. Fluorescent PAHs are transferred from the particle surface to the cell membrane, cross the membrane into the cytosol, and appear to accumulate in lipid vesicles. There is no evidence that BDS particles pass into the cells. The results demonstrate that uptake of airborne ultrafine particles by target cells is not necessary for transfer of toxicants from the particles to the cells. PMID:16079063

  16. Expanded Target-Chemical Analysis Reveals Extensive Mixed-Organic-Contaminant Exposure in U.S. Streams

    EPA Science Inventory

    Surface-water from 38 streams nation-wide was assessed using 14 target-organic methods (719 compounds). Designedbioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-org...

  17. Measurement of secondary particle production induced by particle therapy ion beams impinging on a PMMA target

    NASA Astrophysics Data System (ADS)

    Toppi, M.; Battistoni, G.; Bellini, F.; Collamati, F.; De Lucia, E.; Durante, M.; Faccini, R.; Frallicciardi, P. M.; Marafini, M.; Mattei, I.; Morganti, S.; Muraro, S.; Paramatti, R.; Patera, V.; Pinci, D.; Piersanti, L.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Senzacqua, M.; Solfaroli Camillocci, E.; Traini, G.; Voena, C.

    2016-05-01

    Particle therapy is a technique that uses accelerated charged ions for cancer treatment and combines a high irradiation precision with a high biological effectiveness in killing tumor cells [1]. Informations about the secondary particles emitted in the interaction of an ion beam with the patient during a treatment can be of great interest in order to monitor the dose deposition. For this purpose an experiment at the HIT (Heidelberg Ion-Beam Therapy Center) beam facility has been performed in order to measure fluxes and emission profiles of secondary particles produced in the interaction of therapeutic beams with a PMMA target. In this contribution some preliminary results about the emission profiles and the energy spectra of the detected secondaries will be presented.

  18. The development of coil short circuits when transformer windings become contaminated with metal-containing colloidal particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L'vov, S. Yu.; Lyut'ko, E. O.; Bondareva, V. N.

    The radiational-thermal development of coil short circuits due to the action of partial discharges of the first kind when the windings of transformers, autotransformers and shunting reactors become contaminated with metal-containing colloidal particles, formed in the transformer oil as a result of the interaction of the oil with the constructional materials (the copper of the windings, the iron of the tank, the core etc.) is considered. Acriterion of dangerous contamination of the coil insulation of the windings by metal-containing colloidal particles is proposed, namely, 3% of the mass content of copper and iron in it, which, if exceeded, may servemore » as a basis for recognizing the state of transformers, autotransformers and shunting reactors at a voltage of 110 kV and above the limit. It is shown that filters for continuously cleaning the oil play a considerable role in prolonging the life of transformer equipment.« less

  19. Multiplicity distributions of shower particles and target fragments in 84 Kr 36-emulsion interactions at 1 GeV per nucleon

    NASA Astrophysics Data System (ADS)

    Singh, M. K.; Soma, A. K.; Pathak, Ramji; Singh, V.

    2014-03-01

    This article focuses on multiplicity distributions of shower particles and target fragments for interaction of 84 Kr 36 with NIKFI BR-2 nuclear emulsion target at kinetic energy of 1 GeV per nucleon. Experimental multiplicity distributions of shower particles, grey particles, black particles and heavily ionization particles are well described by multi-component Erlang distribution of multi-source thermal model. We have observed a linear correlation in multiplicities for the above mentioned particles or fragments. Further experimental studies have shown a saturation phenomenon in shower particle multiplicity with the increase of target fragment multiplicity.

  20. Enhanced transport of biodegradable polymer-coated nanoiron particles in sand columns

    NASA Astrophysics Data System (ADS)

    Jung, B.; O'Carroll, D.; Sleep, B.

    2009-05-01

    The use of nanoscale zerovalent iron has shown promise as a technology for remediation of subsurface contamination by chlorinated solvents. However, the delivery of nanoiron particles to target contaminated subsurface zones is hindered by the aggregation of particles due to magnetic attraction. To overcome the limitations of aggregation and increase nanoiron mobility in porous media, nanoiron particles have been coated with various polymers. Polymer adsorption onto nanoiron particles provides electrosteric stabilization, increases the mobility, and decreases the attachment onto the soil surface. Various polymers were investigated in this study, including carboxylmethyl cellulose (CMC) and guar gum, both of which are biodegradable. In sand column experiments the transport of nanoiron particles was investigated as a function of type of electrolyte, ionic strength, flow velocity, and nanoiron particle concentration. Settling curves showed the enhanced stability of polymer-coated nanoiron particles compared to bare commercial nanoiron particles (bare RNIP-10DS). A newly developed nanoparticle transport numerical model was used to quantify the attachment efficiency, as well as investigate dominant nanoparticle transport and removal mechanisms. Finally the particle-collector interaction energy was predicted using DLVO (Derjaguin-Landau-Verwey-Overbeek) theory.

  1. Evaluation of Particle Counter Technology for Detection of Fuel Contamination Detection Utilizing Advanced Aviation Forward Area Refueling System

    DTIC Science & Technology

    2014-01-24

    8, Automatic Particle Counter, cleanliness, free water, Diesel 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT none 18. NUMBER OF...aircraft, or up to 10 mg/L for product used as a diesel product for ground use (1). Free water contamination (droplets) may appear as fine droplets or...published several methods and test procedures for the calibration and use of automatic particle counters. The transition of this technology to the fuel

  2. Contamination Control in Hybrid Microelectronic Modules. Part 1: Identification of Critical Process and Contaminants

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.

    1975-01-01

    Various hybrid processing steps, handling procedures, and materials are examined in an attempt to identify sources of contamination and to propose methods for the control of these contaminants. It is found that package sealing, assembly, and rework are especially susceptible to contamination. Moisture and loose particles are identified as the worst contaminants. The points at which contaminants are most likely to enter the hybrid package are also identified, and both general and specific methods for their detection and control are developed. In general, the most effective controls for contaminants are: clean working areas, visual inspection at each step of the process, and effective cleaning at critical process steps. Specific methods suggested include the detection of loose particles by a precap visual inspection, by preseal and post-seal electrical testing, and by a particle impact noise test. Moisture is best controlled by sealing all packages in a clean, dry, inert atmosphere after a thorough bake-out of all parts.

  3. Development, evaluation, and application of sediment quality targets for assessing and managing contaminated sediments in Tampa Bay, Florida

    USGS Publications Warehouse

    MacDonald, D.D.; Carr, R.S.; Eckenrod, D.; Greening, H.; Grabe, S.; Ingersoll, C.G.; Janicki, S.; Janicki, T.; Lindskoog, R.A.; Long, E.R.; Pribble, R.; Sloane, G.; Smorong, D.E.

    2004-01-01

    Tampa Bay is a large, urban estuary that is located in west central Florida. Although water quality conditions represent an important concern in this estuary, information from numerous sources indicates that sediment contamination also has the potential to adversely affect aquatic organisms, aquatic-dependent wildlife, and human health. As such, protecting relatively uncontaminated areas of the bay from contamination and reducing the amount of toxic chemicals in contaminated sediments have been identified as high-priority sediment management objectives for Tampa Bay. To address concerns related to sediment contamination in the bay, an ecosystem-based framework for assessing and managing sediment quality conditions was developed that included identification of sediment quality issues and concerns, development of ecosystem goals and objectives, selection of ecosystem health indicators, establishment of metrics and targets for key indicators, and incorporation of key indicators, metrics, and targets into watershed management plans and decision-making processes. This paper describes the process that was used to select and evaluate numerical sediment quality targets (SQTs) for assessing and managing contaminated sediments. These SQTs included measures of sediment chemistry, whole-sediment and pore-water toxicity, and benthic invertebrate community structure. In addition, the paper describes how the SQTs were used to develop site-specific concentration-response models that describe how the frequency of adverse biological effects changes with increasing concentrations of chemicals of potential concern. Finally, a key application of the SQTs for defining sediment management areas is discussed.

  4. Real-Time Two-Dimensional Magnetic Particle Imaging for Electromagnetic Navigation in Targeted Drug Delivery.

    PubMed

    Le, Tuan-Anh; Zhang, Xingming; Hoshiar, Ali Kafash; Yoon, Jungwon

    2017-09-07

    Magnetic nanoparticles (MNPs) are effective drug carriers. By using electromagnetic actuated systems, MNPs can be controlled noninvasively in a vascular network for targeted drug delivery (TDD). Although drugs can reach their target location through capturing schemes of MNPs by permanent magnets, drugs delivered to non-target regions can affect healthy tissues and cause undesirable side effects. Real-time monitoring of MNPs can improve the targeting efficiency of TDD systems. In this paper, a two-dimensional (2D) real-time monitoring scheme has been developed for an MNP guidance system. Resovist particles 45 to 65 nm in diameter (5 nm core) can be monitored in real-time (update rate = 2 Hz) in 2D. The proposed 2D monitoring system allows dynamic tracking of MNPs during TDD and renders magnetic particle imaging-based navigation more feasible.

  5. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies

    PubMed Central

    2010-01-01

    Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL). We have developed a computational model of solution particokinetics (sedimentation, diffusion) and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation) and the Stokes-Einstein equation (diffusion). Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD) was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm), 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a μg/mL basis and target cell

  6. Real-Time Two-Dimensional Magnetic Particle Imaging for Electromagnetic Navigation in Targeted Drug Delivery

    PubMed Central

    Le, Tuan-Anh; Zhang, Xingming; Hoshiar, Ali Kafash; Yoon, Jungwon

    2017-01-01

    Magnetic nanoparticles (MNPs) are effective drug carriers. By using electromagnetic actuated systems, MNPs can be controlled noninvasively in a vascular network for targeted drug delivery (TDD). Although drugs can reach their target location through capturing schemes of MNPs by permanent magnets, drugs delivered to non-target regions can affect healthy tissues and cause undesirable side effects. Real-time monitoring of MNPs can improve the targeting efficiency of TDD systems. In this paper, a two-dimensional (2D) real-time monitoring scheme has been developed for an MNP guidance system. Resovist particles 45 to 65 nm in diameter (5 nm core) can be monitored in real-time (update rate = 2 Hz) in 2D. The proposed 2D monitoring system allows dynamic tracking of MNPs during TDD and renders magnetic particle imaging-based navigation more feasible. PMID:28880220

  7. Particle therapy of moving targets—the strategies for tumour motion monitoring and moving targets irradiation

    PubMed Central

    2016-01-01

    Particle therapy of moving targets is still a great challenge. The motion of organs situated in the thorax and abdomen strongly affects the precision of proton and carbon ion radiotherapy. The motion is responsible for not only the dislocation of the tumour but also the alterations in the internal density along the beam path, which influence the range of particle beams. Furthermore, in case of pencil beam scanning, there is an interference between the target movement and dynamic beam delivery. This review presents the strategies for tumour motion monitoring and moving target irradiation in the context of hadron therapy. Methods enabling the direct determination of tumour position (fluoroscopic imaging of implanted radio-opaque fiducial markers, electromagnetic detection of inserted transponders and ultrasonic tumour localization systems) are presented. Attention is also drawn to the techniques which use external surrogate motion for an indirect estimation of target displacement during irradiation. The role of respiratory-correlated CT [four-dimensional CT (4DCT)] in the determination of motion pattern prior to the particle treatment is also considered. An essential part of the article is the review of the main approaches to moving target irradiation in hadron therapy: gating, rescanning (repainting), gated rescanning and tumour tracking. The advantages, drawbacks and development trends of these methods are discussed. The new accelerators, called “cyclinacs”, are presented, because their application to particle therapy will allow making a breakthrough in the 4D spot scanning treatment of moving organs. PMID:27376637

  8. Quantitative single-particle digital autoradiography with α-particle emitters for targeted radionuclide therapy using the iQID camera.

    PubMed

    Miller, Brian W; Frost, Sofia H L; Frayo, Shani L; Kenoyer, Aimee L; Santos, Erlinda; Jones, Jon C; Green, Damian J; Hamlin, Donald K; Wilbur, D Scott; Fisher, Darrell R; Orozco, Johnnie J; Press, Oliver W; Pagel, John M; Sandmaier, Brenda M

    2015-07-01

    Alpha-emitting radionuclides exhibit a potential advantage for cancer treatments because they release large amounts of ionizing energy over a few cell diameters (50-80 μm), causing localized, irreparable double-strand DNA breaks that lead to cell death. Radioimmunotherapy (RIT) approaches using monoclonal antibodies labeled with α emitters may thus inactivate targeted cells with minimal radiation damage to surrounding tissues. Tools are needed to visualize and quantify the radioactivity distribution and absorbed doses to targeted and nontargeted cells for accurate dosimetry of all treatment regimens utilizing α particles, including RIT and others (e.g., Ra-223), especially for organs and tumors with heterogeneous radionuclide distributions. The aim of this study was to evaluate and characterize a novel single-particle digital autoradiography imager, the ionizing-radiation quantum imaging detector (iQID) camera, for use in α-RIT experiments. The iQID camera is a scintillator-based radiation detection system that images and identifies charged-particle and gamma-ray/x-ray emissions spatially and temporally on an event-by-event basis. It employs CCD-CMOS cameras and high-performance computing hardware for real-time imaging and activity quantification of tissue sections, approaching cellular resolutions. In this work, the authors evaluated its characteristics for α-particle imaging, including measurements of intrinsic detector spatial resolutions and background count rates at various detector configurations and quantification of activity distributions. The technique was assessed for quantitative imaging of astatine-211 ((211)At) activity distributions in cryosections of murine and canine tissue samples. The highest spatial resolution was measured at ∼20 μm full width at half maximum and the α-particle background was measured at a rate as low as (2.6 ± 0.5) × 10(-4) cpm/cm(2) (40 mm diameter detector area). Simultaneous imaging of multiple tissue sections was

  9. Monte Carlo N-particle simulation of neutron-based sterilisation of anthrax contamination

    PubMed Central

    Liu, B; Xu, J; Liu, T; Ouyang, X

    2012-01-01

    Objective To simulate the neutron-based sterilisation of anthrax contamination by Monte Carlo N-particle (MCNP) 4C code. Methods Neutrons are elementary particles that have no charge. They are 20 times more effective than electrons or γ-rays in killing anthrax spores on surfaces and inside closed containers. Neutrons emitted from a 252Cf neutron source are in the 100 keV to 2 MeV energy range. A 2.5 MeV D–D neutron generator can create neutrons at up to 1013 n s−1 with current technology. All these enable an effective and low-cost method of killing anthrax spores. Results There is no effect on neutron energy deposition on the anthrax sample when using a reflector that is thicker than its saturation thickness. Among all three reflecting materials tested in the MCNP simulation, paraffin is the best because it has the thinnest saturation thickness and is easy to machine. The MCNP radiation dose and fluence simulation calculation also showed that the MCNP-simulated neutron fluence that is needed to kill the anthrax spores agrees with previous analytical estimations very well. Conclusion The MCNP simulation indicates that a 10 min neutron irradiation from a 0.5 g 252Cf neutron source or a 1 min neutron irradiation from a 2.5 MeV D–D neutron generator may kill all anthrax spores in a sample. This is a promising result because a 2.5 MeV D–D neutron generator output >1013 n s−1 should be attainable in the near future. This indicates that we could use a D–D neutron generator to sterilise anthrax contamination within several seconds. PMID:22573293

  10. Monte Carlo N-particle simulation of neutron-based sterilisation of anthrax contamination.

    PubMed

    Liu, B; Xu, J; Liu, T; Ouyang, X

    2012-10-01

    To simulate the neutron-based sterilisation of anthrax contamination by Monte Carlo N-particle (MCNP) 4C code. Neutrons are elementary particles that have no charge. They are 20 times more effective than electrons or γ-rays in killing anthrax spores on surfaces and inside closed containers. Neutrons emitted from a (252)Cf neutron source are in the 100 keV to 2 MeV energy range. A 2.5 MeV D-D neutron generator can create neutrons at up to 10(13) n s(-1) with current technology. All these enable an effective and low-cost method of killing anthrax spores. There is no effect on neutron energy deposition on the anthrax sample when using a reflector that is thicker than its saturation thickness. Among all three reflecting materials tested in the MCNP simulation, paraffin is the best because it has the thinnest saturation thickness and is easy to machine. The MCNP radiation dose and fluence simulation calculation also showed that the MCNP-simulated neutron fluence that is needed to kill the anthrax spores agrees with previous analytical estimations very well. The MCNP simulation indicates that a 10 min neutron irradiation from a 0.5 g (252)Cf neutron source or a 1 min neutron irradiation from a 2.5 MeV D-D neutron generator may kill all anthrax spores in a sample. This is a promising result because a 2.5 MeV D-D neutron generator output >10(13) n s(-1) should be attainable in the near future. This indicates that we could use a D-D neutron generator to sterilise anthrax contamination within several seconds.

  11. Magnetic drug targeting through a realistic model of human tracheobronchial airways using computational fluid and particle dynamics.

    PubMed

    Pourmehran, Oveis; Gorji, Tahereh B; Gorji-Bandpy, Mofid

    2016-10-01

    Magnetic drug targeting (MDT) is a local drug delivery system which aims to concentrate a pharmacological agent at its site of action in order to minimize undesired side effects due to systemic distribution in the organism. Using magnetic drug particles under the influence of an external magnetic field, the drug particles are navigated toward the target region. Herein, computational fluid dynamics was used to simulate the air flow and magnetic particle deposition in a realistic human airway geometry obtained by CT scan images. Using discrete phase modeling and one-way coupling of particle-fluid phases, a Lagrangian approach for particle tracking in the presence of an external non-uniform magnetic field was applied. Polystyrene (PMS40) particles were utilized as the magnetic drug carrier. A parametric study was conducted, and the influence of particle diameter, magnetic source position, magnetic field strength and inhalation condition on the particle transport pattern and deposition efficiency (DE) was reported. Overall, the results show considerable promise of MDT in deposition enhancement at the target region (i.e., left lung). However, the positive effect of increasing particle size on DE enhancement was evident at smaller magnetic field strengths (Mn [Formula: see text] 1.5 T), whereas, at higher applied magnetic field strengths, increasing particle size has a inverse effect on DE. This implies that for efficient MTD in the human respiratory system, an optimal combination of magnetic drug career characteristics and magnetic field strength has to be achieved.

  12. Multi-Robot, Multi-Target Particle Swarm Optimization Search in Noisy Wireless Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Derr; Milos Manic

    Multiple small robots (swarms) can work together using Particle Swarm Optimization (PSO) to perform tasks that are difficult or impossible for a single robot to accomplish. The problem considered in this paper is exploration of an unknown environment with the goal of finding a target(s) at an unknown location(s) using multiple small mobile robots. This work demonstrates the use of a distributed PSO algorithm with a novel adaptive RSS weighting factor to guide robots for locating target(s) in high risk environments. The approach was developed and analyzed on multiple robot single and multiple target search. The approach was further enhancedmore » by the multi-robot-multi-target search in noisy environments. The experimental results demonstrated how the availability of radio frequency signal can significantly affect robot search time to reach a target.« less

  13. Engineering hepatitis B virus core particles for targeting HER2 receptors in vitro and in vivo.

    PubMed

    Mohamed Suffian, Izzat Fahimuddin Bin; Wang, Julie Tzu-Wen; Hodgins, Naomi O; Klippstein, Rebecca; Garcia-Maya, Mitla; Brown, Paul; Nishimura, Yuya; Heidari, Hamed; Bals, Sara; Sosabowski, Jane K; Ogino, Chiaki; Kondo, Akihiko; Al-Jamal, Khuloud T

    2017-03-01

    Hepatitis B Virus core (HBc) particles have been studied for their potential as drug delivery vehicles for cancer therapy. HBc particles are hollow nano-particles of 30-34 nm diameter and 7 nm thick envelopes, consisting of 180-240 units of 21 kDa core monomers. They have the capacity to assemble/dis-assemble in a controlled manner allowing encapsulation of various drugs and other biomolecules. Moreover, other functional motifs, i.e. receptors, receptor binding sequences, peptides and proteins can be expressed. This study focuses on the development of genetically modified HBc particles to specifically recognise and target human epidermal growth factor receptor-2 (HER2)-expressing cancer cells, in vitro and in vivo, for future cancer therapy. The non-specific binding capacity of wild type HBc particles was reduced by genetic deletion of the sequence encoding arginine-rich domains. A specific HER2-targeting was achieved by expressing the Z HER2 affibodies on the HBc particles surface. In vitro studies showed specific uptake of Z HER2 -ΔHBc particles in HER2 expressing cancer cells. In vivo studies confirmed positive uptake of Z HER2 -ΔHBc particles in HER2-expressing tumours, compared to non-targeted ΔHBc particles in intraperitoneal tumour-bearing mice models. The present results highlight the potential of these nanocarriers in targeting HER2-positive metastatic abdominal cancer following intra-peritoneal administration. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Particle Filtering with Region-based Matching for Tracking of Partially Occluded and Scaled Targets*

    PubMed Central

    Nakhmani, Arie; Tannenbaum, Allen

    2012-01-01

    Visual tracking of arbitrary targets in clutter is important for a wide range of military and civilian applications. We propose a general framework for the tracking of scaled and partially occluded targets, which do not necessarily have prominent features. The algorithm proposed in the present paper utilizes a modified normalized cross-correlation as the likelihood for a particle filter. The algorithm divides the template, selected by the user in the first video frame, into numerous patches. The matching process of these patches by particle filtering allows one to handle the target’s occlusions and scaling. Experimental results with fixed rectangular templates show that the method is reliable for videos with nonstationary, noisy, and cluttered background, and provides accurate trajectories in cases of target translation, scaling, and occlusion. PMID:22506088

  15. Non-target screening analyses of organic contaminants in river systems as a base for monitoring measures

    NASA Astrophysics Data System (ADS)

    Schwarzbauer, J.

    2009-04-01

    Organic contaminants discharged to the aquatic environment exhibit a high diversity with respect to their molecular structures and the resulting physico-chemical properties. The chemical analysis of anthropogenic contamination in river systems is still an important feature, especially with respect to (i) the identification and structure elucidation of novel contaminants, (ii) to the characterisation of their environmental behaviour and (iii) to their risk for natural systems. A huge proportion of riverine contamination is caused by low-molecular weight organic compounds, like pesticides plasticizers, pharmaceuticals, personal care products, technical additives etc. Some of them, like PCB or PAH have already been investigated thoroughly and, consequently, their behaviour in aqueous systems is very well described. Although analyses on organic substances in river water traditionally focused on selected pollutants, in particular on common priority pollutants which are monitored routinely, the occurrence of further contaminants, e.g. pharmaceuticals, personal care products or chelating agents has received increasing attention within the last decade. Accompanied, screening analyses revealing an enormous diversity of low-molecular weight organic contaminants in waste water effluents and river water become more and more noticed. Since many of these substances have been rarely noticed so far, it will be an important task for the future to study their occurrence and fate in natural environments. Further on, it should be a main issue of environmental studies to provide a comprehensive view on the state of pollution of river water, in particular with respect to lipophilic low molecular weight organic contaminants. However, such non-target-screening analyses has been performed only rarely in the past. Hence, we applied extended non-target screening analyses on longitudinal sections of the rivers Rhine, Rur and Lippe (Germany) on the base of GC/MS analyses. The investigations

  16. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2008-12-09

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  17. X-ray fluorescence mapping of mercury on suspended mineral particles and diatoms in a contaminated freshwater system

    NASA Astrophysics Data System (ADS)

    Gu, B.; Mishra, B.; Miller, C.; Wang, W.; Lai, B.; Brooks, S. C.; Kemner, K. M.; Liang, L.

    2014-05-01

    Mercury (Hg) bioavailability and geochemical cycling is affected by its partitioning between the aqueous and particulate phases. We applied X-ray fluorescence (XRF) microprobes to directly visualize and quantify the spatial localization of Hg and its correlations with other elements of interest on suspended particles from a Hg contaminated freshwater system. Up to 175 μg g-1 Hg is found on suspended particles. Mercury is heterogeneously distributed among phytoplankton (e.g., diatoms) and mineral particles that are rich in iron oxides and natural organic matter (NOM), possibly as Hg-NOM-iron oxide ternary complexes. The diatom-bound Hg is mostly found on outer surfaces of the cells, suggesting passive sorption of inorganic Hg on diatoms. Our results indicate that localized sorption of Hg onto suspended particles, including diatoms and NOM-coated oxide minerals, is an important sink for Hg in natural aquatic environments.

  18. Air contamination for predicting wound contamination in clean surgery: A large multicenter study.

    PubMed

    Birgand, Gabriel; Toupet, Gaëlle; Rukly, Stephane; Antoniotti, Gilles; Deschamps, Marie-Noelle; Lepelletier, Didier; Pornet, Carole; Stern, Jean Baptiste; Vandamme, Yves-Marie; van der Mee-Marquet, Nathalie; Timsit, Jean-François; Lucet, Jean-Christophe

    2015-05-01

    The best method to quantify air contamination in the operating room (OR) is debated, and studies in the field are controversial. We assessed the correlation between 2 types of air sampling and wound contaminations before closing and the factors affecting air contamination. This multicenter observational study included 13 ORs of cardiac and orthopedic surgery in 10 health care facilities. For each surgical procedure, 3 microbiologic air counts, 3 particles counts of 0.3, 0.5, and 5 μm particles, and 1 bacteriologic sample of the wound before skin closure were performed. We collected data on surgical procedures and environmental characteristics. Of 180 particle counts during 60 procedures, the median log10 of 0.3, 0.5, and 5 μm particles was 7 (interquartile range [IQR], 6.2-7.9), 6.1 (IQR, 5.4-7), and 4.6 (IQR, 0-5.2), respectively. Of 180 air samples, 50 (28%) were sterile, 90 (50%) had 1-10 colony forming units (CFU)/m(3) and 40 (22%) >10 CFU/m(3). In orthopedic and cardiac surgery, wound cultures at closure were sterile for 24 and 9 patients, 10 and 11 had 1-10 CFU/100 cm(2), and 0 and 6 had >10 CFU/100 cm(2), respectively (P < .01). Particle sizes and a turbulent ventilation system were associated with an increased number of air microbial counts (P < .001), but they were not associated with wound contamination (P = .22). This study suggests that particle counting is a good surrogate of airborne microbiologic contamination in the OR. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  19. Modeling Cell and Tumor-Metastasis Dosimetry with the Particle and Heavy Ion Transport Code System (PHITS) Software for Targeted Alpha-Particle Radionuclide Therapy.

    PubMed

    Lee, Dongyoul; Li, Mengshi; Bednarz, Bryan; Schultz, Michael K

    2018-06-26

    The use of targeted radionuclide therapy for cancer is on the rise. While beta-particle-emitting radionuclides have been extensively explored for targeted radionuclide therapy, alpha-particle-emitting radionuclides are emerging as effective alternatives. In this context, fundamental understanding of the interactions and dosimetry of these emitted particles with cells in the tumor microenvironment is critical to ascertaining the potential of alpha-particle-emitting radionuclides. One important parameter that can be used to assess these metrics is the S-value. In this study, we characterized several alpha-particle-emitting radionuclides (and their associated radionuclide progeny) regarding S-values in the cellular and tumor-metastasis environments. The Particle and Heavy Ion Transport code System (PHITS) was used to obtain S-values via Monte Carlo simulation for cell and tumor metastasis resulting from interactions with the alpha-particle-emitting radionuclides, lead-212 ( 212 Pb), actinium-225 ( 225 Ac) and bismuth-213 ( 213 Bi); these values were compared to the beta-particle-emitting radionuclides yttrium-90 ( 90 Y) and lutetium-177 ( 177 Lu) and an Auger-electron-emitting radionuclide indium-111 ( 111 In). The effect of cellular internalization on S-value was explored at increasing degree of internalization for each radionuclide. This aspect of S-value determination was further explored in a cell line-specific fashion for six different cancer cell lines based on the cell dimensions obtained by confocal microscopy. S-values from PHITS were in good agreement with MIRDcell S-values (cellular S-values) and the values found by Hindié et al. (tumor S-values). In the cellular model, 212 Pb and 213 Bi decay series produced S-values that were 50- to 120-fold higher than 177 Lu, while 225 Ac decay series analysis suggested S-values that were 240- to 520-fold higher than 177 Lu. S-values arising with 100% cellular internalization were two- to sixfold higher for the nucleus

  20. Quantitative single-particle digital autoradiography with α-particle emitters for targeted radionuclide therapy using the iQID camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Brian W., E-mail: brian.miller@pnnl.gov; Frost, Sofia H. L.; Frayo, Shani L.

    2015-07-15

    Purpose: Alpha-emitting radionuclides exhibit a potential advantage for cancer treatments because they release large amounts of ionizing energy over a few cell diameters (50–80 μm), causing localized, irreparable double-strand DNA breaks that lead to cell death. Radioimmunotherapy (RIT) approaches using monoclonal antibodies labeled with α emitters may thus inactivate targeted cells with minimal radiation damage to surrounding tissues. Tools are needed to visualize and quantify the radioactivity distribution and absorbed doses to targeted and nontargeted cells for accurate dosimetry of all treatment regimens utilizing α particles, including RIT and others (e.g., Ra-223), especially for organs and tumors with heterogeneous radionuclidemore » distributions. The aim of this study was to evaluate and characterize a novel single-particle digital autoradiography imager, the ionizing-radiation quantum imaging detector (iQID) camera, for use in α-RIT experiments. Methods: The iQID camera is a scintillator-based radiation detection system that images and identifies charged-particle and gamma-ray/x-ray emissions spatially and temporally on an event-by-event basis. It employs CCD-CMOS cameras and high-performance computing hardware for real-time imaging and activity quantification of tissue sections, approaching cellular resolutions. In this work, the authors evaluated its characteristics for α-particle imaging, including measurements of intrinsic detector spatial resolutions and background count rates at various detector configurations and quantification of activity distributions. The technique was assessed for quantitative imaging of astatine-211 ({sup 211}At) activity distributions in cryosections of murine and canine tissue samples. Results: The highest spatial resolution was measured at ∼20 μm full width at half maximum and the α-particle background was measured at a rate as low as (2.6 ± 0.5) × 10{sup −4} cpm/cm{sup 2} (40 mm diameter detector area

  1. In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy.

    PubMed

    Puvanakrishnan, Priyaveena; Park, Jaesook; Chatterjee, Deyali; Krishnan, Sunil; Tunnell, James W

    2012-01-01

    Gold nanoparticles (GNPs) have gained significant interest as nanovectors for combined imaging and photothermal therapy of tumors. Delivered systemically, GNPs preferentially accumulate at the tumor site via the enhanced permeability and retention effect, and when irradiated with near infrared light, produce sufficient heat to treat tumor tissue. The efficacy of this process strongly depends on the targeting ability of the GNPs, which is a function of the particle's geometric properties (eg, size) and dosing strategy (eg, number and amount of injections). The purpose of this study was to investigate the effect of GNP type and dosing strategy on in vivo tumor targeting. Specifically, we investigated the in vivo tumor-targeting efficiency of pegylated gold nanoshells (GNSs) and gold nanorods (GNRs) for single and multiple dosing. We used Swiss nu/nu mice with a subcutaneous tumor xenograft model that received intravenous administration for a single and multiple doses of GNS and GNR. We performed neutron activation analysis to quantify the gold present in the tumor and liver. We performed histology to determine if there was acute toxicity as a result of multiple dosing. Neutron activation analysis results showed that the smaller GNRs accumulated in higher concentrations in the tumor compared to the larger GNSs. We observed a significant increase in GNS and GNR accumulation in the liver for higher doses. However, multiple doses increased targeting efficiency with minimal effect beyond three doses of GNPs. These results suggest a significant effect of particle type and multiple doses on increasing particle accumulation and on tumor targeting ability.

  2. X-ray fluorescence mapping of mercury on suspended mineral particles and diatoms in a contaminated freshwater system

    NASA Astrophysics Data System (ADS)

    Gu, B.; Mishra, B.; Miller, C.; Wang, W.; Lai, B.; Brooks, S. C.; Kemner, K. M.; Liang, L.

    2014-09-01

    Mercury (Hg) bioavailability and geochemical cycling is affected by its partitioning between the aqueous and particulate phases. We applied a synchrotron-based X-ray fluorescence (XRF) microprobe to visualize and quantify directly the spatial localization of Hg and its correlations with other elements of interest on suspended particles from a Hg-contaminated freshwater system. Up to 175 μg g-1 Hg is found on suspended particles, but less than 0.01% is in the form of methylmercury. Mercury is heterogeneously distributed among phytoplankton (e.g., diatoms) and mineral particles that are rich in iron oxides and natural organic matter (NOM). The diatom-bound Hg is mostly found on outer surfaces of the cells, suggesting passive sorption of Hg on diatoms. Our results indicate that localized sorption of Hg onto suspended particles, including diatoms and NOM-coated oxide minerals, may play an important role in affecting the partitioning, reactivity, and biogeochemical cycling of Hg in natural aquatic environments.

  3. X-ray fluorescence mapping of mercury on suspended mineral particles and diatoms in a contaminated freshwater system

    DOE PAGES

    Gu, Baohua; Mishra, Bhoopesh; Miller, Carrie L.; ...

    2014-01-01

    Mercury (Hg) bioavailability and geochemical cycling is affected by its partitioning between the aqueous and particulate phases. We applied a synchrotron-based X-ray fluorescence (XRF) microprobe to visualize and quantify directly the spatial localization of Hg and its correlations with other elements of interest on suspended particles from a Hg-contaminated freshwater system. Up to 175 μg g −1 Hg is found on suspended particles, but less than 0.01% is in the form of methylmercury. Mercury is heterogeneously distributed among phytoplankton (e.g., diatoms) and mineral particles that are rich in iron oxides and natural organic matter (NOM). The diatom-bound Hg is mostlymore » found on outer surfaces of the cells, suggesting passive sorption of Hg on diatoms. Our results indicate that localized sorption of Hg onto suspended particles, including diatoms and NOM-coated oxide minerals, may play an important role in affecting the partitioning, reactivity, and biogeochemical cycling of Hg in natural aquatic environments.« less

  4. Improving the particle beam characteristics resulting from laser ion acceleration at ultra high intensity through target manipulation - Numerical modeling

    NASA Astrophysics Data System (ADS)

    Tatomirescu, Dragos; d'Humieres, Emmanuel; Vizman, Daniel

    2017-12-01

    The necessity to produce superior quality ion and electron beams has been a hot research field due to the advances in laser science in the past decade. This work focuses on the parametric study of different target density profiles in order to determine their effect on the spatial distribution of the accelerated particle beam, the particle maximum energy, and the electromagnetic field characteristics. For the scope of this study, the laser pulse parameters were kept constant, while varying the target parameters. The study continues the work published in [1] and focuses on further studying the effects of target curvature coupled with a cone laser focusing structure. The results show increased particle beam focusing and a significant enhancement in particle maximum energy.

  5. Evaluation of Particle Counter Technology for Detection of Fuel Contamination Detection Utilizing Fuel System Supply Point

    DTIC Science & Technology

    2014-06-19

    product used as a diesel product for ground use (1). Free water contamination (droplets) may appear as fine droplets or slugs of water in the fuel...methods and test procedures for the calibration and use of automatic particle counters. The transition of this technology to the fuel industry is...UNCLASSIFIED 6 UNCLASSIFIED Receipt Vehicle Fuel Tank Fuel Injector Aviation Fuel DEF (AUST) 5695B 18/16/13 Parker 18

  6. Polydopamine-based functional composite particles for tumor cell targeting and dual-mode cellular imaging.

    PubMed

    Zhou, Yalei; Zhou, Jie; Wang, Feng; Yang, Haifeng

    2018-05-01

    Particles which bear tumor cell targeting and multimode imaging capabilities are promising in tumor diagnosis and cancer therapy. A simple and versatile method to fabricate gold/polydopamine-Methylene Blue@Bovine Serum Albumin-glutaraldehyde-Transferrin composite particles (Au/PDA-MB@BSA-GA-Tf NPs) for tumor cell targeting and fluorescence (FL) / surface-enhanced Raman scattering (SERS) dual-modal imaging were reported in this work. Polydopamine (PDA) spheres played an important role in gold ion reduction, gold nanoparticle (Au NPs) binding and methylene blue (MB) adsorption, MB were employed as both fluorescence label and Raman reporter. In addition, glutaraldehyde (GA) crosslinked bovine serum albumin (BSA) in the outer layer of Au/PDA-MB nanoparticles can prevent MB from dissociation and leakage. The composite nanoparticles were further conjugated with transferrin (Tf) to target transferrin receptor (TfR)-overexpressed cancer cells. The targeting ability as well as the intracellular location of the probe was investigated through SERS mapping and fluorescence imaging. Their excellent biocompatibility was demonstrated by low cytotoxicity against breast cancer cell (4T1 cell). Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Selective Detection of Target Volatile Organic Compounds in Contaminated Humid Air Using a Sensor Array with Principal Component Analysis

    PubMed Central

    Itoh, Toshio; Akamatsu, Takafumi; Tsuruta, Akihiro; Shin, Woosuck

    2017-01-01

    We investigated selective detection of the target volatile organic compounds (VOCs) nonanal, n-decane, and acetoin for lung cancer-related VOCs, and acetone and methyl i-butyl ketone for diabetes-related VOCs, in humid air with simulated VOC contamination (total concentration: 300 μg/m3). We used six “grain boundary-response type” sensors, including four commercially available sensors (TGS 2600, 2610, 2610, and 2620) and two Pt, Pd, and Au-loaded SnO2 sensors (Pt, Pd, Au/SnO2), and two “bulk-response type” sensors, including Zr-doped CeO2 (CeZr10), i.e., eight sensors in total. We then analyzed their sensor signals using principal component analysis (PCA). Although the six “grain boundary-response type” sensors were found to be insufficient for selective detection of the target gases in humid air, the addition of two “bulk-response type” sensors improved the selectivity, even with simulated VOC contamination. To further improve the discrimination, we selected appropriate sensors from the eight sensors based on the PCA results. The selectivity to each target gas was maintained and was not affected by contamination. PMID:28753948

  8. System for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  9. Residual Viral and Bacterial Contamination of Surfaces after Cleaning and Disinfection

    PubMed Central

    Tuladhar, Era; Hazeleger, Wilma C.; Koopmans, Marion; Zwietering, Marcel H.; Beumer, Rijkelt R.

    2012-01-01

    Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses, rotavirus, poliovirus, parechovirus, adenovirus, influenza virus, Staphylococcus aureus, and Salmonella enterica from artificially contaminated stainless steel surfaces. After a single wipe with water, liquid soap, or 250-ppm free chlorine solution, the numbers of infective viruses and bacteria were reduced by 1 log10 for poliovirus and close to 4 log10 for influenza virus. There was no significant difference in residual contamination levels after wiping with water, liquid soap, or 250-ppm chlorine solution. When a single wipe with liquid soap was followed by a second wipe using 250- or 1,000-ppm chlorine, an extra 1- to 3-log10 reduction was achieved, and except for rotavirus and norovirus genogroup I, no significant additional effect of 1,000 ppm compared to 250 ppm was found. A reduced correlation between reduction in PCR units (PCRU) and reduction in infectious particles suggests that at least part of the reduction achieved in the second step is due to inactivation instead of removal alone. We used data on infectious doses and transfer efficiencies to estimate a target level to which the residual contamination should be reduced and found that a single wipe with liquid soap followed by a wipe with 250-ppm free chlorine solution was sufficient to reduce the residual contamination to below the target level for most of the pathogens tested. PMID:22941071

  10. Residual viral and bacterial contamination of surfaces after cleaning and disinfection.

    PubMed

    Tuladhar, Era; Hazeleger, Wilma C; Koopmans, Marion; Zwietering, Marcel H; Beumer, Rijkelt R; Duizer, Erwin

    2012-11-01

    Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses, rotavirus, poliovirus, parechovirus, adenovirus, influenza virus, Staphylococcus aureus, and Salmonella enterica from artificially contaminated stainless steel surfaces. After a single wipe with water, liquid soap, or 250-ppm free chlorine solution, the numbers of infective viruses and bacteria were reduced by 1 log(10) for poliovirus and close to 4 log(10) for influenza virus. There was no significant difference in residual contamination levels after wiping with water, liquid soap, or 250-ppm chlorine solution. When a single wipe with liquid soap was followed by a second wipe using 250- or 1,000-ppm chlorine, an extra 1- to 3-log(10) reduction was achieved, and except for rotavirus and norovirus genogroup I, no significant additional effect of 1,000 ppm compared to 250 ppm was found. A reduced correlation between reduction in PCR units (PCRU) and reduction in infectious particles suggests that at least part of the reduction achieved in the second step is due to inactivation instead of removal alone. We used data on infectious doses and transfer efficiencies to estimate a target level to which the residual contamination should be reduced and found that a single wipe with liquid soap followed by a wipe with 250-ppm free chlorine solution was sufficient to reduce the residual contamination to below the target level for most of the pathogens tested.

  11. Surgical Borescopes Remove Contaminants

    NASA Technical Reports Server (NTRS)

    Vallow, K.

    1987-01-01

    Borescope instruments put to use in extracting hard-to-reach particles. Surgical instruments in flexible borescopes used for removing contaminant particles from normally inaccessible places within equipment. Instruments readily enter small openings, turn corners, and reach far.

  12. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOEpatents

    Vijayan, S.; Wong, C.F.; Buckley, L.P.

    1994-11-22

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

  13. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOEpatents

    Vijayan, Sivaraman; Wong, Chi F.; Buckley, Leo P.

    1994-01-01

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.

  14. Mercury contamination in deposited dust and its bioaccumulation patterns throughout Pakistan.

    PubMed

    Eqani, Syed Ali Musstjab Akber Shah; Bhowmik, Avit Kumar; Qamar, Sehrish; Shah, Syed Tahir Abbas; Sohail, Muhammad; Mulla, Sikandar I; Fasola, Mauro; Shen, Heqing

    2016-11-01

    Mercury (Hg) contamination of environment is a major threat to human health in developing countries like Pakistan. Human populations, particularly children, are continuously exposed to Hg contamination via dust particles due to the arid and semi-arid climate. However, a country wide Hg contamination data for dust particles is lacking for Pakistan and hence, human populations potentially at risk is largely unknown. We provide the first baseline data for total mercury (THg) contamination into dust particles and its bioaccumulation trends, using scalp human hair samples as biomarker, at 22 sites across five altitudinal zones of Pakistan. The human health risk of THg exposure via dust particles as well as the proportion of human population that are potentially at risk from Hg contamination were calculated. Our results indicated higher concentration of THg in dust particles and its bioaccumulation in the lower Indus-plain agricultural and industrial areas than the other areas of Pakistan. The highest THg contamination of dust particles (3000ppb) and its bioaccumulation (2480ppb) were observed for the Lahore district, while the highest proportion (>40%) of human population was identified to be potentially at risk from Hg contamination from these areas. In general, children were at higher risk of Hg exposure via dust particles than adults. Regression analysis identified the anthropogenic activities, such as industrial and hospital discharges, as the major source of Hg contamination of dust particles. Our results inform environmental management for Hg control and remediation as well as the disease mitigation on potential hotspots. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Contaminant trap for gas-insulated apparatus

    DOEpatents

    Adcock, James L.; Pace, Marshall O.; Christophorou, Loucas G.

    1984-01-01

    A contaminant trap for a gas-insulated electrical conductor is provided. A resinous dielectric body such as Kel-F wax, grease or other sticky polymeric or oligomeric compound is disposed on the inside wall of the outer housing for the conductor. The resinous body is sufficiently sticky at ambient temperatures to immobilize contaminant particles in the insulating gas on the exposed surfaces thereof. An electric resistance heating element is disposed in the resinous body to selectively raise the temperature of the resinous body to a molten state so that the contaminant particles collected on the surface of the body sink into the body so that the surface of the resinous body is renewed to a particle-less condition and, when cooled, returns to a sticky collecting surface.

  16. Ideal Particle Sizes for Inhaled Steroids Targeting Vocal Granulomas: Preliminary Study Using Computational Fluid Dynamics.

    PubMed

    Perkins, Elizabeth L; Basu, Saikat; Garcia, Guilherme J M; Buckmire, Robert A; Shah, Rupali N; Kimbell, Julia S

    2018-03-01

    Objectives Vocal fold granulomas are benign lesions of the larynx commonly caused by gastroesophageal reflux, intubation, and phonotrauma. Current medical therapy includes inhaled corticosteroids to target inflammation that leads to granuloma formation. Particle sizes of commonly prescribed inhalers range over 1 to 4 µm. The study objective was to use computational fluid dynamics to investigate deposition patterns over a range of particle sizes of inhaled corticosteroids targeting the larynx and vocal fold granulomas. Study Design Retrospective, case-specific computational study. Setting Tertiary academic center. Subjects/Methods A 3-dimensional anatomically realistic computational model of a normal adult airway from mouth to trachea was constructed from 3 computed tomography scans. Virtual granulomas of varying sizes and positions along the vocal fold were incorporated into the base model. Assuming steady-state, inspiratory, turbulent airflow at 30 L/min, computational fluid dynamics was used to simulate respiratory transport and deposition of inhaled corticosteroid particles ranging over 1 to 20 µm. Results Laryngeal deposition in the base model peaked for particle sizes 8 to 10 µm (2.8%-3.5%). Ideal sizes ranged over 6 to 10, 7 to 13, and 7 to 14 µm for small, medium, and large granuloma sizes, respectively. Glottic deposition was maximal at 10.8% for 9-µm-sized particles for the large posterior granuloma, 3 times the normal model (3.5%). Conclusion As the virtual granuloma size increased and the location became more posterior, glottic deposition and ideal particle size generally increased. This preliminary study suggests that inhalers with larger particle sizes, such as fluticasone propionate dry-powder inhaler, may improve laryngeal drug deposition. Most commercially available inhalers have smaller particles than suggested here.

  17. Organic contaminant separator

    DOEpatents

    Mar, Peter D.

    1994-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  18. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles

    PubMed Central

    Li, Jiahe; Ai, Yiwei; Wang, Lihua; Bu, Pengcheng; Sharkey, Charles C.; Wu, Qianhui; Wun, Brittany; Roy, Sweta; Shen, Xiling; King, Michael R.

    2015-01-01

    Circulating tumor cells (CTCs) are responsible for metastases in distant organs via hematogenous dissemination. Fundamental studies in the past decade have suggested that neutralization of CTCs in circulation could represent an effective strategy to prevent metastasis. Current paradigms of targeted drug delivery into a solid tumor largely fall into two main categories: unique cancer markers (e.g. overexpression of surface receptors) and tumor-specific microenvironment (e.g. low pH, hypoxia, etc.). While relying on a surface receptor to target CTCs can be greatly challenged by cancer heterogeneity, targeting of tumor microenvironments has the advantage of recognizing a broader spectrum of cancer cells regardless of genetic differences or tumor types. The blood circulation, however, where CTCs transit through, lacks the same tumor microenvironment as that found in a solid tumor. In this study, a unique “microenvironment” was confirmed upon introduction of cancer cells of different types into circulation where activated platelets and fibrin were physically associated with blood-borne cancer cells. Inspired by this observation, synthetic silica particles were functionalized with activated platelet membrane along with surface conjugation of tumor-specific apoptosis-inducing ligand cytokine, TRAIL. Biomimetic synthetic particles incorporated into CTC-associated micro-thrombi in lung vasculature and dramatically decreased lung metastases in a mouse breast cancer metastasis model. Our results demonstrate a “Trojan Horse” strategy of neutralizing CTCs to attenuate metastasis. PMID:26519648

  19. Impacts of detrital nano- and micro-scale particles (dNP) on contaminant dynamics in a coal mine AMD treatment system.

    PubMed

    Lefticariu, Liliana; Sutton, Stephen R; Bender, Kelly S; Lefticariu, Mihai; Pentrak, Martin; Stucki, Joseph W

    2017-01-01

    Pollutants in acid mine drainage (AMD) are usually sequestered in neoformed nano- and micro-scale particles (nNP) through precipitation, co-precipitation, and sorption. Subsequent biogeochemical processes may control nNP stability and thus long-term contaminant immobilization. Mineralogical, chemical, and microbiological data collected from sediments accumulated over a six-year period in a coal-mine AMD treatment system were used to identify the pathways of contaminant dynamics. We present evidence that detrital nano- and micron-scale particles (dNP), composed mostly of clay minerals originating from the partial weathering of coal-mine waste, mediated biogeochemical processes that catalyzed AMD contaminant (1) immobilization by facilitating heterogeneous nucleation and growth of nNP in oxic zones, and (2) remobilization by promoting phase transformation and reductive dissolution of nNP in anoxic zones. We found that dNP were relatively stable under acidic conditions and estimated a dNP content of ~0.1g/L in the influent AMD. In the AMD sediments, the initial nNP precipitates were schwertmannite and poorly crystalline goethite, which transformed to well-crystallized goethite, the primary nNP repository. Subsequent reductive dissolution of nNP resulted in the remobilization of up to 98% of S and 95% of Fe accompanied by the formation of a compact dNP layer. Effective treatment of pollutants could be enhanced by better understanding the complex, dynamic role dNP play in mediating biogeochemical processes and contaminant dynamics at coal-mine impacted sites. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Contaminant Removal From Natural Resources

    NASA Technical Reports Server (NTRS)

    Clausen, Christian A. (Inventor); Quinn, Jacqueline W. (Inventor); Geiger, Cheri L. (Inventor); Reinhart, Debra (Inventor); Fillpek, Laura B. (Inventor); Coon, Christina (Inventor); Devor, Robert (Inventor)

    2006-01-01

    A zero-valent metal emulsion containing zero-valent metal particles is used to remediate contaminated natural resources, such as groundwater and soil. In a preferred embodiment, the zero-valent metal emulsion removes heavy metals, such as lead (pb), from contaminated natural resources. In another preferred embodiment, the zero-valent metal emulsion is a bimetallic emulsion containing zero-valent metal particles doped with a catalytic metal to remediate halogenated aromatic compounds, such as polychlorinated biphenyls (PCBs), from natural resources.

  1. Health risks of space exploration: targeted and nontargeted oxidative injury by high-charge and high-energy particles.

    PubMed

    Li, Min; Gonon, Géraldine; Buonanno, Manuela; Autsavapromporn, Narongchai; de Toledo, Sonia M; Pain, Debkumar; Azzam, Edouard I

    2014-03-20

    During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer.

  2. Online compensation for target motion with scanned particle beams: simulation environment.

    PubMed

    Li, Qiang; Groezinger, Sven Oliver; Haberer, Thomas; Rietzel, Eike; Kraft, Gerhard

    2004-07-21

    Target motion is one of the major limitations of each high precision radiation therapy. Using advanced active beam delivery techniques, such as the magnetic raster scanning system for particle irradiation, the interplay between time-dependent beam and target position heavily distorts the applied dose distribution. This paper presents a simulation environment in which the time-dependent effect of target motion on heavy-ion irradiation can be calculated with dynamically scanned ion beams. In an extension of the existing treatment planning software for ion irradiation of static targets (TRiP) at GSI, the expected dose distribution is calculated as the sum of several sub-distributions for single target motion states. To investigate active compensation for target motion by adapting the position of the therapeutic beam during irradiation, the planned beam positions can be altered during the calculation. Applying realistic parameters to the planned motion-compensation methods at GSI, the effect of target motion on the expected dose uniformity can be simulated for different target configurations and motion conditions. For the dynamic dose calculation, experimentally measured profiles of the beam extraction in time were used. Initial simulations show the feasibility and consistency of an active motion compensation with the magnetic scanning system and reveal some strategies to improve the dose homogeneity inside the moving target. The simulation environment presented here provides an effective means for evaluating the dose distribution for a moving target volume with and without motion compensation. It contributes a substantial basis for the experimental research on the irradiation of moving target volumes with scanned ion beams at GSI which will be presented in upcoming papers.

  3. Applications of 211At and 223Ra in Targeted Alpha-Particle Radiotherapy

    PubMed Central

    Vaidyanathan, Ganesan; Zalutsky, Michael R.

    2012-01-01

    Targeted radiotherapy using agents tagged with α-emitting radionuclides is gaining traction with several clinical trials already undertaken or ongoing, and others in the advanced planning stage. The most commonly used α-emitting radionuclides are 213Bi, 211At, 223Ra and 225Ac. While each one of these has pros and cons, it can be argued that 211At probably is the most versatile based on its half life, decay scheme and chemistry. On the other hand, for targeting bone metastases, 223Ra is the ideal radionuclide because simple cationic radium can be used for this purpose. In this review, we will discuss the recent developments taken place in the application of 211At-labeled radiopharmaceuticals and give an overview of the current status of 223Ra for targeted α-particle radiotherapy. PMID:22202151

  4. Practicing safe cell culture: applied process designs for minimizing virus contamination risk.

    PubMed

    Kiss, Robert D

    2011-01-01

    CONFERENCE PROCEEDING Proceedings of the PDA/FDA Adventitious Viruses in Biologics: Detection and Mitigation Strategies Workshop in Bethesda, MD, USA; December 1-3, 2010 Guest Editors: Arifa Khan (Bethesda, MD), Patricia Hughes (Bethesda, MD) and Michael Wiebe (San Francisco, CA) Genentech responded to a virus contamination in its biologics manufacturing facility by developing and implementing a series of barriers specifically designed to prevent recurrence of this significant and impactful event. The barriers included steps to inactivate or remove potential virus particles from the many raw materials used in cell culture processing. Additionally, analytical testing barriers provided protection of the downstream processing areas should a culture contamination occur, and robust virus clearance capability provided further assurance of virus safety should a low level contamination go undetected. This conference proceeding will review Genentech's approach, and lessons learned, in minimizing virus contamination risk in cell culture processes through multiple layers of targeted barriers designed to deliver biologics products with high success rates.

  5. Contamination and release of nanomaterials associated with the use of personal protective clothing.

    PubMed

    Tsai, Candace Su-Jung

    2015-05-01

    We investigated nanomaterial release associated with the contamination of protective clothing during manipulation of clothing fabrics contaminated with nanoparticles. Nanomaterials, when released as airborne nanoparticles, can cause inhalation exposure which is the route of exposure of most concern to cause adverse health effects. Measurement of such nanoparticle re-suspension has not yet been conducted. Protective clothing can be contaminated with airborne nanoparticles during handling and operating processes, typically on the arms and front of the body. The contaminated clothing could release nanoparticles in the general room while performing other activities and manipulating the clothing after work. The exposures associated with three different fabric materials of contaminated laboratory coats (cotton, polyester, and Tyvek), including the magnitude of contamination and particle release, were investigated in this study by measuring the number concentration increase and the weight change on fabric pieces. This study simulated real life occupational exposure scenarios and was performed in both regular and clean room environments to investigate the effect of background aerosols on the measurements. Concentration were measured using particle spectrometers for diameters from 10nm to 10 µm. Collected aerosol particles and contaminated fabric surfaces were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and elemental composition analysis. The magnitude of particle release from contaminated lab coat fabric was found to vary by the type of fabric material; cotton fabric showed the highest level of contamination and particle release, followed by Tyvek and polyester fabrics. The polyester lab coat material was found to have the lowest particle release to deposition (R/D) ratio. The particle release number concentrations were in a range of 768-119 particles cm(-3) and 586-187 particles cm(-3) in regular and clean rooms

  6. Non-target time trend screening: a data reduction strategy for detecting emerging contaminants in biological samples.

    PubMed

    Plassmann, Merle M; Tengstrand, Erik; Åberg, K Magnus; Benskin, Jonathan P

    2016-06-01

    Non-targeted mass spectrometry-based approaches for detecting novel xenobiotics in biological samples are hampered by the occurrence of naturally fluctuating endogenous substances, which are difficult to distinguish from environmental contaminants. Here, we investigate a data reduction strategy for datasets derived from a biological time series. The objective is to flag reoccurring peaks in the time series based on increasing peak intensities, thereby reducing peak lists to only those which may be associated with emerging bioaccumulative contaminants. As a result, compounds with increasing concentrations are flagged while compounds displaying random, decreasing, or steady-state time trends are removed. As an initial proof of concept, we created artificial time trends by fortifying human whole blood samples with isotopically labelled standards. Different scenarios were investigated: eight model compounds had a continuously increasing trend in the last two to nine time points, and four model compounds had a trend that reached steady state after an initial increase. Each time series was investigated at three fortification levels and one unfortified series. Following extraction, analysis by ultra performance liquid chromatography high-resolution mass spectrometry, and data processing, a total of 21,700 aligned peaks were obtained. Peaks displaying an increasing trend were filtered from randomly fluctuating peaks using time trend ratios and Spearman's rank correlation coefficients. The first approach was successful in flagging model compounds spiked at only two to three time points, while the latter approach resulted in all model compounds ranking in the top 11 % of the peak lists. Compared to initial peak lists, a combination of both approaches reduced the size of datasets by 80-85 %. Overall, non-target time trend screening represents a promising data reduction strategy for identifying emerging bioaccumulative contaminants in biological samples. Graphical abstract

  7. Bacterial contamination levels of autogenous bone particles collected by 3 different techniques for harvesting intraoral bone grafts.

    PubMed

    Manzano-Moreno, Francisco J; Herrera-Briones, Francisco J; Linares-Recatala, Macarena; Ocaña-Peinado, Francisco M; Reyes-Botella, Candela; Vallecillo-Capilla, Manuel F

    2015-03-01

    The aim of this study was to compare levels of bacterial contamination of autogenous bone collected when using low-speed drilling, a back-action chisel, and a bone filter. Bone tissue samples were taken from 31 patients who underwent surgical extraction of their third lower molars. Before surgical removal of the molar, bone particles were collected by a low-speed drill or a back-action chisel. Then, a stringent aspiration protocol was applied during the ostectomy to collect particulate bone by a bone filter. Processing of samples commenced immediately by incubation in an anaerobic or a CO2-rich atmosphere. The number of colony-forming units (CFUs) was determined at 48 hours of culture. No significant difference in the number of CFUs per milliliter was observed between the low-speed drilling group and the back-action chisel group in the anaerobic or CO2-rich condition (P = .34). However, significantly more micro-organisms were found in the bone filter group than in the low-speed drilling group or the back-action chisel group in the anaerobic and CO2-rich conditions (P < .001). Particulate bone harvested with low-speed drilling or a back-action chisel is safer for use as an autograft than are bone particles collected with a bone filter. These results suggest that bone obtained from low-speed drilling is safe and straightforward to harvest and could be the method of choice for collecting particulate bone. Further research is needed to lower the bacterial contamination levels of autogenous bone particles used as graft material. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Expanded target-chemical analysis reveals extensive mixed-organic-contaminant exposure in USA streams

    USGS Publications Warehouse

    Bradley, Paul M.; Journey, Celeste A.; Romanok, Kristin; Barber, Larry B.; Buxton, Herbert T.; Foreman, William T.; Furlong, Edward T.; Glassmeyer, Susan T.; Hladik, Michelle L.; Iwanowicz, Luke R.; Jones, Daniel K.; Kolpin, Dana W.; Kuivila, Kathryn M.; Loftin, Keith A.; Mills, Marc A.; Meyer, Michael T.; Orlando, James L.; Reilly, Timothy J.; Smalling, Kelly L.; Villeneuve, Daniel L.

    2017-01-01

    Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66–84% of all sites. Detected contaminant concentrations varied from less than 1 ng L–1 to greater than 10 μg L–1, with 77 and 278 having median detected concentrations greater than 100 ng L–1 and 10 ng L–1, respectively. Cumulative detections and concentrations ranged 4–161 compounds (median 70) and 8.5–102 847 ng L–1, respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log10 concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71–82% of the variability in the total number of compounds detected (linear regression; p-values: < 0.001–0.012), providing a statistical inference tool for unmonitored contaminants. Due to multiple modes of action, high bioactivity, biorecalcitrance, and direct environment application (pesticides), designed-bioactive organics (median 41 per site at μg L–1 cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L–1.

  9. Preliminary Quantification of Image Color Gradient on Genesis Concentrator Silicon Carbine Target 60001

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Calaway, M. J.; Rodriquez, M. C.

    2008-01-01

    The Genesis spacecraft concentrator was a device to focus solar wind ions onto a 6-cm diameter target area, thus concentrating the solar wind by 20X [1]. The target area was comprised of 4 quadrants held in place by a gold-coated stainless steel "cross" (Fig. 1). To date, two SiC and one chemical vapor deposited (CVD) quadrants have been imaged at 5X using a Leica DM-6000M in autoscan mode. Complete imaging of SiC sample 60001 required 1036 images. The mosaic of images is shown in Fig. 2 and position of analyzed areas in Fig. 3. This mosaic imaging is part of the curatorial documentation of surface condition and mapping of contamination. Higher magnification (50X) images of selected areas of the target and individual contaminant particles are compiled into reports which may be requested from the Genesis Curator [2].

  10. Influence of contamination on bonding to zirconia ceramic.

    PubMed

    Yang, Bin; Scharnberg, Michael; Wolfart, Stefan; Quaas, Anne C; Ludwig, Klaus; Adelung, Rainer; Kern, Matthias

    2007-05-01

    The purpose of this study was to investigate the influences of contaminations and cleaning methods on bonding to dental zirconia ceramic. After saliva immersion and using silicone disclosing agent, airborne-particle abraded ceramic specimens were cleaned with isopropanol (AL), acetone (AC), 37% phosphoric acid (PA), additional airborne-particle abrasion (AA), or only with water rinsing (SS). Airborne-particle abraded specimens without contaminations (CL) were used as control group. For chemical analysis specimens of all groups were examined with X-ray photoelectron spectroscopy (XPS). Plexiglas tubes filled with composite resin were bonded to ceramic specimens using a phosphate-monomer containing composite luting resin. After 3-day water storage, tensile bond strengths (TBS) were tested. XPS analysis of group SS showed the presence of saliva and silicone (Si) contamination on the surface. The ratios of carbon/zirconium and oxygen/zirconium for groups PA and AA were comparable to those ratios obtained for group CL, indicating the removal of the organic saliva contamination. Airborne-particle abrasion and acetone completely removed Si contamination from ceramic surfaces. Isopropanol had little cleaning effect on the two contaminants. TBS (median +/- standard deviation) in MPa of the groups SS (11.6 +/- 3.1), AL (10.0 +/- 2.9), and AC (13.0 +/- 2.8) were statistically lower than those of groups PA (33.6 +/- 5.5), AA (40.1 +/- 3.6), and CL (47.0 +/- 8.1) (p < 0.001), while no differences were found in TBS between groups AA and CL (p > 0.5). Contamination significantly reduced bond strengths to zirconia ceramic. Airborne-particle abrasion was the most effective cleaning method.

  11. Catastrophic failure of contaminated fused silica optics at 355 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genin, F. Y., LLNL

    1996-12-03

    For years, contamination has been known to degrade the performance of optics and to sometimes initiate laser-induced damage to initiate. This study has W to quantify these effects for fused silica windows used at 355 mm Contamination particles (Al, Cu, TiO{sub 2} and ZrO{sub 2}) were artificially deposited onto the surface and damage tests were conducted with a 3 ns NdYAG laser. The damage morphology was characterized by Nomarski optical microscopy. The results showed that the damage morphology for input and output surface contamination is different. For input surface contamination, both input and output surfaces can damage. In particular, themore » particle can induce pitting or drilling of the surface where the beam exits. Such damage usually grows catastrophically. Output surface contamination is usually ablated away on the shot but can also induce catastrophic damage. Plasmas are observed during illumination and seem to play an important role in the damage mechanism. The relationship between fluence and contamination size for which catastrophic damage occurred was plotted for different contamination materials. The results show that particles even as small as 10 {micro}m can substantially decrease the damage threshold of the window and that metallic particles on the input surface have a more negative effect than oxide particles.« less

  12. Health Risks of Space Exploration: Targeted and Nontargeted Oxidative Injury by High-Charge and High-Energy Particles

    PubMed Central

    Li, Min; Gonon, Géraldine; Buonanno, Manuela; Autsavapromporn, Narongchai; de Toledo, Sonia M.; Pain, Debkumar

    2014-01-01

    Abstract Significance: During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. Recent Advances: Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. Critical Issues: The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. Future Directions: Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer. Antioxid. Redox Signal. 20, 1501–1523. PMID:24111926

  13. Particle transport in porous media

    NASA Astrophysics Data System (ADS)

    Corapcioglu, M. Yavuz; Hunt, James R.

    The migration and capture of particles (such as colloidal materials and microorganisms) through porous media occur in fields as diversified as water and wastewater treatment, well drilling, and various liquid-solid separation processes. In liquid waste disposal projects, suspended solids can cause the injection well to become clogged, and groundwater quality can be endangered by suspended clay and silt particles because of migration to the formation adjacent to the well bore. In addition to reducing the permeability of the soil, mobile particles can carry groundwater contaminants adsorbed onto their surfaces. Furthermore, as in the case of contamination from septic tanks, the particles themselves may be pathogens, i.e., bacteria and viruses.

  14. Contamination of the transformer oil of power transformers and shunting reactors by metal-containing colloidal particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L'vov, S. Yu.; Komarov, V. B.; Bondareva, V. N.

    The results of a measurement of the contamination of the oil in 66 transformers by metal-containing colloidal particles, formed as a result of the interaction of the oil with the structural materials (the copper of the windings, the iron of the tank and core etc.), and also the results of measurements of the optical turbidity of the oil in 136 transformers when they were examined at the Power Engineering Research and Development Center Company are presented. Methods of determining the concentration of copper and iron in transformer oil are considered. The limiting values of the optical turbidity factors, the coppermore » and iron content are determined. These can serve as a basis for taking decisions on whether to replace the silica gel of the filters for continuously purifying the oil of power transformers and the shunting reactors in addition to the standardized oil contamination factors, namely, the dielectric loss tangent and the acidity number of the oil.« less

  15. Particle-size dependence on metal(loid) distributions in mine wastes: Implications for water contamination and human exposure

    USGS Publications Warehouse

    Kim, C.S.; Wilson, K.M.; Rytuba, J.J.

    2011-01-01

    The mining and processing of metal-bearing ores has resulted in contamination issues where waste materials from abandoned mines remain in piles of untreated and unconsolidated material, posing the potential for waterborne and airborne transport of toxic elements. This study presents a systematic method of particle size separation, mass distribution, and bulk chemical analysis for mine tailings and adjacent background soil samples from the Rand historic mining district, California, in order to assess particle size distribution and related trends in metal(loid) concentration as a function of particle size. Mine tailings produced through stamp milling and leaching processes were found to have both a narrower and finer particle size distribution than background samples, with significant fractions of particles available in a size range (???250 ??m) that could be incidentally ingested. In both tailings and background samples, the majority of trace metal(loid)s display an inverse relationship between concentration and particle size, resulting in higher proportions of As, Cr, Cu, Pb and Zn in finer-sized fractions which are more susceptible to both water- and wind-borne transport as well as ingestion and/or inhalation. Established regulatory screening levels for such elements may, therefore, significantly underestimate potential exposure risk if relying solely on bulk sample concentrations to guide remediation decisions. Correlations in elemental concentration trends (such as between As and Fe) indicate relationships between elements that may be relevant to their chemical speciation. ?? 2011 Elsevier Ltd.

  16. Genesis Silicon Carbide Concentrator Target 60003 Preliminary Ellipsometry Mapping Results

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Rodriquez, M. C.; Stansbery, E. K.

    2007-01-01

    The Genesis concentrator was custom designed to focus solar wind ions primarily for terrestrial isotopic analysis of O-17/O-16 and O-18/O-16 to +/-1%, N-15/N-14 to +/-1%, and secondarily to conduct elemental and isotopic analysis of Li, Be, and B. The circular 6.2 cm diameter concentrator target holder was comprised of four quadrants of highly pure semiconductor materials that included one amorphous diamond-like carbon, one C-13 diamond, and two silicon carbide (SiC). The amorphous diamond-like carbon quadrant was fractured upon impact at Utah Test and Training Range (UTTR), but the remaining three quadrants survived fully intact and all four quadrants hold an important collection of solar wind. The quadrants were removed from the target holder at NASA Johnso n Space Center Genesis Curation Laboratory in April 2005, and have been housed in stainless steel containers under continual nitrogen purge since time of disintegration. In preparation for allocation of a silicon carbide target for oxygen isotope analyses at UCLA, the two SiC targets were photographed for preliminary inspection of macro particle contamination from the hard non-nominal landing as well as characterized by spectroscopic ellipsometry to evaluate thin film contamination. This report is focused on Genesis SiC target sample number 60003.

  17. Quantification of Spore-forming Bacteria Carried by Dust Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Cholakian, Tanya; Gao, Wenming; Osman, Shariff; Barengoltz, Jack

    2006-01-01

    In order to establish a biological contamination transport model for predicting the cross contamination risk during spacecraft assembly and upon landing on Mars, it is important to understand the relationship between spore-forming bacteria and their carrier particles. We conducted air and surface sampling in indoor, outdoor, and cleanroom environments to determine the ratio of spore forming bacteria to their dust particle carriers of different sizes. The number of spore forming bacteria was determined from various size groups of particles in a given environment. Our data also confirms the existence of multiple spores on a single particle and spore clumps. This study will help in developing a better bio-contamination transport model, which in turn will help in determining forward contamination risks for future missions.

  18. Micro-cone targets for producing high energy and low divergence particle beams

    DOEpatents

    Le Galloudec, Nathalie

    2013-09-10

    The present invention relates to micro-cone targets for producing high energy and low divergence particle beams. In one embodiment, the micro-cone target includes a substantially cone-shaped body including an outer surface, an inner surface, a generally flat and round, open-ended base, and a tip defining an apex. The cone-shaped body tapers along its length from the generally flat and round, open-ended base to the tip defining the apex. In addition, the outer surface and the inner surface connect the base to the tip, and the tip curves inwardly to define an outer surface that is concave, which is bounded by a rim formed at a juncture where the outer surface meets the tip.

  19. Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles.

    PubMed

    Connell, John J; Patrick, P Stephen; Yu, Yichao; Lythgoe, Mark F; Kalber, Tammy L

    2015-01-01

    Regenerative medicine would greatly benefit from a new platform technology that enabled measurable, controllable and targeting of stem cells to a site of disease or injury in the body. Superparamagnetic iron-oxide nanoparticles offer attractive possibilities in biomedicine and can be incorporated into cells, affording a safe and reliable means of tagging. This review describes three current and emerging methods to enhance regenerative medicine using magnetic particles to guide therapeutic cells to a target organ; track the cells using MRI and assess their spatial localization with high precision and influence the behavior of the cell using magnetic actuation. This approach is complementary to the systemic injection of cell therapies, thus expanding the horizon of stem cell therapeutics.

  20. Multiscale correlations of iron phases and heavy metals in technogenic magnetic particles from contaminated soils.

    PubMed

    Yu, Xiuling; Lu, Shenggao

    2016-12-01

    Technogenic magnetic particles (TMPs) are carriers of heavy metals and organic contaminants, which derived from anthropogenic activities. However, little information on the relationship between heavy metals and TMP carrier phases at the micrometer scale is available. This study determined the distribution and association of heavy metals and magnetic phases in TMPs in three contaminated soils at the micrometer scale using micro-X-ray fluorescence (μ-XRF) and micro-X-ray absorption near-edge structure (μ-XANES) spectroscopy. Multiscale correlations of heavy metals in TMPs were elucidated using wavelet transform analysis. μ-XRF mapping showed that Fe was enriched and closely correlated with Co, Cr, and Pb in TMPs from steel industrial areas. Fluorescence mapping and wavelet analysis showed that ferroalloy was a major magnetic signature and heavy metal carrier in TMPs, because most heavy metals were highly associated with ferroalloy at all size scales. Multiscale analysis revealed that heavy metals in the TMPs were from multiple sources. Iron K-edge μ-XANES spectra revealed that metallic iron, ferroalloy, and magnetite were the main iron magnetic phases in the TMPs. The relative percentage of these magnetic phases depended on their emission sources. Heatmap analysis revealed that Co, Pb, Cu, Cr, and Ni were mainly derived from ferroalloy particles, while As was derived from both ferroalloy and metallic iron phases. Our results indicated the scale-dependent correlations of magnetic phases and heavy metals in TMPs. The combination of synchrotron based X-ray microprobe techniques and multiscale analysis provides a powerful tool for identifying the magnetic phases from different sources and quantifying the association of iron phases and heavy metals at micrometer scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Small Particles Intact Capture Experiment (SPICE)

    NASA Technical Reports Server (NTRS)

    Nishioka, Ken-Ji; Carle, G. C.; Bunch, T. E.; Mendez, David J.; Ryder, J. T.

    1994-01-01

    The Small Particles Intact Capture Experiment (SPICE) will develop technologies and engineering techniques necessary to capture nearly intact, uncontaminated cosmic and interplanetary dust particles (IDP's). Successful capture of such particles will benefit the exobiology and planetary science communities by providing particulate samples that may have survived unaltered since the formation of the solar system. Characterization of these particles may contribute fundamental data to our knowledge of how these particles could have formed into our planet Earth and, perhaps, contributed to the beginnings of life. The term 'uncontaminated' means that captured cosmic and IDP particles are free of organic contamination from the capture process and the term 'nearly intact capture' means that their chemical and elemental components are not materially altered during capture. The key to capturing cosmic and IDP particles that are organic-contamination free and nearly intact is the capture medium. Initial screening of capture media included organic foams, multiple thin foil layers, and aerogel (a silica gel); but, with the exception of aerogel, the requirements of no contamination or nearly intact capture were not met. To ensure no contamination of particles in the capture process, high-purity aerogel was chosen. High-purity aerogel results in high clarity (visual clearness), a useful quality in detection and recovery of embedded captured particles from the aerogel. P. Tsou at the Jet Propulsion Laboratory (JPL) originally described the use of aerogel for this purpose and reported laboratory test results. He has flown aerogel as a 'GAS-can Lid' payload on STS-47 and is evaluating the results. The Timeband Capture Cell Experiment (TICCE), a Eureca 1 experiment, is also flying aerogel and is scheduled for recovery in late April.

  2. Uniform magnetic targeting of magnetic particles attracted by a new ferromagnetic biological patch.

    PubMed

    Pei, Ning; Cai, Lanlan; Yang, Kai; Ma, Jiaqi; Gong, Yongyong; Wang, Qixin; Huang, Zheyong

    2018-02-01

    A new non-toxic ferromagnetic biological patch (MBP) was designed in this paper. The MBP consisted of two external layers that were made of transparent silicone, and an internal layer that was made of a mixture of pure iron powder and silicon rubber. Finite-element analysis showed that the local inhomogeneous magnetic field (MF) around the MBP was generated when MBP was placed in a uniform MF. The local MF near the MBP varied with the uniform MF and shape of the MBP. Therefore, not only could the accumulation of paramagnetic particles be adjusted by controlling the strength of the uniform MF, but also the distribution of the paramagnetic particles could be improved with the different shape of the MBP. The relationship of the accumulation of paramagnetic particles or cells, magnetic flux density, and fluid velocity were studied through in vitro experiments and theoretical considerations. The accumulation of paramagnetic particles first increased with increment in the magnetic flux density of the uniform MF. But when the magnetic flux density of the uniform MF exceeded a specific value, the magnetic flux density of the MBP reached saturation, causing the accumulation of paramagnetic particles to fall. In addition, the adsorption morphology of magnetic particles or cells could be improved and the uniform distribution of magnetic particles could be achieved by changing the shape of the MBP. Also, MBP may be used as a new implant to attract magnetic drug carrier particles in magnetic drug targeting. Bioelectromagnetics. 39:98-107, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Evaluation of targeted and untargeted effects-based monitoring tools to assess impacts of contaminants of emerging concern on fish in the South Platte River, CO.

    PubMed

    Ekman, Drew R; Keteles, Kristen; Beihoffer, Jon; Cavallin, Jenna E; Dahlin, Kenneth; Davis, John M; Jastrow, Aaron; Lazorchak, James M; Mills, Marc A; Murphy, Mark; Nguyen, David; Vajda, Alan M; Villeneuve, Daniel L; Winkelman, Dana L; Collette, Timothy W

    2018-08-01

    Rivers in the arid Western United States face increasing influences from anthropogenic contaminants due to population growth, urbanization, and drought. To better understand and more effectively track the impacts of these contaminants, biologically-based monitoring tools are increasingly being used to complement routine chemical monitoring. This study was initiated to assess the ability of both targeted and untargeted biologically-based monitoring tools to discriminate impacts of two adjacent wastewater treatment plants (WWTPs) on Colorado's South Platte River. A cell-based estrogen assay (in vitro, targeted) determined that water samples collected downstream of the larger of the two WWTPs displayed considerable estrogenic activity in its two separate effluent streams. Hepatic vitellogenin mRNA expression (in vivo, targeted) and NMR-based metabolomic analyses (in vivo, untargeted) from caged male fathead minnows also suggested estrogenic activity downstream of the larger WWTP, but detected significant differences in responses from its two effluent streams. The metabolomic results suggested that these differences were associated with oxidative stress levels. Finally, partial least squares regression was used to explore linkages between the metabolomics responses and the chemical contaminants that were detected at the sites. This analysis, along with univariate statistical approaches, identified significant covariance between the biological endpoints and estrone concentrations, suggesting the importance of this contaminant and recommending increased focus on its presence in the environment. These results underscore the benefits of a combined targeted and untargeted biologically-based monitoring strategy when used alongside contaminant monitoring to more effectively assess ecological impacts of exposures to complex mixtures in surface waters. Published by Elsevier Ltd.

  4. Coarse-grained discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers [Discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers

    DOE PAGES

    Verma, Vikrant; Li, Tingwen; De Wilde, Juray

    2017-05-26

    Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less

  5. Coarse-grained discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers [Discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Vikrant; Li, Tingwen; De Wilde, Juray

    Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less

  6. The chemical response of particle-associated contaminants in aquatic sediments to urbanization in New England, U.S.A.

    NASA Astrophysics Data System (ADS)

    Chalmers, A. T.; Van Metre, P. C.; Callender, E.

    2007-04-01

    Relations between urbanization and particle-associated contaminants in New England were evaluated using a combination of samples from sediment cores, streambed sediments, and suspended stream sediments. Concentrations of PAHs, PCBs, DDT, and seven trace metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) were correlated strongly with urbanization, with the strongest relations to percentage commercial, industrial, and transportation (CIT) land use. Average PAH and metal concentrations in the most urbanized watersheds were approximately 30 and 6 times the reference concentrations, respectively, in remote, undeveloped watersheds. One-quarter to one-half of sampling sites had concentrations of PAHs, Cu, Pb, or Zn above the probable effects concentration, a set of sediment quality guidelines for adverse effects to aquatic biota, and sediments were predicted to be toxic, on average, when CIT land use exceeded about 10%. Trends in metals in cores from urban watersheds were dominantly downward, whereas trends in PAHs in a suburban watershed were upward. A regional atmospheric-fallout gradient was indicated by as much as order-of-magnitude-greater concentrations and accumulation rates of contaminants in cores from an undeveloped reference lake in Boston compared to those from remote reference watersheds. Contaminant accumulation rates in the lakes with urbanization in their watersheds, however, were 1-3 orders of magnitude greater than those of reference lakes, which indicate the dominance of local sources and fluvial transport of contaminants to urban lakes. These analyses demonstrate the magnitude of urban contamination of aquatic systems and air sheds, and suggest that, despite reductions in contaminant emissions in urban settings, streams and lakes will decline in quality as urbanization of their watersheds takes place.

  7. The chemical response of particle-associated contaminants in aquatic sediments to urbanization in New England, U.S.A.

    USGS Publications Warehouse

    Chalmers, A.T.; Van Metre, P.C.; Callender, E.

    2007-01-01

    Relations between urbanization and particle-associated contaminants in New England were evaluated using a combination of samples from sediment cores, streambed sediments, and suspended stream sediments. Concentrations of PAHs, PCBs, DDT, and seven trace metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) were correlated strongly with urbanization, with the strongest relations to percentage commercial, industrial, and transportation (CIT) land use. Average PAH and metal concentrations in the most urbanized watersheds were approximately 30 and 6 times the reference concentrations, respectively, in remote, undeveloped watersheds. One-quarter to one-half of sampling sites had concentrations of PAHs, Cu, Pb, or Zn above the probable effects concentration, a set of sediment quality guidelines for adverse effects to aquatic biota, and sediments were predicted to be toxic, on average, when CIT land use exceeded about 10%. Trends in metals in cores from urban watersheds were dominantly downward, whereas trends in PAHs in a suburban watershed were upward. A regional atmospheric-fallout gradient was indicated by as much as order-of-magnitude-greater concentrations and accumulation rates of contaminants in cores from an undeveloped reference lake in Boston compared to those from remote reference watersheds. Contaminant accumulation rates in the lakes with urbanization in their watersheds, however, were 1-3 orders of magnitude greater than those of reference lakes, which indicate the dominance of local sources and fluvial transport of contaminants to urban lakes. These analyses demonstrate the magnitude of urban contamination of aquatic systems and air sheds, and suggest that, despite reductions in contaminant emissions in urban settings, streams and lakes will decline in quality as urbanization of their watersheds takes place. ?? 2006 Elsevier B.V. All rights reserved.

  8. Formulation design for target delivery of iron nanoparticles to TCE zones.

    PubMed

    Wang, Ziheng; Acosta, Edgar

    2013-12-01

    Nanoparticles of zero-valent iron (NZVI) are effective reducing agents for some dense non-aqueous phase liquid (DNAPL) contaminants such as trichloroethylene (TCE). However, target delivery of iron nanoparticles to DNAPL zones in the aquifer remains an elusive feature for NZVI technologies. This work discusses three strategies to deliver iron nanoparticles to DNAPL zones. To this end, iron oxide nanoparticles coated with oleate (OL) ions were used as stable analogs for NZVI. The OL-coated iron oxide nanoparticles are rendered lipophilic via (a) the addition of CaCl2, (b) acidification, or (c) the addition of a cationic surfactant, benzethonium chloride (BC). Mixtures of OL and BC show promise as a target delivery strategy due to the high stability of the nanoparticles in water, and their preferential partition into TCE in batch experiments. Column tests show that while the OL-BC coated iron oxide nanoparticles remain largely mobile in TCE-free columns, a large fraction of these particles are retained in TCE-contaminated columns, confirming the effectiveness of this target delivery strategy. © 2013.

  9. Contactless and non-invasive delivery of micro-particles lying on a non-customized rigid surface by using acoustic radiation force.

    PubMed

    Meng, Jianxin; Mei, Deqing; Jia, Kun; Fan, Zongwei; Yang, Keji

    2014-07-01

    In the existing acoustic micro-particle delivery methods, the micro-particles always lie and slide on the surface of platform in the whole delivery process. To avoid the damage and contamination of micro-particles caused by the sliding motion, this paper deals with a novel approach to trap micro-particles from non-customized rigid surfaces and freely manipulate them. The delivery process contains three procedures: detaching, transporting, and landing. Hence, the micro-particles no longer lie on the surface, but are levitated in the fluid, during the long range transporting procedure. It is very meaningful especially for the fragile and easily contaminated targets. To quantitatively analyze the delivery process, a theoretical model to calculate the acoustic radiation force exerting upon a micro-particle near the boundary in half space is built. An experimental device is also developed to validate the delivery method. A 100 μm diameter micro-silica bead adopted as the delivery target is detached from the upper surface of an aluminum platform and levitated in the fluid. Then, it is transported along the designated path with high precision in horizontal plane. The maximum deviation is only about 3.3 μm. During the horizontal transportation, the levitation of the micro-silica bead is stable, the maximum fluctuation is less than 1 μm. The proposed method may extend the application of acoustic radiation force and provide a promising tool for microstructure or cell manipulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Portable Aerosol Contaminant Extractor

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Cable-Dunlap, Paula

    2005-11-15

    A compact, portable, aerosol contaminant extractor having ionization and collection sections through which ambient air may be drawn at a nominal rate so that aerosol particles ionized in the ionization section may be collected on charged plate in the collection section, the charged plate being readily removed for analyses of the particles collected thereon.

  11. Contamination analyses of technology mirror assembly optical surfaces

    NASA Technical Reports Server (NTRS)

    Germani, Mark S.

    1991-01-01

    Automated electron microprobe analyses were performed on tape lift samples from the Technology Mirror Assembly (TMA) optical surfaces. Details of the analyses are given, and the contamination of the mirror surfaces is discussed. Based on the automated analyses of the tape lifts from the TMA surfaces and the control blank, we can conclude that the particles identified on the actual samples were not a result of contamination due to the handling or sampling process itself and that the particles reflect the actual contamination on the surface of the mirror.

  12. Striation pattern of target particle and heat fluxes in three dimensional simulations for DIII-D [On the striation pattern of target particle and heat fluxes in three dimensional simulations for DIII-D

    DOE PAGES

    Frerichs, H.; Schmitz, Oliver; Reiter, D.; ...

    2014-02-04

    The application of resonant magnetic perturbations (RMPs) results in a non-axisymmetric striation pattern of magnetic field lines from the plasma interior which intersect the divertor targets. The impact on related particle and heat fluxes is investigated by three dimensional computer simulations for two different recycling conditions (controlled via neutral gas pumping). It is demonstrated that a mismatch between the particle and heat flux striation pattern, as is repeatedly observed in ITER similar shape H-mode plasmas at DIII-D, can be reproduced by the simulations for high recycling conditions at the onset of partial detachment. Finally, these results indicate that a detailedmore » knowledge of the particle and energy balance is at least as important for realistic simulations as the consideration of a change in the magnetic field structure by plasma response effects.« less

  13. Metal exposure in cows grazing pasture contaminated by iron industry: Insights from magnetic particles used as tracers.

    PubMed

    Ayrault, Sophie; Catinon, Mickaël; Boudouma, Omar; Bordier, Louise; Agnello, Gregory; Reynaud, Stéphane; Tissut, Michel

    2016-05-01

    Magnetic particles (MP) emitted by an iron smelter were used to investigate the exposure of cows grazing on a grassland polluted by these MP and by large amounts of potentially toxic elements (PTE). The morphology as well as the chemical composition of the MP separated from cow dung were studied. Large amounts of typical MP were found (1.1 g kg(-1) dry weight) in the cow dung sampled from the exposed site, whereas these particles were absent from the reference unpolluted site. The ingested MP were mainly technogenic magnetic particles (TMP) emitted by the smelter. Considering the MP concentration in the grazed grass on the exposed site, it was concluded that cows absorb the MP not only from the grass but also from the soil surface. The results of a mild acidic leaching of the MP suggested that the particles were possibly submitted to a superficial dissolution in the abomasum, pointing at a potential route of transfer of the PTE originating from the TMP and leading into food chains. TMP were only a small part of the anthropogenic contamination having affected the soil and the dung. However, due to their unequivocal signature, TMP are a powerful tracer of the distribution of PTE in the different compartments constituting the food chains and the ecosystems. Furthermore, the measurement of the particle sizes gave evidence that a noticeable proportion of the MP could enter the respiratory tract. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Transformation of Mixed Contaminants of Trichloroethylene and Chromium using Polymer Modified and Unmodified KMnO4 Particles in Soil and Water Treatment

    NASA Astrophysics Data System (ADS)

    Ighere, Jude

    soluble in water, it does not form complexes strongly with soil organic matter. The result indicated that TCE oxidation by KMnO4 was not impacted by the presence of Cr (VI), but the reduction of Cr (VI) by ferrous ion was influenced greatly by the presence of TCE. The release profile for polymer modified KMnO4 in aqueous media indicated that the release efficiency was inversely proportional to the mass ratio of KMnO4 to PMMA particles. Application of encapsulated matrix in mixed contaminant treatment yielded 81% Cr (VI) reduction and 88% TCE oxidation by ferrous ion and modified permanganate respectively. PMMA improved interaction of KMnO4 particles with target contaminant (TCE) but with a low oxidant release rate.

  15. Expanded Target-Chemical Analysis Reveals Extensive Mixed-Organic-Contaminant Exposure in U.S. Streams.

    PubMed

    Bradley, Paul M; Journey, Celeste A; Romanok, Kristin M; Barber, Larry B; Buxton, Herbert T; Foreman, William T; Furlong, Edward T; Glassmeyer, Susan T; Hladik, Michelle L; Iwanowicz, Luke R; Jones, Daniel K; Kolpin, Dana W; Kuivila, Kathryn M; Loftin, Keith A; Mills, Marc A; Meyer, Michael T; Orlando, James L; Reilly, Timothy J; Smalling, Kelly L; Villeneuve, Daniel L

    2017-05-02

    Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66-84% of all sites. Detected contaminant concentrations varied from less than 1 ng L -1 to greater than 10 μg L -1 , with 77 and 278 having median detected concentrations greater than 100 ng L -1 and 10 ng L -1 , respectively. Cumulative detections and concentrations ranged 4-161 compounds (median 70) and 8.5-102 847 ng L -1 , respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log 10 concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71-82% of the variability in the total number of compounds detected (linear regression; p-values: < 0.001-0.012), providing a statistical inference tool for unmonitored contaminants. Due to multiple modes of action, high bioactivity, biorecalcitrance, and direct environment application (pesticides), designed-bioactive organics (median 41 per site at μg L -1 cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L -1 .

  16. A Support Vector Learning-Based Particle Filter Scheme for Target Localization in Communication-Constrained Underwater Acoustic Sensor Networks.

    PubMed

    Li, Xinbin; Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping

    2017-12-21

    Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid "particle degeneracy" problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network.

  17. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Schneider, J.; Schmidt, S.; Weinbruch, S.; Ebert, M.

    2015-04-01

    In the present work, three different techniques to separate ice-nucleating particles (INPs) as well as ice particle residuals (IPRs) from non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed-phase clouds and allow after evaporation in the instrument for the analysis of the residuals. The Fast Ice Nucleus Chamber (FINCH) coupled with the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated particles for analysis. The instruments were run during a joint field campaign which took place in January and February 2013 at the High Alpine Research Station Jungfraujoch (Switzerland). INPs and IPRs were analyzed offline by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Online analysis of the size and chemical composition of INP activated in FINCH was performed by laser ablation mass spectrometry. With all three INP/IPR separation techniques high abundances (median 20-70%) of instrumental contamination artifacts were observed (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). After removal of the instrumental contamination particles, silicates, Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types obtained by all three techniques. In addition, considerable amounts (median abundance mostly a few percent) of soluble material (e.g., sea salt, sulfates) were observed. As these soluble particles are often not expected to act as INP/IPR, we consider them as potential measurement artifacts. Minor types of INP/IPR include soot and Pb-bearing particles. The Pb-bearing particles are mainly present as an internal mixture with other particle types. Most samples showed a maximum of the INP/IPR size distribution at 200

  18. Contamination Analysis Tools

    NASA Technical Reports Server (NTRS)

    Brieda, Lubos

    2015-01-01

    This talk presents 3 different tools developed recently for contamination analysis:HTML QCM analyzer: runs in a web browser, and allows for data analysis of QCM log filesJava RGA extractor: can load in multiple SRS.ana files and extract pressure vs. time dataC++ Contamination Simulation code: 3D particle tracing code for modeling transport of dust particulates and molecules. Uses residence time to determine if molecules stick. Particulates can be sampled from IEST-STD-1246 and be accelerated by aerodynamic forces.

  19. Ferromagnetic and superparamagnetic contamination in pulverized coal

    USGS Publications Warehouse

    Senftle, F.E.; Thorpe, A.N.; Alexander, C.C.; Finkelman, R.B.

    1982-01-01

    Although no significant major-element contamination is introduced by grinding coal in a steel pulverizer, abraded steel particles can conceivably affect the magnetic properties of pulverized coal. Magnetic and scanning-electron-microscope analyses of pulverized coal and coal fragments from the Herrin No. 6 seam in Illinois showed ferromagnetic and superparamagnetic contamination from the grinder. Significant changes in the magnetic properties of the coal were noted, indicating a total steel contamination of approximately 0.02 wt%. When coal samples were vibrated in the magnetic field of the vibrating-sample magnetometer, the superparamagnetic steel particles moved through the pulverized coal, and participated in the formation of multidomain clusters that in turn substantially affected the magnetization of the coal. ?? 1982.

  20. Contamination control device

    DOEpatents

    Clark, Robert M.; Cronin, John C.

    1977-01-01

    A contamination control device for use in a gas-insulated transmission bus consisting of a cylindrical center conductor coaxially mounted within a grounded cylindrical enclosure. The contamination control device is electrically connected to the interior surface of the grounded outer shell and positioned along an axial line at the lowest vertical position thereon. The contamination control device comprises an elongated metallic member having a generally curved cross-section in a first plane perpendicular to the axis of the bus and having an arcuate cross-section in a second plane lying along the axis of the bus. Each opposed end of the metallic member and its opposing sides are tapered to form a pair of generally converging and downward sloping surfaces to trap randomly moving conductive particles in the relatively field-free region between the metallic member and the interior surface of the grounded outer shell. The device may have projecting legs to enable the device to be spot welded to the interior of the grounded housing. The control device provides a high capture probability and prevents subsequent release of the charged particles after the capture thereof.

  1. Detection of microscopic particles present as contaminants in latent fingerprints by means of synchrotron radiation-based Fourier transform infra-red micro-imaging.

    PubMed

    Banas, A; Banas, K; Breese, M B H; Loke, J; Heng Teo, B; Lim, S K

    2012-08-07

    Synchrotron radiation-based Fourier transform infra-red (SR-FTIR) micro-imaging has been developed as a rapid, direct and non-destructive technique. This method, taking advantage of the high brightness and small effective source size of synchrotron light, is capable of exploring the molecular chemistry within the microstructures of microscopic particles without their destruction at high spatial resolutions. This is in contrast to traditional "wet" chemical methods, which, during processing for analysis, often caused destruction of the original samples. In the present study, we demonstrate the potential of SR-FTIR micro-imaging as an effective way to accurately identify microscopic particles deposited within latent fingerprints. These particles are present from residual amounts of materials left on a person's fingers after handling such materials. Fingerprints contaminated with various types of powders, creams, medications and high explosive materials (3-nitrooxy-2,2-bis(nitrooxymethyl)propyl nitrate (PETN), 1,3,5-trinitro-1,3,5-triazinane (RDX), 2-methyl-1,3,5-trinitrobenzene (TNT)) deposited on various - daily used - substrates have been analysed herein without any further sample preparation. A non-destructive method for the transfer of contaminated fingerprints from hard-to-reach areas of the substrates to the place of analysis is also presented. This method could have a significant impact on forensic science and could dramatically enhance the amount of information that can be obtained from the study of fingerprints.

  2. A Support Vector Learning-Based Particle Filter Scheme for Target Localization in Communication-Constrained Underwater Acoustic Sensor Networks

    PubMed Central

    Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping

    2017-01-01

    Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid “particle degeneracy” problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network. PMID:29267252

  3. Dynamics of magnetic particles in cylindrical Halbach array: implications for magnetic cell separation and drug targeting.

    PubMed

    Babinec, Peter; Krafcík, Andrej; Babincová, Melánia; Rosenecker, Joseph

    2010-08-01

    Magnetic nanoparticles for therapy and diagnosis are at the leading edge of the rapidly developing field of bionanotechnology. In this study, we have theoretically studied motion of magnetic nano- as well as micro-particles in the field of cylindrical Halbach array of permanent magnets. Magnetic flux density was modeled as magnetostatic problem by finite element method and particle motion was described using system of ordinary differential equations--Newton law. Computations were done for nanoparticles Nanomag-D with radius 65 nm, which are often used in magnetic drug targeting, as well as microparticles DynaBeads-M280 with radius 1.4 microm, which can be used for magnetic separation. Analyzing snapshots of trajectories of hundred magnetite particles of each size in the water as well as in the air, we have found that optimally designed magnetic circuits of permanent magnets in quadrupolar Halbach array have substantially shorter capture time than simple blocks of permanent magnets commonly used in experiments, therefore, such a Halbach array may be useful as a potential source of magnetic field for magnetic separation and targeting of magnetic nanoparticles as well as microparticles for delivery of drugs, genes, and cells in various biomedical applications.

  4. Materials SIG quantification and characterization of surface contaminants

    NASA Technical Reports Server (NTRS)

    Crutcher, E. Russ

    1992-01-01

    When LDEF entered orbit its cleanliness was approximately a MIL-STD-1246B Level 2000C. Its burden of contaminants included particles from every part of its history including a relatively small contribution from the shuttle bay itself. Although this satellite was far from what is normally considered clean in the aerospace industry, contaminating events in orbit and from processing after recovery were easily detected. The molecular contaminants carried into orbit were dwarfed by the heavy deposition of UV polymerized films from outgassing urethane paints and silicone based materials. Impacts by relatively small objects in orbit could create particulate contaminants that easily dominated the particle counts within a centimeter of the impact site. During the recovery activities LDEF was 'sprayed' with a liquid high in organics and water soluble salts. With reentry turbulence, vibration, and gravitational loading particulate contaminants were redistributed about LDEF and the shuttle bay.

  5. Nondestructive characterization of municipal-solid-waste-contaminated surface soil by energy-dispersive X-ray fluorescence and low-Z (atomic number) particle electron probe X-ray microanalysis.

    PubMed

    Gupta, Dhrubajyoti; Ghosh, Rita; Mitra, Ajoy K; Roy, Subinit; Sarkar, Manoranjan; Chowdhury, Subhajit; Bhowmik, Asit; Mukhopadhyay, Ujjal; Maskey, Shila; Ro, Chul-Un

    2011-11-01

    The long-term environmental impact of municipal solid waste (MSW) landfilling is still under investigation due to the lack of detailed characterization studies. A MSW landfill site, popularly known as Dhapa, in the eastern fringe of the metropolis of Kolkata, India, is the subject of present study. A vast area of Dhapa, adjoining the current core MSW dump site and evolving from the raw MSW dumping in the past, is presently used for the cultivation of vegetables. The inorganic chemical characteristics of the MSW-contaminated Dhapa surface soil (covering a 2-km stretch of the area) along with a natural composite (geogenic) soil sample (from a small countryside farm), for comparison, were investigated using two complementary nondestructive analytical techniques, energy-dispersive X-ray fluorescence (EDXRF) for bulk analysis and low-Z (atomic number) particle electron probe X-ray microanalysis (low-Z particle EPMA) for single-particle analysis. The bulk concentrations of K, Rb, and Zr remain almost unchanged in all the soil samples. The Dhapa soil is found to be polluted with heavy metals such as Cu, Zn, and Pb (highly elevated) and Ti, Cr, Mn, Fe, Ni, and Sr (moderately elevated), compared to the natural countryside soil. These high bulk concentration levels of heavy metals were compared with the Ecological Soil Screening Levels for these elements (U.S. Environment Protection Agency) to assess the potential risk on the immediate biotic environment. Low-Z particle EPMA results showed that the aluminosilicate-containing particles were the most abundant, followed by SiO2, CaCO3-containing, and carbonaceous particles in the Dhapa samples, whereas in the countryside sample only aluminosilicate-containing and SiO2 particles were observed. The mineral particles encountered in the countryside sample are solely of geogenic origin, whereas those from the Dhapa samples seem to have evolved from a mixture of raw dumped MSW, urban dust, and other contributing factors such as wind

  6. Protection of lithographic components from particle contamination

    DOEpatents

    Klebanoff, Leonard E.; Rader, Daniel J.

    2000-01-01

    A system that employs thermophoresis to protect lithographic surfaces from particle deposition and operates in an environment where the pressure is substantially constant and can be sub-atmospheric. The system (thermophoretic pellicle) comprises an enclosure that surrounds a lithographic component whose surface is being protected from particle deposition. The enclosure is provided with means for introducing a flow of gas into the chamber and at least one aperture that provides for access to the lithographic surface for the entry and exit of a beam of radiation, for example, and further controls gas flow into a surrounding low pressure environment such that a higher pressure is maintained within the enclosure and over the surface being protected. The lithographic component can be heated or, alternatively the walls of the enclosure can be cooled to establish a temperature gradient between the surface of the lithographic component and the walls of the enclosure, thereby enabling the thermophoretic force that resists particle deposition.

  7. Sub-Micrometer Scale Minor Element Mapping in Interplanetary Dust Particles: A Test for Stratospheric Contamination

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.; Sutton, S. R.

    2004-01-01

    Combined X-ray microprobe (XRM), energy dispersive x-ray fluorescence using a Transmission Electron Microscope (TEM), and electron microprobe measurements have determined that the average bulk chemical composition of the interplanetary dust particles (IDPs) collected from the Earth s stratosphere is enriched relative to the CI meteorite composition by a factor of 2 to 4 for carbon and for the moderately volatile elements Na, K, P, Mn, Cu, Zn, Ga, Ge, and Se, and enriched to approximately 30 times CI for Br. However, Jessberger et al., who have reported similar bulk enrichments using Proton Induced X-ray Emission (PIXE), attribute the enrichments to contamination by meteor-derived atmospheric aerosols during the several weeks these IDPs reside in the Earth s atmosphere prior to collection. Using scanning Auger spectroscopy, a very sensitive surface analysis technique, Mackinnon and Mogk have observed S contamination on the surface of IDPs, presumably due to the accretion of sulfate aerosols during stratospheric residence. But the S-rich layer they detected was so thin (approximately 100 angstroms thick) that the total amount of S on the surface was too small to significantly perturb the bulk S-content of a chondritic IDP. Stephan et al. provide support for the contamination hypothesis by reporting the enrichment of Br on the edges of the IDPs using Time-of-Flight Secondary-Ion Mass-Spectrometry (TOFSIMS), but TOF-SIMS is notorious for producing false edge-effects, particularly on irregularly-shaped samples like IDPs. Sutton et al. mapped the spatial distribution of Fe, Ni, Zn, Br, and Sr, at the approximately 2 m scale, in four IDPs using element-specific x-ray fluorescence (XRF) computed microtomography. They found the moderately volatile elements Zn and Br, although spatially inhomogeneous, were not concentrated on the surface of any of the IDPs they examined, suggesting that the Zn and the Br enrichments in the IDPs are not due to contamination during

  8. Occurrence, trends, and sources in particle-associated contaminants in selected streams and lakes in Fort Worth, Texas

    USGS Publications Warehouse

    Van Metre, Peter C.; Wilson, Jennifer T.; Harwell, Glenn R.; Gary, Marcus O.; Heitmuller, Franklin T.; Mahler, Barbara J.

    2003-01-01

    Several lakes and stream segments in Fort Worth, Texas, have fish consumption bans because of elevated levels of chlordane, dieldrin, DDE, and polychlorinated biphenyls (PCBs). This study was undertaken to evaluate current loading, trends, and sources in these long-banned contaminants and other particle-associated contaminants commonly found in urban areas. Sampling included suspended sediments at 11 sites in streams and bottom-sediment cores in three lakes. Samples were analyzed for chlorinated hydrocarbons, major and trace elements, and polycyclic aromatic hydrocarbons (PAHs). All four legacy pollutants responsible for fish consumption bans were detected frequently. Concentrations of chlordane, lead, and PAHs most frequently exceeded sediment-quality guidelines. Trends in DDE and PCBs since the 1960s generally are decreasing; and trends in chlordane are mixed with a decreasing trend in Lake Como, no trend in Echo Lake, and an increasing trend in Fosdic Lake. All significant trends in trace elements are decreasing, and most significant trends in PAHs are increasing. Sedimentation surveys were conducted on each of the three lakes and used in combination with sediment core data to compute sediment mass balances for the lakes, to estimate long-term-average loads and yields of sediment, and to estimate recent loads and yields of selected contaminants.Concentrations of most trace elements in suspended sediments were similar to those at the tops of cores, but concentrations of many hydrophobic organic contaminants were two to three times larger. As a result, for these fluvial systems, sediment cores probably provide a historical record of trace element contamination but could underestimate historical concentrations of organic contaminants. However, down-core profiles suggest that relative concentration histories are preserved in these sediment cores for many organic contaminants (such as chlordane and total DDT) but not for all (such as dieldrin).Percent urban land use

  9. Oxidative particle mixtures for groundwater treatment

    DOEpatents

    Siegrist, Robert L.; Murdoch, Lawrence C.

    2000-01-01

    The invention is a method and a composition of a mixture for degradation and immobilization of contaminants in soil and groundwater. The oxidative particle mixture and method includes providing a material having a minimal volume of free water, mixing at least one inorganic oxidative chemical in a granular form with a carrier fluid containing a fine grained inorganic hydrophilic compound and injecting the resulting mixture into the subsurface. The granular form of the inorganic oxidative chemical dissolves within the areas of injection, and the oxidative ions move by diffusion and/or advection, therefore extending the treatment zone over a wider area than the injection area. The organic contaminants in the soil and groundwater are degraded by the oxidative ions, which form solid byproducts that can sorb significant amounts of inorganic contaminants, metals, and radionuclides for in situ treatment and immobilization of contaminants. The method and composition of the oxidative particle mixture for long-term treatment and immobilization of contaminants in soil and groundwater provides for a reduction in toxicity of contaminants in a subsurface area of contamination without the need for continued injection of treatment material, or for movement of the contaminants, or without the need for continuous pumping of groundwater through the treatment zone, or removal of groundwater from the subsurface area of contamination.

  10. Elevated in-home sediment contaminant concentrations - the consequence of a particle settling-winnowing process from Hurricane Katrina floodwaters.

    PubMed

    Ashley, Nicholas A; Valsaraj, Kalliat T; Thibodeaux, Louis J

    2008-01-01

    Sediment samples were collected from two homes which were flooded in the wake of Hurricane Katrina in August 2005. The samples were analyzed for trace metals and semi-volatile organic compounds using techniques based on established EPA methods. The data showed higher concentrations of some metals and semi-volatile organic pollutants than reported in previous outdoor sampling events of soils and sediments. The Lake Pontchartrain sediments became resuspended during the hurricane, and this material subsequently was found in the residential areas of New Orleans following levee breaches. The clay and silt particles appear to be selectively deposited inside homes, and sediment contaminant concentrations are usually greatest within this fraction. Re-entry advisories based on outdoor sample concentration results may have under-predicted the exposure levels to homeowners and first responders. All contaminants found in the sediment sampled in this study have their origin in the sediments of Lake Pontchartrain and other localized sources.

  11. Single-particle fusion of influenza viruses reveals complex interactions with target membranes

    NASA Astrophysics Data System (ADS)

    van der Borg, Guus; Braddock, Scarlett; Blijleven, Jelle S.; van Oijen, Antoine M.; Roos, Wouter H.

    2018-05-01

    The first step in infection of influenza A virus is contact with the host cell membrane, with which it later fuses. The composition of the target bilayer exerts a complex influence on both fusion efficiency and time. Here, an in vitro, single-particle approach is used to study this effect. Using total internal reflection fluorescence (TIRF) microscopy and a microfluidic flow cell, the hemifusion of single virions is visualized. Hemifusion efficiency and kinetics are studied while altering target bilayer cholesterol content and sialic-acid donor. Cholesterol ratios tested were 0%, 10%, 20%, and 40%. Sialic-acid donors GD1a and GYPA were used. Both cholesterol ratio and sialic-acid donors proved to have a significant effect on hemifusion efficiency. Furthermore, comparison between GD1a and GYPA conditions shows that the cholesterol dependence of the hemifusion time is severely affected by the sialic-acid donor. Only GD1a shows a clear increasing trend in hemifusion efficiency and time with increasing cholesterol concentration of the target bilayer with maximum rates for GD1A and 40% cholesterol. Overall our results show that sialic acid donor and target bilayer composition should be carefully chosen, depending on the desired hemifusion time and efficiency in the experiment.

  12. Use of the Threshold of Toxicological Concern (TTC) approach for deriving target values for drinking water contaminants.

    PubMed

    Mons, M N; Heringa, M B; van Genderen, J; Puijker, L M; Brand, W; van Leeuwen, C J; Stoks, P; van der Hoek, J P; van der Kooij, D

    2013-03-15

    Ongoing pollution and improving analytical techniques reveal more and more anthropogenic substances in drinking water sources, and incidentally in treated water as well. In fact, complete absence of any trace pollutant in treated drinking water is an illusion as current analytical techniques are capable of detecting very low concentrations. Most of the substances detected lack toxicity data to derive safe levels and have not yet been regulated. Although the concentrations in treated water usually do not have adverse health effects, their presence is still undesired because of customer perception. This leads to the question how sensitive analytical methods need to become for water quality screening, at what levels water suppliers need to take action and how effective treatment methods need to be designed to remove contaminants sufficiently. Therefore, in the Netherlands a clear and consistent approach called 'Drinking Water Quality for the 21st century (Q21)' has been developed within the joint research program of the drinking water companies. Target values for anthropogenic drinking water contaminants were derived by using the recently introduced Threshold of Toxicological Concern (TTC) approach. The target values for individual genotoxic and steroid endocrine chemicals were set at 0.01 μg/L. For all other organic chemicals the target values were set at 0.1 μg/L. The target value for the total sum of genotoxic chemicals, the total sum of steroid hormones and the total sum of all other organic compounds were set at 0.01, 0.01 and 1.0 μg/L, respectively. The Dutch Q21 approach is further supplemented by the standstill-principle and effect-directed testing. The approach is helpful in defining the goals and limits of future treatment process designs and of analytical methods to further improve and ensure the quality of drinking water, without going to unnecessary extents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Contamination and UV ageing of diffuser targets used in satellite inflight and ground reference test site calibrations

    NASA Astrophysics Data System (ADS)

    Vaskuri, Anna; Greenwell, Claire; Hessey, Isabel; Tompkins, Jordan; Woolliams, Emma

    2018-02-01

    Diffuser reflectance targets are key components in in-orbit calibrations and for verifying ground reference test sites. In this work, Spectralon, Diffusil, and Heraeus diffusers were exposed to exhaust gases and ultraviolet (UV) radiation in the ambient air conditions and their degradations were monitored by measuring changes in spectral reflectances. Spectralon is a state-of-the-art diffuser made of polytetrafluoroethylene, and Diffusil and Heraeus diffusers are made of fused silica with gas bubbles inside. Based on the contamination tests, Spectralon degrades faster than fused silica diffusers. For the samples exposed to contamination for 20 minutes, the 250 nm - 400 nm total diffuse spectral reflectance of Spectralon degraded 3-5 times more when exposed to petrol-like emission and 16-23 times more when exposed to diesel-like emission, compared with Diffusil. When the reflectance changes of Spectralon were compared with those of Heraeus, Spectralon degraded 3-4 times more when exposed to petrol-like emission for 20 minutes and 5-7 times more when exposed to diesel-like emission for 7.5 minutes. When the samples contaminated were exposed to UV radiation in the ambient air, their reflectance gradually restored back to the original level. In conclusion, fused silica diffusers are more resistant to hydrocarbon contaminants present in ground reference test sites, and thus more stable under UV radiation in the air.

  14. Tailoring the charged particle fluxes across the target surface of Magnum-PSI

    NASA Astrophysics Data System (ADS)

    Costin, C.; Anita, V.; Popa, G.; Scholten, J.; De Temmerman, G.

    2016-04-01

    Linear plasma generators are plasma devices designed to study fusion-relevant plasma-surface interactions. The first requirement for such devices is to operate with adjustable and well characterized plasma parameters. In the linear plasma device Magnum-PSI, the distribution of the charged particle flux across the target surface can be tailored by the target bias. The process is based on the radial inhomogeneity of the plasma column and it is evidenced by electrical measurements via a 2D multi-probe system installed as target. Typical results are reported for a hydrogen discharge operated at 125 A and confined by a magnetic field strength of 0.95 T in the middle of the coils. The probes were biased in the range of  -80 to  -25 V, while the floating potential of the target was about  -35 V. The results were obtained in steady-state regime of Magnum-PSI, being time-averaged over any type of fluctuations. Depending on the relative value of the target bias voltage with respect to the local floating potential in the plasma column, the entire target surface can be exposed to ion or electron dominated flux, respectively, or it can be divided into two adjacent zones: one exposed to electron flux and the other to ion flux. As a consequence of this effect, a floating conductive surface that interacts with an inhomogeneous plasma is exposed to non-zero local currents despite its overall null current and it is subjected to internal current flows.

  15. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott [Dublin, CA; Rader, Daniel John [Albuquerque, NM; Walton, Christopher [Berkeley, CA; Folta, James [Livermore, CA

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  16. Particle monitoring and control in vacuum processing equipment

    NASA Astrophysics Data System (ADS)

    Borden, Peter G., Dr.; Gregg, John

    1989-10-01

    Particle contamination during vacuum processes has emerged as the largest single source of yield loss in VLSI manufacturing. While a number of tools have been available to help understand the sources and nature of this contamination, only recently has it been possible to monitor free particle levels within vacuum equipment in real-time. As a result, a better picture is available of how particle contamination can affect a variety of processes. This paper reviews some of the work that has been done to monitor particles in vacuum loadlocks and in processes such as etching, sputtering and ion implantation. The aim has been to make free particles in vacuum equipment a measurable process parameter. Achieving this allows particles to be controlled using statistical process control. It will be shown that free particle levels in load locks correlate to wafer surface counts, device yield and process conditions, but that these levels are considerable higher during production than when dummy wafers are run to qualify a system. It will also be shown how real-time free particle monitoring can be used to monitor and control cleaning cycles, how major episodic events can be detected, and how data can be gathered in a format suitable for statistical process control.

  17. Calculation of Spectra of Neutrons and Charged Particles Produced in a Target of a Neutron Generator

    NASA Astrophysics Data System (ADS)

    Gaganov, V. V.

    2017-12-01

    An algorithm for calculating the spectra of neutrons and associated charged particles produced in the target of a neutron generator is detailed. The products of four nuclear reactions 3H( d, n)4He, 2H( d, n)3He, 2H( d, p)3H, and 3He( d, p)4He are analyzed. The results of calculations are presented in the form of neutron spectra for several emission angles and spectra of associated charged particles emitted at an angle of 180° for a deuteron initial energy of 0.13 MeV.

  18. Cleaning mechanism of particle contaminants on large aperture optical components by using air knife sweeping technology

    NASA Astrophysics Data System (ADS)

    Niu, Longfei; Liu, Hao; Miao, Xinxiang; Lv, Haibing; Yuan, Xiaodong; Zhou, Hai; Yao, Caizhen; Zhou, Guorui; Li, Qin

    2017-05-01

    The cleaning mechanism of optical surface particle contaminants in the light pneumatic tube was simulated based on the static equations and JKR model. Cleaning verification experiment based on air knife sweeping system and on-line monitoring system in high power laser facility was set up in order to verify the simulated results. Results showed that the removal ratio is significantly influenced by sweeping velocity and angle. The removal ratio can reach to 94.3% by using higher input pressure of the air knife, demonstrating that the air knife sweeping technology is useful for maintaining the surface cleanliness of optical elements, and thus guaranteeing the long-term stable running of the high power laser facility.

  19. Proposal for a Universal Particle Detector Experiment

    NASA Technical Reports Server (NTRS)

    Lesho, J. C.; Cain, R. P; Uy, O. M.

    1993-01-01

    The Universal Particle Detector Experiment (UPDE), which consists of parallel planes of two diode laser beams of different wavelengths and a large surface metal oxide semiconductor (MOS) impact detector, is proposed. It will be used to perform real-time monitoring of contamination particles and meteoroids impacting the spacecraft surface with high resolution of time, position, direction, and velocity. The UPDE will discriminate between contaminants and meteoroids, and will determine their velocity and size distribution around the spacecraft environment. With two different color diode lasers, the contaminant and meteroid composition will also be determined based on laboratory calibration with different materials. Secondary particles dislodged from the top aluminum surface of the MOS detector will also be measured to determine the kinetic energy losses during energetic meteoroid impacts. The velocity range of this instrument is 0.1 m/s to more than 14 km/s, while its size sensitivity is from 0.2 microns to millimeter-sized particles. The particulate measurements in space of the kind proposed will be the first simultaneous multipurpose particulate experiment that includes velocities from very slow to hypervelocities, sizes from submicrometer- to pellet-sized diameters, chemical analysis of the particulate composition, and measurements of the kinetic energy losses after energetic impacts of meteroids. The experiment will provide contamination particles and orbital debris data that are critically needed for our present understanding of the space environment. The data will also be used to validate contamination and orbital debris models for predicting optimal configuration of future space sensors and for understanding their effects on sensitive surfaces such as mirrors, lenses, paints, and thermal blankets.

  20. Proposal for a universal particle detector experiment

    NASA Astrophysics Data System (ADS)

    Lesho, J. C.; Cain, R. P.; Uy, O. M.

    The Universal Particle Detector Experiment (UPDE), which consists of parallel planes of two diode laser beams of different wavelengths and a large surface metal oxide semiconductor (MOS) impact detector, is proposed. It will be used to perform real-time monitoring of contamination particles and meteoroids impacting the spacecraft surface with high resolution of time, position, direction, and velocity. The UPDE will discriminate between contaminants and meteoroids, and will determine their velocity and size distribution around the spacecraft environment. With two different color diode lasers, the contaminant and meteroid composition will also be determined based on laboratory calibration with different materials. Secondary particles dislodged from the top aluminum surface of the MOS detector will also be measured to determine the kinetic energy losses during energetic meteoroid impacts. The velocity range of this instrument is 0.1 m/s to more than 14 km/s, while its size sensitivity is from 0.2 microns to millimeter-sized particles. The particulate measurements in space of the kind proposed will be the first simultaneous multipurpose particulate experiment that includes velocities from very slow to hypervelocities, sizes from submicrometer- to pellet-sized diameters, chemical analysis of the particulate composition, and measurements of the kinetic energy losses after energetic impacts of meteroids. The experiment will provide contamination particles and orbital debris data that are critically needed for our present understanding of the space environment. The data will also be used to validate contamination and orbital debris models for predicting optimal configuration of future space sensors and for understanding their effects on sensitive surfaces such as mirrors, lenses, paints, and thermal blankets.

  1. Detection and tracking of a moving target using SAR images with the particle filter-based track-before-detect algorithm.

    PubMed

    Gao, Han; Li, Jingwen

    2014-06-19

    A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB.

  2. Detection and Tracking of a Moving Target Using SAR Images with the Particle Filter-Based Track-Before-Detect Algorithm

    PubMed Central

    Gao, Han; Li, Jingwen

    2014-01-01

    A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB. PMID:24949640

  3. Method of treating contaminated HEPA filter media in pulp process

    DOEpatents

    Hu, Jian S.; Argyle, Mark D.; Demmer, Ricky L.; Mondok, Emilio P.

    2003-07-29

    A method for reducing contamination of HEPA filters with radioactive and/or hazardous materials is described. The method includes pre-processing of the filter for removing loose particles. Next, the filter medium is removed from the housing, and the housing is decontaminated. Finally, the filter medium is processed as pulp for removing contaminated particles by physical and/or chemical methods, including gravity, flotation, and dissolution of the particles. The decontaminated filter medium is then disposed of as non-RCRA waste; the particles are collected, stabilized, and disposed of according to well known methods of handling such materials; and the liquid medium in which the pulp was processed is recycled.

  4. Production of [211At]-Astatinated Radiopharmaceuticals and Applications in Targeted α-Particle Therapy

    PubMed Central

    Guérard, François; Gestin, Jean-François

    2013-01-01

    Abstract 211At is a promising radionuclide for α-particle therapy of cancers. Its physical characteristics make this radionuclide particularly interesting to consider when bound to cancer-targeting biomolecules for the treatment of microscopic tumors. 211At is produced by cyclotron irradiation of 209Bi with α-particles accelerated at ∼28 MeV and can be obtained in high radionuclidic purity after isolation from the target. Its chemistry resembles iodine, but there is also a tendency to behave as a metalloid. However, the chemical behavior of astatine has not yet been clearly established, primarily due to the lack of any stable isotopes of this element, which precludes the use of conventional analytical techniques for its characterization. There are also only a limited number of research centers that have been able to produce this element in sufficient amounts to carry out extensive investigations. Despite these difficulties, chemical reactions typically used with iodine can be performed, and a number of biomolecules of interest have been labeled with 211At. However, most of these compounds exhibit unacceptable instability in vivo due to the weakness of the astatine–biomolecule bond. Nonetheless, several compounds have shown high potential for the treatment of cancers in vitro and in several animal models, thus providing a promising basis that has allowed initiation of the first two clinical studies. PMID:23075373

  5. Exploring the Radiative Effect and Climate Impact of Contaminated Contrails

    NASA Astrophysics Data System (ADS)

    Yi, B.; Yang, P.; Minnis, P.; Duda, D. P.

    2015-12-01

    As an impact of human aviation activities, contrails have drawn a great deal of attention. There have been numerous investigations into the contrail properties, radiative effects, and climate impact. However, very little effort has been focused on the impact of contaminated contrails. Generated by the combustion process within the aircraft engine, the aerosols and exhaust gases frequently influence contrail formation. Contrail ice crystals contaminated by soot particles have been found to exhibit dramatically different light scattering properties from those of pristine crystals. In this study, we employ state-of-the-art light scattering computational capabilities to calculate the single-scattering properties of soot-contaminated contrails. The contaminated contrail particle is assumed to be a hexagonal ice column containing several soot particles. The invariant imbedding T-matrix method and the Ray-by-Ray geometry optics method are combined to construct a simplified yet novel set of contaminated contrail optical properties. The bulk optical properties are calculated based on the data set and are parameterized for use in the Community Atmospheric Model. Using global contrail retrievals from satellite remote sensing observations in 2006 and 2012, simulations are conducted using the general circulation model to analyze contaminated contrail radiative effects as well as their climatic sensitivities. Our results show that the contaminated contrail is significantly more absorbing than pristine contrail in the shortwave spectrum. As a result, much stronger contrail radiative impact and climate feedback are found. Several sensitivity studies are also implemented to quantify the effect of contrail contamination.

  6. An in vitro study of magnetic particle targeting in small blood vessels

    NASA Astrophysics Data System (ADS)

    Udrea, Laura Elena; Strachan, Norval J. C.; Bădescu, Vasile; Rotariu, Ovidiu

    2006-10-01

    The magnetic guidance and capture of particles inside the human body, via the circulatory system, is a novel method for the targeted delivery of drugs. This experimental study confirms in vitro that a dipolar capturing device, based on high-energy magnets with an active space of 8.7 cm × 10 cm × 10 cm, retains colloidal magnetic particles (MPs) (<30 nm) injected in the capillary tubes, where flow velocities are comparable to that encountered in the capillary beds of tumours (<0.5 cm s-1). The build-up of the deposition of the MPs was investigated using video imaging techniques that enabled continuous monitoring of the blocking of the vessel whilst simultaneously recording the colloid's flow rate. The parameters of practical importance (length of MP deposit, time of capillary blocking) were estimated and were found to be dependent on the initial fluid velocity, the MP concentration and the distance between the capillary tube and the polar magnetic pieces. Although the tube used in this experiment is larger (diameter = 0.75 mm, length = 100 mm) than that of real capillaries (diameter = 0.01 mm, length ~1.5 mm), the flow velocities chosen were similar to those encountered in the capillary beds of tumours and the length/diameter ratio was approximately equal (133 for the present set-up, 100-150 for real capillaries). In these circumstances and using the same magnetic field conditions (intensity, gradient) and MPs, there is close similarity with magnetic capture in a microscopic capillary system. Moreover, the macroscopic system permits analysis of the distribution of MPs in the active magnetic space, and consequently the maximum targetable volume. This study revealed that the capture of particles within the active space was strongly influenced by the gradient of the magnetic field and the flow velocity. Thus, when the magnetic field gradient had medium values (0.1-0.3 T cm-1) and the fluid velocity was small (0.15 cm s-1), the particles were captured in small

  7. Targeted Delivery of Glucan Particle Encapsulated Gallium Nanoparticles Inhibits HIV Growth in Human Macrophages

    PubMed Central

    Soto, Ernesto R.; O'Connell, Olivia; Dikengil, Fusun; Peters, Paul J.; Clapham, Paul R.

    2016-01-01

    Glucan particles (GPs) are hollow, porous 3–5 μm microspheres derived from the cell walls of Baker's yeast (Saccharomyces cerevisiae). The 1,3-β-glucan outer shell provides for receptor-mediated uptake by phagocytic cells expressing β-glucan receptors. GPs have been used for macrophage-targeted delivery of a wide range of payloads (DNA, siRNA, protein, small molecules, and nanoparticles) encapsulated inside the hollow GPs or bound to the surface of chemically derivatized GPs. Gallium nanoparticles have been proposed as an inhibitory agent against HIV infection. Here, macrophage targeting of gallium using GPs provides for more efficient delivery of gallium and inhibition of HIV infection in macrophages compared to free gallium nanoparticles. PMID:27965897

  8. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Weinbruch, S.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Schneider, J.; Schmidt, S.; Ebert, M.

    2014-09-01

    In the present work, three different techniques are used to separate ice-nucleating particles (INP) and ice particle residuals (IPR) from non-ice-active particles: the Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI), which sample ice particles from mixed phase clouds and allow for the analysis of the residuals, as well as the combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Virtual Impactor (IN-PCVI), which provides ice-activating conditions to aerosol particles and extracts the activated ones for analysis. The collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Samples were taken during January/February 2013 at the High Alpine Research Station Jungfraujoch. All INP/IPR-separating techniques had considerable abundances (median 20-70%) of contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). Also, potential measurement artifacts (soluble material) occurred (median abundance < 20%). After removal of the contamination particles, silicates and Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types separated by all three techniques. Minor types include soot and Pb-bearing particles. Sea-salt and sulfates were identified by all three methods as INP/IPR. Lead was identified in less than 10% of the INP/IPR. It was mainly present as an internal mixture with other particle types, but also external lead-rich particles were found. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 μm, while the Ice-CVI also

  9. Lack of evidence for microplastic contamination in honey.

    PubMed

    Mühlschlegel, Peter; Hauk, Armin; Walter, Ulrich; Sieber, Robert

    2017-11-01

    Honey samples from Switzerland were investigated with regard to their microplastic particle burden. Five representative honey samples of different origin were processed following a standardized protocol to separate plastic-based microparticles from particles of natural origin, such as pollen, propolis, wax, and bee-related debris. The procedure was optimized to minimize post-sampling microplastic cross-contamination in the laboratory. The isolated microplastic particles were characterized and grouped by means of light microscopy as well as chemically characterized by microscopically coupled Raman and Fourier transform infrared spectroscopy. Five particle classes with an abundance significantly above blank levels were identified: black particles (particle count between 1760/kg and 8680/kg), white transparent fibres (particle count between 132/kg and 728/kg), white transparent particles (particle count between 60/kg and 172/kg), coloured fibres (particle count between 32/kg and 108/kg), and coloured particles (particle count between 8/kg and 64/kg). The black particles, which represented the majority of particles, were identified as char or soot and most probably originated from the use of smokers, a widespread practice in beekeeping. The majority of fibres were identified as cellulose or polyethylene terephthalate and were most likely of textile origin. In addition to these particle and fibre groups lower numbers of fragments were detected that were related to glass, polysaccharides or chitin, and few bluish particles contained copper phthalocyanine pigment. We found no indications that the honey samples were significantly contaminated with microplastic particles.

  10. Assessment of personal airborne exposures and surface contamination from x-ray vaporization of beryllium targets at the National Ignition Facility.

    PubMed

    Paik, Samuel Y; Epperson, Patrick M; Kasper, Kenneth M

    2017-06-01

    This article presents air and surface sampling data collected over the first two years since beryllium was introduced as a target material at the National Ignition Facility. Over this time, 101 experiments with beryllium-containing targets were executed. The data provides an assessment of current conditions in the facility and a baseline for future impacts as new, reduced regulatory limits for beryllium are being proposed by both the Occupational Safety and Health Administration and Department of Energy. This study also investigates how beryllium deposits onto exposed surfaces as a result of x-ray vaporization and the effectiveness of simple decontamination measures in reducing the amount of removable beryllium from a surface. Based on 1,961 surface wipe samples collected from entrant components (equipment directly exposed to target debris) and their surrounding work areas during routine reconfiguration activities, only one result was above the beryllium release limit of 0.2 µg/100 cm 2 and 27 results were above the analytical reporting limit of 0.01 µg/100 cm 2 , for a beryllium detection rate of 1.4%. Surface wipe samples collected from the internal walls of the NIF target chamber, however, showed higher levels of beryllium, with beryllium detected on 73% and 87% of the samples during the first and second target chamber entries (performed annually), respectively, with 23% of the samples above the beryllium release limit during the second target chamber entry. The analysis of a target chamber wall panel exposed during the first 30 beryllium-containing experiments (cumulatively) indicated that 87% of the beryllium contamination remains fixed onto the surface after wet wiping the surface and 92% of the non-fixed contamination was removed by decontaminating the surface using a dry wipe followed by a wet wipe. Personal airborne exposures assessed during access to entrant components and during target chamber entry indicated that airborne beryllium was not present

  11. Pion emission in α-particle interactions with various targets of nuclear emulsion detector

    NASA Astrophysics Data System (ADS)

    Abdelsalam, A.; Abou-Moussa, Z.; Rashed, N.; M. Badawy, B.; A. Amer, H.; Osman, W.; M. El-Ashmawy, M.; Abdallah, N.

    2015-09-01

    The behavior of relativistic hadron multiplicity for 4He-nucleus interactions is investigated. The experiment is carried out at 2.1 A and 3.7 A GeV (Dubna energy) to search for the incident energy effect on the interactions inside different emulsion target nuclei. Data are presented in terms of the number of emitted relativistic hadrons in both forward and backward angular zones. The dependence on the target size is presented. For this purpose the statistical events are discriminated into groups according to the interactions with H, CNO, Em, and AgBr target nuclei. The separation of events, into the mentioned groups, is executed based on Glauber's multiple scattering theory approach. Features suggestive of a decay mechanism seem to be a characteristic of the backward emission of relativistic hadrons. The results strongly support the assumption that the relativistic hadrons may already be emitted during the de-excitation of the excited target nucleus, in a behavior like that of compound-nucleus disintegration. Regarding the limiting fragmentation hypothesis beyond 1 A GeV, the target size is the main parameter affecting the backward production of the relativistic hadron. The incident energy is a principal factor responsible for the forward relativistic hadron production, implying that this system of particle production is a creation system. However, the target size is an effective parameter as well as the projectile size considering the geometrical concept regarded in the nuclear fireball model. The data are analyzed in the framework of the FRITIOF model.

  12. Functionalized nano-graphene oxide particles for targeted fluorescence imaging and photothermy of glioma U251 cells.

    PubMed

    Li, Zhong-Jun; Li, Chao; Zheng, Mei-Guang; Pan, Jia-Dong; Zhang, Li-Ming; Deng, Yue-Fei

    2015-01-01

    This study was to prepare the functionalized nano-graphene oxide (nano-GO) particles, and observe targeted fluorescence imaging and photothermy of U251 glioma cells under near infrared (NIR) exposure. The functionalized nano-GO-Tf-FITC particles were prepared and then were incubated with U251 glioma cells. Estimation of CCK8 cell activity was adopted for measurement of cytotoxicity. The effect of fluorescein imaging was detected by fluorescence microscope with anti-CD71-FITC as a control. Finally, we detected the killing efficacy with flow cytometry after an 808 nm NIR exposure. Both nano-GO-Tf-FITC group and CD71-FITC group exhibited green-yellow fluorescence, while the control group without the target molecule nano-GO-FITC was negative. The nano-GO-Tf-FITC was incubated with U251 cells at 0.1 mg/ml, 1.0 mg/ml, 3.0 mg/ml and 5.0 mg/ml. After 48 h of incubation, the absorbance was 0.747 ± 0.031, 0.732 ± 0.043, 0.698 ± 0.051 and 0.682 ± 0.039, while the absorbance of control group is 0.759 ± 0.052. There is no significant difference between the nano-GO-FITC groups and control group. In addition, the apoptosis and death index of nano-GO-Tf-FITC group was significantly higher than that of nano-GO-FITC and blank control group (P < 0.05). The nano-GO-Tf-FITC particles with good biological compatibility and low cytotoxicity are successfully made, which have an observed effect of target imaging and photothermal therapy on glioma U251 cells.

  13. Update on Automated Classification of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Maroger, I.; Lasue, J.; Zolensky, M.

    2018-01-01

    Every year, the Earth accretes about 40,000 tons of extraterrestrial material less than 1 mm in size on its surface. These dust particles originate from active comets, from impacts between asteroids and may also be coming from interstellar space for the very small particles. Since 1981, NASA Jonhson Space Center (JSC) has been systematically collecting the dust from Earth's strastosphere by airborne collectors and gathered them into "Cosmic Dust Catalogs". In those catalogs, a preliminary analysis of the dust particles based on SEM images, some geological characteristics and X-ray energy-dispersive spectrometry (EDS) composition is compiled. Based on those properties, the IDPs are classified into four main groups: C (Cosmic), TCN (Natural Terrestrial Contaminant), TCA (Artificial Terrestrial Contaminant) and AOS (Aluminium Oxide Sphere). Nevertheless, 20% of those particles remain ambiguously classified. Lasue et al. presented a methodology to help automatically classify the particles published in the catalog 15 based on their EDS spectra and nonlinear multivariate projections (as shown in Fig. 1). This work allowed to relabel 155 particles out of the 467 particles in catalog 15 and reclassify some contaminants as potential cosmic dusts. Further analyses of three such particles indicated their probable cosmic origin. The current work aims to bring complementary information to the automatic classification of IDPs to improve identification criteria.

  14. Reduction of non-point source contaminants associated with road-deposited sediments by sweeping.

    PubMed

    Kim, Do-Gun; Kang, Hee-Man; Ko, Seok-Oh

    2017-09-19

    Road-deposited sediments (RDS) on an expressway, residual RDS collected after sweeping, and RDS removed by means of sweeping were analyzed to evaluate the degree to which sweeping removed various non-point source contaminants. The total RDS load was 393.1 ± 80.3 kg/km and the RDS, residual RDS, and swept RDS were all highly polluted with organics, nutrients, and metals. Among the metals studied, Cu, Zn, Pb, Ni, Ca, and Fe were significantly enriched, and most of the contaminants were associated with particles within the size range from 63 μm to 2 mm. Sweeping reduced RDS and its associated contaminants by 33.3-49.1% on average. We also measured the biological oxygen demand (BOD) of RDS in the present work, representing to our knowledge the first time that this has been done; we found that RDS contains a significant amount of biodegradable organics and that the reduction of BOD by sweeping was higher than that of other contaminants. Significant correlations were found between the contaminants measured, indicating that the organics and the metals originated from both exhaust and non-exhaust particles. Meanwhile, the concentrations of Cu and Ni were higher in 63 μm-2 mm particles than in smaller particles, suggesting that some metals in RDS likely exist intrinsically in particles, rather than only as adsorbates on particle surfaces. Overall, the results in this study showed that sweeping to collect RDS can be a good alternative for reduction of contaminants in runoff.

  15. Development of a transmission alpha particle dosimetry technique using A549 cells and a Ra-223 source for targeted alpha therapy.

    PubMed

    Al Darwish, R; Staudacher, A H; Li, Y; Brown, M P; Bezak, E

    2016-11-01

    In targeted radionuclide therapy, regional tumors are targeted with radionuclides delivering therapeutic radiation doses. Targeted alpha therapy (TAT) is of particular interest due to its ability to deliver alpha particles of high linear energy transfer within the confines of the tumor. However, there is a lack of data related to alpha particle distribution in TAT. These data are required to more accurately estimate the absorbed dose on a cellular level. As a result, there is a need for a dosimeter that can estimate, or better yet determine the absorbed dose deposited by alpha particles in cells. In this study, as an initial step, the authors present a transmission dosimetry design for alpha particles using A549 lung carcinoma cells, an external alpha particle emitting source (radium 223; Ra-223) and a Timepix pixelated semiconductor detector. The dose delivery to the A549 lung carcinoma cell line from a Ra-223 source, considered to be an attractive radionuclide for alpha therapy, was investigated in the current work. A549 cells were either unirradiated (control) or irradiated for 12, 1, 2, or 3 h with alpha particles emitted from a Ra-223 source positioned below a monolayer of A549 cells. The Timepix detector was used to determine the number of transmitted alpha particles passing through the A549 cells and DNA double strand breaks (DSBs) in the form of γ-H2AX foci were examined by fluorescence microscopy. The number of transmitted alpha particles was correlated with the observed DNA DSBs and the delivered radiation dose was estimated. Additionally, the dose deposited was calculated using Monte Carlo code SRIM. Approximately 20% of alpha particles were transmitted and detected by Timepix. The frequency and number of γ-H2AX foci increased significantly following alpha particle irradiation as compared to unirradiated controls. The equivalent dose delivered to A549 cells was estimated to be approximately 0.66, 1.32, 2.53, and 3.96 Gy after 12, 1, 2, and 3 h

  16. Experimental shock metamorphism of terrestrial basalts: Agglutinate-like particle formation, petrology, and magnetism

    NASA Astrophysics Data System (ADS)

    Badyukov, Dmitrii D.; Bezaeva, Natalia S.; Rochette, Pierre; Gattacceca, Jérôme; Feinberg, Joshua M.; Kars, Myriam; Egli, Ramon; Raitala, Jouko; Kuzina, Dilyara M.

    2018-01-01

    Hypervelocity impacts occur on bodies throughout our solar system, and play an important role in altering the mineralogy, texture, and magnetic properties in target rocks at nanometer to planetary scales. Here we present the results of hypervelocity impact experiments conducted using a two-stage light-gas gun with 5 mm spherical copper projectiles accelerated toward basalt targets with 6 km s-1 impact velocities. Four different types of magnetite- and titanomagnetite-bearing basalts were used as targets for seven independent experiments. These laboratory impacts resulted in the formation of agglutinate-like particles similar in texture to lunar agglutinates, which are an important fraction of lunar soil. Materials recovered from the impacts were examined using a suite of complementary techniques, including optical and scanning electron microscopy, micro-Raman spectroscopy, and high- and low-temperature magnetometry, to investigate the texture, chemistry, and magnetic properties of newly formed agglutinate-like particles and were compared to unshocked basaltic parent materials. The use of Cu-projectiles, rather than Fe- and Ni-projectiles, avoids magnetic contamination in the final shock products and enables a clearer view of the magnetic properties of impact-generated agglutinates. Agglutinate-like particles show shock features, such as melting and planar deformation features, and demonstrate shock-induced magnetic hardening (two- to seven-fold increases in the coercivity of remanence Bcr compared to the initial target materials) and decreases in low-field magnetic susceptibility and saturation magnetization.

  17. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  18. Single-particle characterization of ice-nucleating particles and ice particles residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Kandler, Konrad; Worringen, Annette; Benker, Nathalie; Dirsch, Thomas; Mertes, Stephan; Schenk, Ludwig; Kästner, Udo; Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Rose, Diana; Curtius, Joachim; Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schneider, Johannes; Schmidt, Susan; Weinbruch, Stephan; Ebert, Martin

    2015-04-01

    During January/February 2013, at the High Alpine Research Station Jungfraujoch a measurement campaign was carried out, which was centered on atmospheric ice-nucleating particles (INP) and ice particle residuals (IPR). Three different techniques for separation of INP and IPR from the non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed phase clouds and allow for the analysis of the residuals. The combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated INP for analysis. Collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine size, chemical composition and mixing state. All INP/IPR-separating techniques had considerable abundances (median 20 - 70 %) of instrumental contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH+IN-PCVI: steel particles). Also, potential sampling artifacts (e.g., pure soluble material) occurred with a median abundance of < 20 %. While these could be explained as IPR by ice break-up, for INP their IN-ability pathway is less clear. After removal of the contamination artifacts, silicates and Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types separated by all three techniques. Soot was a minor contributor. Lead was detected in less than 10 % of the particles, of which the majority were internal mixtures with other particle types. Sea-salt and sulfates were identified by all three methods as INP/IPR. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH

  19. Microbial community structure and biodegradation activity of particle-associated bacteria in a coal tar contaminated creek

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennifer M. DeBruyn; Gary S. Sayler

    The Chattanooga Creek Superfund site (Chattanooga, TN) is one of the most polluted waterways in the southeastern U.S. with high polycyclic aromatic hydrocarbon (PAH) concentrations in the sediments. PAHs associate with suspended solids in the water column, and may be redeposited onto the floodplain. These suspended particles represent an interesting but understudied environment for PAH-degrading microbial communities. This study tested the hypotheses that particle-associated bacterial (PAB) communities have genotypic potential (PAH-dioxygenase genes) and activity (naphthalene and pyrene mineralization), and can contribute to natural attenuation of PAHs in Chattanooga Creek. Upstream of the Superfund site, mineralization ranged from 0.2 to 2.0%more » of added {sup 14}C-naphthalene and 0 to 0.1% {sup 14}C-pyrene (after 40 h), with first order biodegradation rate constants (k{sub 1}) ranging from 1.09 to 9.18 x 10{sup -5} h{sup -1} and 0 to 1.13 x 10{sup -6} h{sup -1}, respectively. Mineralization was significantly greater in PAB communities within the contaminated zone, with 11.8 to 31.2% {sup 14}C-naphthalene (k{sup 1} 5.34 to 14.2 x 10-4 h{sup -1}) and 1.3 to 6.6% {sup 14}C-pyrene mineralized (k{sub 1} 2.89 to 15.0 x 10{sup -5} h{sup -1}). Abundances of nagAc (naphthalene dioxygenase) and nidA (pyrene dioxygenase) genes indicated that PAB communities harbored populations with genetic potential for both low- and high-molecular weight PAH degradation, and quantification of Mycobacterium 16S rDNA genes indicated that PAH-degrading mycobacteria are also prevalent in this environment. Phylogenetic comparisons (T-RFLPs) between PAB and sediments indicated these microbial communities were taxonomically distinct, but shared some functional similarities, namely PAH catabolic genotypes, mineralization capabilities, and community structuring along a contamination gradient. 38 refs., 4 figs., 2 tabs.« less

  20. A workflow for improving estimates of microplastic contamination in marine waters: A case study from North-Western Australia.

    PubMed

    Kroon, Frederieke; Motti, Cherie; Talbot, Sam; Sobral, Paula; Puotinen, Marji

    2018-07-01

    Plastic pollution is ubiquitous throughout the marine environment, with microplastic (i.e. <5 mm) contamination a global issue of emerging concern. The lack of universally accepted methods for quantifying microplastic contamination, including consistent application of microscopy, photography, an spectroscopy and photography, may result in unrealistic contamination estimates. Here, we present and apply an analysis workflow tailored to quantifying microplastic contamination in marine waters, incorporating stereomicroscopic visual sorting, microscopic photography and attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy. The workflow outlines step-by-step processing and associated decision making, thereby reducing bias in plastic identification and improving confidence in contamination estimates. Specific processing steps include (i) the use of a commercial algorithm-based comparison of particle spectra against an extensive commercially curated spectral library, followed by spectral interpretation to establish the chemical composition, (ii) a comparison against a customised contaminant spectral library to eliminate procedural contaminants, and (iii) final assignment of particles as either natural- or anthropogenic-derived materials, based on chemical type, a compare analysis of each particle against other particle spectra, and physical characteristics of particles. Applying this workflow to 54 tow samples collected in marine waters of North-Western Australia visually identified 248 potential anthropogenic particles. Subsequent ATR-FTIR spectroscopy, chemical assignment and visual re-inspection of photographs established 144 (58%) particles to be of anthropogenic origin. Of the original 248 particles, 97 (39%) were ultimately confirmed to be plastics, with 85 of these (34%) classified as microplastics, demonstrating that over 60% of particles may be misidentified as plastics if visual identification is not complemented by spectroscopy

  1. Assessment of personal airborne exposures and surface contamination from x-ray vaporization of beryllium targets at the National Ignition Facility

    DOE PAGES

    Paik, Samuel Y.; Epperson, Patrick M.; Kasper, Kenneth M.

    2017-02-28

    Here, this article presents air and surface sampling data collected over the first two years since beryllium was introduced as a target material at the National Ignition Facility. Over this time, 101 experiments with beryllium-containing targets were executed. The data provides an assessment of current conditions in the facility and a baseline for future impacts as new, reduced regulatory limits for beryllium are being proposed by both the Occupational Safety and Health Administration and Department of Energy. This study also investigates how beryllium deposits onto exposed surfaces as a result of x-ray vaporization and the effectiveness of simple decontamination measuresmore » in reducing the amount of removable beryllium from a surface. Based on 1,961 surface wipe samples collected from entrant components (equipment directly exposed to target debris) and their surrounding work areas during routine reconfiguration activities, only one result was above the beryllium release limit of 0.2 µg/100 cm 2 and 27 results were above the analytical reporting limit of 0.01 µg/100 cm 2, for a beryllium detection rate of 1.4%. Surface wipe samples collected from the internal walls of the NIF target chamber, however, showed higher levels of beryllium, with beryllium detected on 73% and 87% of the samples during the first and second target chamber entries (performed annually), respectively, with 23% of the samples above the beryllium release limit during the second target chamber entry. The analysis of a target chamber wall panel exposed during the first 30 beryllium-containing experiments (cumulatively) indicated that 87% of the beryllium contamination remains fixed onto the surface after wet wiping the surface and 92% of the non-fixed contamination was removed by decontaminating the surface using a dry wipe followed by a wet wipe. Personal airborne exposures assessed during access to entrant components and during target chamber entry indicated that airborne beryllium was

  2. EXTRACTOR FOR HIGH ENERGY CHARGED PARTICLES

    DOEpatents

    Lambertson, G.R.

    1964-04-01

    A particle-extracting apparatus for use with a beam of high-energy charged particles such as travel in an evacuated chamber along a circular equilibrium axis is described. A magnetized target is impacted relatively against the beam whereby the beam particles are deflected from the beam by the magnetic induction in the target. To this end the target may be moved into the beam or the beam may coast into the target and achieve high angular particle deflection and slow extraction. A deflecting septum magnet may additionally be used for deflection at even sharper angles. (AEC)

  3. Characteristics and mechanism of laser-induced surface damage initiated by metal contaminants

    NASA Astrophysics Data System (ADS)

    Shi, Shuang; Sun, Mingying; Shi, Shuaixu; Li, Zhaoyan; Zhang, Ya-nan; Liu, Zhigang

    2015-08-01

    In high power laser facility, contaminants on optics surfaces reduce damage resistance of optical elements and then decrease their lifetime. By damage test experiments, laser damage induced by typical metal particles such as stainless steel 304 is studied. Optics samples with metal particles of different sizes on surfaces are prepared artificially based on the file and sieve. Damage test is implemented in air using a 1-on-1 mode. Results show that damage morphology and mechanism caused by particulate contamination on the incident and exit surfaces are quite different. Contaminants on the incident surface absorb laser energy and generate high temperature plasma during laser irradiation which can ablate optical surface. Metal particles melt and then the molten nano-particles redeposit around the initial particles. Central region of the damaged area bears the same outline as the initial particle because of the shielding effect. However, particles on the exit surface absorb a mass of energy, generate plasma and splash lots of smaller particles, only a few of them redeposit at the particle coverage area on the exit surface. Most of the laser energy is deposited at the interface of the metal particle and the sample surface, and thus damage size on the exit surface is larger than that on the incident surface. The areas covered by the metal particle are strongly damaged. And the damage sites are more serious than that on the incident surface. Besides damage phenomenon also depends on coating and substrate materials.

  4. Separation of HIV-1 gag virus-like particles from vesicular particles impurities by hydroxyl-functionalized monoliths.

    PubMed

    Steppert, Petra; Burgstaller, Daniel; Klausberger, Miriam; Kramberger, Petra; Tover, Andres; Berger, Eva; Nöbauer, Katharina; Razzazi-Fazeli, Ebrahim; Jungbauer, Alois

    2017-02-01

    The downstream processing of enveloped virus-like particles is very challenging because of the biophysical and structural similarity between correctly assembled particles and contaminating vesicular particles present in the feedstock. We used hydroxyl-functionalized polymethacrylate monoliths, providing hydrophobic and electrostatic binding contributions, for the purification of HIV-1 gag virus-like particles. The clarified culture supernatant was conditioned with ammonium sulfate and after membrane filtration loaded onto a 1 mL monolith. The binding capacity was 2 × 10 12 /mL monolith and was only limited by the pressure drop. By applying either a linear or a step gradient elution, to decrease the ammonium sulfate concentration, the majority of double-stranded DNA (88-90%) and host cell protein impurities (39-61%) could be removed while the particles could be separated into two fractions. Proteomic analysis and evaluation of the p24 concentration showed that one fraction contained majority of the HIV-1 gag and the other fraction was less contaminated with proteins originated from intracellular compartments. We were able to process up to 92 bed volumes of conditioned loading material within 3 h and eluted in average 7.3 × 10 11 particles per particle fraction, which is equivalent to 730 vaccination doses of 1 × 10 9 particles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection.

    PubMed

    Muraro, Silvia; Battistoni, Giuseppe; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Fiore, Salvatore; Frallicciardi, Paola; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Solfaroli-Camillocci, Elena; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages.

  6. Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection

    PubMed Central

    Muraro, Silvia; Battistoni, Giuseppe; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Fiore, Salvatore; Frallicciardi, Paola; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Solfaroli-Camillocci, Elena; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages. PMID:27536555

  7. Alpha particle induced reactions on natCr up to 39 MeV: Experimental cross-sections, comparison with theoretical calculations and thick target yields for medically relevant 52gFe production

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Adam Rebeles, R.; Tárkányi, F.; Takács, S.

    2015-08-01

    Thin natCr targets were obtained by electroplating, using 23.75 μm Cu foils as backings. In five stacked foil irradiations, followed by high resolution gamma spectroscopy, the cross sections for production of 52gFe, 49,51cumCr, 52cum,54,56cumMn and 48cumV in Cr and 61Cu,68Ga in Cu were measured up to 39 MeV incident α-particle energy. Reduced uncertainty is obtained by simultaneous remeasurement of the natCu(α,x)67,66Ga monitor reactions over the whole energy range. Comparisons with the scarce literature values and results from the TENDL-2013 on-line library, based on the theoretical code family TALYS-1.6, were made. A discussion of the production routes for 52gFe with achievable yields and contamination rates was made.

  8. Raman spectroscopy-based detection of chemical contaminants in food powders

    NASA Astrophysics Data System (ADS)

    Chao, Kuanglin; Dhakal, Sagar; Qin, Jianwei; Kim, Moon; Bae, Abigail

    2016-05-01

    Raman spectroscopy technique has proven to be a reliable method for qualitative detection of chemical contaminants in food ingredients and products. For quantitative imaging-based detection, each contaminant particle in a food sample must be detected and it is important to determine the necessary spatial resolution needed to effectively detect the contaminant particles. This study examined the effective spatial resolution required for detection of maleic acid in tapioca starch and benzoyl peroxide in wheat flour. Each chemical contaminant was mixed into its corresponding food powder at a concentration of 1% (w/w). Raman spectral images were collected for each sample, leveled across a 45 mm x 45 mm area, using different spatial resolutions. Based on analysis of these images, a spatial resolution of 0.5mm was selected as effective spatial resolution for detection of maleic acid in starch and benzoyl peroxide in flour. An experiment was then conducted using the 0.5mm spatial resolution to demonstrate Raman imaging-based quantitative detection of these contaminants for samples prepared at 0.1%, 0.3%, and 0.5% (w/w) concentrations. The results showed a linear correlation between the detected numbers of contaminant pixels and the actual concentrations of contaminant.

  9. Measurement of radioactive contamination in the CCD’s of the DAMIC experiment

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A.; Amidei, D.; Bertou, X.; Bole, D.; Butner, M.; Cancelo, G.; Castañeda Vásquez, A.; Chavarria, A. E.; de Mello Neto, J. R. T.; Dixon, S.; D'Olivo, J. C.; Estrada, J.; Fernandez Moroni, G.; Hernández Torres, K. P.; Izraelevitch, F.; Kavner, A.; Kilminster, B.; Lawson, I.; Liao, J.; López, M.; Molina, J.; Moreno-Granados, G.; Pena, J.; Privitera, P.; Sarkis, Y.; Scarpine, V.; Schwarz, T.; Sofo Haro, M.; Tiffenberg, J.; Torres Machado, D.; Trillaud, F.; Yol, X.; Zhou, J.

    2016-05-01

    DAMIC (Dark Matter in CCDs) is an experiment searching for dark matter particles employing fully-depleted charge-coupled devices. Using the bulk silicon which composes the detector as target, we expect to observe coherent WIMP-nucleus elastic scattering. Although located in the SNOLAB laboratory, 2 km below the surface, the CCDs are not completely free of radioactive contamination, in particular coming from radon daughters or from the detector itself. We present novel techniques for the measurement of the radioactive contamination in the bulk silicon and on the surface of DAMIC CCDs. Limits on the Uranium and Thorium contamination as well as on the cosmogenic isotope 32 Si, intrinsically present on the detector, were performed. We have obtained upper limits on the 238 TJ (232 Th) decay rate of 5 (15) kg_1 d_1 at 95% CL. Pairs of spatially correlated electron tracks expected from 32 Si-32 P and 210 Pb-210 Bi beta decays were also measured. We have found a decay rate of 80+l10 -65 kg_1 d_1 for 32 Si and an upper limit of - 35 kg-1 d-1 for 210 Pb, both at 95% CL.

  10. Contamination on LDEF: Sources, distribution, and history

    NASA Technical Reports Server (NTRS)

    Pippin, Gary; Crutcher, Russ

    1993-01-01

    An introduction to contamination effects observed on the Long Duration Exposure Facility (LDEF) is presented. The activities reported are part of Boeing's obligation to the LDEF Materials Special Investigation Group. The contamination films and particles had minimal influence on the thermal performance of the LDEF. Some specific areas did have large changes in optical properties. Films also interfered with recession rate determination by reacting with the oxygen or physically shielding underlying material. Generally, contaminant films lessen the measured recession rate relative to 'clean' surfaces. On orbit generation of particles may be an issue for sensitive optics. Deposition on lenses may lead to artifacts on photographic images or cause sensors to respond inappropriately. Particles in the line of sight of sensors can cause stray light to be scattered into sensors. Particles also represent a hazard for mechanisms in that they can physically block and/or increase friction or wear on moving surfaces. LDEF carried a rather complex mixture of samples and support hardware into orbit. The experiments were assembled under a variety of conditions and time constraints and stored for up to five years before launch. The structure itself was so large that it could not be baked after the interior was painted with chemglaze Z-306 polyurethane based black paint. Any analysis of the effects of molecular and particulate contamination must account for a complex array of sources, wide variation in processes over time, and extreme variation in environment from ground to launch to flight. Surface conditions at certain locations on LDEF were established by outgassing of molecular species from particular materials onto adjacent surfaces, followed by alteration of those species due to exposure to atomic oxygen and/or solar radiation.

  11. Targeting of phage particles towards endothelial cells by antibodies selected through a multi-parameter selection strategy.

    PubMed

    Mandrup, Ole A; Lykkemark, Simon; Kristensen, Peter

    2017-02-10

    One of the hallmarks of cancer is sustained angiogenesis. Here, normal endothelial cells are activated, and their formation of new blood vessels leads to continued tumour growth. An improved patient condition is often observed when angiogenesis is prevented or normalized through targeting of these genomically stable endothelial cells. However, intracellular targets constitute a challenge in therapy, as the agents modulating these targets have to be delivered and internalized specifically to the endothelial cells. Selection of antibodies binding specifically to certain cell types is well established. It is nonetheless a challenge to ensure that the binding of antibodies to the target cell will mediate internalization. Previously selection of such antibodies has been performed targeting cancer cell lines; most often using either monovalent display or polyvalent display. In this article, we describe selections that isolate internalizing antibodies by sequential combining monovalent and polyvalent display using two types of helper phages, one which increases display valence and one which reduces background. One of the selected antibodies was found to mediate internalization into human endothelial cells, although our results confirms that the single stranded nature of the DNA packaged into phage particles may limit applications aimed at targeting nucleic acids in mammalian cells.

  12. Apollo 15 contamination photography

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1972-01-01

    The problem of optical contamination in the form of particulates in the vicinity of a spacecraft has been a source of concern for any astronomical experiment that must be performed in sunlight. This concern prompted a photographic photometric experiment on Apollo 15 to measure the brightness of the residual contamination cloud as well as the cloud produced by dumping waste water overboard. An upper limit of 10 to the minus 12.3 power B (B designates the brightness of the solar disc) was placed on the residual cloud at a 90 deg sun angle, which is comparable to the zodiacal light. The brightness of the cloud produced by the waste dump was estimated to be 10 to the minus 9.2 power B. It was observed to decrease rapidly to 10 to the -11.6 power B in minutes, then fluctuate in brightness for at least 25 minutes as additional material left the spacecraft. The cloud was observed to consist of individually resolved particle tracks estimated to be particles ranging from millimeters to centimeters in diameter in addition to a background of unresolved particles with an average diameter of 10.5 microns. Most of the tracks proceeded in straight-line paths from the dump nozzle. Several tracks violated this direction, apparently having been scattered by collisions. A few tracks appeared to have definite curvatures, which are believed to be caused by charged particle interactions.

  13. Particle Swarm Transport across the Fracture-Matrix Interface

    NASA Astrophysics Data System (ADS)

    Malenda, M. G.; Pyrak-Nolte, L. J.

    2016-12-01

    A fundamental understanding of particle transport is required for many diverse applications such as effective proppant injection, for deployment of subsurface imaging micro-particles, and for removal of particulate contaminants from subsurface water systems. One method of particulate transport is the use of particle swarms that act as coherent entities. Previous work found that particle swarms travel farther and faster in single fractures than individual particles when compared to dispersions and emulsions. In this study, gravity-driven experiments were performed to characterize swarm transport across the fracture-matrix interface. Synthetic porous media with a horizontal fracture were created from layers of square-packed 3D printed (PMMA) spherical grains (12 mm diameter). The minimum fracture aperture ranged from 0 - 10 mm. Swarms (5 and 25 µL) were composed of 3.2 micron diameter fluorescent polystryene beads (1-2% by mass). Swarms were released into a fractured porous medium that was submerged in water and was illuminated with a green (528 nm) LED array. Descending swarms were imaged with a CCD camera (2 fps). Whether an intact swarm was transported across a fracture depended on the volume of the swarm, the aperture of the fracture, and the alignment of pores on the two fracture walls. Large aperture fractures caused significant deceleration of a swarm because the swarm was free to expand laterally in the fracture. Swarms tended to remain intact when the pores on the two fracture walls were vertically aligned and traveled in the lower porous medium with speeds that were 30%-50% of their original speed in the upper matrix. When the pores on opposing walls were no longer aligned, swarms were observed to bifurcate around the grain into two smaller slower-moving swarms. Understanding the physics of particle swarms in fractured porous media has important implications for enhancing target particulate injection into the subsurface as well as for contaminant

  14. Two-dimensional particle-in-cell plasma source ion implantation of a prolate spheroid target

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Sen; Han, Hong-Ying; Peng, Xiao-Qing; Chang, Ye; Wang, De-Zhen

    2010-03-01

    A two-dimensional particle-in-cell simulation is used to study the time-dependent evolution of the sheath surrounding a prolate spheroid target during a high voltage pulse in plasma source ion implantation. Our study shows that the potential contour lines pack more closely in the plasma sheath near the vertex of the major axis, i.e. where a thinner sheath is formed, and a non-uniform total ion dose distribution is incident along the surface of the prolate spheroid target due to the focusing of ions by the potential structure. Ion focusing takes place not only at the vertex of the major axis, where dense potential contour lines exist, but also at the vertex of the minor axis, where sparse contour lines exist. This results in two peaks of the received ion dose, locating at the vertices of the major and minor axes of the prolate spheroid target, and an ion dose valley, staying always between the vertices, rather than at the vertex of the minor axis.

  15. Contamination Effects on EUV Optics

    NASA Technical Reports Server (NTRS)

    Tveekrem, J.

    1999-01-01

    During ground-based assembly and upon exposure to the space environment, optical surfaces accumulate both particles and molecular condensibles, inevitably resulting in degradation of optical instrument performance. Currently, this performance degradation (and the resulting end-of-life instrument performance) cannot be predicted with sufficient accuracy using existing software tools. Optical design codes exist to calculate instrument performance, but these codes generally assume uncontaminated optical surfaces. Contamination models exist which predict approximate end-of-life contamination levels, but the optical effects of these contamination levels can not be quantified without detailed information about the optical constants and scattering properties of the contaminant. The problem is particularly pronounced in the extreme ultraviolet (EUV, 300-1,200 A) and far (FUV, 1,200-2,000 A) regimes due to a lack of data and a lack of knowledge of the detailed physical and chemical processes involved. Yet it is in precisely these wavelength regimes that accurate predictions are most important, because EUV/FUV instruments are extremely sensitive to contamination.

  16. Targeted Drug Delivery and Treatment of Endoparasites with Biocompatible Particles of pH-Responsive Structure.

    PubMed

    Mathews, Patrick D; Fernandes Patta, Ana C M; Gonçalves, Joao V; Gama, Gabriella Dos Santos; Garcia, Irene Teresinha Santos; Mertins, Omar

    2018-02-12

    Biomaterials conceived for vectorization of bioactives are currently considered for biomedical, biological, and environmental applications. We have produced a pH-sensitive biomaterial composed of natural source alginate and chitosan polysaccharides for application as a drug delivery system via oral administration. The composite particle preparation was in situ monitored by means of isothermal titration calorimetry. The strong interaction established between the macromolecules during particle assembly led to 0.60 alginate/chitosan effective binding sites with an intense exothermic effect and negative enthalpy variation on the order of a thousand kcal/mol. In the presence of model drugs mebendazole and ivermectin, with relatively small and large structures, respectively, mebendazole reduced the amount of chitosan monomers available to interact with alginate by 27%, which was not observed for ivermectin. Nevertheless, a state of intense negative Gibbs energy and large entropic decrease was achieved, providing evidence that formation of particles is thermodynamically driven and favored. Small-angle X-ray scattering provided further evidence of similar surface aspects independent of the presence of drug. The physical responses of the particles to pH variation comprise partial hydration, swelling, and the predominance of positive surface charge in strong acid medium, whereas ionization followed by deprotonation leads to compaction and charge reversal rather than new swelling in mild and slightly acidic mediums, respectively. In vivo performance was evaluated in the treatment of endoparasites in Corydoras fish. Systematically with a daily base oral administration, particles significantly reduced the infections over 15 days of treatment. The experiments provide evidence that utilizing particles granted and boosted the action of the antiparasitic drugs, leading to substantial reduction or elimination of infection. Hence, the pH-responsive particles represent a biomaterial

  17. Simultaneous screening of targeted and non-targeted contaminants using an LC-QTOF-MS system and automated MS/MS library searching.

    PubMed

    Herrera-Lopez, S; Hernando, M D; García-Calvo, E; Fernández-Alba, A R; Ulaszewska, M M

    2014-09-01

    Simultaneous high-resolution full-scan and tandem mass spectrometry (MS/MS) analysis using time of flight mass spectrometry brings an answer for increasing demand of retrospective and non-targeted data analysis. Such analysis combined with spectral library searching is a promising tool for targeted and untargeted screening of small molecules. Despite considerable extension of the panel of compounds of tandem mass spectral libraries, the heterogeneity of spectral data poses a major challenge against the effective usage of spectral libraries. Performance evaluation of available LC-MS/MS libraries will significantly increase credibility in the search results. The present work was aimed to evaluate fluctuation of MS/MS pattern, in the peak intensities distribution together with mass accuracy measurements, and in consequence, performance compliant with ion ratio and mass error criteria as principles in identification processes for targeted and untargeted contaminants at trace levels. Matrix effect and ultra-trace levels of concentration (from 50 ng l(-1) to 1000 ng l(-1) were evaluated as potential source of inaccuracy in the performance of spectral matching. Matrix-matched samples and real samples were screened for proof of applicability. By manual review of data and application of ion ratio and ppm error criteria, false negatives were obtained; this number diminished when in-house library was used, while with on-line MS/MS databases 100% of positive samples were found. In our experience, intensity of peaks across spectra was highly correlated to the concentration effect and matrix complexity. In turn, analysis of spectra acquired at trace concentrations and in different matrices results in better performance in providing correct and reliable identification. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Infrared particle detection for battery electrode foils

    NASA Astrophysics Data System (ADS)

    Just, P.; Ebert, L.; Echelmeyer, T.; Roscher, M. A.

    2013-11-01

    Failures of electrochemical cells caused by internal shorts still are an important issue to be faced by the cell manufacturers and their customers. A major cause for internal shorts are contaminated electrode foils. These contaminations have to be detected securely via a non-destructive inspection technique integrated into the electrode manufacturing process. While optical detection already is state of the art, infrared detection of particles finds a new field of application in the battery electrode manufacturing process. This work presents two approaches focusing on electrode inspection by electromagnetic radiation (visible and infrared). Copper foils with a carbon based coating were intentionally contaminated by slivers of aluminum and copper as well as by abraded coating particles. Optical excitation by a flash and a luminescent lamp was applied at different angles in order to detect the reflected visible radiation. A laser impulse was used to heat up the specimen for infrared inspection. Both approaches resulted in setups providing a high contrast between contaminations and the coated electrode foil. It is shown that infrared detection offers a higher security thanks to its reliance on absorbance and emissivity instead of reflectivity as it is used for optical detection. Infrared Detection offers a potential since it is hardly influenced by the particle's shape and orientation and the electrode's waviness.

  19. Forced-air warming: a source of airborne contamination in the operating room?

    PubMed

    Albrecht, Mark; Gauthier, Robert; Leaper, David

    2009-10-10

    Forced-air-warming (FAW) is an effective and widely used means for maintaining surgical normothermia, but FAW also has the potential to generate and mobilize airborne contamination in the operating room.We measured the emission of viable and non-viable forms of airborne contamination from an arbitrary selection of FAW blowers (n=25) in the operating room. A laser particle counter measured particulate concentrations of the air near the intake filter and in the distal hose airstream. Filtration efficiency was calculated as the reduction in particulate concentration in the distal hose airstream relative to that of the intake. Microbial colonization of the FAW blower's internal hose surfaces was assessed by culturing the microorganisms recovered through swabbing (n=17) and rinsing (n=9) techniques.Particle counting revealed that 24% of FAW blowers were emitting significant levels of internally generated airborne contamination in the 0.5 to 5.0 µm size range, evidenced by a steep decrease in FAW blower filtration efficiency for particles 0.5 to 5.0 µm in size. The particle size-range-specific reduction in efficiency could not be explained by the filtration properties of the intake filter. Instead, the reduction was found to be caused by size-range-specific particle generation within the FAW blowers. Microorganisms were detected on the internal air path surfaces of 94% of FAW blowers.The design of FAW blowers was found to be questionable for preventing the build-up of internal contamination and the emission of airborne contamination into the operating room. Although we did not evaluate the link between FAW and surgical site infection rates, a significant percentage of FAW blowers with positive microbial cultures were emitting internally generated airborne contamination within the size range of free floating bacteria and fungi (<4 µm) that could, conceivably, settle onto the surgical site.

  20. Radioactive contamination of scintillators

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Tretyak, V. I.

    2018-03-01

    Low counting experiments (search for double β decay and dark matter particles, measurements of neutrino fluxes from different sources, search for hypothetical nuclear and subnuclear processes, low background α, β, γ spectrometry) require extremely low background of a detector. Scintillators are widely used to search for rare events both as conventional scintillation detectors and as cryogenic scintillating bolometers. Radioactive contamination of a scintillation material plays a key role to reach low level of background. Origin and nature of radioactive contamination of scintillators, experimental methods and results are reviewed. A programme to develop radiopure crystal scintillators for low counting experiments is discussed briefly.

  1. Novel branching particle method for tracking

    NASA Astrophysics Data System (ADS)

    Ballantyne, David J.; Chan, Hubert Y.; Kouritzin, Michael A.

    2000-07-01

    Particle approximations are used to track a maneuvering signal given only a noisy, corrupted sequence of observations, as are encountered in target tracking and surveillance. The signal exhibits nonlinearities that preclude the optimal use of a Kalman filter. It obeys a stochastic differential equation (SDE) in a seven-dimensional state space, one dimension of which is a discrete maneuver type. The maneuver type switches as a Markov chain and each maneuver identifies a unique SDE for the propagation of the remaining six state parameters. Observations are constructed at discrete time intervals by projecting a polygon corresponding to the target state onto two dimensions and incorporating the noise. A new branching particle filter is introduced and compared with two existing particle filters. The filters simulate a large number of independent particles, each of which moves with the stochastic law of the target. Particles are weighted, redistributed, or branched, depending on the method of filtering, based on their accordance with the current observation from the sequence. Each filter provides an approximated probability distribution of the target state given all back observations. All three particle filters converge to the exact conditional distribution as the number of particles goes to infinity, but differ in how well they perform with a finite number of particles. Using the exactly known ground truth, the root-mean-squared (RMS) errors in target position of the estimated distributions from the three filters are compared. The relative tracking power of the filters is quantified for this target at varying sizes, particle counts, and levels of observation noise.

  2. Virus-mimetic polyplex particles for systemic and inflammation-specific targeted delivery of large genetic contents.

    PubMed

    Kang, S; Lu, K; Leelawattanachai, J; Hu, X; Park, S; Park, T; Min, I M; Jin, M M

    2013-11-01

    Systemic and target-specific delivery of large genetic contents has been difficult to achieve. Although viruses effortlessly deliver kilobase-long genome into cells, its clinical use has been hindered by serious safety concerns and the mismatch between native tropisms and desired targets. Nonviral vectors, in contrast, are limited by low gene transfer efficiency and inherent cytotoxicity. Here we devised virus-mimetic polyplex particles (VMPs) based on electrostatic self-assembly among polyanionic peptide (PAP), cationic polymer polyethyleneimine (PEI) and nucleic acids. We fused PAP to the engineered ligand-binding domain of integrin αLβ2 to target intercellular adhesion molecule-1 (ICAM-1), an inducible marker of inflammation. Fully assembled VMPs packaged large genetic contents, bound specifically to target molecules, elicited receptor-mediated endocytosis and escaped endosomal pathway, resembling intracellular delivery processes of viruses. Unlike conventional PEI-mediated transfection, molecular interaction-dependent gene delivery of VMPs was unaffected by the presence of serum and achieved higher efficiency without toxicity. By targeting overexpressed ICAM-1, VMPs delivered genes specifically to inflamed endothelial cells and macrophages both in vitro and in vivo. Simplicity and versatility of the platform and inflammation-specific delivery may open up opportunities for multifaceted gene therapy that can be translated into the clinic and treat a broad range of debilitating immune and inflammatory diseases.

  3. Microplastic contamination of river beds significantly reduced by catchment-wide flooding

    NASA Astrophysics Data System (ADS)

    Hurley, Rachel; Woodward, Jamie; Rothwell, James J.

    2018-04-01

    Microplastic contamination of the oceans is one of the world's most pressing environmental concerns. The terrestrial component of the global microplastic budget is not well understood because sources, stores and fluxes are poorly quantified. We report catchment-wide patterns of microplastic contamination, classified by type, size and density, in channel bed sediments at 40 sites across urban, suburban and rural river catchments in northwest England. Microplastic contamination was pervasive on all river channel beds. We found multiple urban contamination hotspots with a maximum microplastic concentration of approximately 517,000 particles m-2. After a period of severe flooding in winter 2015/16, all sites were resampled. Microplastic concentrations had fallen at 28 sites and 18 saw a decrease of one order of magnitude. The flooding exported approximately 70% of the microplastic load stored on these river beds (equivalent to 0.85 ± 0.27 tonnes or 43 ± 14 billion particles) and eradicated microbead contamination at 7 sites. We conclude that microplastic contamination is efficiently flushed from river catchments during flooding.

  4. Quantitative filter forensics for indoor particle sampling.

    PubMed

    Haaland, D; Siegel, J A

    2017-03-01

    Filter forensics is a promising indoor air investigation technique involving the analysis of dust which has collected on filters in central forced-air heating, ventilation, and air conditioning (HVAC) or portable systems to determine the presence of indoor particle-bound contaminants. In this study, we summarize past filter forensics research to explore what it reveals about the sampling technique and the indoor environment. There are 60 investigations in the literature that have used this sampling technique for a variety of biotic and abiotic contaminants. Many studies identified differences between contaminant concentrations in different buildings using this technique. Based on this literature review, we identified a lack of quantification as a gap in the past literature. Accordingly, we propose an approach to quantitatively link contaminants extracted from HVAC filter dust to time-averaged integrated air concentrations. This quantitative filter forensics approach has great potential to measure indoor air concentrations of a wide variety of particle-bound contaminants. Future studies directly comparing quantitative filter forensics to alternative sampling techniques are required to fully assess this approach, but analysis of past research suggests the enormous possibility of this approach. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Contamination avoidance devices for poppettype shutoff valves

    NASA Technical Reports Server (NTRS)

    Endicott, D. L.

    1973-01-01

    The determination of the cycle life is reported of the scal closure of a typical poppet-type shutoff valve in an uncontaminated GH2 environment and then compared this component performance with simulated operation with GN2 and LN2 containing controlled amounts of AL2O3 contaminant particles. The original valve design was tested for contamination damage tolerance characteristics under full-flow and cyclic-operating conditions, redesigned to improve the damage tolerance to contaminants, and then retested. The redesigned valve was found to have acceptable tolerance characteristics under all full-flow conditions and cyclic operation with small (25-75 microns) particulate contamination. The tolerance characteristics of the valve under cyclic conditions with large (75-250 microns) particulate contamination was improved but was not found to be completely satisfactory.

  6. Raman spectroscopy-based detection of chemical contaminants in food powders

    USDA-ARS?s Scientific Manuscript database

    Raman spectroscopy technique has proven to be a reliable method for qualitative detection of chemical contaminants in food ingredients and products. For quantitative imaging-based detection, each contaminant particle in a food sample must be detected and it is important to determine the necessary sp...

  7. The effects of particle recycling on the divertor plasma: A particle-in-cell with Monte Carlo collision simulation

    NASA Astrophysics Data System (ADS)

    Chang, Mingyu; Sang, Chaofeng; Sun, Zhenyue; Hu, Wanpeng; Wang, Dezhen

    2018-05-01

    A Particle-In-Cell (PIC) with Monte Carlo Collision (MCC) model is applied to study the effects of particle recycling on divertor plasma in the present work. The simulation domain is the scrape-off layer of the tokamak in one-dimension along the magnetic field line. At the divertor plate, the reflected deuterium atoms (D) and thermally released deuterium molecules (D2) are considered. The collisions between the plasma particles (e and D+) and recycled neutral particles (D and D2) are described by the MCC method. It is found that the recycled neutral particles have a great impact on divertor plasma. The effects of different collisions on the plasma are simulated and discussed. Moreover, the impacts of target materials on the plasma are simulated by comparing the divertor with Carbon (C) and Tungsten (W) targets. The simulation results show that the energy and momentum losses of the C target are larger than those of the W target in the divertor region even without considering the impurity particles, whereas the W target has a more remarkable influence on the core plasma.

  8. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust.

    PubMed

    Zhang, Haibo; Luo, Yongming; Makino, Tomoyuki; Wu, Longhua; Nanzyo, Masami

    2013-03-15

    The partitioning of pollutant in the size-fractions of fine particles is particularly important to its migration and bioavailability in soil environment. However, the impact of pollution sources on the partitioning was seldom addressed in the previous studies. In this study, the method of continuous flow ultra-centrifugation was developed to separate three size fractions (<1 μm, <0.6 μm and <0.2 μm) of the submicron particles from the soil polluted by wastewater and smelter dust respectively. The mineralogy and physicochemical properties of each size-fraction were characterized by X-ray diffraction, transmission electron microscope etc. Total content of the polluted metals and their chemical speciation were measured. A higher enrichment factor of the metals in the fractions of <1 μm or less were observed in the soil contaminated by wastewater than by smelter dust. The organic substance in the wastewater and calcite from lime application were assumed to play an important role in the metal accumulation in the fine particles of the wastewater polluted soil. While the metal accumulation in the fine particles of the smelter dust polluted soil is mainly associated with Mn oxides. Cadmium speciation in both soils is dominated by dilute acid soluble form and lead speciation in the smelter dust polluted soil is dominated by reducible form in all particles. This implied that the polluted soils might be a high risk to human health and ecosystem due to the high bioaccessibility of the metals as well as the mobility of the fine particles in soil. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Low-Contamination Vibrating Feeder for Silicon Chips

    NASA Technical Reports Server (NTRS)

    Mackintosh, B. H.

    1984-01-01

    Vibratory feeding is method of controlling flow of small oddly shaped particles. Technique applied to other materials that require contamination control by feeding material through vibrating troughs topped by particular material.

  10. Risk-Based Contaminated Land Investigation and Assessment

    NASA Astrophysics Data System (ADS)

    Davis, Donald R.

    With increasing frequency, problems of environmental contamination are being analyzed from a risk perspective. Risk-Based Contaminated Land Investigation and Assessment is written for those who wish to present the results of their examination of contaminated land in terms of risk.The opening chapters introduce the concepts of risk analysis for contaminated land. Risk management and the risk assessment process are based on a source-pathway-target framework. Readers are warned against an “over-reliance on the identification of contaminants rather than the potential pathways by which targets may be exposed to these hazards.” In the risk management framework presented in this book, risk evaluation and resultant decision making are seen as part of both the risk assessment and risk reduction process. The sharp separation of risk assessment from risk management as seen in the National Academy of Sciences' (NAS) risk assessment paradigm is not advocatedsemi; perhaps this is because the NAS' concern was regulatory decision while the book's concern is the assessment of a specific site.

  11. Polymer blend particles with defined compositions for targeting antigen to both class I and II antigen presentation pathways

    PubMed Central

    Tran, Kenny K.; Zhan, Xi; Shen, Hong

    2013-01-01

    Defense against many persistent and difficult-to-treat diseases requires a combination of humoral, CD4+ and CD8+ T cell responses, which necessitates targeting antigens to both class I and II antigen presentation pathways. In this study, we developed polymer blend particles by mixing two functionally unique polymers, poly(lactide-co-glycolide) (PLGA) and a pH-responsive polymer, poly(dimethylaminoethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate) (DMAEMA-co-PAA-co-BMA). We showed polymer blend particles enabled the delivery of antigens into both class I and II antigen presentation pathways in vitro. Increasing the ratio of the pH-responsive polymer in blend particles increased the degree of class I antigen presentation, while maintaining high levels of class II antigen presentation. In a mouse model, we demonstrated that a significantly higher and sustained level of CD4+ and CD8+ T cell responses, and comparable antibody responses, were elicited with polymer blend particles than PLGA particles and a conventional vaccine, Alum. The polymer blend particles offer a potential vaccine delivery platform to generate a combination of humoral and cell-mediated immune responses that insure robust and long-lasting immunity against many infectious diseases and cancers. PMID:24124123

  12. Behaviour of emerging contaminants in sewage sludge after anaerobic digestion.

    PubMed

    Boix, C; Ibáñez, M; Fabregat-Safont, D; Morales, E; Pastor, L; Sancho, J V; Sánchez-Ramírez, J E; Hernández, F

    2016-11-01

    Nowadays, there is an increasing concern over the presence of contaminants in the aquatic environment, where they can be introduced from wastewater after their incomplete removal in the treatment plants. In this work, degradation of selected emerging pollutants in the aqueous and solid phases of sewage sludge has been investigated after anaerobic digestion using two different digesters: mesophilic and thermophilic. Initially, sludge samples were screened by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS) for identification of emerging contaminants in the samples. In a second step, a target quantitative method based on LC coupled to tandem MS was applied for selected pollutants identified in the previous screening. The behaviour of the compounds under anaerobic conditions was studied estimating the degradation efficiency and distribution of compounds between both sludge phases. Irbesartan and benzoylecgonine seemed to be notably degraded in both phases of the sludge. Venlafaxine showed a significant concentration decrease in the aqueous phase in parallel to an increase in the solid phase. The majority of the compounds showed an increase of their concentrations in both phases after the digestion. Concentrations in the solid phase were commonly higher than in the aqueous for most contaminants, indicating that they were preferentially adsorbed onto the solid particles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles

    PubMed Central

    Hafrén, Anders; Macia, Jean-Luc; Love, Andrew J.; Milner, Joel J.; Drucker, Martin; Hofius, Daniel

    2017-01-01

    Autophagy plays a paramount role in mammalian antiviral immunity including direct targeting of viruses and their individual components, and many viruses have evolved measures to antagonize or even exploit autophagy mechanisms for the benefit of infection. In plants, however, the functions of autophagy in host immunity and viral pathogenesis are poorly understood. In this study, we have identified both anti- and proviral roles of autophagy in the compatible interaction of cauliflower mosaic virus (CaMV), a double-stranded DNA pararetrovirus, with the model plant Arabidopsis thaliana. We show that the autophagy cargo receptor NEIGHBOR OF BRCA1 (NBR1) targets nonassembled and virus particle-forming capsid proteins to mediate their autophagy-dependent degradation, thereby restricting the establishment of CaMV infection. Intriguingly, the CaMV-induced virus factory inclusions seem to protect against autophagic destruction by sequestering capsid proteins and coordinating particle assembly and storage. In addition, we found that virus-triggered autophagy prevents extensive senescence and tissue death of infected plants in a largely NBR1-independent manner. This survival function significantly extends the timespan of virus production, thereby increasing the chances for virus particle acquisition by aphid vectors and CaMV transmission. Together, our results provide evidence for the integration of selective autophagy into plant immunity against viruses and reveal potential viral strategies to evade and adapt autophagic processes for successful pathogenesis. PMID:28223514

  14. DNA-labeled micro- and nanoparticles: a new approach to study contaminant transport in the subsurface

    NASA Astrophysics Data System (ADS)

    McNew, C.; Wang, C.; Kocis, T. N.; Murphy, N. P.; Dahlke, H. E.

    2017-12-01

    Though our understanding of contaminant behavior in the subsurface has improved, our ability to measure and predict complex contaminant transport pathways at hillslope to watershed scales is still lacking. By utilizing bio-molecular nanotechnology developed for nano-medicines and drug delivery, we are able to produce DNA-labeled micro- and nanoparticles for use in a myriad of environmental systems. Control of the fabrication procedure allows us to produce particles of custom size, charge, and surface functionality to mimic the transport properties of the particulate contaminant or colloid of interest. The use of custom sequenced DNA allows for the fabrication of an enormous number of unique particle labels (approximately 1.61 x 1060 unique sequences) and the ability to discern between varied spatial and temporal applications, or the transport effect of varied particle size, charge, or surface properties. To date, this technology has been utilized to study contaminant transport from lab to field scales, including surface and open channel flow applications, transport in porous media, soil retention, and even subglacial flow pathways. Here, we present the technology for production and detection of the DNA-labeled particles along with the results from a current hillslope study at the Sierra Foothills Research and Extension Center (SFREC). This field study utilizes spatial and temporal variations in DNA-labeled particle applications to identify subsurface pollutant transport pathways through the four distinct soil horizons present at the SFREC site. Results from this and previous studies highlight the tremendous potential of the DNA-labeled particle technology for studying contaminant transport through the subsurface.

  15. Method for protection of lithographic components from particle contamination

    DOEpatents

    Klebanoff, Leonard E.; Rader, Daniel J.

    2001-07-03

    A system that employs thermophoresis to protect lithographic surfaces from particle deposition and operates in an environment where the pressure is substantially constant and can be sub-atmospheric. The system (thermophoretic pellicle) comprises an enclosure that surrounds a lithographic component whose surface is being protected from particle deposition. The enclosure is provided with means for introducing a flow of gas into the chamber and at least one aperture that provides for access to the lithographic surface for the entry and exit of a beam of radiation, for example, and further controls gas flow into a surrounding low pressure environment such that a higher pressure is maintained within the enclosure and over the surface being protected. The lithographic component can be heated or, alternatively the walls of the enclosure can be cooled to establish a temperature gradient between the surface of the lithographic component and the walls of the enclosure, thereby enabling the thermophoretic force that resists particle deposition.

  16. Particulate contamination of local anesthetic solutions.

    PubMed

    Cooley, R L; Lubow, R M

    1981-05-01

    Particulate contamination was found in one particular lot number of local anesthetic, lidocaine with 1:100,000 epinephrine. The contaminants were noticed in several cartridges of each container and varied in size from minute to several millimeters. Analysis of the foreign matter revealed the particles to be of a way or puttylike consistency; however, the sterility of the solution was not altered and the pH was still within acceptable limits. The contaminant was most likely wax or a combination of wax, silicone, and glycerin, which are constituents of the rubber stopper and its associated lubricants. This problem was most likely due to temperature changes during storage and shipment, but it was also possibly due to manufacturing discrepancies.

  17. Emergence and Utility of Nonspherical Particles in Biomedicine

    PubMed Central

    Fish, Margaret B.; Thompson, Alex J.; Fromen, Catherine A.; Eniola-Adefeso, Omolola

    2016-01-01

    The importance of the size of targeted, spherical drug carriers has been previously explored and reviewed. Particle shape has emerged as an equally important parameter in determining the in vivo journey and efficiency of drug carrier systems. Researchers have invented techniques to better control the geometry of particles of many different materials, which have allowed for exploration of the role of particle geometry in the phases of drug delivery. The important biological processes include clearance by the immune system, trafficking to the target tissue, margination to the endothelial surface, interaction with the target cell, and controlled release of a payload. The review of current literature herein supports that particle shape can be altered to improve a system’s targeting efficiency. Non-spherical particles can harness the potential of targeted drug carriers by enhancing targeted site accumulation while simultaneously decreasing side effects and mitigating some limitations faced by spherical carriers. PMID:27182109

  18. Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane.

    PubMed

    Leulmi, Selma; Chauchet, Xavier; Morcrette, Melissa; Ortiz, Guillermo; Joisten, Hélène; Sabon, Philippe; Livache, Thierry; Hou, Yanxia; Carrière, Marie; Lequien, Stéphane; Dieny, Bernard

    2015-10-14

    Cancer cells develop resistance to chemotherapy, and the side effects encountered seriously limit the effectiveness of treatments. For these reasons, the search for alternative therapies that target cancer cells without affecting healthy tissues is currently one of the most active areas of research on cancer. The present study focuses on a recently proposed approach for cancer cell destruction based on the targeted triggering of cancer cell spontaneous death through the mechanical vibration of anisotropic magnetic micro/nanoparticles attached to the cell membranes at low frequencies (∼20 Hz) and in weak magnetic fields (∼30 mT). The study was conducted in vitro, on human renal cancer cells with superparamagnetic-like particles. Three types of such particles made of NiFe or magnetite were prepared and characterized (either synthetic antiferromagnetic, vortex or polycrystalline with random grain anisotropy). The triggering of the apoptosis of these cancer cells was demonstrated with NiFe vortex particles and statistically characterized by flow-cytometry studies. The death pathway via apoptosis and not necrosis was identified by the clear observation of caspase activation.

  19. Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane

    NASA Astrophysics Data System (ADS)

    Leulmi, Selma; Chauchet, Xavier; Morcrette, Melissa; Ortiz, Guillermo; Joisten, Hélène; Sabon, Philippe; Livache, Thierry; Hou, Yanxia; Carrière, Marie; Lequien, Stéphane; Dieny, Bernard

    2015-09-01

    Cancer cells develop resistance to chemotherapy, and the side effects encountered seriously limit the effectiveness of treatments. For these reasons, the search for alternative therapies that target cancer cells without affecting healthy tissues is currently one of the most active areas of research on cancer. The present study focuses on a recently proposed approach for cancer cell destruction based on the targeted triggering of cancer cell spontaneous death through the mechanical vibration of anisotropic magnetic micro/nanoparticles attached to the cell membranes at low frequencies (~20 Hz) and in weak magnetic fields (~30 mT). The study was conducted in vitro, on human renal cancer cells with superparamagnetic-like particles. Three types of such particles made of NiFe or magnetite were prepared and characterized (either synthetic antiferromagnetic, vortex or polycrystalline with random grain anisotropy). The triggering of the apoptosis of these cancer cells was demonstrated with NiFe vortex particles and statistically characterized by flow-cytometry studies. The death pathway via apoptosis and not necrosis was identified by the clear observation of caspase activation.

  20. Value contamination avoidance devices

    NASA Technical Reports Server (NTRS)

    Endicott, D. L.

    1975-01-01

    Mechanical redesign methods were used to minimize contamination damage of conventional fluid components and a contamination separator device was developed for long term reusable space vehicles. These were incorporated into an existing 50.8 mm poppet valve and tested for damage tolerance in a full size open loop flow system with gaseous and liquid nitrogen. Cyclic and steady flow conditions were tested with particles of 125 to 420 micrometers aluminum oxide dispersed in the test fluids. Nonflow life tests (100,000 cycles) were made with two valve configurations in gaseous hydrogen. The redesigned valve had an acceptable cycle life and improved tolerance to contamination damage when the primary sealing surfaces were coated with thin coatings of hard plastic (Teflon S and Kynar). Analytical studies and flow testing were completed of four different versions of the separator. overall separation efficiencies in the 55-90% range were measured with these non-optimum configurations.

  1. Identification of Particles in Parenteral Drug Raw Materials.

    PubMed

    Lee, Kathryn; Lankers, Markus; Valet, Oliver

    2018-04-18

    Particles in drug products are not good and are therefore regulated. These particles can come from the very beginning of the manufacturing process, from the raw materials. To prevent particles, it is important to understand what they are and where they come from so the raw material quality, processing, and shipping can be improved. Thus, it is important to correctly identify particles seen in raw materials. Raw materials need to be of a certain quality with respect to physical and chemical composition, and need to have no contaminants in the form of particles which could contaminate the product or indicate the raw materials are not pure enough to make a good quality product. Particles are often seen when handling raw materials due to color, size, or shape characteristics different from those in the raw materials. Particles may appear to the eye to be very different things than they actually are, so microscope, chemical, and elemental analyses are required for accuracy in proper identification. This paper shows how using three different spectroscopy tools correctly and together can be used to identify particles from extrinsic, intrinsic, and inherent particles. Sources of materials can be humans and the environment (extrinsic), from within the process (intrinsic), and part of the formulation (inherent). Microscope versions of Raman spectroscopy, laser-induced breakdown spectroscopy (LIBS), and IR spectroscopy are excellent tools for identifying particles because they are fast and accurate techniques needing minimal sample preparation that can provide chemical composition as well as images that can be used for identification. The micro analysis capabilities allow for easy analysis of different portions of samples so multiple components can be identified and sample preparation can be reduced. Using just one of these techniques may not be sufficient to give adequate identification results so that the source of contamination can be adequately identified. The

  2. Analytical strategies for organic food packaging contaminants.

    PubMed

    Sanchis, Yovana; Yusà, Vicent; Coscollà, Clara

    2017-03-24

    In this review, we present current approaches in the analysis of food-packaging contaminants. Gas and liquid chromatography coupled to mass spectrometry detection have been widely used in the analysis of some relevant families of these compounds such as primary aromatic amines, bisphenol A, bisphenol A diglycidyl ether and related compounds, UV-ink photoinitiators, perfluorinated compounds, phthalates and non-intentionally added substances. Main applications for sample treatment and different types of food-contact material migration studies have been also discussed. Pressurized Liquid Extraction, Solid-Phase Microextraction, Focused Ultrasound Solid-Liquid Extraction and Quechers have been mainly used in the extraction of food contact material (FCM) contaminants, due to the trend of minimising solvent consumption, automatization of sample preparation and integration of extraction and clean-up steps. Recent advances in analytical methodologies have allowed unequivocal identification and confirmation of these contaminants using Liquid Chromatography coupled to High Resolution Mass Spectrometry (LC-HRMS) through mass accuracy and isotopic pattern applying. LC-HRMS has been used in the target analysis of primary aromatic amines in different plastic materials, but few studies have been carried out applying this technique in post-target and non-target analysis of FCM contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Presence of plutonium contamination in soils from Palomares (Spain).

    PubMed

    Jiménez-Ramos, M C; García-Tenorio, R; Vioque, I; Manjón, G; García-León, M

    2006-08-01

    More than 30 years after the occurrence of an aircraft accident which involved the detonation of two nuclear weapons in the surrounding area of the village of Palomares (Spain), the affected terrestrial area has been investigated for remaining transuranic contamination. Evidence from the presence of this contamination was initially found through the analysis of the 241Am inventories in superficial soil samples collected in the region, and was confirmed through the analysis of the (239+240)Pu inventories and their associated 238Pu/(239+240)Pu activity ratios in the same samples. However, it was also observed that a considerable fraction of the remaining contamination in the area was present in particulate form, i.e. as "hot particles". The work performed in our laboratory for identification, isolation and characterisation of these "hot particles" as well as some conclusions obtained from these analyses are outlined in this paper.

  4. Treatment of NORM contaminated soil from the oilfields.

    PubMed

    Abdellah, W M; Al-Masri, M S

    2014-03-01

    Uncontrolled disposal of oilfield produced water in the surrounding environment could lead to soil contamination by naturally occurring radioactive materials (NORM). Large volumes of soil become highly contaminated with radium isotopes ((226)Ra and (228)Ra). In the present work, laboratory experiments have been conducted to reduce the activity concentration of (226)Ra in soil. Two techniques were used, namely mechanical separation and chemical treatment. Screening of contaminated soil using vibratory sieve shaker was performed to evaluate the feasibility of particle size separation. The fractions obtained were ranged from less than 38 μm to higher than 300 μm. The results show that (226)Ra activity concentrations vary widely from fraction to fraction. On the other hand, leaching of (226)Ra from soil by aqueous solutions (distilled water, mineral acids, alkaline medias and selective solvents) has been performed. In most cases, relatively low concentrations of radium were transferred to solutions, which indicates that only small portions of radium are present on the surface of soil particles (around 4.6%), while most radium located within soil particles; only concentrated nitric acid was most effective where 50% of (226)Ra was removed to aqueous phase. However, mechanical method was found to be easy and effective, taking into account safety procedures to be followed during the implementation of the blending and homogenization. Chemical extraction methods were found to be less effective. The results obtained in this study can be utilized to approach the final option for disposal of NORM contaminated soil in the oilfields. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Modulation of aryl hydrocarbon receptor target genes in circulating lymphocytes from dairy cows bred in a dioxin-like PCB contaminated area.

    PubMed

    Girolami, Flavia; Spalenza, Veronica; Carletti, Monica; Sacchi, Paola; Rasero, Roberto; Nebbia, Carlo

    2013-04-15

    Animal productions (i.e. fish, eggs, milk and dairy products) represent the major source of exposure to dioxins, furans, and dioxin-like (DL) polychlorobiphenyls for humans. The negative effects of these highly toxic and persistent pollutants are mediated by the activation of the aryl hydrocarbon receptor (AHR) that elicits the transcriptional induction of several genes, including those involved in xenobiotic metabolism. Previously we demonstrated the presence and functioning of the AHR signaling pathway in primary cultures of bovine blood lymphocytes. The aim of the present study was to investigate by real time PCR the expression and the inducibility of selected target genes (i.e. AHR, AHR nuclear translocator (ARNT), AHR repressor, CYP1A1 and CYP1B1) in uncultured cells from dairy cows naturally exposed to DL-compounds. The study was carried out on two groups of animals bred in a highly polluted area and characterized by a different degree of contamination, as assessed by bulk milk TEQ values, and a control group reared in an industry free area. Bovine lymphocytes expressed only AHR, ARNT and CYP1B1 genes to a detectable level; moreover, only CYP1B1 expression appeared to be correlated to TEQ values, being higher in the most contaminated group, and decreasing along with animal decontamination. Finally, lymphocytes from exposed cows displayed a lower inducibility of both CYP1A1 and CYP1B1 after the in vitro treatment with a specific AHR ligand. In conclusion, our results indicate that DL-compound contaminated cows may display significant changes in AHR-target gene expression of circulating lymphocytes. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Apparatus for measuring surface particulate contamination

    DOEpatents

    Woodmansee, Donald E.

    2002-01-01

    An apparatus for measuring surface particulate contamination includes a tool for collecting a contamination sample from a target surface, a mask having an opening of known area formed therein for defining the target surface, and a flexible connector connecting the tool to the mask. The tool includes a body portion having a large diameter section defining a surface and a small diameter section extending from the large diameter section. A particulate collector is removably mounted on the surface of the large diameter section for collecting the contaminants. The tool further includes a spindle extending from the small diameter section and a spool slidingly mounted on the spindle. A spring is disposed between the small diameter section and the spool for biasing the spool away from the small diameter section. An indicator is provided on the spindle so as to be revealed when the spool is pressed downward to compress the spring.

  7. Electromicroinjection of particles into living cells

    DOEpatents

    Ray, F. Andrew; Cram, L. Scott; Galey, William R.

    1988-01-01

    Method and apparatus for introducing particles into living cells. Fluorescently-stained human chromosomes are introduced into cultured, mitotic Chinese hamster cells using electromicroinjection. The recipient cells frequently survived the physiological perturbation imposed by a successful chromosome injection. Successfully injected recipient cells maintained viability as evidenced by their ability to be expanded. The technique relies on the surface charge of fluorescently stained chromosomes and their ability to be attracted and repelled to and from the tip of a micropipette. The apparatus includes a micropipette having a tip suitable for piercing the membrane of a target cell and an electrode inserted into the lumen thereof. The target cells and suspended particles are located in an electrically conducted solution, and the lumen of the micropipette is filled with an electrically conducting solution which contacts the electrode located therein. A second electrode is also located in the conducting solution containing the target cells and particles. Voltages applied to the electrode within the micropipette attract the particles to the region of the tip thereof. The particles adhere to the surface of the micropipette with sufficient force that insertion of the micropipette tip and attached particle through the membrane of a target cell will not dislodge the particle. By applying a voltage having the opposite polarity of the attraction voltage, the particles are expelled from the micropipette to which is then withdrawn from the cell body.

  8. Optical contamination on the Atmosphere Explorer-E satellite

    NASA Technical Reports Server (NTRS)

    Yee, J. H.; Abreu, V. J.

    1983-01-01

    Atmospheric optical emission measurements by the Visible Airglow Experiment (VAE) on board the Atmosphere Explorer (AE-C, D and E) satellites have been analyzed and found to be contaminated at low altitudes. The contamination maximizes in the forward direction along the spacecraft velocity and is sensitive to the composition and density of the ambient atmosphere. Analysis at two different wavelengths suggests that the contamination is likely to have a diffuse band spectrum which is brighter toward the red. Some unknown processes which involve satellite surface materials and the incoming ambient particles are believed to be responsible for the contamination. A simulation model is presented here to account for the observed angular dependence.

  9. Small-sized microplastics and pigmented particles in bottled mineral water.

    PubMed

    Oßmann, Barbara E; Sarau, George; Holtmannspötter, Heinrich; Pischetsrieder, Monika; Christiansen, Silke H; Dicke, Wilhelm

    2018-09-15

    Up to now, only a few studies about microparticle contamination of bottled mineral water have been published. The smallest analysed particle size was 5 μm. However, due to toxicological reasons, especially microparticles smaller than 1.5 μm are critically discussed. Therefore, in the present study, 32 samples of bottled mineral water were investigated for contamination by microplastics, pigment and additive particles. Due to the application of aluminium coated polycarbonate membrane filters and micro-Raman spectroscopy, a lowest analysed particle size of 1 μm was achieved. Microplastics were found in water from all bottle types: in single use and reusable bottles made of poly(ethylene terephthalate) (PET) as well as in glass bottles. The amount of microplastics in mineral water varied from 2649 ± 2857 per litre in single use PET bottles up to 6292 ± 10521 per litre in glass bottles. While in plastic bottles, the predominant polymer type was PET; in glass bottles various polymers such as polyethylene or styrene-butadiene-copolymer were found. Hence, besides the packaging itself, other contamination sources have to be considered. Pigment particles were detected in high amounts in reusable, paper labelled bottles (195047 ± 330810 pigment particles per litre in glass and 23594 ± 25518 pigment particles per litre in reusable paper labelled PET bottles). Pigment types found in water samples were the same as used for label printing, indicating the bottle cleaning process as possible contamination route. Furthermore, on average 708 ± 1024 particles per litre of the additive Tris(2,4-di-tert-butylphenyl)phosphite were found in reusable PET bottles. This additive might be leached out from the bottle material itself. Over 90% of the detected microplastics and pigment particles were smaller than 5 μm and thus not covered by previous studies. In summary, this is the first study reporting about microplastics, pigment and additive particles

  10. A review of what is an emerging contaminant

    PubMed Central

    2014-01-01

    A review is presented of how one defines emerging contaminants and what can be included in that group of contaminants which is preferably termed “contaminants of emerging concern”. An historical perspective is given on the evolution of the issues surrounding emerging contaminants and how environmental scientists have tackled this issue. This begins with global lead contamination from the Romans two millennia ago, moves on to arsenic-based and DDT issues and more recently to pharmaceuticals, cyanotoxins, personal care products, nanoparticles, flame retardants, etc. Contaminants of emerging concern will remain a moving target as new chemical compounds are continuously being produced and science continuously improves its understanding of current and past contaminants. PMID:24572188

  11. REMEDIATION OF RADIUM FROM CONTAMINATED SOIL

    EPA Science Inventory

    The objective of this study was to demonstrate the application of a physico-chemical separation process for the removal of radium from a sample of contaminated soil at the Ottawa, Illinois, site near Chicago. The size/activity distribution analyzed among the particles coarser tha...

  12. DRINKING WATER FROM AGRICULTURALLY CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Sharp increases in fertilizer and pesticide use throughout the 1960s and 1970s along with generally less attachment to soil particles may result in more widespread contamination of drinking water supplies. he purpose of this study was to highlight the use of agricultural chemical...

  13. Characterization study of cesium concentrated particles in the soils near the Fukushima Daiichi nuclear power plant

    NASA Astrophysics Data System (ADS)

    Satou, Yukihiko; Sueki, Keisuke; Sasa, Kimikazu; Adachi, Kouji; Igarashi, Yasuhito

    2015-04-01

    Radionuclides from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident contaminated a vast area. Two types of contamination, spread and spot types, were observed in soils with autoradiography using an imaging plate. Other samples such as dust filters, vegetation, X-ray films, and so on, also indicate the spot type contamination in the early stage of the FDNPP accident. The source of spot type contamination is well known as hot particles at the Chernobyl Nuclear Power Plant (ChNPP) accident in 1986. Hot particles were divided into two groups, fuel hot particles and fission product particles, and they were emitted directly from reactor core with phreatic explosion and fire. In contrast, the official reports of the FDNPP accident did not conforme core explosion. In addition, the emitted total amount of Uranium was very few (Yamamoto et al., 2014). Thus, the spot type contaminations were not identified as the same of hot particles yet. Therefore, the present study aimed to pick up and identify the spot contaminations in soils. Surface soil samples were collected at 20 km northwest from the FDNPP in June 2013. Soils were spread in plastic bags for autoradiography with imaging plate analysis. Then, the soil particles were collected on a sticky carbon tape and analyzed by SEM-EDS to detect radioactive particles. Finally, particles were confirmed to contain photo peaks in the γ-spectrum by a germanium semiconductor detector. Four radioactive particles were isolated from the soil samples in the present study. Detected γ-ray emission radionuclides were only Cs-134 and Cs-137. The X-ray spectra on the SEM-EDS of all particles showed a Cs peak as well as O, Fe, Zn, and Rb peaks, and these elements were distributed uniformly within the particles. In addition, uniform distribution of Si was also shown. Moreover, U was detected from one of the particles, but U concentration was very low and existed locally in the particle. These characters are very similar to previous

  14. A new analysis method using Bragg curve spectroscopy for a Multi-purpose Active-target Particle Telescope for radiation monitoring

    NASA Astrophysics Data System (ADS)

    Losekamm, M. J.; Milde, M.; Pöschl, T.; Greenwald, D.; Paul, S.

    2017-02-01

    Traditional radiation detectors can either measure the total radiation dose omnidirectionally (dosimeters), or determine the incoming particles characteristics within a narrow field of view (spectrometers). Instantaneous measurements of anisotropic fluxes thus require several detectors, resulting in bulky setups. The Multi-purpose Active-target Particle Telescope (MAPT), employing a new detection principle, is designed to measure particle fluxes omnidirectionally and be simultaneously a dosimeter and spectrometer. It consists of an active core of scintillating fibers whose light output is measured by silicon photomultipliers, and fits into a cube with an edge length of 10 cm. It identifies particles using extended Bragg curve spectroscopy, with sensitivity to charged particles with kinetic energies above 25 MeV. MAPT's unique layout results in a geometrical acceptance of approximately 800 cm2 sr and an angular resolution of less than 6°, which can be improved by track-fitting procedures. In a beam test of a simplified prototype, the energy resolution was found to be less than 1 MeV for protons with energies between 30 and 70 MeV. Possible applications of MAPT include the monitoring of radiation environments in spacecraft and beam monitoring in medical facilities.

  15. Interactive Particle Visualization

    NASA Astrophysics Data System (ADS)

    Gribble, Christiaan P.

    Particle-based simulation methods are used to model a wide range of complex phenomena and to solve time-dependent problems of various scales. Effective visualizations of the resulting state will communicate subtle changes in the three-dimensional structure, spatial organization, and qualitative trends within a simulation as it evolves. This chapter discusses two approaches to interactive particle visualization that satisfy these goals: one targeting desktop systems equipped with programmable graphics hardware, and the other targeting moderately sized multicore systems using packet-based ray tracing.

  16. Purification of arsenic-contaminated water with K-jarosite filters.

    PubMed

    Hott, Rodrigo C; Maia, Luiz F O; Santos, Mayra S; Faria, Márcia C; Oliveira, Luiz C A; Pereira, Márcio C; Bomfeti, Cleide A; Rodrigues, Jairo L

    2018-05-01

    The high toxicity and potential arsenic accumulation in several environments have encouraged the development of technologies for its removal from contaminated waters. However, the arsenic released into aquatic environment comes mainly from extremely acidic mining effluents, making harder to find stable adsorbents to be used in these conditions. In this work, K-jarosite particles were synthesized as a stable adsorbent in acidic medium for eliminating arsenic from contaminated water. The adsorption capacities of K-jarosite for As 3+ , As 5+ , and monomethylarsonic acid were 9.45, 12.36, and 8.21 mg g -1 , respectively. Most arsenic in water was adsorbed within the first 10 min, suggesting the fast arsenic adsorption kinetics of K-jarosite particles. Because of that, a K-jarosite filter was constructed for purifying water at a constant flow. The K-jarosite filter was highly efficient to treat arsenic-contaminated water from a Brazilian river, reducing the concentration of arsenic in water to near zero. These data suggest the K-jarosite filter can be used as a low-cost technology for purifying arsenic-contaminated water in acidic medium.

  17. Influence of sediment storage on downstream delivery of contaminated sediment

    USGS Publications Warehouse

    Malmon, Daniel V.; Reneau, Steven L.; Dunne, Thomas; Katzman, Danny; Drakos, Paul G.

    2005-01-01

    Sediment storage in alluvial valleys can strongly modulate the downstream migration of sediment and associated contaminants through landscapes. Traditional methods for routing contaminated sediment through valleys focus on in‐channel sediment transport but ignore the influence of sediment exchanges with temporary sediment storage reservoirs outside the channel, such as floodplains. In theory, probabilistic analysis of particle trajectories through valleys offers a useful strategy for quantifying the influence of sediment storage on the downstream movement of contaminated sediment. This paper describes a field application and test of this theory, using 137Cs as a sediment tracer over 45 years (1952–1997), downstream of a historical effluent outfall at the Los Alamos National Laboratory (LANL), New Mexico. The theory is parameterized using a sediment budget based on field data and an estimate of the 137Cs release history at the upstream boundary. The uncalibrated model reasonably replicates the approximate magnitude and spatial distribution of channel‐ and floodplain‐stored 137Cs measured in an independent field study. Model runs quantify the role of sediment storage in the long‐term migration of a pulse of contaminated sediment, quantify the downstream impact of upstream mitigation, and mathematically decompose the future 137Cs flux near the LANL property boundary to evaluate the relative contributions of various upstream contaminant sources. The fate of many sediment‐bound contaminants is determined by the relative timescales of contaminant degradation and particle residence time in different types of sedimentary environments. The theory provides a viable approach for quantifying the long‐term movement of contaminated sediment through valleys.

  18. Interpretation of increased energetic particle flux measurements by SEPT aboard the STEREO spacecraft and contamination

    NASA Astrophysics Data System (ADS)

    Wraase, S.; Heber, B.; Böttcher, S.; Bucik, R.; Dresing, N.; Gómez-Herrero, R.; Klassen, A.; Müller-Mellin, R.

    2018-04-01

    Context. Interplanetary (IP) shocks are known to be accelerators of energetic charged particles observed in-situ in the heliosphere. However, the acceleration of near-relativistic electrons by shocks in the interplanetary medium is often questioned. On 9 August 2011 a corotating interaction region (CIR) passed STEREO B (STB), which resulted in a flux increase in the electron and ion channels of the Solar Electron and Proton Telescope (SEPT). Because electron measurements in the few keV to several 100 keV range rely on the so-called magnet foil technique, which is utilized by SEPT, ions can contribute to the electron channels. Aim. We aim to investigate whether the flux increase in the electron channels of SEPT during the CIR event on 9 August 2011 is caused by ion contamination only. Methods: We compute the SEPT response functions for protons and helium utilizing an updated GEANT4 model of SEPT. The CIR energetic particle ion spectra for protons and helium are assumed to follow a Band function in energy per nucleon with a constant helium to proton ratio. Results: Our analysis leads to a helium to proton ratio of 16.9% and a proton flux following a Band function with the parameters I0 = 1.24 × 104 (cm2 s sr MeV nuc-1)-1, Ec = 79 keV nuc-1, and spectral indices of γ1 = -0.94 and γ2 = -3.80, which are in good agreement with measurements by the Suprathermal Ion Telescope (SIT) aboard STB. Conclusions: Since our results explain the SEPT measurements, we conclude that no significant amount of electrons were accelerated between 55 and 425 keV by the CIR.

  19. Fluorescence imaging and targeted distribution of bacterial magnetic particles in nude mice.

    PubMed

    Tang, Tao; Zhang, Lianfeng; Gao, Ran; Dai, Yunping; Meng, Fanchao; Li, Ying

    2012-04-01

    Bacterial magnetic particles (BMPs) are of interest as potential carriers of bioactive macromolecules, drugs, or liposomes. In this study, a high-pressure homogenizer was used to disrupt Magnetospirillum gryphiswaldense strain MSR-1 cells, and BMPs were purified. BMPs were labeled with fluorescence reagent 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocianin perchlorate (DiI) and injected into the tail vein of BALB/c nude mice. Distribution of fluorescence signals of DiI-BMPs in vivo was examined using a whole-body fluorescence imaging system. The result showed that fluorescence signals were detected in liver, stomach, intestine, lungs, and spleen. However, transmission electron microscopy of ultrathin sections indicated that BMPs were mainly present in liver and lungs, but not in the other organs. BMPs could be useful as carriers for targeted drug therapy of diseases of the liver or lung.

  20. Melatonin potentiates "inside-out" nano-thermotherapy in human breast cancer cells: a potential cancer target multimodality treatment based on melatonin-loaded nanocomposite particles.

    PubMed

    Xie, Wensheng; Gao, Qin; Wang, Dan; Wang, Wei; Yuan, Jie; Guo, Zhenhu; Yan, Hao; Wang, Xiumei; Sun, Xiaodan; Zhao, Lingyun

    2017-01-01

    With the wide recognition of oncostatic effect of melatonin, the current study proposes a potential breast cancer target multimodality treatment based on melatonin-loaded magnetic nanocomposite particles (Melatonin-MNPs). Melatonin-MNPs were fabricated by the single emulsion solvent extraction/evaporation method. Based on the facilitated transport of melatonin by the GLUT overexpressed on the cell membrane, such Melatonin-MNPs can be more favorably uptaken by MCF-7 cells compared with the melatonin-free nanocomposite particles, which indicates the cancer targeting ability of melatonin molecule. Inductive heating can be generated by exposure to the Melatonin-MNPs internalized within cancer cells under alternative magnetic field, so as to achieve the "inside-out" magnetic nano-thermotherapy. In addition to demonstrating the superior cytotoxic effect of such nano-thermotherapy over the conventional exogenous heating by metal bath, more importantly, the sustainable release of melatonin from the Melatonin-MNPs can be greatly promoted upon responsive to the magnetic heating. The multimodality treatment based on Melatonin-MNPs can lead to more significant decrease in cell viability than any single treatment, suggesting the potentiated effect of melatonin on the cytotoxic response to nano-thermotherapy. This study is the first to fabricate the precisely engineered melatonin-loaded multifunctional nanocomposite particles and demonstrate the potential in breast cancer target multimodality treatment.

  1. Location and detection of explosive-contaminated human fingerprints on distant targets using standoff laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucena, P.; Gaona, I.; Moros, J.; Laserna, J. J.

    2013-07-01

    Detection of explosive-contaminated human fingerprints constitutes an analytical challenge of high significance in security issues and in forensic sciences. The use of a laser-induced breakdown spectroscopy (LIBS) sensor working at 31 m distance to the target, fitted with 2D scanning capabilities and designed for capturing spectral information from laser-induced plasmas of fingerprints is presented. Distribution chemical maps based on Na and CN emissions are used to locate and detect chloratite, DNT, TNT, RDX and PETN residues that have been deposited on the surface of aluminum and glass substrates. An effectiveness of 100% on fingerprints detection, regardless the substrate scanned, is reached. Environmental factors that affect the prevalence of the fingerprint LIBS response are discussed.

  2. Airborne particle-bound brominated flame retardants: Levels, size distribution and indoor-outdoor exchange.

    PubMed

    Zhu, Yue-Shan; Yang, Wan-Dong; Li, Xiu-Wen; Ni, Hong-Gang; Zeng, Hui

    2018-02-01

    The quality of indoor environments has a significant impact on public health. Usually, an indoor environment is treated as a static box, in which physicochemical reactions of indoor air contaminants are negligible. This results in conservative estimates for primary indoor air pollutant concentrations, while also ignoring secondary pollutants. Thus, understanding the relationship between indoor and outdoor particles and particle-bound pollutants is of great significance. For this reason, we collected simultaneous indoor and outdoor measurements of the size distribution of airborne brominated flame retardant (BFR) congeners. The time-dependent concentrations of indoor particles and particle-bound BFRs were then estimated with the mass balance model, accounting for the outdoor concentration, indoor source strength, infiltration, penetration, deposition and indoor resuspension. Based on qualitative observation, the size distributions of ΣPBDE and ΣHBCD were characterized by bimodal peaks. According to our results, particle-bound BDE209 and γ-HBCD underwent degradation. Regardless of the surface adsorption capability of particles and the physicochemical properties of the target compounds, the concentration of BFRs in particles of different size fractions seemed to be governed by the particle distribution. Based on our estimations, for airborne particles and particle-bound BFRs, a window-open ventilated room only takes a quarter of the time to reach an equilibrium between the concentration of pollutants inside and outside compared to a closed room. Unfortunately, indoor pollutants and outdoor pollutants always exist simultaneously, which poses a window-open-or-closed dilemma to achieve proper ventilation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Influence of Sm2O3 microalloying and Yb contamination on Y211 particles coarsening and superconducting properties of IG YBCO bulk superconductors

    NASA Astrophysics Data System (ADS)

    Vojtkova, L.; Diko, P.; Kovac, J.; Vojtko, M.

    2018-06-01

    Single grain YBa2Cu3O7‑x (YBCO or Y123) bulk superconductors were produced by an infiltration growth process. The solid phase precursor was prepared by solid state synthesis from Y2O3 + BaCuO2 powders. The influence of the addition of Sm2O3 and YB contamination from the substrate on the microstructure and superconducting properties was analyzed. The dependences of Yb concentration on the distance from the bottom of the samples measured by energy dispersive spectroscopy microanalysis used in conjunction with scanning electron microscopy confirmed the contamination of the samples during the melting stage of the sample preparation. It is shown that the addition of Sm in low concentration and its combination with Yb from the substrate modify the coarsening of the Y211 particles as well as lead to the appearance of a secondary peak effect in the field dependences of the critical current density.

  4. Targets and methods for target preparation for radionuclide production

    DOEpatents

    Zhuikov, Boris L; Konyakhin, Nicolai A; Kokhanyuk, Vladimir M; Srivastava, Suresh C

    2012-10-16

    The invention relates to nuclear technology, and to irradiation targets and their preparation. One embodiment of the present invention includes a method for preparation of a target containing intermetallic composition of antimony Ti--Sb, Al--Sb, Cu--Sb, or Ni--Sb in order to produce radionuclides (e.g., tin-117 m) with a beam of accelerated particles. The intermetallic compounds of antimony can be welded by means of diffusion welding to a copper backing cooled during irradiation on the beam of accelerated particles. Another target can be encapsulated into a shell made of metallic niobium, stainless steel, nickel or titanium cooled outside by water during irradiation. Titanium shell can be plated outside by nickel to avoid interaction with the cooling water.

  5. Contamination control program for the Extreme Ultraviolet Explorer instruments

    NASA Technical Reports Server (NTRS)

    Ray, David C.; Malina, Roger F.; Welsh, Barry Y.; Austin, James D.; Teti, Bonnie Gray

    1989-01-01

    A contamination-control program has been instituted for the optical components of the EUV Explorer satellite, whose 80-900 A range performance is easily degraded by particulate and molecular contamination. Cleanliness requirements have been formulated for the design, fabrication, and test phases of these instruments; in addition, contamination-control steps have been taken which prominently include the isolation of sensitive components in a sealed optics cavity. Prelaunch monitoring systems encompass the use of quartz crystal microbalances, particle witness plates, direct flight hardware sampling, and optical witness sampling of EUV scattering and reflectivity.

  6. Liquid film target impingement scrubber

    DOEpatents

    McDowell, William J.; Coleman, Charles F.

    1977-03-15

    An improved liquid film impingement scrubber is provided wherein particulates suspended in a gas are removed by jetting the particle-containing gas onto a relatively small thin liquid layer impingement target surface. The impingement target is in the form of a porous material which allows a suitable contacting liquid from a pressurized chamber to exude therethrough to form a thin liquid film target surface. The gas-supported particles collected by impingement of the gas on the target are continuously removed and flushed from the system by the liquid flow through each of a number of pores in the target.

  7. A study of the effectiveness of particulate cleaning protocols on intentionally contaminated niobium surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reece, Charles E.; Ciancio, Elizabeth J.; Keyes, Katharine A.

    2009-11-01

    Particulate contamination on the surface of SRF cavities limits their performance via the enhanced generation of field-emitted electrons. Considerable efforts are expended to actively clean and avoid such contamination on niobium surfaces. The protocols in active use have been developed via feedback from cavity testing. This approach has the risk of over-conservatively ratcheting an ever increasing complexity of methods tied to particular circumstances. A complementary and perhaps helpful approach is to quantitatively assess the effectiveness of candidate methods at removing intentional representative particulate contamination. Toward this end, we developed a standardized contamination protocol using water suspensions of Nb{sub 2}O{sub 5}more » and SS 316 powders applied to BCP’d surfaces of standardized niobium samples yielding particle densities of order 200 particles/mm{sup 2}. From these starting conditions, controlled application of high pressure water rinse, ultrasonic cleaning, or CO{sub 2} snow jet cleaning was applied and the resulting surfaces examined via SEM/scanning EDS with particle recognition software. Results of initial parametric variations of each will be reported.« less

  8. Multi-Target State Extraction for the SMC-PHD Filter

    PubMed Central

    Si, Weijian; Wang, Liwei; Qu, Zhiyu

    2016-01-01

    The sequential Monte Carlo probability hypothesis density (SMC-PHD) filter has been demonstrated to be a favorable method for multi-target tracking. However, the time-varying target states need to be extracted from the particle approximation of the posterior PHD, which is difficult to implement due to the unknown relations between the large amount of particles and the PHD peaks representing potential target locations. To address this problem, a novel multi-target state extraction algorithm is proposed in this paper. By exploiting the information of measurements and particle likelihoods in the filtering stage, we propose a validation mechanism which aims at selecting effective measurements and particles corresponding to detected targets. Subsequently, the state estimates of the detected and undetected targets are performed separately: the former are obtained from the particle clusters directed by effective measurements, while the latter are obtained from the particles corresponding to undetected targets via clustering method. Simulation results demonstrate that the proposed method yields better estimation accuracy and reliability compared to existing methods. PMID:27322274

  9. Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling

    NASA Astrophysics Data System (ADS)

    Bose, Sayan; Banerjee, Moloy

    2015-07-01

    Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the basic principle behind the Magnetic Drug Targeting (MDT). It is essential to couple the ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) principles when magnetic fields are applied to blood as a biomagnetic fluid. The present study is devoted to study on MDT technique by particle tracking in the presence of a non uniform magnetic field in a stenosed aortic bifurcation. The present numerical model of biomagnetic fluid dynamics (BFD) takes into accounts both magnetization and electrical conductivity of blood. The blood flow in the bifurcation is considered to be incompressible and Newtonian. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT two way particle-fluid coupling. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Results concerning the velocity and temperature field indicate that the presence of the magnetic field influences the flow field considerably and the disturbances increase as the magnetic field strength increases. The insert position is also varied to observe the variation in flow as well as temperature field. Parametric investigation is conducted and the influence of the particle size (dp), flow Reynolds number (Re) and external magnetic field strength (B0) on the "capture efficiency" (CE) is reported. The difference in CE is also studied for different particle loading condition. According to the results, the magnetic field increased the particle concentration in the target region

  10. Polarized Solid State Target

    NASA Astrophysics Data System (ADS)

    Dutz, Hartmut; Goertz, Stefan; Meyer, Werner

    2017-01-01

    The polarized solid state target is an indispensable experimental tool to study single and double polarization observables at low intensity particle beams like tagged photons. It was one of the major components of the Crystal-Barrel experiment at ELSA. Besides the operation of the 'CB frozen spin target' within the experimental program of the Crystal-Barrel collaboration both collaborative groups of the D1 project, the polarized target group of the Ruhr Universität Bochum and the Bonn polarized target group, have made significant developments in the field of polarized targets within the CRC16. The Bonn polarized target group has focused its work on the development of technically challenging polarized solid target systems towards the so called '4π continuous mode polarized target' to operate them in combination with 4π-particle detection systems. In parallel, the Bochum group has developed various highly polarized deuterated target materials and high precision NMR-systems, in the meantime used for polarization experiments at CERN, JLAB and MAMI, too.

  11. Structural Basis for Conserved Regulation and Adaptation of the Signal Recognition Particle Targeting Complex.

    PubMed

    Wild, Klemens; Bange, Gert; Motiejunas, Domantas; Kribelbauer, Judith; Hendricks, Astrid; Segnitz, Bernd; Wade, Rebecca C; Sinning, Irmgard

    2016-07-17

    The signal recognition particle (SRP) is a ribonucleoprotein complex with a key role in targeting and insertion of membrane proteins. The two SRP GTPases, SRP54 (Ffh in bacteria) and FtsY (SRα in eukaryotes), form the core of the targeting complex (TC) regulating the SRP cycle. The architecture of the TC and its stimulation by RNA has been described for the bacterial SRP system while this information is lacking for other domains of life. Here, we present the crystal structures of the GTPase heterodimers of archaeal (Sulfolobus solfataricus), eukaryotic (Homo sapiens), and chloroplast (Arabidopsis thaliana) SRP systems. The comprehensive structural comparison combined with Brownian dynamics simulations of TC formation allows for the description of the general blueprint and of specific adaptations of the quasi-symmetric heterodimer. Our work defines conserved external nucleotide-binding sites for SRP GTPase activation by RNA. Structural analyses of the GDP-bound, post-hydrolysis states reveal a conserved, magnesium-sensitive switch within the I-box. Overall, we provide a general model for SRP cycle regulation by RNA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Particle therapy for noncancer diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bert, Christoph; Engenhart-Cabillic, Rita; Durante, Marco

    2012-04-15

    Radiation therapy using high-energy charged particles is generally acknowledged as a powerful new technique in cancer treatment. However, particle therapy in oncology is still controversial, specifically because it is unclear whether the putative clinical advantages justify the high additional costs. However, particle therapy can find important applications in the management of noncancer diseases, especially in radiosurgery. Extension to other diseases and targets (both cranial and extracranial) may widen the applications of the technique and decrease the cost/benefit ratio of the accelerator facilities. Future challenges in this field include the use of different particles and energies, motion management in particle bodymore » radiotherapy and extension to new targets currently treated by catheter ablation (atrial fibrillation and renal denervation) or stereotactic radiation therapy (trigeminal neuralgia, epilepsy, and macular degeneration). Particle body radiosurgery could be a future key application of accelerator-based particle therapy facilities in 10 years from today.« less

  13. Saturn's Icy satellites: The Role of Sub-Micron Ice Particles and Nano-sized Contaminants (Invited)

    NASA Astrophysics Data System (ADS)

    Clark, R. N.; Cruikshank, D. P.; Dalle Ore, C. M.; Jaumann, R.; Brown, R. H.; Stephan, K.; Buratti, B. J.; Filacchione, G.; Baines, K. H.; Nicholson, P.

    2010-12-01

    The Visual and Infrared Mapping Spectrometer (VIMS) has obtained spatially resolved imaging spectroscopy data on numerous satellites of Saturn. The spectral trends on individual satellites and as compositional gradients within the Saturn system show systematic trends that indicate variable ice grain sizes and contaminants. Compositional mapping shows that the satellite surfaces are composed largely of H2O ice, with small amounts of CO2, trace organics, bound water or OH-bearing minerals, and possible signatures of ammonia, H2O or OH-bearing minerals, and dark, fine-grained materials. The E-ring coats the inner satellites with sub-micron ice particles. The Cassini Rev 49 Iapetus fly-by on September 10, 2007, provided imaging spectroscopy data on both the dark material and the transition zone between the dark material and the visually bright ice on the trailing side. The dark material has very low albedo with a linear increase in reflectance with wavelength, a 3-micron water absorption, and a CO2 absorption. The only reflectance models that can explain the trends include highly absorbing sub-micron materials that create Rayleigh absorption. Radiative transfer models that include diffraction from Rayleigh scattering and Rayleigh absorption are necessary to match observed data. The dark material is well matched by a high component of fine-grained metallic iron plus a small component of nano-phase hematite. Spatially resolved Iapetus data show mixing of dark material with ice and the mixtures display a blue scattering peak and a UV absorption. The blue scattering peak and UV-Visible absorption is observed in spectra of all satellites at some locations where dark material is mixed with the ice. Rayleigh scattering and Rayleigh absorption have also been observed in spectral properties of the Earth's moon. Rayleigh absorption requires high absorption coefficient nano-sized particles, which is also consistent with metallic iron. The UV absorber appears to have increased

  14. Isolation of tungsten and tantalum isotopes without supports from. cap alpha. -particle-irradiated hafnium targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasita, S.M.; Iota, B.Z.; Malachkov, A.G.

    1985-11-01

    An extraction procedure has been developed for successive isolation of tungsten (/sup 178/W and /sup 181/W) and tantalum (/sup 179/Ta and /sup 182/Ta) isotopes without supports from ..cap alpha..particle-irradiated hafnium targets. The target, irradiated on a cyclotron, is dissolved in hydrofluoric acid. Tantalum isotopes are extracted with tributyl phosphate (TBP) from 1-5 M HF and are then reextracted with a 1:1 ammonia solution, and hydrofluoric acid is removed by heating. Tungsten isotopes are extracted with a chloroform solution or N-benzoyl-N-phenylhydroxylamine (BPHA) from 11-12 M H/sub 2/SO/sub 4/ or ..cap alpha..-benzoin oxime from 4.5-5.5 M H/sub 2/SO/sub 4/ and are thenmore » reextracted with a l:l ammonia solution. The yield of tungsten isotopes is not less than 95%, and the content of radioactive impurities of other isotopes is not more than 0.1%.« less

  15. Uninformative Prior Multiple Target Tracking Using Evidential Particle Filters

    NASA Astrophysics Data System (ADS)

    Worthy, J. L., III; Holzinger, M. J.

    Space situational awareness requires the ability to initialize state estimation from short measurements and the reliable association of observations to support the characterization of the space environment. The electro-optical systems used to observe space objects cannot fully characterize the state of an object given a short, unobservable sequence of measurements. Further, it is difficult to associate these short-arc measurements if many such measurements are generated through the observation of a cluster of satellites, debris from a satellite break-up, or from spurious detections of an object. An optimization based, probabilistic short-arc observation association approach coupled with a Dempster-Shafer based evidential particle filter in a multiple target tracking framework is developed and proposed to address these problems. The optimization based approach is shown in literature to be computationally efficient and can produce probabilities of association, state estimates, and covariances while accounting for systemic errors. Rigorous application of Dempster-Shafer theory is shown to be effective at enabling ignorance to be properly accounted for in estimation by augmenting probability with belief and plausibility. The proposed multiple hypothesis framework will use a non-exclusive hypothesis formulation of Dempster-Shafer theory to assign belief mass to candidate association pairs and generate tracks based on the belief to plausibility ratio. The proposed algorithm is demonstrated using simulated observations of a GEO satellite breakup scenario.

  16. The influence of bottom boundary layer hydrodynamics on sediment focusing in a contaminated bay.

    PubMed

    Graham, Neil D; Bouffard, Damien; Loizeau, Jean-Luc

    2016-12-01

    Understanding the dynamics and fate of particle bound contaminants is important for mitigating potential environmental, economic and health impacts linked to their presence. Vidy Bay, Lake Geneva (Switzerland), is contaminated due to the outfall and overflow from the wastewater treatment plant of the City of Lausanne. This study was designed to investigate the fate of particle-bound contaminants with the goal of providing a more complete picture of contaminant pathways within the bay and their potential spread to the main basin. This goal was achieved by investigating the sediment transport dynamics, using sediment traps and radionuclide tracers, and ascertaining how local bottom-boundary hydrodynamic conditions (temperature, turbidity, current velocity and direction) influence these dynamics. Results of the study indicated that sedimentation rates and lateral advections increased vertically with proximity to the lakebed and laterally with proximity to shore, indicating the presence of sediment focusing in the bay. Hydrodynamic measurements showed the persistent influence of a gyre within the bay, extending down to the lake bed, while just outside of the bay circulation was influenced by the seasonal patterns of the main basin. Calculated mean displacement distances in the bay indicated that suspended particles can travel ∼3 km per month, which is 1.7 times the width of the Vidy Bay gyre. This results in a residence time of approximately 21 days for suspended particles, which is much greater than previously modelled results. The calculated mobility Shield parameter never exceeded the threshold shear stress needed for resuspension in deeper parts of the bay. In such, increased lateral advections to the bay are not likely due to local resuspension but rather external particle sources, such as main basin or shallow, littoral resuspensions. These external sources coupled with an increased residence time and decreased current velocity within the bay are the

  17. Particle dynamics and particle-cell interaction in microfluidic systems

    NASA Astrophysics Data System (ADS)

    Stamm, Matthew T.

    Particle-laden flow in a microchannel resulting in aggregation of microparticles was investigated to determine the dependence of the cluster growth rate on the following parameters: suspension void fraction, shear strain rate, and channel-height to particle-diameter ratio. The growth rate of an average cluster was found to increase linearly with suspension void fraction, and to obey a power-law relationships with shear strain rate as S 0.9 and channel-height to particle-diameter ratio as (h/d )--3.5. Ceramic liposomal nanoparticles and silica microparticles were functionalized with antibodies that act as targeting ligands. The bio-functionality and physical integrity of the cerasomes were characterized. Surface functionalization allows cerasomes to deliver drugs with selectivity and specificity that is not possible using standard liposomes. The functionalized particle-target cell binding process was characterized using BT-20 breast cancer cells. Two microfluidic systems were used; one with both species in suspension, the other with cells immobilized inside a microchannel and particle suspension as the mobile phase. Effects of incubation time, particle concentration, and shear strain rate on particle-cell binding were investigated. With both species in suspension, the particle-cell binding process was found to be reasonably well-described by a first-order model. Particle desorption and cellular loss of binding affinity in time were found to be negligible; cell-particle-cell interaction was identified as the limiting mechanism in particle-cell binding. Findings suggest that separation of a bound particle from a cell may be detrimental to cellular binding affinity. Cell-particle-cell interactions were prevented by immobilizing cells inside a microchannel. The initial stage of particle-cell binding was investigated and was again found to be reasonably well-described by a first-order model. For both systems, the time constant was found to be inversely proportional to

  18. [Perceived risks of food contaminants].

    PubMed

    Koch, Severine; Lohmann, Mark; Epp, Astrid; Böl, Gaby-Fleur

    2017-07-01

    Food contaminants can pose a serious health threat. In order to carry out adequate risk communication measures, the subjective risk perception of the public must be taken into account. In this context, the breadth of the topic and insufficient terminological delimitations from residues and food additives make an elaborate explanation of the topic to consumers indispensable. A representative population survey used language adequate for lay people and a clear definition of contaminants to measure risk perceptions with regard to food contaminants among the general public. The study aimed to assess public awareness of contaminants and the perceived health risks associated with them. In addition, people's current knowledge and need for additional information, their attitudes towards contaminants, views on stakeholder accountability, as well as compliance with precautionary measures, such as avoiding certain foods to reduce health risks originating from contaminants, were assessed. A representative sample of 1001 respondents was surveyed about food contaminants via computer-assisted telephone interviewing. The majority of respondents rated contaminants as a serious health threat, though few of them spontaneously mentioned examples of undesirable substances in foods that fit the scientific or legal definition of contaminants. Mercury and dioxin were the most well-known contaminants. Only a minority of respondents was familiar with pyrrolizidine alkaloids. The present findings highlight areas that require additional attention and provide implications for risk communication geared to specific target groups.

  19. Remediation of metal-contaminated urban soil using flotation technique.

    PubMed

    Dermont, G; Bergeron, M; Richer-Laflèche, M; Mercier, G

    2010-02-01

    A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions >250microm. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor>2.5), and volume reduction (>80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles (<20 microm) caused a flotation selectivity drop, especially with a long flotation time (>5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 microm) showed the best flotation selectivity. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Experimental study of the space-time development of the particle production process in hadron-nucleon collisions, using massive target nucleus as a detector

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    Experimental study of the space-time development of the particle production process in hadronic collisions at its initial stage was performed. Massive target nuclei have been used as fine detectors of properties of the particle production process development within time intervals smaller than 10 to the 22nd power s and spatial distances smaller than 10 to the 12th power cm. In hadron-nucleon collisions, in particular in nucleon-nucleon collisions, the particle production process goes through intermediate objects in 2 yields 2 type endoergic reactions. The objects decay into commonly observed resonances and paricles.

  1. The Hubble Space Telescope Servicing Mission 3A Contamination Control Program

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.

    2000-01-01

    After nearly 10 years on-orbit, the Hubble Space Telescope (HST) external thermal control materials and paint have degraded due to exposure to the low Earth orbit environment. This presented a potentially large on-orbit contamination source (particles and/or debris). Contamination mitigation techniques were developed to augment existing on-orbit servicing contamination controls. They encompassed mission management, crew training, and crew aids and tools. These techniques were successfully employed during the HST Servicing Mission 3A, December 1999.

  2. Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado-Joseph disease neurological phenotype.

    PubMed

    Conceição, Mariana; Mendonça, Liliana; Nóbrega, Clévio; Gomes, Célia; Costa, Pedro; Hirai, Hirokazu; Moreira, João Nuno; Lima, Maria C; Manjunath, N; Pereira de Almeida, Luís

    2016-03-01

    Others and we showed that RNA interference holds great promise for the treatment of dominantly inherited neurodegenerative disorders such as Machado-Joseph disease (MJD), for which there is no available treatment. However, successful experiments involved intracranial administration of viral vectors and there is a need for a safer and less invasive procedure. In this work, we successfully generated stable nucleic acid lipid particles (SNALPs), incorporating a short peptide derived from rabies virus glycoprotein (RVG-9r) and encapsulating small interfering RNAs (siRNAs), which can target mutant ataxin-3. The developed formulation exhibited important features that make it adequate for systemic administration: high encapsulation efficiency of siRNAs, ability to protect the encapsulated siRNAs, appropriate and homogeneous particle size distribution. Following optimization of the formulation and in vitro validation of its efficacy to silence the MJD-causing protein - mutant ataxin-3 - in neuronal cells, in vivo experiments showed that intravenous administration of RVG-9r-targeted SNALPs efficiently silenced mutant ataxin-3 reducing neuropathology and motor behavior deficits in two mouse models of MJD. To our knowledge, this is the first report showing beneficial impact of a non-viral gene silencing strategy in MJD and the first time that a non-invasive systemic administration proved to be beneficial on a polyglutamine disorder. Our study opens new avenues towards MJD therapy that can also be applied to other neurodegenerative diseases linked to the production of pathogenic proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A network biology-based approach to evaluating the effect of environmental contaminants on human interactome and diseases.

    PubMed

    Iida, M; Takemoto, K

    2018-09-30

    Environmental contaminant exposure can pose significant risks to human health. Therefore, evaluating the impact of this exposure is of great importance; however, it is often difficult because both the molecular mechanism of disease and the mode of action of the contaminants are complex. We used network biology techniques to quantitatively assess the impact of environmental contaminants on the human interactome and diseases with a particular focus on seven major contaminant categories: persistent organic pollutants (POPs), dioxins, polycyclic aromatic hydrocarbons (PAHs), pesticides, perfluorochemicals (PFCs), metals, and pharmaceutical and personal care products (PPCPs). We integrated publicly available data on toxicogenomics, the diseasome, protein-protein interactions (PPIs), and gene essentiality and found that a few contaminants were targeted to many genes, and a few genes were targeted by many contaminants. The contaminant targets were hub proteins in the human PPI network, whereas the target proteins in most categories did not contain abundant essential proteins. Generally, contaminant targets and disease-associated proteins were closely associated with the PPI network, and the closeness of the associations depended on the disease type and chemical category. Network biology techniques were used to identify environmental contaminants with broad effects on the human interactome and contaminant-sensitive biomarkers. Moreover, this method enabled us to quantify the relationship between environmental contaminants and human diseases, which was supported by epidemiological and experimental evidence. These methods and findings have facilitated the elucidation of the complex relationship between environmental exposure and adverse health outcomes. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Environmental microbial contamination in a stem cell bank.

    PubMed

    Cobo, F; Concha, A

    2007-04-01

    The aim of this study was to evaluate the main environmental microbial contaminants of the clean rooms in our stem cell bank. We have measured the microbial air contamination by both passive and active air sampling and the microbial monitoring of surfaces by means of Rodac plates. The environmental monitoring tests were carried out in accordance with the guidelines of European Pharmacopeia and US Pharmacopeia. The micro-organisms were identified by means of an automated system (VITEK 2). During the monitoring, the clean rooms are continually under good manufacturing practices specifications. The most frequent contaminants were Gram-positive cocci. The main contaminants in our stem cell bank were coagulase-negative staphylococci and other opportunistic human pathogens. In order to assure the levels of potential contamination in both embryonic and adult stem cell lines, a continuous sampling of air particles and testing for viable microbiological contamination is necessary. This study is the first evaluation of the environmental contaminants in stem cell banks and can serve as initial evaluation for these establishments. The introduction of environmental monitoring programmes in the processing of stem cell lines could diminish the risk of contamination in stem cell cultures.

  5. NASA charging analyzer program: A computer tool that can evaluate electrostatic contamination

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Roche, J. C.; Mandell, M. J.

    1978-01-01

    A computer code, the NASA Charging Analyzer Program (NASCAP), was developed to study the surface charging of bodies subjected to geomagnetic substorm conditions. This program will treat the material properties of a surface in a self-consistent manner and calculate the electric fields in space due to the surface charge. Trajectories of charged particles in this electric field can be computed to determine if these particles enhance surface contamination. A preliminary model of the Spacecraft Charging At The High Altitudes (SCATHA) satellite was developed in the NASCAP code and subjected to a geomagnetic substorm environment to investigate the possibility of electrostatic contamination. The results indicate that differential voltages will exist between the spacecraft ground surfaces and the insulator surfaces. The electric fields from this differential charging can enhance the contamination of spacecraft surfaces.

  6. Using Iron to Treat Chlorohydrocarbon-Contaminated Soil

    NASA Technical Reports Server (NTRS)

    Hitchens, G. Duncan; Hodko, Dalibor; Kim, Heekyung; Rogers, Tom; Singh, Waheguru Pal; Giletto, Anthony; Cisar, Alan

    2004-01-01

    A method of in situ remediation of soil contaminated with chlorinated hydrocarbon solvents involves injection of nanometer-size iron particles. The present method exploits a combination of prompt chemical remediation followed by longer-term enhanced bioremediation and, optionally, is practiced in conjunction with the method of bioremediation described earlier. Newly injected iron particles chemically reduce chlorinated hydrocarbons upon contact. Thereafter, in the presence of groundwater, the particles slowly corrode via chemical reactions that effect sustained release of dissolved hydrogen. The hydrogen serves as an electron donor, increasing the metabolic activity of the anaerobic bacteria and thereby sustaining bioremediation at a rate higher than the natural rate.

  7. Sampling of suspended particulate matter using particle traps in the Rhône River: Relevance and representativeness for the monitoring of contaminants.

    PubMed

    Masson, M; Angot, H; Le Bescond, C; Launay, M; Dabrin, A; Miège, C; Le Coz, J; Coquery, M

    2018-05-10

    Monitoring hydrophobic contaminants in surface freshwaters requires measuring contaminant concentrations in the particulate fraction (sediment or suspended particulate matter, SPM) of the water column. Particle traps (PTs) have been recently developed to sample SPM as cost-efficient, easy to operate and time-integrative tools. But the representativeness of SPM collected with PTs is not fully understood, notably in terms of grain size distribution and particulate organic carbon (POC) content, which could both skew particulate contaminant concentrations. The aim of this study was to evaluate the representativeness of SPM characteristics (i.e. grain size distribution and POC content) and associated contaminants (i.e. polychlorinated biphenyls, PCBs; mercury, Hg) in samples collected in a large river using PTs for differing hydrological conditions. Samples collected using PTs (n = 74) were compared with samples collected during the same time period by continuous flow centrifugation (CFC). The grain size distribution of PT samples shifted with increasing water discharge: the proportion of very fine silts (2-6 μm) decreased while that of coarse silts (27-74 μm) increased. Regardless of water discharge, POC contents were different likely due to integration by PT of high POC-content phytoplankton blooms or low POC-content flood events. Differences in PCBs and Hg concentrations were usually within the range of analytical uncertainties and could not be related to grain size or POC content shifts. Occasional Hg-enriched inputs may have led to higher Hg concentrations in a few PT samples (n = 4) which highlights the time-integrative capacity of the PTs. The differences of annual Hg and PCB fluxes calculated either from PT samples or CFC samples were generally below 20%. Despite some inherent limitations (e.g. grain size distribution bias), our findings suggest that PT sampling is a valuable technique to assess reliable spatial and temporal trends of particulate

  8. Laser removal of loose uranium compound contamination from metal surfaces

    NASA Astrophysics Data System (ADS)

    Roberts, D. E.; Modise, T. S.

    2007-04-01

    Pulsed laser removal of surface contamination of uranyl nitrate and uranium dioxide from stainless steel has been studied. Most of the loosely bound contamination has been removed at fluence levels below 0.5 J cm -2, leaving about 5% fixed contamination for uranyl nitrate and 15% for uranium dioxide. Both alpha and beta activities are then sufficiently low that contaminated objects can be taken out of a restricted radiation area for re-use. The ratio of beta to alpha activity is found to be a function of particle size and changes during laser removal. In a separate experiment using technetium-99m, the collection of removed radioactivity in the filter was studied and an inventory made of removed and collected contamination.

  9. Supercritical fluid extraction as a means of reducing the carbon contamination inherent in samples of silica aerogel destined for the capture of CHON cosmic dust particles in space

    NASA Astrophysics Data System (ADS)

    Huang, H.-P.; Wright, I. P.; Gilmour, I.; Pillinger, C. T.

    1994-11-01

    Silica aerogel represents an ideal material for use as a cosmic dust capture medium. Its low density enables impacting particles to decelerate and stop within a small quality of the material, but without any severe heating. Hence the particles, which remain unmelted, can subsequently be removed and studied. Since a large proportion of the prospective cosmic dust is likely to be enriched in elements such as carbon and hydrogen (typically 5 wt% C, 20 wt% H2O), it is imperative that the aerogel used in the capture cell contains minimal quantities of these elements. Unfortunately the lowest density aerogels contain carbon at levels of 5 wt%; water is present in even greater amounts. Thus, techniques need to be identified to remove these contaminants. Herein, an attempt is made to use supercritical fluid extraction to remove carbon (and water). The investigation was tried to identify the most suitable parameters (i.e. CO2 density, solvating power using single or multiple extractions, use of modifier, etc.) necessary for removal of contaminants. A set of conditions was derived which was able to remove 90% of carbon contaminants from an aerogel of 0.12 g/cu cm density. This involved the use of multiple extractions with gradient temperatures (i.e. variable CO2 density), but without the use of a methanol modifier. Unfortunately, the same technique was less efficacious at removing carbon from aerogels with densities less than 0.12 g/cu cm. At present the extraction procedure has only been tried on a laboratory scale, but clearly this could be scaled-up in the future.

  10. Fogging formulations for fixation of particulate contamination in ductwork and enclosures

    DOEpatents

    Maresca, Jr., Joseph W.; Kostelnik, Lori M.; Kriskivich, James R.; Demmer, Rick L.; Tripp, Julia L.

    2015-09-08

    A method and an apparatus using aqueous fixatives for fogging of ventilation ductwork, enclosures, or buildings containing dust, lint, and particulates that may be contaminated by radionuclides and other dangerous or unsafe particulate contaminants, which method and apparatus are capable of (1) obtaining full coverage within the ductwork and (2) penetrating and fixing the lint, dust and large particles present in the ductwork so that no airborne particles are released during or after the application of the fixative. New aqueous fogging solutions outperform conventional glycerin-based solutions. These aqueous solutions will fog using conventional methods of application and contain a surfactant to aid wetting and penetration of the lint and dust, a binder to stabilize loose or respirable particles, and an agent to aid in fogging and enhance adhesiveness. The solutions are safe and easy to use.

  11. Investigation of radionuclide distribution in soil particles in different landscapes

    NASA Astrophysics Data System (ADS)

    Shkinev, V. M.; Korobova, E. M.; Linnik, V. G.

    2012-04-01

    Russian and foreign publications have been analyzed for understanding the role of micro- and nano- particles in distribution and migration of technogenic elements in soils in different landscape conditions. A technique for application of various fractionation methods to separate and study -particles of different size down to micro- and nano-level has been developed. The dry sit method on the first stage of particle separation is recommend to be followed by the membrane filtration method. For obtaining more comprehensive information, combinations of fractionation technique should be chosen taking into account that (1) the efficiency of particles' separation using subsequent technique would be higher than using the preceding one; (2) separation methods should preferably be based on different principles (separation according size, density, charge etc.); (3) initial fractionation should separate particles according to their size, that makes possible to create an even scale for various samples. A study of distribution and balance of technogenic radionuclides' in soil particles of the size intervals 1.0—0.25, 0.25-0.1, 0.1-0.05, 0.05-0.01, 0.01-0.005, 0.005-0.001 and <0.001 mm in the Yenisey flood plain landscapes proved a significant role of both the particle size and the portion of contaminated fraction in contribution to the total radionuclide inventory in the soil layers. Contribution of the silt particles (0,05-0,01 mm) to Cs-137 contamination ranged from 26 to 33,8%, 45% maximum due to "optimal" combination of both factors. Clay fraction was responsible for approximately 30% of Cs-137 contained in soil horizons due to higher sorption capacity. Relatively high correlation between the activity of 152,154Eu and 60 and the content of silt and clay allowed suggesting their incorporation mainly in clay fraction. Selected experimental plots near the Kola NPP (northern taiga) were used to compare soil particles (fractions 140-71; 71-40 and < 40 µm) in their ability to

  12. Measurement of α -particle quenching in LAB based scintillator in independent small-scale experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Krosigk, B.; Chen, M.; Hans, S.

    2016-02-29

    The α -particle light response of liquid scintillators based on linear alkylbenzene (LAB) has been measured with three different experimental approaches. In the first approach, α -particles were produced in the scintillator via 12C(n,α) 9 Be reactions. In the second approach, the scintillator was loaded with 2 % of natSm providing an α-emitter, 147Sm, as an internal source. In the third approach, a scintillator flask was deployed into the water-filled SNO+ detector and the radioactive contaminants 222Rn, 218Po and 214Po provided the α -particle signal. The behavior of the observed α -particle light outputs are in agreement with each casemore » successfully described by Birks’ law. The resulting Birks parameter kB ranges from (0.0066±0.0016) to (0.0076±0.0003) cm/MeV. In the first approach, the α -particle light response was measured simultaneously with the light response of recoil protons produced via neutron–proton elastic scattering. This enabled a first time a direct comparison of kB describing the proton and the α -particle response of LAB based scintillator. The observed kB values describing the two light response functions deviate by more than 5σ . The presented results are valuable for all current and future detectors, using LAB based scintillator as target, since they depend on an accurate knowledge of the scintillator response to different particles.« less

  13. Drilling Fluid Contamination during Riser Drilling Quantified by Chemical and Molecular Tracers

    NASA Astrophysics Data System (ADS)

    Inagaki, F.; Lever, M. A.; Morono, Y.; Hoshino, T.

    2012-12-01

    Stringent contamination controls are essential to any type of microbiological investigation, and are particularly challenging in ocean drilling, where samples are retrieved from hundreds of meters below the seafloor. In summer 2012, Integrated Ocean Drilling Expedition 337 aboard the Japanese vessel Chikyu pioneered the use of chemical tracers in riser drilling while exploring the microbial ecosystem of coalbeds 2 km below the seafloor off Shimokita, Japan. Contamination tests involving a perfluorocarbon tracer that had been successfully used during past riserless drilling expeditions were complemented by DNA-based contamination tests. In the latter, likely microbial contaminants were targeted via quantitative polymerase chain reaction assays using newly designed, group-specific primers. Target groups included potential indicators of (a) drilling mud viscosifiers (Xanthomonas, Halomonas), (b) anthropogenic wastewater (Bifidobacterium, Blautia, Methanobrevibacter), and (c) surface seawater (SAR 11, Marine Group I Archaea). These target groups were selected based on past evidence suggesting viscosifiers, wastewater, and seawater as the main sources of microbial contamination in cores retrieved by ocean drilling. Analyses of chemical and molecular tracers are in good agreement, and indicate microorganisms associated with mud viscosifiers as the main contaminants during riser drilling. These same molecular analyses are then extended to subseafloor samples obtained during riserless drilling operations. General strategies to further reduce the risk of microbial contamination during riser and riserless drilling operations are discussed.

  14. Friction between footwear and floor covered with solid particles under dry and wet conditions.

    PubMed

    Li, Kai Way; Meng, Fanxing; Zhang, Wei

    2014-01-01

    Solid particles on the floor, both dry and wet, are common but their effects on the friction on the floor were seldom discussed in the literature. In this study, friction measurements were conducted to test the effects of particle size of solid contaminants on the friction coefficient on the floor under footwear, floor, and surface conditions. The results supported the hypothesis that particle size of solids affected the friction coefficient and the effects depended on footwear, floor, and surface conditions. On dry surfaces, solid particles resulted in friction loss when the Neolite footwear pad was used. On the other hand, solid particles provided additional friction when measured with the ethylene vinyl acetate (EVA) footwear pad. On wet surfaces, introducing solid particles made the floors more slip-resistant and such effects depended on particle size. This study provides information for better understanding of the mechanism of slipping when solid contaminants are present.

  15. Simultaneous laser-induced fluorescence and scattering detection of individual particles separated by capillary electrophoresis.

    PubMed

    Andreyev, Dmitry; Arriaga, Edgar A

    2007-07-15

    This technical note describes a detector capable of simultaneously monitoring scattering and fluorescence signals of individual particles separated by capillary electrophoresis. Due to its nonselective nature, scattering alone is not sufficient to identify analyte particles. However, when the analyte particles are fluorescent, the detector described here is able to identify simultaneously occurring scattering and fluorescent signals, even when contaminating particles (i.e., nonfluorescent) are present. Both fluorescent polystyrene particles and 10-nonyl acridine orange (NAO)-labeled mitochondria were used as models. Fluorescence versus scattering (FVS) plots made it possible to identify two types of particles and a contaminant in a mixture of polystyrene particles. We also analyzed NAO-labeled mitochondria before and after cryogenic storage; the mitochondria FVS plots changed with storage, which suggests that the detector reported here is suitable for monitoring subtle changes in mitochondrial morphology that would not be revealed by monitoring only fluorescence or scattering signals.

  16. Laboratory Evaluation of Light Obscuration Particle Counter Contamination Limits for Aviation Fuel

    DTIC Science & Technology

    2015-11-01

    diesel product for ground use (1). At a minimum free water and particulate by color (as specified in the appendix of ASTM D2276) are checked daily...used in the hydraulics/hydraulic fluid industry. In 1999 ISO adopted ISO 11171 Hydraulic fluid power — Calibration of automatic particle counters...for liquids, replacing ISO 4402, as an international standard for the calibration of liquid particle counters giving NIST traceability to particle

  17. Unique DNA-barcoded aerosol test particles for studying aerosol transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.

    Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The usemore » of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.« less

  18. Unique DNA-barcoded aerosol test particles for studying aerosol transport

    DOE PAGES

    Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.; ...

    2016-03-22

    Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The usemore » of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.« less

  19. Ejected Particle Size Distributions from Shocked Metal Surfaces

    DOE PAGES

    Schauer, M. M.; Buttler, W. T.; Frayer, D. K.; ...

    2017-04-12

    Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.

  20. Ejected Particle Size Distributions from Shocked Metal Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schauer, M. M.; Buttler, W. T.; Frayer, D. K.

    Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.

  1. Electrosurgical Smoke: Ultrafine Particle Measurements and Work Environment Quality in Different Operating Theatres.

    PubMed

    Romano, Francesco; Gustén, Jan; De Antonellis, Stefano; Joppolo, Cesare M

    2017-01-30

    Air cleanliness in operating theatres (OTs) is an important factor for preserving the health of both the patient and the medical staff. Particle contamination in OTs depends mainly on the surgery process, ventilation principle, personnel clothing systems and working routines. In many open surgical operations, electrosurgical tools (ESTs) are used for tissue cauterization. ESTs generate a significant airborne contamination, as surgical smoke. Surgical smoke is a work environment quality problem. Ordinary surgical masks and OT ventilation systems are inadequate to control this problem. This research work is based on numerous monitoring campaigns of ultrafine particle concentrations in OTs, equipped with upward displacement ventilation or with a downward unidirectional airflow system. Measurements performed during ten real surgeries highlight that the use of ESTs generates a quite sharp and relevant increase of particle concentration in the surgical area as well within the entire OT area. The measured contamination level in the OTs are linked to surgical operation, ventilation principle, and ESTs used. A better knowledge of airborne contamination is crucial for limiting the personnel's exposure to surgical smoke. Research results highlight that downward unidirectional OTs can give better conditions for adequate ventilation and contaminant removal performances than OTs equipped with upward displacement ventilation systems.

  2. Electrosurgical Smoke: Ultrafine Particle Measurements and Work Environment Quality in Different Operating Theatres

    PubMed Central

    Romano, Francesco; Gustén, Jan; De Antonellis, Stefano; Joppolo, Cesare M.

    2017-01-01

    Air cleanliness in operating theatres (OTs) is an important factor for preserving the health of both the patient and the medical staff. Particle contamination in OTs depends mainly on the surgery process, ventilation principle, personnel clothing systems and working routines. In many open surgical operations, electrosurgical tools (ESTs) are used for tissue cauterization. ESTs generate a significant airborne contamination, as surgical smoke. Surgical smoke is a work environment quality problem. Ordinary surgical masks and OT ventilation systems are inadequate to control this problem. This research work is based on numerous monitoring campaigns of ultrafine particle concentrations in OTs, equipped with upward displacement ventilation or with a downward unidirectional airflow system. Measurements performed during ten real surgeries highlight that the use of ESTs generates a quite sharp and relevant increase of particle concentration in the surgical area as well within the entire OT area. The measured contamination level in the OTs are linked to surgical operation, ventilation principle, and ESTs used. A better knowledge of airborne contamination is crucial for limiting the personnel’s exposure to surgical smoke. Research results highlight that downward unidirectional OTs can give better conditions for adequate ventilation and contaminant removal performances than OTs equipped with upward displacement ventilation systems. PMID:28146089

  3. (1→3)-β-d-Glucan and Galactomannan for Differentiating Chemical "Black Particles" and Fungal Particles Inside Peritoneal Dialysis Tubing.

    PubMed

    Leelahavanichkul, Asada; Pongpirul, Krit; Thongbor, Nisa; Worasilchai, Navaporn; Petphuak, Kwanta; Thongsawang, Bussakorn; Towannang, Piyaporn; Lorvinitnun, Pichet; Sukhontasing, Kanya; Katavetin, Pisut; Praditpornsilpa, Kearkiat; Eiam-Ong, Somchai; Chindamporn, Ariya; Kanjanabuch, Talerngsak

    2016-01-01

    ♦ Aseptic, sheet-like foreign bodies observed inside Tenckhoff (TK) catheter lumens (referred to as "black particles") are, on gross morphology, hardly distinguishable from fungal colonization because these contaminants adhere tightly to the catheter. Detection of fungal cell wall components using (1→3)-β-d-glucan (BG) and galactomannan index (GMI) might be an alternative method for differentiating the particles. ♦ Foreign particles retrieved from TK catheters in 19 peritoneal dialysis patients were examined microscopically and cultured for fungi and bacteria. Simultaneously, a Fungitell test (Associates of Cape Cod, Falmouth, MA, USA) and a Platelia Aspergillus ELISA assay (Bio-Rad Laboratories, Marnes-La-Coquette, France) were used to test the spent dialysate for BG and GMI respectively. ♦ Of the 19 patients, 9 had aseptic black particles and 10 had fungal particles in their tubing. The fungal particles looked grainy, were tightly bound to the catheter, and appeared more "colorful" than the black particles, which looked sheet-like and could easily be removed by milking the tubing. Compared with effluent from patients having aseptic particles, effluent from patients with fungal particles had significantly higher levels of BG (501 ± 70 pg/mL vs. 46 ± 10 pg/mL) and GMI (10.98 ± 2.17 vs. 0.25 ± 0.05). Most of the fungi that formed colonies inside the catheter lumen were molds not usually found in clinical practice, but likely from water or soil, suggesting environmental contamination. Interestingly, in all 10 patients with fungal colonization, visualization of black particles preceded a peritonitis episode and TK catheter removal by approximately 1-3 weeks; in patients with aseptic particles, a 17-week onset to peritonitis was observed. ♦ In all patients with particle-coated peritoneal dialysis tubing, spent dialysate should be screened for BG and GMI. Manipulation of the TK catheter by squeezing, hard flushing, or even brushing to dislodge black

  4. Development of an analytical method for the targeted screening and multi-residue quantification of environmental contaminants in urine by liquid chromatography coupled to high resolution mass spectrometry for evaluation of human exposures.

    PubMed

    Cortéjade, A; Kiss, A; Cren, C; Vulliet, E; Buleté, A

    2016-01-01

    The aim of this study was to develop an analytical method and contribute to the assessment of the Exposome. Thus, a targeted analysis of a wide range of contaminants in contact with humans on daily routines in urine was developed. The method focused on a list of 38 contaminants, including 12 pesticides, one metabolite of pesticide, seven veterinary drugs, five parabens, one UV filter, one plastic additive, two surfactants and nine substances found in different products present in the everyday human environment. These contaminants were analyzed by high performance liquid chromatography coupled to high resolution mass spectrometry (HPLC-HRMS) with a quadrupole-time-of-flight (QqToF) instrument from a raw urinary matrix. A validation according to the FDA guidelines was employed to evaluate the specificity, linear or quadratic curve fitting, inter- and intra-day precision, accuracy and limits of detection and quantification (LOQ). The developed analysis allows for the quantification of 23 contaminants in the urine samples, with the LOQs ranging between 4.3 ng.mL(-1) and 113.2 ng.mL(-1). This method was applied to 17 urine samples. Among the targeted contaminants, four compounds were detected in samples. One of the contaminants (tributyl phosphate) was detected below the LOQ. The three others (4-hydroxybenzoic acid, sodium dodecylbenzenesulfonate and O,O-diethyl thiophosphate potassium) were detected but did not fulfill the validation criteria for quantification. Among these four compounds, two of them were found in all samples: tributyl phosphate and the surfactant sodium dodecylbenzenesulfonate. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Particle sizes in slash fire smoke.

    Treesearch

    David V. Sandberg; Robert E. Martin

    1975-01-01

    Particulate emissions are the most objectionable atmospheric contaminant from forest burning. Little is known of the particulate sizes, and this research was done under laboratory conditions to obtain particle size information. Comments are made concerning techniques for future work in this field.

  6. Nanoparticle contamination control for EUVL-technology: especially for photomasks in carriers and scanners

    NASA Astrophysics Data System (ADS)

    Fissan, Heinz; Asbach, Christof; Kuhlbusch, Thomas A. J.; Wang, Jing; Pui, David Y. H.; Yook, Se-Jin; Kim, Jung H.

    2009-05-01

    Extreme Ultraviolet Lithography (EUVL) is a leading lithography technology for the sub-32 nm chip manufacturing technology. Photomasks, in a mask carrier or inside a vacuum scanner, need to be protected from contamination by nanoparticles larger than the minimum feature size expected from this technology. The most critical part with respect to contamination in the EUVL-system is the photomask. The protection is made more difficult because protective pellicles cannot be used, due to the attenuation of the EUV beam by the pellicle. We have defined a set of protection schemes to protect EUVL photomasks from particle contamination and developed models to describe their effectiveness at atmospheric pressure (e.g. in mask carriers) or during scanning operation at low pressure. These schemes include that the mask is maintained facing down to avoid gravitational settling and the establishment of a thermal gradient underneath the mask surface to thermophoretically repel particles. Experimental verification studies of the models were carried out in atmospheric-pressure carriers and in a vacuum system down to about 3.3 Pa. Particles with sizes between 60 (for experiments, isn't it 125 nm?) nm and 250 nm were injected into the vacuum chamber with controlled speed and concentration to validate the analytical and numerical models. It could be shown that a deterministic approach using free molecular expressions can be used to accurately describe particle deposition at these low pressure levels. Thermophoresis was found to be very effective at both atmospheric and low pressure against the diffusional particle deposition, whereas inertial particle deposition of large and/or fast particles can likely not be prevented. A review of the models and their verification will be presented in this paper.

  7. Concentrations, loads, and yields of particle-associated contaminants in urban creeks, Austin, Texas, 1999-2004

    USGS Publications Warehouse

    Mahler, B.J.; Van Metre, P.C.; Wilson, J.T.; Guilfoyle, A.L.; Sunvison, M.W.

    2006-01-01

    Concentrations, loads, and yields of particle-associated (hydrophobic) contaminants (PACs) in urban runoff in creeks in Austin, Texas, were characterized using an innovative approach: large-volume suspended-sediment sampling. This approach isolates suspended sediment from the water column in quantities sufficient for direct chemical analysis of PACs. During 1999-2004, samples were collected after selected rain events from each of five stream sites and Barton Springs for a study by the U.S. Geological Survey, in cooperation with the City of Austin. Sediment isolated from composited samples was analyzed for major elements, metals, organochlorine compounds, and polycyclic aromatic hydrocarbons (PAHs). In addition, at the Shoal Creek and Boggy Creek sites, individual samples for some events were analyzed to investigate within-event variation in sediment chemistry. Organochlorine compounds detected in suspended sediment included chlordane, dieldrin, DDD, DDE, DDT, and polychlorinated biphenyls (PCBs). Concentrations of PACs varied widely both within and between sites, with higher concentrations at the more urban sites and multiple nondetections at the least-urban sites. Within-site variation for metals and PAHs was smaller than between-site variation, and concentrations and yields of these and the organochlorine compounds correlated positively to the percentage of urban land use in the watershed. Loads of most PACs tested correlated significantly with suspended-sediment loads. Concentrations of most PACs correlated strongly with three measures of urban land use. Variation in suspended-sediment chemistry during runoff events was investigated at the Shoal and Boggy Creek sites. Five of the eight metals analyzed, dieldrin, chlordane, PCBs, and PAHs were detected at the highest concentrations in the first sample collected at the Shoal Creek site, a first-flush effect, but not at the Boggy Creek site. Temporal patterns in concentrations of DDT and its breakdown products

  8. Treatment planning with intensity modulated particle therapy for multiple targets in stage IV non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Anderle, Kristjan; Stroom, Joep; Vieira, Sandra; Pimentel, Nuno; Greco, Carlo; Durante, Marco; Graeff, Christian

    2018-01-01

    Intensity modulated particle therapy (IMPT) can produce highly conformal plans, but is limited in advanced lung cancer patients with multiple lesions due to motion and planning complexity. A 4D IMPT optimization including all motion states was expanded to include multiple targets, where each target (isocenter) is designated to specific field(s). Furthermore, to achieve stereotactic treatment planning objectives, target and OAR weights plus objective doses were automatically iteratively adapted. Finally, 4D doses were calculated for different motion scenarios. The results from our algorithm were compared to clinical stereotactic body radiation treatment (SBRT) plans. The study included eight patients with 24 lesions in total. Intended dose regimen for SBRT was 24 Gy in one fraction, but lower fractionated doses had to be delivered in three cases due to OAR constraints or failed plan quality assurance. The resulting IMPT treatment plans had no significant difference in target coverage compared to SBRT treatment plans. Average maximum point dose and dose to specific volume in OARs were on average 65% and 22% smaller with IMPT. IMPT could also deliver 24 Gy in one fraction in a patient where SBRT was limited due to the OAR vicinity. The developed algorithm shows the potential of IMPT in treatment of multiple moving targets in a complex geometry.

  9. System to control contamination during retrieval of buried TRU waste

    DOEpatents

    Menkhaus, Daniel E.; Loomis, Guy G.; Mullen, Carlan K.; Scott, Donald W.; Feldman, Edgar M.; Meyer, Leroy C.

    1993-01-01

    A system to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  10. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

    1999-02-09

    A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

  11. Swarming behavior of gradient-responsive Brownian particles in a porous medium.

    PubMed

    Grančič, Peter; Štěpánek, František

    2012-07-01

    Active targeting by Brownian particles in a fluid-filled porous environment is investigated by computer simulation. The random motion of the particles is enhanced by diffusiophoresis with respect to concentration gradients of chemical signals released by the particles in the proximity of a target. The mathematical model, based on a combination of the Brownian dynamics method and a diffusion problem is formulated in terms of key parameters that include the particle diffusiophoretic mobility and the signaling threshold (the distance from the target at which the particles release their chemical signals). The results demonstrate that even a relatively simple chemical signaling scheme can lead to a complex collective behavior of the particles and can be a very efficient way of guiding a swarm of Brownian particles towards a target, similarly to the way colonies of living cells communicate via secondary messengers.

  12. Genesis Solar Wind Sample 61422: Experiment in Variation of Sequence of Cleaning Solvent for Removing Carbon-Bearing Contamination

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Kuhlman, K. R.; Allums, K. K.; Gonzalez, C. P.; Jurewicz, A. J. G.; Burnett, D. S.; Woolum, D. S.

    2015-01-01

    The recovered Genesis collector fragments are heavily contaminated with crash-derived particulate debris. However, megasonic treatment with ultra-pure-water (UPW; resistivity (is) greater than18 meg-ohm-cm) removes essentially all particulate contamination greater than 5 microns in size [e.g.1] and is thus of considerable importance. Optical imaging of Si sample 60336 revealed the presence of a large C-rich particle after UPW treatment that was not present prior to UPW. Such handling contamination is occasionally observed, but such contaminants are normally easily removed by UPW cleaning. The 60336 particle was exceptional in that, surprisingly, it was not removed by additional UPW or by hot xylene or by aqua regia treatment. It was eventually removed by treatment with NH3-H2O2. Our best interpretation of the origin of the 60336 particle was that it was adhesive from the Post-It notes used to stabilize samples for transport from Utah after the hard landing. It is possible that the insoluble nature of the 60336 particle comes from interaction of the Post-It adhesive with UPW. An occasional bit of Post-It adhesive is not a major concern, but C particulate contamination also occurs from the heat shield of the Sample Return Capsule (SRC) and this is mixed with inorganic contamination from the SRC and the Utah landing site. If UPW exposure also produced an insoluble residue from SRC C, this would be a major problem in chemical treatments to produce clean surfaces for analysis. This paper reports experiments to test whether particulate contamination was removed more easily if UPW treatment was not used.

  13. Quantitative evaluation of high-energy O- ion particle flux in a DC magnetron sputter plasma with an indium-tin-oxide target

    NASA Astrophysics Data System (ADS)

    Suyama, Taku; Bae, Hansin; Setaka, Kenta; Ogawa, Hayato; Fukuoka, Yushi; Suzuki, Haruka; Toyoda, Hirotaka

    2017-11-01

    O- ion flux from the indium tin oxide (ITO) sputter target under Ar ion bombardment is quantitatively evaluated using a calorimetry method. Using a mass spectrometer with an energy analyzer, O- energy distribution is measured with spatial dependence. Directional high-energy O- ion ejected from the target surface is observed. Using a calorimetry method, localized heat flux originated from high-energy O- ion is measured. From absolute evaluation of the heat flux from O- ion, O- particle flux in order of 1018 m-2 s-1 is evaluated at a distance of 10 cm from the target. Production yield of O- ion on the ITO target by one Ar+ ion impingement at a kinetic energy of 244 eV is estimated to be 3.3  ×  10-3 as the minimum value.

  14. Contamination of the environment by special purpose centrifuges used in clinical laboratories.

    PubMed Central

    Harper, G J

    1981-01-01

    The generation of aerosols and the contamination of surfaces arising from the use of a number of special purpose centrifuges have been measured. Except when sealed containers were used all the equipment tested generated airborne particles and contaminated surrounding surfaces. The magnitude of this contamination was shown to be associated with several factors, and it could be considerably reduced by the use of sealed containers, and by fitting air filters. The significance of these findings and their application are discussed. PMID:7031096

  15. Source Identification of Zn Contamination around a Zn-smelting Facility in Korea

    NASA Astrophysics Data System (ADS)

    Lee, S.; Jeon, S. K.

    2016-12-01

    With massive production of Zn for various industrial purposes, Zn release into the environment becomes highly possible, some of which might require a proper countermeasure depending on the residual concentration in environmental media. In order to set up an effective countermeasure, identification of contaminant source should be essential for determining the target object to be managed, and delineating the extent of necessary remedial work. In this study, we focus on a Zn-smelting facility located in eastern Korea where Zn concentrations in surrounding soils have been reported to exceed the contamination criteria. An abandoned mine which had been explored for Zn ores was located adjacent to the facility, and background concentration of Zn in the area was naturally high. The objective of the present study is to identify the major source of Zn contamination in the area, and to estimate the relative contributions of multiple sources, if so. In order to achieve these goals, we analyzed and compared the stable isotope ratios of Pb in the soil samples collected at different distances from the facility and the Zn concentrates (ZnS, sphalerite) of raw material in the facility. The Pb isotope ratios were further investigated by performing sequential extraction for each sample and comparing the isotopes ratios observed in each fraction of soil. In addition, possible presence of ZnS in the samples, which could be an evidence of Zn contamination by the smelting facility, was estimated by X-ray diffraction (XRD) analysis and scanning electron microscopy equipped with energy dispersive X-ray spectrometry (SEM-EDS) after separating the soil sample into the fractions with different particle sizes

  16. Rainfall erosivity in subtropical catchments and implications for erosion and particle-bound contaminant transfer: a case-study of the Fukushima region

    NASA Astrophysics Data System (ADS)

    Laceby, J. P.; Chartin, C.; Evrard, O.; Onda, Y.; Garcia-Sanchez, L.; Cerdan, O.

    2015-07-01

    The Fukushima Dai-ichi nuclear power plant (FDNPP) accident in March 2011 resulted in a significant fallout of radiocesium over the Fukushima region. After reaching the soil surface, radiocesium is almost irreversibly bound to fine soil particles. Thereafter, rainfall and snow melt run-off events transfer particle-bound radiocesium downstream. Erosion models, such as the Universal Soil Loss Equation (USLE), depict a proportional relationship between rainfall and soil erosion. As radiocesium is tightly bound to fine soil and sediment particles, characterizing the rainfall regime of the fallout-impacted region is fundamental to modelling and predicting radiocesium migration. Accordingly, monthly and annual rainfall data from ~ 60 meteorological stations within a 100 km radius of the FDNPP were analysed. Monthly rainfall erosivity maps were developed for the Fukushima coastal catchments illustrating the spatial heterogeneity of rainfall erosivity in the region. The mean average rainfall in the Fukushima region was 1387 mm yr-1 (σ 230) with the mean rainfall erosivity being 2785 MJ mm ha-1 yr-1 (σ 1359). The results indicate that the majority of rainfall (60 %) and rainfall erosivity (86 %) occurs between June and October. During the year, rainfall erosivity evolves positively from northwest to southeast in the eastern part of the prefecture, whereas a positive gradient from north to south occurs in July and August, the most erosive months of the year. During the typhoon season, the coastal plain and eastern mountainous areas of the Fukushima prefecture, including a large part of the contamination plume, are most impacted by erosive events. Understanding these rainfall patterns, particularly their spatial and temporal variation, is fundamental to managing soil and particle-bound radiocesium transfers in the Fukushima region. Moreover, understanding the impact of typhoons is important for managing sediment transfers in subtropical regions impacted by cyclonic activity.

  17. The margination propensity of spherical particles for vascular targeting in the microcirculation

    PubMed Central

    Gentile, Francesco; Curcio, Antonio; Indolfi, Ciro; Ferrari, Mauro; Decuzzi, Paolo

    2008-01-01

    The propensity of circulating particles to drift laterally towards the vessel walls (margination) in the microcirculation has been experimentally studied using a parallel plate flow chamber. Fluorescent polystyrene particles, with a relative density to water of just 50 g/cm3comparable with that of liposomal or polymeric nanoparticles used in drug delivery and bio-imaging, have been used with a diameter spanning over three order of magnitudes from 50 nm up to 10 μm. The number n∼s of particles marginating per unit surface have been measured through confocal fluorescent microscopy for a horizontal chamber, and the corresponding total volume V∼s of particles has been calculated. Scaling laws have been derived as a function of the particle diameter d. In horizontal capillaries, margination is mainly due to the gravitational force for particles with d > 200 nm and V∼s increases with d4; whereas for smaller particles V∼s increases with d3. In vertical capillaries, since the particles are heavier than the fluid they would tend to marginate towards the walls in downward flows and towards the center in upward flows, with V∼s increasing with d9/2. However, the margination in vertical capillaries is predicted to be much smaller than in horizontal capillaries. These results suggest that, for particles circulating in an external field of volume forces (gravitation or magnetic), the strategy of using larger particles designed to marginate and adhere firmly to the vascular walls under flow could be more effective than that of using particles sufficiently small (d < 200 nm) to hopefully cross a discontinuous endothelium. PMID:18702833

  18. System to control contamination during retrieval of buried TRU waste

    DOEpatents

    Menkhaus, D.E.; Loomis, G.G.; Mullen, C.K.; Scott, D.W.; Feldman, E.M.; Meyer, L.C.

    1993-04-20

    A system is described to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  19. Experimental investigation of particle surface interactions for turbomachinery application

    NASA Astrophysics Data System (ADS)

    Hamed, A.; Tabakoff, W.

    This paper describes an experimental investigation to determine the particle restitution characteristics after impacting solid targets in a particulate flow wind tunnel. The tests simulate the two phase flow conditions encountered in turbomachinery operating in particle laden flow environments. Both incoming and rebounding velocities are measured using a three color Argon Ion laser in backward scattered mode through a window in the tunnel section containing the impact target. The experimental results are presented for ash particles impinging on RENE 41 targets at different impact conditions. The presented results are applicable to particle dynamics simulations in gas turbine engines and to the prediction of the associated blade surface erosion.

  20. Particulate and microbial contamination in in-use admixed intravenous infusions.

    PubMed

    Yorioka, Katsuhiro; Oie, Shigeharu; Oomaki, Masafumi; Imamura, Akihisa; Kamiya, Akira

    2006-11-01

    We compared particulate and microbial contamination in residual solutions of peripheral intravenous admixtures after the termination of drip infusion between intravenous fluids admixed with glass ampoule drugs and those admixed with pre-filled syringe drugs. The mean number of particles>or=1.3 microm in diameter per 1 ml of residual solution was 758.4 for fluids (n=60) admixed with potassium chloride in a glass ampoule (20 ml volume), 158.6 for fluids (n=63) admixed with potassium chloride in a pre-filled syringe (20 ml volume), 736.5 for fluids (n=66) admixed with sodium chloride in a glass ampoule (20 ml volume), 179.2 for fluids (n=15) admixed with sodium chloride in a pre-filled syringe (20 ml volume), 1884.5 in fluids (n=30) admixed with dobutamine hydrochloride in 3 glass ampoules (5 ml volume), and 178.9 (n=10) in diluted dobutamine hydrochloride in pre-filled syringes (50 ml volume: For these samples alone, particulate and microbial contamination were evaluated in sealed products.) Thus, for potassium chloride or sodium chloride for injection, the number of particles>or=1.3 microm in diameter in the residual intravenous solution was significantly higher for fluids admixed with glass ampoule drugs than for those admixed with pre-filled syringe drugs (p<0.0001). For dobutamine hydrochloride for injection, the number of particles>or=1.3 microm in diameter in the residual intravenous solution was estimated to be higher for fluids admixed with its glass ampoule drug than for those admixed with its pre-filled syringe drug. Observation of the residual solutions of fluids admixed with potassium chloride, sodium chloride, or dobutamine hydrochloride in glass ampoules using an electron microscope with an X-ray analyzer showed glass fragments in each residual solution. Therefore, for the prevention of glass particle contamination in peripheral intravenous admixtures, the use of pre-filled syringe drugs may a useful method. No microbial contamination was observed in

  1. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, James R.; Reich, Morris; Ludewig, Hans; Todosow, Michael

    1999-02-09

    A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.

  2. Particle platforms for cancer immunotherapy

    PubMed Central

    Serda, Rita Elena

    2013-01-01

    Elevated understanding and respect for the relevance of the immune system in cancer development and therapy has led to increased development of immunotherapeutic regimens that target existing cancer cells and provide long-term immune surveillance and protection from cancer recurrence. This review discusses using particles as immune adjuvants to create vaccines and to augment the anticancer effects of conventional chemotherapeutics. Several particle prototypes are presented, including liposomes, polymer nanoparticles, and porous silicon microparticles, the latter existing as either single- or multiparticle platforms. The benefits of using particles include immune-cell targeting, codelivery of antigens and immunomodulatory agents, and sustained release of the therapeutic payload. Nanotherapeutic-based activation of the immune system is dependent on both intrinsic particle characteristics and on the immunomodulatory cargo, which may include danger signals known as pathogen-associated molecular patterns and cytokines for effector-cell activation. PMID:23761969

  3. Demonstration of an In-Situ Friction-Sound Probe for Mapping Particle Size at Contaminated Sediment Sites

    DTIC Science & Technology

    2013-09-01

    management practices resulting in the release of contaminants to soil , sediment, and groundwater in coastal environments. At contaminated sediment sites it...the release of contaminants to soil , sediment, and groundwater in coastal environments. Areas of potential concern at these sites are identified by...study will acquire additional soil and groundwater data necessary to satisfactorily evaluate remedial technologies and develop cleanup goals supporting

  4. Surfactant-free Colloidal Particles with Specific Binding Affinity

    PubMed Central

    2017-01-01

    Colloidal particles with specific binding affinity are essential for in vivo and in vitro biosensing, targeted drug delivery, and micrometer-scale self-assembly. Key to these techniques are surface functionalizations that provide high affinities to specific target molecules. For stabilization in physiological environments, current particle coating methods rely on adsorbed surfactants. However, spontaneous desorption of these surfactants typically has an undesirable influence on lipid membranes. To address this issue and create particles for targeting molecules in lipid membranes, we present here a surfactant-free coating method that combines high binding affinity with stability at physiological conditions. After activating charge-stabilized polystyrene microparticles with EDC/Sulfo-NHS, we first coat the particles with a specific protein and subsequently covalently attach a dense layer of poly(ethyelene) glycol. This polymer layer provides colloidal stability at physiological conditions as well as antiadhesive properties, while the protein coating provides the specific affinity to the targeted molecule. We show that NeutrAvidin-functionalized particles bind specifically to biotinylated membranes and that Concanavalin A-functionalized particles bind specifically to the glycocortex of Dictyostelium discoideum cells. The affinity of the particles changes with protein density, which can be tuned during the coating procedure. The generic and surfactant-free coating method reported here transfers the high affinity and specificity of a protein onto colloidal polystyrene microparticles. PMID:28847149

  5. Does Diffusion Sequester Heavy Metals in Old Contamination Soils?

    NASA Astrophysics Data System (ADS)

    Ma, J.; Jennings, A. A.

    2002-12-01

    Old soil contamination refers to soil contamination that has aged over a long period of time. For example, at some brownfields, the soil heavy metal contamination can be one hundred or more years old. When contamination is young, the heavy metals are bound relatively weakly to the soil. However, the speciation and/or mechanisms of association evolve with aging into much more stable forms. It also appears that the metals migrate deeper into the bulk soil matrix where they are less available to participate in surface-related phenomena. Previous research showed elevated heavy metal extraction result after the soil was pulverized, with all other experiment conditions remaining unchanged. This indicates the presence of sequestered heavy metal contamination within the large soil particles (aggregate). The mechanisms of sequestering are uncertain, but diffusion appears to be a major factor. There are two possible pathways of diffusion that can account for heavy metal sequestering: solid-state diffusion through the bulk aggregate or liquid-phase diffusion through micro-pores within the aggregate structure. The second diffusion mechanism can be coupled with sorption (or other surface-related phenomena) on the pore walls. The remediation of sequestered heavy metals is also impacted by diffusion. Grinding a soil significantly reduces its average particle size. This exposes more of its internal bulk volume to extraction and results in much shorter diffusion pathway for the sequestered heavy metals to be released. Evidence has illustrated that this both improves remediation efficiency and provides a method by which the degree of sequestering can be quantified. This paper will present the results of ongoing research that is developing methods to identify the mechanisms of, quantify the magnitude of and determine the relative importance of (i.e. risk analysis) heavy metals sequestered in old contamination soils.

  6. In situ and laboratory bioassays with Chironomus riparius larvae to assess toxicity of metal contamination in rivers: the relative toxic effect of sediment versus water contamination.

    PubMed

    Faria, Mafalda S; Lopes, Ricardo J; Nogueira, António J A; Soares, Amadeu M V M

    2007-09-01

    We used bioassays employing head capsule width and body length increase of Chironomus riparius larvae as end points to evaluate metal contamination in streams. Bioassays were performed in situ near an abandoned Portuguese goldmine in the spring of 2003 and 2004. Bioassays also were performed under laboratory conditions with water and sediment collected from each stream to verify if laboratory bioassays could detect in situ toxicity and to evaluate the relative contribution of sediment and water to overall toxicity. We used field sediments with control water and control sediments with field water to discriminate between metal contamination in water and sediment. Field water with dry and sieved, organic matter-free, and nontreated sediments was used to determine the toxicity of heavy metals that enter the organism through ingested material. In both in situ and laboratory bioassays, body length increase was significantly inhibited by metal contamination, whereas head capsule width was not affected. Body length increase was more affected by contaminated sediment compared to contaminated water. The lowest-effect level of heavy metals was observed in the dry and sieved sediment that prevented ingestion of sediment particles by larvae. These results suggest that body length increase of C. riparius larvae can be used to indicate the impact of metal contamination in rivers. Chironomus riparius larvae are more affected by heavy metals that enter the organism through ingested sediment than by heavy metals dissolved in the water column. Nevertheless, several factors, such as the particle size and organic matter of sediment, must be taken into account.

  7. Multivariate analysis of heavy metal contamination using river sediment cores of Nankan River, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan

    2016-04-01

    Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.

  8. A parameter selection for Raman spectroscopy-based detection of chemical contaminants in food powders

    USDA-ARS?s Scientific Manuscript database

    Raman spectroscopy technique has proven to be a reliable method for detection of chemical contaminants in food ingredients and products. To detect each contaminant particle in a food sample, it is important to determine the effective depth of penetration of laser through the food sample and the corr...

  9. Contamination and Optics Degradation as Related to an Evolving Mission Design for the Terrestrial Planet Finder

    NASA Astrophysics Data System (ADS)

    Sharma, P. K.; Lindensmith, C. A.

    1998-12-01

    Terrestrial Planet Finder (TPF) is an evolving mission in NASA's ORIGINS program designed to detect earth like planets and perform high-resolution interferometric imaging of astrophysics targets in the infrared. The planet detection concept involves the use of multiple collectors in formation flying spacecraft and nulling interferometry to isolate the image of the planet (located near a bright star) while the star image is canceled out. The concept development involves the search for 10 to 20 micron radiation from planets orbiting stars out to a distance of 3 to 15 pc using NGST type collectors passively cooled to 35 K with high quality thermal shields. The need to obtain a suitable null for planet detection results in strict requirements of signal amplitude and phase matching at the optics. This in turn implies very tight cleanliness requirements at the optics. Several contamination issues need to be taken into account in order to maintain the integrity of the optics as well as the thermal shields. Cryogenic optical surfaces, e.g., mirror surfaces, are susceptible to contamination due to formation of thin cryolayers from propulsion system exhaust and outgassing products. Detector optics at 5 to 7 K will condense almost all species with the exception of hydrogen and helium. Thermal control surfaces at 35 to 40 K will condense a host of species including water vapor, which because of the presence of several absorption peaks in the infrared, will increase the emissivity of low emissivity surfaces. The increased emissivity will result in a temperature rise for the surface which will lead to decreased performance of cryocoolers, which depend upon passive precooling of the working fluid, used to cool the detectors. The condensed contaminant film on optics will also increase non-specular reflection from the surface, i.e., an increase in Bi-directional Reflectance Distribution Function (BRDF), leading to a lowering of the image quality. Particles on optical surfaces also

  10. Accelerator target

    DOEpatents

    Schlyer, D.J.; Ferrieri, R.A.; Koehler, C.

    1999-06-29

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression. 5 figs.

  11. Accelerator target

    DOEpatents

    Schlyer, David J.; Ferrieri, Richard A.; Koehler, Conrad

    1999-01-01

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression.

  12. Hydrograph Separations can Identify Contaminant-Specific Pathways for Conservation Targeting in a Tile-Drained Watershed

    USDA-ARS?s Scientific Manuscript database

    Water quality issues continue to vex agriculture. Understanding contaminant-specific pathways could help clarify effective water quality management strategies in watersheds. Hypothesis: If conducted at nested scales, hydrograph separation techniques can identify contaminant-specific pathways that co...

  13. Toward a complete inventory of stratospheric dust particles with implications and their classification

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Mackinnon, I. D. R.; Mckay, D. S.

    1984-01-01

    As the Earth travels about the Sun it continuously sweeps up material laying in its path. The material includes dust-sized fragments of the meteors, comets and asteroids that have passed by as well as much older particles from out between the stars. These grains first become caught in the mesosphere and then slowly pass down through the stratosphere and the troposphere, finally raining down upon the Earth's surface. In the stratosphere the cosmic dust particles encounter increasing amounts of contaminants from the Earth. At the highest reaches of Earth's atmosphere these contaminants consists mainly of dust from the most explosive volcanoes, rocket exhaust, and other manmade space debris. In the troposphere windborne particles and pollen become an increasingly larger fraction of the atmospheric dust load. An increased knowledge of the nature of cosmic particles is suggested.

  14. Methodology for modeling the microbial contamination of air filters.

    PubMed

    Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho

    2014-01-01

    In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter.

  15. Methodology for Modeling the Microbial Contamination of Air Filters

    PubMed Central

    Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho

    2014-01-01

    In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter. PMID:24523908

  16. Use of Lead Isotopes to Identify Sources of Metal and Metalloid Contaminants in Atmospheric Aerosol from Mining Operations

    PubMed Central

    Félix, Omar I.; Csavina, Janae; Field, Jason; Rine, Kyle P.; Sáez, A. Eduardo; Betterton, Eric A.

    2014-01-01

    Mining operations are a potential source of metal and metalloid contamination by atmospheric particulate generated from smelting activities, as well as from erosion of mine tailings. In this work, we show how lead isotopes can be used for source apportionment of metal and metalloid contaminants from the site of an active copper mine. Analysis of atmospheric aerosol shows two distinct isotopic signatures: one prevalent in fine particles (< 1 μm aerodynamic diameter) while the other corresponds to coarse particles as well as particles in all size ranges from a nearby urban environment. The lead isotopic ratios found in the fine particles are equal to those of the mine that provides the ore to the smelter. Topsoil samples at the mining site show concentrations of Pb and As decreasing with distance from the smelter. Isotopic ratios for the sample closest to the smelter (650 m) and from topsoil at all sample locations, extending to more than 1 km from the smelter, were similar to those found in fine particles in atmospheric dust. The results validate the use of lead isotope signatures for source apportionment of metal and metalloid contaminants transported by atmospheric particulate. PMID:25496740

  17. Factors contributing to airborne particle dispersal in the operating room.

    PubMed

    Noguchi, Chieko; Koseki, Hironobu; Horiuchi, Hidehiko; Yonekura, Akihiko; Tomita, Masato; Higuchi, Takashi; Sunagawa, Shinya; Osaki, Makoto

    2017-07-06

    Surgical-site infections due to intraoperative contamination are chiefly ascribable to airborne particles carrying microorganisms. The purpose of this study is to identify the actions that increase the number of airborne particles in the operating room. Two surgeons and two surgical nurses performed three patterns of physical movements to mimic intraoperative actions, such as preparing the instrument table, gowning and donning/doffing gloves, and preparing for total knee arthroplasty. The generation and behavior of airborne particles were filmed using a fine particle visualization system, and the number of airborne particles in 2.83 m 3 of air was counted using a laser particle counter. Each action was repeated five times, and the particle measurements were evaluated through one-way analysis of variance multiple comparison tests followed by Tukey-Kramer and Bonferroni-Dunn multiple comparison tests for post hoc analysis. Statistical significance was defined as a P value ≤ .01. A large number of airborne particles were observed while unfolding the surgical gown, removing gloves, and putting the arms through the sleeves of the gown. Although numerous airborne particles were observed while applying the stockinet and putting on large drapes for preparation of total knee arthroplasty, fewer particles (0.3-2.0 μm in size) were detected at the level of the operating table under laminar airflow compared to actions performed in a non-ventilated preoperative room (P < .01). The results of this study suggest that surgical staff should avoid unnecessary actions that produce a large number of airborne particles near a sterile area and that laminar airflow has the potential to reduce the incidence of bacterial contamination.

  18. Development of suspect and non-target screening methods for detection of organic contaminants in highway runoff and fish tissue with high-resolution time-of-flight mass spectrometry.

    PubMed

    Du, Bowen; Lofton, Jonathan M; Peter, Katherine T; Gipe, Alexander D; James, C Andrew; McIntyre, Jenifer K; Scholz, Nathaniel L; Baker, Joel E; Kolodziej, Edward P

    2017-09-20

    Untreated urban stormwater runoff contributes to poor water quality in receiving waters. The ability to identify toxicants and other bioactive molecules responsible for observed adverse effects in a complex mixture of contaminants is critical to effective protection of ecosystem and human health, yet this is a challenging analytical task. The objective of this study was to develop analytical methods using liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) to detect organic contaminants in highway runoff and in runoff-exposed fish (adult coho salmon, Oncorhynchus kisutch). Processing of paired water and tissue samples facilitated contaminant prioritization and aided investigation of chemical bioavailability and uptake processes. Simple, minimal processing effort solid phase extraction (SPE) and elution procedures were optimized for water samples, and selective pressurized liquid extraction (SPLE) procedures were optimized for fish tissues. Extraction methods were compared by detection of non-target features and target compounds (e.g., quantity and peak area), while minimizing matrix interferences. Suspect screening techniques utilized in-house and commercial databases to prioritize high-risk detections for subsequent MS/MS characterization and identification efforts. Presumptive annotations were also screened with an in-house linear regression (log K ow vs. retention time) to exclude isobaric compounds. Examples of confirmed identifications (via reference standard comparison) in highway runoff include ethoprophos, prometon, DEET, caffeine, cotinine, 4(or 5)-methyl-1H-methylbenzotriazole, and acetanilide. Acetanilide was also detected in runoff-exposed fish gill and liver samples. Further characterization of highway runoff and fish tissues (14 and 19 compounds, respectively with tentative identification by MS/MS data) suggests that many novel or poorly characterized organic contaminants exist in urban

  19. Measurement of energy deposited by charged particle beams in composite targets. [0. 5 to 28. 5 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crase, K.; Farley, W.E.; Kruger, H.

    1977-11-03

    The energies deposited in composite targets by proton beams from 0.8 to 28.5 GeV energy and by an electron beam at 0.5 GeV energy were measured. The targets consisted of various thicknesses of /sup 238/U shower plates backed by a composite detector plate consisting of a 5-cm-thick CH/sub 2/ moderator and a 0.635-cm /sup 238/U plate. The spacing between the shower and detector plates was varied to allow different spreading of the shower between plates. Passive detectors (thermoluminescence dosimeters, Lexan fission track recorders, photographic emulsions, and removable /sup 238/U pieces) were used to measure the fission-fragment dose and the nonfissionmore » dose at various depths and radial positions in the targets. Plots and numerical values of the measured doses are presented for comparison with computer code calculations. To provide a basis for comparison of the effects of different particle beam energies, data along the beam axes are presented as specific dose (cal/g per incident integrated kJ/cm/sup 2/). In general, the higher the incident proton energy, the larger is the dose in the back of the target relative to that in the front.« less

  20. Assessment of topsoil contamination near the Stanisław Siedlecki Polish Polar Station in Hornsund, Svalbard, using magnetic methods

    NASA Astrophysics Data System (ADS)

    Gonet, T.; Górka-Kostrubiec, B.; Łuczak-Wilamowska, B.

    2018-03-01

    Topsoil contamination near the Stanisław Siedlecki Polish Polar Station (PPS), Hornsund, Svalbard, has been assessed using magnetic methods supplemented by chemical analyses and microscopic observations. Analysis of magnetic parameters has enabled to evaluate the concentration, magnetic mineralogy, and grain-size distribution of anthropogenic magnetic particles. Heavy-metal contamination near the PPS originates primarily from local sources. Anthropogenic spherical, magnetite-like particles were found near the station, whereas uncontaminated topsoil is devoid of such particles. Magnetic studies indicate that magnetite and goethite are the primary magnetic phases, with magnetite levels being higher in polluted area. Magnetic fraction of contaminated topsoil includes a mixture of single-domain and multi-domain grains, while uncontaminated topsoil contains smaller grains. Results show a clear correspondence between Pollution Load Index and magnetic susceptibility anomalies, and that the areal extent of PPS impact on the environment has not expanded significantly since 2004 (although a new contamination source, the scrap yard, is now present). A comparison of magnetic susceptibility measurements with metal analyses indicates that magnetic methods can be used as a rapid, inexpensive, non-invasive, and sensitive tool for the evaluation of topsoil contamination.

  1. Post-entry and volcanic contaminant abundances of zinc, copper, selenium, germanium and gallium in stratospheric micrometeorites

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1995-01-01

    Some fraction of Zn, Cu, Se, Ga and Ge in chondritic interplanetary dust particles (IDPs) collected in the lower stratosphere between 1981 May and 1984 June has a volcanic origin. I present a method to evaluate the extent of this unavoidable type of stratospheric contamination for individual particles. The mass-normalized abundances for Cu and Ge as a function of mass-normalized stratospheric residence time show their time-integrated stratospheric aerosol abundances. The Zn, Se and Ga abundances show a subdivision into two groups that span approximately two-year periods following the eruptions of the Mount St. Helens (1980 May) and El Chichon (1982 April) volcanoes. Elemental abundances in particles collected at the end of each two-year period indicate low, but not necessarily ambient, volcanic stratospheric abundances. Using this time-integrated baseline, I calculate the straospheric contaminant fractions in nine IDPs and show that Zn, SE and Ga abundances in chondritic IDPs derive in part from stratospheric aerosol contaminants. Post-entry elemental abundances (i.e., the amount that survived atmospheric entry heating of the IDP) show enrichments relative to the CI abundances but in a smaller number of particles than previously suggested.

  2. Emerging mechanistic targets in lung injury induced by combustion-generated particles.

    EPA Science Inventory

    ABSTRACT The mechanism for biological effect following pulmonary exposure to combustion-generated particles is incompletely defined. Transient receptor potential (TRP) cation channels were identified as “particle sensors” in that their activation was coupled with the initiation ...

  3. Metal and Metalloid Contaminants in Atmospheric Aerosols from Mining Operations

    PubMed Central

    Csavina, Janae; Landázuri, Andrea; Wonaschütz, Anna; Rine, Kyle; Rheinheimer, Paul; Barbaris, Brian; Conant, William; Sáez, A. Eduardo; Betterton, Eric A.

    2013-01-01

    Mining operations are potential sources of airborne metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, with potential deleterious effects on human health and ecology. Fine particulates such as those resulting from smelting operations may disperse more readily into the environment than coarser tailings dust. Fine particles also penetrate more deeply into the human respiratory system, and may become more bioavailable due to their high specific surface area. In this work, we report the size-fractionated chemical characterization of atmospheric aerosols sampled over a period of a year near an active mining and smelting site in Arizona. Aerosols were characterized with a 10-stage (0.054 to 18 μm aerodynamic diameter) multiple orifice uniform deposit impactor (MOUDI), a scanning mobility particle sizer (SMPS), and a total suspended particulate (TSP) collector. The MOUDI results show that arsenic and lead concentrations follow a bimodal distribution, with maxima centered at approximately 0.3 and 7.0 μm diameter. We hypothesize that the sub-micron arsenic and lead are the product of condensation and coagulation of smelting vapors. In the coarse size, contaminants are thought to originate as aeolian dust from mine tailings and other sources. Observation of ultrafine particle number concentration (SMPS) show the highest readings when the wind comes from the general direction of the smelting operations site. PMID:23441050

  4. Human Norovirus Aptamer Exhibits High Degree of Target Conformation-Dependent Binding Similar to That of Receptors and Discriminates Particle Functionality

    PubMed Central

    Bobay, Benjamin G.; Mertens, Brittany; Jaykus, Lee-Ann

    2016-01-01

    ABSTRACT Although two in vitro cultivation methods have been reported, discrimination of infectious human norovirus particles for study of viral inactivation is still a challenge, as both rely on reverse transcriptase quantitative PCR. Histo-blood group antigen (HBGA) binding assays serve as a proxy for estimation of infectious particles; however, they are costly and difficult to purify/modify. Some evidence suggests that certain nucleic acid aptamers only bind intact target proteins, thus displaying a high degree of conformation-dependent binding. The objective of this proof-of-concept study was to characterize the degree of conformation-dependent binding a human norovirus aptamer, M6-2, displayed with the capsid of the norovirus GII.4 Sydney (SYV) strain as a model. SYV capsids were exposed to heat, and aptamer, receptor (HBGA), and antibody binding was assessed. M6-2 and the receptor displayed similarly little target sequence-dependent binding (2.0% ± 1.3% and 0.5% ± 1.2% signal, respectively) compared to that of NS14 (26.4% ± 3.9%). The decay rates calculated with M6-2 and the receptor were also not statistically significantly different (P > 0.05), and dynamic light scattering and electron microscopy confirmed these observations. Ligand docking simulations revealed multiple distinct contacts of M6-2 in the N-terminal P1 and P2 domains of the viral capsid, with some residues close to receptor binding residues. These data suggest that single-stranded DNA aptamers like M6-2 display a high degree of target conformation-dependent binding. It is the first time nucleic acid aptamers have had this characteristic utilized and investigated to discern the infectivity status of viral particles, and the data suggest that other aptamers may show promise as valuable ligands in the study of other fastidious microorganisms. IMPORTANCE Human noroviruses impose a considerable health burden globally. However, study of their inactivation is still challenging with currently

  5. Accumulation and transfer of contaminants in killer whales (Orcinus orca) from Norway: indications for contaminant metabolism.

    PubMed

    Wolkers, Hans; Corkeron, Peter J; Van Parijs, Sofie M; Similä, Tiu; Van Bavel, Bert

    2007-08-01

    Blubber tissue of one subadult and eight male adult killer whales was sampled in Northern Norway in order to assess the degree and type of contaminant exposure and transfer in the herring-killer whale link of the marine food web. A comprehensive selection of contaminants was targeted, with special attention to toxaphenes and polybrominated diphenyl ethers (PBDEs). In addition to assessing exposure and food chain transfer, selective accumulation and metabolism issues also were addressed. Average total polychlorinated biphenyl (PCB) and pesticide levels were similar, approximately 25 microg/g lipid, and PBDEs were approximately 0.5 microg/g. This makes killer whales one of the most polluted arctic animals, with levels exceeding those in polar bears. Comparing the contamination of the killer whale's diet with the diet of high-arctic species such as white whales reveals six to more than 20 times higher levels in the killer whale diet. The difference in contaminant pattern between killer whales and their prey and the metabolic index calculated suggested that these cetaceans have a relatively high capacity to metabolize contaminants. Polychlorinated biphenyls, chlordanes, and dichlorodiphenyldichloro-ethylene (DDE) accumulate to some degree in killer whales, although toxaphenes and PBDEs might be partly broken down.

  6. Study on Microbial Deposition and Contamination onto Six Surfaces Commonly Used in Chemical and Microbiological Laboratories

    PubMed Central

    Tamburini, Elena; Donegà, Valentina; Marchetti, Maria Gabriella; Pedrini, Paola; Monticelli, Cecilia; Balbo, Andrea

    2015-01-01

    The worktops in both chemical and microbiological laboratories are the surfaces most vulnerable to damage and exposure to contamination by indoor pollutants. The rate at which particles are deposited on indoor surfaces is an important parameter to determine human exposure to airborne biological particles. In contrast to what has been established for inorganic pollutants, no limit has been set by law for microbial contamination in indoor air. To our knowledge, a comparative study on the effect of surfaces on the deposition of microbes has not been carried out. An evaluation of the microbial contamination of worktop materials could be of crucial importance, both for safety reasons and for the reliability of tests and experiments that need to be carried out in non-contaminated environments. The aim of this study was to evaluate the overall microbial contamination (fungi, mesophilic and psychrophilic bacteria, staphylococci) on six widely used worktop materials in laboratories (glass, stainless steel, fine porcelain stoneware, post-forming laminate, high-performing laminate and enamel steel) and to correlate it with the characteristics of the surfaces. After cleaning, the kinetics of microbial re-contamination were also evaluated for all surfaces. PMID:26193296

  7. Navy Field Evaluation of Particle Counter Technology for Aviation Fuel Contamination Detection

    DTIC Science & Technology

    2014-02-06

    Naval Ship’s Technical Manual NAVAIR ... ………………………………………………………Naval Air Systems Command RSD ...6. Relative Standard Deviation of >4 µm Particle Count The high RSD between particle counts of the same sediment and free water concentrations are

  8. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment.

    PubMed

    Bian, Rongjun; Joseph, Stephen; Cui, Liqiang; Pan, Genxing; Li, Lianqing; Liu, Xiaoyu; Zhang, Afeng; Rutlidge, Helen; Wong, Singwei; Chia, Chee; Marjo, Chris; Gong, Bin; Munroe, Paul; Donne, Scott

    2014-05-15

    Heavy metal contamination in croplands has been a serious concern because of its high health risk through soil-food chain transfer. A field experiment was conducted in 2010-2012 in a contaminated rice paddy in southern China to determine if bioavailability of soil Cd and Pb could be reduced while grain yield was sustained over 3 years after a single soil amendment of wheat straw biochar. Contaminated biochar particles were separated from the biochar amended soil and microscopically analyzed to help determine where, and how, metals were immobilized with biochar. Biochar soil amendment (BSA) consistently and significantly increased soil pH, total organic carbon and decreased soil extractable Cd and Pb over the 3 year period. While rice plant tissues' Cd content was significantly reduced, depending on biochar application rate, reduction in plant Pb concentration was found only in root tissue. Analysis of the fresh and contaminated biochar particles indicated that Cd and Pb had probably been bonded with the mineral phases of Al, Fe and P on and around and inside the contaminated biochar particle. Immobilization of the Pb and Cd also occurred to cation exchange on the porous carbon structure. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effects of the contamination environment on surfaces and materials

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.

    1989-01-01

    In addition to the issues that have always existed, demands are being placed on space systems for increased contamination prevention/control. Optical surveillance sensors are required to detect low radiance targets. This increases the need for very low scatter surfaces in the optical system. Particulate contamination levels typically experienced in today's working environments/habits will most likely compromise these sensors. Contamination (molecular and particulate) can also affect the survivability of space sensors in both the natural and hostile space environments. The effects of di-octyl phthalate (DOP) on sensors are discussed.

  10. Capillary trapping in thin-film flows of particles

    NASA Astrophysics Data System (ADS)

    Sauret, Alban; Gomez, Michael; Dressaire, Emilie

    Flows of suspensions have been modeled on a continuum level by using constitutive relations to capture how the viscosity varies with the particle concentration. However, in thin liquid films, where the thickness of the liquid layer is comparable to the particle size, the particles deform the liquid interface, which leads to local interactions. These effects modify the transport of particles and could result in the contamination of the surface and the loss of transported material. Here, we characterize how capillary interactions affect the transport and deposition of non-Brownian particles moving in thin liquid films. We focus on gravitational drainage flows, in which the film thickness becomes comparable to the particle size. Depending on the concentration of particles, we find that the dynamics of the drainage exhibits behavior that cannot be captured with a Newtonian model, due to the deposition of particles on the substrate. ANR-16-CE30-0009 and CNRS-PICS-07242.

  11. Laboratory Measurements of Single-Particle Polarimetric Spectrum

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.; Penttila, A.; Maconi, G.; Kassamakov, I.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Measuring scattering properties of different targets is important for material characterization, remote sensing applications, and for verifying theoretical results. Furthermore, there are usually simplifications made when we model targets and compute the scattering properties, e.g., ideal shape or constant optical parameters throughout the target material. Experimental studies help in understanding the link between the observed properties and computed results. Experimentally derived Mueller matrices of studied particles can be used as input for larger-scale scattering simulations, e.g., radiative transfer computations. This method allows to bypass the problem of using an idealized model for single-particle optical properties. While existing approaches offer ensemble- and orientation-averaged particle properties, our aim is to measure individual particles with controlled or known orientation. With the newly developed scatterometer, we aim to offer novel possibility to measure single, small (down to μm-scale) targets and their polarimetric spectra. This work presents an experimental setup that measures light scattered by a fixed small particle with dimensions ranging between micrometer and millimeter sizes. The goal of our setup is nondestructive characterization of such particles by measuring light of multiple wavelengths scattered in 360° in a horizontal plane by an ultrasonically levitating sample, whilst simultaneously controlling its 3D position and orientation. We describe the principles and design of our instrument and its calibration. We also present example measurements of real samples. This study was conducted under the support from the European Research Council, in the frame of the Advanced Grant project No. 320773 `Scattering and Absorption of Electromagnetic Waves in Particulate Media' (SAEMPL).

  12. Highly reusability surface loaded metal particles magnetic catalyst microspheres (MCM-MPs) for treatment of dye-contaminated water

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Zhang, Kun; Yin, Xiaoshuang; Yang, Wenzhong; Zhu, Hongjun

    2016-04-01

    The metal-deposited magnetic catalyst microspheres (MCM-MPs) were successfully synthesized by one facile, high yield and controllable approach. Here, the bare magnetic microspheres were firstly synthesized according to the solvothermal method. Then silica shell were coated on the surface of the magnetic microspheres via sol-gel method, and subsequently with surface modifying with amino in the purpose to form SiO2-NH2 shell. Thus, metal particles were easily adsorbed into the SiO2-NH2 shell and in-situ reduced by NaBH4 solution. All the obtained products (MCM-Cu, MCM-Ag, MCM-Pd) which were monodisperse and constitutionally stable were exhibited high magnetization and excellent catalytic activity towards dyes solution reduction. The catalytic rate ratio of MCM-Pd: MCM-Cu: MCM-Ag could be 10:3:1. Besides, some special coordination compound Cu2(OH)3Br had been generated in the in-situ reduced process of MCM-Cu, which produced superior cyclical stability (>20 times) than that of MCM-Ag and MCM-Pd. In all, those highly reusability and great catalytic efficiency of MCM-MPs show promising and great potential for treatment of dye-contaminated water.

  13. HYDROGEN ISOTOPE TARGETS

    DOEpatents

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  14. Particle Impact Ignition Test Data on a Stainless Steel Hand Valve

    NASA Technical Reports Server (NTRS)

    Peralta, Stephen

    2010-01-01

    This slide presentation reviews the particle impact ignition test of a stainless steel hand valve. The impact of particles is a real fire hazard with stainless steel hand valves, however 100 mg of particulate can be tolerated. Since it is unlikely that 100 mg of stainless steel contaminant particles can be simultaneously released into this type of valve in the WSTF configuration, this is acceptable and within statistical confidence as demonstrated by testing.

  15. Specifically targeted delivery of protein to phagocytic macrophages

    PubMed Central

    Yu, Min; Chen, Zeming; Guo, Wenjun; Wang, Jin; Feng, Yupeng; Kong, Xiuqi; Hong, Zhangyong

    2015-01-01

    Macrophages play important roles in the pathogenesis of various diseases, and are important potential therapeutic targets. Furthermore, macrophages are key antigen-presenting cells and important in vaccine design. In this study, we report on the novel formulation (bovine serum albumin [BSA]-loaded glucan particles [GMP-BSA]) based on β-glucan particles from cell walls of baker’s yeast for the targeted delivery of protein to macrophages. Using this formulation, chitosan, tripolyphosphate, and alginate were used to fabricate colloidal particles with the model protein BSA via electrostatic interactions, which were caged and incorporated BSA very tightly within the β-glucan particle shells. The prepared GMP-BSA exhibited good protein-release behavior and avoided protein leakage. The particles were also highly specific to phagocytic macrophages, such as Raw 264.7 cells, primary bone marrow-derived macrophages, and peritoneal exudate macrophages, whereas the particles were not taken up by nonphagocytic cells, including NIH3T3, AD293, HeLa, and Caco-2. We hypothesize that these tightly encapsulated protein-loaded glucan particles deliver various types of proteins to macrophages with notably high selectivity, and may have broad applications in targeted drug delivery or vaccine design against macrophages. PMID:25784802

  16. Peptide/protein vaccine delivery system based on PLGA particles.

    PubMed

    Allahyari, Mojgan; Mohit, Elham

    2016-03-03

    Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted.

  17. Peptide/protein vaccine delivery system based on PLGA particles

    PubMed Central

    Allahyari, Mojgan; Mohit, Elham

    2016-01-01

    abstract Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted. PMID:26513024

  18. Characterization of contaminant removal by an optical strip material

    NASA Astrophysics Data System (ADS)

    Hamilton, James P.; Frigo, S. P.; Caroll, Brenden J.; Assoufidyen, L.; Lewis, Matthew S.; Cook, Russell E.; de Carlo, F.

    2001-03-01

    Department of Chemistry and Engineering Physics, University of Wisconsin-Platteville, Platteville, WI 53818 Advanced Photon Source, X-Ray Facilities Division, Argonne National Laboratory, Advanced Photon Source, User Program Division, Argonne National Laboratory, *Electron Microscopy Center, Materials Science Division, Argonne National Laboratory, Argonne National Laboratory, 9700 S. Cass Ave., Argonne IL 60439-4856 USA A novel optical strip coating material, Opticlean, has been shown to safely remove fingerprints, particles and contamination from a variety of optical surfaces including coated glass, Si and first surface mirrors. Contaminant removal was monitored by Nomarski, Atomic Force and Scanning Electron Microscopy. Sub-micron features on diffraction gratings and silicon wafers were also cleaned without leaving light scattering particles on the surface. **This work was supported in part by the U.S. Department of Energy, Basic Energy Sciences-Materials Sciences, under contract no. W-31-109-ENG-38. The authors acknowledge the support and facilities provided by the Advanced Photon Source and the Electron Microscopy Center at Argonne National Laboratory.

  19. Intra-lymph node injection of biodegradable polymer particles.

    PubMed

    Andorko, James I; Tostanoski, Lisa H; Solano, Eduardo; Mukhamedova, Maryam; Jewell, Christopher M

    2014-01-02

    Generation of adaptive immune response relies on efficient drainage or trafficking of antigen to lymph nodes for processing and presentation of these foreign molecules to T and B lymphocytes. Lymph nodes have thus become critical targets for new vaccines and immunotherapies. A recent strategy for targeting these tissues is direct lymph node injection of soluble vaccine components, and clinical trials involving this technique have been promising. Several biomaterial strategies have also been investigated to improve lymph node targeting, for example, tuning particle size for optimal drainage of biomaterial vaccine particles. In this paper we present a new method that combines direct lymph node injection with biodegradable polymer particles that can be laden with antigen, adjuvant, or other vaccine components. In this method polymeric microparticles or nanoparticles are synthesized by a modified double emulsion protocol incorporating lipid stabilizers. Particle properties (e.g. size, cargo loading) are confirmed by laser diffraction and fluorescent microscopy, respectively. Mouse lymph nodes are then identified by peripheral injection of a nontoxic tracer dye that allows visualization of the target injection site and subsequent deposition of polymer particles in lymph nodes. This technique allows direct control over the doses and combinations of biomaterials and vaccine components delivered to lymph nodes and could be harnessed in the development of new biomaterial-based vaccines.

  20. Suspect screening of OH-PAHs and non-target screening of other organic compounds in wood smoke particles using HR-Orbitrap-MS.

    PubMed

    Avagyan, Rozanna; Åberg, Magnus; Westerholm, Roger

    2016-11-01

    Wood combustion has been shown to contribute significantly to emissions of polycyclic aromatic hydrocarbons and hydroxylated polycyclic aromatic hydrocarbons, compounds with toxic and carcinogenic properties. However, only a small number of hydroxylated polycyclic aromatic hydrocarbons have been determined in particles from wood combustion, usually compounds with available reference standards. In this present study, suspect and non-target screening strategies were applied to characterize the wood smoke particles from four different wood types and two combustion conditions with respect to hydroxylated polycyclic aromatic hydrocarbons and other organic compounds. In the suspect screening, 32 peaks corresponding to 12 monohydroxylated masses were tentatively identified by elemental composition assignments and matching of isotopic pattern and fragments. More than one structure was suggested for most of the measured masses. Statistical analysis was performed on the non-target screening data in order to single out significant peaks having intensities that depend on the wood type and/or combustion condition. Significant peaks were found in both negative and positive ionization modes, with unique peaks for each wood type and combustion condition, as well as a combination of both factors. Furthermore, structural elucidation of some peaks was done by comparing the spectra in the samples with spectra found in the spectral databases. Six compounds were tentatively identified in positive ionization mode, and 19 in negative ionization mode. The results in this present study demonstrate that there are significant overall differences in the chemistry of wood smoke particles that depends on both the wood type and the combustion condition used. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Metals and bacteria partitioning to various size particles in Ballona Creek storm water runoff.

    PubMed

    Brown, Jeffrey S; Stein, Eric D; Ackerman, Drew; Dorsey, John H; Lyon, Jessica; Carter, Patrick M

    2013-02-01

    Many storm water best management practice (BMP) devices function primarily by capturing particulate matter to take advantage of the well-documented association between storm water particles and pollutants. The hydrodynamic separation or settling methods used by most BMP devices are most effective at capturing medium to large particles; however, these may not be the most predominant particles associated with urban runoff. The present study examined particle size distribution in storm water runoff from an urban watershed in southern California and investigated the pollutant-particle associations of metals (Cu, Pb, Ni, and Zn) and bacteria (enterococci and Escherichia coli). During small storm events (≤0.7 cm rain), the highest concentration of pollutants were associated with a <6-µm filter fraction, which accounted for 70% of the per storm contaminant mass but made up more than 20% of the total particle mass. The pollutant-particle association changed with storm size. Most pollutant mass was associated with >35 µm size particles during a 5-cm rain event. These results suggest that much of the contaminant load in storm water runoff will not be captured by the most commonly used BMP devices, because most of these devices (e.g., hydrodynamic separators) are unable to capture particles smaller than 75 µm. Copyright © 2012 SETAC.

  2. Beauty and charm production at fixed-target experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erik E. Gottschalk

    Fixed-target experiments continue to provide insights into the physics of particle production in strong interactions. The experiments are performed with different types of beam particles of varying energies, and many different target materials. Studies of beauty and charm production are of particular interest, since experimental results can be compared to perturbative QCD calculations. It is in this context that recent results from fixed-target experiments on beauty and charm production will be reviewed.

  3. 40 CFR 141.55 - Maximum contaminant level goals for radionuclides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... radionuclides. 141.55 Section 141.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level Goals and... and radium-228 Zero. 2. Gross alpha particle activity (excluding radon and uranium) Zero. 3. Beta...

  4. 40 CFR 141.55 - Maximum contaminant level goals for radionuclides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... radionuclides. 141.55 Section 141.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level Goals and... and radium-228 Zero. 2. Gross alpha particle activity (excluding radon and uranium) Zero. 3. Beta...

  5. 40 CFR 141.55 - Maximum contaminant level goals for radionuclides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... radionuclides. 141.55 Section 141.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level Goals and... and radium-228 Zero. 2. Gross alpha particle activity (excluding radon and uranium) Zero. 3. Beta...

  6. [Parameters optimization and cleaning efficiency evaluation of attrition scrubbing remediation of Pb-contaminated soil].

    PubMed

    Yang, Wen; Huang, Jin-lou; Peng, Hui-qing; Li, Si-tuo

    2013-09-01

    Attrition scrubbing was used to remediate lead contaminated-site soil, and the main purpose was to remove fine particles and lead contaminants from the surface of sand. The optimal parameters of attrition scrubbing were determined by orthogonal experiment, and three soil samples with different lead concentration were subjected to attrition scrubbing experiments. The results showed that the optimal scrubbing parameters were: a solid ratio of 70% dry matter, a temperature of 25 degrees C, an attrition time of 30 min, and an attrition speed of 1200 r x min(-1). Before attrition scrubbing, the screening and analysis of soil showed that in all three soil samples, lead was mainly enriched on sand and fine particles, and the distribution of lead was highly correlated to the organic matter. After attrition scrubbing, the washing efficiency of the original state lead contaminated sand soil in triplicates was 67.61%, 31.71% and 41.01%, respectively, which indicates that attrition scrubbing can remove part of the fine soil and lead contaminants from the surface of sand, to accomplish the purpose of pollutants enrichment. Scanning electron microscopy (SEM) analysis showed that the sand surface became smooth after attrition scrubbing. The results above show that attrition scrubbing has a good washing effect for the remediation of lead contaminated sand soil.

  7. Pion contamination in the MICE muon beam

    NASA Astrophysics Data System (ADS)

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V. J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C. N.; Bowring, D.; Boyd, S.; Brashaw, T. W.; Bravar, U.; Bross, A. D.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, C.; Chignoli, F.; Cline, D.; Cobb, J. H.; Colling, G.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L. M.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Drews, M.; Drielsma, F.; Filthaut, F.; Fitzpatrick, T.; Franchini, P.; Francis, V.; Fry, L.; Gallagher, A.; Gamet, R.; Gardener, R.; Gourlay, S.; Grant, A.; Greis, J. R.; Griffiths, S.; Hanlet, P.; Hansen, O. M.; Hanson, G. G.; Hart, T. L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Hunt, C.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D. M.; Karadzhov, Y.; Kim, Y. K.; Kuno, Y.; Kyberd, P.; Lagrange, J.-B.; Langlands, J.; Lau, W.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Mazza, R.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J. J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nugent, J. C.; Oates, A.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M. A.; Ricciardi, S.; Roberts, T. J.; Robinson, M.; Rogers, C.; Ronald, K.; Rubinov, P.; Rucinski, P.; Sakamato, H.; Sanders, D. A.; Santos, E.; Savidge, T.; Smith, P. J.; Snopok, P.; Soler, F. J. P.; Speirs, D.; Stanley, T.; Stokes, G.; Summers, D. J.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C. D.; Uchida, M. A.; Vankova-Kirilova, G.; Virostek, S.; Vretenar, M.; Warburton, P.; Watson, S.; White, C.; Whyte, C. G.; Wilson, A.; Winter, M.; Yang, X.; Young, A.; Zisman, M.

    2016-03-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240 MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ~1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is fπ < 1.4% at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  8. Skin dose from radionuclide contamination on clothing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, D.C.; Hussein, E.M.A.; Yuen, P.S.

    1997-06-01

    Skin dose due to radio nuclide contamination on clothing is calculated by Monte Carlo simulation of electron and photon radiation transport. Contamination due to a hot particle on some selected clothing geometries of cotton garment is simulated. The effect of backscattering in the surrounding air is taken into account. For each combination of source-clothing geometry, the dose distribution function in the skin, including the dose at tissue depths of 7 mg cm{sup -2} and 1,000 Mg cm{sup -2}, is calculated by simulating monoenergetic photon and electron sources. Skin dose due to contamination by a radionuclide is then determined by propermore » weighting of & monoenergetic dose distribution functions. The results are compared with the VARSKIN point-kernel code for some radionuclides, indicating that the latter code tends to under-estimate the dose for gamma and high energy beta sources while it overestimates skin dose for low energy beta sources. 13 refs., 4 figs., 2 tabs.« less

  9. Pion contamination in the MICE muon beam

    DOE PAGES

    Adams, D.; Alekou, A.; Apollonio, M.; ...

    2016-03-01

    Here, the international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less thanmore » $$\\sim$$1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $$f_\\pi < 1.4\\%$$ at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.« less

  10. Rapid detection of bacterial contamination in cell or tissue cultures based on Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bolwien, Carsten; Sulz, Gerd; Becker, Sebastian; Thielecke, Hagen; Mertsching, Heike; Koch, Steffen

    2008-02-01

    Monitoring the sterility of cell or tissue cultures is an essential task, particularly in the fields of regenerative medicine and tissue engineering when implanting cells into the human body. We present a system based on a commercially available microscope equipped with a microfluidic cell that prepares the particles found in the solution for analysis, a Raman-spectrometer attachment optimized for non-destructive, rapid recording of Raman spectra, and a data acquisition and analysis tool for identification of the particles. In contrast to conventional sterility testing in which samples are incubated over weeks, our system is able to analyze milliliters of supernatant or cell suspension within hours by filtering relevant particles and placing them on a Raman-friendly substrate in the microfluidic cell. Identification of critical particles via microscopic imaging and subsequent image analysis is carried out before micro-Raman analysis of those particles is then carried out with an excitation wavelength of 785 nm. The potential of this setup is demonstrated by results of artificial contamination of samples with a pool of bacteria, fungi, and spores: single-channel spectra of the critical particles are automatically baseline-corrected without using background data and classified via hierarchical cluster analysis, showing great promise for accurate and rapid detection and identification of contaminants.

  11. Shielding experiments by the JASMIN Collaboration at Fermilab (II) - radioactivity measurement induced by secondary particles from the anti-proton production target

    DOE PAGES

    Hiroshi, Yashima; Norihiro, Matsuda; Yoshimi, Kasugai; ...

    2011-08-01

    The JASMIN Collaboration has performed an experiment to conduct measurements of nuclear reaction rates around the anti-proton production (Pbar) target at the Fermi National Accelerator Laboratory (FNAL). At the Pbar target station, the target, consisting of an Inconel 600 cylinder, was irradiated by a 120 GeV/c proton beam from the FNAL Main Injector. The beam intensity was 3.6 x 10 12 protons per second. The samples of Al, Nb, Cu, and Au were placed near the target to investigate the spatial and energy distribution of secondary particles emitted from it. After irradiation, the induced activities of the samples were measuredmore » by studying their gamma ray spectra using HPGe detectors. The production rates of 30 nuclides induced in Al, Nb, Cu, Au samples were obtained. These rates increase for samples placed in a forward (small angle) position relative to the target. The angular dependence of these reaction rates becomes larger for increasing threshold energy. These experimental results are compared with Monte Carlo calculations. The calculated results generally agree with the experimental results to within a factor of 2 to 3.« less

  12. Shielding experiments by the JASMIN collaboration at Fermilab (II) - Radioactivity measurement induced by secondary particles from the anti-proton production target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashima, Hiroshi; /Kyoto U., KURRI; Matsuda, Norihiro

    2011-01-01

    The JASMIN Collaboration has performed an experiment to conduct measurements of nuclear reaction rates around the anti-proton production (Pbar) target at the Fermi National Accelerator Laboratory (FNAL). At the Pbar target station, the target, consisting an Inconel 600 cylinder, was irradiated by a 120 GeV/c proton beam from the FNAL Main Injector. The beam intensity was 3.6 x 10{sub 12} protons per second. Samples of Al, Nb, Cu, and Au were placed near the target to investigate the spatial and energy distribution of secondary particles emitted from it. After irradiation, the induced activities of the samples were measured by studyingmore » their gamma ray spectra using HPGe detectors. The production rates of 30 nuclides induced in Al, Nb, Cu, Au samples were obtained. These rates increase for samples placed in a forward (small angle) position relative to the target. The angular dependence of these reaction rates becomes larger for increasing threshold energy. These experimental results are compared with Monte Carlo calculations. The calculated results generally agree with the experimental results to within a factor of 2 to 3.« less

  13. Designing the ideal model for assessment of wound contamination after gunshot injuries: a comparative experimental study

    PubMed Central

    2012-01-01

    Background Modern high-velocity projectiles produce temporary cavities and can thus cause extensive tissue destruction along the bullet path. It is still unclear whether gelatin blocks, which are used as a well-accepted tissue simulant, allow the effects of projectiles to be adequately investigated and how these effects are influenced by caliber size. Method Barium titanate particles were distributed throughout a test chamber for an assessment of wound contamination. We fired .22-caliber Magnum bullets first into gelatin blocks and then into porcine hind limbs placed behind the chamber. Two other types of bullets (.222-caliber bullets and 6.5 × 57 mm cartridges) were then shot into porcine hind limbs. Permanent and temporary wound cavities as well as the spatial distribution of barium titanate particles in relation to the bullet path were evaluated radiologically. Results A comparison of the gelatin blocks and hind limbs showed significant differences (p < 0.05) in the mean results for all parameters. There were significant differences between the bullets of different calibers in the depth to which barium titanate particles penetrated the porcine hind limbs. Almost no particles, however, were found at a penetration depth of 10 cm or more. By contrast, gas cavities were detected along the entire bullet path. Conclusion Gelatin is only of limited value for evaluating the path of high-velocity projectiles and the contamination of wounds by exogenous particles. There is a direct relationship between the presence of gas cavities in the tissue along the bullet path and caliber size. These cavities, however, are only mildly contaminated by exogenous particles. PMID:22490236

  14. Polarization of fast particle beams by collisional pumping

    DOEpatents

    Stearns, J. Warren; Kaplan, Selig N.; Pyle, Robert V.; Anderson, L. Wilmer; Ruby, Lawrence; Schlachter, Alfred S.

    1988-01-01

    Method and apparatus for highly polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and also generating a thick electron-spin-polarized medium positioned as a target for the beam. The target is made sufficiently thick to allow the beam to interact with the medium to produce collisional pumping whereby the beam becomes highly polarized.

  15. Control of manganese dioxide particles resulting from in situ chemical oxidation using permanganate.

    PubMed

    Crimi, Michelle; Ko, Saebom

    2009-02-01

    In situ chemical oxidation using permanganate is an approach to organic contaminant site remediation. Manganese dioxide particles are products of permanganate reactions. These particles have the potential to deposit in the subsurface and impact the flow-regime in/around permanganate injection, including the well screen, filter pack, and the surrounding subsurface formation. Control of these particles can allow for improved oxidant injection and transport and contact between the oxidant and contaminants of concern. The goals of this research were to determine if MnO(2) can be stabilized/controlled in an aqueous phase, and to determine the dependence of particle stabilization on groundwater characteristics. Bench-scale experiments were conducted to study the ability of four stabilization aids (sodium hexametaphosphate (HMP), Dowfax 8390, xanthan gum, and gum arabic) in maintaining particles suspended in solution under varied reaction conditions and time. Variations included particle and stabilization aid concentrations, ionic content, and pH. HMP demonstrated the most promising results, as compared to xanthan gum, gum arabic, and Dowfax 8390 based on results of spectrophotometric studies of particle behavior, particle filtration, and optical measurements of particle size and zeta potential. HMP inhibited particle settling, provided for greater particle stability, and resulted in particles of a smaller average size over the range of experimental conditions evaluated compared to results for systems that did not include HMP. Additionally, HMP did not react unfavorably with permanganate. These results indicate that the inclusion of HMP in a permanganate oxidation system improves conditions that may facilitate particle transport.

  16. LIQUID TARGET

    DOEpatents

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  17. Challenges associated with the behaviour of radioactive particles in the environment.

    PubMed

    Salbu, Brit; Kashparov, Valery; Lind, Ole Christian; Garcia-Tenorio, Rafael; Johansen, Mathew P; Child, David P; Roos, Per; Sancho, Carlos

    2018-06-01

    A series of different nuclear sources associated with the nuclear weapon and fuel cycles have contributed to the release of radioactive particles to the environment. Following nuclear weapon tests, safety tests, conventional destruction of weapons, reactor explosions and fires, a major fraction of released refractory radionuclides such as uranium (U) and plutonium (Pu) were present as entities ranging from sub microns to fragments. Furthermore, radioactive particles and colloids have been released from reprocessing facilities and civil reactors, from radioactive waste dumped at sea, and from NORM sites. Thus, whenever refractory radionuclides are released to the environment following nuclear events, radioactive particles should be expected. Results from many years of research have shown that particle characteristics such as elemental composition depend on the source, while characteristics such as particle size distribution, structure, and oxidation state influencing ecosystem transfer depend also on the release scenarios. When radioactive particles are deposited in the environment, weathering processes occur and associated radionuclides are subsequently mobilized, changing the apparent K d . Thus, particles retained in soils or sediments are unevenly distributed, and dissolution of radionuclides from particles may be partial. For areas affected by particle contamination, the inventories can therefore be underestimated, and impact and risk assessments may suffer from unacceptable large uncertainties if radioactive particles are ignored. To integrate radioactive particles into environmental impact assessments, key challenges include the linking of particle characteristics to specific sources, to ecosystem transfer, and to uptake and retention in biological systems. To elucidate these issues, the EC-funded COMET and RATE projects and the IAEA Coordinated Research Program on particles have revisited selected contaminated sites and archive samples. This COMET position

  18. The effects of particle size, shape, density and flow characteristics on particle margination to vascular walls in cardiovascular diseases.

    PubMed

    Ta, Hang T; Truong, Nghia P; Whittaker, Andrew K; Davis, Thomas P; Peter, Karlheinz

    2018-01-01

    Vascular-targeted drug delivery is a promising approach for the treatment of atherosclerosis, due to the vast involvement of endothelium in the initiation and growth of plaque, a characteristic of atherosclerosis. One of the major challenges in carrier design for targeting cardiovascular diseases (CVD) is that carriers must be able to navigate the circulation system and efficiently marginate to the endothelium in order to interact with the target receptors. Areas covered: This review draws on studies that have focused on the role of particle size, shape, and density (along with flow hemodynamics and hemorheology) on the localization of the particles to activated endothelial cell surfaces and vascular walls under different flow conditions, especially those relevant to atherosclerosis. Expert opinion: Generally, the size, shape, and density of a particle affect its adhesion to vascular walls synergistically, and these three factors should be considered simultaneously when designing an optimal carrier for targeting CVD. Available preliminary data should encourage more studies to be conducted to investigate the use of nano-constructs, characterized by a sub-micrometer size, a non-spherical shape, and a high material density to maximize vascular wall margination and minimize capillary entrapment, as carriers for targeting CVD.

  19. The Particle Adventure | Glossary

    Science.gov Websites

    Interaction Electron Electroweak Interaction Event Fermilab Fermion Fixed-target Experiment Flavor Fundamental Interaction Fundamental Particle Generation GeV Gluon Gravitational Interaction Graviton Hadron Interaction

  20. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media.

    PubMed

    Kanti Sen, Tushar; Khilar, Kartic C

    2006-02-28

    In this review article, the authors present up-to-date developments on experimental, modeling and field studies on the role of subsurface colloidal fines on contaminant transport in saturated porous media. It is a complex phenomenon in porous media involving several basic processes such as colloidal fines release, dispersion stabilization, migration and fines entrapment/plugging at the pore constrictions and adsorption at solid/liquid interface. The effects of these basic processes on the contaminant transport have been compiled. Here the authors first present the compilation on in situ colloidal fines sources, release, stabilization of colloidal dispersion and migration which are a function of physical and chemical conditions of subsurface environment and finally their role in inorganic and organic contaminants transport in porous media. The important aspects of this article are as follows: (i) it gives not only complete compilation on colloidal fines-facilitated contaminant transport but also reviews the new role of colloidal fines in contaminant retardation due to plugging of pore constrictions. This plugging phenomenon also depends on various factors such as concentration of colloidal fines, superficial velocity and bead-to-particle size ratio. This plugging-based contaminant transport can be used to develop containment technique in soil and groundwater remediation. (ii) It also presents the importance of critical salt concentration (CSC), critical ionic strength for mixed salt, critical shear stressor critical particle concentration (CPC) on in situ colloidal fines release and migration and consequently their role on contaminant transport in porous media. (iii) It also reviews another class of colloidal fines called biocolloids and their transport in porous media. Finally, the authors highlight the future research based on their critical review on colloid-associated contaminant transport in saturated porous media.

  1. Preferential Targeting of a Signal Recognition Particle-dependent Precursor to the Ssh1p Translocon in Yeast♦

    PubMed Central

    Spiller, Michael P.; Stirling, Colin J.

    2011-01-01

    Protein translocation across the endoplasmic reticulum membrane occurs via a “translocon” channel formed by the Sec61p complex. In yeast, two channels exist: the canonical Sec61p channel and a homolog called Ssh1p. Here, we used trapped translocation intermediates to demonstrate that a specific signal recognition particle-dependent substrate, Sec71p, is targeted exclusively to Ssh1p. Strikingly, we found that, in the absence of Ssh1p, precursor could be successfully redirected to canonical Sec61p, demonstrating that the normal targeting reaction must involve preferential sorting to Ssh1p. Our data therefore demonstrate that Ssh1p is the primary translocon for Sec71p and reveal a novel sorting mechanism at the level of the endoplasmic reticulum membrane enabling precursors to be directed to distinct translocons. Interestingly, the Ssh1p-dependent translocation of Sec71p was found to be dependent upon Sec63p, demonstrating a previously unappreciated functional interaction between Sec63p and the Ssh1p translocon. PMID:21454595

  2. Flow-controlled magnetic particle manipulation

    DOEpatents

    Grate, Jay W [West Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA; Holman, David A [Las Vegas, NV

    2011-02-22

    Inventive methods and apparatus are useful for collecting magnetic materials in one or more magnetic fields and resuspending the particles into a dispersion medium, and optionally repeating collection/resuspension one or more times in the same or a different medium, by controlling the direction and rate of fluid flow through a fluid flow path. The methods provide for contacting derivatized particles with test samples and reagents, removal of excess reagent, washing of magnetic material, and resuspension for analysis, among other uses. The methods are applicable to a wide variety of chemical and biological materials that are susceptible to magnetic labeling, including, for example, cells, viruses, oligonucleotides, proteins, hormones, receptor-ligand complexes, environmental contaminants and the like.

  3. Analysis of Risks to Oxygen Systems from Particulate and Fiber Contaminants and Derivation of Cleanliness Requirements

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.

    2016-01-01

    It has been well documented in the literature that contamination within oxygen systems can create significant fire hazards. Cleanliness limits for nonvolatile residues, ranging from 10 to 500 mg/sq m, have been established for various industries and types of oxygen systems to reduce the risk of ignition of flammable organic films. Particulate cleanliness limits used for oxygen systems vary considerably. Maximum allowed particle size, quantity limits, and allocations for fibers or metallic particles are all variables seen in aerospace cleanliness limits. Particles are known to have the potential to ignite within oxygen systems and must be limited to prevent fires. Particulate contamination may also pose risks to the performance of oxygen systems that are unrelated to ignition hazards. An extensive literature search was performed to better understand the relative importance of particle ignition mechanisms versus other deleterious effects of particles on oxygen systems and to identify rationale for derivation of particulate cleanliness limits for specific systems. The identified risks of different types and sizes of particles and fibers were analyzed. This paper summarizes the risks identified and rationale that may be used to derive particulate cleanliness limits for specific oxygen systems.

  4. Analysis of Risks to Oxygen Systems from Particulate and Fiber Contaminants and Derivation of Cleanliness Requirements

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.

    2016-01-01

    It has been well documented in the literature that contamination within oxygen systems can create significant fire hazards. Cleanliness limits for nonvolatile residues, ranging from 10 to 500 milligrams per square meter, have been established for various industries and types of oxygen systems to reduce the risk of ignition of flammable organic films. Particulate cleanliness limits used for oxygen systems, however, vary considerably, notably within the aerospace industry. Maximum allowed particle size, quantity limits, and allocations for fibers or metallic particles are all variables seen in aerospace cleanliness limits. Particles are known to have the potential to ignite within oxygen systems and must be limited to prevent fires. Particulate contamination may also pose risks to the performance of oxygen systems that are unrelated to ignition hazards. An extensive literature search was performed to better understand the relative importance of particle ignition mechanisms versus other deleterious effects of particles on oxygen systems and to identify rationale for derivation of particulate cleanliness limits for specific systems. The identified risks of different types and sizes of particles and fibers were analyzed. This paper summarizes the risks identified and rationale that may be used to derive particulate cleanliness limits for specific oxygen systems.

  5. Copolyimide Surface Modifying Agents for Particle Adhesion Mitigation

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Connell, John W.

    2011-01-01

    Marine biofouling, insect adhesion on aircraft surfaces, microbial contamination of sterile environments, and particle contamination all present unique challenges for which researchers have adopted an array of mitigation strategies. Particulate contamination is of interest to NASA regarding exploration of the Moon, Mars, asteroids, etc.1 Lunar dust compromised seals, clogged filters, abraded visors and space suit surfaces, and was a significant health concern during the Apollo missions.2 Consequently, NASA has instituted a multi-faceted approach to address dust including use of sacrificial surfaces, active mitigation requiring the use of an external energy source, and passive mitigation utilizing materials with an intrinsic resistance to surface contamination. One passive mitigation strategy is modification of a material s surface energy either chemically or topographically. The focus of this paper is the synthesis and evaluation of novel copolyimide materials with surface modifying agents (SMA, oxetanes) enabling controlled variation of surface chemical composition.

  6. Contamination control engineering design guidelines for the aerospace community

    NASA Technical Reports Server (NTRS)

    Tribble, A. C. (Principal Investigator); Boyadjian, B.; Davis, J.; Haffner, J.; McCullough, E.

    1996-01-01

    Thermal control surfaces, solar arrays, and optical devices may be adversely affected by a small quantity of molecular and/or particulate contamination. What is rarely discussed is how one: (1) quantifies the level of contamination that must be maintained in order for the system to function properly, and (2) enforces contamination control to ensure compliance with requirements. This document is designed to address these specific issues and is intended to serve as a handbook on contamination control for the reader, illustrating process and methodology while providing direction to more detailed references when needed. The effects of molecular contamination on reflecting and transmitting surfaces are examined and quantified in accordance with MIL STD 1246C. The generation, transportation, and deposition of molecular contamination is reviewed and specific examples are worked to illustrate the process a design engineer can use to estimate end of life cleanliness levels required by solar arrays, thermal control surfaces, and optical surfaces. A similar process is used to describe the effect of particulate contamination as related to percent area coverage (PAC) and bi-directional reflectance distribution function (BRDF). Relationships between PAC and surface cleanliness, which include the effects of submicron sized particles, are developed and BRDF is related to specific sensor design parameters such as Point Source Transmittance (PST). The pros and cons of various methods of preventing, monitoring, and cleaning surfaces are examined and discussed.

  7. Analysis of Particle Content of Recombinant Adeno-Associated Virus Serotype 8 Vectors by Ion-Exchange Chromatography

    PubMed Central

    Lock, Martin; Alvira, Mauricio R.

    2012-01-01

    Abstract Advances in adeno-associated virus (AAV)-mediated gene therapy have brought the possibility of commercial manufacturing of AAV vectors one step closer. To realize this prospect, a parallel effort with the goal of ever-increasing sophistication for AAV vector production technology and supporting assays will be required. Among the important release assays for a clinical gene therapy product, those monitoring potentially hazardous contaminants are most critical for patient safety. A prominent contaminant in many AAV vector preparations is vector particles lacking a genome, which can substantially increase the dose of AAV capsid proteins and lead to possible unwanted immunological consequences. Current methods to determine empty particle content suffer from inconsistency, are adversely affected by contaminants, or are not applicable to all serotypes. Here we describe the development of an ion-exchange chromatography-based assay that permits the rapid separation and relative quantification of AAV8 empty and full vector particles through the application of shallow gradients and a strong anion-exchange monolith chromatography medium. PMID:22428980

  8. RESONATOR PARTICLE SEPARATOR

    DOEpatents

    Blewett, J.P.

    1962-01-01

    A wave guide resonator structure is described for use in separating particles of equal momentum but differing in mass and having energies exceeding one billion electron volts. The particles are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high-energy accelerator. In this wave guide construction, the particles undergo preferential deflection as a result of the presence of an electric field. The boundary conditions established in the resonator are such as to eliminate an interfering magnetic component, and to otherwise phase the electric field to obtain a traveling wave such as one which moves at the same speed as the unwanted particle. The latter undergoes continuous deflection over the whole length of the device and is, therefore, eliminated while the wanted particle is deflected in opposite directions over the length of the resonator and is thus able to enter an exit aperture. (AEC)

  9. Trace contaminant adsorption and sorbent regeneration in closed ecological systems

    NASA Technical Reports Server (NTRS)

    Arnold, C. R.; Kersels, G. J.; Merrill, R. P.; Robell, A. J.; Wheeler, A.

    1972-01-01

    Correlation was obtained for determining sorptive capacity of carbon for pure and mixed contaminants under dry and humid conditions at various temperatures. Vacuum desorption rates were investigated for single particles and for sorbent beds. For sorbent beds, rate-determining step is Knudsen diffusion through interparticle voids.

  10. Heavy metal contamination characteristic of soil in WEEE (waste electrical and electronic equipment) dismantling community: a case study of Bangkok, Thailand.

    PubMed

    Damrongsiri, Seelawut; Vassanadumrongdee, Sujitra; Tanwattana, Puntita

    2016-09-01

    Sue Yai Utit is an old community located in Bangkok, Thailand which dismantles waste electrical and electronic equipment (WEEE). The surface soil samples at the dismantling site were contaminated with copper (Cu), lead (Pb), zinc (Zn), and nickel (Ni) higher than Dutch Standards, especially around the WEEE dumps. Residual fractions of Cu, Pb, Zn, and Ni in coarse soil particles were greater than in finer soil. However, those metals bonded to Fe-Mn oxides were considerably greater in fine soil particles. The distribution of Zn in the mobile fraction and a higher concentration in finer soil particles indicated its readily leachable character. The concentration of Cu, Pb, and Ni in both fine and coarse soil particles was mostly not significantly different. The fractionation of heavy metals at this dismantling site was comparable to the background. The contamination characteristics differed from pollution by other sources, which generally demonstrated the magnification of the non-residual fraction. A distribution pathway was proposed whereby contamination began by the deposition of WEEE scrap directly onto the soil surface as a source of heavy metal. This then accumulated, corroded, and was released via natural processes, becoming redistributed among the soil material. Therefore, the concentrations of both the residual and non-residual fractions of heavy metals in WEEE-contaminated soil increased.

  11. Accelerator Science: Collider vs. Fixed Target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Particle physics experiments employ high energy particle accelerators to make their measurements. However there are many kinds of particle accelerators with many interesting techniques. One important dichotomy is whether one takes a particle beam and have it hit a stationary target of atoms, or whether one takes two counter rotating beams of particles and smashes them together head on. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of these two powerful methods of exploring the rules of the universe.

  12. Accelerator Science: Collider vs. Fixed Target

    ScienceCinema

    Lincoln, Don

    2018-01-16

    Particle physics experiments employ high energy particle accelerators to make their measurements. However there are many kinds of particle accelerators with many interesting techniques. One important dichotomy is whether one takes a particle beam and have it hit a stationary target of atoms, or whether one takes two counter rotating beams of particles and smashes them together head on. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of these two powerful methods of exploring the rules of the universe.

  13. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2015 and FY2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizell, Steve A; Miller, Julianne J; McCurdy, Greg

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Contamination Area (CA) as a result of storm runoff. This activity supports Nevada Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the Soils Corrective Action Unit (CAU) contamination areas. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transported radionuclide-contaminated soils. These data will facilitate the appropriate closuremore » design and post-closure monitoring program.« less

  14. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2013 and FY2014 (revised)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizell, Steve A.; Miller, Julianne J.; McCurdy, Greg D.

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Contamination Area (CA) as a result of storm runoff, which supports National Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the Soils Corrective Action Unit (CAU) contamination areas. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transported radionuclide-contaminated soils. These data will facilitate the appropriate closure designmore » and post-closure monitoring program.« less

  15. Using model-based screening to help discover unknown environmental contaminants.

    PubMed

    McLachlan, Michael S; Kierkegaard, Amelie; Radke, Michael; Sobek, Anna; Malmvärn, Anna; Alsberg, Tomas; Arnot, Jon A; Brown, Trevor N; Wania, Frank; Breivik, Knut; Xu, Shihe

    2014-07-01

    Of the tens of thousands of chemicals in use, only a small fraction have been analyzed in environmental samples. To effectively identify environmental contaminants, methods to prioritize chemicals for analytical method development are required. We used a high-throughput model of chemical emissions, fate, and bioaccumulation to identify chemicals likely to have high concentrations in specific environmental media, and we prioritized these for target analysis. This model-based screening was applied to 215 organosilicon chemicals culled from industrial chemical production statistics. The model-based screening prioritized several recognized organosilicon contaminants and generated hypotheses leading to the selection of three chemicals that have not previously been identified as potential environmental contaminants for target analysis. Trace analytical methods were developed, and the chemicals were analyzed in air, sewage sludge, and sediment. All three substances were found to be environmental contaminants. Phenyl-tris(trimethylsiloxy)silane was present in all samples analyzed, with concentrations of ∼50 pg m(-3) in Stockholm air and ∼0.5 ng g(-1) dw in sediment from the Stockholm archipelago. Tris(trifluoropropyl)trimethyl-cyclotrisiloxane and tetrakis(trifluoropropyl)tetramethyl-cyclotetrasiloxane were found in sediments from Lake Mjøsa at ∼1 ng g(-1) dw. The discovery of three novel environmental contaminants shows that models can be useful for prioritizing chemicals for exploratory assessment.

  16. Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight

    PubMed Central

    Guo, Siqiu; Zhang, Tao; Song, Yulong

    2018-01-01

    This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios. PMID:29690610

  17. Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight.

    PubMed

    Guo, Siqiu; Zhang, Tao; Song, Yulong; Qian, Feng

    2018-04-23

    This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios.

  18. Electrowinning process with electrode compartment to avoid contamination of electrolyte

    DOEpatents

    Poa, Davis S.; Pierce, R. Dean; Mulcahey, Thomas P.; Johnson, Gerald K.

    1993-01-01

    An electrolytic process and apparatus for reducing calcium oxide in a molten electrolyte of CaCl.sub.2 -CaF.sub.2 with a graphite anode in which particles or other contamination from the anode is restricted by the use of a porous barrier in the form of a basket surrounding the anode which may be removed from the electrolyte to burn the graphite particles, and wherein the calcium oxide feed is introduced to the anode compartment to increase the oxygen ion concentration at the anode.

  19. An ultrasensitive bio-surrogate for nanoporous filter membrane performance metrology directed towards contamination control in microlithography applications

    NASA Astrophysics Data System (ADS)

    Ahmad, Farhan; Mish, Barbara; Qiu, Jian; Singh, Amarnauth; Varanasi, Rao; Bedford, Eilidh; Smith, Martin

    2016-03-01

    Contamination tolerances in semiconductor manufacturing processes have changed dramatically in the past two decades, reaching below 20 nm according to the guidelines of the International Technology Roadmap for Semiconductors. The move to narrower line widths drives the need for innovative filtration technologies that can achieve higher particle/contaminant removal performance resulting in cleaner process fluids. Nanoporous filter membrane metrology tools that have been the workhorse over the past decade are also now reaching limits. For example, nanoparticle (NP) challenge testing is commonly applied for assessing particle retention performance of filter membranes. Factors such as high NP size dispersity, low NP detection sensitivity, and high NP particle-filter affinity impose challenges in characterizing the next generation of nanoporous filter membranes. We report a novel bio-surrogate, 5 nm DNA-dendrimer conjugate for evaluating particle retention performance of nanoporous filter membranes. A technique capable of single molecule detection is employed to detect sparse concentration of conjugate in filter permeate, providing >1000- fold higher detection sensitivity than any existing 5 nm-sized particle enumeration technique. This bio-surrogate also offers narrow size distribution, high stability and chemical tunability. This bio-surrogate can discriminate various sub-15 nm pore-rated nanoporous filter membranes based on their particle retention performance. Due to high bio-surrogate detection sensitivity, a lower challenge concentration of bio-surrogate (as compared to other NPs of this size) can be used for filter testing, providing a better representation of customer applications. This new method should provide better understanding of the next generation filter membranes for removing defect-causing contaminants from lithography processes.

  20. Drug-targeting methodologies with applications: A review

    PubMed Central

    Kleinstreuer, Clement; Feng, Yu; Childress, Emily

    2014-01-01

    Targeted drug delivery to solid tumors is a very active research area, focusing mainly on improved drug formulation and associated best delivery methods/devices. Drug-targeting has the potential to greatly improve drug-delivery efficacy, reduce side effects, and lower the treatment costs. However, the vast majority of drug-targeting studies assume that the drug-particles are already at the target site or at least in its direct vicinity. In this review, drug-delivery methodologies, drug types and drug-delivery devices are discussed with examples in two major application areas: (1) inhaled drug-aerosol delivery into human lung-airways; and (2) intravascular drug-delivery for solid tumor targeting. The major problem addressed is how to deliver efficiently the drug-particles from the entry/infusion point to the target site. So far, most experimental results are based on animal studies. Concerning pulmonary drug delivery, the focus is on the pros and cons of three inhaler types, i.e., pressurized metered dose inhaler, dry powder inhaler and nebulizer, in addition to drug-aerosol formulations. Computational fluid-particle dynamics techniques and the underlying methodology for a smart inhaler system are discussed as well. Concerning intravascular drug-delivery for solid tumor targeting, passive and active targeting are reviewed as well as direct drug-targeting, using optimal delivery of radioactive microspheres to liver tumors as an example. The review concludes with suggestions for future work, considereing both pulmonary drug targeting and direct drug delivery to solid tumors in the vascular system. PMID:25516850

  1. Size-Resolved Dust and Aerosol Contaminants Associated with Copper and Lead Smelting Emissions: Implications for Emissions Management and Human Health

    PubMed Central

    Csavina, Janae; Taylor, Mark P.; Félix, Omar; Rine, Kyle P.; Sáez, A. Eduardo; Betterton, Eric A.

    2014-01-01

    Mining operations, including crushing, grinding, smelting, refining, and tailings management, are a significant source of airborne metal and metalloid contaminants such as As, Pb and other potentially toxic elements. In this work, we show that size-resolved concentrations of As and Pb generally follow a bimodal distribution with the majority of contaminants in the fine size fraction (< 1 μm) around mining activities that include smelting operations at various sites in Australia and Arizona. This evidence suggests that contaminated fine particles (< 1 μm) are the result of vapor condensation and coagulation from smelting operations while coarse particles are most likely the result of windblown dust from contaminated mine tailings and fugitive emissions from crushing and grinding activities. These results on the size distribution of contaminants around mining operations are reported to demonstrate the ubiquitous nature of this phenomenon so that more effective emissions management and practices that minimize health risks associated with metal extraction and processing can be developed. PMID:24995641

  2. The Underlying Physics in Wetted Particle Collisions

    NASA Astrophysics Data System (ADS)

    Donahue, Carly; Hrenya, Christine; Davis, Robert

    2008-11-01

    Wetted granular particles are relevant in many industries including the pharmaceutical and chemical industries and has applications to granulation, filtration, coagulation, spray coating, drying and pneumatic transport. In our current focus, we investigate the dynamics of a three-body normal wetted particle collision. In order to conduct collisions we use an apparatus called a ``Stokes Cradle,'' similar to the Newton's Cradle (desktop toy) except that the target particles are covered with oil. Here, we are able to vary the oil thickness, oil viscosity, and material properties. With a three particle collision there are four possible outcomes: fully agglomerated (FA); Newton's Cradle (NC), the striker and the first target ball are agglomerated and the last target ball is separated; Reverse Newton's Cradle (RNC), the striker is separated and the two targets are agglomerated; and fully separated (FS). Varying the properties of the collisions, we have observed all four outcomes. We use elastohydrodynamics as a theoretical basis for modeling the system. We also have considered the glass transition of the oil as the pressure increases upon impact and the cavitation of the oil as the pressure drops below the vapor pressure upon rebound. A toy model has been developed where the collision is modeled as a series of two-body collisions. A qualitative agreement between the toy model and experiments gives insight into the underlying physics.

  3. Analysis of particulate contamination on tape lift samples from the VETA optical surfaces

    NASA Technical Reports Server (NTRS)

    Germani, Mark S.

    1992-01-01

    Particulate contamination analysis was carried out on samples taken from the Verification Engineering Test Article (VETA) x-ray detection system. A total of eighteen tape lift samples were taken from the VETA optical surfaces. Initially, the samples were tested using a scanning electron microscope. Additionally, particle composition was determined by energy dispersive x-ray spectrometry. Results are presented in terms of particle loading per sample.

  4. Particle adhesion to surfaces under vacuum

    NASA Technical Reports Server (NTRS)

    Barengoltz, Jack B.

    1988-01-01

    The release of glass beads and standard dust from aluminum and glass substrates under centrifugation (simulating atmospheric pressure, low vacuum, and high vacuum conditions) was measured, with application to the estimation of contaminant particle release during spacecraft launch. For particles in the 10-100 micron range, dust was found to adhere more strongly than glass beads in all the cases considered. For most of the cases, dust and glass beads adhered more strongly to glass than to aluminum at all pressures. The adhesion force for dust on glass at 10 torr was shown to be as small as the value for dust on aluminum.

  5. Ejecta Particle Size Distributions for Shock Loaded Sn And Al Targets

    DTIC Science & Technology

    1999-06-01

    respectively. For the first time, particle distributions that results from microjet production will be presented. Results from these experiments will...performed. For the first time, particle size distributions that result from microjet production will be presented. The energy in the microjets will...the metal to break up as a shock wave moves through the material. The figure also shows that if there are surface finish variations, microjets will

  6. Fluorescence-Assisted Gamma Spectrometry for Surface Contamination Analysis

    NASA Astrophysics Data System (ADS)

    Ihantola, Sakari; Sand, Johan; Perajarvi, Kari; Toivonen, Juha; Toivonen, Harri

    2013-02-01

    A fluorescence-based alpha-gamma coincidence spectrometry approach has been developed for the analysis of alpha-emitting radionuclides. The thermalization of alpha particles in air produces UV light, which in turn can be detected over long distances. The simultaneous detection of UV and gamma photons allows detailed gamma analyses of a single spot of interest even in highly active surroundings. Alpha particles can also be detected indirectly from samples inside sealed plastic bags, which minimizes the risk of cross-contamination. The position-sensitive alpha-UV-gamma coincidence technique reveals the presence of alpha emitters and identifies the nuclides ten times faster than conventional gamma spectrometry.

  7. Tritium contamination at EG&G/EM in North Las Vegas, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, C.V.; Arent, L.J.

    1996-06-01

    The tritium contamination discovered at the EG&G Energy Measurements (EG&G/EM) facility in North Las Vegas, Nevada, on 20 April 1995, could have been averted by good health physics practices and/or adequate management oversight. Scandium tritide (ScT{sub 3}) targets were installed for use in sealed tube neutron generators at EG&G/EM. In addition, EG&G/EM was also storing zirconium tritide (ZrT{sub 3}) and titanium tritide (TiT{sub 3}) foils. Since the targets were classified as sealed sources, the appropriate administrative and engineering control measures such as relocating targets/sources, air monitoring, bioassay, waste stream management, labeling/posting and training were not implemented. In all there weremore » six unreported incidents of tritium contamination from March 1994 to July 1995. Swipe surveys revealed areas exceeding the action level of 10,000 dpm/100 cm{sup 2} by up to three orders of magnitude. After reclassifying the targets as unsealed sources, a bioassay program was instituted, and the results were higher than expected for three employees. The doses assigned to the three individuals working in the contaminated area were 35, 58, and 61 mrem committed effective dose equivalent. Though the doses were low, the decontamination costs were in excess of $350,000.00. An investigation, was initiated by the U.S. Department of Energy Nevada Operations Office to analyze the events that led to the tritium contamination and recommend actions to prevent recurrence. Event and causal factor charting, Project Evaluation Tree (PET) analysis techniques, and root cause analysis, were used to evaluate management systems, causal sequences, and systems factors contributing to the tritium release.« less

  8. Simulations of Ground-Water Flow, Transport, Age, and Particle Tracking near York, Nebraska, for a Study of Transport of Anthropogenic and Natural Contaminants (TANC) to Public-Supply Wells

    USGS Publications Warehouse

    Clark, Brian R.; Landon, Matthew K.; Kauffman, Leon J.; Hornberger, George Z.

    2008-01-01

    Contamination of public-supply wells has resulted in public-health threats and negative economic effects for communities that must treat contaminated water or find alternative water supplies. To investigate factors controlling vulnerability of public-supply wells to anthropogenic and natural contaminants using consistent and systematic data collected in a variety of principal aquifer settings in the United States, a study of Transport of Anthropogenic and Natural Contaminants to public-supply wells was begun in 2001 as part of the U.S. Geological Survey National Water-Quality Assessment Program. The area simulated by the ground-water flow model described in this report was selected for a study of processes influencing contaminant distribution and transport along the direction of ground-water flow towards a public-supply well in southeastern York, Nebraska. Ground-water flow is simulated for a 60-year period from September 1, 1944, to August 31, 2004. Steady-state conditions are simulated prior to September 1, 1944, and represent conditions prior to use of ground water for irrigation. Irrigation, municipal, and industrial wells were simulated using the Multi-Node Well package of the modular three-dimensional ground-water flow model code, MODFLOW-2000, which allows simulation of flow and solutes through wells that are simulated in multiple nodes or layers. Ground-water flow, age, and transport of selected tracers were simulated using the Ground-Water Transport process of MODFLOW-2000. Simulated ground-water age was compared to interpreted ground-water age in six monitoring wells in the unconfined aquifer. The tracer chlorofluorocarbon-11 was simulated directly using Ground-Water Transport for comparison with concentrations measured in six monitoring wells and one public supply well screened in the upper confined aquifer. Three alternative model simulations indicate that simulation results are highly sensitive to the distribution of multilayer well bores where leakage

  9. Detection and identification of explosive particles in fingerprints using attenuated total reflection-Fourier transform infrared spectromicroscopy.

    PubMed

    Mou, Yongyan; Rabalais, J Wayne

    2009-07-01

    The application of attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectromicroscopy for detection of explosive particles in fingerprints is described. The combined functions of ATR-FTIR spectromicroscopy are visual searching of particles in fingerprints and measuring the FTIR spectra of the particles. These functions make it possible to directly identify whether a suspect has handled explosives from the fingerprints alone. Particles in explosive contaminated fingerprints are either ingredients of the explosives, finger residues, or other foreign materials. These cannot normally be discriminated by their morphology alone. ATR-FTIR spectra can provide both particle morphology and composition. Fingerprints analyzed by ATR-FTIR can be used for further analysis and identification because of its non-destructive character. Fingerprints contaminated with three different types of explosives, or potential explosives, have been analyzed herein. An infrared spectral library was searched in order to identify the explosive residues. The acquired spectra are compared to those of finger residue alone, in order to differentiate such residue from explosive residue.

  10. Hyperspectral characterization of fluorescent organic contaminants on optical payloads

    NASA Astrophysics Data System (ADS)

    Bourcier, Frédéric; Pansu, Robert; Faye, Delphine; Le Nouy, Patrice; Spezzigu, Piero

    2017-11-01

    The increase of performance of new optical instruments for science and Earth observation always leads to higher requirements in terms of contamination due to particle sedimentation in cleanrooms and deposition of chemical species in vacuum environment. Specific cleanliness control procedures are implemented in order to mitigate the risks of contamination on optical sensors and sensitive diopters, especially when used for UV applications. Such procedures are commonly carried out in cleanrooms and are described in both European ECSS-Q-ST-70-50C and NASA SN-C-0005D standards. UV light at 365 nm is often used for the inspection of optical sensitive surfaces to localize and to evaluate the amount of fluorescent particles, essentially coming from textile fibers. But other groups of compounds can be observed with a different spectral response and distribution, like adhesives and resins or even organic residues. Therefore, we could take advantage of this spectral information closely linked to specific molecules for partial identification of these materials before further investigation involving wipe on flight model and measurement in a laboratory.

  11. Contamination and UV lasers: lessons learned

    NASA Astrophysics Data System (ADS)

    Daly, John G.

    2015-09-01

    Laser induced damage to optical elements has been a subject of significant research, development, and improvement, since the first lasers were built over the last 50 years. Better materials, with less absorption, impurities, and defects are available, as well as surface coatings with higher laser damage resistance. However, the presence of contamination (particles, surface deposition films, or airborne) can reduce the threshold for damage by several orders of magnitude. A brief review of the anticipated laser energy levels for damage free operation is presented as a lead into the problems associated with contamination for ultraviolet (UV) laser systems. As UV lasers become more common in applications especially in areas such as lithography, these problems have limited reliability and added to costs. This has been characterized as Airborne Molecular Contamination (AMC) in many published reports. Normal engineering guidelines such as screening materials within the optical compartment for low outgassing levels is the first step. The use of the NASA outgassing database (or similar test methods) with low Total Mass Loss (TML) and Condensed Collected Volatiles Collected Mass (CVCM) is a good baseline. Energetic UV photons are capable of chemical bond scission and interaction with surface contaminant or airborne materials results in deposition of obscuring film laser footprints that continue to degrade laser system performance. Laser systems with average powers less than 5 mW have been shown to exhibit aggressive degradation. Lessons learned over the past 15 years with UV laser contamination and steps to reduce risk will be presented.

  12. Plastoglobules: a new address for targeting recombinant proteins in the chloroplast

    PubMed Central

    Vidi, Pierre-Alexandre; Kessler, Felix; Bréhélin, Claire

    2007-01-01

    Background The potential of transgenic plants for cost-effective production of pharmaceutical molecules is now becoming apparent. Plants have the advantage over established fermentation systems (bacterial, yeast or animal cell cultures) to circumvent the risk of pathogen contamination, to be amenable to large scaling up and to necessitate only established farming procedures. Chloroplasts have proven a useful cellular compartment for protein accumulation owing to their large size and number, as well as the possibility for organellar transformation. They therefore represent the targeting destination of choice for recombinant proteins in leaf crops such as tobacco. Extraction and purification of recombinant proteins from leaf material contribute to a large extent to the production costs. Developing new strategies facilitating these processes is therefore necessary. Results Here, we evaluated plastoglobule lipoprotein particles as a new subchloroplastic destination for recombinant proteins. The yellow fluorescent protein as a trackable cargo was targeted to plastoglobules when fused to plastoglobulin 34 (PGL34) as the carrier. Similar to adipocyte differentiation related protein (ADRP) in animal cells, most of the protein sequence of PGL34 was necessary for targeting to lipid bodies. The recombinant protein was efficiently enriched in plastoglobules isolated by simple flotation centrifugation. The viability of plants overproducing the recombinant protein was not affected, indicating that plastoglobule targeting did not significantly impair photosynthesis or sugar metabolism. Conclusion Our data identify plastoglobules as a new targeting destination for recombinant protein in leaf crops. The wide-spread presence of plastoglobules and plastoglobulins in crop species promises applications comparable to those of transgenic oilbody-oleosin technology in molecular farming. PMID:17214877

  13. A model for predicting field-directed particle transport in the magnetofection process.

    PubMed

    Furlani, Edward P; Xue, Xiaozheng

    2012-05-01

    To analyze the magnetofection process in which magnetic carrier particles with surface-bound gene vectors are attracted to target cells for transfection using an external magnetic field and to obtain a fundamental understanding of the impact of key factors such as particle size and field strength on the gene delivery process. A numerical model is used to study the field-directed transport of the carrier particle-gene vector complex to target cells in a conventional multiwell culture plate system. The model predicts the transport dynamics and the distribution of particle accumulation at the target cells. The impact of several factors that strongly influence gene vector delivery is assessed including the properties of the carrier particles, the strength of the field source, and its extent and proximity relative to the target cells. The study demonstrates that modeling can be used to predict and optimize gene vector delivery in the magnetofection process for novel and conventional in vitro systems.

  14. Particle control near reticle and optics using showerhead

    DOEpatents

    Delgado, Gildardo R.; Chilese, Frank; Garcia, Rudy; Torczynski, John R.; Geller, Anthony S.; Rader, Daniel J.; Klebanoff, Leonard E.; Gallis, Michail A.

    2016-01-26

    A method and an apparatus to protect a reticle against particles and chemicals in an actinic EUV reticle inspection tool are presented. The method and apparatus utilizes a pair of porous metal diffusers in the form of showerheads to provide a continual flow of clean gas. The main showerhead bathes the reticle surface to be inspected in smoothly flowing, low pressure gas, isolating it from particles coming from surrounding volumes. The secondary showerhead faces away from the reticle and toward the EUV illumination and projection optics, supplying them with purge gas while at the same time creating a buffer zone that is kept free of any particle contamination originating from those optics.

  15. Fish tracking by combining motion based segmentation and particle filtering

    NASA Astrophysics Data System (ADS)

    Bichot, E.; Mascarilla, L.; Courtellemont, P.

    2006-01-01

    In this paper, we suggest a new importance sampling scheme to improve a particle filtering based tracking process. This scheme relies on exploitation of motion segmentation. More precisely, we propagate hypotheses from particle filtering to blobs of similar motion to target. Hence, search is driven toward regions of interest in the state space and prediction is more accurate. We also propose to exploit segmentation to update target model. Once the moving target has been identified, a representative model is learnt from its spatial support. We refer to this model in the correction step of the tracking process. The importance sampling scheme and the strategy to update target model improve the performance of particle filtering in complex situations of occlusions compared to a simple Bootstrap approach as shown by our experiments on real fish tank sequences.

  16. Analysis of Particulate Contamination During Launch of MMS Mission

    NASA Technical Reports Server (NTRS)

    Brieda, Lubos; Barrie, Alexander; Hughes, David; Errigo, Therese

    2010-01-01

    NASA's Magnetospheric MultiScale (MMS) is an unmanned constellation of four identical spacecraft designed to investigate magnetic reconnection by obtaining detailed measurements of plasma properties in Earth's magnetopause and magnetotail. Each of the four identical satellites carries a suite of instruments which characterize the ambient ion and electron energy spectrum and composition. Some of these instruments utilize microchannel plates and are sensitive to particulate contamination. In this paper, we analyze the transport of particulates during pre-launch, launch and ascent events, and use the analysis to obtain quantitative predictions of contamination impact on the instruments. Viewfactor calculation is performed by considering the gravitational and aerodynamic forces acting on the particles.

  17. Contamination of water and soil by the Erdenet copper-molybdenum mine in Mongolia

    NASA Astrophysics Data System (ADS)

    Battogtokh, B.; Lee, J.; Woo, N. C.; Nyamjav, A.

    2013-12-01

    As one of the largest copper-molybdenum (Cu-Mo) mines in the world, the Erdenet Mine in Mongolia has been active since 1978, and is expected to continue operations for at least another 30 years. In this study, the potential impacts of mining activities on the soil and water environments have been evaluated. Water samples showed high concentrations of sulfate, calcium, magnesium, Mo, and arsenic, and high pH values in the order of high to low as follows: tailing water > Khangal River > groundwater. Statistical analysis and the δ2H and δ18O values of water samples indicate that the tailing water directly affects the stream water and indirectly affects groundwater through recharge processes. Soil and stream sediments are highly contaminated with Cu and Mo, which are major elements of ore minerals. Based on the contamination factor (CF), the pollution load index (PLI), and the degree of contamination (Cd), soil appears to be less contaminated than stream sediments. The soil particle size is similar to that of tailing materials, but stream sediments have much coarser particles, implying that the materials have different origins. Contamination levels in stream sediments display a tendency to decrease with distance from the mine, but no such changes are found in soil. Consequently, soil contamination by metals is attributable to wind-blown dusts from the tailing materials, and stream sediment contamination is caused by discharges from uncontained subgrade ore stock materials. Considering the evident impact on the soil and water environment, and the human health risk from the Erdenet Mine, measures to mitigate its environmental impact should be taken immediately including source control, the establishment of a systematic and continuous monitoring system, and a comprehensive risk assessment. Sampling locations around the Erdenet Mine

  18. The EPIC-MOS Particle-Induced Background Spectrum

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2006-01-01

    We have developed a method for constructing a spectrum of the particle-induced instrumental background of the XMM-Newton EPIC MOS detectors that can be used for observations of the diffuse background and extended sources that fill a significant fraction of the instrument field of view. The strength and spectrum of the particle-induced background, that is, the background due to the interaction of particles with the detector and the detector surroundings, is temporally variable as well as spatially variable over individual chips. Our method uses a combination of the filter-wheel-closed data and a database of unexposed-region data to construct a spectrum of the "quiescent" background. We show that, using this method of background subtraction, the differences between independent observations of the same region of "blank sky" are consistent with the statistical uncertainties except when there is clear evidence of solar wind charge exchange emission. We use the blank sky observations to show that contamination by SWCX emission is a strong function of the solar wind proton flux, and that observations through the flanks of the magnetosheath appear to be contaminated only at much higher solar wind fluxes. We have also developed a spectral model of the residual soft proton flares, which allows their effects to be removed to a substantial degree during spectral fitting.

  19. ASSESSING FISH TISSUE CONTAMINATION ON A REGIONAL SCALE

    EPA Science Inventory

    The selection of target fish species for assessing the extent of fish tissue contaminants is a critical consideration in regional stream surveys such as the Environmental Monitoring and Assessment Program (EMAP). The ideal species would be widely distributed and common, bioaccumu...

  20. Earthworm Comet Assay for Assessing the Risk of Weathered Petroleum Hydrocarbon Contaminated Soils: Need to Look Further than Target Contaminants.

    PubMed

    Ramadass, Kavitha; Palanisami, Thavamani; Smith, Euan; Mayilswami, Srinithi; Megharaj, Mallavarapu; Naidu, Ravi

    2016-11-01

    Earthworm toxicity assays contribute to ecological risk assessment and consequently standard toxicological endpoints, such as mortality and reproduction, are regularly estimated. These endpoints are not enough to better understand the mechanism of toxic pollutants. We employed an additional endpoint in the earthworm Eisenia andrei to estimate the pollutant-induced stress. In this study, comet assay was used as an additional endpoint to evaluate the genotoxicity of weathered hydrocarbon contaminated soils containing 520 to 1450 mg hydrocarbons kg -1 soil. Results showed that significantly higher DNA damage levels (two to sixfold higher) in earthworms exposed to hydrocarbon impacted soils. Interestingly, hydrocarbons levels in the tested soils were well below site-specific screening guideline values. In order to explore the reasons for observed toxicity, the contaminated soils were leached with rainwater and subjected to earthworm tests, including the comet assay, which showed no DNA damage. Soluble hydrocarbon fractions were not found originally in the soils and hence no hydrocarbons leached out during soil leaching. The soil leachate's Electrical Conductivity (EC) decreased from an average of 1665 ± 147 to 204 ± 20 µS cm -1 . Decreased EC is due to the loss of sodium, magnesium, calcium, and sulphate. The leachate experiment demonstrated that elevated salinity might cause the toxicity and not the weathered hydrocarbons. Soil leaching removed the toxicity, which is substantiated by the comet assay and soil leachate analysis data. The implication is that earthworm comet assay can be included in future eco (geno) toxicology studies to assess accurately the risk of contaminated soils.

  1. Microplastic contamination in Lake Winnipeg, Canada.

    PubMed

    Anderson, Philip J; Warrack, Sarah; Langen, Victoria; Challis, Jonathan K; Hanson, Mark L; Rennie, Michael D

    2017-06-01

    Microplastics are an emerging contaminant of concern in aquatic ecosystems. To better understand microplastic contamination in North American surface waters, we report for the first time densities of microplastics in Lake Winnipeg, the 11th largest freshwater body in the world. Samples taken 2014 to 2016 revealed similar or significantly greater microplastic densities in Lake Winnipeg compared with those reported in the Laurentian Great Lakes. Plastics in the lake were largely of secondary origin, overwhelmingly identified as fibres. We detected significantly greater densities of microplastics in the north basin compared to the south basin of the lake in 2014, but not in 2015 or 2016. Mean lake-wide densities across all years were comparable and not statistically different. Scanning electron microscopy with energy dispersive X-ray spectroscopy indicated that 23% of isolated particles on average were not plastic. While the ecological impact of microplastics on aquatic ecosystems is still largely unknown, our study contributes to the growing evidence that microplastic contamination is widespread even around sparsely-populated freshwater ecosystems, and provides a baseline for future study and risk assessments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV

    NASA Astrophysics Data System (ADS)

    Duchemin, C.; Guertin, A.; Haddad, F.; Michel, N.; Métivier, V.

    2015-02-01

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code.

  3. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV.

    PubMed

    Duchemin, C; Guertin, A; Haddad, F; Michel, N; Métivier, V

    2015-02-07

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code.

  4. Construction of target-specific virus-like particles for the delivery of algicidal compounds to harmful algae.

    PubMed

    Kang, Beom Sik; Eom, Chi-Yong; Kim, Wonduck; Kim, Pyoung Il; Ju, Sun Yi; Ryu, Jaewon; Han, Gui Hwan; Oh, Jeong-Il; Cho, Hoon; Baek, Seung Ho; Kim, Gueeda; Kim, Minju; Hyun, Jaekyung; Jin, EonSeon; Kim, Si Wouk

    2015-04-01

    Harmful algal blooms (HABs) can lead to substantial socio-economic losses and extensive damage to aquatic ecosystems, drinking water sources and human health. Common algicidal techniques, including ozonation, ultrasonic treatment and dispersion of algae-killing chemicals, are unsatisfactory both economically and ecologically. This study therefore presents a novel alternative strategy for the efficient control of deleterious algae via the use of host-specific virus-like particles (VLPs) combined with chemically synthesized algicidal compounds. The capsid protein of HcRNAV34, a single-stranded RNA virus that infects the toxic dinoflagellate, Heterocapsa circularisquama, was expressed in and purified from Escherichia coli and then self-assembled into VLPs in vitro. Next, the algicidal compound, thiazolidinedione 49 (TD49), was encapsidated into HcRNAV34 VLPs for specific delivery to H. circularisquama. Consequently, HcRNAV34 VLPs demonstrated the same host selectivity as naturally occurring HcRNAV34 virions, while TD49-encapsidated VLPs showed a more potent target-specific algicidal effect than TD49 alone. These results indicate that target-specific VLPs for the delivery of cytotoxic compounds to nuisance algae might provide a safe, environmentally friendly approach for the management of HABs in aquatic ecosystems. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Particle size effects on bioaccessible amounts of ingestible soil-borne toxic elements.

    PubMed

    Qin, Junhao; Nworie, Obinna Elijah; Lin, Chuxia

    2016-09-01

    The unified BARGE method was used to examine the effects of soil particle size on the bioaccessible amounts of potentially toxic elements in multi-contaminated soils from a closed landfill site. The results show that bioaccessible As, Al, Cd, Cr, Cu, Mn, Ni, Pb and Zn increased with decreasing soil particle size and the <0.002 mm soil fraction contained much greater amounts of the bioaccessible elements, as compared to other soil fractions (0.002-0.063 mm, 0.063-0.125 mm, and 0.125-0.250 mm). As, Al and Cr had much lower bioaccessibility, as compared to the six cationic heavy metals. In contrast with other elements, As bioaccessibility tended to be higher in the gastrointestinal phase than in the gastric phase. There was a significant soil particle size effect on bioaccessibility of As and Al in the gastrointestinal phase: As bioaccessibility decreased with decreasing particle size, and the finer soil fractions tended to have a higher Al bioaccessibility, as compared to the coarser soil fractions. The research findings prompt the need for further division of soil particle size fractions in order to more accurately assess the bioaccessible amounts of soil-borne potentially toxic elements in contaminated lands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Metallic Contaminant Detection using a High-Temperature Superconducting Quantum Interference Devices Gradiometer

    NASA Astrophysics Data System (ADS)

    Saburo, Tanaka; Tomohiro, Akai; Makoto, Takemoto; Yoshimi, Hatsukade; Takeyoshi, Ohtani; Yoshio, Ikeda; Shuichi, Suzuki

    2010-08-01

    We develop magnetic metallic contaminant detectors using high-temperature superconducting quantum interference devices (HTS-SQUIDs) for industrial products. Finding ultra-small metallic contaminants is an important issue for manufacturers producing commercial products such as lithium ion batteries. If such contaminants cause damages, the manufacturer of the product suffers a big financial loss due to having to recall the faulty products. Previously, we described a system for finding such ultra-small particles in food. In this study, we describe further developments of the system, for the reduction of the effect of the remnant field of the products, and we test the parallel magnetization of the products to generate the remnant field only at both ends of the products. In addition, we use an SQUID gradiometer in place of the magnetometer to reduce the edge effect by measuring the magnetic field gradient. We test the performances of the system and find that tiny iron particles as small as 50 × 50 μm2 on the electrode of a lithium ion battery could be clearly detected. This detection level is difficult to achieve when using other methods.

  7. High spatial resolution particle detectors

    DOEpatents

    Boatner, Lynn A.; Mihalczo, John T.

    2012-09-04

    Disclosed below are representative embodiments of methods, apparatus, and systems for detecting particles, such as radiation or charged particles. One exemplary embodiment disclosed herein is particle detector comprising an optical fiber with a first end and second end opposite the first end. The optical fiber of this embodiment further comprises a doped region at the first end and a non-doped region adjacent to the doped region. The doped region of the optical fiber is configured to scintillate upon interaction with a target particle, thereby generating one or more photons that propagate through the optical fiber and to the second end. Embodiments of the disclosed technology can be used in a variety of applications, including associated particle imaging and cold neutron scattering.

  8. High spatial resolution particle detectors

    DOEpatents

    Boatner, Lynn A.; Mihalczo, John T.

    2015-10-13

    Disclosed below are representative embodiments of methods, apparatus, and systems for detecting particles, such as radiation or charged particles. One exemplary embodiment disclosed herein is particle detector comprising an optical fiber with a first end and second end opposite the first end. The optical fiber of this embodiment further comprises a doped region at the first end and a non-doped region adjacent to the doped region. The doped region of the optical fiber is configured to scintillate upon interaction with a target particle, thereby generating one or more photons that propagate through the optical fiber and to the second end. Embodiments of the disclosed technology can be used in a variety of applications, including associated particle imaging and cold neutron scattering.

  9. Forced-air warming design: evaluation of intake filtration, internal microbial buildup, and airborne-contamination emissions.

    PubMed

    Reed, Mike; Kimberger, Oliver; McGovern, Paul D; Albrecht, Mark C

    2013-08-01

    Forced-air warming devices are effective for the prevention of surgical hypothermia. However, these devices intake nonsterile floor-level air, and it is unknown whether they have adequate filtration measures to prevent the internal buildup or emission of microbial contaminants. We rated the intake filtration efficiency of a popular current-generation forced-air warming device (Bair Hugger model 750, Arizant Healthcare) using a monodisperse sodium chloride aerosol in the laboratory. We further sampled 23 forced-air warming devices (same model) in daily hospital use for internal microbial buildup and airborne-contamination emissions via swabbing and particle counting. Laboratory testing found the intake filter to be 63.8% efficient. Swabbing detected microorganisms within 100% of the forced-air warming blowers sampled, with isolates of coagulase-negative staphylococci, mold, and micrococci identified. Particle counting showed 96% of forced-air warming blowers to be emitting significant levels of internally generated airborne contaminants out of the hose end. These findings highlight the need for upgraded intake filtration, preferably high-efficiency particulate air filtration (99.97% efficient), on current-generation forced-air warming devices to reduce contamination buildup and emission risks.

  10. Lunar Cold Trap Contamination by Landing Vehicles

    NASA Technical Reports Server (NTRS)

    Shipley, Scott T.; Metzger, Philip T.; Lane, John E.

    2014-01-01

    Tools have been developed to model and simulate the effects of lunar landing vehicles on the lunar environment (Metzger, 2011), mostly addressing the effects of regolith erosion by rocket plumes and the fate of the ejected lunar soil particles (Metzger, 2010). These tools are being applied at KSC to predict ejecta from the upcoming Google Lunar X-Prize Landers and how they may damage the historic Apollo landing sites. The emerging interest in lunar mining poses a threat of contamination to pristine craters at the lunar poles, which act as "cold traps" for water and may harbor other valuable minerals Crider and Vondrak (2002). The KSC Granular Mechanics and Regolith Operations Lab tools have been expanded to address the probability for contamination of these pristine "cold trap" craters.

  11. Performance of Passive Samplers for Monitoring Estuarine Water Column Concentrations: 2. Emerging Contaminants

    EPA Science Inventory

    Measuring dissolved concentrations of emerging contaminants, such as polybrominated diphenyl ethers (PBDEs) and triclosan (TCS), can be challenging due to their physicochemical properties resulting in low aqueous solubilities and association with particles. Passive sampling meth...

  12. Magnetic particle motions within living cells. Physical theory and techniques.

    PubMed Central

    Valberg, P A; Butler, J P

    1987-01-01

    Body tissues are not ferromagnetic, but ferromagnetic particles can be present as contaminants or as probes in the lungs and in other organs. The magnetic domains of these particles can be aligned by momentary application of an external magnetic field; the magnitude and time course of the resultant remanent field depend on the quantity of magnetic material and the degree of particle motion. The interpretation of magnetometric data requires an understanding of particle magnetization, agglomeration, random motion, and both rotation and translation in response to magnetic fields. We present physical principles relevant to magnetometry and suggest models for intracellular particle motion driven by thermal, elastic, or cellular forces. The design principles of instrumentation for magnetizing intracellular particles and for detecting weak remanent magnetic fields are described. Such magnetic measurements can be used for noninvasive studies of particle clearance from the body or of particle motion within body tissues and cells. Assumptions inherent to this experimental approach and possible sources of artifact are considered and evaluated. PMID:3676435

  13. In Situ Magnetic Susceptibility Variations at Two Contaminated Sites: Brandywine, MD and Bemidji, MN

    NASA Astrophysics Data System (ADS)

    Donaldson, Y. Y.; Kessouri, P.; Ntarlagiannis, D.; Johnson, T. C.; Day-Lewis, F. D.; Johnson, C. D.; Bekins, B. A.; Slater, L. D.

    2017-12-01

    Geophysical methods are widely used monitoring tools for investigating subsurface processes. Compared to more traditional methods, they are low cost and minimally invasive. Magnetic susceptibility (MS) is a geophysical technique particularly sensitive to the presence of ferri/ ferro-magnetic particles such as iron oxides (e.g., magnetite, hematite and goethite). These oxides can be formed through microbially mediated redox reactions, inducing changes in the soil properties that can be observed by MS measurements. Monitoring MS changes over time provides indications of iron mineral transformations in the ground. These transformations are of particular interest for the characterization of contaminated sites. We acquired borehole MS measurements from two contaminated sites: Brandywine, MD and Bemidji, MN. Active remediation was applied at Brandywine, whereas natural attenuation has been geophysically monitored at Bemidji since 2011 using MS log measurements. High MS values were observed at both sites within the contaminated area only. We hypothesize that this is due to iron reducing bacteria reducing Fe-(III) to Fe-(II) and utilizing contaminants and/or amendments injected as a carbon source. At Bemidji, elevated MS readings were observed in the smear zone and correlate to the presence of magnetite. Furthermore, time-lapse MS observations at Bemidji indicate a decay in signal amplitude over time suggesting further redox transformation into less magnetic particles. For both field examples presented here, we observe variations in magnetic susceptibility within the contaminated areas that can be linked with redox reactions and mineral transformations occurring during the degradation of organic contaminants.

  14. A high-throughput microparticle microarray platform for dendritic cell-targeting vaccines.

    PubMed

    Acharya, Abhinav P; Clare-Salzler, Michael J; Keselowsky, Benjamin G

    2009-09-01

    Immunogenomic approaches combined with advances in adjuvant immunology are guiding progress toward rational design of vaccines. Furthermore, drug delivery platforms (e.g., synthetic particles) are demonstrating promise for increasing vaccine efficacy. Currently there are scores of known antigenic epitopes and adjuvants, and numerous synthetic delivery systems accessible for formulation of vaccines for various applications. However, the lack of an efficient means to test immune cell responses to the abundant combinations available represents a significant blockade on the development of new vaccines. In order to overcome this barrier, we report fabrication of a new class of microarray consisting of antigen/adjuvant-loadable poly(D,L lactide-co-glycolide) microparticles (PLGA MPs), identified as a promising carrier for immunotherapeutics, which are co-localized with dendritic cells (DCs), key regulators of the immune system and prime targets for vaccines. The intention is to utilize this high-throughput platform to optimize particle-based vaccines designed to target DCs in vivo for immune system-related disorders, such as autoimmune diseases, cancer and infection. Fabrication of DC/MP arrays leverages the use of standard contact printing miniarraying equipment in conjunction with surface modification to achieve co-localization of particles/cells on isolated islands while providing background non-adhesive surfaces to prevent off-island cell migration. We optimized MP overspotting pin diameter, accounting for alignment error, to allow construction of large, high-fidelity arrays. Reproducible, quantitative delivery of as few as 16+/-2 MPs per spot was demonstrated and two-component MP dosing arrays were constructed, achieving MP delivery which was independent of formulation, with minimal cross-contamination. Furthermore, quantification of spotted, surface-adsorbed MP degradation was demonstrated, potentially useful for optimizing MP release properties. Finally, we

  15. Surface contamination on LDEF exposed materials

    NASA Technical Reports Server (NTRS)

    Hemminger, Carol S.

    1992-01-01

    X-ray photoelectron spectroscopy (XPS) has been used to study the surface composition and chemistry of Long Duration Exposure Facility (LDEF) exposed materials including silvered Teflon (Ag/FEP), Kapton, S13GLO paint, quartz crystal monitors (QCM's), carbon fiber/organic matrix composites, and carbon fiber/Al Alloy composites. In each set of samples, silicones were the major contributors to the molecular film accumulated on the LDEF exposed surfaces. All surfaces analyzed have been contaminated with Si, O, and C; most have low levels (less than 1 atom percent) of N, S, and F. Occasionally observed contaminants included Cl, Na, K, P, and various metals. Orange/brown discoloration observed near vent slots in some Ag/FEP blankets were higher in carbon, sulfur, and nitrogen relative to other contamination types. The source of contamination has not been identified, but amine/amide functionalities were detected. It is probable that this same source of contamination account for the low levels of sulfur and nitrogen observed on most LDEF exposed surfaces. XPS, which probes 50 to 100 A in depth, detected the major sample components underneath the contaminant film in every analysis. This probably indicates that the contaminant overlayer is patchy, with significant areas covered by less that 100 A of molecular film. Energy dispersive x-ray spectroscopy (EDS) of LDEF exposed surfaces during secondary electron microscopy (SEM) of the samples confirmed contamination of the surfaces with Si and O. In general, particulates were not observed to develop from the contaminant overlayer on the exposed LDEF material surfaces. However, many SiO2 submicron particles were seen on a masked edge of an Ag/FEP blanket. In some cases such as the carbon fiber/organic matrix composites, interpretation of the contamination data was hindered by the lack of good laboratory controls. Examination of laboratory controls for the carbon fiber/Al alloy composites showed that preflight contamination was

  16. Comparison of active and passive sampling strategies for the monitoring of pesticide contamination in streams

    NASA Astrophysics Data System (ADS)

    Assoumani, Azziz; Margoum, Christelle; Guillemain, Céline; Coquery, Marina

    2014-05-01

    The monitoring of water bodies regarding organic contaminants, and the determination of reliable estimates of concentrations are challenging issues, in particular for the implementation of the Water Framework Directive. Several strategies can be applied to collect water samples for the determination of their contamination level. Grab sampling is fast, easy, and requires little logistical and analytical needs in case of low frequency sampling campaigns. However, this technique lacks of representativeness for streams with high variations of contaminant concentrations, such as pesticides in rivers located in small agricultural watersheds. Increasing the representativeness of this sampling strategy implies greater logistical needs and higher analytical costs. Average automated sampling is therefore a solution as it allows, in a single analysis, the determination of more accurate and more relevant estimates of concentrations. Two types of automatic samplings can be performed: time-related sampling allows the assessment of average concentrations, whereas flow-dependent sampling leads to average flux concentrations. However, the purchase and the maintenance of automatic samplers are quite expensive. Passive sampling has recently been developed as an alternative to grab or average automated sampling, to obtain at lower cost, more realistic estimates of the average concentrations of contaminants in streams. These devices allow the passive accumulation of contaminants from large volumes of water, resulting in ultratrace level detection and smoothed integrative sampling over periods ranging from days to weeks. They allow the determination of time-weighted average (TWA) concentrations of the dissolved fraction of target contaminants, but they need to be calibrated in controlled conditions prior to field applications. In other words, the kinetics of the uptake of the target contaminants into the sampler must be studied in order to determine the corresponding sampling rate

  17. Agricultural areas in potentially contaminated sites: characterization, risk, management.

    PubMed

    Vanni, Fabiana; Scaini, Federica; Beccaloni, Eleonora

    2016-01-01

    In Italy, the current legislation for contaminants in soils provides two land uses: residential/public or private gardens and commercial/industrial; there are not specific reference values for agricultural soils, even if a special decree has been developed and is currently going through the legislative approval process. The topic of agricultural areas is relevant, also in consideration of their presence near potentially contaminated sites. Aim and results. In this paper, contamination sources and transport modes of contaminants from sources to the target in agricultural areas are examined and a suitable "conceptual model" to define appropriate characterization methods and risk assessment procedures is proposed. These procedures have already been used by the National Institute of Health in various Italian areas characterized by different agricultural settings. Finally, specific remediation techniques are suggested to preserve soil resources and, if possible, its particular land use.

  18. Laser-driven proton acceleration with nanostructured targets

    NASA Astrophysics Data System (ADS)

    Vallières, Simon; Morabito, Antonia; Veltri, Simona; Scisciò, Massimiliano; Barberio, Marianna; Antici, Patrizio

    2017-05-01

    Laser-driven particle acceleration has become a growing field of research, in particular for its numerous interesting applications. One of the most common proton acceleration mechanism that is obtained on typically available multi-hundred TW laser systems is based on the irradiation of thin solid metal foils by the intense laser, generating the proton acceleration on its rear target surface. The efficiency of this acceleration scheme strongly depends on the type of target used. Improving the acceleration mechanism, i.e. enhancing parameters such as maximum proton energy, laminarity, efficiency, monocromaticy, and number of accelerated particles, is heavily depending on the laser-to-target absorption, where obviously cheap and easy to implement targets are best candidates. In this work, we present nanostructured targets that are able to increase the absorption of light compared to what can be achieved with a classical solid (non-nanostructured) target and are produced with a method that is much simpler and cheaper than conventional lithographic processes. Several layers of gold nanoparticles were deposited on solid targets (aluminum, Mylar and multiwalled carbon nanotube buckypaper) and allow for an increased photon absorption. This ultimately permits to increase the laser-to-particle energy transfer, and thus to enhance the yield in proton production. Experimental characterization results on the nanostructured films are presented (UV-Vis spectroscopy and AFM), along with preliminary experimental proton spectra obtained at the JLF-TITAN laser facility at LLNL.

  19. In situ synthesis of luminescent carbon nanoparticles toward target bioimaging

    NASA Astrophysics Data System (ADS)

    Sharker, Shazid Md.; Kim, Sung Min; Lee, Jung Eun; Jeong, Ji Hoon; in, Insik; Lee, Kang Dea; Lee, Haeshin; Park, Sung Young

    2015-03-01

    This paper describes the in situ synthesis of single fluorescence carbon nanoparticles (FCNs) for target bioimaging applications derived from biocompatible hyaluronic acid (HA) without using common conjugation processes. FCNs formed via the dehydration of hyaluronic acid, which were obtained by carbonizing HA, and partially carbonized HA fluorescence carbon nanoparticles (HA-FCNs), formed by a lower degree of carbonization, show good aqueous solubility, small particle size (<20 nm) and different fluorescence intensities with a red shift. After confirming the cytotoxicity of HA-FCNs and FCNs, we carried out in vitro and in vivo bioimaging studies where HA-FCNs themselves functioned as single particle triggers in target imaging. The converted nanocrystal carbon particles from HA provide outstanding features for in vitro and in vivo new targeted delivery and diagnostic tools.This paper describes the in situ synthesis of single fluorescence carbon nanoparticles (FCNs) for target bioimaging applications derived from biocompatible hyaluronic acid (HA) without using common conjugation processes. FCNs formed via the dehydration of hyaluronic acid, which were obtained by carbonizing HA, and partially carbonized HA fluorescence carbon nanoparticles (HA-FCNs), formed by a lower degree of carbonization, show good aqueous solubility, small particle size (<20 nm) and different fluorescence intensities with a red shift. After confirming the cytotoxicity of HA-FCNs and FCNs, we carried out in vitro and in vivo bioimaging studies where HA-FCNs themselves functioned as single particle triggers in target imaging. The converted nanocrystal carbon particles from HA provide outstanding features for in vitro and in vivo new targeted delivery and diagnostic tools. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07422j

  20. Target annihilation by diffusing particles in inhomogeneous geometries

    NASA Astrophysics Data System (ADS)

    Cassi, Davide

    2009-09-01

    The survival probability of immobile targets annihilated by a population of random walkers on inhomogeneous discrete structures, such as disordered solids, glasses, fractals, polymer networks, and gels, is analytically investigated. It is shown that, while it cannot in general be related to the number of distinct visited points as in the case of homogeneous lattices, in the case of bounded coordination numbers its asymptotic behavior at large times can still be expressed in terms of the spectral dimension d˜ and its exact analytical expression is given. The results show that the asymptotic survival probability is site-independent of recurrent structures (d˜≤2) , while on transient structures (d˜>2) it can strongly depend on the target position, and such dependence is explicitly calculated.

  1. RF plasma cleaning of silicon substrates with high-density polyethylene contamination

    NASA Astrophysics Data System (ADS)

    Cagomoc, Charisse Marie D.; De Leon, Mark Jeffry D.; Ebuen, Anna Sophia M.; Gilos, Marlo Nicole R.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    Upon contact with a polymeric material, microparticles from the polymer may adhere to a silicon (Si) substrate during device processing. The adhesion contaminates the surface and, in turn, leads to defects in the fabricated Si-based microelectronic devices. In this study, Si substrates with artificially induced high-density polyethylene (HDPE) contamination was exposed to 13.56 MHz radio frequency (RF) plasma utilizing argon and oxygen gas admixtures at a power density of 5.6 W/cm2 and a working pressure of 110 Pa for up to 6 min of treatment. Optical microscopy studies revealed the removal of up to 74% of the polymer contamination upon plasma exposure. Surface free energy (SFE) increased owing to the removal of contaminants as well as the formation of polar groups on the Si surface after plasma treatment. Atomic force microscopy scans showed a decrease in surface roughness from 12.25 nm for contaminated samples to 0.77 nm after plasma cleaning. The smoothening effect can be attributed to the removal of HDPE particles from the surface. In addition, scanning electron microscope images showed that there was a decrease in the amount of HDPE contaminants adhering onto the surface after plasma exposure.

  2. Color image analysis of contaminants and bacteria transport in porous media

    NASA Astrophysics Data System (ADS)

    Rashidi, Mehdi; Dehmeshki, Jamshid; Daemi, Mohammad F.; Cole, Larry; Dickenson, Eric

    1997-10-01

    Transport of contaminants and bacteria in aqueous heterogeneous saturated porous systems have been studied experimentally using a novel fluorescent microscopic imaging technique. The approach involves color visualization and quantification of bacterium and contaminant distributions within a transparent porous column. By introducing stained bacteria and an organic dye as a contaminant into the column and illuminating the porous regions with a planar sheet of laser beam, contaminant and bacterial transport processes through the porous medium can be observed and measured microscopically. A computer controlled color CCD camera is used to record the fluorescent images as a function of time. These images are recorded by a frame accurate high resolution VCR and are then analyzed using a color image analysis code written in our laboratories. The color images are digitized this way and simultaneous concentration and velocity distributions of both contaminant and bacterium are evaluated as a function of time and pore characteristics. The approach provides a unique dynamic probe to observe these transport processes microscopically. These results are extremely valuable in in-situ bioremediation problems since microscopic particle-contaminant- bacterium interactions are the key to understanding and optimization of these processes.

  3. Bibliography: Codes, standards, procedures, specifications and reports relating to contamination control

    NASA Technical Reports Server (NTRS)

    Ledoux, F. N.

    1970-01-01

    The bibliography is arranged in separate sections under headings that include: (1) spacecraft cleanliness, (2) general cleaning, (3) clean room and work stations, (4) contamination, (5) decontamination, (6) manufacturing, (7) miscellaneous, (8) particle count analysis, (9) passivation, (10) packaging, (11) water, and (12) acids and detergents.

  4. Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone

    NASA Astrophysics Data System (ADS)

    Kashparov, Valery; Levchuk, Sviatoslav; Zhurba, Marina; Protsak, Valentyn; Khomutinin, Yuri; Beresford, Nicholas A.; Chaplow, Jacqueline S.

    2018-02-01

    The dataset Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone was developed to enable data collected between May 1986 (immediately after Chernobyl) and 2014 by the Ukrainian Institute of Agricultural Radiology (UIAR) after the Chernobyl accident to be made publicly available. The dataset includes results from comprehensive soil sampling across the Chernobyl Exclusion Zone (CEZ). Analyses include radiocaesium (134Cs and 134Cs) 90Sr, 154Eu and soil property data; plutonium isotope activity concentrations in soil (including distribution in the soil profile); analyses of hot (or fuel) particles from the CEZ (data from Poland and across Europe are also included); and results of monitoring in the Ivankov district, a region adjacent to the exclusion zone. The purpose of this paper is to describe the available data and methodology used to obtain them. The data will be valuable to those conducting studies within the CEZ in a number of ways, for instance (i) for helping to perform robust exposure estimates to wildlife, (ii) for predicting comparative activity concentrations of different key radionuclides, (iii) for providing a baseline against which future surveys in the CEZ can be compared, (iv) as a source of information on the behaviour of fuel particles (FPs), (v) for performing retrospective dose assessments and (vi) for assessing natural background dose rates in the CEZ. The CEZ has been proposed as a radioecological observatory (i.e. a radioactively contaminated site that will provide a focus for long-term, radioecological collaborative international research). Key to the future success of this concept is open access to data for the CEZ. The data presented here are a first step in this process. The data and supporting documentation are freely available from the Environmental Information Data Centre (EIDC) under the terms and conditions of the Open Government Licence: Distribution and transport of sediment-bound metal contaminants in the rio grande de tarcoles, costa rica (Central America)

    USGS Publications Warehouse

    Fuller, C.C.; Davis, J.A.; Cain, D.J.; Lamothe, P.J.; Fries Fernandez, T.L.G.; Vargas, J.A.; Murillo, M.M.

    1990-01-01

    A reconnaissance survey of the extent of metal contamination in the Rio Grande de Tarcoles river system of Costa Rica indicated high levels of chromium (Cr) in the fine-grain bed sediments (83 times Cr background or 3000->5000 ??g/g). In the main channel of the river downstream of the San Jose urban area, Cr contamination in sediments was 4-6 times background and remained relatively constant over 50 km to the mouth of the river. Sediment from a mangrove swamp at the river mouth had Cr levels 2-3 times above background. Similar patterns of dilution were observed for lead (Pb) and zinc (Zn) sediment contamination, although the contamination levels were lower. The high affinity of Cr towards particulate phases, probably as Cr(III), allows the use of Cr contamination levels for delineating regions of deposition of fine-grained sediments and dilution of particle associated contaminants during transport and deposition.A reconnaissance survey of the extent of metal contamination in the Rio Grande de Tarcoles river system of Costa Rica indicated high levels of chromium (Cr) in the fine-grain bed sediments (83 times Cr background or 3000->5000 ??g/g). In the main channel of the river downstream of the San Jose urban area, Cr contamination in sediments was 4-6 times background and remained relatively constant over 50 km to the mouth of the river. Sediments from a mangrove swamp at the river mouth had Cr levels 2-3 times above background. Similar patterns of dilution were observed for lead (Pb) and zinc (Zn) sediment contamination, although the contamination levels were lower. The high affinity of Cr towards particulate phases, probably as Cr(III), allows the use of Cr contamination levels for delineating regions of deposition of fine-grained sediments and dilution of particle associated contaminants during transport and deposition.

  5. Testing an innovative device against airborne Aspergillus contamination.

    PubMed

    Desoubeaux, Guillaume; Bernard, Marie-Charlotte; Gros, Valérie; Sarradin, Pierre; Perrodeau, Elodie; Vecellio, Laurent; Piscopo, Antoine; Chandenier, Jacques; Bernard, Louis

    2014-08-01

    Aspergillus fumigatus is a major airborne nosocomial pathogen that is responsible for severe mycosis in immunocompromised patients. We studied the efficacy of an innovative mobile air-treatment device in eliminating A. fumigatus from the air following experimental massive contamination in a high-security room. Viable mycological particles were isolated from sequential air samples in order to evaluate the device's effectiveness in removing the fungus. The concentration of airborne conidia was reduced by 95% in 18 min. Contamination was reduced below the detection threshold in 29 min, even when the machine was at the lowest airflow setting. In contrast, during spontaneous settling with no air treatment, conidia remained airborne for more than 1 h. This indoor air contamination model provided consistent and reproducible results. Because the air purifier proved to be effective at eliminating a major contaminant, it may prove useful in preventing air-transmitted disease agents. In an experimental space mimicking a hospital room, the AirLyse air purifier, which uses a combination of germicidal ultraviolet C irradiation and titanium photocatalysis, effectively eliminated Aspergillus conidia. Such a mobile device may be useful in routine practice for lowering microbiological air contamination in the rooms of patients at risk. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Sorption of organic compounds by aged polystyrene microplastic particles.

    PubMed

    Hüffer, Thorsten; Weniger, Anne-Katrin; Hofmann, Thilo

    2018-05-01

    Microplastics that are released into the environment undergo aging and interact with other substances such as organic contaminants. Understanding the sorption interactions between aged microplastics and organic contaminants is therefore essential for evaluating the impact of microplastics on the environment. There is little information available on how the aging of microplastics affects their sorption behavior and other properties. We have therefore investigated the effects of an accelerated UV-aging procedure on polystyrene microplastics, which are used in products such as skin cleaners and foams. Physical and chemical particle characterizations showed that aging led to significant surface oxidation and minor localized microcrack formation. Sorption coefficients of organic compounds by polystyrene microplastics following aging were up to one order of magnitude lower than for pristine particles. Sorption isotherms were experimentally determined using a diverse set of probe sorbates covering a variety of substance classes allowing an in-depth evaluation of the poly-parameter linear free-energy relationship (ppLFER) modelling used to investigate the contribution of individual molecular interactions to overall sorption. The ppLFER modelling was validated using internal cross-validation, which confirmed its robustness. This approach therefore yields improved estimates of the interactions between aged polystyrene microplastics and organic contaminants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Magnetic-Particle-Sensing Based Diagnostic Protocols and Applications

    PubMed Central

    Takamura, Tsukasa; Ko, Pil Ju; Sharma, Jaiyam; Yukino, Ryoji; Ishizawa, Shunji; Sandhu, Adarsh

    2015-01-01

    Magnetic particle-labeled biomaterial detection has attracted much attention in recent years for a number of reasons; easy manipulation by external magnetic fields, easy functionalization of the surface, and large surface-to-volume ratio, to name but a few. In this review, we report on our recent investigations into the detection of nano-sized magnetic particles. First, the detection by Hall magnetic sensor with lock-in amplifier and alternative magnetic field is summarized. Then, our approach to detect sub-200 nm diameter target magnetic particles via relatively large micoro-sized “columnar particles” by optical microscopy is described. Subsequently, we summarize magnetic particle detection based on optical techniques; one method is based on the scattering of the magnetically-assembled nano-sized magnetic bead chain in rotating magnetic fields and the other one is based on the reflection of magnetic target particles and porous silicon. Finally, we report recent works with reference to more familiar industrial products (such as smartphone-based medical diagnosis systems and magnetic removal of unspecific-binded nano-sized particles, or “magnetic washing”). PMID:26053747

  8. Enhanced size-dependent trapping of particles using microvortices

    PubMed Central

    Zhou, Jian; Kasper, Susan; Papautsky, Ian

    2013-01-01

    Inertial microfluidics has been attracting considerable interest for size-based separation of particles and cells. The inertial forces can be manipulated by expanding the microchannel geometry, leading to formation of microvortices which selectively isolate and trap particles or cells from a mixture. In this work, we aim to enhance our understanding of particle trapping in such microvortices by developing a model of selective particle trapping. Design and operational parameters including flow conditions, size of the trapping region, and target particle concentration are explored to elucidate their influence on trapping behavior. Our results show that the size dependence of trapping is characterized by a threshold Reynolds number, which governs the selective entry of particles into microvortices from the main flow. We show that concentration enhancement on the order of 100,000× and isolation of targets at concentrations in the 1/mL is possible. Ultimately, the insights gained from our systematic investigation suggest optimization solutions that enhance device performance (efficiency, size selectivity, and yield) and are applicable to selective isolation and trapping of large rare cells as well as other applications. PMID:24187531

  9. Field Demonstration of Light Obscuration Particle Counting Technologies to Detect Fuel Contaminates

    DTIC Science & Technology

    2016-12-01

    to detect fuel contamiation including particulates and free water 15. SUBJECT TERMS fuel, JP-8, aviation fuel, contamination, free water ...undissolved water , F24 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT none 18. NUMBER OF PAGES 12 19a. NAME OF RESPONSIBLE PERSON Joel...technical, interim, memorandum, master’s thesis, progress, quarterly, research , special, group study, etc. 3. DATES COVERED. Indicate the time during

  10. A system for the rapid detection of bacterial contamination in cell-based therapeutica

    NASA Astrophysics Data System (ADS)

    Bolwien, Carsten; Erhardt, Christian; Sulz, Gerd; Thielecke, Hagen; Johann, Robert; Pudlas, Marieke; Mertsching, Heike; Koch, Steffen

    2010-02-01

    Monitoring the sterility of cell or tissue cultures is of major concern, particularly in the fields of regenerative medicine and tissue engineering when implanting cells into the human body. Our sterility-control system is based on a Raman micro-spectrometer and is able to perform fast sterility testing on microliters of liquid samples. In conventional sterility control, samples are incubated for weeks to proliferate the contaminants to concentrations above the detection limit of conventional analysis. By contrast, our system filters particles from the liquid sample. The filter chip fabricated in microsystem technology comprises a silicon nitride membrane with millions of sub-micrometer holes to retain particles of critical sizes and is embedded in a microfluidic cell specially suited for concomitant microscopic observation. After filtration, identification is carried out on the single particle level: image processing detects possible contaminants and prepares them for Raman spectroscopic analysis. A custom-built Raman-spectrometer-attachment coupled to the commercial microscope uses 532nm or 785nm Raman excitation and records spectra up to 3400cm-1. In the final step, the recorded spectrum of a single particle is compared to an extensive library of GMP-relevant organisms, and classification is carried out based on a support vector machine.

  11. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health.

    PubMed

    Carbery, Maddison; O'Connor, Wayne; Palanisami, Thavamani

    2018-06-01

    Plastic litter has become one of the most serious threats to the marine environment. Over 690 marine species have been impacted by plastic debris with small plastic particles being observed in the digestive tract of organisms from different trophic levels. The physical and chemical properties of microplastics facilitate the sorption of contaminants to the particle surface, serving as a vector of contaminants to organisms following ingestion. Bioaccumulation factors for higher trophic organisms and impacts on wider marine food webs remain unknown. The main objectives of this review were to discuss the factors influencing microplastic ingestion; describe the biological impacts of associated chemical contaminants; highlight evidence for the trophic transfer of microplastics and contaminants within marine food webs and outline the future research priorities to address potential human health concerns. Controlled laboratory studies looking at the effects of microplastics and contaminants on model organisms employ nominal concentrations and consequently have little relevance to the real environment. Few studies have attempted to track the fate of microplastics and mixed contaminants through a complex marine food web using environmentally relevant concentrations to identify the real level of risk. To our knowledge, there has been no attempt to understand the transfer of microplastics and associated contaminants from seafood to humans and the implications for human health. Research is needed to determine bioaccumulation factors for popular seafood items in order to identify the potential impacts on human health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Web-Enabled Optoelectronic Particle-Fallout Monitor

    NASA Technical Reports Server (NTRS)

    Lineberger, Lewis P.

    2008-01-01

    A Web-enabled optoelectronic particle- fallout monitor has been developed as a prototype of future such instruments that (l) would be installed in multiple locations for which assurance of cleanliness is required and (2) could be interrogated and controlled in nearly real time by multiple remote users. Like prior particle-fallout monitors, this instrument provides a measure of particles that accumulate on a surface as an indication of the quantity of airborne particulate contaminants. The design of this instrument reflects requirements to: Reduce the cost and complexity of its optoelectronic sensory subsystem relative to those of prior optoelectronic particle fallout monitors while maintaining or improving capabilities; Use existing network and office computers for distributed display and control; Derive electric power for the instrument from a computer network, a wall outlet, or a battery; Provide for Web-based retrieval and analysis of measurement data and of a file containing such ancillary data as a log of command attempts at remote units; and Use the User Datagram Protocol (UDP) for maximum performance and minimal network overhead.

  13. Development of a new class of chemical and biological ultrasensors: Ribonuclease contamination and control

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In order to define ribonuclease contamination, an assay for ribonuclease having picogram level sensitivity was established. In this assay, polycytidylic acid is digested by ribonuclease leading to smaller fragments of poly C that remain soluble after treatment of the sample with perchloric acid and lanthanum acetate. An absorbance measurement at 260 nm of the supernatant from the centrifuged sample measures the ribonuclease. A standard curve is shown. Using this assay procedure, ribonuclease contamination was found to be significant in routine laboratory proteins, in particular, bovine serum albumin, lysozyme, catalase, and cytochrome C. This was confirmed by demonstrating a considerable reduction in this activity in the presence of phosphate buffer since phosphate inhibits ribonuclease. Ribonuclease contamination was not significantly encountered in routine laboratory glassware, plasticware, column surfaces, chromatographic particles, and buffer reagents, including airborne contamination. Some contamination could be introduced by fingerprints, however.

  14. Ejection of Metal Particles into Superfluid 4He by Laser Ablation.

    PubMed

    Buelna, Xavier; Freund, Adam; Gonzalez, Daniel; Popov, Evgeny; Eloranta, Jussi

    2016-10-05

    The dynamics following laser ablation of a metal target immersed in superfluid $^4$He is studied by time-resolved shadowgraph photography. The delayed ejection of hot micrometer-sized particles from the target surface into the liquid was indirectly observed by monitoring the formation and growth of gaseous bubbles around the particles. The experimentally determined particle average velocity distribution appears similar as previously measured in vacuum but exhibits a sharp cutoff at the speed of sound of the liquid. The propagation of the subsonic particles terminates in slightly elongated non-spherical gas bubbles residing near the target whereas faster particles reveal an unusual hydrodynamic response of the liquid. Based on the previously established semi-empirical model developed for macroscopic objects, the ejected transonic particles exhibit supercavitating flow to reduce their hydrodynamic drag. Supersonic particles appear to follow a completely different propagation mechanism as they leave discrete and semi-continuous bubble trails in the liquid. The relatively low number density of the observed non-spherical gas bubbles indicates that only large micron-sized particles are visualized in the experiments. Although the unique properties of superfluid helium allow a detailed characterization of these processes, the developed technique can be used to study the hydrodynamic response of any liquid to fast propagating objects on the micrometer-scale.

  15. Size-resolved dust and aerosol contaminants associated with copper and lead smelting emissions: implications for emission management and human health.

    PubMed

    Csavina, Janae; Taylor, Mark P; Félix, Omar; Rine, Kyle P; Eduardo Sáez, A; Betterton, Eric A

    2014-09-15

    Mining operations, including crushing, grinding, smelting, refining, and tailings management, are a significant source of airborne metal and metalloid contaminants such as As, Pb and other potentially toxic elements. In this work, we show that size-resolved concentrations of As and Pb generally follow a bimodal distribution with the majority of contaminants in the fine size fraction (<1 μm) around mining activities that include smelting operations at various sites in Australia and Arizona. This evidence suggests that contaminated fine particles (<1 μm) are the result of vapor condensation and coagulation from smelting operations while coarse particles are most likely the result of windblown dust from contaminated mine tailings and fugitive emissions from crushing and grinding activities. These results on the size distribution of contaminants around mining operations are reported to demonstrate the ubiquitous nature of this phenomenon so that more effective emission management and practices that minimize health risks associated with metal extraction and processing can be developed. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Biological effects of contaminated silicon carbide particles from a workstation in a plant producing abrasives.

    PubMed

    Governa, M; Valentino, M; Amati, M; Visonà, I; Botta, G C; Marcer, G; Gemignani, C

    1997-06-01

    A sample of silicon carbide dust taken in the field from a plant producing abrasives was studied in vitro. The SiC particles (part unmilled and part milled) were able to disturb the structure of erythrocyte membranes and to lead to blood red-cell lysis; they also either interfered with complement and activated the alternate pathway, or interacted with biological media and polymorphonuclear leucocyte membranes, thus eliciting reactive oxygen species production. These in vitro properties were detected both in original large particles and unmilled particles, over 40% of which were of respirable size. The ability of these SiC particles to produce complement activation in vitro lends support to the previous hypothesis, that the radiographic opacities found in two workers employed in the same area of the plant from which the dust tested was taken are due to a reaction by pulmonary interstitial structures to SiC particle inhalation. It is speculated that SiC particles could act like asbestos, the ability of which to activate complement through the alternate pathway is considered to be one of the mechanisms by which the initial asbestotic lesions and subsequent fibrotic inflammatory infiltrates are generated in the lung.

  17. Demonstration/Validation of a Surface Cleaning Control to Mitigate Storm Water Metal Contaminants

    DTIC Science & Technology

    2014-04-01

    added to a pre- weighed 125-ml low density polyethylene (LDPE) bottle. The particles were digested with 1.0 ml of concentrated trace metal grade (TMG...Sorenson. 2005. “ Residential Street-Dirt Accumulation Rates and Chemical Composition, and Removal Efficiencies by Mechanical- and Vacuum-Type...Bay, and M. Kayhanian. 2003. “A Review of the Contaminants and Toxicity Associated with Particles in Stormwater Runoff.” Caltrans CTSW-RT-03-059.73.15

  18. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor); Clausen, Christian A. (Inventor)

    2012-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  19. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W. (Inventor); Aitken, Brian S. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor)

    2010-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  1. Use of Passive Samplers to Measure Dissolved Organic Contaminants in a Temperate Estuary

    EPA Science Inventory

    Measuring dissolved concentrations of organic contaminants can be challenging given their low solubilities and high particle association. However, to perform accurate risk assessments of these chemicals, knowing the dissolved concentration is critical since it is considered to b...

  2. Erosion and physical transport via overland flow of arsenic and lead bound to silt-sized particles

    PubMed Central

    Cadwalader, G. Owen; Renshaw, Carl E.; Jackson, Brian P.; Magilligan, Francis J.; Landis, Joshua D.; Bostick, Benjamin C.

    2011-01-01

    Understanding of the transport mechanisms of contaminated soils and sediment is essential for the sustainable management of contaminated lands. In New England and elsewhere, vast areas of agricultural lands are contaminated by the historical application of lead-arsenate pesticides. Left undisturbed the physical and chemical mobility of As and Pb in these soils is limited due to their strong affinity for adsorption onto solid phases. However, soil disturbance promotes erosion and overland flow during intense rainstorms. Here we investigate the event-scale transport of disturbed As and Pb contaminated soils through measurement of concentrations of As and Pb in suspended sediment and changes in Pb isotopic ratios in overland flow. Investigation of several rain events shows that where land disturbance has occurred, physical transport of silt-sized particles and aggregates is the primary transport vector of As and Pb derived from pesticide-contaminated soil. Although both As and Pb are associated with similarly-sized particles, we find that solid-phase As is more effectively mobilized and transported than Pb. Our results demonstrate that anthropogenic land disturbance of historical lands contaminated with lead-arsenate pesticides may redistribute, through physical transport, significant amounts of As, and lesser amounts of Pb, to riparian and stream sediments, where they are potentially more bioavailable. PMID:21552357

  3. CONTAMINANT INTERACTIONS WITH STEROID RECEPTORS: EVIDENCE FOR RECEPTOR BINDING.

    EPA Science Inventory

    Steroid receptors are important determinants of endocrine disrupter consequences. As the most frequently proposed mechanism of endocrine-disrupting contaminant (EDC) action, steroid receptors are not only targets of natural steroids but are also commonly sites of nonsteroidal com...

  4. Behavior of suspended particles in the Changjiang Estuary: Size distribution and trace metal contamination.

    PubMed

    Yao, Qingzhen; Wang, Xiaojing; Jian, Huimin; Chen, Hongtao; Yu, Zhigang

    2016-02-15

    Suspended particulate matter (SPM) samples were collected along a salinity gradient in the Changjiang Estuary in June 2011. A custom-built water elutriation apparatus was used to separate the suspended sediments into five size fractions. The results indicated that Cr and Pb originated from natural weathering processes, whereas Cu, Zn, and Cd originated from other sources. The distribution of most trace metals in different particle sizes increased with decreasing particle size. The contents of Fe/Mn and organic matter were confirmed to play an important role in increasing the level of heavy metal contents. The Cu, Pb, Zn, and Cd contents varied significantly with increasing salinity in the medium-low salinity region, thus indicating the release of Cu, Pb, Zn, and Cd particles. Thus, the transfer of polluted fine particles into the open sea is probably accompanied by release of pollutants into the dissolved compartment, thereby amplifying the potential harmful effects to marine organisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Circular, confined distribution for charged particle beams

    DOEpatents

    Garnett, Robert W.; Dobelbower, M. Christian

    1995-01-01

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

  6. Circular, confined distribution for charged particle beams

    DOEpatents

    Garnett, R.W.; Dobelbower, M.C.

    1995-11-21

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

  7. Three dimensional electrode for the electrolytic removal of contaminants from aqueous waste streams

    DOEpatents

    Spiegel, Ella F.; Sammells, Anthony F.

    2001-01-01

    Efficient and cost-effective electrochemical devices and processes for the remediation of aqueous waste streams. The invention provides electrolytic cells having a high surface area spouted electrode for removal of heavy metals and oxidation of organics from aqueous environments. Heavy metal ions are reduced, deposited on cathode particles of a spouted bed cathode and removed from solution. Organics are efficiently oxidized at anode particles of a spouted bed anode and removed from solution. The method of this inventions employs an electrochemical cell having an anolyte compartment and a catholyte compartment, separated by a microporous membrane, in and through which compartments anolyte and catholyte, respectively, are circulated. A spouted-bed electrode is employed as the cathode for metal deposition from contaminated aqueous media introduced as catholyte and as the anode for oxidation of organics from contaminated aqueous media introduced as anolyte.

  8. Contamination removal by CO2 jet spray

    NASA Astrophysics Data System (ADS)

    Peterson, Ronald V.; Bowers, Charles W.

    1990-11-01

    Studies on the effectiveness of the jet flush in removing particle fallout and Arizona-standard fine dust on polished optical substrates have been carried out at ambient pressure and vacuum. These studies have shown that the CO2 jet flush is a viable method for removing contaminants from optical surfaces with no damage to the surface. The studies also show that the jet flush has potential for use as an on-orbit cleaning device for space optics.

  9. A Combined Study Investigating the Insoluble and Soluble Organic Compounds in Category 3 Carbonaceous Itokawa Particles Recovered by the Hayabusa Mission

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Zolensky, M.; Burton, A.; Clemett, S.; Fries, M.; Kebukawa, Y.

    2015-01-01

    At the 3rd International Announcement of Opportunity (AO), we have been approved for five Category 3 carbonaceous Itokawa particles (RA-QD02-0012, RA-QD02-0078, RB-CV-0029, RB-CV-0080 and RB-QD04-0052) recovered by the first Hayabusa mission of JAXA. In this investigation, we aim to provide a comprehensive study to characterize and account for the presence of carbon-bearing phases as suggested by the initial Scanning Electron Microscopy (SEM) analysis carried out by JAXA at the curation facility, and to describe the mineralogical components of the particles. The insoluble organic content of Itokawa particle has been investigated with the use of micro-Raman spectroscopy by Kitajima and co-workers [1]. The Raman spectra of Itokawa particles show broad G- and D-bands typical of low temperature material which offers an interesting contrast to the high metamorphic grade (LL4-6) of the Itokawa parent body. Amino acid analysis has been conducted by Naraoka et al. [2] to study the soluble organic component of Itokawa particles, but since it was a preliminary study and thus did not have the opportunity to target on Category 3 carbonaceous particles, only terrestrial contaminants were identified. The investigation will be carried out in the following order prioritized according to the progressive damage the analytical techniques can induce: (1) micro-Raman spectrometry, (2) two-step laser mass spectrometry (micro-L2MS), (3) ultra-high performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS), and optimally if we can recover the particles after wet chemistry analysis, we will mount the samples and perform (4) electron beam microscopy (SEM, electron back-scattered diffraction [EBSD]) and (5) carbon X-ray absorption near edge structure spectroscopy (C-XANES). We will begin the analytical procedures upon receiving the samples in September/October. This work will provide us with an understanding of the variety and origins of

  10. Assessing soil and groundwater contamination from biofuel spills.

    PubMed

    Chen, Colin S; Shu, Youn-Yuen; Wu, Suh-Huey; Tien, Chien-Jung

    2015-03-01

    Future modifications of fuels should include evaluation of the proposed constituents for their potential to damage environmental resources such as the subsurface environment. Batch and column experiments were designed to simulate biofuel spills in the subsurface environment and to evaluate the sorption and desorption behavior of target fuel constituents (i.e., monoaromatic and polyaromatic hydrocarbons) in soil. The extent and reversibility of the sorption of aromatic biofuel constituents onto soil were determined. When the ethanol content in ethanol-blended gasoline exceeded 25%, enhanced desorption of the aromatic constituents to water was observed. However, when biodiesel was added to diesel fuel, the sorption of target compounds was not affected. In addition, when the organic carbon content of the soil was higher, the desorption of target compounds into water was lower. The empirical relationships between the organic-carbon normalized sorption coefficient (Koc) and water solubility and between Koc and the octanol-water partition coefficient (Kow) were established. Column experiments were carried out for the comparison of column effluent concentration/mass from biofuel-contaminated soil. The dissolution of target components depended on chemical properties such as the hydrophobicity and total mass of biofuel. This study provides a basis for predicting the fate and transport of hydrophobic organic compounds in the event of a biofuel spill. The spill scenarios generated can assist in the assessment of biofuel-contaminated sites.

  11. 3D target array for pulsed multi-sourced radiography

    DOEpatents

    Le Galloudec, Nathalie Joelle

    2016-02-23

    The various technologies presented herein relate to the generation of x-rays and other charged particles. A plurality of disparate source materials can be combined on an array to facilitate fabrication of co-located mixed tips (point sources) which can be utilized to form a polychromatic cloud, e.g., a plurality of x-rays having a range of energies and or wavelengths, etc. The tips can be formed such that the x-rays are emitted in a direction different to other charged particles to facilitate clean x-ray sourcing. Particles, such as protons, can be directionally emitted to facilitate generation of neutrons at a secondary target. The various particles can be generated by interaction of a laser irradiating the array of tips. The tips can be incorporated into a plurality of 3D conical targets, the conical target sidewall(s) can be utilized to microfocus a portion of a laser beam onto the tip material.

  12. Application of particle swarm optimization in path planning of mobile robot

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Cai, Feng; Wang, Ying

    2017-08-01

    In order to realize the optimal path planning of mobile robot in unknown environment, a particle swarm optimization algorithm based on path length as fitness function is proposed. The location of the global optimal particle is determined by the minimum fitness value, and the robot moves along the points of the optimal particles to the target position. The process of moving to the target point is done with MATLAB R2014a. Compared with the standard particle swarm optimization algorithm, the simulation results show that this method can effectively avoid all obstacles and get the optimal path.

  13. Particle trap for compressed gas insulated transmission systems

    DOEpatents

    Cookson, A.H.

    1984-04-26

    A particle trap is provided for gas insulated transmission lines having a central high voltage conductor supported within an outer coaxial conductive sheath by a dielectric support member. A cavity between the inner conductor and outer sheath is filled with a dielectric insulating gas. A cone-like particle deflector, mounted to the inner conductor, deflects moving particles away from the support member, to radially outer portions of the cavity. A conductive shield is disposed adjacent the outer sheath to form a field-free region in radially outer portions of the cavity, between the shield and the sheath. Particles traveling along the cavity are deflected by the cone-like deflector into the field-free region where they are held immobile. In a vertical embodiment, particles enter the field-free region through an upper end of a gap formed between shield and sheath members. In a horizontal embodiment, the deflector cone has a base which is terminated radially internally of the shield. Apertures in the shield located adjacent the deflector allow passage of deflected particles into the field-free region. The dielectric support member is thereby protected from contaminating particles that may otherwise come to rest thereon.

  14. Particle trap for compressed gas insulated transmission systems

    DOEpatents

    Cookson, Alan H.

    1985-01-01

    A particle trap is provided for gas insulated transmission lines having a central high voltage conductor supported within an outer coaxial conductive sheath by a dielectric support member. A cavity between the inner conductor and outer sheath is filled with a dielectric insulating gas. A cone-like particle deflector, mounted to the inner conductor, deflects moving particles away from the support member, to radially outer portions of the cavity. A conductive shield is disposed adjacent the outer sheath to form a field-free region in radially outer portions of the cavity, between the shield and the sheath. Particles traveling along the cavity are deflected by the cone-like deflector into the field-free region where they are held immobile. In a vertical embodiment, particles enter the field-free region through an upper end of a gap formed between shield and sheath members. In a horizontal embodiment, the deflector cone has a base which is terminated radially internally of the shield. Apertures in the shield located adjacent the deflector allow passage of deflected particles into the field-free region. The dielectric support member is thereby protected from contaminating particles that may otherwise come to rest thereon.

  15. A guide for establishing restoration goals for contaminated ecosystems

    USGS Publications Warehouse

    Wagner, Anne M.; Larson, Diane L.; DalSoglio, Julie A.; Harris, James A.; Labus, Paul; Rosi-Marshall, Emma J.; Skarbis, Krisin E.

    2016-01-01

    As natural resources become increasingly limited, the value of restoring contaminated sites, both terrestrial and aquatic, becomes increasingly apparent. Traditionally, goals for remediation have been set before any consideration of goals for ecological restoration. The goals for remediation have focused on removing or limiting contamination whereas restoration goals have targeted the ultimate end use. Here, we present a framework for developing a comprehensive set of achievable goals for ecological restoration of contaminated sites to be used in concert with determining goals for remediation. This framework was developed during a Society of Environmental Toxicology and Chemistry (SETAC) and Society of Ecological Restoration (SER) cosponsored workshop that brought together experts from multiple countries. Although most members were from North America, this framework is designed for use internationally. We discuss the integration of establishing goals for both contaminant remediation and overall restoration, and the need to include both the restoration of ecological and socio-cultural-economic value in the context of contaminated sites. Although recognizing that in some countries there may be regulatory issues associated with contaminants and clean up, landscape setting and social drivers can inform the restoration goals. We provide a decision tree support tool to guide the establishment of restoration goals for contaminated ecosystems. The overall intent of this decision tree is to provide a framework for goal setting and to identify outcomes achievable given the contamination present at a site.

  16. Gunshot residue particle velocity and deceleration.

    PubMed

    De Forest, Peter R; Martir, Kirby; Pizzola, Peter A

    2004-11-01

    The velocity of over 800 gunshot residue particles from eight different sources was determined using high speed stroboscopic photography (spark gap light source). These particles were found to have an average velocity of 500 to 600 ft per second. Many particles acquired considerably higher velocities. Thus, the particles have sufficient energy to embed themselves within certain nearby targets like skin or fabric. The relatively high velocity that the particles acquire explain the formation of stippling on skin in close proximity to a muzzle discharge. These findings also indicate little influence of air currents on particle behavior near the muzzle. The deceleration of less than 100 particles during a 100-microsecond interval was also calculated. The particles experienced rapid rates of deceleration which would explain why few particles are found in test firings beyond 3 ft from the muzzle of a discharged firearm. Because of their relatively high velocity, normal wind velocity would not be expected to significantly influence their motion near the muzzle.

  17. In vivo characteristics of targeted drug-carrying filamentous bacteriophage nanomedicines

    PubMed Central

    2011-01-01

    Background Targeted drug-carrying phage nanomedicines are a new class of nanomedicines that combines biological and chemical components into a modular nanometric drug delivery system. The core of the system is a filamentous phage particle that is produced in the bacterial host Escherichia coli. Target specificity is provided by a targeting moiety, usually an antibody that is displayed on the tip of the phage particle. A large drug payload is chemically conjugated to the protein coat of the phage via a chemically or genetically engineered linker that provides for controlled release of the drug after the particle homed to the target cell. Recently we have shown that targeted drug-carrying phage nanomedicines can be used to eradicate pathogenic bacteria and cultured tumor cells with great potentiation over the activity of the free untargeted drug. We have also shown that poorly water soluble drugs can be efficiently conjugated to the phage coat by applying hydrophilic aminoglycosides as branched solubility-enhancing linkers. Results With an intention to move to animal experimentation of efficacy, we tested anti-bacterial drug-carrying phage nanomedicines for toxicity and immunogenicity and blood pharmacokinetics upon injection into mice. Here we show that anti-bacterial drug-carrying phage nanomedicines that carry the antibiotic chloramphenicol conjugated via an aminoglycoside linker are non-toxic to mice and are greatly reduced in immunogenicity in comparison to native phage particles or particles to which the drug is conjugated directly and are cleared from the blood more slowly in comparison to native phage particles. Conclusion Our results suggest that aminoglycosides may serve as branched solubility enhancing linkers for drug conjugation that also provide for a better safety profile of the targeted nanomedicine. PMID:22185583

  18. Quantification of pressure sensitive adhesive, residual ink, and other colored process contaminants using dye and color image analysis

    Treesearch

    Roy R. Rosenberger; Carl J. Houtman

    2000-01-01

    The USPS Image Analysis (IA) protocol recommends the use of hydrophobic dyes to develop contrast between pressure sensitive adhesive (PSA) particles and cellulosic fibers before using a dirt counter to detect all contaminants that have contrast with the handsheet background. Unless the sample contains no contaminants other than those of interest, two measurement steps...

  19. Metal contamination in environmental media in residential ...

    EPA Pesticide Factsheets

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary concern, but human exposure to soil contaminants either directly, via inhalation of airborne dust particles, or indirectly, via food chain (ingestion of animal products and/or vegetables grown in contaminated areas), is also, significant. In this research, we analyzed data collected in 2007, as part of a larger environmental study performed in the Rosia Montana area in Transylvania, to provide the Romanian governmental authorities with data on the levels of metal contamination in environmental media from this historical mining area. The data were also considered in policy decision to address mining-related environmental concerns in the area. We examined soil and water data collected from residential areas near the mining sites to determine relationships among metals analyzed in these different environmental media, using the correlation procedure in SAS statistical software. Results for residential soil and water analysis indicate that the average values for arsenic (As) (85 mg/kg), cadmium (Cd) (3.2 mg/kg), mercury (Hg) (2.3 mg/kg) and lead (Pb) (92 mg/kg) exceeded the Romanian regulatory exposure levels [the intervention thresholds for residential soil in case of As (25 mg/kg) and Hg

  20. Swabbing of waiting room magazines reveals only low levels of bacterial contamination

    PubMed Central

    Charnock, Colin

    2005-01-01

    Previous studies have shown that toys in waiting rooms of general practice surgeries can be contaminated with potentially pathogenic bacteria. The question was raised as to whether magazines might also be sources of contamination. Swabbing of the front page of 15 magazines from 11 general practice surgeries, followed by analysis for total and specific bacteria, revealed low levels of contamination. Among targeted groups of pathogens only two colonies of Staphylococcus aureus were detected. Magazines do not seem to be potentially important vectors of bacterial transfer in the setting examined. PMID:15667764

  1. Comparison of Passive Samplers for Monitoring Dissolved Organic Contaminants in Water Column Deployments

    EPA Science Inventory

    Nonionic organic contaminants (NOCs) are difficult to measure in the water column due to their inherent chemical properties resulting in low water solubility and high particle activity. Traditional sampling methods require large quantities of water to be extracted and interferen...

  2. Cryogenic target system for hydrogen layering

    DOE PAGES

    Parham, T.; Kozioziemski, B.; Atkinson, D.; ...

    2015-11-24

    Here, a cryogenic target positioning system was designed and installed on the National Ignition Facility (NIF) target chamber. This instrument incorporates the ability to fill, form, and characterize the NIF targets with hydrogen isotopes needed for ignition experiments inside the NIF target bay then transport and position them in the target chamber. This effort brought to fruition years of research in growing and metrologizing high-quality hydrogen fuel layers and landed it in an especially demanding operations environment in the NIF facility. D-T (deuterium-tritium) layers for NIF ignition experiments have extremely tight specifications and must be grown in a very highlymore » constrained environment: a NIF ignition target inside a cryogenic target positioner inside the NIF target bay. Exquisite control of temperature, pressure, contaminant level, and thermal uniformity are necessary throughout seed formation and layer growth to create an essentially-groove-free single crystal layer.« less

  3. High voltage gas insulated transmission line with continuous particle trapping

    DOEpatents

    Cookson, Alan H.; Dale, Steinar J.

    1983-01-01

    This invention provides a novel high voltage gas insulated transmission line utilizing insulating supports spaced at intervals with snap-in means for supporting a continuous trapping apparatus and said trapping apparatus having perforations and cutouts to facilitate trapping of contaminating particles and system flexibility.

  4. Airborne particle monitoring in clean room environments for stem cell cultures.

    PubMed

    Cobo, Fernando; Grela, David; Concha, Angel

    2008-01-01

    Modern high-technology industrial practices like pharmaceutical and stem cell line production demand high-quality environmental conditions to avoid particle contamination in the final product. Particles are important because their presence can affect both the output and the productivity and because they can have repercussion on human health. In this kind of production practice it is necessary to implement optimal methods for particle management and to introduce an environmental monitoring program. This should also address the regional regulatory requirements and will depend on local conditions in each processing center. Each center must evaluate its specific needs and establish appropriate monitoring procedures.

  5. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning

    PubMed Central

    Zhang, Ping; Wu, Linwei; Rocha, Andrea M.; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D.; Wu, Liyou; Watson, David B.; Adams, Michael W. W.; Alm, Eric J.; Adams, Paul D.; Arkin, Adam P.

    2018-01-01

    ABSTRACT Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. PMID:29463661

  6. Selective flow path alpha particle detector and method of use

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2002-01-01

    A method and apparatus for monitoring alpha contamination are provided in which ions generated in the air surrounding the item, by the passage of alpha particles, are moved to a distant detector location. The parts of the item from which ions are withdrawn can be controlled by restricting the air flow over different portions of the apparatus. In this way, detection of internal and external surfaces separately, for instance, can be provided. The apparatus and method are particularly suited for use in undertaking alpha contamination measurements during the commissioning operations.

  7. Suspended sediment and sediment-associated contaminants in San Francisco Bay.

    PubMed

    Schoellhamer, David H; Mumley, Thomas E; Leatherbarrow, Jon E

    2007-09-01

    Water-quality managers desire information on the temporal and spatial variability of contaminant concentrations and the magnitudes of watershed and bed-sediment loads in San Francisco Bay. To help provide this information, the Regional Monitoring Program for Trace Substances in the San Francisco Estuary (RMP) takes advantage of the association of many contaminants with sediment particles by continuously measuring suspended-sediment concentration (SSC), which is an accurate, less costly, and more easily measured surrogate for several trace metals and organic contaminants. Continuous time series of SSC are collected at several sites in the Bay. Although semidiurnal and diurnal tidal fluctuations are present, most of the variability of SSC occurs at fortnightly, monthly, and semiannual tidal time scales. A seasonal cycle of sediment inflow, wind-wave resuspension, and winnowing of fine sediment also is observed. SSC and, thus, sediment-associated contaminants tend to be greater in shallower water, at the landward ends of the Bay, and in several localized estuarine turbidity maxima. Although understanding of sediment transport has improved in the first 10 years of the RMP, determining a simple mass budget of sediment or associated contaminants is confounded by uncertainties regarding sediment flux at boundaries, change in bed-sediment storage, and appropriate modeling techniques. Nevertheless, management of sediment-associated contaminants has improved greatly. Better understanding of sediment and sediment-associated contaminants in the Bay is of great interest to evaluate the value of control actions taken and the need for additional controls.

  8. A novel approach to eliminate detection of contaminating Staphylococcal species introduced during clinical testing

    PubMed Central

    Ao, Wanyuan; Clifford, Adrianne; Corpuz, Maylene; Jenison, Robert

    2017-01-01

    We describe here a strategy that can distinguish between Staphylococcus species truly present in a clinical sample from contaminating Staphylococcus species introduced during the testing process. Contaminating Staphylococcus species are present at low levels in PCR reagents and colonize lab personnel. To eliminate detection of contaminants, we describe an approach that utilizes addition of sufficient quantities of either non-target Staphylococcal cells (Staphylococcus succinus or Staphylococcus muscae) or synthetic oligonucleotide templates to helicase dependent isothermal amplification reactions to consume Staphylococcus-specific tuf and mecA gene primers such that contaminating Staphylococcus amplification is suppressed to below assay limits of detection. The suppressor template DNA is designed with perfect homology to the primers used in the assay but an internal sequence that is unrelated to the Staphylococcal species targeted for detection. Input amount of the suppressor is determined by a mathematical model described herein and is demonstrated to completely suppress contaminating levels of Staphylococcus while not negatively impacting the appropriate clinical assay limit of detection. We have applied this approach to improve the specificity of detection of Staphylococcus species present in positive blood cultures using a chip-based array that produces results visible to the unaided eye. PMID:28225823

  9. Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA.

    PubMed

    Mair, Alan; El-Kadi, Aly I

    2013-10-01

    Capture zone analysis combined with a subjective susceptibility index is currently used in Hawaii to assess vulnerability to contamination of drinking water sources derived from groundwater. In this study, we developed an alternative objective approach that combines well capture zones with multiple-variable logistic regression (LR) modeling and applied it to the highly-utilized Pearl Harbor and Honolulu aquifers on the island of Oahu, Hawaii. Input for the LR models utilized explanatory variables based on hydrogeology, land use, and well geometry/location. A suite of 11 target contaminants detected in the region, including elevated nitrate (>1 mg/L), four chlorinated solvents, four agricultural fumigants, and two pesticides, was used to develop the models. We then tested the ability of the new approach to accurately separate groups of wells with low and high vulnerability, and the suitability of nitrate as an indicator of other types of contamination. Our results produced contaminant-specific LR models that accurately identified groups of wells with the lowest/highest reported detections and the lowest/highest nitrate concentrations. Current and former agricultural land uses were identified as significant explanatory variables for eight of the 11 target contaminants, while elevated nitrate was a significant variable for five contaminants. The utility of the combined approach is contingent on the availability of hydrologic and chemical monitoring data for calibrating groundwater and LR models. Application of the approach using a reference site with sufficient data could help identify key variables in areas with similar hydrogeology and land use but limited data. In addition, elevated nitrate may also be a suitable indicator of groundwater contamination in areas with limited data. The objective LR modeling approach developed in this study is flexible enough to address a wide range of contaminants and represents a suitable addition to the current subjective approach

  10. Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA

    NASA Astrophysics Data System (ADS)

    Mair, Alan; El-Kadi, Aly I.

    2013-10-01

    Capture zone analysis combined with a subjective susceptibility index is currently used in Hawaii to assess vulnerability to contamination of drinking water sources derived from groundwater. In this study, we developed an alternative objective approach that combines well capture zones with multiple-variable logistic regression (LR) modeling and applied it to the highly-utilized Pearl Harbor and Honolulu aquifers on the island of Oahu, Hawaii. Input for the LR models utilized explanatory variables based on hydrogeology, land use, and well geometry/location. A suite of 11 target contaminants detected in the region, including elevated nitrate (> 1 mg/L), four chlorinated solvents, four agricultural fumigants, and two pesticides, was used to develop the models. We then tested the ability of the new approach to accurately separate groups of wells with low and high vulnerability, and the suitability of nitrate as an indicator of other types of contamination. Our results produced contaminant-specific LR models that accurately identified groups of wells with the lowest/highest reported detections and the lowest/highest nitrate concentrations. Current and former agricultural land uses were identified as significant explanatory variables for eight of the 11 target contaminants, while elevated nitrate was a significant variable for five contaminants. The utility of the combined approach is contingent on the availability of hydrologic and chemical monitoring data for calibrating groundwater and LR models. Application of the approach using a reference site with sufficient data could help identify key variables in areas with similar hydrogeology and land use but limited data. In addition, elevated nitrate may also be a suitable indicator of groundwater contamination in areas with limited data. The objective LR modeling approach developed in this study is flexible enough to address a wide range of contaminants and represents a suitable addition to the current subjective approach.

  11. Effect of Co-Contaminants Uranium and Nitrate on Iodine Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szecsody, James E.; Lee, Brady D.; Lawter, Amanda R.

    The objective of this study is to evaluate the significance of co-contaminants on the migration and transformation of iodine species in the Hanford subsurface environment. These impacts are relevant because remedies that target individual contaminants like iodine, may not only impact the fate and transport of other contaminants in the subsurface, but also inhibit the effectiveness of a targeted remedy. For example, iodine (as iodate) co-precipitates with calcite, and has been identified as a potential remedy because it immobilizes iodine. Since uranium also co-precipitates with calcite in field sediments, the presence of uranium may also inhibit iodine co-precipitation. Another potentiallymore » significant impact from co-existing contaminants is iodine and nitrate. The presence of nitrate has been shown to promote biogeochemical reduction of iodate to iodide, thereby increasing iodine species subsurface mobility (as iodide exhibits less sorption). Hence, this study reports on both laboratory batch and column experiments that investigated a) the change in iodate uptake mass and rate of uptake into precipitating calcite due to the presence of differing amounts of uranium, b) the amount of change of the iodate bio-reduction rate due to the presence of differing nitrate concentrations, and c) whether nitrite can reduce iodate in the presence of microbes and/or minerals acting as catalysts.« less

  12. Neutron yield when fast deuterium ions collide with strongly charged tritium-saturated dust particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akishev, Yu. S., E-mail: akishev@triniti.ru; Karal’nik, V. B.; Petryakov, A. V.

    2017-02-15

    The ultrahigh charging of dust particles in a plasma under exposure to an electron beam with an energy up to 25 keV and the formation of a flux of fast ions coming from the plasma and accelerating in the strong field of negatively charged particles are considered. Particles containing tritium or deuterium atoms are considered as targets. The calculated rates of thermonuclear fusion reactions in strongly charged particles under exposure to accelerated plasma ions are presented. The neutron generation rate in reactions with accelerated deuterium and tritium ions has been calculated for these targets. The neutron yield has been calculatedmore » when varying the plasma-forming gas pressure, the plasma density, the target diameter, and the beam electron current density. Deuterium and tritium-containing particles are shown to be the most promising plasmaforming gas–target material pair for the creation of a compact gas-discharge neutron source based on the ultrahigh charging of dust particles by beam electrons with an energy up to 25 keV.« less

  13. Structures of the Signal Recognition Particle Receptor from the Archaeon Pyrococcus furiosus: Implications for the Targeting Step at the Membrane

    PubMed Central

    Egea, Pascal F.; Tsuruta, Hiro; de Leon, Gladys P.; Napetschnig, Johanna; Walter, Peter; Stroud, Robert M.

    2008-01-01

    In all organisms, a ribonucleoprotein called the signal recognition particle (SRP) and its receptor (SR) target nascent proteins from the ribosome to the translocon for secretion or membrane insertion. We present the first X-ray structures of an archeal FtsY, the receptor from the hyper-thermophile Pyrococcus furiosus (Pfu), in its free and GDP•magnesium-bound forms. The highly charged N-terminal domain of Pfu-FtsY is distinguished by a long N-terminal helix. The basic charges on the surface of this helix are likely to regulate interactions at the membrane. A peripheral GDP bound near a regulatory motif could indicate a site of interaction between the receptor and ribosomal or SRP RNAs. Small angle X-ray scattering and analytical ultracentrifugation indicate that the crystal structure of Pfu-FtsY correlates well with the average conformation in solution. Based on previous structures of two sub-complexes, we propose a model of the core of archeal and eukaryotic SRP•SR targeting complexes. PMID:18978942

  14. On Release of Microbe-Laden Particles from Mars Landers

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2006-01-01

    A paper presents a study in which rates of release of small particles from Mars lander spacecraft into the Martian atmosphere were estimated from first principles. Because such particles can consist of, or be laden with, terrestrial microbes, the study was undertaken to understand their potential for biological contamination of Mars. The study included taking account of forces and energies involved in adhesion of particles and of three mechanisms of dislodgement of particles from the surface of a Mars lander: wind shear, wind-driven impingement of suspended dust, and impingement of wind-driven local saltating sand particles. Wind shear was determined to be effective in dislodging only particles larger than about 10 microns and would probably be of limited interest because such large particles could be removed by pre-flight cleaning of the spacecraft, and their number on the launched spacecraft would thus be relatively small. Dislodgement by wind-driven dust was found to be characterized by an adhesion half-life of the order of 10,000 years judged to be too long to be of concern. Dislodgement by saltating sand particles, including skirts of dust devils, was found to be of potential importance, depending on the sizes of the spacecraft-attached particles and characteristics of both Mars sand-particle and spacecraft surfaces.

  15. Detection of target-probe oligonucleotide hybridization using synthetic nanopore resistive pulse sensing.

    PubMed

    Booth, Marsilea Adela; Vogel, Robert; Curran, James M; Harbison, SallyAnn; Travas-Sejdic, Jadranka

    2013-07-15

    Despite the plethora of DNA sensor platforms available, a portable, sensitive, selective and economic sensor able to rival current fluorescence-based techniques would find use in many applications. In this research, probe oligonucleotide-grafted particles are used to detect target DNA in solution through a resistive pulse nanopore detection technique. Using carbodiimide chemistry, functionalized probe DNA strands are attached to carboxylated dextran-based magnetic particles. Subsequent incubation with complementary target DNA yields a change in surface properties as the two DNA strands hybridize. Particle-by-particle analysis with resistive pulse sensing is performed to detect these changes. A variable pressure method allows identification of changes in the surface charge of particles. As proof-of-principle, we demonstrate that target hybridization is selectively detected at micromolar concentrations (nanomoles of target) using resistive pulse sensing, confirmed by fluorescence and phase analysis light scattering as complementary techniques. The advantages, feasibility and limitations of using resistive pulse sensing for sample analysis are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. MOBILIZATION OF PAHS AND PCBS FROM IN-PLACE CONTAMINATED MARINE SEDIMENTS DURING SIMULATED RESUSPENSION EVENTS

    EPA Science Inventory

    A particle entrainment simulator was used to experimentally produce representative estuarine resuspension conditions to investigate the resulting transport of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) to the overlying water column. Contaminants ...

  17. Supersonic Particle Impact Test Capabilities: Investigative Report

    NASA Technical Reports Server (NTRS)

    Rosales, Keisa

    2007-01-01

    NASA Johnson Space Center White Sands Test Facility (WSTF) performed particle impact flow tests to determine the maximum capabilities of the particle impact test systems in different configurations. Additional flow tests were performed to determine the target pressures at given upstream conditions to supplement the WSTF data located in ASTM Manual 36 (2000).

  18. Method and apparatus for determining time, direction, and composition of impacting space particles

    NASA Technical Reports Server (NTRS)

    Kinard, William H. (Inventor); Wortman, Jim J. (Inventor); Kassel, Philip C., Jr. (Inventor); Singer, Fred S. (Inventor); Humes, Donald H. (Inventor); Stanley, John E. (Inventor)

    1990-01-01

    A space particle collector for recording the time specific particles are captured, and its direction at the time of capture, utilizes an array of targets, each comprised of an MOS capacitor on a chip charged from an external source and discharged upon impact by a particle through a tab on the chip that serves as a fuse. Any impacting particle creates a crater, but only the first will cause a discharge of the capacitor. A substantial part of the metal film around the first crater is burned off by the discharge current. The time of the impulse which burns the tab, and the identification of the target, is recorded together with data from flight instruments. The metal film is partitioned into pie sections to provide a plurality of targets on each of an array of silicon wafers, thus increasing the total number of identified particles that can be collected. It is thus certain which particles were captured at what specific times.

  19. Particle Transport in Therapeutic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Puri, Ishwar K.; Ganguly, Ranjan

    2014-01-01

    Iron oxide magnetic nanoparticles, in ferrofluids or as magnetic microspheres, offer magnetic maneuverability, biochemical surface functionalization, and magnetic relaxation under the influence of an alternating field. The use of these properties for clinical applications requires an understanding of particles, forces, and scalar transport at various length scales. This review explains the behavior of magnetic nano- and microparticles during magnetic drug targeting and magnetic fluid hyperthermia, and the microfluidic transport of these particles in bioMEMS (biomedical microelectromechanical systems) devices for ex vivo therapeutic and diagnostic applications. Magnetic particle transport, the momentum interaction of these particles with a host fluid in a flow, and thermal transport in a particle-infused tissue are characterized through the governing electrodynamic, hydrodynamic, and scalar transport equations.

  20. Enhanced permanganate in situ chemical oxidation through MnO2 particle stabilization: evaluation in 1-D transport systems.

    PubMed

    Crimi, Michelle; Quickel, Mark; Ko, Saebom

    2009-02-27

    In situ chemical oxidation using permanganate is an increasingly employed approach to organic contaminant remediation at hazardous waste sites. Manganese dioxide (MnO2) particles form as a by-product of the reaction of permanganate with contaminants and naturally-reduced subsurface materials. These particles are of interest because they have the potential to deposit in the subsurface and impact the flow regime in/around permanganate injection, including the well screen, filter pack, and the surrounding subsurface formation. Control of these particles can allow for improved oxidant injection and transport, and contact between the oxidant and contaminants of concern. Sodium hexametaphosphate (HMP) has previously been identified as a promising aid to stabilize MnO2 in solution when included in the oxidizing solution, increasing the potential to inhibit particle deposition and impact subsurface flow. The goal of the experimental studies described herein was to investigate the ability of HMP to prevent particle deposition in transport studies using four different types of porous media. Permanganate was delivered to a contaminant source zone (trichloroethylene) located within four different media types with variations in sand, clay, organic carbon, and iron oxides (as goethite) content. Deposition of MnO2 within the columns was quantified with distance from the source zone. Experiments were repeated in replicate columns with the inclusion of HMP directly with the oxidant delivery solution, and MnO2 deposition was again quantified. While total MnO2 deposition within the 60 cm columns did not change significantly with the addition of HMP, deposition within the contaminant source zone decreased by 25-85%, depending on the specific media type. The greatest differences in deposition were observed in the goethite-containing and clay-containing columns. Columns containing these two media types experienced completely plugged flow in the oxidant-only delivery systems; however

  1. Targeting hepatic cancer cells with pegylated dendrimers displaying N-acetylgalactosamine and SP94 peptide ligands.

    PubMed

    Medina, Scott H; Tiruchinapally, Gopinath; Chevliakov, Maxim V; Durmaz, Yasemin Yuksel; Stender, Rachell N; Ensminger, William D; Shewach, Donna S; Elsayed, Mohamed E H

    2013-10-01

    Poly(amidoamine) (PAMAM) dendrimers are branched water-soluble polymers defined by consecutive generation numbers (Gn) indicating a parallel increase in size, molecular weight, and number of surface groups available for conjugation of bioactive agents. In this article, we compare the biodistribution of N-acetylgalactosamine (NAcGal)-targeted [(14) C]1 -G5-(NH2 )5 -(Ac)108 -(NAcGal)14 particles to non-targeted [(14) C]1 -G5-(NH2 )127 and PEGylated [(14) C]1 -G5-(NH2 )44 -(Ac)73 -(PEG)10 particles in a mouse hepatic cancer model. Results show that both NAcGal-targeted and non-targeted particles are rapidly cleared from the systemic circulation with high distribution to the liver. However, NAcGal-targeted particles exhibited 2.5-fold higher accumulation in tumor tissue compared to non-targeted ones. In comparison, PEGylated particles showed a 16-fold increase in plasma residence time and a 5-fold reduction in liver accumulation. These results motivated us to engineer new PEGylated G5 particles with PEG chains anchored to the G5 surface via acid-labile cis-aconityl linkages where the free PEG tips are functionalized with NAcGal or SP94 peptide to investigate their potential as targeting ligands for hepatic cancer cells as a function of sugar conformation (α versus β), ligand concentration (100-4000 nM), and incubation time (2 and 24 hours) compared to fluorescently (Fl)-labeled and non-targeted G5-(Fl)6 -(NH2 )122 and G5-(Fl)6 -(Ac)107 -(cPEG)15 particles. Results show G5-(Fl)6 -(Ac)107 -(cPEG[NAcGalβ ])14 particles achieve faster uptake and higher intracellular concentrations in HepG2 cancer cells compared to other G5 particles while escaping the non-specific adsorption of serum protein and phagocytosis by Kupffer cells, which make these particles the ideal carrier for selective drug delivery into hepatic cancer cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Erosion tests of materials by energetic particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schechter, D.E.; Tsai, C.C.; Sluss, F.

    1985-01-01

    The internal components of magnetic fusion devices must withstand erosion from and high heat flux of energetic plasma particles. The selection of materials for the construction of these components is important to minimize contamination of the plasma. In order to study various materials' comparative resistance to erosion by energetic particles and their ability to withstand high heat flux, water-cooled copper swirl tubes coated or armored with various materials were subjected to bombardment by hydrogen and helium particle beams. Materials tested were graphite, titanium carbide (TiC), chromium, nickel, copper, silver, gold, and aluminum. Details of the experimental arrangement and methods ofmore » application or attachment of the materials to the copper swirl tubes are presented. Results including survivability and mass losses are discussed.« less

  3. Breakable mesoporous silica nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Maggini, Laura; Cabrera, Ingrid; Ruiz-Carretero, Amparo; Prasetyanto, Eko A.; Robinet, Eric; de Cola, Luisa

    2016-03-01

    ``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery.``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery. Electronic supplementary information (ESI) available: Full experimental procedures, additional SEM and TEM images of particles, complete UV-Vis and PL-monitored characterization of the breakdown of

  4. Adsorption of Cashew Allergens to Acid-Etched Zinc Metal Particles

    USDA-ARS?s Scientific Manuscript database

    Galvanized metal surfaces are approved by the FDA for use in many food processing steps. Food allergens can cause severe reactions even in very small amounts, and surfaces contaminated with allergens could pose a serious threat. The binding of cashew allergens to zinc particles was evaluated. Whi...

  5. Effective particle sizes of cohesive sediment in north Mississippi streams

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the size of cohesive sediment particles transported in streams is important information for predicting how the sediment and contaminants the sediment may be carrying will be transported by the flow. Cohesive sediments (less than 0.062 mm in diameter) generally are not transported in th...

  6. Assessment of molecular contamination in mask pod

    NASA Astrophysics Data System (ADS)

    Foray, Jean Marie; Dejaune, Patrice; Sergent, Pierre; Gough, Stuart; Cheung, D.; Davenet, Magali; Favre, Arnaud; Rude, C.; Trautmann, T.; Tissier, Michel; Fontaine, H.; Veillerot, M.; Avary, K.; Hollein, I.; Lerit, R.

    2008-04-01

    contaminants: by inline techniques based on Adixen humidity, also VOC and organic sensors, together by off-line techniques already used in the extensive previous mask pods benchmark (TD-GCMS & Ionic Chromatography). Humidity and VOC levels from mask carriers had shown significant reduction after Adixen pod conditioning process. Focus had been made on optimized vacuum step (for AMC) after particles carrier cleaning cycle. Based upon these key results new procedures, as well as guidelines for mask carrier cleaning optimization are proposed to improve pod contamination control. Summary results/next steps: This paper reports molecular contamination measurement campaigns performed by a pool of European partners along the mask supply chain. It allows us to investigate, identify and quantify critical molecular contamination in mask pod, as well as VOC and humidity, issues depending on locations, uses, and carrier's type. Preliminary studies highlight initial process solutions for pods conditioning that are being used for short term industrialization and further industrialized.

  7. Polarization of fast particle beams by collisional pumping

    DOEpatents

    Stearns, J.W.; Kaplan, S.N.; Pyle, R.V.; Anderson, L.W.; Schlachter, A.S.; Ruby, L.

    1984-10-19

    The invention relates to method and apparatus for polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and generating a thick electron-spin-polarized medium positioned as a target for said beam, said medium being sufficiently thick to allow said beam to interact with said medium to produce collisional pumping whereby said particle beam becomes highly polarized.

  8. Anisotropic biodegradable lipid coated particles for spatially dynamic protein presentation.

    PubMed

    Meyer, Randall A; Mathew, Mohit P; Ben-Akiva, Elana; Sunshine, Joel C; Shmueli, Ron B; Ren, Qiuyin; Yarema, Kevin J; Green, Jordan J

    2018-05-01

    There has been growing interest in the use of particles coated with lipids for applications ranging from drug delivery, gene delivery, and diagnostic imaging to immunoengineering. To date, almost all particles with lipid coatings have been spherical despite emerging evidence that non-spherical shapes can provide important advantages including reduced non-specific elimination and increased target-specific binding. We combine control of core particle geometry with control of particle surface functionality by developing anisotropic, biodegradable ellipsoidal particles with lipid coatings. We demonstrate that these lipid coated ellipsoidal particles maintain advantageous properties of lipid polymer hybrid particles, such as the ability for modular protein conjugation to the particle surface using versatile bioorthogonal ligation reactions. In addition, they exhibit biomimetic membrane fluidity and demonstrate lateral diffusive properties characteristic of natural membrane proteins. These ellipsoidal particles simultaneously provide benefits of non-spherical particles in terms of stability and resistance to non-specific phagocytosis by macrophages as well as enhanced targeted binding. These biomaterials provide a novel and flexible platform for numerous biomedical applications. The research reported here documents the ability of non-spherical polymeric particles to be coated with lipids to form anisotropic biomimetic particles. In addition, we demonstrate that these lipid-coated biodegradable polymeric particles can be conjugated to a wide variety of biological molecules in a "click-like" fashion. This is of interest due to the multiple types of cellular mimicry enabled by this biomaterial based technology. These features include mimicry of the highly anisotropic shape exhibited by cells, surface presentation of membrane bound protein mimetics, and lateral diffusivity of membrane bound substrates comparable to that of a plasma membrane. This platform is demonstrated to

  9. Chimeric L2-Based Virus-Like Particle (VLP) Vaccines Targeting Cutaneous Human Papillomaviruses (HPV).

    PubMed

    Huber, Bettina; Schellenbacher, Christina; Shafti-Keramat, Saeed; Jindra, Christoph; Christensen, Neil; Kirnbauer, Reinhard

    2017-01-01

    Common cutaneous human papillomavirus (HPV) types induce skin warts, whereas species beta HPV are implicated, together with UV-radiation, in the development of non-melanoma skin cancer (NMSC) in immunosuppressed patients. Licensed HPV vaccines contain virus-like particles (VLP) self-assembled from L1 major capsid proteins that provide type-restricted protection against mucosal HPV infections causing cervical and other ano-genital and oro-pharyngeal carcinomas and warts (condylomas), but do not target heterologous HPV. Experimental papillomavirus vaccines have been designed based on L2 minor capsid proteins that contain type-common neutralization epitopes, to broaden protection to heterologous mucosal and cutaneous HPV types. Repetitive display of the HPV16 L2 cross-neutralization epitope RG1 (amino acids (aa) 17-36) on the surface of HPV16 L1 VLP has greatly enhanced immunogenicity of the L2 peptide. To more directly target cutaneous HPV, L1 fusion proteins were designed that incorporate the RG1 homolog of beta HPV17, the beta HPV5 L2 peptide aa53-72, or the common cutaneous HPV4 RG1 homolog, inserted into DE surface loops of HPV1, 5, 16 or 18 L1 VLP scaffolds. Baculovirus expressed chimeric proteins self-assembled into VLP and VLP-raised NZW rabbit immune sera were evaluated by ELISA and L1- and L2-based pseudovirion (PsV) neutralizing assays, including 12 novel beta PsV types. Chimeric VLP displaying the HPV17 RG1 epitope, but not the HPV5L2 aa53-72 epitope, induced cross-neutralizing humoral immune responses to beta HPV. In vivo cross-protection was evaluated by passive serum transfer in a murine PsV challenge model. Immune sera to HPV16L1-17RG1 VLP (cross-) protected against beta HPV5/20/24/38/96/16 (but not type 76), while antisera to HPV5L1-17RG1 VLP cross-protected against HPV20/24/96 only, and sera to HPV1L1-4RG1 VLP cross-protected against HPV4 challenge. In conclusion, RG1-based VLP are promising next generation vaccine candidates to target cutaneous HPV

  10. Chimeric L2-Based Virus-Like Particle (VLP) Vaccines Targeting Cutaneous Human Papillomaviruses (HPV)

    PubMed Central

    Huber, Bettina; Schellenbacher, Christina; Shafti-Keramat, Saeed; Jindra, Christoph; Christensen, Neil

    2017-01-01

    Common cutaneous human papillomavirus (HPV) types induce skin warts, whereas species beta HPV are implicated, together with UV-radiation, in the development of non-melanoma skin cancer (NMSC) in immunosuppressed patients. Licensed HPV vaccines contain virus-like particles (VLP) self-assembled from L1 major capsid proteins that provide type-restricted protection against mucosal HPV infections causing cervical and other ano-genital and oro-pharyngeal carcinomas and warts (condylomas), but do not target heterologous HPV. Experimental papillomavirus vaccines have been designed based on L2 minor capsid proteins that contain type-common neutralization epitopes, to broaden protection to heterologous mucosal and cutaneous HPV types. Repetitive display of the HPV16 L2 cross-neutralization epitope RG1 (amino acids (aa) 17–36) on the surface of HPV16 L1 VLP has greatly enhanced immunogenicity of the L2 peptide. To more directly target cutaneous HPV, L1 fusion proteins were designed that incorporate the RG1 homolog of beta HPV17, the beta HPV5 L2 peptide aa53-72, or the common cutaneous HPV4 RG1 homolog, inserted into DE surface loops of HPV1, 5, 16 or 18 L1 VLP scaffolds. Baculovirus expressed chimeric proteins self-assembled into VLP and VLP-raised NZW rabbit immune sera were evaluated by ELISA and L1- and L2-based pseudovirion (PsV) neutralizing assays, including 12 novel beta PsV types. Chimeric VLP displaying the HPV17 RG1 epitope, but not the HPV5L2 aa53-72 epitope, induced cross-neutralizing humoral immune responses to beta HPV. In vivo cross-protection was evaluated by passive serum transfer in a murine PsV challenge model. Immune sera to HPV16L1-17RG1 VLP (cross-) protected against beta HPV5/20/24/38/96/16 (but not type 76), while antisera to HPV5L1-17RG1 VLP cross-protected against HPV20/24/96 only, and sera to HPV1L1-4RG1 VLP cross-protected against HPV4 challenge. In conclusion, RG1-based VLP are promising next generation vaccine candidates to target cutaneous

  11. Demonstration/Validation of a Surface Cleaning Control Practice to Mitigate Storm Water Metal Contaminants

    DTIC Science & Technology

    2014-04-01

    added to a pre- weighed 125-ml low density polyethylene (LDPE) bottle. The particles were digested with 1.0 ml of concentrated trace metal grade (TMG...consideration to ensure completion of operations.   33 9. REFERENCES Breault, R. F., K. P. Smith, and J. R. Sorenson. 2005. “ Residential Street...of the Contaminants and Toxicity Associated with Particles in Stormwater Runoff.” Caltrans CTSW-RT-03-059.73.15. California Department of

  12. Airborne trace contaminants of possible interest in CELSS

    NASA Technical Reports Server (NTRS)

    Garavelli, J. S.

    1986-01-01

    One design goal of Closed Ecological Life Support Systems (CELSS) for long duration space missions is to maintain an atmosphere which is healthy for all the desirable biological species and not deleterious to any of the mechanical components in that atmosphere. CELESS design must take into account the interactions of at least six major components; (1) humans and animals, (2) higher plants, (3) microalgae, (4) bacteria and fungi, (5) the waste processing system, and (6) other mechanical systems. Each of these major components can be both a source and a target of airborne trace contaminants in a CELSS. A range of possible airborne trace contaminants is discussed within a chemical classification scheme. These contaminants are analyzed with respect to their probable sources among the six major components and their potential effects on those components. Data on airborne chemical contaminants detected in shuttle missions is presented along with this analysis. The observed concentrations of several classes of compounds, including hydrocarbons, halocarbons, halosilanes, amines and nitrogen oxides, are considered with respect to the problems which they present to CELSS.

  13. Development of RadRob15, A Robot for Detecting Radioactive Contamination in Nuclear Medicine Departments.

    PubMed

    Shafe, A; Mortazavi, S M J; Joharnia, A; Safaeyan, Gh H

    2016-09-01

    Accidental or intentional release of radioactive materials into the living or working environment may cause radioactive contamination. In nuclear medicine departments, radioactive contamination is usually due to radionuclides which emit high energy gamma photons and particles. These radionuclides have a broad range of energies and penetration capabilities. Rapid detection of radioactive contamination is very important for efficient removing of the contamination without spreading the radionuclides. A quick scan of the contaminated area helps health physicists locate the contaminated area and assess the level of activity. Studies performed in IR Iran shows that in some nuclear medicine departments, areas with relatively high levels of activity can be found. The highest contamination level was detected in corridors which are usually used by patients. To monitor radioactive contamination in nuclear medicine departments, RadRob15, a contamination detecting robot was developed in the Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC). The motor vehicle scanner and the gas radiation detector are the main components of this robot. The detection limit of this robot has enabled it to detect low levels of radioactive contamination. Our preliminary tests show that RadRob15 can be easily used in nuclear medicine departments as a device for quick surveys which identifies the presence or absence of radioactive contamination.

  14. Chemical factors influencing colloid-facilitated transport of contaminants in porous media

    USGS Publications Warehouse

    Roy, Sujoy B.; Dzombak, David A.

    1997-01-01

    The effects of colloids on the transport of two strongly sorbing solutesa hydrophobic organic compound, phenanthrene, and a metal ion, Ni2+were studied in sand-packed laboratory columns under different pH and ionic strength conditions. Two types of column experiments were performed as follows:  (i) sorption/mobilization experiments where the contaminant was first sorbed in the column under conditions where no colloids were released and mobilized under conditions where colloids were released as a result of ionic strength reduction in the influent; and (ii) transport experiments where the contaminant, dissolved or sorbed on colloids, was injected into columns packed with a strongly sorbing porous medium. In the first type of experiment, contaminant mobilization was significant only when all releasable colloids were flushed from the column. In all other cases, although high colloid particle concentrations were encountered, there was no marked effect on total contaminant concentrations. In the second type of experiment, colloid deposition efficiencies were shown to control the enhancement of transport. The deposition efficiency was a function of the pH (for a high organic content sand) and of the contaminant concentration (for a charged species such as Ni2+).

  15. Polythiophene biosensor for rapid detection of microbial particles in water.

    PubMed

    Plante, Marie-Pier; Bérubé, Eve; Bissonnette, Luc; Bergeron, Michel G; Leclerc, Mario

    2013-06-12

    Most microbial particles have a negatively charged surface and in this work, we describe a water quality monitoring application of a cationic polythiophene derivative (AH-35) for the rapid assessment of microbial contamination of water. Using E. coli as a prototype microbial particle, we demonstrate that the AH-35 polymer can provide a qualitative assessment of water if exposed to more than 500 CFU/mL, thereby paving the way to a new family of biosensors potentially useful for monitoring drinking water distribution systems.

  16. Advances in sublimation studies for particles of explosives

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Nguyen, Viet; Fischer, Thomas; Abrishami, Tara; Papantonakis, Michael; Kendziora, Chris; Mott, David R.; McGill, R. Andrew

    2015-05-01

    When handling explosives, or related surfaces, the hands routinely become contaminated with particles of explosives and related materials. Subsequent contact with a solid surface results in particle crushing and deposition. These particles provide an evidentiary trail which is useful for security applications. As such, the opto-physico-chemical characteristics of these particles are critical to trace explosives detection applications in DOD or DHS arenas. As the persistence of these particles is vital to their forensic exploitation, it is important to understand which factors influence their persistence. The longevity or stability of explosives particles on a substrate is a function of several environmental parameters or particle properties including: Vapor pressure, particle geometry, airflow, particle field size, substrate topography, humidity, reactivity, adlayers, admixtures, particle areal density, and temperature. In this work we deposited particles of 2,4-dinitrotoluene on standard microscopy glass slides by particle sieving and studied their sublimation as a function of airflow velocity, areal particle density and particle field size. Analysis of 2D microscopic images was used to compute and track particle size and geometrical characteristics. The humidity, temperature and substrate type were kept constant for each experiment. A custom airflow cell, using standard microscopy glass slide, allowed in-situ photomicroscopy. Areal particle densities and airflow velocities were selected to provide relevant loadings and flow velocities for a range of potential applications. For a chemical of interest, we define the radial sublimation velocity (RSV) for the equivalent sphere of a particle as the parameter to characterize the sublimation rate. The RSV is a useful parameter because it is independent of particle size. The sublimation rate for an ensemble of particles was found to significantly depend on airflow velocity, the areal density of the particles, and the

  17. Ion-induced nucleation of pure biogenic particles.

    PubMed

    Kirkby, Jasper; Duplissy, Jonathan; Sengupta, Kamalika; Frege, Carla; Gordon, Hamish; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K; Wagner, Robert; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill; Dias, Antonio; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P; Pringle, Kirsty; Rap, Alexandru; Richards, Nigel A D; Riipinen, Ilona; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E; Seinfeld, John H; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander L; Wagner, Andrea C; Wagner, Paul E; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku; Carslaw, Kenneth S; Curtius, Joachim

    2016-05-26

    Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.

  18. Detection of pesticide residues on individual particles.

    PubMed

    Whiteaker, Jeffrey R; Prather, Kimberly A

    2003-01-01

    An aerosol time-of-flight mass spectrometer (ATOFMS) is used to analyze the size and composition of individual particles containing pesticides. Pesticide residues are found in the atmosphere as a result of spray drift, volatilization, and suspension of coated soils. The ability of the ATOFMS to identify the presence of these contaminants on individual particles is assessed for particles created from pure solutions of several commonly used pesticides, as well as pesticides mixed with an organic matrix, and coated on soils. The common names of the pesticides studied are 2,4-D, atrazine, chlorpyrifos, malathion, permethrin, and propoxur. Analysis of the mass spectra produced by single- and two-step laser desorption/ionization of pesticide-containing particles allows for identification of peaks that can be used for detection of pesticide residues in the ambient aerosol. The identified marker peaks are used to approximate detection limits for the pesticides applied to soils, which are on the order of a fraction of a monolayer for individual particles. Results suggest that this technique may be useful for studying the real-time partitioning and distribution of pesticides in the atmosphere immediately following application in agricultural regions.

  19. Aerosol Delivery for Amendment Distribution in Contaminated Vadose Zones

    NASA Astrophysics Data System (ADS)

    Hall, R. J.; Murdoch, L.; Riha, B.; Looney, B.

    2011-12-01

    Remediation of contaminated vadose zones is often hindered by an inability to effectively distribute amendments. Many amendment-based approaches have been successful in saturated formations, however, have not been widely pursued when treating contaminated unsaturated materials due to amendment distribution limitations. Aerosol delivery is a promising new approach for distributing amendments in contaminated vadose zones. Amendments are aerosolized and injected through well screens. During injection the aerosol particles are transported with the gas and deposited on the surfaces of soil grains. Resulting distributions are radially and vertically broad, which could not be achieved by injecting pure liquid-phase solutions. The objectives of this work were A) to characterize transport and deposition behaviors of aerosols; and B) to develop capabilities for predicting results of aerosol injection scenarios. Aerosol transport and deposition processes were investigated by conducting lab-scale injection experiments. These experiments involved injection of aerosols through a 2m radius, sand-filled wedge. A particle analyzer was used to measure aerosol particle distributions with time, and sand samples were taken for amendment content analysis. Predictive capabilities were obtained by constructing a numerical model capable of simulating aerosol transport and deposition in porous media. Results from tests involving vegetable oil aerosol injection show that liquid contents appropriate for remedial applications could be readily achieved throughout the sand-filled wedge. Lab-scale tests conducted with aqueous aerosols show that liquid accumulation only occurs near the point of injection. Tests were also conducted using 200 g/L salt water as the aerosolized liquid. Liquid accumulations observed during salt water tests were minimal and similar to aqueous aerosol results. However, particles were measured, and salt deposited distal to the point of injection. Differences between

  20. Particle transport in low-energy ventilation systems. Part 1: theory of steady states.

    PubMed

    Bolster, D T; Linden, P F

    2009-04-01

    Many modern low-energy ventilation schemes, such as displacement or natural ventilation, take advantage of temperature stratification in a space, extracting the warmest air from the top of the room. The adoption of these energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. In this work we study the steady state transport of particulate contaminants in a displacement-ventilated space. Representing heat sources as ideal sources of buoyancy, analytical models are developed that allow us to compare the average efficiency of contaminant removal between traditional and modern low-energy systems. We found that on average traditional and low-energy systems are similar in overall pollutant removal efficiency, although quite different vertical distributions of contaminant can exist, thus affecting individual exposure. While the main focus of this work is on particles where the dominant mode of deposition is by gravitational settling, we also discuss additional deposition mechanisms and show that the qualitative observations we make carry over to cases where such mechanisms must be included. We illustrate that while average concentration of particles for traditional mixing systems and low energy displacement systems are similar, local concentrations can vary significantly with displacement systems. Depending on the source of the particles this can be better or worse in terms of occupant exposure and engineers should take due diligence accordingly when designing ventilation systems.